Sample records for g-1 lipid weight

  1. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids

    PubMed Central

    2016-01-01

    Bacteria and Eukarya have cell membranes with sn-glycerol-3-phosphate (G3P), whereas archaeal membranes contain sn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form, Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane. PMID:27774041

  2. Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels.

    PubMed

    Samblas, Mirian; Milagro, Fermin I; Gómez-Abellán, Purificación; Martínez, J Alfredo; Garaulet, Marta

    2016-06-01

    The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels. © 2016 The Author(s).

  3. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells.

    PubMed

    Chen, Ao; Chen, Xiaodong; Cheng, Shiqiang; Shu, Le; Yan, Meiping; Yao, Lun; Wang, Binyu; Huang, Shuguang; Zhou, Lei; Yang, Zaiqing; Liu, Guoquan

    2018-05-01

    The fat mass and obesity-associated (FTO) gene is tightly related to body weight and fat mass, and plays a pivotal role in regulating lipid accumulation in hepatocytes. However, the mechanisms underlying its function are poorly understood. Sterol regulatory element binding protein-1c (SREBP1c) is a transcription factor that regulates lipogenesis. Cell death-inducing DFFA (DNA fragmentation factor-α)-like effector c (CIDEC) plays a crucial role in lipid droplets (LDs) size controlling and lipid accumulation. In this report, we first observed that FTO overexpression in HepG2 cells resulted in an increase of lipogenesis and up-regulation of SREBP1c and CIDEC, two key regulatory factors in lipogenesis. In contrast, FTO knockdown in HepG2 cells resulted in a decrease of lipogenesis and down-regulation of SREBP1c and CIDEC expression. Moreover, SREBP1c knockdown resulted in a decrease of lipogenesis in HepG2 cells with FTO overexpression. In addition, FTO demethylation defect mutant presented less transcription of the key genes, and less nuclear translocation and maturation of SREBP1c. Further investigation demonstrated that overexpression of SREBP1c in HepG2 cells also promoted high CIDEC expression. Luciferase reporter assays showed that SREBP1c significantly stimulated CIDEC gene promoter activity. Finally, CIDEC knockdown reduced SREBP1c-induced lipogenesis. In conclusion, our studies suggest that FTO increased the lipid accumulation in hepatocytes by increasing nuclear translocation of SREBP1c and SREBP1c maturation, thus improving the transcriptional activity of LD-associated protein CIDEC. Our studies may provide new mechanistic insight into nonalcoholic fatty liver disease (NAFLD) mediated by FTO. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Effect on the lipid parameters of an intervention to reduce weight in overweight and obese patients.

    PubMed

    Tárraga Marcos, M Loreto; Panisello Royo, Josefa María; Carbayo Herencia, Julio A; Rosich Domenech, Nuria; Alins Presas, Josep; Tárraga López, Pedro J

    To assess the effect on lipid parameters most associated with excess weight (triglycerides [TG], cholesterol, and high density lipoprotein [HDL-C]) of an intervention to reduce weight in overweight and obese patients. A randomised, controlled, double blind clinical trial, with three groups, and a follow-up of 12 months. Patients included in the study were randomised into three intervention groups: Obesity motivational intervention group with previously trained nurse (G1), lower intensity consultation, non-motivational group, with digital platform support (G2), and a third group that received a recommendation to lose weight and usual follow-up (G3). The anthropometric variables measured were height, weight, and abdominal/waist circumference, and laboratory results, total cholesterol, TG and HDL cholesterol). The study include 176 patients, of whom 60 were randomised to G1, 61 to G2, and 59 to G3. All groups significantly decreased body weight at the end of the study, with a decrease in G1 (-5.6kg), followed by G2 (-4.3kg), and G3 (-1.7kg), with an overall mean loss of -3.9kg. There was a also significant decrease (P<.05) in total cholesterol and TG, and an increased HDL-C. These changes were more marked in the G1 group (the group that lost more weight). The clinical relevance indicators that were significant were: in the case of TG: G1/G3: relative risk: 1.42 (95% CI: 1.11-1.80); relative risk reduction: 41.7% (11.4-80.2); absolute risk reduction: 25% (9.2-40.8) and NNT: 5 (3-11). In the case of G1/G2 HDL-C: relative risk: 1.32 (1.07-1.63); relative risk reduction: 32.2% (7.4-62.6); absolute risk reduction: 21.1% (6.4-35.8) and NNT: 5 (3-16). Weight reduction is accompanied by favorable changes in the lipid parameters related to overweight and obesity, being more intense the greater the weight loss. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Effects of early pregnancy BMI, mid-gestational weight gain, glucose and lipid levels in pregnancy on offspring's birth weight and subcutaneous fat: a population-based cohort study.

    PubMed

    Sommer, Christine; Sletner, Line; Mørkrid, Kjersti; Jenum, Anne Karen; Birkeland, Kåre Inge

    2015-04-03

    Maternal glucose and lipid levels are associated with neonatal anthropometry of the offspring, also independently of maternal body mass index (BMI). Gestational weight gain, however, is often not accounted for. The objective was to explore whether the effects of maternal glucose and lipid levels on offspring's birth weight and subcutaneous fat were independent of early pregnancy BMI and mid-gestational weight gain. In a population-based, multi-ethnic, prospective cohort of 699 women and their offspring, maternal anthropometrics were collected in gestational week 15 and 28. Maternal fasting plasma lipids, fasting and 2-hour glucose post 75 g glucose load, were collected in gestational week 28. Maternal risk factors were standardized using z-scores. Outcomes were neonatal birth weight and sum of skinfolds in four different regions. Mean (standard deviation) birth weight was 3491 ± 498 g and mean sum of skinfolds was 18.2 ± 3.9 mm. Maternal fasting glucose and HDL-cholesterol were predictors of birth weight, and fasting and 2-hour glucose were predictors of neonatal sum of skinfolds, independently of weight gain as well as early pregnancy BMI, gestational week at inclusion, maternal age, parity, smoking status, ethnic origin, gestational age and offspring's sex. However, weight gain was the strongest independent predictor of both birth weight and neonatal sum of skinfolds, with a 0.21 kg/week increased weight gain giving a 110.7 (95% confidence interval 76.6-144.9) g heavier neonate, and with 0.72 (0.38-1.06) mm larger sum of skinfolds. The effect size of mother's early pregnancy BMI on birth weight was higher in non-Europeans than in Europeans. Maternal fasting glucose and HDL-cholesterol were predictors of offspring's birth weight, and fasting and 2-hour glucose were predictors of neonatal sum of skinfolds, independently of weight gain. Mid-gestational weight gain was a stronger predictor of both birth weight and neonatal sum of skinfolds than early

  6. Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids.

    PubMed

    Akima, Hiroshi; Hioki, Maya; Yoshiko, Akito; Koike, Teruhiko; Sakakibara, Hisataka; Takahashi, Hideyuki; Oshida, Yoshiharu

    2016-05-01

    The purpose of this study was to assess relationships between intramuscular adipose tissue (IntraMAT) content determined by MRI and intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) determined by (1)H magnetic resonance spectroscopy ((1)H MRS) or echo intensity determined by B-mode ultrasonography of human skeletal muscles. Thirty young and elderly men and women were included. T1-weighted MRI was taken from the right mid-thigh to measure IntraMAT content of the vastus lateralis (VL) and biceps femoris (BF) using a histogram shape-based thresholding technique. IMCL and EMCL were measured from the VL and BF at the right mid-thigh using (1)H MRS. Ultrasonographic images were taken from the VL and BF of the right mid-thigh to measure echo intensity based on gray-scale level for quantitative analysis. There was a significant correlation between IntraMAT content by MRI and EMCL of the VL and BF (VL, r=0.506, P<0.01; BF, r=0.591, P<0.001) and between echo intensity and EMCL of the VL and BF (VL, r=0.485, P<0.05; BF, r=0.648, P<0.01). IntraMAT content was also significantly correlated with echo intensity of the VL and BF (VL, r=0.404, P<0.05; BF, r=0.493, P<0.01). Our study suggests that IntraMAT content determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids, not intramyocellular lipids, in human skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Detection of cancer in cervical tissue biopsies using mobile lipid resonances measured with diffusion-weighted (1)H magnetic resonance spectroscopy.

    PubMed

    Zietkowski, D; Davidson, R L; Eykyn, T R; De Silva, S S; Desouza, N M; Payne, G S

    2010-05-01

    The purpose of this study was to implement a diffusion-weighted sequence for visualisation of mobile lipid resonances (MLR) using high resolution magic angle spinning (HR-MAS) (1)H MRS and to evaluate its use in establishing differences between tissues from patients with cervical carcinoma that contain cancer from those that do not. A stimulated echo sequence with bipolar gradients was modified to allow T(1) and T(2) measurements and optimised by recording signal loss in HR-MAS spectra as a function of gradient strength in model lipids and tissues. Diffusion coefficients, T(1) and apparent T(2) relaxation times were measured in model lipid systems. MLR profiles were characterised in relation to T(1) and apparent T(2) relaxation in human cervical cancer tissue samples. Diffusion-weighted (DW) spectra of cervical biopsies were quantified and peak areas analysed using linear discriminant analysis (LDA). The optimised sequence reduced spectral overlap by suppressing signals originating from low molecular weight metabolites and non-lipid contributions. Significantly improved MLR visualisation allowed visualisation of peaks at 0.9, 1.3, 1.6, 2.0, 2.3, 2.8, 4.3 and 5.3 ppm. MLR analysis of DW spectra showed at least six peaks arising from saturated and unsaturated lipids and those arising from triglycerides. Significant differences in samples containing histologically confirmed cancer were seen for peaks at 0.9 (p < 0.006), 1.3 (p < 0.04), 2.0 (p < 0.03), 2.8 (p < 0.003) and 4.3 ppm (p < 0.0002). LDA analysis of MLR peaks from DW spectra almost completely separated two clusters of cervical biopsies (cancer, 'no-cancer'), reflecting underlying differences in MLR composition. Generated Receiver Operating Characteristic (ROC) curves and calculated area under the curve (0.962) validated high sensitivity and specificity of the technique. Diffusion-weighting of HR-MAS spectroscopic sequences is a useful method for characterising MLR in cancer tissues and

  8. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates thatmore » Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.« less

  9. Muscle MRI in neutral lipid storage disease with myopathy carrying mutation c.187+1G>A.

    PubMed

    Xu, Chunxiao; Zhao, Yawen; Liu, Jing; Zhang, Wei; Wang, Zhaoxia; Yuan, Yun

    2015-06-01

    We describe the clinical and muscle MRI changes in 2 siblings with neutral lipid storage disease with myopathy (NLSDM) carrying the mutation c.187+1G>A. Peripheral blood smears, genetic tests, and muscle biopsies were performed. Thigh MRI was performed to observe fatty replacement, muscle edema, and muscle bulk from axial sections. Both siblings had similar fatty infiltration and edema. T1-weighted images of the gluteus maximus, adductor magnus, semitendinosus, and semimembranosus revealed marked and diffuse fatty infiltration. There was asymmetric involvement in biceps femoris and quadriceps. There was extensive fatty infiltration in the quadriceps, except for the rectus femoris. Gracilis and sartorius were relatively spared. Thigh muscle volume was decreased, while the gracilis and sartorius appeared to show compensatory hypertrophy. Compared with previous reports in NLSDM, MRI changes in this myopathy tended to be more severe. Asymmetry and relatively selective fatty infiltration were characteristics. © 2014 Wiley Periodicals, Inc.

  10. Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production.

    PubMed

    Chen, Zhuo; Gong, Yangmin; Fang, Xiantao; Hu, Hanhua

    2012-11-01

    Microalgal lipids are promising alternative feedstocks for biodiesel production. Scenedesmus sp. NJ-1, an oil-rich freshwater microalga isolated from Antarctica, was identified to be a suitable candidate to produce biodiesel in this study. This strain could grow at temperatures ranging from 4 to 35 °C. With regular decrease in nitrate concentration in the medium, large quantities of triacylglycerols accumulated under batch culture conditions detected by thin layer chromatography and BODIPY 505/515 fluorescent staining. Scenedesmus sp. NJ-1 achieved the average biomass productivity of 0.105 g l⁻¹ d⁻¹ (dry weight) and nearly the highest lipid content (35 % of dry cell weight) was reached at day 28 in the batch culture. Neutral lipids accounted for 78 % of total lipids, and C18:1 (n-9), C16:0 were the major fatty acids in total lipids, composing 37 and 20 % of total fatty acids of Scenedesmus sp. NJ-1 grown for 36 days, respectively. These results suggested that Scenedesmus sp. NJ-1 was a good source of microalgal oils for biodiesel production.

  11. Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells.

    PubMed

    Zhang, Tianshun; Yamamoto, Norio; Ashida, Hitoshi

    2014-06-01

    Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease. 4-Hydroxyderricin (4HD), xanthoangelol (XAG), cardamonin (CAR) and flavokawain B (FKB) are chalcones that have exhibited various biological effects against obesity, inflammation, and diabetes; however, little is known about the inhibitory effects of these chalcones on fatty liver disease. In the present study, we investigated the ability of 4HD, XAG, CAR, and FKB to reduce lipid accumulation in hepatocytes. When HepG2 cells were treated with a mixture of fatty acids (FAs; palmitic acid : oleic acid = 1 : 2 ratio), significant lipid accumulation was observed. Under the same experimental conditions, addition of chalcones at 5 μM significantly suppressed the FA-induced lipid accumulation. We found that the expression of sterol regulatory element-binding protein-1 (SREBP-1), a key molecule involved in lipogenesis, was decreased in these chalcone-treated cells. We also found that these chalcones increased the expression of peroxisome proliferator-activated receptor α (PPARα), which is involved in FA oxidation. Moreover, these chalcones increased phosphorylation of AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), upstream regulators of SREBP-1 and PPARα. We confirmed that an AMPK inhibitor, compound C, reversed chalcone-induced changes in SREBP-1 and PPARα expression in the HepG2 cells. Collectively, we found that 4HD, XAG, CAR, and XAG attenuated lipid accumulation through activation of the LKB1/AMPK signaling pathway in HepG2 cells.

  12. Proatherogenic Lipid Profile in Early Childhood: Association with Weight Status at 4 Years and Parental Obesity.

    PubMed

    Riaño-Galán, Isolina; Fernández-Somoano, Ana; Rodríguez-Dehli, Cristina; Valvi, Damaskini; Vrijheid, Martine; Tardón, Adonina

    2017-08-01

    To determine lipid profiles in early childhood and evaluate their association with weight status at 4 years of age. Additionally, we evaluated whether the risk of overweight or having an altered lipid profile was associated with parental weight status. Five hundred eighty two mothers and their 4-year-old children from 2 Spanish population-based cohorts were studied. Weight status in children at 4 years of age was classified as overweight or obese using the International Obesity Task Force criteria. Plasma total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were determined in children and lipid ratios were calculated. A proatherogenic lipid profile was defined as having the 3 lipid ratios in the third tertile. A total of 12.9% of children were overweight and 6.4% were obese. Weight status at 4 years of age was related to maternal prepregnancy body mass index, paternal body mass index, gestational diabetes, and birth weight, but not with other sociodemographic characteristics of the mother. We found no association with gestational age, sex of the child, or breastfeeding. The risk of overweight/obesity was increased 4.17-fold if mothers were overweight/obese (95% CI 1.76-9.88) and 5.1-fold (95% CI 2.50-10.40) if both parents were overweight/obese. There were 133 children (22.8%) with a proatherogenic lipid profile. The risk of a proatherogenic lipid profile was increased 2.44-fold (95% CI 1.54-3.86) if they were overweight/obese at 4 years of age and 2-fold if the father was overweight/obese (95% CI 1.22-3.35). Four-year-old overweight/obese children have higher lipid risk profiles. Offspring of overweight/obese parents have an increased risk for obesity and a proatherogenic lipid profile. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    NASA Astrophysics Data System (ADS)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p<0.05). In contrast, G3, G4, G5 and G6 showed significant difference (p<0.05) with weight loss by 2.16 g, 10.71g, 7.27 g and 3.23 g respectively 7.27 g and 3.23 g respectively after the treatment. Biochemical analyses on the ratsplasma lipid revealed that the total blood cholesterol content of rats fed with either low

  14. Body Weight Gain During a Discrete Nursing Episode in Suckling Rats Reared at 1.5-g or 1.5-g Exceeds that of 1.0-g Controls and is Independent of Material Hypergravity Exposure

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Baer, Lisa A.; Plaut, Karen; Wade, Charles E.; Sun, Sid (Technical Monitor)

    2001-01-01

    We recently reported that body weights of suckling rats reared during 1.5-g centrifugation are approximately 10% lower than those of 1.0-g controls. This finding raises the possibility that hypergravity exposed pups ingest less milk than controls due to either impairments in their ability to acquire milk from the nipple, or to decreased availability or palatability of their mother's milk. In the present study, we analyzed body weight gain in suckling rats reared during a discrete nursing episode following rearing at either 1.75-g, 1.5-g or 1.0-g. On Gestational day (G) 10 of the rats' 22-day pregnancy, time-bred SD rat dams were 1:1 matched based on body weight and assigned to either Hypergravity (HG) or Stationary Yoked Control (SYC) conditions and to either 1.75-g or 1.5-g conditions. Beginning on G11, HG dams and litters were exposed to 26 days of continuous centrifugation with brief daily stops for veterinary inspection and animal maintenance. On the day following birth (Postnatal day), litters were pooled within each condition then randomly re-assigned in equivalent proportions to HG and SYC dams. On P15, HG litters were removed from their mother's and placed in an incubator (33 C). Following a 4hr deprivation period, four neonates were tested from each litter, with two pups placed with either their own dam or the SYC dam; two pups from the yoked mother were paired with the HG pups. Pups were individually weighed, permitted to suckle for 75 min, then re-weighed. At the start of the test, the body weights of HG pups were significantly less than those of SYC pups (p less than 0.05). Relative to SYC pups, BG pups showed significantly greater proportional body weight gain (p less than 0.05), possibly due to augmented post-centrifugation feeding. Pup weight gain was independent of maternal hypergravity exposure. Neither impairments in milk acquisition nor milk availability or palatibility of hypergravity-exposed dams cannot account for reduced body mass of

  15. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Lipids and buoyancy in Southern ocean pteropods.

    PubMed

    Phleger, C F; Nichols, P D; Virtue, P

    1997-10-01

    The lipids of Clione limacina, a Southern Ocean pteropod (order Gymnosomata), contain 28% diacylglyceryl ether (DAGE) (as percentage of total lipid) whereas the pteropod Limacina helicina (order Thecosomata) lacks DAGE. The alkyl glyceryl ether diols (1-O-alkyl glycerols, GE) of Clione DAGE are dominated by 16:0 (60%) and 15:0 (21%), in contrast with deep-sea shark liver DAGE, which is dominated by 18:1 GE. The fatty acid profiles of Clione and Limacina are similar (28-32% polyunsaturated, 26-34% monounsaturated) as are the sterols, which include 24-methylenecholesterol, transdehydrocholesterol, cholesterol, and desmosterol. This finding probably reflects the fact that Limacina is the major food source for Clione. Spongiobranchaea australis, another Southern Ocean pteropod (order Gymnosomata), has 0.9-1.7% DAGE, but has less lipid (3.3-4.8 mg/g lipid, wet weight) than Clione (50.8 mg/g lipid, wet weight). We propose a buoyancy role for DAGE in Clione since Limacina has bubbles for flotation which Clione lack; DAGE provides 23% more uplift than triacylglycerol at a concentration of 1.025 g/mL seawater.

  17. Deleterious effects of increased body weight associated with intensive insulin therapy for type 1 diabetes: increased blood pressure and worsened lipid profile partially negate improvements in life expectancy.

    PubMed

    Palmer, Andrew J; Roze, Stéphane; Valentine, William J; Minshall, Michael E; Lammert, Morten; Nicklasson, Lars; Spinas, Giatgen A

    2004-08-01

    Weight gain is an unwanted side effect of improved glycaemic control in type 1 diabetes, associated with increased blood pressure (BP) and worsening lipid profiles. While improved glycaemic control per se should improve long-term patient outcomes, increases in BP and worsening lipid profiles may counteract these benefits. The aim of this modelling study was to assess whether the increased body weight and associated worsening of lipid profile and blood pressure would negate the improvements in glycaemic control seen with intensive therapy in patients with type 1 diabetes. A validated diabetes model projected life expectancy (LE), quality-adjusted LE (QALE) and total lifetime costs of complications in type 1 diabetes cohorts with the characteristics of patients from the Diabetes Control and Complications Trial (DCCT). The following four cohorts (A-D) were created based on increased body weight under either conventional or intensive therapy: A) conventional glycaemic control in the subgroup with lowest weight-gain quartile after 6.5 years (HbA1c increased by 11% from baseline); B) conventional control in the highest weight-gain quartile (no change in HbA1c from baseline); C) intensive control in the lowest quartile of weight gain (with 16.1% decrease in HbA1c, but no increase in weight or associated BP, and improved lipid profile); D) intensive control in the highest quartile of weight gain (with 21% decrease in HbA1c, increased systolic BP of 6 mmHg, and worsened lipid profile). Data were derived from DCCT and other published sources. Intensive control, even with weight gain, led to major improvements in LE and QALE, and reduction in costs of complications versus conventional therapy. Intensive therapy with no weight increase led to a higher LE (increased by 0.57 years) and higher QALE (increased by 0.28 years) and lower costs of complications (reduced by 523 dollars/patient), compared to intensive therapy with the highest quartile of weight gain. Concerns about

  18. Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides.

    PubMed

    Yu, Chunsong; An, Myunggi; Li, Meng; Liu, Haipeng

    2017-08-07

    Innate immune responses recognizing pathogen associated molecular patterns play important roles in adaptive immunity. As such, ligands which mimic the conserved products of microbial and activate innate immunity are widely used as adjuvants for vaccines. Synthetic single strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs which bind Toll-like receptor 9 (TLR9) are powerful molecular adjuvants, potentiating both humoral and cellular responses. However, CpG ODN's in vitro potency has not been translated to in vivo settings primarily due to issues associated with delivery and toxicity. A major challenge in clinical application of CpG ODN is the efficient delivery to lymph nodes, the anatomic sites where all the immune responses are initiated. Targeting CpG to the key antigen presenting cells (APC) is essential for its application as a vaccine adjuvant, as it not only enhances CpG's efficacy, but also greatly reduces the systemic toxicity. We recently discovered an "albumin-hitchhiking" approach by which CpG ODNs were conjugated to a lipophilic lipid tail and follow subcutaneous injection, accumulated in lymph nodes by binding and transporting with endogenous albumin. This molecular approach targets CpG to antigen presenting cells in the draining lymph nodes via an endogenous albumin-mediated mechanism and simultaneously improves both the efficacy and safety of CpG as a vaccine adjuvant. Since CpG ODNs can be divided into structurally distinct classes, and each class of CpG ODN activates different types of immune cells and triggers different types of immunostimulatory activities, it is important to thoroughly evaluate the efficacy of this "albumin-hitchhiking" strategy in each class of CpG. Here we compare the immunostimulatory activities of three classes of lipid conjugated CpG ODNs in vitro and in vivo. Three representative sequences of lipid modified CpG ODNs were synthesized and their stimulatory effects as a vaccine adjuvant

  19. Lipids and leukocytes in newborn umbilical vein blood, birth weight and maternal body mass index.

    PubMed

    Brittos, T; de Souza, W B; Anschau, F; Pellanda, L

    2016-12-01

    Maternal obesity during pregnancy may influence fetal development and possibly predispose offspring to cardiovascular disease. The aim of the present study was to evaluate the relationship between maternal pre-pregnancy body mass index (BMI) and weight gain during pregnancy, and newborn birth weight, with lipid profile, high-sensitivity C-reactive protein (hs-CRP) and leukocyte in newborns. We performed a cross-sectional study of 245 mothers and their children. Blood was collected from the umbilical vein and assayed for lipid profile, hs-CRP and leukocyte count. Newborns average weight was 3241 g, total cholesterol 53.9 mg/dl, high-density lipoprotein cholesterol (HDL-c) 21.9 mg/dl, low-density lipoprotein cholesterol (LDL-c) 26.2 mg/dl, triglyceride 29.5 mg/dl and leukocytes 13,777/mm3. There was a direct correlation of pre-pregnancy BMI of overweight mothers with total cholesterol (r=0.220, P=0.037) and LDL-c (r=0.268, P=0.011) of newborns. Total cholesterol, LDL-c and HDL-c were higher in pre-term newborns (66.3±19.7, 35.9±14.6 and 25.2±7.7 mg/dl, respectively) that in full-term (52.4±13.1, 25.0±8.7 and 21.5±6.0 mg/dl), with P=0.001, 0.001 and 0.003, respectively. Leukocyte counts were higher in full-term newborns (14,268±3982/mm3) compared with pre-term (9792±2836/mm3, P<0.0001). There was a direct correlation between birth weight and leukocyte counts of newborns (r=0.282, P<0.0001). These results suggest the possible interaction of maternal weight and fetal growth with lipid metabolism and leukocyte count in the newborn, which may be linked to programming of the immune system.

  20. Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading.

    PubMed

    Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A

    2005-01-01

    Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.

  1. The Impact of Maternal Obesity and Gestational Weight Gain on Early and Mid-Pregnancy Lipid Profiles

    PubMed Central

    Scifres, Christina M.; Catov, Janet M.; Simhan, Hyagriv N.

    2015-01-01

    Objective We evaluated the impact of maternal overweight/obesity and excessive weight gain on maternal serum lipids in the first and second trimester of pregnancy. Design and Methods Prospective data were collected for 225 women. Maternal serum lipids and fatty acids were measured at <13 weeks and between 24–28 weeks. Analyses were stratified by normal weight versus overweight/obese status and excessive vs. non-excessive weight gain. Results Overweight/obese women had higher baseline cholesterol (161.3±29.6 vs 149.4±26.8 mg/dL, p<0.01), LDL (80.0±19.9 vs 72.9 ±18.8 mg/dL, p<0.01) and triglycerides ( 81.7±47.2 vs 69.7±40.3 mg/dL, p=0.05) when compared to normal weight women, while HDL (43.6 ±10.4 47.6±11.5 mg/dL, p<0.01) was lower. However, cholesterol and LDL increased at a higher weekly rate in normal weight women, resulting in higher total cholesterol in normal weight women (184.1±28.1 vs. 176.0 ±32.1 mg/dL, p=0.05) at 24–28 weeks. Excessive weight gain did not affect the rate of change in lipid profiles in either group. Overweight/obese women had higher levels of arachidonic acid at both time points. Conclusions Overweight/obese women have significantly more atherogenic lipid profiles than normal weight women during the period of early pregnancy, delineating one physiologic pathway that could explain differences in pregnancy outcomes between normal weight and overweight/obese women. PMID:23853155

  2. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor.

    PubMed

    Pruvost, J; Van Vooren, G; Cogne, G; Legrand, J

    2009-12-01

    The fresh water microalga Neochloris oleoabundans was investigated for its ability to accumulate lipids and especially triacylglycerols (TAG). A systematic study was conducted, from the determination of the growth medium to its characterization in an airlift photobioreactor. Without nutrient limitation, a maximal biomass areal productivity of 16.5 g m(-2) day(-1) was found. Effects of nitrogen starvation to induce lipids accumulation was next investigated. Due to initial N. oleoabundans total lipids high content (23% of dry weight), highest productivity was obtained without mineral limitation with a maximal total lipids productivity of 3.8 g m(-2) day(-1). Regarding TAG, an almost similar productivity was found whatever the protocol was: continuous production without mineral limitation (0.5 g m(-2) day(-1)) or batch production with either sudden or progressive nitrogen deprivation (0.7 g m(-2) day(-1)). The decrease in growth rate reduces the benefit of the important lipids and TAG accumulation as obtained in nitrogen starvation (37% and 18% of dry weight, respectively).

  3. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome.

    PubMed

    Basu, Arpita; Sanchez, Karah; Leyva, Misti J; Wu, Mingyuan; Betts, Nancy M; Aston, Christopher E; Lyons, Timothy J

    2010-02-01

    To compare the effects of supplementation of green tea beverage or green tea extracts with controls on body weight, glucose and lipid profile, biomarkers of oxidative stress, and safety parameters in obese subjects with metabolic syndrome. Randomized, controlled prospective trial. General Clinical Research Center (GCRC) at University of Oklahoma Health Sciences Center (OUHSC). Thirty-five subjects with obesity and metabolic syndrome were recruited in age- and gender-matched trios and were randomly assigned to the control (4 cups water/d), green tea (4 cups/d), or green tea extract (2 capsules and 4 cups water/d) group for 8 weeks. The tea and extract groups had similar dosing of epiogallocatechin-3-gallate (EGCG), the active compound in green tea. Anthropometrics, blood pressure, fasting glucose and lipids, nuclear magnetic resonance (NMR)-based lipid particle size, safety parameters, biomarkers of oxidative stress (oxidized low-density lipoprotein [LDL], myeloperoxidase [MPO], malondialdehyde and hydroxynonenals [MDA and HNE]), and free catechins were analyzed at screen and at 4 and 8 weeks of the study. Pairwise comparisons showed green tea beverage and green tea extracts caused a significant decrease in body weight and body mass index (BMI) versus controls at 8 weeks (-2.5 +/- 0.7 kg, p < 0.01, and -1.9 +/- 0.6, p < 0.05, respectively). Green tea beverage showed a decreasing trend in LDL-cholesterol and LDL/high-density lipoprotein (HDL) versus controls (p < 0.1). Green tea beverage also significantly decreased MDA and HNE (-0.39 +/- 0.06 microM, p < 0.0001) versus controls. Plasma free catechins were detectable in both beverage and extract groups versus controls at screen and at 8 weeks, indicating compliance and bioavailability of green tea catechins. Green tea beverage consumption (4 cups/d) or extract supplementation (2 capsules/d) for 8 weeks significantly decreased body weight and BMI. Green tea beverage further lowered lipid peroxidation versus age- and

  4. The influence of polymer molecular weight in lamellar gels based on PEG-lipids.

    PubMed Central

    Warriner, H E; Keller, S L; Idziak, S H; Slack, N L; Davidson, P; Zasadzinski, J A; Safinya, C R

    1998-01-01

    We report x-ray scattering, rheological, and freeze-fracture and polarizing microscopy studies of a liquid crystalline hydrogel called Lalpha,g. The hydrogel, found in DMPC, pentanol, water, and PEG-DMPE mixtures, differs from traditional hydrogels, which require high MW polymer, are disordered, and gel only at polymer concentrations exceeding an "overlap" concentration. In contrast, the Lalpha,g uses very low-molecular-weight polymer-lipids (1212, 2689, and 5817 g/mole), shows lamellar order, and requires a lower PEG-DMPE concentration to gel as water concentration increases. Significantly, the Lalpha,g contains fluid membranes, unlike Lbeta' gels, which gel via chain ordering. A recent model of gelation in Lalpha phases predicts that polymer-lipids both promote and stabilize defects; these defects, resisting shear in all directions, then produce elasticity. We compare our observations to this model, with particular attention to the dependence of gelation on the PEG MW used. We also use x-ray lineshape analysis of scattering from samples spanning the fluid-gel transition to obtain the elasticity coefficients kappa and B; this analysis demonstrates that although B in particular depends strongly on PEG-DMPE concentration, gelation is uncorrelated to changes in membrane elasticity. PMID:9649387

  5. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  6. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    PubMed Central

    López-Ortega, Orestes; Santos-Argumedo, Leopoldo

    2017-01-01

    Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775

  7. Interaction of lipids with the neurotensin receptor 1.

    PubMed

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony

    2016-06-01

    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Direct and indirect selection of visceral lipid weight, fillet weight, and fillet percentage in a rainbow trout breeding program.

    PubMed

    Kause, A; Paananen, T; Ritola, O; Koskinen, H

    2007-12-01

    We assessed whether visceral lipid weight, fillet weight, and percentage fillet from BW, 3 traits laborious to record, could be genetically improved by indirect selection on more easily measured traits in farmed rainbow trout. Visceral lipid is discarded as waste during slaughter, influencing production efficiency and production costs. Fillet weight and fillet percentage directly influence economic returns in trout production. The study comprised 3 steps. First, we assessed the degree to which selection on percentage of visceral weight from BW indirectly changes visceral lipid weight and the size of intestines and internal organs. The phenotypic analysis of weights of viscera, intestines, visceral lipid, liver, and gonads measured from 40 fish revealed that phenotypic selection against visceral weight was most strongly directed to visceral lipid, and to a lesser degree to intestines and gonads. Because genetic relationships among these traits were not established, it is not known whether indirect selection leads to genetic responses. Second, we examined whether direct selection for the fillet traits could be replaced by indirect selection on BW, eviscerated BW, visceral weight, visceral percentage, head volume, and relative head volume (head volume relative to BW). The selection index calculations based on the quantitative genetic parameters obtained from multigenerational pedigree data showed that genetic improvement of fillet percentage through direct selection (selection accuracy, r(TI) = 0.54) was equally efficient compared with indirect selection on visceral percentage ( r(TI) = 0.54). Genetic improvement of fillet weight through direct selection (r(TI) = 0.56) was always more efficient than indirect selection, yet indirect selection for eviscerated BW ( r(TI) = 0.50) was almost as efficient as direct selection. Third, the expected genetic responses to alternative selection indices showed that improved fillet percentage was mainly a result of a moderate

  9. Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells

    PubMed Central

    Kwon, Eun-Bin; Kang, Myung-Ji; Kim, Soo-Yeon; Lee, Yong-Moon; Lee, Mi-Kyeong; Yuk, Heung Joo; Ryu, Hyung Won; Lee, Su Ui

    2018-01-01

    Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells. PMID:29507591

  10. Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells.

    PubMed

    Kwon, Eun-Bin; Kang, Myung-Ji; Kim, Soo-Yeon; Lee, Yong-Moon; Lee, Mi-Kyeong; Yuk, Heung Joo; Ryu, Hyung Won; Lee, Su Ui; Oh, Sei-Ryang; Moon, Dong-Oh; Lee, Hyun-Sun; Kim, Mun-Ock

    2018-01-01

    Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF- α , suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.

  11. Individual and Combined Effects of Fumonisin B1, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats

    PubMed Central

    Szabó-Fodor, Judit; Fébel, Hedvig; Mézes, Miklós; Balogh, Krisztián; Bázár, György; Kocsó, Dániel; Kovács, Melinda

    2017-01-01

    (1) Background and (2) Methods: A 14-day in vivo, multitoxic (pure mycotoxins) rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day), deoxynivalenol (DON; 30 μg/animal/day) and fumonisin B1 (FB1; 150 μg/animal/day), as individual mycotoxins, binary (FD, FZ and DZ) and ternary combinations (FDZ), via gavage in 1 mL water boluses. (3) Results: Body weight was unaffected, while liver (ZEA↑ vs. DON) and kidney weight (ZEA↑ vs. FDZ) increased. Hepatocellular membrane lipid fatty acids (FAs) referred to ceramide synthesis disturbance (C20:0, C22:0), and decreased unsaturation (C22:5 n3 and unsat. index), mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0) and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0) or DON (C18:2 n6, C20:1 n9). Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase), while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde) in the DON treatment. (4) Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing. PMID:29271890

  12. Antipsychotic metabolic effects: weight gain, diabetes mellitus, and lipid abnormalities.

    PubMed

    McIntyre, R S; McCann, S M; Kennedy, S H

    2001-04-01

    To review published and nonpublished literature describing changes in weight, glucose homeostasis, and lipid milieu with antipsychotics. A Medline search was completed using the words weight gain, diabetes mellitus, cholesterol, triglycerides, risperidone, clozapine, olanzapine, quetiapine, ziprasidone, predictors, prolactin, obesity, and conventional antipsychotics. Publications, including original articles, review articles, letters to the editor, abstracts or posters presented at professional meetings in the last 4 years, and references from published articles, were collected. Manufacturers, including Eli Lilly Canada Inc, JanssenOrtho Inc, Pfizer Canada Inc, AstraZeneca Inc, and Novartis Pharmaceuticals, were contacted to retrieve additional medical information. The topic of antipsychotic-induced weight gain is understudied, and there are relatively few well-controlled studies. Weight gain as a side effect has been described with both conventional and atypical antipsychotics. Moreover, some atypical antipsychotics are associated with de novo diabetes mellitus and increased serum triglyceride levels. Predictors of weight gain may be age, baseline body mass index, appetite stimulation, previous antipsychotic exposure, and antipsychotic treatment duration. Significant weight gain is reported with the existing atypical antipsychotics. The weight gain described is highly distressing to patients, may reduce treatment adherence, and may increase the relative risk for diabetes mellitus and hypertriglyceridemia. Physicians employing these agents should routinely monitor weight, fasting blood glucose, and lipid profiles.

  13. Association of the TRIB1 tribbles homolog 1 gene rs17321515 A>G polymorphism and serum lipid levels in the Mulao and Han populations

    PubMed Central

    2011-01-01

    Background The association of rs17321515 single nucleotide polymorphism (SNP) near TRIB1 gene and serum lipid profiles has never been studied in the Chinese population. Therefore, the present study was undertaken to detect the association of rs17321515 SNP and several environmental factors on serum lipid levels in the Mulao and Han populations. Methods A total of 639 unrelated subjects of Mulao nationality and 644 participants of Han nationality were randomly selected from our previous stratified randomized cluster samples. Genotypes of the TRIB1 rs17321515 A>G SNP were determined via polymerase chain reaction and restriction fragment length polymorphism, and then confirmed by direct sequencing. Results Serum apolipoprotein (Apo) B levels were higher in Mulao than in Han (P < 0.05). There were no differences in the genotypic and allelic frequencies between the two ethnic groups (P > 0.05). High- and low-density lipoprotein cholesterol (HDL-C and LDL-C) levels in Han were different among the genotypes (P < 0.05 for each), the subjects with AG/GG genotypes had higher HDL-C and LDL-C levels than the subjects with AA genotype. Total cholesterol (TC), HDL-C, LDL-C, ApoA1 and ApoB levels in Han males were different among the genotypes (P < 0.05-0.001), the G carriers had higher TC, HDL-C, LDL-C, ApoA1 and ApoB levels than the G noncarriers. HDL-C levels in Mulao males were different among the genotypes (P < 0.05), the G carriers had lower HDL-C levels than the G noncarriers. Serum HDL-C and LDL-C levels in both ethnic groups and TG levels in Han were correlated with the genotypes or alleles (P < 0.05-0.01). TG and HDL-C levels in Mulao males and TG, HDL-C, LDL-C and ApoA1 levels in Han males were correlated with genotypes or alleles (P < 0.05-0.001). TG and ApoA1 levels in Han females were associated with genotypes (P < 0.05 for each). Serum lipid parameters were also associated with several environmental factors in both ethnic groups. Conclusions The associations of

  14. Effects of agave nectar versus sucrose on weight gain, adiposity, blood glucose, insulin, and lipid responses in mice.

    PubMed

    Hooshmand, Shirin; Holloway, Brittany; Nemoseck, Tricia; Cole, Sarah; Petrisko, Yumi; Hong, Mee Young; Kern, Mark

    2014-09-01

    Agave nectar is a fructose-rich liquid sweetener derived from a plant, and is often promoted as a low glycemic alternative to refined sugar. However, little scientific research has been conducted in animals or humans to determine its metabolic and/or health effects. The aim of this study was to explore the influence of agave nectar versus sucrose on weight gain, adiposity, fasting plasma blood glucose, insulin, and lipid levels. Eighteen (n=18) male ICR mice (33.8±1.6 g) were divided into two groups (n=6 for agave nectar and n=12 for sucrose) and provided free access to one of two diets of equal energy densities differing only in a portion of the carbohydrate provided. Diets contained 20% carbohydrate (by weight of total diet) from either raw agave nectar or sucrose. Epididymal fat pads were excised, and blood was collected after 34 days. Weight gain (4.3±2.2 vs. 8.4±3.4 g), fat pad weights (0.95±0.54 vs. 1.75±0.66 g), plasma glucose (77.8±12.2 vs. 111.0±27.9 mg/dL), and insulin (0.61±0.29 vs. 1.46±0.81 ng/mL) were significantly lower (P≤.05) for agave nectar-fed mice compared to sucrose-fed mice respectively. No statistically significant differences in total cholesterol or triglycerides were detected. These results suggest that in comparison to sucrose, agave nectar may have a positive influence on weight gain and glucose control. However, more research with a larger sample of animals and/or with human subjects is warranted.

  15. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    PubMed

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

    2014-06-01

    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P < 0.001). Total and abdominal fat mass measurements were negatively associated with Lipox(max) (r = -0.57 and r = -0.64, respectively; P < 0.01) and MLOR [r = -0.63 (P < 0.01) and r = -0.76 (P < 0.001), respectively]. These findings indicate that, in normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Parenteral lipid administration to very-low-birth-weight infants--early introduction of lipids and use of new lipid emulsions: a systematic review and meta-analysis.

    PubMed

    Vlaardingerbroek, Hester; Veldhorst, Margriet A B; Spronk, Sandra; van den Akker, Chris H P; van Goudoever, Johannes B

    2012-08-01

    The use of intravenous lipid emulsions in preterm infants has been limited by concerns regarding impaired lipid tolerance. As a result, the time of initiation of parenteral lipid infusion to very-low-birth-weight (VLBW) infants varies widely among different neonatal intensive care units. However, lipids provide energy for protein synthesis and supply essential fatty acids that are necessary for central nervous system development. The objective was to summarize the effects of initiation of lipids within the first 2 d of life and the effects of different lipid compositions on growth and morbidities in VLBW infants. A systematic review and meta-analysis of publications identified in a search of PubMed, EMBASE, and Cochrane databases was undertaken. Randomized controlled studies were eligible if information on growth was available. The search yielded 14 studies. No differences were observed in growth or morbidity with early lipid initiation. We found a weak favorable association of non-purely soybean-based emulsions with the incidence of sepsis (RR: 0.75; 95% CI: 0.56, 1.00). The initiation of lipids within the first 2 d of life in VLBW infants appears to be safe and well tolerated; however, beneficial effects on growth could not be shown for this treatment nor for the type of lipid emulsion. Emulsions that are not purely soybean oil-based might be associated with a lower incidence of sepsis. Large-scale randomized controlled trials in preterm infants are warranted to determine whether early initiation of lipids and lipid emulsions that are not purely soybean oil-based results in improved long-term outcomes.

  17. Lipid rafts are essential for peroxisome biogenesis in HepG2 cells.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; Hoekstra, Mark; Pellicoro, Antonella; van den Heuvel, Fiona A J; Heegsma, Janette; van Ijzendoorn, Sven C D; Holzinger, Andreas; Imanaka, Tsuneo; Moshage, Han; Faber, Klaas Nico

    2010-08-01

    Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.

  18. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lamellar Biogels: Fluid-Membrane-Based Hydrogels Containing Polymer Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Idziak, Stefan H. J.; Slack, Nelle L.; Davidson, Patrick; Safinya, Cyrus R.

    1996-02-01

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer lipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled Lα,g, form the gel phase when water is added to the liquid-like lamellar L_α phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated (~50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelation does occur in mixtures containing as little as 0.5 weight percent PEG-lipid. A defining signature of the Lα,g regime as it sets in from the fluid lamellar L_α phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes.

  20. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.

    PubMed

    Nieuwoudt, Melanie; Lombard, Nicolaas; Rautenbach, Marina

    2014-08-15

    In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.

    PubMed

    Yu, Keshun; Soares, Juliana Moreira; Mandal, Mihir Kumar; Wang, Caixia; Chanda, Bidisha; Gifford, Andrew N; Fowler, Joanna S; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep

    2013-04-25

    Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production.

    PubMed

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-03-01

    This study proposes a novel alternative for the utilization of whey permeate, a by-product stream from the dairy industry, as the feedstock for the biomass and lipid production of the microalgae Chlorella protothecoides. Glucose and galactose from the pre-hydrolyzed whey permeate were used as main carbon sources in a base mineral media for establishing batch and fed batch cultures. Batch cultures reached a biomass production of 9.1±0.2g/L with a total lipid accumulation of 42.0±6.6% (dry weight basis), while in the fed batch cultures 17.2±1.3g/L of biomass with 20.5±0.3% lipid accumulation (dry weight basis) were obtained. A third strategy for the direct utilization of whey permeate was investigated by simultaneous saccharification and fermentation (SSF), wherein, 7.3±1.3g/L of biomass with 49.9±3.3% lipid accumulation (dry weight basis) was obtained in batch mode using immobilized enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor*

    PubMed Central

    Hurst, Dow P.; Grossfield, Alan; Lynch, Diane L.; Feller, Scott; Romo, Tod D.; Gawrisch, Klaus; Pitman, Michael C.; Reggio, Patricia H.

    2010-01-01

    Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (−)-7′-isothiocyanato-11-hydroxy-1′,1′dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207–1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane α-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. PMID:20220143

  4. Loss of CTRP1 disrupts glucose and lipid homeostasis

    PubMed Central

    Rodriguez, Susana; Lei, Xia; Petersen, Pia S.; Tan, Stefanie Y.; Little, Hannah C.

    2016-01-01

    C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts. PMID:27555298

  5. Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae: growth, survival, plasma lipids and enzymes of lipid metabolism.

    PubMed

    Niu, J; Liu, Y J; Tian, L X; Mai, K S; Yang, H J; Ye, C X; Zhu, Y

    2008-03-01

    A study was conducted to determine the effects of dietary phospholipid (PL) levels in cobia (Rachycentron canadum) larvae with regard to growth, survival, plasma lipids and enzymes of lipid metabolism. Fish with an average weight of 0.4 g were fed diets containing four levels of PL (0, 20, 40 and 80 g kg(-1)dry matter: purity 97%) for 42 days. Final body weight (FBW), weight gain (WG) and survival ratio were highest in the 8% PL diet group and mortality was highest in PL-free diet group. We examined the activities of lipoprotein lipase (LPL) and hepatic lipase (HL) in liver, lecithin-cholesterolacyltransferase (LCAT) in plasma as well as plasma lipids and lipoprotein. LCAT activity showed a decrease of more than two-fold in PL-supplemented diet groups compared with the PL-free diet group. HL activity was highest in the 8% PL diet group and the other three groups showed no difference. LPL activity was significantly higher in the PL-supplemented diet groups than in the PL-free diet group. The dietary intervention significantly increased plasma phospholipids and total cholesterol (TC) levels, and the higher free cholesterol (FC) level contributed to the TC level. However, the fish fed PL exhibited a significantly decreased plasma triglyceride (TG) level. The lipoprotein fractions were also affected significantly by the PL. The PL-supplemented diet groups had significantly higher high-density lipoprotein (HDL) compared with the PL-free diet group, but showed a marked decrease in very low-density lipoprotein (VLDL). The results suggested that PL could modify plasma lipoprotein metabolism and lipid profile, and that the optimal dietary PL level may well exceed 80 g kg(-1) for cobia larvae according to growth and survival.

  6. Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss.

    PubMed

    Santos, Heitor O; Macedo, Rodrigo C O

    2018-04-01

    Intermittent fasting, whose proposed benefits include the improvement of lipid profile and the body weight loss, has gained considerable scientific and popular repercussion. This review aimed to consolidate studies that analyzed the lipid profile in humans before and after intermittent fasting period through a detailed review; and to propose the physiological mechanism, considering the diet and the body weight loss. Normocaloric and hypocaloric intermittent fasting may be a dietary method to aid in the improvement of the lipid profile in healthy, obese and dyslipidemic men and women by reducing total cholesterol, LDL, triglycerides and increasing HDL levels. However, the majority of studies that analyze the intermittent fasting impacts on the lipid profile and body weight loss are observational based on Ramadan fasting, which lacks large sample and detailed information about diet. Randomized clinical trials with a larger sample size are needed to evaluate the IF effects mainly in patients with dyslipidemia. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  7. Effect of onsite dietitian counseling on weight loss and lipid levels in an outpatient physician office.

    PubMed

    Welty, Francine K; Nasca, Melita M; Lew, Natalie S; Gregoire, Sue; Ruan, Yuheng

    2007-07-01

    We examined the effect of an outpatient office-based diet and exercise counseling program on weight loss and lipid levels with an onsite dietitian who sees patients at the same visit with the physician and is fully reimbursable. Eighty overweight or obese patients (average age 55 +/- 12 years, baseline body mass index 30.1 +/- 6.4 kg/m(2)) with > or =1 cardiovascular risk factor (86%) or coronary heart disease (14%) were counseled to exercise 30 minutes/day and eat a modified Dietary Approaches to Stop Hypertension (DASH) diet (saturated fat <7%, polyunsaturated fat to 10%, monounsaturated fat to 18%, low in glycemic index and sodium and high in fiber, low-fat dairy products, fruits, and vegetables). Weight, body mass index, lipid levels, and blood pressure were measured at 1 concurrent follow-up visit with the dietitian and physician and > or =1 additional follow-up with the physician. Maximum weight lost was an average of 5.6% (10.8 lb) at a mean follow-up of 1.75 years. Sixty-four (81%) of these patients maintained significant weight loss (average weight loss 5.3%) at a mean follow-up of 2.6 years. Average decrease in low-density lipoprotein cholesterol was 9.3%, average decrease in triglycerides was 34%, and average increase in high-density lipoprotein cholesterol was 9.6%. Systolic blood pressure was lowered from 129 to 126 mm Hg (p = 0.21) and diastolic blood pressure from 79 to 75 mm Hg (p = 0.003). In conclusion, having a dietitian counsel patients concurrently with a physician in the outpatient setting is effective in achieving and maintaining weight loss and is fully reimbursable.

  8. Use of the 50-g glucose challenge test to predict excess delivery weight.

    PubMed

    Beksac, M Sinan; Tanacan, Atakan; Hakli, Duygu A; Ozyuncu, Ozgur

    2018-07-01

    To identify a cut-off value for the 50-g glucose challenge test (GCT) that predicts excess delivery weight. A retrospective study was conducted among pregnant women who undertook a 50-g GCT at Hacettepe University Hospital, Ankara, Turkey, between January 1, 2000, and December 31, 2016. Patients with singleton pregnancies who delivered live neonates after 28 weeks of pregnancy were included. Patients were classified according to their 50-g GCT values into group 1 (<7.770 mmol/L); group 2 (7.770 to <8.880 mmol/L, group 3 (8.880-9.990 mmol/L); or group 4 (>9.990 mmol/L). Classification and regression tree data mining was performed to identify the 50-g GCT cut-off value corresponding to a substantial increase in delivery weight. Median delivery weight were 3100 g in group 1 (n=352), 3200 g in group 2 (n=165), 3720 g in group 3 (n=47), and 3865 g in group 4 (n=20). Gravidity, 50-g GCT value, and pregnancy duration at delivery explained 30.6% of the observed variance in delivery weight. The cut-off required for maternal blood glucose level to predict excessive delivery weight was 8.741 mmol/L. The 50-g GCT can be used to identify women at risk of delivering offspring with excessive delivery weight. © 2018 International Federation of Gynecology and Obstetrics.

  9. Benefits of commercial weight-loss programs on blood pressure and lipids: a systematic review.

    PubMed

    Mehta, Ambereen K; Doshi, Ruchi S; Chaudhry, Zoobia W; Jacobs, David K; Vakil, Rachit M; Lee, Clare J; Bleich, Sara N; Clark, Jeanne M; Gudzune, Kimberly A

    2016-09-01

    Our objective was to compare the effect of commercial weight-loss programs on blood pressure and lipids to control/education or counseling among individuals with overweight/obesity. We conducted a systematic review by searching MEDLINE and Cochrane Database of Systematic Reviews from inception to November 2014 and references identified by the programs. We included randomized, controlled trials ≥12weeks in duration. Two reviewers extracted information on study design, interventions, and mean change in systolic blood pressure (SBP), diastolic blood pressure (DBP), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides, and total cholesterol and assessed risk of bias. We included 27 trials. Participants' blood pressure and lipids were normal at baseline in most trials. At 12months, Weight Watchers showed little change in blood pressure or lipid outcomes as compared to control/education (2 trials). At 12months, Atkins' participants had higher HDL-c and lower triglycerides than counseling (4 trials). Other programs had inconsistent effects or lacked long-term studies. Risk of bias was high for most trials of all programs. In conclusion, limited data exist regarding most commercial weight-loss programs' long-term effects on blood pressure and lipids. Clinicians should be aware that Weight Watchers has limited data that demonstrate CVD risk factor benefits relative to control/education. Atkins may be a reasonable option for patients with dyslipidemia. Additional well-designed, long-term trials are needed to confirm these conclusions and evaluate other commercial programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Lipid mobilising factors specifically associated with cancer cachexia.

    PubMed Central

    Beck, S. A.; Tisdale, M. J.

    1991-01-01

    Both urine and plasma from mice and humans with cancer cachexia have been shown to contain higher levels of lipid mobilising activity than normal controls, even after acute starvation. There was no significant increase in the urinary lipid mobilising activity of either mice or humans after acute starvation, suggesting that the material in the cachectic situation was probably not due to an elevation of hormones normally associated with the catabolic state in starvation. Further characterisation of the lipid mobilising activity in the urine of cachectic mice using Sephadex G50 exclusion chromatography showed four distinct peaks of activity of apparent molecular weights of greater than 20, 3, 1.5 and less than 0.7 kDa. No comparable peaks of activity were found in the urine of a non tumour-bearing mouse. The high molecular weight activity was probably formed by aggregation of low molecular weight material, since treatment with 0.5 M NaCl caused dissociation to material with a broad spectrum of molecular weights between 3 and 0.7 kDa. Lipolytic species of similar molecular weights were also found in the urine of cachectic cancer patients, but not in normal urine even after 24 h starvation. The lipid mobilising species may be responsible for catabolism of host adipose tissue in the cachectic state. PMID:2069843

  11. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: a randomized controlled trial.

    PubMed

    Beken, Serdar; Dilli, Dilek; Fettah, Nurdan Dinlen; Kabataş, Emrah Utku; Zenciroğlu, Ayşegül; Okumuş, Nurullah

    2014-01-01

    To compare the effect of two lipid emulsions on the development of retinopathy of prematurity in very low birth weight infants. Randomized controlled study. Eighty very low birth weight infants receiving parenteral nutrition from the first day of life were evaluated. One of the two lipid emulsions were used in the study infants: Group 1 (n=40) received fish-oil based lipid emulsion (SmofLipid®) and Group 2 (n=40) soybean oil based lipid emulsion (Intralipid®). The development of retinopathy of prematurity and the need for laser photocoagulation were assessed. The maternal and perinatal characteristics were similar in both groups. The median (range) duration of parenteral nutrition [14days (10-28) vs 14 (10-21)] and hospitalization [34days (20-64) vs 34 (21-53)] did not differ between the groups. Laboratory data including complete blood count, triglyceride level, liver and kidney function tests recorded before and after parenteral nutrition also did not differ between the two groups. In Group 1, two patients (5.0%) and in Group 2, 13 patients (32.5%) were diagnosed with retinopathy of prematurity (OR: 9.1, 95% CI 1.9-43.8, p=0.004). One patient in each group needed laser photocoagulation, without significant difference. Multivariate analysis showed that only receiving fish-oil emulsion in parenteral nutrition decreased the risk of development of retinopathy of prematurity [OR: 0.76, 95% CI (0.06-0.911), p=0.04]. Premature infants with very low birth weight receiving an intravenous fat emulsion containing fish oil developed less retinopathy of prematurity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effects of increasing dietary protein and fibre intake with lupin on body weight and composition and blood lipids in overweight men and women.

    PubMed

    Hodgson, J M; Lee, Y P; Puddey, I B; Sipsas, S; Ackland, T R; Beilin, L J; Belski, R; Mori, T A

    2010-06-01

    Lupin kernel flour (LKF) is a novel food ingredient that is high in protein and fibre. We have previously shown that partial substitution of refined wheat-derived carbohydrate in bread with protein and fibre from LKF can reduce appetite and energy intake acutely. In addition, several studies have suggested that lupin may reduce cholesterol concentrations and benefit glucose and insulin metabolism. The aim of this study was to investigate the effects on body weight and composition and blood lipids, glucose and insulin of an ad libitum LKF-enriched diet higher in dietary protein and fibre. A total of 88 overweight and obese men and women were recruited for a 16-week parallel-design randomized controlled trial. Participants replaced 15-20% of their usual daily energy intake with white bread (control) or LKF-enriched bread (lupin) in an ad libitum diet. Measurements of body weight and composition, and fasting blood biochemical measurements were performed at baseline and 16 weeks. The primary analysis included 74 participants (37 per group) who completed the intervention. At baseline, mean (+/-s.d.) body mass index and total cholesterol were 30.6+/-3.5 kg m(-2) and 5.37+/-0.94 mmol l(-1), respectively. Estimated (mean between-group difference (95% confidence interval)) protein (13.7 (2.28, 25.0) g per day) and fibre (12.5 (8.79, 16.2) g per day) intakes were higher during the intervention with lupin than with control. For lupin relative to control, the net effects on body weight (-0.4 (-1.3, 0.6) kg), fat mass (-0.5 (-1.1, 0.2) kg) and percentage (-0.5 (-1.1, 0.1)%), plasma leptin (-1.66 (-4.91, 1.59) ng ml(-1)) and adiponectin (0.20 (-0.73, 1.13) mg l(-1), as well as serum total cholesterol (-0.08 (-0.38, 0.22) mmol l(-1)), triglycerides (0.09 (-0.10, 0.21) mmol l(-1)), glucose (0.10 (-0.11, 0.30) mmol l(-1)) and insulin (0.40 (-1.20, 2.00) mU l(-1)) were not significant. This study does not support the proposal that an ad libitum diet enriched in LKF resulting in

  14. Inhibition of lipolysis in the novel transgenic quail model overexpressing G0/G1 switch gene 2 in the adipose tissue during feed restriction.

    PubMed

    Shin, Sangsu; Choi, Young Min; Han, Jae Yong; Lee, Kichoon

    2014-01-01

    In addition to the issue of obesity in humans, the production of low-fat meat from domestic animals is important in the agricultural industry to satisfy consumer demand. Understanding the regulation of lipolysis in adipose tissue could advance our knowledge to potentially solve both issues. Although the G0/G1 switch gene 2 (G0S2) was recently identified as an inhibitor of adipose triglyceride lipase (ATGL) in vitro, its role in vivo has not been fully clarified. This study was conducted to investigate the role of G0S2 gene in vivo by using two independent transgenic quail lines during different energy conditions. Unexpectedly, G0S2 overexpression had a negligible effect on plasma NEFA concentration, fat cell size and fat pad weight under ad libitum feeding condition when adipose lipolytic activity is minimal. A two-week feed restriction in non-transgenic quail expectedly caused increased plasma NEFA concentration and dramatically reduced fat cell size and fat pad weight. Contrary, G0S2 overexpression under a feed restriction resulted in a significantly less elevation of plasma NEFA concentration and smaller reductions in fat pad weights and fat cell size compared to non-transgenic quail, demonstrating inhibition of lipolysis and resistance to loss of fat by G0S2. Excessive G0S2 inhibits lipolysis in vivo during active lipolytic conditions, such as food restriction and fasting, suggesting G0S2 as a potential target for treatment of obesity. In addition, transgenic quail are novel models for studying lipid metabolism and mechanisms of obesity.

  15. Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice.

    PubMed

    Garcia, Jose M; Scherer, Thomas; Chen, Ji-an; Guillory, Bobby; Nassif, Anriada; Papusha, Victor; Smiechowska, Joanna; Asnicar, Mark; Buettner, Christoph; Smith, Roy G

    2013-09-01

    Cachexia, defined as an involuntary weight loss ≥ 5%, is a serious and dose-limiting side effect of chemotherapy that decreases survival in cancer patients. Alterations in lipid metabolism are thought to cause the lipodystrophy commonly associated with cachexia. Ghrelin has been proposed to ameliorate the alterations in lipid metabolism due to its orexigenic and anabolic properties. However, the mechanisms of action through which ghrelin could potentially ameliorate chemotherapy-associated cachexia have not been elucidated. The objectives of this study were to identify mechanisms by which the chemotherapeutic agent cisplatin alters lipid metabolism and to establish the role of ghrelin in reversing cachexia. Cisplatin-induced weight and fat loss were prevented by ghrelin. Cisplatin increased markers of lipolysis in white adipose tissue (WAT) and of β-oxidation in liver and WAT and suppressed lipogenesis in liver, WAT, and muscle. Ghrelin prevented the imbalance between lipolysis, β-oxidation, and lipogenesis in WAT and muscle. Pair-feeding experiments demonstrated that the effects of cisplatin and ghrelin on lipogenesis, but not on lipolysis and β-oxidation, were due to a reduction in food intake. Thus, ghrelin prevents cisplatin-induced weight and fat loss by restoring adipose tissue functionality. An increase in caloric intake further enhances the anabolic effects of ghrelin.

  16. Ginseng (Panax quinquefolius) Reduces Cell Growth, Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    PubMed Central

    Yeo, Chia-Rou; Lee, Sea-Ming; Popovich, David G.

    2011-01-01

    An American ginseng (Panax quinquefolius) extract (GE) that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 μg g−1, dry weight), Re (8280.4 ± 792.3 μg g−1), Rb1 (1585.8 ± 86.8 μg g−1), Rc (32.9 ± 8 μg g−1), Rb2 (62.6 ± 10.6 μg g−1) and Rd (90.4 ± 3.2 μg g−1). The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 μg ml−1. Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P < .05) in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P < .05) increased after 48 h (3.2 ± 1.0%) compared to untreated control cells (1.5 ± 0.1%). Lipid acquisition was significantly reduced (P < .05) by 13 and 22% when treated at concentrations of 20.2 and 40.3 μg ml−1 compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P < .05) increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model. PMID:21799682

  17. Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions.

    PubMed

    Hu, Guangrong; Fan, Yong; Zhang, Lei; Yuan, Cheng; Wang, Jufang; Li, Wenjian; Hu, Qiang; Li, Fuli

    2013-01-01

    The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy (12)C(6+) ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L(-1)⋅d(-1), 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

  18. [Follow-up of infants with birth weight under 1,500 g].

    PubMed

    Weldt, E; Valenzuela, B; Angulo, G; Muñoz, E; Gómez, S; Levy, M L; Rosselot, S; Norambuena, N

    1989-01-01

    A prospective study of 199 children with birth weight less than 1,500 g was done. 86 boys and 113 girls, 141 (71%) adequate for gestational age and 58 (29%) small for gestational age. At follow-up 43 (21.6%) infants were lost to control, 17 (7%) moved to other places and 7 (3.5%) died in the first year of life. In the first year of life, infants whose birthweights were adequate for gestational age had been hospitalized more frequently and the small for dates showed higher percentage of undernutrition. After the second year of life, it was possible to know the impairment. It was found 7.4% of cerebral palsy, 2.9% of hipoacusia and 2.2% of retinopathy of prematurity, these diagnosis were most frequent in children that were adequate for gestational age. We concluded that small for dates infants are at risk of undernutrition and that those adequate for gestational age are at risk of permanent sequelae.

  19. Adsorption of lipids on silicalite-1

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Ivanova, I. I.; Ivanova, M. V.; Tarasevich, B. N.; Fedosov, D. A.

    2017-05-01

    The adsorption of egg lecithin and cholesterol from chloroform solutions onto silicalite-1 (hydrophobic silica with MFI zeolite structure) is investigated. Adsorption isotherms of the L-type for lecithin and the S-type for cholesterol are obtained in the 0.05-4.5 mg/mL range of equilibrium lipid concentrations. The maximum adsorption for lecithin is 30 mg/g; for cholesterol it is 70 mg/g. Chloroform treatment results in the desorption of no more than 10% of the lecithin and up to 50% of the cholesterol from the silicalite-1 surface. The lecithin molecules in the monolayer on the silicalite-1 are oriented such that their hydrophobic tails are oriented toward the surface and are partially inside the pores of the adsorbent.

  20. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    PubMed

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  1. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet

    PubMed Central

    Wang, Jun

    2015-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. MATERIALS/METHODS Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. RESULTS Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). CONCLUSIONS Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism. PMID:26425278

  2. Roles of G1359A polymorphism of the cannabinoid receptor gene (CNR1) on weight loss and adipocytokines after a hypocaloric diet.

    PubMed

    De Luis, D A; González Sagrado, M; Aller, R; Conde, R; Izaola, O; de la Fuente, B; Primo, D

    2011-01-01

    A intragenic biallelic polymorphism (1359 G/A) of the CB1 gene resulting in the substitution of the G to A at nucleotide position 1359 in codon 435 (Thr), was reported as a common polymorphism in Caucasian populations. Intervention studies with this polymorphism have not been realized. We decided to investigate the role of the polymorphism (G1359A) of CB1 receptor gene on adipocytokines response and weight loss secondary to a lifestyle modification (Mediterranean hypocaloric diet and exercise) in obese patients. A population of 94 patients with obesity was analyzed. Before and after 3 months on a hypocaloric diet, an anthropometric evaluation, an assessment of nutritional intake and a biochemical analysis were performed. The statistical analysis was performed for the combined G1359A and A1359A as a group and wild type G1359G as second group, with a dominant model. Forty seven patients (50%) had the genotype G1359G (wild type group) and 47 (50%) patients G1359A (41 patients, 43.6%) or A1359A (6 patients, 6.4%) (mutant type group) had the genotype. In wild and mutant type groups, weight, body mass index, fat mass, waist circumference and systolic blood pressure decreased. In mutant type group, resistin (4.15 ± 1.7 ng/ml vs. 3.90 ± 2.1 ng/ml: P < 0.05), leptin (78.4 ± 69 ng/ml vs 66.2 ± 32 ng/ml: P < 0.05) and IL-6 (1.40 ± 1.9 pg/ml vs 0.81 ± 1.5 pg/ml: P < 0.05) levels decreased after dietary treatment. The novel finding of this study is the association of the mutant allele (A1359) with a decrease of resistin, leptin and interleukin-6 secondary to weight loss.

  3. The effects of fasting in Ramadan. 1. Serum uric acid and lipid concentrations.

    PubMed

    Gumaa, K A; Mustafa, K Y; Mahmoud, N A; Gader, A M

    1978-11-01

    1. The changes in serum levels of uric acid and lipids during 1 month of starvation-refeeding were measured in sixteen male volunteers. 2. Uric acid levels increased linearly with the duration of the experiment. The increase was positively correlated with the increase in serum triglycerides but not with cholesterol or phospholipids. 3. Triglycerides increased at a faster rate than uric acid implying that the increase in uric acid was secondary to that of the lipid. 4. It was concluded that the purine and lipid synthetic pathways are linked through a common small-molecular-weight effector rather than through the sharing of a common enzyme.

  4. On the lipid composition of human meibum and tears: comparative analysis of nonpolar lipids.

    PubMed

    Butovich, Igor A

    2008-09-01

    To qualitatively compare the nonpolar lipids present in meibomian gland (MG) secretions (samples T1) with aqueous tears (AT) collected from the lower tear menisci of healthy, non-dry eye volunteers using either glass microcapillaries (samples T2) or Schirmer test strips (samples T3). Samples T1 to T3 were analyzed with the use of high-pressure liquid chromatography/positive ion mode atmospheric pressure chemical ionization mass spectrometry. Where possible, the unknown lipids were compared with known standards. Samples T1 had the simplest lipid composition among all the tested specimens. Samples T2 and T3 were similar to each other but were noticeably different from samples T1. In addition to all the compounds detected in samples T1, lower molecular weight wax esters and other compounds were found in samples T2 and T3. No appreciable amounts of fatty acid amides (e.g., oleamide), ceramides, or monoacyl glycerols were routinely detected. The occasionally observed minor signals of oleamide (m/z 282) in samples T3 were attributed to the contamination of the samples with common plasticizers routinely found in plastic ware extractives and organic solvents. The MG is a prominent source of lipids for the tear film. However, it would have been a mistake to exclude from consideration other likely sources of lipids such as conjunctiva, cornea, and tears produced by the lacrimal glands. These data showed that lipids in AT are more complex than MG secretions, which necessitates more cautious interpretation of the functions of the latter in the tear film.

  5. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  6. Effect of nitrogen sources on biomass, lipid and docosahexanoic acid production by Aurantiochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Auma, Khairunnisa; Hamid, Aidil Abdul; Yusoff, Wan Mohtar Wan

    2018-04-01

    A local isolate, Aurantiochytrium sp. SW1 has been verified to have high content of docosahexanoic acid (DHA). However, the effect of different nitrogen sources on biomass, lipid concentration and DHA content in Aurantiochytrium sp. SW1 is still unknown. Hence, this study is focused in using six different organic and inorganic nitrogen sources to grow Aurantiochytrium sp. SW1 in optimized Burja medium. Monosodium glutamate (MSG) gave the highest biomass concentration of 15.97 g/L followed by ammonium nitrate (NH4NO3) with 13.37 g/L at 96 hr. These two nitrogen sources had significant effect on the biomass concentration (p<0.05). The highest lipid accumulated was obtained using MSG that reached 79.6% in biomass concentration. DHA content in lipid showed cultivation using MSG reached 47.9% (4.95 g/L). Statistical analysis using least significant difference (LSD) showed significant lipid production (p<0.05) when cultivated in MSG compared to other five nitrogen sources. The highest DHA productivity (0.052 g/L hr-1) was obtained in medium containing MSG. This study proves that nitrogen component in the medium significantly affects the biomass concentration, lipid and DHA content.

  7. Risk Factors for Invasive Candidiasis in Infants >1500 g Birth Weight

    PubMed Central

    Lee, Jan Hau; Hornik, Christoph P.; Benjamin, Daniel K.; Herring, Amy H.; Clark, Reese H.; Cohen-Wolkowiez, Michael; Smith, P. Brian

    2012-01-01

    Background We describe the incidence, risk factors, and outcomes of invasive candidiasis in infants >1500 g birth weight. Methods We conducted a retrospective cohort study of infants >1500 g birth weight discharged from 305 NICUs in the Pediatrix Medical Group from 2001–2010. Using multivariable logistic regression, we identified risk factors for invasive candidiasis. Results Invasive candidiasis occurred in 330/530,162 (0.06%) infants. These were documented from positive cultures from ≥1 of these sources: blood (n=323), cerebrospinal fluid (n=6), or urine from catheterization (n=19). Risk factors included day of life >7 (OR 25.2; 95% CI 14.6–43.3), vaginal birth (OR 1.6 [1.2–2.3]), exposure to broad-spectrum antibiotics (OR 1.6 [1.1–2.4]), central venous line (OR 1.8 [1.3–2.6]), and platelet count <50,000/mm3 (OR 3.7 [2.1–6.7]). All risk factors had poor sensitivities, low positive likelihood ratios, and low positive predictive values. The combination of broad-spectrum antibiotics and low platelet count had the highest positive likelihood ratio (46.2), but the sensitivity of this combination was only 4%. Infants with invasive candidiasis had increased mortality (OR 2.2 [1.3–3.6]). Conclusions Invasive candidiasis is uncommon in infants >1500 g birth weight. Infants at greatest risk are those exposed to broad-spectrum antibiotics and with platelet counts of <50,000/mm3. PMID:23042050

  8. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    PubMed

    Dhurandhar, Emily J; Krishnapuram, Rashmi; Hegde, Vijay; Dubuisson, Olga; Tao, Rongya; Dong, X Charlie; Ye, Jianping; Dhurandhar, Nikhil V

    2012-01-01

    Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001), and apoB secretion 1.5 fold(p<0.003). Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).

  9. E4orf1 Improves Lipid and Glucose Metabolism in Hepatocytes: A Template to Improve Steatosis & Hyperglycemia

    PubMed Central

    Dhurandhar, Emily J.; Krishnapuram, Rashmi; Hegde, Vijay; Dubuisson, Olga; Tao, Rongya; Dong, X. Charlie; Ye, Jianping; Dhurandhar, Nikhil V.

    2012-01-01

    Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001), and apoB secretion 1.5 fold(p<0.003). Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD). PMID:23110104

  10. Birth weight and blood lipid levels in Spanish adolescents: influence of selected APOE, APOC3 and PPARgamma2 gene polymorphisms. The AVENA Study.

    PubMed

    Ruiz, Jonatan R; Labayen, Idoia; Ortega, Francisco B; Moreno, Luis A; González-Lamuño, Domingo; Martí, Amelia; Nova, Esther; Fuentes, Miguel García; Redondo-Figuero, Carlos; Martínez, J Alfredo; Sjöström, Michael; Castillo, Manuel J

    2008-11-10

    There is increasing evidence indicating that genes involved in certain metabolic processes of cardiovascular diseases may be of particular influence in people with low body weight at birth. We examined whether the apolipoprotein (APO) E, APOC3 and the peroxisome proliferator-activated receptor-gamma-2 (PPARgamma2) polymorphisms influence the association between low birth weight and blood lipid levels in healthy adolescents aged 13-18.5 years. A cross-sectional study of 502 Spanish adolescents born at term was conducted. Total (TC) and high density lipoprotein cholesterol (HDLc), triglycerides (TG), apolipoprotein (apo) A and B, and lipoprotein(a) [Lp(a)] were measured. Low density lipoprotein cholesterol (LDLc), TC-HDLc, TC/HDLc and apoB/apoA were calculated. Low birth weight was associated with higher levels of TC, LDLc, apoB, Lp(a), TC-HDLc, TC/HDLc and apoB/apoA in males with the APOE epsilon3epsilon4 genotype, whereas in females, it was associated with lower HDLc and higher TG levels. In males with the APOC3 S1/S2 genotype, low birth weight was associated with lower apoA and higher Lp(a), yet this association was not observed in females. There were no associations between low birth weight and blood lipids in any of the PPARgamma2 genotypes. The results indicate that low birth weight has a deleterious influence on lipid profile particularly in adolescents with the APOE epsilon3/epsilon4 genotype. These findings suggest that intrauterine environment interact with the genetic background affecting the lipid profile in later life.

  11. α-Lipoic acid reduced weight gain and improved the lipid profile in rats fed with high fat diet.

    PubMed

    Seo, Eun Young; Ha, Ae Wha; Kim, Woo Kyoung

    2012-06-01

    The purpose of this study was to investigate the effects of α-lipoic acid on body weight and lipid profiles in Sprague-Dawley rats fed a high fat diet (HFD). After 4 weeks of feeding, rats on the HFD were divided into three groups by randomized block design; the first group received the high-fat-diet (n = 10), and the second group received the HFD administered with 0.25% α-lipoic acid (0.25LA), and the third group received the high-fat diet with 0.5% α-lipoic acid (0.5LA). The high fat diet with α-lipoic acid supplemented groups had significantly inhibited body weight gain, compared to that in the HFD group (P < 0.05). Organ weights of rats were also significantly reduced in liver, kidney, spleen, and visible fat tissues in rats supplemented with α-lipoic acid (P < 0.05). Significant differences in plasma lipid profiles, such as total lipids, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein, were observed between the HFD and 0.5LA groups. The atherogenic index and the plasma high density lipoprotein-cholesterol/total cholesterol ratio improved significantly with α-lipoic acid supplementation in a dose-dependent manner (P < 0.05). Total hepatic cholesterol and total lipid concentration decreased significantly in high fat fed rats supplemented with α-lipoic acid in a dose-dependent manner (P < 0.05), whereas liver triglyceride content was not affected. In conclusion, α-lipoic acid supplementation had a positive effect on weight gain and plasma and liver lipid profiles in rats.

  12. Effects of a low-carbohydrate diet on weight loss and cardiovascular risk factor in overweight adolescents.

    PubMed

    Sondike, Stephen B; Copperman, Nancy; Jacobson, Marc S

    2003-03-01

    To compare the effects of a low-carbohydrate (LC) diet with those of a low-fat (LF) diet on weight loss and serum lipids in overweight adolescents. A randomized, controlled 12-week trial. Atherosclerosis prevention referral center. Random, nonblinded assignment of participants referred for weight management. The study group (LC) (n = 16) was instructed to consume <20 g of carbohydrate per day for 2 weeks, then <40 g/day for 10 weeks, and to eat LC foods according to hunger. The control group (LF) (n = 14) was instructed to consume <30% of energy from fat. Diet composition and weight were monitored and recorded every 2 weeks. Serum lipid profiles were obtained at the start of the study and after 12 weeks. The LC group lost more weight (mean, 9.9 +/- 9.3 kg vs 4.1 +/- 4.9 kg, P <.05) and had improvement in non-HDL cholesterol levels (P <.05). There was improvement in LDL cholesterol levels (P <.05) in the LF group but not in the LC group. There were no adverse effects on the lipid profiles of participants in either group. The LC diet appears to be an effective method for short-term weight loss in overweight adolescents and does not harm the lipid profile.

  13. Integral lipids of mammalian hair.

    PubMed

    Wertz, P W; Downing, D T

    1989-01-01

    1. It has been demonstrated that hair contains lipids which cannot be removed by extensive extraction with chloroform-methanol mixtures. These integral lipids can be extracted only after the hair has been subjected to alkaline hydrolysis. 2. Integral hair lipids include cholesterol sulfate (0.7-2.9 mg/g hair), ceramides (0.6-1.4 mg/g), cholesterol (0.3-1.4 mg/g), fatty alcohols (trace-0.2 mg/g) and fatty acids (2.3-4.0 mg/g). 3. One of the major integral hair lipids, representing 38.4-47.6% of the total fatty acids, is the anteisobranched 18-methyleicosanoic acid. 4. The species examined included human (Homo sapiens), pig (Sus scrofa), dog (Canis familiaris), sheep (Ovis ammon aries) and cow (Bos taurus).

  14. Incidence of hypertriglyceridemia in critically ill neonates receiving lipid injectable emulsions in glass versus plastic containers: a retrospective analysis.

    PubMed

    Martin, Camilia R; Dumas, Gregory J; Shoaie, Claire; Zheng, Zheng; Mackinnon, Brenda; Al-Aweel, Issa; Bistrian, Bruce R; Pursley, DeWayne M; Driscoll, David F

    2008-02-01

    To evaluate plasma clearance of lipid injectable emulsions packaged in either glass or plastic containers in neonates from 2 7-month periods, 1 year apart. Clinical records from June 1 to December 31, 2003 (glass [G] period) and the same months in 2004 (plastic [P] period) were assessed. Neonates who received lipid injectable emulsions were studied. Lipid container (glass vs plastic) was the independent variable. Of the 197 patients studied, 122 (G, 50/81; P, 72/116) had evaluable triglyceride (TG) levels, for an overall rate of 62%. Only birth weight (G, 1.09 +/- 0.32 kg vs P, 1.23 +/- .45 kg) and birth length (G, 36.4 +/- 3.5 cm vs P, 37.9 +/- 3.5 cm) were significantly different between the 2 groups (P = .047 and .028, respectively). There were no differences in the day of life on which lipid injection was started, the lipid dose, or the timing of TG measurements. The incidence of hypertriglyceridemia was significantly higher in the P period (G, 3/50 vs P, 19/72; P = .004). Administration of the same lipid formulation in plastic bags compared with glass containers is associated with higher rates of hypertriglyceridemia. The poorer clearance of lipids could be due to a higher proportion of large-diameter fat globules in plastic bags compared with those in glass containers.

  15. Prenatal Centrifugation: A Mode1 for Fetal Programming of Body Weight?

    NASA Technical Reports Server (NTRS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-01-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1 -g. Comparisons were made with 1-g stationary controls, also crossfostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P) 12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  16. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids.

    PubMed

    Foseid, Lena; Devle, Hanne; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag

    2017-01-01

    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n -3 fatty acids α -linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n -3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n -6/ n -3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea . The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products.

  17. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids

    PubMed Central

    Foseid, Lena; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag

    2017-01-01

    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids α-linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n-3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n-6/n-3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products. PMID:28713595

  18. EVALUATION OF RECOVERABLE FUNCTIONAL LIPID COMPONENTS OF SEVERAL BROWN SEAWEEDS (PHAEOPHYTA) FROM JAPAN WITH SPECIAL REFERENCE TO FUCOXANTHIN AND FUCOSTEROL CONTENTS(1).

    PubMed

    Terasaki, Masaru; Hirose, Atsushi; Narayan, Bhaskar; Baba, Yuta; Kawagoe, Chikara; Yasui, Hajime; Saga, Naotsune; Hosokawa, Masashi; Miyashita, Kazuo

    2009-08-01

    Fucoxanthin (Fx) and fucosterol (Fs) are characteristic lipid components of brown seaweeds that afford several health benefits to humans. This article describes the quantitative evaluation of lipids of 15 species of brown seaweeds with specific reference to Fx, Fs, and functional long-chain omega-6/omega-3 polyunsaturated fatty acids (PUFAs). In addition, fatty-acid composition of selected species was also accomplished in the study. Major omega-3 PUFAs in the brown seaweeds analyzed were α-linolenic acid (18:3n-3), octadecatetraenoic acid (18:4n-3), arachidonic acid (20:4n-6), and eicosapentaenoic acid (20:5n-3). Both Fx (mg · g(-1) dry weight [dwt]) and Fs (mg · g(-1) dwt) were determined to be relatively abundant in Sargassum horneri (Turner) C. Agardh (Fx, 3.7 ± 1.6; Fs, 13.4 ± 4.4) and Cystoseira hakodatensis (Yendo) Fensholt (Fx, 2.4 ± 0.9; Fs, 8.9 ± 2.0), as compared with other brown seaweed species. Studies related to seasonal variation in Fx, Fs, and total lipids of six brown algae [S. horneri, C. hakodatensis, Sargassum fusiforme (Harv.) Setch., Sargassum thunbergii (Mertens ex Roth) Kuntze, Analipus japonicus (Harv.) M. J. Wynne, and Melanosiphon intestinalis (D. A. Saunders) M. J. Wynne] indicated that these functional lipid components reached maximum during the period between January and March. The functional lipid components present in these seaweeds have the potential for application as nutraceuticals and novel functional ingredients after their recovery. © 2009 Phycological Society of America.

  19. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.

    PubMed

    Attama, A A; Schicke, B C; Paepenmüller, T; Müller-Goymann, C C

    2007-08-01

    This paper describes the characterization of solid lipid nanodispersions (SLN) prepared with a 1:1 mixture of theobroma oil and goat fat as the main lipid matrix and Phospholipon 90G (P90G) as a stabilizer heterolipid, using polysorbate 80 as the mobile surfactant, with a view to applying the SLN in drug delivery. The 1:1 lipid mixture and P90G constituting the lipid matrix was first homogeneously prepared by fusion. Thereafter, the SLN were formulated with a gradient of polysorbate 80 and constant lipid matrix concentration by melt-high pressure homogenisation. The SLN were characterized by time-resolved particle size analysis, zeta potential and osmotic pressure measurements, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). Transmission electron microscopy (TEM) and isothermal heat conduction microcalorimetry (IMC) which monitors the in situ crystallization were also carried out on the SLN containing P90G and 1.0 % w/w of polysorbate 80. The results obtained in these studies were compared with SLN prepared with theobroma oil with and without phospholipid. Particle size analysis of SLN indicated reduction in size with increase in concentration of mobile surfactant and was in the lower nanometer range after 3 months except SLN prepared without P90G or polysorbate 80. The lipid nanoparticles had negative potentials after 3 months. WAXD and DSC studies revealed low crystalline SLN after 3 months of storage except in WAXD of SLN formulated with 1.0 % w/w polysorbate 80. TEM micrograph of the SLN containing 1.0 % w/w polysorbate 80 revealed discrete particles whose sizes were in consonance with the static light scattering measurement. In situ crystallization studies in IMC revealed delayed crystallization of the SLN with 1.0 % w/w polysorbate 80. Results indicate lipid mixtures produced SLN with lower crystallinity and higher particle sizes compared with SLN prepared with theobroma oil alone with or without P90G, and would lead to higher

  20. On the Lipid Composition of Human Meibum and Tears: Comparative Analysis of Nonpolar Lipids

    PubMed Central

    Butovich, Igor A.

    2009-01-01

    PURPOSE To qualitatively compare the nonpolar lipids present in meibomian gland (MG) secretions (samples T1) with aqueous tears (AT) collected from the lower tear menisci of healthy, non-dry eye volunteers using either glass microcapillaries (samples T2) or Schirmer test strips (samples T3). METHODS Samples T1 to T3 were analyzed with the use of high-pressure liquid chromatography/positive ion mode atmospheric pressure chemical ionization mass spectrometry. Where possible, the unknown lipids were compared with known standards. RESULTS Samples T1 had the simplest lipid composition among all the tested specimens. Samples T2 and T3 were similar to each other but were noticeably different from samples T1. In addition to all the compounds detected in samples T1, lower molecular weight wax esters and other compounds were found in samples T2 and T3. No appreciable amounts of fatty acid amides (e.g., oleamide), ceramides, or monoacyl glycerols were routinely detected. The occasionally observed minor signals of oleamide (m/z 282) in samples T3 were attributed to the contamination of the samples with common plasticizers routinely found in plastic ware extractives and organic solvents. CONCLUSIONS The MG is a prominent source of lipids for the tear film. However, it would have been a mistake to exclude from consideration other likely sources of lipids such as conjunctiva, cornea, and tears produced by the lacrimal glands. These data showed that lipids in AT are more complex than MG secretions, which necessitates more cautious interpretation of the functions of the latter in the tear film. PMID:18487374

  1. INDIVIDUAL TISSUE TO TOTAL BODY-WEIGHT RELATIONSHIPS AND TOTAL, POLAR, AND NON-POLAR LIPIDS IN TISSUES OF HATCHERY LAKE TROUT

    EPA Science Inventory

    Tissue body weight relaltionships, total lipid, and major lipid subclasses were measured in 20 adult hatchery lake trout to obtain a more in-depth understanding of the major lipid compartments of the "lean" lake trout for use in modeling the disposition of xenobiotics. It is sug...

  2. Effects of 2.0-g 1.75-g and 1.5-g Hypergravity on Pregnancy Outcome in Rats (Rattus norvegicus)

    NASA Technical Reports Server (NTRS)

    Mills, Nicole A.; Baer, Lisa A.; Ronca, April E.

    2001-01-01

    In 1995, ten pregnant female rats were launched on the Space Shuttle (STS-70) on Gestational day(G) 11 of their 22-day pregnancy as part of the NASA/NIH.Rodent (R)2 Experiment. Following landing on G20, fetuses were harvested from half of the dams, while the remaining five dams underwent birth. Spaceflight did not interrupt pregnancy, alter litter sizes, or affect body weights or gender ratios of the fetuses or neonates. In the present study we used the NASA/NIH.R2 experimental paradigm to analyze the effects of hypergravity on pregnancy outcome. On G10, time-bred Sprague-Dawley rat dams were assigned to either G20 or Birth conditions, then further assigned to Hypergravity (HG) 2.0-g, HG 1.75-g, HG 1.5-g, Rotational Control (RC, 1.03), or Stationary Control (SC, 1.0-g) treatments. Dams were exposed to continuous centrifugation from G11 through G20, with brief daily stops for animal health checks and maintenance. For both the G20 and Birth dams, comparable litter sizes and litter gender ratios were observed across gravity conditions. However, centrifugation-exposed (HG and RC) fetuses and neonates showed significantly lower body masses (p less than 0.05) relative to SC offspring. HG 2.0-g offspring weighed significantly less than those in all other gravity conditions (p less than 0.05). The observed reductions in offspring body mass at 1.5-g and 1.75-g, can be attributed to the rotational component of centrifugation, rather than to increased gravitational load, whereas 2.0-g hypergravity exposure further exacerbated the gravity centrifugation effect on offspring body mass. Pregnant dams exposed to centrifugation weighed significantly less than SC dams (p less than 0.05), suggesting that centrifugation effects on maternal body mass may contribute to reduced size of the developing offspring. These findings are consistent with previous reports of non-pregnant adult animals suggesting that, whereas spaceflight has virtually no effect on body mass, centrifugation is

  3. Impact of Breakfasts (with or without Eggs) on Body Weight Regulation and Blood Lipids in University Students over a 14-Week Semester

    PubMed Central

    Rueda, Janice M.; Khosla, Pramod

    2013-01-01

    The effects of breakfast type on body weight and blood lipids were evaluated in university freshman. Seventy-three subjects were instructed to consume a breakfast with eggs (Egg Breakfast, EB, n = 39) or without (Non-Egg Breakfast, NEB, n = 34), five times/week for 14 weeks. Breakfast composition, anthropometric measurements and blood lipids were measured at multiple times. During the study, mean weight change was 1.6 ± 5.3 lbs (0.73 ± 2.41 kg), but there was no difference between groups. Both groups consumed similar calories for breakfast at all time-points. The EB group consumed significantly more calories at breakfast from protein, total fat and saturated fat, but significantly fewer calories from carbohydrate at every time-point. Cholesterol consumption at breakfast in the EB group was significantly higher than the NEB group at all time points. Breakfast food choices (other than eggs) were similar between groups. Blood lipids were similar between groups at all time points, indicating that the additional 400 mg/day of dietary cholesterol did not negatively impact blood lipids. PMID:24352089

  4. The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: an open-label cross-over randomised controlled trial.

    PubMed

    Whitfield, Patricia; Parry-Strong, Amber; Walsh, Emily; Weatherall, Mark; Krebs, Jeremy D

    2016-04-01

    This randomised controlled trial assessed the acute and long-term effects of daily supplementation of kanuka honey, formulated with cinnamon, chromium and magnesium on glucose metabolism, weight and lipid parameters in individuals with type 2 diabetes. Twelve individuals with type 2 diabetes received 53.5 g of a formulated honey and a control (non-formulated) kanuka honey in a random order for 40 days, using cross-over design. Fasting glucose, insulin, HbA1c, lipids and anthropometric measures were measured at baseline and end of treatment. A meal tolerance test was performed at baseline to assess acute metabolic response. There was no statistically significant difference in acute glucose metabolism between treatment groups, as measured by the Matsuda index and AUC for glucose and insulin. After the 40-day intervention with honey, fasting glucose did not differ significantly between the two treatments (95 % CI -2.6 to 0.07). There was no statistically significant change in HbA1c or fasting insulin. There was a statistically significant reduction in total cholesterol by -0.29 mmol/L (95 % CI -0.57 to -0.23), LDL cholesterol by -0.29 mmol/L (95 % CI -0.57 to -0.23) and weight by -2.2 kg (95 % CI -4.2 to -0.1). There was a trend towards increased HDL and reduced systolic blood pressure in the intervention treatment. The addition of cinnamon, chromium and magnesium supplementation to kanuka honey was not associated with a significant improvement in glucose metabolism or glycaemic control in individuals with type 2 diabetes. Use of the formulated honey was associated with a reduction in weight and improvements in lipid parameters, and should be investigated further.

  5. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste.

    PubMed

    Castro, A R; Guimarães, M; Oliveira, J V; Pereira, M A

    2017-12-15

    This work demonstrates that cork used as oil-spill sorbents, contaminated with liquid hydrocarbons, herein demonstrated with hexadecane, can be biologically treated by Rhodococcus opacus B4 with concomitant lipids production. R. opacus B4 consumed up to 96% of hexadecane (C16) impregnated in natural and regranulated cork sorbents after 48h incubation, producing 0.59±0.06g of triacylglycerol (TAG) g -1 of C16 consumed with a TAG content of 0.60±0.06gg -1 of cellular dry weight (CDW) and 0.54±0.05g TAG g -1 of C16 consumed with a TAG content of 0.77±0.04gg -1 (CDW), respectively. TAG was mainly composed by fatty acids of 16 and 18 carbon chains demonstrating the feasibility of using it as raw material for biodiesel production. In addition, the obtained lipid-rich biomass (whole cells) can be used for biomethane production, at a yield of 0.4L CH 4 g -1 (CDW). The obtained results support a novel approach for management of oil-spill contaminated cork sorbents through its valorisation by producing bacterial lipids, which can be used as feedstocks for biofuels production. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.

  7. Effects of α-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss.

    PubMed

    Huerta, Ana E; Navas-Carretero, Santiago; Prieto-Hontoria, Pedro L; Martínez, J Alfredo; Moreno-Aliaga, María J

    2015-02-01

    To evaluate the potential body weight-lowering effects of dietary supplementation with eicosapentaenoic acid (EPA) and α-lipoic acid separately or combined in healthy overweight/obese women following a hypocaloric diet. This is a short-term double-blind placebo-controlled study with parallel design that lasted 10 weeks. Of the randomized participants, 97 women received the allocated treatment [Control, EPA (1.3 g/d), α-lipoic acid (0.3 g/d), and EPA+α-lipoic acid (1.3 g/d+0.3 g/d)], and 77 volunteers completed the study. All groups followed an energy-restricted diet of 30% less than total energy expenditure. Body weight, anthropometric measurements, body composition, resting energy expenditure, blood pressure, serum glucose, and insulin and lipid profile, as well as leptin and ghrelin levels, were assessed at baseline and after nutritional intervention. Body weight loss was significantly higher (P<0.05) in those groups supplemented with α-lipoic acid. EPA supplementation significantly attenuated (P<0.001) the decrease in leptin levels that occurs during weight loss. Body weight loss improved lipid and glucose metabolism parameters but without significant differences between groups. The intervention suggests that α-lipoic acid supplementation alone or in combination with EPA may help to promote body weight loss in healthy overweight/obese women following energy-restricted diets. © 2014 The Obesity Society.

  8. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol[S

    PubMed Central

    Zhu, Xuewei; Owen, John S.; Wilson, Martha D.; Li, Haitao; Griffiths, Gary L.; Thomas, Michael J.; Hiltbold, Elizabeth M.; Fessler, Michael B.; Parks, John S.

    2010-01-01

    We previously showed that macrophages from macrophage-specific ATP-binding cassette transporter A1 (ABCA1) knockout (Abca1-M/-M) mice had an enhanced proinflammatory response to the Toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS), compared with wild-type (WT) mice. In the present study, we demonstrate a direct association between free cholesterol (FC), lipid raft content, and hyper-responsiveness of macrophages to LPS in WT mice. Abca1-M/-M macrophages were also hyper-responsive to specific agonists to TLR2, TLR7, and TLR9, but not TLR3, compared with WT macrophages. We hypothesized that ABCA1 regulates macrophage responsiveness to TLR agonists by modulation of lipid raft cholesterol and TLR mobilization to lipid rafts. We demonstrated that Abca1-M/-M vs. WT macrophages contained 23% more FC in isolated lipid rafts. Further, mass spectrometric analysis suggested raft phospholipid composition was unchanged. Although cell surface expression of TLR4 was similar between Abca1-M/-M and WT macrophages, significantly more TLR4 was distributed in membrane lipid rafts in Abca1-M/-M macrophages. Abca1-M/-M macrophages also exhibited increased trafficking of the predominantly intracellular TLR9 into lipid rafts in response to TLR9-specific agonist (CpG). Collectively, our data suggest that macrophage ABCA1 dampens inflammation by reducing MyD88-dependent TLRs trafficking to lipid rafts by selective reduction of FC content in lipid rafts. PMID:20650929

  9. Loss of body weight and fat and improved lipid profiles in obese rats fed apple pomace or apple juice concentrate.

    PubMed

    Cho, Kyung-Dong; Han, Chan-Kyu; Lee, Bog-Hieu

    2013-09-01

    The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats.

  10. Loss of Body Weight and Fat and Improved Lipid Profiles in Obese Rats Fed Apple Pomace or Apple Juice Concentrate

    PubMed Central

    Cho, Kyung-Dong; Han, Chan-Kyu

    2013-01-01

    Abstract The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats. PMID:23909905

  11. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice.

    PubMed

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira

    2017-07-14

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans . It is used as a food additive to prevent caries. We previously showed that 1.5-4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella , whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.

  12. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice

    PubMed Central

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Takahashi, Akira

    2017-01-01

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5–4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism. PMID:28708089

  13. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity.

    PubMed

    de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H; Hayden, Michael R

    2014-03-01

    Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1(-ad/-ad)). When fed a high-fat, high-cholesterol diet, ABCA1(-ad/-ad) mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1(-ad/-ad) mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis.

  14. The cellular source for APOBEC3G's incorporation into HIV-1

    PubMed Central

    2011-01-01

    Background Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear. Results Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation. Conclusions Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. PMID:21211018

  15. Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival.

    PubMed

    Cabrera, Rafael A; Lin, Xi; Campbell, Joy M; Moeser, Adam J; Odle, Jack

    2012-12-23

    Intake of colostrum after birth is essential to stimulate intestinal growth and function, and to provide systemic immunological protection via absorption of Immunoglobulin G (IgG). The birth order and weight of 745 piglets (from 75 litters) were recorded during a one-week period of farrowing. Only pigs weighing greater than 0.68 kg birth weight were chosen for the trial. Sow colostrum was collected during parturition, and piglets were bled between 48 and 72 hours post-birth. Piglet serum IgG and colostral IgG concentrations were determined by radial immunodiffusion. Sow parity had a significant (P < 0.001) effect on sow colostral IgG concentration, being 5% higher in multiparous females. Sow colostral IgG concentration explained 6% and piglet birth order accounted for another 4% of the variation observed in piglet serum IgG concentration (P < 0.05); however, birth weight had no detectable effect. Piglet serum IgG concentration had both a linear (P < 0.05) and quadratic effect (P < 0.05) on % survival. Piglets with 1,000 mg/dl serum IgG or less (n=24) had a 67% survival; whereas, piglets with IgG concentrations between 2250 to 2500 mg/dl (n=247) had a 91% survival. Birth order had no detectable effect on survival, but birth weight had a positive linear effect (P < 0.05). Piglets weighing 0.9 kg (n = 107) at birth had a 68% survival rate, and those weighing 1.6 kg (n = 158) had an 89% survival. We found that the combination of sow colostrum IgG concentration and birth order can account for 10% of the variation of piglet serum IgG concentration and that piglets with less than 1,000 mg/dl IgG serum concentration and weight of 0.9 kg at birth had low survival rate when compared to their larger siblings. The effective management of colostrum uptake in neonatal piglets in the first 24 hrs post-birth may potentially improve survival from birth to weaning.

  16. Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival

    PubMed Central

    2012-01-01

    Background Intake of colostrum after birth is essential to stimulate intestinal growth and function, and to provide systemic immunological protection via absorption of Immunoglobulin G (IgG). The birth order and weight of 745 piglets (from 75 litters) were recorded during a one-week period of farrowing. Only pigs weighing greater than 0.68 kg birth weight were chosen for the trial. Sow colostrum was collected during parturition, and piglets were bled between 48 and 72 hours post-birth. Piglet serum IgG and colostral IgG concentrations were determined by radial immunodiffusion. Results Sow parity had a significant (P < 0.001) effect on sow colostral IgG concentration, being 5% higher in multiparous females. Sow colostral IgG concentration explained 6% and piglet birth order accounted for another 4% of the variation observed in piglet serum IgG concentration (P < 0.05); however, birth weight had no detectable effect. Piglet serum IgG concentration had both a linear (P < 0.05) and quadratic effect (P < 0.05) on % survival. Piglets with 1,000 mg/dl serum IgG or less (n=24) had a 67% survival; whereas, piglets with IgG concentrations between 2250 to 2500 mg/dl (n=247) had a 91% survival. Birth order had no detectable effect on survival, but birth weight had a positive linear effect (P < 0.05). Piglets weighing 0.9 kg (n = 107) at birth had a 68% survival rate, and those weighing 1.6 kg (n = 158) had an 89% survival. Conclusion We found that the combination of sow colostrum IgG concentration and birth order can account for 10% of the variation of piglet serum IgG concentration and that piglets with less than 1,000 mg/dl IgG serum concentration and weight of 0.9 kg at birth had low survival rate when compared to their larger siblings. The effective management of colostrum uptake in neonatal piglets in the first 24 hrs post-birth may potentially improve survival from birth to weaning. PMID:23259926

  17. Calibration of mass and conventional mass of weights 2 kg, 1 kg, 200 g, 50 g, 1 g and 200 mg

    NASA Astrophysics Data System (ADS)

    Becerra, Luis Omar; Peña, Luis Manuel; Escalante Vargas, Boris; Cori Almonte, Luz; Martín Quiroga Rojas, Aldo; Bermúdez Coronel, Álvaro; Escobar Soto, Jhon J.; Naula, Wilson; Florencio, Arnaldo; Lourdes Valenzuela, María; Ramos Alfaro, Olman; Prenda Peña, Marcela

    2018-01-01

    This report describes the results of a supplementary comparison between SIM NMIs, which was carried out to evaluate the consistency of the measurements of calibration in high accuracy mass standards using the normalized error criteria (2 kg, 1 kg, 200 g, 50 g, 1 g and 200 mg). The supplementary comparison was carried out from April 2012 to July 2013. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. [Effect of FABP2 gene G54A polymorphism on lipid and glucose metabolism in simple obesity children].

    PubMed

    Xu, Yunpeng; Rao, Xiaojiao; Hao, Min; Hou, Lijuan; Zhu, Xiaobo; Chang, Xiaotong

    2016-01-01

    To explore the relationship between intestinal fatty acid binding protein (FABP2) gene G54A polymorphism and simple childhood obesity, the effect of mutant 54A FABP2 gene on serum lipids and glucose metabolism. The total of 83 subjects with overweight/obesity and 100 subjects with healthy/normal weight were involved in this study. The G54A FABP2 gene allele and genotype frequencies between control group and overweight/obesity group were detected using polymerase chain reaction (PCR) -restriction fragment length polymorphism (RFLP) technology, and DNA sequences were confirmed by DNA sequencing. The automatic biochemical analyzer was used to detect fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels. Plasma insulin (Ins) was detected by radiation immune method, free fatty acids (FFA) was tested by ELISA method, insulin resistance index ( HOMA-IR ) was also calculated. The correlation between FABP2 G54A polymorphism and the development of children' obesity was analyzed. The relation between FABP2 G54A polymorphism and abnormal blood lipid and insulin resistance was assessed. The results of study on FABP2 gene polymorphism revealed as followed. In overweight/obese groups, the frequencies of GG, GA, AA genotypes was 33.7%, 49.4% and 16.9%, respectively. In control group, the frequencies of GG, GA, AA genotypes was 51. 0% , 40. 0% and 9. 0% , respectively. The differences between two groups was statistically significant (Χ2 = 6.27, P < 0.05). In overweight/obesity group, the frequencies of alleles were 58.4% for 54G and 41.6% for 54A. In control group, the frequencies of alleles were 71.0% for 54G and 29.0% for 54A. There was significant differences (Χ2 = 6.32, P < 0.05). The plasma biochemical variables results showed that compared with the normal control group, plasma TG (P < 0.01), Ins (P < 0.05), HOMA-IR (P < 0.05) were elevated in overweight

  19. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast.

    PubMed

    Chumnanpuen, Pramote; Zhang, Jie; Nookaew, Intawat; Nielsen, Jens

    2012-07-01

    In the yeast Saccharomyces cerevisiae many genes involved in lipid biosynthesis are transcriptionally controlled by inositol-choline and the protein kinase Snf1. Here we undertook a global study on how inositol-choline and Snf1 interact in controlling lipid metabolism in yeast. Using both a reference strain (CEN.PK113-7D) and a snf1Δ strain cultured at different nutrient limitations (carbon and nitrogen), at a fixed specific growth rate of 0.1 h(-1), and at different inositol choline concentrations, we quantified the expression of genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through integrated analysis of the transcriptome, the lipid profiling and the fluxome, it was possible to obtain a high quality, large-scale dataset that could be used to identify correlations and associations between the different components. At the transcription level, Snf1 and inositol-choline interact either directly through the main phospholipid-involving transcription factors (i.e. Ino2, Ino4, and Opi1) or through other transcription factors e.g. Gis1, Mga2, and Hac1. However, there seems to be flux regulation at the enzyme levels of several lipid involving enzymes. The analysis showed the strength of using both transcriptome and lipid profiling analysis for mapping the co-influence of inositol-choline and Snf1 on phospholipid metabolism.

  20. Threonine supplementation reduces dietary protein and improves lipid metabolism in Pekin ducks.

    PubMed

    Jiang, Y; Tang, J; Xie, M; Wen, Z G; Qiao, S Y; Hou, S S

    2017-12-01

    1. This study was conducted to investigate the efficiency of threonine (Thr) supplementation on reducing dietary crude protein (CP) content and the effects of Thr on lipid metabolism in Pekin ducks. The effects of dietary CP concentration (160, 190 and 220 g/kg) and Thr supplemental concentration (0, 0.7, 1.4, 2.1 and 2.8 g/kg) on growth performance, carcass, liver lipid and plasma profiles were determined in Pekin ducks from 1-21 d of age. 2. A total of 720-d-old male Pekin ducks were randomly allotted to 1 of 15 dietary treatments with 6 replicate cages of 8 birds per cage for each treatment according to average body weight. 3. Dietary Thr supplementation improved growth performance and breast muscle percentage at all CP diets, and ducks fed Thr-supplemented diets had higher plasma concentrations of some plasma amino acids. Thr supplementation reduced the concentrations of total lipid, triglyceride, cholesterol in liver, and plasma low density lipoprotein cholesterin concentration at 160 and 190 g/kg CP, whereas it increased triglyceride concentration at 160 g/kg CP. 4. Thr requirements based on quadratic broken-line model estimation were 6.6 and 7.0 g/kg for optimal average daily gain (ADG), and 6.7 and 7.3 g/kg for breast muscle percentage of Pekin ducks from 1-21 d of age at 190 and 220 g/kg CP, respectively. The dietary Thr requirements and estimated ADG (55.18 vs. 55.86 g/d/bird) and breast muscle percentage (2.79% vs. 2.75%) of Pekin ducks did not differ between 190 and 220 g/kg CP according to the t-test results. 5. Dietary CP level could be reduced to 190 g/kg in Pekin ducks from 1-21 d of age with Thr supplementation to balance dietary amino acids, and Thr supplementation prevented excess liver lipid deposition in this instance.

  1. Novel structure of cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment

    PubMed Central

    Mueller, Geoffrey A.; Pedersen, Lars C.; Lih, Fred B.; Glesner, Jill; Moon, Andrea F.; Chapman, Martin D.; Tomer, Kenneth B.; London, Robert E.; Pomés, Anna

    2013-01-01

    Background Sensitization to cockroach allergens is a major risk factor for asthma. The cockroach allergen Bla g 1 has multiple repeats of ~100 amino acids, but the fold of the protein and the biological function are unknown. Objective To determine the structure of Bla g 1, investigate the implications for allergic disease, and standardize cockroach exposure assays. Methods Natural Bla g 1 and recombinant constructs were compared by ELISA using specific murine IgG and human IgE. The structure of Bla g 1 was determined by X-ray crystallography. Mass spectrometry and NMR were utilized to examine ligand-binding properties of the allergen. Results The structure of a recombinant Bla g 1 construct with comparable IgE and IgG reactivity to the natural allergen was solved by X-ray crystallography. The Bla g 1 repeat forms a novel fold with 6 helices. Two repeats encapsulate a large and nearly spherical hydrophobic cavity, defining the basic structural unit. Lipids in the cavity varied depending on the allergen origin. Palmitic, oleic and stearic acids were associated with nBla g 1 from cockroach frass. One Unit of Bla g 1 was equivalent to 104 ng of allergen. Conclusions Bla g 1 has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with non-specific transport of lipid molecules in cockroaches. Defining the basic structural unit of Bla g 1 facilitates the standardization of assays in absolute units for the assessment of environmental allergen exposure. PMID:23915714

  2. Regulation of endothelial nitric oxide synthase: involvement of protein kinase G 1 beta, serine 116 phosphorylation and lipid structures.

    PubMed

    John, Theresa A; Ibe, Basil O; Raj, J Usha

    2008-02-01

    1. Endothelial nitric oxide synthase (NOS3) is important for vascular homeostasis. The role of protein kinase G (PKG) in regulation of NOS3 activity was studied in primary cultures of newborn lamb lung microvascular endothelial cells (LMVEC). 2. We determined the presence of PKG in fetal and neonatal LMVEC as well as subcellular localization of PKG isoforms in the neonatal cells by fluorescence immunohistochemistry. We used diaminofluorescein (DAF) fluorophore to measure nitric oxide (NO) production from neonatal LMVEC. We confirmed that NO measured was from constitutive NOS3 by inhibiting it with NOS inhibitors. 3. To identify a role for PKG in basal NO production, we measured NO release from LMVEC cells using 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM; 0.5-0.8 micromol/L) with and without prior stimulation with the PKG activator 8-bromo-cGMP (8-Br-cGMP; 0.3 and 3 micromol/L) or prior PKG inhibition with beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (BPC; 0.3 and 3 micromol/L). With the same drugs, we determined the role of PKG on cellular expression of NOS3 and serine 116 phosphorylated NOS (pSer116-NOS) by qualitative and quantitative immunofluorescence assays, as well as western blotting. 4. Because PKG 1 beta was distributed throughout the cytosol in a punctate expression, we used 2 mmol/L cyclodextrin, a cholesterol extractor, to determine a role for lipid vesicles in PKG regulation of NO production. 5. Protein kinase G 1 beta gave a punctate appearance, indicating its presence in intracellular vesicles. Nitric oxide production decreased by approximately 20% with 300 nmol/L and 3 micromol/L 8-Br cGMP (P < 0.05) and increased by 20.8 +/- 3.7% with 3 micromol/L BPC (P < 0.001), indicating that both stimulated and basal PKG activity has inhibitory effects on basal NOS3 function. Nitric oxide synthase immunofluorescence and immunoblot expression were decreased and pSer116-NOS immunofluorescence was increased by 800 nmol

  3. Global fibrinolytic activity, PAI-1 level, and 4G/5G polymorphism in Thai children with arterial ischemic stroke.

    PubMed

    Natesirinilkul, Rungrote; Sasanakul, Werasak; Chuansumrit, Ampaiwan; Kadegasem, Praguywan; Visudtibhan, Anannit; Wongwerawattanakoon, Pakawan; Sirachainan, Nongnuch

    2014-01-01

    Prolonged euglobulin clot lysis time (ECLT) and increased level of plasminogen activator inhibitor-1 (PAI-1) were reported to be risk factors of arterial ischemic stroke (AIS) by some studies; however, these findings were not supported by other studies. The objective of this study was to determine the association of ECLT, PAI-1 level, and polymorphisms of 4G and 5G of PAI-1 gene to the development of AIS in Thai children. This study included patients aged 1-18 years old. Diagnosis of AIS was confirmed by imaging study. The control group was age- and sex-matched healthy subjects. Demographic data were recorded, and blood was tested for ECLT, PAI-1 level, lipid profiles, fasting blood sugar (FBS), and 4G and 5G polymorphisms of PAI-1 gene. There were 70 subjects participating in this study, consisting of 30 patients and 40 controls. Demographic data, lipid profiles, and FBS were similar between the 2 groups. Furthermore, ECLT and PAI-1 level did not differ between patient and control groups; however, both showed significant correlation (r = .352, P = .006). The 4G/5G polymorphism was the most common genotype in both patient and control groups (69.0% vs. 80.0%). However, 4G and 5G polymorphisms of PAI-1 gene did not correlate with PAI-1 level in this study (P = .797). The PAI-1 level and 4G/5G polymorphism may not be a risk factor of AIS in this population. It was also found that the 4G/5G polymorphism was the most common PAI-1 genotype in this study. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  5. Effects on Transcriptional Regulation and Lipid Droplet Characteristics in the Liver of Female Juvenile Pigs after Early Postnatal Feed Restriction and Refeeding Are Dependent on Birth Weight

    PubMed Central

    Nebendahl, Constance; Krüger, Ricarda; Görs, Solvig; Albrecht, Elke; Martens, Karen; Hennig, Steffen; Storm, Niels; Höppner, Wolfgang; Pfuhl, Ralf; Metzler-Zebeli, Barbara U.; Hammon, Harald M.; Metges, Cornelia C.

    2013-01-01

    Epidemiological and experimental data indicate that caloric restriction in early postnatal life may improve liver lipid metabolism in low birth weight individuals. The present study investigated transcriptional and metabolic responses to low (U) and normal (N) birth weight (d 75, T1) and postnatal feed restriction (R, 60% of controls, d 98, T2) followed by subsequent refeeding until d 131 of age (T3). Liver tissue studies were performed with a total of 42 female pigs which were born by multiparous German landrace sows. Overall, 194 genes were differentially expressed in the liver of U vs. N (T1) animals with roles in lipid metabolism. The total mean area and number of lipid droplets (LD) was about 4.6- and 3.7 times higher in U compared to N. In U, the mean LD size (µm2) was 24.9% higher. 3-week feed restriction reduced total mean area of LDs by 58.3 and 72.7% in U and N, respectively. A functional role of the affected genes in amino acid metabolism was additionally indicated. This was reflected by a 17.0% higher arginine concentration in the liver of UR animals (vs. NR). To evaluate persistency of effects, analyses were also done after refeeding period at T3. Overall, 4 and 22 genes show persistent regulation in U and N animals after 5 weeks of refeeding, respectively. These genes are involved in e.g. processes of lipid and protein metabolism and glucose homeostasis. Moreover, the recovery of total mean LD area in U and N animals back to the previous T1 level was observed. However, when compared to controls, the mean LD size was still reduced by 23.3% in UR, whereas it was increased in NR (+24.7%). The present results suggest that short-term postnatal feed restriction period programmed juvenile U animals for an increased rate of hepatic lipolysis in later life. PMID:24260100

  6. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism.

    PubMed

    Vitiello, Giuseppe; Falanga, Annarita; Petruk, Ariel Alcides; Merlino, Antonello; Fragneto, Giovanna; Paduano, Luigi; Galdiero, Stefania; D'Errico, Gerardino

    2015-04-21

    A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.

  7. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    PubMed

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  8. Feasibility of Using Natural Attenuation as a Remedial Alternative for Explosives-Contaminated Groundwater at Site L1, Joliet Army Ammunition Plant, Joliet, Illinois

    DTIC Science & Technology

    1998-08-01

    Biomarkers 39 Task Wet weight, g DNA analyses 84 Microbial lipid analyses 84 Radiorespirometry 160 Explosives analyses 20 Phytoremediation 1...Task Wet weight, g Explosives analyses 10 Particle size 70 DNA and lipid biomarkers 60 Phytoremediation 1 1 Geochemistry 132 | Other analyses 60...of numerical solution techniques. One parameter that controls the amount of leachate entering the unsaturated zone is the infiltration rate. The

  9. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  10. The Roles of APOBEC3G Complexes in the Incorporation of APOBEC3G into HIV-1

    PubMed Central

    Zhang, Quan; Liu, Zhenlong; Jia, Pingping; Zhou, Jinming; Guo, Fei; You, Xuefu; Yu, Liyan; Zhao, Lixun; Jiang, Jiandong; Cen, Shan

    2013-01-01

    Background The incorporation of human APOBEC3G (hA3G) into HIV is required for exerting its antiviral activity, therefore the mechanism underlying hA3G virion encapsidation has been investigated extensively. hA3G was shown to form low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. The function of different forms of hA3G in its viral incorporation remains unclear. Methodology/Principal Findings In this study, we investigated the subcellular distribution and lipid raft association of hA3G using subcellular fractionation, membrane floatation assay and pulse-chase radiolabeling experiments respectively, and studied the correlation between the ability of hA3G to form the different complex and its viral incorporation. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation. Conclusions/Significance Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. PMID:24098356

  11. The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers

    PubMed Central

    Touhara, Kouki K; Wang, Weiwei; MacKinnon, Roderick

    2016-01-01

    G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound. DOI: http://dx.doi.org/10.7554/eLife.15750.001 PMID:27074664

  12. Limited Weight Loss or Simply No Weight Gain following Lifestyle-Only Intervention Tends to Redistribute Body Fat, to Decrease Lipid Concentrations, and to Improve Parameters of Insulin Sensitivity in Obese Children

    PubMed Central

    2011-01-01

    Objectives. To investigate whether lifestyle-only intervention in obese children who maintain or lose a modest amount of weight redistributes parameters of body composition and reverses metabolic abnormalities. Study Design. Clinical, anthropometric, and metabolic parameters were assessed in 111 overweight or obese children (CA of 11.3 ± 2.8 years; 63 females and 48 males), during 8 months of lifestyle intervention. Patients maintained or lost weight (1–5%) (group A; n: 72) or gained weight (group B). Results. Group A patients presented with a decrease in systolic blood pressure (SBP) and diastolic blood pressure (DBP) ( and , resp.), BMI (), z-score BMI (), waist circumference (), fat mass (), LDL-C (), Tg/HDL-C ratio (), fasting and postprandial insulin (), and HOMA (), while HDL-C () and QUICKI increased (). Conversely, group B patients had an increase in BMI (), waist circumference (), SBP (), and in QUICKI (), while fat mass (), fasting insulin (), and HOMA () decreased. Lean mass, DBP, lipid concentrations, fasting and postprandial glucose, postprandial insulin, and ultrasensitive C-reactive protein (CRP) remained stable. Conclusions. Obese children who maintain or lose a modest amount of weight following lifestyle-only intervention tend to redistribute their body fat, decrease blood pressure and lipid levels, and to improve parameters of insulin sensitivity. PMID:21603203

  13. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 As a function of growth temperature.

    PubMed

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).

  14. Association of breast-fed neonatal hyperbilirubinemia with UGT1A1 polymorphisms: 211G>A (G71R) mutation becomes a risk factor under inadequate feeding.

    PubMed

    Sato, Hiroko; Uchida, Toshihiko; Toyota, Kentaro; Kanno, Miyako; Hashimoto, Taeko; Watanabe, Masashi; Nakamura, Tomohiro; Tamiya, Gen; Aoki, Kuraaki; Hayasaka, Kiyoshi

    2013-01-01

    Breastfeeding jaundice is a well-known phenomenon, but its pathogenesis is still unclear. Increased production of bilirubin, impaired hepatic uptake and metabolism of bilirubin, and increased enterohepatic circulation of bilirubin account for most cases of pathological neonatal hyperbilirubinemia. We previously reported that 211G>A (G71R) mutation of the UGT1A1 gene is prevalent in East Asians and is associated with the development of neonatal hyperbilirubinemia. Recently, significant association of G71R mutation with hyperbilirubinemia in breast-fed neonates was reported. We enrolled 401 full-term Japanese infants, who were exclusively breast-fed without supplementation of formula before developing hyperbilirubinemia, and classified them into two groups based on the degree of maximal body weight loss during the neonatal period. We analyzed the sex, gestational age, delivery mode, body weight at birth, maximal body weight loss and genotypes of G71R and (TA)(7) polymorphic mutations of UGT1A1. Statistical analysis revealed that maximal body weight loss during the neonatal period is the only independent risk factor for the development of neonatal hyperbilirubinemia. The effect of G71R mutation on neonatal hyperbilirubinemia is significant in neonates with 5% or greater maximal body weight loss and its influence increases in parallel with the degree of maximal body weight loss. Our study indicates that G71R mutation is a risk factor for neonatal hyperbilirubinemia only in infants with inadequate breastfeeding and suggests that adequate breastfeeding may overcome the genetic predisposing factor, G71R mutation, for the development of neonatal hyperbilirubinemia.

  15. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Wang, Yuan; Feng, Jinyan

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. Inmore » addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.« less

  16. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity[S

    PubMed Central

    de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H.; Hayden, Michael R.

    2014-01-01

    Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1−ad/−ad). When fed a high-fat, high-cholesterol diet, ABCA1−ad/−ad mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1−ad/−ad mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis. PMID:24443560

  17. Dual purpose system that treats anaerobic effluents from pig waste and produce Neochloris oleoabundans as lipid rich biomass.

    PubMed

    Olguín, Eugenia J; Castillo, Omar S; Mendoza, Anilú; Tapia, Karla; González-Portela, Ricardo E; Hernández-Landa, Víctor J

    2015-05-25

    Dual purpose systems that treat wastewater and produce lipid rich microalgae biomass have been indicated as an option with great potential for production of biodiesel at a competitive cost. The aim of the present work was to develop a dual purpose system for the treatment of the anaerobic effluents from pig waste utilizing Neochloris oleoabundans and to evaluate its growth, lipid content and lipid profile of the harvested biomass and the removal of nutrients from the media. Cultures of N. oleoabundans were established in 4 L flat plate photobioreactors using diluted effluents from two different types of anaerobic filters, one packed with ceramic material (D1) and another one packed with volcanic gravel (D2). Maximum biomass concentration in D1 was 0.63 g L(-1) which was significantly higher than the one found in D2 (0.55 g L(-1)). Cultures were very efficient at nutrient removal: 98% for NNH4(+) and 98% for PO4(3-). Regarding total lipid content, diluted eflluents from D2 promoted a biomass containing 27.4% (dry weight) and D1 a biomass containing 22.4% (dry weight). Maximum lipid productivity was also higher in D2 compared to D1 (6.27±0.62 mg L(-1) d(-1) vs. 5.12±0.12 mg L(-1) d(-1)). Concerning the FAMEs profile in diluted effluents, the most abundant one was C18:1, followed by C18:2 and C16:0. The profile in D2 contained less C18:3 (linolenic acid) than the one in D1 (4.37% vs. 5.55%). In conclusion, this is the first report demonstrating that cultures of N. oleoabundans treating anaerobic effluents from pig waste are very efficient at nutrient removal and a biomass rich in lipids can be recovered. The maximum total lipid content and the most convenient FAMEs profile were obtained using effluents from a digester packed with volcanic gravel. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of dietary lipid levels on body compositions, digestive ability and antioxidant parameters of common carp

    NASA Astrophysics Data System (ADS)

    Sun, Jinhui; Fan, Ze; Chen, Chunxiu; Li, Jinghui; Cheng, Zhenyan; Li, Yang; Qiao, Xiuting

    2017-11-01

    This study was designed to evaluate the effect of dietary lipid level on body composition, and digestive ability of common carp with initial average weight (36.12 ± 1.18)g. Five experimental diets with increasing lipid levels of 2.1%, 4.0%, 5.8%, 7.6%, 9.4% were fed to triplicate groups of fish for 9 weeks. The results showed that lipid content of whole body and muscle increased in parallel with the increase of dietary lipid levels. Protein content of muscle decreased with the increase of dietary lipid levels, and the lowest muscle protein content was observed in fish fed 9.4% lipid diet. Lipaseactivity was significantly affected by dietary lipid levels in hepatopancreas andintestine (P <0.05). Lipase activity in fish fed at 5.8% lipid level group was significantly higher than others inhepatopancreas (P <0.05). There were no significant differences in amylase and proteaseactivities (P > 0.05). The results suggested that the most excellentdigestive ability and antioxidant parameters were obtained at 7.6% lipid level group.

  19. Milk Polar Lipids Affect In Vitro Digestive Lipolysis and Postprandial Lipid Metabolism in Mice.

    PubMed

    Lecomte, Manon; Bourlieu, Claire; Meugnier, Emmanuelle; Penhoat, Armelle; Cheillan, David; Pineau, Gaëlle; Loizon, Emmanuelle; Trauchessec, Michèle; Claude, Mathilde; Ménard, Olivia; Géloën, Alain; Laugerette, Fabienne; Michalski, Marie-Caroline

    2015-08-01

    Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. Female Swiss mice were gavaged with 150 μL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 μg/mL vs. 90 μg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 μg/mL vs. 44 μg/mL; P < 0.05). The opposite was observed after 4 h with lower TGs (21 μg/mL vs. 35 μg/mL; P < 0.01) and NEFAs (20 μg/mL vs. 32 μg/mL; P < 0.01) in the MPL group compared with the SPL group. This was associated at 4 h with a lower gene expression of apolipoprotein B (Apob) and Secretion Associated, Ras related GTPase 1 gene homolog B (Sar1b), in the duodenum of MPL mice compared with SPL mice (P < 0.05). In vitro, during the intestinal phase, TGs were hydrolyzed more in the MPL emulsion than in the SPL emulsion (decremental AUCs were 1750%/min vs. 180%/min; P < 0.01). MPLs enhance lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism. © 2015 American Society for Nutrition.

  20. Engineering Rhodosporidium toruloides for increased lipid production.

    PubMed

    Zhang, Shuyan; Skerker, Jeffrey M; Rutter, Charles D; Maurer, Matthew J; Arkin, Adam P; Rao, Christopher V

    2016-05-01

    Oleaginous yeast are promising organisms for the production of lipid-based chemicals and fuels from simple sugars. In this work, we explored Rhodosporidium toruloides for the production of lipid-based products. This oleaginous yeast natively produces lipids at high titers and can grow on glucose and xylose. As a first step, we sequenced the genomes of two strains, IFO0880, and IFO0559, and generated draft assemblies and annotations. We then used this information to engineer two R. toruloides strains for increased lipid production by over-expressing the native acetyl-CoA carboxylase and diacylglycerol acyltransferase genes using Agrobacterium tumefaciens mediated transformation. Our best strain, derived from IFO0880, was able to produce 16.4 ± 1.1 g/L lipid from 70 g/L glucose and 9.5 ± 1.3 g/L lipid from 70 g/L xylose in shake-flask experiments. This work represents one of the first examples of metabolic engineering in R. toruloides and establishes this yeast as a new platform for production of fatty-acid derived products. © 2015 Wiley Periodicals, Inc.

  1. G protein polymorphisms do not predict weight loss and improvement of hypertension in severely obese patients.

    PubMed

    Potoczna, Natascha; Wertli, Maria; Steffen, Rudolph; Ricklin, Thomas; Lentes, Klaus-Ulrich; Horber, Fritz F

    2004-11-01

    Both the gene encoding the alpha subunit of G stimulatory proteins (GNAS1) and the beta3 subunit gene (GNB3) of G proteins are associated with obesity and/or hypertension. Moreover, the TT/TC825 polymorphism of GNB3 predicts greater weight loss than the CC825 polymorphism in obese patients (mean body mass index, 35 kg/m2) undergoing a structured nonpharmacologic weight loss program. Gastric banding enforces a low-calorie diet by diminishing the need for volitional adherence. It is unknown whether these polymorphisms predict the variable weight loss in patients after bariatric surgery. Three hundred and four severely obese patients (mean +/- SEM age, 42 +/- 1 years; 245 women and 59 men; mean +/- SEM body mass index, 43.9 +/- 0.3 kg/m2) followed prospectively for at least 3 years after surgery were genotyped for the GNB3 C825T, G814A, and GNAS1 T393 polymorphisms. All analyses were performed blinded to the phenotypic characteristics of the study group. Frequencies of polymorphisms were comparable to those previously published. No polymorphism studied predicted 3-year weight loss or was associated with high blood pressure in severely obese patients after gastric banding. Multivariate analysis of potentially confounding factors such as reoperation rate or use of sibutramine or orlistat revealed similar results (P > 0.1). Regardless of the mechanism(s) involved for these discordant findings, GNB3 C825T, G814A, and GNAS1 T393C polymorphisms do not seem to be reliable predictors of long-term weight loss.

  2. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    PubMed

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Impact of discontinuation of growth hormone treatment on lipids and weight status in adolescents.

    PubMed

    Rothermel, Juliane; Lass, Nina; Bosse, Christina; Reinehr, Thomas

    2017-07-26

    While the main role of growth hormone (GH) replacement therapy in children is to promote linear growth, GH has also an effect on lipids and body composition. There is an ongoing discussion whether discontinuation of GH treatment is associated with deterioration of lipids. We analyzed weight status [as body mass index-standard deviation score (BMI-SDS)], insulin like growth factor (IGF)-1, triglycerides, total, low-density liporptoein (LDL)- and high-density lipoprotein (HDL)-cholesterol at the end of GH treatment and in mean 6 months later in 90 adolescents (53 with GH deficiency, 16 with Turner syndrome [TS] and 21 born small-for-gestational age [SGA]). After stopping GH treatment, total cholesterol (+10±24 mg/dL vs. -4±13 mg/dL) and LDL-cholesterol (+15±20 mg/dL vs. -6±12 mg/dL) increased significantly higher in severe (defined by GH peak in stimulation test <3 ng/mL) compared to moderate GHD. In patients with TS, total cholesterol (+19±9 mg/dL), LDL-cholesterol (+9±12 mg/dL) and HDL-cholesterol (+4.3±3.5 mg/dL) increased significantly. In adolescents born SGA, triglycerides increased (+34±51 mg/dL) and HDL-cholesterol decreased significantly (-3.8±7.1 mg/dL). In multiple linear regression analyses, changes of total and LDL-cholesterol were significantly negatively related to peak GH in stimulation tests, but not to gender, age at GH start, duration of GH treatment, observation time, changes of BMI-SDS or IGF-1 after the end of GH treatment. The BMI-SDS did not change after the end of GH treatment. Discontinuation of GH treatment leads to a deterioration of lipids in TS, SGA and severe but not moderate GHD.

  4. The Effect of Theory Based Nutritional Education on Fat Intake, Weight and Blood Lipids.

    PubMed

    Kamran, Aziz; Sharifirad, Gholamreza; Heydari, Heshmatolah; Sharifian, Elham

    2016-12-01

    Though Nutrition plays a key role in the control of hypertension, it is often forgotten in Iranian patients' diet. In fact, dietary behavior can be regarded as unsatisfactory among Iranian patients. This study was aimed to assess the effectiveness of theory based educational intervention on fat intake, weight, and blood lipids among rural hypertensive patients. This quasi experimental study was conducted on 138 hypertensive patients who had referred to Ardabil rural health centers during 2014. The nutritional education based on DASH and Health Promotion Model (HPM) was treated for six sessions. The pre-test and post-test had intervals of two and six months. Data were analyzed using SPSS-18 and Chi-square, independent-samples t-test, paired-samples t-test and repeated measure ANOVA. After treating intervention, weight, dietary fat, LDL_C and Total cholesterol, systolic and diastolic blood pressures decreased significantly in the intervention group compared with the control group (p < 0.001). In contrast, HDL_C increased significantly in the intervention group. Educational intervention, provided based on Pender's health promotion model, affecting fat intake, blood lipids, and blood pressure, led to their decrease.

  5. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  6. Probing the binding of cationic lipids with dendrimers.

    PubMed

    Mandeville, J S; Bourassa, P; Tajmir-Riahi, H A

    2013-01-14

    Polycationic polymers are used extensively in biology to disrupt cell membranes and thus enhance the transport of materials into the cell. We report the bindings of several lipids cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane(DOTAP), dioctadecyldimethylammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) to dendrimers of different compositions such as mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) under physiological conditions. FTIR, UV-visible spectroscopic, methods and molecular modeling were used to analyze the lipid binding mode, the binding constant, and the effects of lipid complexation on the dendrimer structure. The structural analysis showed that lipids bind dendrimers through both hydrophilic and hydrophobic contacts with overall binding constants of K(chol-mPEG-G3) = 1.7 × 10(3) M(-1), K(chol-mPEG-PAMAM-G4) = 2.7 × 10(3) M(-1), K(chol-PAMAM-G4) = 1.0 × 10(3) M(-1), K(DOPE-mPEG-G3) = 1.5 × 10(3) M(-1), K(DOPE-mPEG-PAMAM-G4) = 1.6 × 10(3) M(-1), K(DOPE-PAMAM-G4) = 5.3 × 10(2) M(-1), K(DDAB-mPEG-G3) = 1.5 × 10(3) M(-1), K(DDAB-mPEG-PAMAM-G4) = 1.9 × 10(2) M(-1), K(DDAB-PAMAM-G4) = 7.0 × 10(2) M(-1), K(DOTAP-mPEG-G3) = 1.9 × 10(3) M(-1), K(DOTAP-mPEG-PAMAM-G4) = 1.5 × 10(3) M(-1), and K(DOTAP-PAMAM-G4) = 5.7 × 10(2) M(-1). Weaker interaction was observed as dendrimer cationic charges increased. The free binding energies from docking were -5.15 (cholesterol), -5.79 (DDAB), and -5.36 kcal/mol (DOTAP) with the order of stability DDAB-PAMAM-G-4 > DOTAP-PAMAM-G4 > cholesterol-PAMAM-G4, consistent with the spectroscopic results. Dendrimers might act as carriers to transport lipids in vitro.

  7. Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production.

    PubMed

    Feng, Pingzhong; Yang, Kang; Xu, Zhongbin; Wang, Zhongming; Fan, Lu; Qin, Lei; Zhu, Shunni; Shang, Changhua; Chai, Peng; Yuan, Zhenhong; Hu, Lei

    2014-12-01

    In an effort to identify suitable microalgal species for biodiesel production, seven species were isolated from various habitats and their growth characteristics were compared. The results demonstrated that a green alga Scenedesmus obliquus could grow more rapidly and synthesize more lipids than other six microalgal strains. S. obliquus grew well both indoors and outdoors, and reached higher μmax indoors than that outdoors. However, the cells achieved higher dry weight (4.36 g L(-1)), lipid content (49.6%) and productivity (183 mg L(-1) day(-1)) outdoors than in indoor cultures. During the 61 days semi-continuous cultivation outdoors, high biomass productivities (450-550 mg L(-1) day(-1)) and μmax (1.05-1.44 day(-1)) were obtained. The cells could also achieve high lipid productivities (151-193 mg L(-1) day(-1)). These results indicated that S. obliquus was promising for lipids production in semi-continuous cultivation outdoors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. UCP1 -3826 A>G polymorphism affects weight, fat mass, and risk of type 2 diabetes mellitus in grade III obese patients.

    PubMed

    Nicoletti, Carolina Ferreira; de Oliveira, Ana Paula Rus Perez; Brochado, Maria Jose Franco; de Oliveira, Bruno Parenti; Pinhel, Marcela Augusta de Souza; Marchini, Julio Sergio; dos Santos, Jose Ernesto; Salgado Junior, Wilson; Silva Junior, Wilson Araujo; Nonino, Carla Barbosa

    2016-01-01

    We investigated whether or not the UCP1 -3826 A>G polymorphism is associated with obesity and related metabolic disorders in grade III obese patients. 150 obese patients (body mass index ≥35 kg/m(2)) who were candidates for bariatric surgery were studied. Weight (kg), body mass index (kg/m(2)); fat free mass (kg), fat mass (kg), energy intake (kcal), level of physical activity, plasma levels of glucose, total cholesterol, low-density lipoprotein, high-density lipoprotein (HDL), triacylglycerols, and the prevalence of comorbidities associated with obesity were collected from medical records. Polymorphism rs1800592 genotyping was performed through allelic discrimination method in real time polymerase chain reaction using the TaqMan predesigned SNP Genotyping Assays kits. The t test was done to determine if genotypes of each polymorphism are associated with anthropometric and body composition variables. Linear regression models were used for age, sex, height, physical activity, and energy intake in weight and body composition variations (P < 0.05). Among these 150 individuals (47.2 ± 10.5 y, 80% women) the distribution of AA, AG, and GG was 41.3%, 45.3%, and 13.4%, respectively. Weight and body fat were lower in individuals who were carriers of a mutated allele G. It was observed that mutated homozygotes (GG) had a lower frequency of type 2 diabetes mellitus compared with those of wild allele (AA+AG). UCP1 -3826 A>G polymorphism is associated with weight, body fat mass, and risk of type 2 diabetes mellitus in obese individuals candidates for bariatric surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991)

    NASA Astrophysics Data System (ADS)

    Gérin, C.; Goutx, M.

    1994-08-01

    The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.

  10. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    PubMed

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  11. Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1

    PubMed Central

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.

    2016-01-01

    Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308

  12. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    PubMed

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  13. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  14. Aggressive posterior retinopathy of prematurity in infants ≥ 1500 g birth weight.

    PubMed

    Sanghi, Gaurav; Dogra, Mangat R; Katoch, Deeksha; Gupta, Amod

    2014-02-01

    In this retrospective case series, we report the spectrum and outcomes of aggressive posterior retinopathy of prematurity (APROP) in infants ≥ 1500 g birth weight. Twenty-nine eyes of 15 infants are included. All infants were referred from level I or II nurseries, received supplemental unmonitored oxygen for prolonged duration (>1 week) and had multiple systemic co-morbidities. Of the 29 eyes, 10 (34.5%) had zone 1 and 19 (65.5%) had posterior zone 2 disease. Twenty-five (86.2%) eyes had flat neovascularization and 4 (13.8%) eyes had brush like proliferation. We noticed large vascular loops in 10 (34.5%) eyes. After confluent laser photocoagulation, 22 (75.9%) eyes had a favorable outcome. The study concludes that APROP in heavier (≥ 1500 g birth weight) premature infants occurs mostly in posterior zone 2 with flat neovascularization and atypical features like large vascular loops. Supplemental unmonitored oxygen for prolonged duration and multiple systemic co-morbidities could be a contributing factor.

  15. The long-term effects of feeding honey compared with sucrose and a sugar-free diet on weight gain, lipid profiles, and DEXA measurements in rats.

    PubMed

    Chepulis, L; Starkey, N

    2008-01-01

    To determine whether honey and sucrose would have differential effects on weight gain during long-term feeding, 45 2-mo-old Sprague Dawley rats were fed a powdered diet that was either sugar-free or contained 7.9% sucrose or 10% honey ad libitum for 52 wk (honey is 21% water). Weight gain was assessed every 1 to 2 wk and food intake was measured every 2 mo. At the completion of the study blood samples were removed for measurement of blood sugar (HbA1c) and a fasting lipid profile. DEXA analyses were then performed to determine body composition and bone mineral densities. Overall weight gain and body fat levels were significantly higher in sucrose-fed rats and similar for those fed honey or a sugar-free diet. HbA1c levels were significantly reduced, and HDL-cholesterol significantly increased, in honey-fed compared with rats fed sucrose or a sugar free diet, but no other differences in lipid profiles were found. No differences in bone mineral density were observed between honey- and sucrose-fed rats, although it was significantly increased in honey-fed rats compared with those fed the sugar-free diet.

  16. Interleukin 1B variant -1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism.

    PubMed

    Delgado-Lista, Javier; Garcia-Rios, Antonio; Perez-Martinez, Pablo; Solivera, Juan; Yubero-Serrano, Elena M; Fuentes, Francisco; Parnell, Laurence D; Shen, Jian; Gomez, Purificacion; Jimenez-Gomez, Yolanda; Gomez-Luna, Maria J; Marin, Carmen; Belisle, Sarah E; Rodriguez-Cantalejo, Fernando; Meydani, Simin N; Ordovas, Jose M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2011-05-01

    IL1b (IL1B or IL1β), a key modulator of the immune response, exerts its functions mainly via IL6 regulation. Fatty meals cause transient hypertriglyceridemia and are considered to be proinflammatory, but the extent of these responses shows high interindividual susceptibility. We evaluated the influence of a genetic variant located in the promoter region of IL1B (-1473G/C) on fasting and postprandial lipids and IL6. A total of 477 people over age 65 yr were genotyped for IL1B -1473G/C, and we evaluated fasting lipids depending on genotype. Then, 88 healthy young men were also genotyped and were fed a saturated fatty acid-rich meal. Serial blood samples were drawn for 11 h after the meal, and lipid fractions and IL6 were assayed. MAIN OUTCOME AND INTERVENTIONS: Fasting lipids were studied in the aged persons. Fasting and postprandial measurements of lipids and IL6 were performed in the healthy young men. In the aged persons, CC subjects (minor allele homozygotes) showed higher triglyceride (P = 0.002) and cholesterol (P = 0.011) levels. Healthy young male carriers of the minor C allele showed higher postprandial triglycerides (P = 0.037), and those carried into large triglyceride-rich lipoproteins (P = 0.004). In addition, they showed higher postprandial IL6 concentrations (P = 0.008). Our work shows that inflammatory genes may regulate fasting and postprandial lipids because the carriers of the minor allele of an IL gene variant have altered lipid metabolism. To reinforce these gene-phenotype findings, IL6 (the natural effector of IL1B) was increased in these persons.

  17. Weight Maintenance with Litramine (IQP-G-002AS): A 24-Week Double-Blind, Randomized, Placebo-Controlled Study

    PubMed Central

    Grube, Barbara; Alt, Felix; Uebelhack, Ralf

    2015-01-01

    Background. Litramine (IQP-G-002AS) was shown to be effective and safe for weight loss in overweight and obese subjects. However, long-term effectiveness on maintenance of body weight loss has yet to be ascertained. Objective. To assess effect of Litramine on maintenance of body weight loss. Methods. A double-blind, randomised, placebo-controlled trial on overweight and obese patients was conducted over two sites in Germany for 24 weeks. Subjects with documented previous weight loss of 3% over the last 3–6 months were randomised to groups given either Litramine (3 g/day) or a matching placebo. Primary endpoints were difference of mean body weight (kg) between baseline and end of study and maintenance of initially lost body weight in verum group, where maintenance is defined as ≤1% weight gain. Results. Subjects who were taking Litramine lost significantly more body weight compared to the subjects taking placebo who gained weight instead (−0.62 ± 1.55 kg versus 1.62 ± 1.48 kg, p < 0.001). More importantly, 92% of subjects in Litramine group were able to maintain their body weight after initial weight loss, versus 25% in placebo group. No serious adverse events were reported throughout. Conclusion. Litramine is effective and safe for long-term body weight maintenance. Trial Registration. This trial is registered with Clinicaltrials.gov identifier: NCT01505387. PMID:26435849

  18. The significance of nitrogen limited condition in the initiation of lipid biosynthesis in Aurantiochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Haladu, Zangoma Maryam; Ibrahim, Izyanti; Hamid, Aidil Abdul

    2018-04-01

    The manner of the onset of lipid synthesis in Aurantiochytrium sp. SW1 as well as the possible role of NAD+ dependent isocitrate dehydrogenase (NAD+: ICDH) in the initiation of lipid biosynthesis were studied. The initiation of lipid synthesis in the microalgae was not associated with the cessation of growth, but commence at the early phase of growth. Substantial amount of lipid (30 %, g/g biomass) was accumulated during the active growth phase at 48 h with growth rate decreasing from 0.11 g/L/h during active growth to 0.02 g/L/h in the limited growth phase. At that period the activity of NAD+: ICDH was still detectable although it slightly decreased to 20 nmol/min/mg in 48 h from 25 nmol/min/mg at 24 h. Analysis of ammonium sulfate fractionated of NAD+: ICDH activity showed that NAD+: ICDH was not completely dependent on adenosine monophosphate (AMP) for its activity, although the presence of AMP increased the enzyme's affinity towards its substrate (isocitrate) indicated by the low Km value of the enzyme for isocitrate. While citrate acts as inhibitor of the enzyme only at high concentration. The probable implications of these properties to the regulation of lipid are discussed.

  19. Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment.

    PubMed

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2017-07-01

    The high potential UV mutagenized Scenedesmus sp. was obtained in which the cells had a higher biomass and lipid content than the wild type with an increase from 1.9 to 2.4g/L and from 40 to 55% of dry cell weight respectively after 12days. Oxidative stress imposed by H 2 O 2 treatment decreased the biomass of both the wild type and the mutant. The H 2 O 2 treated mutant when grown in BG11 medium showed an increase in biomass which was in contrast to a decreased biomass observed in the H 2 O 2 treated wild type. A 3-fold increase in lipid yield of 1.63g/L was obtained in the oxidative stress-induced mutant compared to the wild type. Overall results indicate that prior treatment of UV-mutagenized Scenedesmus with oxidative stress can increase the total lipid production which, due to its derived methyl ester having acceptable biodiesel properties, can be potentially utilized for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats.

    PubMed

    Nagata, Yasuo; Kanasaki, Akane; Tamaru, Shizuka; Tanaka, Kazunari

    2015-04-01

    D-Psicose, a C3 epimer of D-fructose, is known to lower body weight and adipose tissue weight and affect lipid metabolism. The precise mechanism remains unknown. It has been reported that D-psicose has a short half-life and is not metabolized in the body. To determine how D-psicose modifies lipid metabolism, rats were fed diets with or without 3% D-psicose for 4 weeks. Rats were decapitated without fasting every 6 h over a period of 24 h. Changes in serum and liver lipid levels, liver enzyme activity, and gene expression were quantified in experiment 1. Rats fed D-psicose had significantly lower serum insulin and leptin levels. Liver enzyme activities involved in lipogenesis were significantly lowered by the D-psicose diet, whereas gene expression of a transcriptional modulator of fatty acid oxidation was enhanced. In experiment 2, feeding the D-psicose diet gave significantly lower body weight (389 ± 3 vs 426 ± 6 g, p < 0.05) and food intake (23.8 ± 0.2 vs 25.7 ± 0.4 g/day, p < 0.05) compared to the control diet. Rats fed the D-psicose diet gave significantly higher energy expenditure in the light period and fat oxidation in the dark period compared to rats fed the control diet, whereas carbohydrate oxidation was lower. In summary, these results indicate that the D-psicose diet decreases lipogenesis, increases fatty acid oxidation, and enhances 24 h energy expenditure, leading to d-psicose's potential for weight management.

  1. Polar lipid composition of mammalian hair.

    PubMed

    Wix, M A; Wertz, P W; Downing, D T

    1987-01-01

    The types and amounts of polar lipids from the hair of monkey (Macacca fascicularis), dog (Canis familiaris), pig (Sus scrofa) and porcupine (Erethizon dorsatum) have been determined by quantitative thin-layer chromatography. The polar lipid content of the hair samples ranged from 0.6 to 1.6 wt%. Lipid compositions included ceramides (57-63% of the polar lipid by weight), glycosphingolipids (7-9%) and cholesteryl sulfate (22-29%). Several minor components (4-7%) remain unidentified. The results suggest that cholesteryl sulfate may be an important determinant of the cohesiveness of hair.

  2. Effects of a low-fat diet compared with those of a high-monounsaturated fat diet on body weight, plasma lipids and lipoproteins, and glycemic control in type 2 diabetes.

    PubMed

    Gerhard, Glenn T; Ahmann, Andrew; Meeuws, Kaatje; McMurry, Martha P; Duell, P Barton; Connor, William E

    2004-09-01

    An important therapeutic goal for patients with type 2 diabetes is weight loss, which improves metabolic abnormalities. Ad libitum low-fat diets cause weight loss in nondiabetic populations. Compared with diets higher in monounsaturated fat, however, eucaloric low-fat diets may increase plasma triacylglycerol concentrations and worsen glycemic control in persons with type 2 diabetes. We investigated whether, in type 2 diabetes patients, an ad libitum low-fat diet would cause greater weight loss than would a high-monounsaturated fat diet and would do this without increasing plasma triacylglycerol concentrations or worsening glycemic control. Eleven patients with type 2 diabetes were randomly assigned to receive an ad libitum low-fat, high-carbohydrate diet or a high-monounsaturated fat diet, each for 6 wk. The diets offered contained 125% of the estimated energy requirement to allow self-selection of food quantity. The response variables were body weight; fasting plasma lipid, lipoprotein, glucose, glycated hemoglobin A(1c), and fructosamine concentrations; insulin sensitivity; and glucose disposal. Body weight decreased significantly (1.53 kg; P < 0.001) only with the low-fat diet. Plasma total, LDL-, and HDL-cholesterol concentrations tended to decrease during both diets. There were no interaction effects between diet and the lipid profile response over time. Plasma triacylglycerol concentrations, glycemic control, and insulin sensitivity did not differ significantly between the 2 diets. Contrary to expectations, the ad libitum, low-fat, high-fiber diet promoted weight loss in patients with type 2 diabetes without causing unfavorable alterations in plasma lipids or glycemic control.

  3. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet

    PubMed Central

    Ha, Ae Wha; Ying, Tian

    2015-01-01

    BACKGROUD/OBEJECTIVES The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased. PMID:25671065

  4. Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii.

    PubMed

    Sun, Han; Mao, Xuemei; Wu, Tao; Ren, Yuanyuan; Chen, Feng; Liu, Bin

    2018-05-10

    Revenues of carotenoid and lipid biosynthesis under excess light and nitrogen starvation were firstly analyzed for the increased biomass value through carbon metabolism analysis. The results suggested excess light and nitrogen starvation resulted in carbon partitioning among protein, starch, lipid and carotenoid. Nitrogen starvation promoted more cellular lipid content than excess light, while excess light promoted carotenoid and polyunsaturated fatty acid accumulation. In the molecular level, the stresses redirected carbon skeletons into the central metabolite of pyruvate and oriented into starch and lipid as the primary and secondary carbon storage, respectively. Economic estimation revealed nitrogen starvation potentially increased 14.76 × 10 -6 and 72.11 × 10 -6  $/g revenues of biofuel production at per batch and cell weight scales, respectively. Excess light could increase 63.90 × 10 -6 and 19.21 × 10 -6  $/g at per cell weight scale of lipid and carotenoid, respectively. In combination with metabolism analysis, conversion procedure of process-compatible products was divided into four phases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway

    PubMed Central

    Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M.

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  6. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway.

    PubMed

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  7. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver.

    PubMed

    Tayeb, Wafa; Nakbi, Amel; Cheraief, Imed; Miled, Abdelhedi; Hammami, Mohamed

    2013-07-01

    This study aims to investigate the effects of the 2,4-dichlorophenoxyacetic herbicide (2,4-D) on plasma lipids, lipoproteins concentrations, hepatic lipid peroxidation, fatty acid composition and antioxidant enzyme activities in rats. Animals were randomly divided into four groups of 10 each: control group and three 2,4-D-treated groups G1, G2 and G3 were administered 15, 75 and 150 mg/kg/BW/d 2,4-D by gavage for 28 d, respectively. Results showed that 2,4-D caused significant negative changes in the biochemical parameters investigated. The malondialdehyde level was significantly increased in 2,4-D-treated groups. Fatty acid composition of the liver was also significantly changed with 2,4-D exposure. Furthermore, the hepatic antioxidant enzyme activities were significantly affected. Finally, 2,4-D at the studied doses modifies lipidic status, disrupt lipid metabolism and induce hepatic oxidative stress. In conclusion, at higher doses, 2,4-D may play an important role in the development of vascular disease via metabolic disorder of lipoproteins, lipid peroxidation and oxidative stress.

  8. Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process.

    PubMed

    Kakarla, Ramesh; Choi, Jung-Woon; Yun, Jin-Ho; Kim, Byung-Hyuk; Heo, Jina; Lee, Sujin; Cho, Dae-Hyun; Ramanan, Rishiram; Kim, Hee-Sik

    2018-01-01

    Increased lipid accumulation of algal cells as a response to environmental stress factors attracted much attention of researchers to incorporate this stress response into industrial algal cultivation process with the aim of enhancing algal lipid productivity. This study applies high-salinity stress condition to a two-phase process in which microalgal cells are initially grown in freshwater medium until late exponential phase and subsequently subjected to high-salinity condition that induces excessive lipid accumulation. Our initial experiment revealed that the concentrated culture of Chlorella sorokiniana HS1 exhibited the intense fluorescence of Nile red at the NaCl concentration of 60 g/L along with 1 g/L of supplemental bicarbonate after 48 h of induction period without significantly compromising cultural integrity. These conditions were further verified with the algal culture grown for 7 days in a 1 L bottle reactor that reached late exponential phase; a 12% increment in the lipid content of harvested biomass was observed upon inducing high lipid accumulation in the concentrated algal culture at the density of 5.0 g DW/L. Although an increase in the sum of carbohydrate and lipid contents of harvested biomass indicated that the external carbon source supplemented during the induction period increased overall carbon assimilation, a decrease in carbohydrate content suggested the potential reallocation of cellular carbon that promoted lipid droplet formation under high-salinity stress. These results thus emphasize that the two-phase process can be successfully implemented to enhance algal lipid productivity by incorporating high-salinity stress conditions into the pre-concentrated sedimentation ponds of industrial algal production system.

  9. Lipids of Pseudomonas aeruginosa Cells Grown on Hydrocarbons and on Trypticase Soy Broth1

    PubMed Central

    Edmonds, Paul; Cooney, J. J.

    1969-01-01

    Lipids were extracted from cells of Pseudomonas aeruginosa grown on a pure hydrocarbon (tridecane), mixed hydrocarbons (JP-4 jet fuel), and on Trypticase Soy Broth. Total lipids produced from each substrate represented from 7.1 to 8.2% of cellular dry weight, of which 5.0 to 6.4% were obtained before cellular hydrolysis (free lipids) and 1.7 to 2.0% were extracted after cellular hydrolysis (bound lipids). Free lipids from cells grown on each medium were separated into four fractions by thin-layer chromatography. All fractions were present in cells from each type of medium, and the “neutral fraction” constituted the largest fraction. The fatty acid composition of free lipids was determined by gas-liquid chromatography. Cells grown on each medium contained saturated and unsaturated C14 to C20 fatty acids. Trace amounts of C13 fatty acids were found in tridecane-grown cells. Saturated C16 and C18 were the major acids present in all cells. Quantitative differences were found in fatty acids produced on the three media, but specific correlations between substrate carbon sources and fatty acid content of cells were not evident. Tridecane-grown cells contained only traces of C13 acid and small amounts of C15 and C17 acids, suggesting that the organism's fatty acids were derived from de novo synthesis rather than by direct incorporation of the hydrocarbon. PMID:4976464

  10. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    PubMed

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  11. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men.

    PubMed

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-12-01

    To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO 2max )] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO 2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese.

  12. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men

    PubMed Central

    Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-01-01

    To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO2max)] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese. PMID:29472742

  13. Interleukin 1B Variant -1473G/C (rs1143623) Influences Triglyceride and Interleukin 6 Metabolism

    PubMed Central

    Delgado-Lista, Javier; Garcia-Rios, Antonio; Perez-Martinez, Pablo; Solivera, Juan; Yubero-Serrano, Elena M.; Fuentes, Francisco; Parnell, Laurence D.; Shen, Jian; Gomez, Purificacion; Jimenez-Gomez, Yolanda; Gomez-Luna, Maria J.; Marin, Carmen; Belisle, Sarah E.; Rodriguez-Cantalejo, Fernando; Meydani, Simin N.; Ordovas, Jose M.; Perez-Jimenez, Francisco

    2011-01-01

    Context: IL1b (IL1B or IL1β), a key modulator of the immune response, exerts its functions mainly via IL6 regulation. Fatty meals cause transient hypertriglyceridemia and are considered to be proinflammatory, but the extent of these responses shows high interindividual susceptibility. Objective: We evaluated the influence of a genetic variant located in the promoter region of IL1B (-1473G/C) on fasting and postprandial lipids and IL6. Design, Setting, and Participants: A total of 477 people over age 65 yr were genotyped for IL1B -1473G/C, and we evaluated fasting lipids depending on genotype. Then, 88 healthy young men were also genotyped and were fed a saturated fatty acid-rich meal. Serial blood samples were drawn for 11 h after the meal, and lipid fractions and IL6 were assayed. Main Outcome and Interventions: Fasting lipids were studied in the aged persons. Fasting and postprandial measurements of lipids and IL6 were performed in the healthy young men. Results: In the aged persons, CC subjects (minor allele homozygotes) showed higher triglyceride (P = 0.002) and cholesterol (P = 0.011) levels. Healthy young male carriers of the minor C allele showed higher postprandial triglycerides (P = 0.037), and those carried into large triglyceride-rich lipoproteins (P = 0.004). In addition, they showed higher postprandial IL6 concentrations (P = 0.008). Conclusions: Our work shows that inflammatory genes may regulate fasting and postprandial lipids because the carriers of the minor allele of an IL gene variant have altered lipid metabolism. To reinforce these gene-phenotype findings, IL6 (the natural effector of IL1B) was increased in these persons. PMID:21307135

  14. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination.

    PubMed

    Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye; Kang, Sang-Moo

    2017-10-01

    Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination.

  15. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye

    2017-01-01

    Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination. PMID:29093654

  16. Effect of Light Intensity for Optimum Biomass and Lipid Production from Scenedesmus dimorphus (Turpin) Kützing

    NASA Astrophysics Data System (ADS)

    Kurniawati, F. N.; Mahajoeno, E.; Sunarto; Sari, S. L. A.

    2017-07-01

    One source of alternative energy substitute for petroleum raw materials is renewable vegetable oils known as biodiesel. Biodiesel can be produced from microalgae, since it was more efficient and environmentally friendly. Scenedesmus dimorphus (Turpin) Kützing was developed as a source of biodiesel since it had potential of high lipid production. The aims of this research were to know the rate of growth of Scenedesmus dimorphus in different lighting and the optimimum light intensity for biomass and lipid production. This research used a completely randomized design consisting of 3 treatments with 3 replications. Treatments in this research were the light intensity, i.e. 7,500, 10,000, and 12,500 lux. Scenedesmus dimorphus was grew in Bold’s Basal Medium (BBM). Parameters observed in this research were the cell number, biomass and lipid production of S. dimorphus. Data were analyzed by ANOVA followed by DMRT 5%. The results showed that the optimum growth rate of S. dimorphus was in the intensity of 12,500 lux that was 100.80 x 106 cells.ml-1. The optimum production of biomass and lipids was in treatment 12,500 lux i.e; 1.1407 g.L-1 and 0.2520 g.L-1 (22.28% dry weight).

  17. Production of Biodiesel from Lipid of Phytoplankton Chaetoceros calcitrans through Ultrasonic Method

    PubMed Central

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g·cm−3. PMID:24688372

  18. Effects of aqueous extract of Arctium lappa L. roots on serum lipid metabolism.

    PubMed

    Hou, Bo; Wang, Wencheng; Gao, Hui; Cai, Shanglang; Wang, Chunbo

    2018-01-01

    Objective To identify potential genes that may be involved in lipid metabolism in rats after treatment with aqueous extract of Arctium lappa L (burdock). Methods Rats were randomly divided into six groups: (i) control (standard diet); (ii) model group (high-fat diet only); (iii) high-fat diet and low-dose aqueous burdock root extract (2 g/kg); (iv) high-fat diet and moderate-dose aqueous burdock root extract (4 g/kg); (v) high-fat diet and high-dose aqueous burdock root extract (8 g/kg); and (vi) a positive control group exposed to a high-fat diet and simvastatin (10 mg/kg). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to find the potential candidate genes involved in the modulation of blood lipids by treatment with aqueous burdock root extract. Results Burdock root extract reduced body weight and cholesterol levels in rats. KEGG analysis revealed 113 genes that were involved in metabolic pathways. Of these, 27 potential genes associated with blood lipid metabolism were identified. Conclusions Aqueous extract of burdock root reduced body weight and cholesterol in rats, possibly by modulating the differential expression of genes.

  19. Homologous human milk supplement for very low birth weight preterm infant feeding

    PubMed Central

    Grance, Thayana Regina de Souza; Serafin, Paula de Oliveira; Thomaz, Débora Marchetti Chaves; Palhares, Durval Batista

    2015-01-01

    OBJECTIVE: To develop a homologous human milk supplement for very low-birth weight infant feeding, using an original and simplified methodology, to know the nutritional composition of human milk fortified with this supplement and to evaluate its suitability for feeding these infants. METHODS: For the production and analysis of human milk with the homologous additive, 25 human milk samples of 45mL underwent a lactose removal process, lyophilization and then were diluted in 50mL of human milk. Measurements of lactose, proteins, lipids, energy, sodium, potassium, calcium, phosphorus and osmolality were performed. RESULTS: The composition of the supplemented milk was: lactose 9.22±1.00g/dL; proteins 2.20±0.36g/dL; lipids 2.91±0.57g/dL; calories 71.93±8.69kcal/dL; osmolality 389.6±32.4mOsmol/kgH2O; sodium 2.04±0.45mEq/dL; potassium 1.42±0.15mEq/dL; calcium 43.44±2.98mg/dL; and phosphorus 23.69±1.24mg/dL. CONCLUSIONS: According to the nutritional contents analyzed, except for calcium and phosphorus, human milk with the proposed supplement can meet the nutritional needs of the very low-birth weight preterm infant. PMID:25662564

  20. Lipid composition of some commonly consumed traditional Nigerian dishes.

    PubMed

    Onabanjo, O O; Sanni, S A; Afolabi, W A O; Oyawoye, O O; Obanla, O O

    2014-08-01

    Lipids in the diet have been associated with the rising prevalence of many chronic diseases. The present study aimed to provide information on total lipid, free fatty acids, triacylglycerol and cholesterol contents of some dishes consumed in northern, southern, western parts of Nigeria, as well as dishes generally consumed in all parts of Nigeria. This would result in a resource that would be used by nutritionists and dietitians in meal planning. The present study is analytical in nature. The composite dishes included a blend of cereals, roots and tubers, legumes, fat and oil and vegetables and were analysed for total lipid, free fatty acids, triacylglycerol and cholesterol contents spectrophotometrically. Burabisko (a millet based dish) had the lowest free fatty acid (0.1 mg per 100 g) and cholesterol (1. 9 mg per 100 g) contents, yam with eggs (7.1 mg per 100 g) and miyan-kuka with semovita (415.9 mg per 100 g) contained the highest amounts of free fatty acid and cholesterol, respectively. The total lipid and triacylglycerol content were lowest in gbegiri with eko (2.6 g per 100 g) and 3.1 mg per 100 g respectively. Stewed beans with fried plantain, however, had the highest total lipid (86.5 g per 100 g) content and yam with eggs had the highest triacylglycerol (122.5 mg per 100 g) contents. The moisture content of the dishes ranged between 59.68 and 81.73% in melon seed with vegetable soup and burabisko, respectively. For the first time, we have provided the lipid profile of standardised traditional dishes consumed in Nigeria. These dishes contribute a significant proportion of lipids to the diet of Nigerians, which are essential for assessing the nutrient intake of Nigerians. © 2013 The British Dietetic Association Ltd.

  1. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity

    PubMed Central

    Maples, Jill M.; Brault, Jeffrey J.; Witczak, Carol A.; Park, Sanghee; Hubal, Monica J.; Weber, Todd M.; Houmard, Joseph A.

    2015-01-01

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  2. Rickets and osteopenia are more common in infants <600g birth weight than those 600-1000g

    USDA-ARS?s Scientific Manuscript database

    Osteopenia and rickets are common among extremely low birth weight infants (ELBW, <1000g birth weight) despite current nutritional practices. To determine the incidence of osteopenia and rickets in ELBW infants. We evaluated all ELBW infants admitted to Texas Children's Hospital NICU in 2006 and 200...

  3. Energy conversion analysis of microalgal lipid production under different culture modes.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-08-01

    Growth and lipid production performance of Scenedesmus sp. under different culture modes were investigated. Under heterotrophic aerobic mode, algal biomass concentration and total lipid content reached 3.42 g L(-1) and 43.0 wt.%, which were much higher than those in autotrophic aerobic mode (0.55 g L(-1)/20.2 wt.%). The applied light exposure of 7.0 Wm(-2) was beneficial to biomass and lipid accumulation. Mixotrophic aerobic mode produced the highest biomass concentration of 3.84 g L(-1). The biomass was rich in lipids (51.3 wt.%) and low in proteins (17.9 wt.%) and carbohydrates (10.3 wt.%). However, lower algal biomass concentration (2.93 g L(-1)) and total lipid content (36.1 wt.%) were obtained in mixotrophic anaerobic mode. Mixotrophic aerobic mode gave the maximum heat value conversion efficiency of 45.7%. These results indicate that mixotrophic aerobic cultivation was a promising culture mode for lipid production by Scenedesmus sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Persistent organic pollutants in red-crowned cranes (Grus japonensis) from Hokkaido, Japan.

    PubMed

    Kakimoto, Kensaku; Akutsu, Kazuhiko; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Tsukue, Naomi; Yoshino, Tomoo; Matsumoto, Fumio; Nakano, Takeshi; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2018-01-01

    The red-crowned crane (Grus japonensis) from eastern Hokkaido is classified as a Special Natural Monument in Japan. In this study, we determined the concentrations of persistent organic pollutants (POPs) in red-crowned crane muscle tissues (n = 47). Polychlorinated biphenyls (PCBs) had the highest median concentration (240ng/g lipid weight), followed by dichlorodiphenyltrichloroethane and its metabolites (DDTs) (150ng/g lipid weight), chlordane-related compounds (CHLs) (36ng/g lipid weight), hexachlorobenzene (HCB) (16ng/g lipid weight), hexachlorocyclohexanes (HCHs) (4.4ng/g lipid weight), polybrominated diphenyl ethers (PBDEs) (1.8ng/g lipid weight), and finally, Mirex (1.5ng/g lipid weight). Additionally, a positive correlation was found among POP concentrations. No sex differences beyond body parameters were observed. Additionally, red-crowned cranes exhibited a high enantiomeric excess of (+)-alpha-HCH, with enantiomer fractions varying from 0.51 to 0.87 (average: 0.69). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis.

    PubMed

    Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel

    2017-12-05

    The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Maternal Lipids Are as Important as Glucose for Fetal Growth

    PubMed Central

    Kulkarni, Smita R.; Kumaran, Kalyanaraman; Rao, Shobha R.; Chougule, Suresh D.; Deokar, Tukaram M.; Bhalerao, Ankush J.; Solat, Vishnu A.; Bhat, Dattatray S.; Fall, Caroline H.D.; Yajnik, Chittaranjan S.

    2013-01-01

    OBJECTIVE To study the relationship between maternal circulating fuels and neonatal size and compare the relative effects of glucose and lipids. RESEARCH DESIGN AND METHODS The Pune Maternal Nutrition Study (1993–1996) investigated the influence of maternal nutrition on fetal growth. We measured maternal body size and glucose and lipid concentrations during pregnancy and examined their relationship with birth size in full-term babies using correlation and regression techniques. RESULTS The mothers (n = 631) were young (mean age 21 years), short (mean height 151.9 cm), and thin (BMI 18.0 kg/m2) but were relatively more adipose (body fat 21.1%). Their diet was mostly vegetarian. Between 18 and 28 weeks’ gestation, fasting glucose concentrations remained stable, whereas total cholesterol and triglyceride concentrations increased and HDL-cholesterol concentrations decreased. The mean birth weight of the offspring was 2666 g. Total cholesterol and triglycerides at both 18 and 28 weeks and plasma glucose only at 28 weeks were associated directly with birth size. One SD higher maternal fasting glucose, cholesterol, and triglyceride concentrations at 28 weeks were associated with 37, 54, and 36 g higher birth weights, respectively (P < 0.05 for all). HDL-cholesterol concentrations were unrelated to newborn measurements. The results were similar if preterm deliveries also were included in the analysis (total n = 700). CONCLUSIONS Our results suggest an influence of maternal lipids on neonatal size in addition to the well-established effect of glucose. Further research should be directed at defining the clinical relevance of these findings. PMID:23757425

  7. Plasminogen activator inhibitor-1 4G/5G promoter polymorphism and coagulation factor VII Arg353-->Gln polymorphism in Korean patients with coronary artery disease.

    PubMed Central

    Song, J.; Yoon, Y. M.; Jung, H. J.; Hong, S. H.; Park, H.; Kim, J. Q.

    2000-01-01

    An increased risk for arterial thrombosis is associated with high plasma levels of coagulation and fibrinolytic factors such as PAI-1 and FVII. In this study, the 4G/5G polymorphism in the promoter of PAI-1 gene and Arg353-->Gln polymorphism in the FVII gene were analysed in 139 normal adults and 158 patients with coronary artery disease (CAD), and their association with plasma lipid traits was investigated. There were no significant differences in the allele frequencies of PAI-1 and FVII polymorphisms between control and patient groups. The allelic distributions of both polymorphisms in Koreans were similar to those in Japanese but significantly different from those in Caucasians. In the CAD group, the 4G homozygotes of PAI-1 polymorphism showed significantly higher levels of total (p=0.0250) and LDL cholesterol (p=0.0335) with individuals having other genotypes. However, FVII polymorphism showed no association with lipid levels. In conclusion, the 4G/5G PAI-1 promoter polymorphism and Arg353-->Gln FVII polymorphism are not major genetic risk factors for CAD in Koreans. However, 4G allele of PAI-1 polymorphism revealed to be associated with the levels of cholesterol, especially LDL cholesterol levels in CAD patients. PMID:10803689

  8. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study.

    PubMed

    Garaulet, Marta; Vera, Beatriz; Bonnet-Rubio, Gemma; Gómez-Abellán, Purificación; Lee, Yu-Chi; Ordovás, José M

    2016-10-01

    We propose that eating lunch late impairs the mobilization of fat from adipose tissue, particularly in carriers of PERILIPIN1 (PLIN1) variants. The aim was to test the hypothesis that PLIN1, a circadian lipid-stabilizing protein in the adipocyte, interacts with the timing of food intake to affect weight loss. A total of 1287 overweight and obese subjects [229 men and 1058 women; mean ± SD body mass index (in kg/m 2 ): 31 ± 5] who attended outpatient obesity clinics were enrolled in the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Timing of food intake was estimated with a validated questionnaire. Anthropometric variables and PLIN1 genotypes were analyzed, including 6209T>C (rs2289487), 11482G>A (rs894160), 13041A>G (rs2304795), and 14995A>T (rs1052700). The main outcomes were effectiveness of the program and weight-loss progression during 28 wk of treatment. The PLIN1 locus was associated with variability in response to a weight-loss program. Specifically, carrying the minor C allele at the PLIN1 6209T>C was associated with better weight-loss response (P = 0.035). The probability of being a better responder [percentage of weight loss ≥7.5% (median)] was 33% higher among C than among TT carriers (OR: 1.32; 95% CI: 1.05, 1.67; P = 0.017). We found an interaction of PLIN1 × food timing between the 14995A>T variant and timing of lunch eating for total weight loss (P = 0.035). Among AA carriers, eating late was associated with less weight loss (P < 0.001), whereas time of eating did not influence weight loss among TT carriers (P = 0.326). Variability at the PLIN1 locus is associated with variability in weight loss. Moreover, eating late is related to lower weight-loss effectiveness among carriers of the AA genotype at the PLIN1 14995A>T variant. These results contribute to our ability to implement more precise and successful obesity treatments. The ONTIME study was registered at clinicaltrials.gov as NCT02829619. © 2016 American Society for

  9. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    PubMed

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles.

    PubMed

    Mui, B; Raney, S G; Semple, S C; Hope, M J

    2001-09-01

    The therapeutic benefit from phosphorothioate oligodeoxynucleotides (PS ODN) containing immune stimulatory sequences (ISS) has been demonstrated in animal models of cancer and infection. In particular, when CpG-containing PS ODN are administered to mice, activation of macrophages and dendritic, NK, T, and B cells occurs, resulting in the release of an array of cytokines, including interleukin-12 (IL-12), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). We have previously described stabilized antisense-lipid particles (SALP) for the i.v. administration of antisense ODN [Biochim Biophys Acta (2001) 1510:152--166]. Given the propensity for SALP to target macrophages in vivo it was of interest to determine whether they could enhance the potency of CpG ODN to induce an immune response. In this report we show that when CpG-containing SALP are administered intravenously to ICR mice the plasma concentrations of IL-12, IFN-gamma, IL-6, monocyte chemoattractant protein-1, and TNF-alpha are greatly increased compared with the same dose of free ODN. The pattern of cytokine induction indicates that the immune response is T helper cell type 1-biased, similar to that observed for PS CpG ODN ISS in general. Furthermore, when phosphodiester (PO) ODN is substituted for PS ODN in the SALP formulation cytokine induction is even greater at the early time points, in marked contrast to free PO ODN, which is inactive. These results demonstrate that the immunogenicity of ISS is not only enhanced by encapsulation in lipid particles, which more closely mimic the way ISS DNA would normally be presented to antigen presenting cells by pathogens in vivo, but also SALP enable unmodified PO CpG ODN to be used as immune stimulants.

  11. Body Mass Parameters, Lipid Profiles and Protein Contents of Zebrafish Embryos and Effects of 2,4-Dinitrophenol Exposure

    PubMed Central

    Hachicho, Nancy; Reithel, Sarah; Miltner, Anja; Heipieper, Hermann J.; Küster, Eberhard; Luckenbach, Till

    2015-01-01

    Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos. PMID:26292096

  12. Genetic improvement of feed conversion ratio via indirect selection against lipid deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum).

    PubMed

    Kause, Antti; Kiessling, Anders; Martin, Samuel A M; Houlihan, Dominic; Ruohonen, Kari

    2016-11-01

    In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.

  13. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota.

    PubMed

    Zhao, Li; Chen, Yi; Xia, Fangzhen; Abudukerimu, Buatikamu; Zhang, Wen; Guo, Yuyu; Wang, Ningjian; Lu, Yingli

    2018-01-01

    In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 receptor agonist, has weight-loss effects. The underlying mechanisms are not completely understood. This study was performed to explore whether liraglutide could lower weight by modulating the composition of the gut microbiota in simple obese and diabetic obese rats. In our study, Wistar and Goto-Kakizaki (GK) rats were randomly treated with liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic hormones were measured. Hepatic glucose production and lipid metabolism were also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved by liraglutide. Liraglutide lowered body weight independent of glycemia status. The abundance and diversity of gut microbiota were considerably decreased by liraglutide. Liraglutide also decreased obesity-related microbial phenotypes and increased lean-related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the gut microbiota composition in both simple obese and diabetic obese subjects.

  14. Lipid emulsions – Guidelines on Parenteral Nutrition, Chapter 6

    PubMed Central

    Adolph, M.; Heller, A. R.; Koch, T.; Koletzko, B.; Kreymann, K. G.; Krohn, K.; Pscheidl, E.; Senkal, M.

    2009-01-01

    The infusion of lipid emulsions allows a high energy supply, facilitates the prevention of high glucose infusion rates and is indispensable for the supply with essential fatty acids. The administration of lipid emulsions is recommended within ≤7 days after starting PN (parenteral nutrition) to avoid deficiency of essential fatty acids. Low-fat PN with a high glucose intake increases the risk of hyperglycaemia. In parenterally fed patients with a tendency to hyperglycaemia, an increase in the lipid-glucose ratio should be considered. In critically ill patients the glucose infusion should not exceed 50% of energy intake. The use of lipid emulsions with a low phospholipid/triglyceride ratio is recommended and should be provided with the usual PN to prevent depletion of essential fatty acids, lower the risk of hyperglycaemia, and prevent hepatic steatosis. Biologically active vitamin E (α-tocopherol) should continuously be administered along with lipid emulsions to reduce lipid peroxidation. Parenteral lipids should provide about 25–40% of the parenteral non-protein energy supply. In certain situations (i.e. critically ill, respiratory insufficiency) a lipid intake of up to 50 or 60% of non-protein energy may be reasonable. The recommended daily dose for parenteral lipids in adults is 0.7–1.3 g triglycerides/kg body weight. Serum triglyceride concentrations should be monitored regularly with dosage reduction at levels >400 mg/dl (>4.6 mmol/l) and interruption of lipid infusion at levels >1000 mg/dl (>11.4 mmol/l). There is little evidence at this time that the choice of different available lipid emulsions affects clinical endpoints. PMID:20049078

  15. Enzymatic production of biodiesel from Nannochloropsis gaditana lipids: Influence of operational variables and polar lipid content.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro A; Jiménez Callejón, María J; Esteban Cerdán, Luis; Martín Valverde, Lorena; Castillo López, Beatriz; Molina Grima, Emilio

    2015-01-01

    Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nuclear Receptors, Mitochondria, and Lipid Metabolism

    PubMed Central

    Alaynick, William A.

    2009-01-01

    Lipid metabolism is a continuum from emulsification and uptake of lipids in the intestine to cellular uptake and transport to compartments such as mitochondria. Whether fats are shuttled into lipid droplets in adipose tissue or oxidized in mitochondria and peroxisomes depends on metabolic substrate availability, energy balance and endocrine signaling of the organism. Several members of the nuclear hormone receptor superfamily are lipid-sensing factors that affect all aspects of lipid metabolism. The physiologic actions of glandular hormones (e.g. thyroid, mineralocorticoid and glucocorticoid), vitamins (e.g. vitamins A and D) and reproductive hormones (e.g. progesterone, estrogen and testosterone) and their cognate receptors are well established. The peroxisome proliferator activated receptors (PPARs) and Liver X receptors (LXRs), acting in concert with PPARγ Coactivator 1α (PGC-1α), have been shown to regulate insulin sensitivity and lipid handling. These receptors are the focus of intense pharmacologic studies to expand the armamentarium of small molecule ligands to treat diabetes and the metabolic syndrome (hypertension, insulin resistance, hyperglycemia, dyslipidemia, and obesity). Recently, additional partners of PGC-1α have moved to the forefront of metabolic research, the Estrogen-related Receptors (ERRs). Although no endogenous ligands for these receptors have been identified, phenotypic analyses of knockout mouse models demonstrate an important role for these molecules in substrate sensing and handling as well as mitochondrial function. PMID:18375192

  17. Molecular Transport Studies Through Unsupported Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  18. Effects of dietary lipid sources on performance and apparent total tract digestibility of lipids and energy when fed to nursery pigs.

    PubMed

    Mendoza, S M; van Heugten, E

    2014-02-01

    Acidulated fats and oils are by-products of the fat-refining industry. They contain high levels of FFA and are 10% to 20% less expensive than refined fats and oils. Two studies were designed to measure the effects of dietary lipid sources low or high in FFA on growth performance and apparent total tract digestibility (ATTD) of lipids and GE in nursery pigs. In Exp. 1, 189 pigs at 14 d postweaning (BW of 9.32 ± 0.11 kg) were used for 21 d with 9 replicate pens per treatment and 3 pigs per pen. Dietary treatments consisted of a control diet without added lipids and 6 diets with 6% inclusion of lipids. Four lipid sources were combined to create the dietary treatments with 2 levels of FFA (0.40% or 54.0%) and 3 degrees of fat saturation (iodine value [IV] = 77, 100, or 123) in a 2 × 3 factorial arrangement. Lipid sources were soybean oil (0.3% FFA and IV = 129.4), soybean-cottonseed acid oil blend (70.5% FFA and IV = 112.9), choice white grease (0.6% FFA and IV = 74.8), and choice white acid grease (56.0% FFA and IV = 79.0). Addition of lipid sources decreased ADFI (810 vs. 872 g/d; P = 0.018) and improved G:F (716 vs. 646 g/kg; P < 0.001). Diets high in FFA tended (P = 0.08) to improve final BW (21.35 vs. 21.01 kg) and ADG (576 vs. 560 g/d). Lipid-supplemented diets had greater ATTD of lipids than control diets (67.4% vs. 29.7%; P < 0.001). Apparent total tract digestibility of lipids was greater in diets with low FFA (69.9% vs. 64.9%; P < 0.001) and decreased linearly with increasing IV (73.2%, 69.1%, and 67.2%). For GE, ATTD was greater in diets with low FFA (83.1% vs. 80.9%; P = 0.001). In Exp. 2, 252 pigs at 7 d postweaning (BW of 7.0 ± 0.2 kg) were used for 28 d with 9 replicate pens per treatment and 4 pigs per pen. Diets included a control diet without added lipids and 6 treatments with 2.5%, 5.0%, or 7.5% of lipids from either poultry fat (1.9% FFA) or acidulated poultry fat (37.8% FFA) in a 2 × 3 factorial arrangement. Addition of lipids increased (P < 0

  19. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling.

    PubMed

    Fisher, Kevin E; Pop, Andreia; Koh, Wonshill; Anthis, Nicholas J; Saunders, W Brian; Davis, George E

    2006-12-08

    Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D) and invasion of three-dimensional (3D) collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (approximatly 700 microm over 48 hours) in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (approximately 125 microm vs. approximately 45 microm) and velocity of invasion (approximately 0.09 microm/min vs. approximately 0.03 microm/min) only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs)-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT)-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in

  20. A lipid-based nutrient supplement mitigates weight loss among HIV-infected women in a factorial randomized trial to prevent mother-to-child transmission during exclusive breastfeeding.

    PubMed

    Kayira, Dumbani; Bentley, Margaret E; Wiener, Jeffrey; Mkhomawanthu, Chimwemwe; King, Caroline C; Chitsulo, Phindile; Chigwenembe, Maggie; Ellington, Sascha; Hosseinipour, Mina C; Kourtis, Athena P; Chasela, Charles; Tembo, Martin; Tohill, Beth; Piwoz, Ellen G; Jamieson, Denise J; van der Horst, Charles; Adair, Linda

    2012-03-01

    Breastfeeding increases metabolic demands on the mother, and excessive postnatal weight loss increases maternal mortality. We evaluated the efficacy of a lipid-based nutrient supplement (LNS) for prevention of excess weight loss in breastfeeding, HIV-infected women. The BAN (Breastfeeding, Antiretrovirals, and Nutrition) Study was a randomized controlled trial in Lilongwe, Malawi. At delivery, HIV-infected mothers and their infants were randomly assigned according to a 2-arm (with and without LNS) by 3-arm (maternal triple-antiretroviral prophylaxis, infant-nevirapine prophylaxis, or neither) factorial design. The 28-wk LNS intervention provided daily energy (700 kcal), protein (20 g), and micronutrients (except for vitamin A) to meet lactation needs. Women were counseled to breastfeed exclusively for 24 wk and to wean by 28 wk. Weight change (0-28 wk) was tested in an intent-to-treat analysis by using 2-factor ANOVA and with longitudinal mixed-effects models. At delivery, the LNS (n = 1184) and control (n = 1185) groups had similar mean weights and BMIs. Women receiving the LNS had less 0-28-wk weight loss (-1.97 compared with -2.56 kg, P = 0.003). This difference remained significant after adjustment for maternal antiretroviral drug therapy and baseline BMI. Women receiving antiretroviral drugs had more weight loss than did those not receiving antiretroviral drugs (-2.93 compared with -1.90 kg, P < 0.001). The benefit of the LNS for reducing weight loss was observed both in those receiving antiretroviral drugs (-2.56 compared with -3.32 kg, P = 0.019) and in those not receiving antiretroviral drugs (-1.63 compared with -2.16 kg, P = 0.034). The LNS reduced weight loss among HIV-infected, breastfeeding women, both in those taking maternal antiretroviral prophylaxis to prevent postnatal HIV transmission and in those not receiving antiretroviral prophylaxis. Provision of an LNS may benefit HIV-infected, breastfeeding women in resource-limited settings. This trial

  1. Characterization of Inulin Hydrolyzing Enzyme(s) in Oleaginous Yeast Trichosporon cutaneum in Consolidated Bioprocessing of Microbial Lipid Fermentation.

    PubMed

    Wang, Juan; Zhang, Huizhan; Bao, Jie

    2015-11-01

    Oleaginous yeast Trichosporon cutaneum CGMCC 2.1374 was found to utilize inulin directly for microbial lipid fermentation without a hydrolysis step. The potential inulinase-like enzyme(s) in T. cutaneum CGMCC 2.1374 were characterized and compared with other inulinase enzymes produced by varied yeast strains. The consolidated bioprocessing (CBP) for lipid accumulated using inulin was optimized with 4.79 g/L of lipid produced from 50 g/L inulin with the lipid content of 33.6% in dry cells. The molecular weight of the enzyme was measured which was close to invertase in Saccharomyces cerevisiae. The study provided information for inulin hydrolyzing enzyme(s) in oleaginous yeasts, as well as a preliminary CBP process for lipid production from inulin feedstock.

  2. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.

    PubMed

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L; Shao, Zhuo; Evans, Lucy P; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M; Hurst, Christian G; Hatton, Colman J; Cui, Zhenghao; Pierce, Kerry A; Bherer, Patrick; Aguilar, Edith; Powner, Michael B; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B; Smith, Lois E H

    2016-04-01

    Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.

  3. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  4. Lipids of the anal sac secretions of the red fox, Vulpes vulpes and of the lion, Panthera leo.

    PubMed

    Albone, E S; Grönnerberg, T O

    1977-07-01

    Lion anal sac secretion were found to be richer in lipids and to contain more complex less uniform mixtures of lower moleculas weight lipids then the anal sac of the red fox. In the lion, homologous series of 1-alkylglycerols and 2-hydroxy-fatty acids were identified. Phenylacetic, 3-phenylpropionic, and related hydroxylated acids were also observed. Gas-liquid chromatography profiles of fox anal sac secretion lower molecular weight lipids were found to be less variable in their major constituents and to be dominated by relatively few large peaks, mainly (derivatized) fatty acids. Indole was also identified. Free cholesterol, and occasionally, stanols were observed in fox and lion secretions. In the red fox, total cholesterol levels averaged 0.93 mg/g (% free, 56.4), n = 5. Findings are discussed in relation to histological and anatomical similarities and differences between the anal sacs of the lion and the fox and in the context of the role of these secretions in chemical communication.

  5. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

    PubMed

    Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal

    2016-08-23

    Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the

  6. Excessive weight gain during full breast-feeding.

    PubMed

    Grunewald, Maria; Hellmuth, Christian; Demmelmair, Hans; Koletzko, Berthold

    2014-01-01

    Breast-feeding is considered to offer optimal nutrition for healthy infant growth and development. Observational studies have linked breast-feeding to reduced obesity. CASE OBSERVATION: We observed an infant who was born macrosomic (4.56 kg) and showed excessive weight gain markedly exceeding the 97th percentile of weight during full breast-feeding. At the age of 4 months, the weight was greater than 11 kg. Clinical evaluation did not reveal any underlying pathology. After the introduction of complementary feeding and hence reduction of the breast milk intake, the excessive weight gain was attenuated and the slope of the percentile curve paralleled upper percentiles. Since this pattern suggested full breast-feeding as the driver of excessive weight gain, we analyzed the human milk composition at the infant age of 1 year and compared the results with published data on composition at this stage of lactation. The milk contents of lactose, fat, fatty acids, polar lipids, carnitine species, and insulin were similar to the reference data. The adiponectin content was increased. The most remarkable alteration was a high milk protein content (mean 1.25 g/dl, reference 0.8 g/dl). A very high protein supply in infancy has been previously shown to increase plasma concentrations of the growth factors insulin and IGF-1, weight gain, and later obesity. We speculate that interindividual variations in human milk adiponectin and protein contents may contribute to modulation of the growth of fully breast-fed infants and in this case may have contributed to excessive weight gain during full breast-feeding. This hypothesis merits being tested in future cohort studies. © 2014 S. Karger AG, Basel.

  7. Effect Of G2706A and G1051A polymorphisms of the ABCA1 gene on the lipid, oxidative stress and homocystein levels in Turkish patients with polycystıc ovary syndrome

    PubMed Central

    2011-01-01

    Background Obesity, insulin resistance and hyperandrogenism, crucial parameters of Polycystic ovary syndrome (PCOS) play significant pathophysiological roles in lipidemic aberrations associated within the syndrome. Parts of the metabolic syndrome (low HDL and insulin resistance) appeared to facilitate the association between PCOS and coronary artery disease, independently of obesity. ABCA1 gene polymorphism may be altered this components in PCOS patients. In this study, we studied 98 PCOS patients and 93 healthy controls. All subjects underwent venous blood drawing for complete hormonal assays, lipid profile, glucose, insulin, malondialdehyde, nitric oxide, disulfide levels and ABCA genetic study. Results In PCOS group fasting glucose, DHEAS, 17-OHP, free testosterone, total-cholesterol, triglyceride, LDL-cholesterol and fibrinogen were significantly different compare to controls. The genotype ABCA G2706A distribution differed between the control group (GG 60.7%, GA 32.1%, AA 7.1%) and the PCOS patients (GG 8.7%, GA 8.7%, AA 76.8%). The frequency of the A allele (ABCAG2706A) was higher in PCOS patients than control group with 13,0% and 23,2%, respectively. In this study, the homocystein and insulin levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes. Conclusions We found higher percentage of AA genotype and A allele of ABCA G2706A in PCOS patients compare to controls. The fasting insulin and homocystein levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes. PMID:22035022

  8. PPARα, PPARγ and SREBP-1 pathways mediated waterborne iron (Fe)-induced reduction in hepatic lipid deposition of javelin goby Synechogobius hasta.

    PubMed

    Chen, Guang-Hui; Luo, Zhi; Chen, Feng; Shi, Xi; Song, Yu-Feng; You, Wen-Jing; Liu, Xu

    2017-07-01

    The 42-day experiment was conducted to investigate the effects and mechanism of waterborne Fe exposure influencing hepatic lipid deposition in Synechogobius hasta. For that purpose, S. hasta were exposed to four Fe concentrations (0 (control), 0.36, 0.72 and 1.07μM Fe) for 42days. On days 21 and 42, morphological parameters, hepatic lipid deposition and Fe contents, and activities and mRNA levels of enzymes and genes related to lipid metabolism, including lipogenic enzymes (6PGD, G6PD, ME, ICDH, FAS and ACC) and lipolytic enzymes (CPTI, HSL), were analyzed. With the increase of Fe concentration, hepatic Fe content tended to increase but HSI and lipid content tended to decrease. On day 21, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of G6PD, ACCa, FAS, SREBP-1 and PPARγ, but up-regulated CPT I, HSLa and PPARα mRNA levels. On day 42, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of 6PGD, ACCa, FAS and SREBP-1, but up-regulated CPT I, HSLa, PPARα and PPARγ mRNA levels. Using primary S. hasta hepatocytes, specific pathway inhibitors (GW6471 for PPARα and fatostatin for SREBP-1) and activator (troglitazone for PPARγ) were used to explore the signaling pathways of Fe reducing lipid deposition. The GW6471 attenuated the Fe-induced down-regulation of mRNA levels of 6PGD, G6PD, ME, FAS and ACCa, and attenuated the Fe-induced up-regulation of mRNA levels of CPT I, HSLa and PPARα. Compared with single Fe-incubated group, the mRNA levels of G6PD, ME, FAS, ACCa, ACCb and PPARγ were up-regulated while the CPT I mRNA levels were down-regulated after troglitazone pre-treatment; fatostatin pre-treatment down-regulated the mRNA levels of 6PGD, ME, FAS, ACCa, ACCb and SREBP-1, and increased the CPT I and HSLa mRNA levels. Based on these results above, our study indicated that Fe exposure reduced hepatic lipid deposition by down-regulating lipogenesis

  9. Molecular characterization of Api g 2, a novel allergenic member of the lipid-transfer protein 1 family from celery stalks.

    PubMed

    Gadermaier, Gabriele; Egger, Matthias; Girbl, Tamara; Erler, Anja; Harrer, Andrea; Vejvar, Eva; Liso, Marina; Richter, Klaus; Zuidmeer, Laurian; Mari, Adriano; Ferreira, Fatima

    2011-04-01

    Celery represents a relevant cross-reactive food allergen source in the adult population. As the currently known allergens are not typical elicitors of severe symptoms, we aimed to identify and characterize a non-specific lipid transfer protein (nsLTP). MS and cDNA cloning were applied to obtain the full-length sequence of a novel allergenic nsLTP from celery stalks. The purified natural molecule consisted of a single isoallergen designated as Api g 2.0101, which was recombinantly produced in Escherichia coli Rosetta-gami. The natural and recombinant molecules displayed equivalent physicochemical and immunological properties. Circular dichroism revealed a typical α-helical fold and high thermal stability. Moreover, Api g 2 was highly resistant to simulated gastrointestinal digestion. As assessed by ELISA, thermal denaturation did not affect the IgE binding of Api g 2. Natural and recombinant Api g 2 showed similar allergenic activity in mediator release assays. Api g 2-specific IgE antibodies cross-reacted with peach and mugwort pollen nsLTPs. Based on our results, it can be anticipated that inclusion of recombinant Api g 2 in the current panel of allergens for molecule-based diagnosis will facilitate the evaluation of the clinical relevance of nsLTP sensitization in celery allergy and help clinicians in the management of food allergic patients. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of neutral ether lipid monoalkyl-diacylglycerol by lipid acyltransferases[S

    PubMed Central

    Ma, Zhengping; Onorato, Joelle M.; Chen, Luping; Nelson, David W.; Yen, Chi-Liang Eric; Cheng, Dong

    2017-01-01

    In mammals, ether lipids exert a wide spectrum of signaling and structural functions, such as stimulation of immune responses, anti-tumor activities, and enhancement of sperm functions. Abnormal accumulation of monoalkyl-diacylglycerol (MADAG) was found in Wolman’s disease, a human genetic disorder defined by a deficiency in lysosomal acid lipase. In the current study, we found that among the nine recombinant human lipid acyltransferases examined, acyl-CoA:diacylglycerol acyltransferase (DGAT)1, DGAT2, acyl-CoA:monoacylglycerol acyltransferase (MGAT)2, MGAT3, acyl-CoA:wax-alcohol acyltransferase 2/MFAT, and DGAT candidate 3 were able to use 1-monoalkylglycerol (1-MAkG) as an acyl acceptor for the synthesis of monoalkyl-monoacylglycerol (MAMAG). These enzymes demonstrated different enzymatic turnover rates and relative efficiencies for the first and second acylation steps leading to the synthesis of MAMAG and MADAG, respectively. They also exhibited different degrees of substrate preference when presented with 1-monooleoylglycerol versus 1-MAkG. In CHO-K1 cells, treatment with DGAT1 selective inhibitor, XP-620, completely blocked the synthesis of MADAG, indicating that DGAT1 is the predominant enzyme responsible for the intracellular synthesis of MADAG in this model system. The levels of MADAG in the adrenal gland of DGAT1 KO mice were reduced as compared with those of the WT mice, suggesting that DGAT1 is a major enzyme for the synthesis of MADAG in this tissue. Our findings indicate that several of these lipid acyltransferases may be able to synthesize neutral ether lipids in mammals. PMID:28420705

  11. Effects of Weight Reduction on Obesity STUDIES OF LIPID AND CARBOHYDRATE METABOLISM IN NORMAL AND HYPERLIPOPROTEINEMIC SUBJECTS

    PubMed Central

    Olefsky, Jerrold; Reaven, Gerald M.; Farquhar, John W.

    1974-01-01

    Considerable controversy exists over the purported role of obesity in causing hyperglycemia, hyperlipemia, hyperinsulinemia, and insulin resistance; and the potential beneficial effects of weight reduction remain incompletely defined. Hypertriglyceridemia is one of the metabolic abnormalities proposed to accompany obesity, and in order to help explain the mechanisms leading to this abnormality we have proposed the following sequential hypothesis: insulin resistance → hyperinsulinemia → accelerated hepatic triglyceride(TG) production → elevated plasma TG concentrations. To test this hypothesis and to gain insight into both the possible role of obesity in causing the above metabolic abnormalities and the potential benefit of weight reduction we studied the effects of weight loss on various aspects of carbohydrate and lipid metabolism in a group of 36 normal and hyperlipoproteinemic subjects. Only weak to absent correlations (r = 0.03 — 0.46) were noted between obesity and the metabolic variables measured. This points out that in our study group obesity cannot be the sole, or even the major, cause of these abnormalities in the first place. Further, we have observed marked decreases after weight reduction in fasting plasma TG (mean value: pre-weight reduction, 319 mg/100 ml; post-weight reduction, 180 mg/100 ml) and cholesterol (mean values: pre-weight reduction, 282 mg/100 ml; post-weight reduction, 223 mg/100 ml) levels, with a direct relationship between the magnitude of the fall in plasma lipid values and the height of the initial plasma TG level. We have also noted significant decreases after weight reduction in the insulin and glucose responses during the oral glucose tolerance test (37% decrease and 12% decrease, respectively). Insulin and glucose responses to liquid food before and after weight reduction were also measured and the overall post-weight reduction decrease in insulin response was 48% while the glucose response was relatively unchanged. In a

  12. Premature Infants 750–1,250 g Birth Weight Supplemented with a Novel Human Milk-Derived Cream Are Discharged Sooner

    PubMed Central

    Bergner, Erynn M.; Lee, Martin L.; Moreira, Alvaro G.; Hawthorne, Keli M.; Rechtman, David J.; Abrams, Steven A.; Blanco, Cynthia L.

    2016-01-01

    Abstract Objective: Infants may benefit from early nutritional intervention to decrease hospital stay. To evaluate the effects of adding a human milk (HM)-derived cream (Cream) product to a standard feeding regimen in preterm infants. Materials and Methods: In a prospective multicenter randomized study, infants with birth weights 750–1,250 g were assigned to a Control or Cream group. The Control group received a standard feeding regimen consisting of mother's own milk or donor HM with donor HM-derived fortifier. The Cream group received the standard feeding regimen along with an additional HM-derived cream supplement when the HM they received was <20 kcal/oz. Primary outcomes of this secondary analysis included comorbidities, length of stay (LOS), and postmenstrual age (PMA) at discharge. Results: We enrolled 75 infants (Control n = 37, Cream n = 38) with gestational age 27.7 ± 1.8 weeks and birth weight 973 ± 145 g (mean ± SD). After adjusting for gestational age, birth weight, and presence of bronchopulmonary dysplasia (BPD), the Cream group had a decreased PMA at discharge (39.9 ± 4.8 versus 38.2 ± 2.7 weeks, p = 0.03) and LOS (86 ± 39 versus 74 ± 22 days, p = 0.05). For 21 infants with BPD, these values trended toward significance for PMA at discharge (44.2 ± 6.1 versus 41.3 ± 2.7 weeks, p = 0.08) and LOS (121 ± 49 versus 104 ± 23 days, p = 0.08). Conclusions: Very preterm infants who received an HM-derived cream supplement were discharged earlier. Infants with BPD may have benefited the most. PMID:26982282

  13. Randomized controlled trial of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the CARMEN study. The Carbohydrate Ratio Management in European National diets.

    PubMed

    Saris, W H; Astrup, A; Prentice, A M; Zunft, H J; Formiguera, X; Verboeket-van de Venne, W P; Raben, A; Poppitt, S D; Seppelt, B; Johnston, S; Vasilaras, T H; Keogh, G F

    2000-10-01

    To investigate the long-term effects of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates. Randomized controlled multicentre trial (CARMEN), in which subjects were allocated for 6 months either to a seasonal control group (no intervention) or to one of three experimental groups: a control diet group (dietary intervention typical of the average national intake); a low-fat high simple carbohydrate group; or a low-fat high complex carbohydrate group. Three hundred and ninety eight moderately obese adults. The change in body weight was the primary outcome; changes in body composition and blood lipids were secondary outcomes. Body weight loss in the low-fat high simple carbohydrate and low-fat high complex carbohydrate groups was 0.9 kg (P < 0.05) and 1.8 kg (P < 0.001), while the control diet and seasonal control groups gained weight (0.8 and 0.1 kg, NS). Fat mass changed by -1.3kg (P< 0.01), -1.8kg (P< 0.001) and +0.6kg (NS) in the low-fat high simple carbohydrate, low-fat high complex carbohydrate and control diet groups, respectively. Changes in blood lipids did not differ significantly between the dietary treatment groups. Our findings suggest that reduction of fat intake results in a modest but significant reduction in body weight and body fatness. The concomitant increase in either simple or complex carbohydrates did not indicate significant differences in weight change. No adverse effects on blood lipids were observed. These findings underline the importance of this dietary change and its potential impact on the public health implications of obesity.

  14. The -675 4G/5G polymorphism at the Plasminogen Activator Inhibitor 1 (PAI-1) gene modulates plasma Plasminogen Activator Inhibitor 1 concentrations in response to dietary fat consumption.

    PubMed

    Pérez-Martínez, P; Adarraga-Cansino, M D; Fernández de la Puebla, R A; Blanco-Molina, A; Delgado-Lista, J; Marín, C; Ordovás, J M; López-Miranda, J; Pérez-Jiménez, F

    2008-04-01

    The objective of the study was to determine whether Plasminogen Activator Inhibitor Type 1 (PAI-1) -675 4G/5G polymorphism is associated with the response of functional plasma PAI-1 concentrations to changes in the amount and quality of dietary fat in healthy subjects. PAI-1 is the major inhibitor of fibrinolysis, and a lower level of fibrinolytic activity could be implicated in an increased risk of IHD. Fifty-nine healthy Spanish volunteers (ten 4G/4G homozygotes, twenty-eight heterozygotes 4G/5G and twenty-one 5G/5G homozygotes) consumed three diets for periods of 4 weeks each: a SFA-rich diet (38 % fat, 20 % SFA), followed by a carbohydrate-rich diet (30 % fat, 55 % carbohydrate) and a MUFA-rich diet (38 % fat, 22 % MUFA) according to a randomized crossover design. At the end of each dietary period plasma lipid and functional plasma PAI-1 concentrations were determined. Subjects carrying the 4G allele (4G/4G and 4G/5G) showed a significant decrease in PAI-1 concentrations after the MUFA diet, compared with the SFA-rich and carbohydrate-rich diets (genotype x diet interaction: P = 0.028). 5G/5G homozygotes had the lowest plasma PAI-1 concentrations compared with 4G/4G and 4G/5G subjects (genotype: P = 0.002), without any changes as a result of the amount and the quality of the dietary fat. In summary, no differences in plasma PAI-1 concentration response were found after changes in dietary fat intake in 5G/5G homozygotes, although these subjects displayed the lowest concentrations of PAI-1. On the other hand, carriers of the 4G allele are more likely to hyper-respond to the presence of MUFA in the diet because of a greater decrease in PAI-1 concentrations.

  15. Consumption of High-Polyphenol Dark Chocolate Improves Endothelial Function in Individuals with Stage 1 Hypertension and Excess Body Weight

    PubMed Central

    Nogueira, Lívia de Paula; Knibel, Marcela Paranhos; Torres, Márcia Regina Simas Gonçalves; Nogueira Neto, José Firmino; Sanjuliani, Antonio Felipe

    2012-01-01

    Background. Hypertension and excess body weight are important risk factors for endothelial dysfunction. Recent evidence suggests that high-polyphenol dark chocolate improves endothelial function and lowers blood pressure. This study aimed to evaluate the association of chocolate 70% cocoa intake with metabolic profile, oxidative stress, inflammation, blood pressure, and endothelial function in stage 1 hypertensives with excess body weight. Methods. Intervention clinical trial includes 22 stage 1 hypertensives without previous antihypertensive treatment, aged 18 to 60 years and presents a body mass index between 25.0 and 34.9 kg/m2. All participants were instructed to consume 50 g of chocolate 70% cocoa/day (2135 mg polyphenols) for 4 weeks. Endothelial function was evaluated by peripheral artery tonometry using Endo-PAT 2000 (Itamar Medical). Results. Twenty participants (10 men) completed the study. Comparison of pre-post intervention revealed that (1) there were no significant changes in anthropometric parameters, percentage body fat, glucose metabolism, lipid profile, biomarkers of inflammation, adhesion molecules, oxidized LDL, and blood pressure; (2) the assessment of endothelial function through the reactive hyperemia index showed a significant increase: 1.94 ± 0.18 to 2.22 ± 0.08, P = 0.01. Conclusion.In individuals with stage 1 hypertension and excess body weight, high-polyphenol dark chocolate improves endothelial function. PMID:23209885

  16. Positive effect of mushrooms substituted for meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial.

    PubMed

    Poddar, Kavita H; Ames, Meghan; Hsin-Jen, Chen; Feeney, Mary Jo; Wang, Youfa; Cheskin, Lawrence J

    2013-12-01

    Reducing energy density (ED) of the diet is an important strategy for controlling obesity. This 1-year, randomized clinical trial examined the effect of substituting mushrooms for red meat ('mushroom diet'), compared to a standard diet ('meat diet'), on weight loss and maintenance among 73 obese adults (64 women, 9 men). The subjects completed anthropometric measurements and 7-day food records four times during a standardized weight loss and maintenance regimen. At the end of the 1-year trial, compared to participants on the standard diet, participants on the mushroom diet (n=36) reported lower intakes of energy (mean ± [SE]=-123 ± 113 kcals) and fat (-4.25 ± 6.88 g), lost more pounds and percentage body weight (-7.03 ± 3.34 lbs, 3.6%), achieved lower body mass index (-1.53 ± 0.36), waist circumference (-2.6 ± 3.5 in.) and percent total body fat (-0.85 ± 0.53), and had lower systolic and diastolic pressure (-7.9 and -2.5 mmHg); their lipid profile and inflammatory markers also improved. After initial weight loss, subjects following the mushroom diet maintained that loss well. Those who completed the full 12-month trial still weighed a mean of 7 lbs less than baseline. Thus, encouraging adults to substitute mushrooms for red meat was a useful strategy for enhancing weight loss, weight maintenance, and health parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects.

    PubMed

    Sato, Fumihiko; Tamura, Yoshifumi; Watada, Hirotaka; Kumashiro, Naoki; Igarashi, Yasuhiro; Uchino, Hiroshi; Maehara, Tadayuki; Kyogoku, Shinsuke; Sunayama, Satoshi; Sato, Hiroyuki; Hirose, Takahisa; Tanaka, Yasushi; Kawamori, Ryuzo

    2007-08-01

    Although moderate weight reduction is recommended as primary therapy of metabolic syndrome, little information is known regarding metabolic changes associated with moderate weight reduction in nondiabetic obese subjects. The aim of this study was to determine the effects of a moderate weight reduction program on intracellular lipid and glucose metabolism in muscle and liver. Data for 13 nondiabetic obese subjects were evaluated. Subjects were put on a 3-month mildly hypocaloric diet therapy (approximately 35 kcal/kg of ideal body weight). Intrahepatic lipid (IHL) and intramyocellular lipid were measured by using (1)H magnetic resonance spectroscopy. Peripheral insulin sensitivity and splanchnic glucose uptake were evaluated by euglycemic-hyperinsulinemic clamp with oral glucose load. Diet therapy for 3 months resulted in 6% reduction in body weight (from 99.9 +/- 7.3 to 93.8 +/- 6.6 kg, P < 0.0001). This change was accompanied by reduction of plasma glucose and insulin excursions during 75-g oral glucose tolerance tests, decrease in diastolic blood pressure, glycated hemoglobin, serum low-density lipoprotein cholesterol, and triglyceride. These changes were also accompanied by a decrease in IHL (from 12.9 to 8.2%, P < 0.01) and increase in splanchnic glucose uptake (from 13.5 to 35.0%, P < 0.03). On the other hand, the diet program did not affect intramyocellular lipid or glucose infusion rate during euglycemic hyperinsulinemic clamp. Our results suggest that moderate weight reduction in obese subjects decreased IHL and augmented splanchnic glucose uptake. This mechanism is at least in part involved in improvement of glucose metabolism by moderate weight reduction in obese subjects.

  18. [Overweight, obesity and lipids abnormalities in adolescents with type 1 diabetes].

    PubMed

    Wysocka-Mincewicz, Marta; Kołodziejczyk, Honorata; Wierzbicka, Elżbieta; Szalecki, Mieczysław

    2016-02-18

    Overweight children are growing problem as in the pediatric, as well in the diabetic population. The aim of the study was to research the percentage of overweight and obesity in a group of adolescents with type 1 diabetes, and to analyzethe lipid parameters, as well risk factors of these abnormalities. The study group consist of 60 type 1 diabetic adolescents (including 32 girls, 53.3%), aged above 12 years (mean age for girls 14.6+/-0,3years, boys 15.6+/-0.4 years) with diabetes duration (girls 5.7+-0.6 years, boys 4.4+/-0.8 years). Statistical analysis was performed using Statistica v 9.0 and SPSS v20. The study revealed that boys with type 1 diabetes are significantly higher than healthy population, with weight, waist circumference and BMI comparable to the healthy counterparts. However, diabetic girls are more likely to be overweight and have bigger waist circumference, and higher BMI than the healthy population. Overweight were 12 adolescents (20%) using BMI ≥1SD criterion, and 10 (16%) using waist circumference as obesity parameter. Logistic regression revealed that the most important factors for obesity and abdominal obesity are female gender (OR=2.43 and OR=4.56for obesity and abdominal, respectively), diabetes duration above 5 years (respectively OR=1.96 and OR=3.27) and poor metabolic control (respectively OR=1.74 and OR=2.89). The most important risk factor for obesity in adolescents with type 1 diabetes is female gender. Lipids profile is closely dependent on metabolic control and mass excess. Diabetes duration, metabolic control and lipids profile are significant risk factors for overweight and abdominal obesity. © Polish Society for Pediatric Endocrinology and Diabetology.

  19. Neoglycolipid analogues of ganglioside G sub M1 as functional receptors of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacuszka, T.; Bradley, R.M.; Fishman, P.H.

    1991-03-12

    The authors synthesized several lipid analogues of ganglioside G{sub M1} by attaching its oligosaccharide moiety (G{sub M1}OS) to aminophospholipids, aliphatic amines, and cholesteryl hemisuccinate. They incubated G{sub M1}-deficient rat glioma C6 cells with each of the derivatives as well as native G{sub M1} and assayed the cells for their ability to bind and respond to cholera toxin. On the basis of the observed increase in binding of {sup 125}I-labeled cholera toxin, it was apparent that the cells took up and initially incorporated most of the derivatives into the plasma membrane. In the case of the aliphatic amine derivatives, the abilitymore » to generate new toxin binding sites was dependent on chain length; whereas the C{sub 10} derivative was ineffective, C{sub 12} and higher analogues were effective. Increased binding was dependent on both the concentration of the neoglycolipid in the medium and the time of exposure. Cells pretreated with the various derivatives accumulated cyclic AMP in response to cholera toxin, but there were differences in their effectiveness. The cholesterol and long-chain aliphatic amine derivatives were more effective than native G{sub M1}, whereas the phospholipid derivatives were less effective. The distance between G{sub M1}OS and the phospholipid also appeared to influence its functional activity. The results indicate that although G{sub M1}OS provides the recognition site for the binding of cholera toxin, the nature of the lipid moiety plays an important role in the action of the toxin.« less

  20. Effects of tomato and soy germ on lipid bioaccumulation and atherosclerosis in ApoE−/− mice

    PubMed Central

    Smith, Brendon W.; Miller, Rita J.; Wilund, Kenneth R.; O’Brien, William D.; Erdman, John W.

    2015-01-01

    Dietary patterns with cardiovascular benefits have been recommended, but the relative contributions of individual foods and food components, alone or in combination, remain undefined. Male ApoE−/− mice were fed either a purified AIN-93G control diet, a Western diet, or a Western diet with 10% tomato powder (TP), 2% soy germ (SG), or the combination, for four weeks (n=10 per group). Plasma total cholesterol and triglycerides were measured with enzymatic colorimetric kits, and serum amyloid A (SAA) was measured by ELISA. Liver lipids were extracted with chloroform:methanol, and triglycerides, free and esterified cholesterol measured with enzymatic colorimetric kits. Expression of Cyp27a1, Cyp7a1, Abcg5, and Abcg8 in the liver was determined by quantitative polymerase chain reaction. Sections of the aortic root and aorta were cut and stained with H&E to assess extent of atherosclerotic lesions. Western diet-fed animals had greater liver and adipose weights, plasma cholesterol and SAA, hepatic lipids, and atherosclerosis than AIN-93G animals. TP and SG did not decrease atherosclerosis as measured by H&E-stained sections of the aortic root, aortic arch and descending aorta. The TP diets further increased plasma cholesterol, but also led to increased expression of the Abcg5/8 transporters involved in cholesterol efflux. Addition of SG alone to the Western diet attenuated Western-diet-induced increases in plasma cholesterol, liver lipids and gonadal adipose weight. The results of this study do not support the use of either TP or SG for reduction of atherosclerosis, but suggest some beneficial effects of SG on lipid metabolism in this model of cardiovascular disease. PMID:26173004

  1. Serum microRNA miR-206 is decreased in hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma cells.

    PubMed

    Zheng, Yingjuan; Zhao, Chao; Zhang, Naijian; Kang, Wenqin; Lu, Rongrong; Wu, Huadong; Geng, Yingxue; Zhao, Yaping; Xu, Xiaoyan

    2018-04-01

    The actions of thyroid hormone (TH) on lipid metabolism in the liver are associated with a number of genes involved in lipogenesis and lipid metabolism; however, the underlying mechanisms through which TH impacts on lipid metabolism remain to be elucidated. The present study aimed to investigate the effects of hyperthyroidism on the serum levels of the microRNA (miR) miR‑206 and the role of miR‑206 on TH‑regulated lipid metabolism in liver cells. Serum was obtained from 12 patients diagnosed with hyperthyroidism and 10 healthy control subjects. Human hepatoblastoma (HepG2) cells were used to study the effects of triiodothyronine (T3) and miR‑206 on lipid metabolism. Expression of miR‑206 in serum and cells was determined by reverse transcription‑quantitative polymerase chain reaction analysis. Lipid accumulation in HepG2 cells was assessed with Oil Red O staining. Suppression or overexpression of miR‑206 was performed via transfection with a miR‑206 mimic or miR‑206 inhibitor. Serum miR‑206 was significantly decreased in patients with hyperthyroidism compared with euthyroid controls. Treatment of HepG2 cells with T3 led to reduced total cholesterol (TC) and triglyceride (TG) content, accompanied by reduced miR‑206 expression. Inhibition of endogenous miR‑206 expression decreased intracellular TG and TC content in HepG2 cells. By contrast, overexpression of miR‑206 in HepG2 partially prevented the reduction in TG content induced by treatment with T3. In conclusion, serum miR‑206 expression is reduced in patients with hyperthyroidism. In addition, miR‑206 is involved in T3‑mediated regulation of lipid metabolism in HepG2 cells, indicating a role for miR‑206 in thyroid hormone‑induced disorders of lipid metabolism in the liver.

  2. Fetal macrosomia related to maternal poorly controlled type 1 diabetes strongly impairs serum lipoprotein concentrations and composition

    PubMed Central

    Merzouk, H; Bouchenak, M; Loukidi, B; Madani, S; Prost, J; Belleville, J

    2000-01-01

    Aims—To determine the effects of fetal macrosomia related to maternal type 1 diabetes on the lipid transport system. Methods—Serum lipoprotein concentrations and composition and lecithin:cholesterol acyltransferase (LCAT) activity were investigated in macrosomic newborns (mean birth weight, 4650 g; SEM, 90) and their mothers with poorly controlled type 1 diabetes, in appropriate for gestational age newborns (mean birth weight, 3616 g; SEM, 68) and their mothers with well controlled type 1 diabetes, and macrosomic (mean birth weight, 4555 g; SEM, 86) or appropriate for gestational age (mean birth weight, 3290 g; SEM, 45) newborns and their healthy mothers. Results—In mothers with well controlled type 1 diabetes, serum lipids, apolipoproteins, and lipoproteins were comparable with those of healthy mothers. Similarly, in their infants, these parameters did not differ from those of appropriate for gestational age newborns. Serum triglyceride, very low density lipoprotein (VLDL), apolipoprotein B100 (apo B100), and high density lipoprotein (HDL) triglyceride concentrations were higher, whereas serum apo A-I and HDL3 concentrations were lower in mothers with diabetes and poor glycaemic control than in healthy mothers. Their macrosomic newborns had higher concentrations in all serum lipids and lipoproteins, with high apo A-I and apo B100 values compared with appropriate for gestational age newborns. In macrosomic infants of healthy mothers, there were no significant differences in lipoprotein profiles compared with those of appropriate for gestational age infants. LCAT activity was similar in both groups of mothers and newborns. Conclusion—Poorly controlled maternal type 1 diabetes and fetal macrosomia were associated with lipoprotein abnormalities. Macrosomic lipoprotein profiles related to poor metabolic control of type 1 diabetes appear to have implications for later metabolic diseases. Key Words: apolipoproteins • lipids • lipoproteins • lecithin

  3. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrialmore » applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. Lastly, the online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates

  4. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source

    DOE PAGES

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert; ...

    2016-06-23

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrialmore » applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. Lastly, the online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates

  5. Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle.

    PubMed

    De Stefanis, Daniela; Mastrocola, Raffaella; Nigro, Debora; Costelli, Paola; Aragno, Manuela

    2017-02-01

    In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.

  6. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.

    PubMed

    Pal, Dipasmita; Khozin-Goldberg, Inna; Cohen, Zvi; Boussiba, Sammy

    2011-05-01

    We examined responses of batch cultures of the marine microalga Nannochloropsis sp. to combined alterations in salinity (13, 27, and 40 g/l NaCl) and light intensity (170 and 700 μmol photons/m(2)·s). Major growth parameters and lipid productivity (based on total fatty acid determination) were determined in nitrogen-replete and nitrogen-depleted cultures of an initial biomass of 0.8 and 1.4 g/l, respectively. On the nitrogen-replete medium, increases in light intensity and salinity increased the cellular content of dry weight and lipids due to enhanced formation of triacylglycerols (TAG). Maximum average productivity of ca. 410 mg TFA/l/d were obtained at 700 μmol photons/m(2)·s and 40 g/l NaCl within 7 days. Under stressful conditions, content of the major LC-PUFA, eicosapentaenoic acid (EPA), was significantly reduced while TAG reached 25% of biomass. In contrast, lower salinity tended to improve major growth parameters, consistent with less variation in EPA contents. Combined higher salinity and light intensity was detrimental to lipid productivity under nitrogen starvation; biomass TFA content, and lipid productivity amounted for only 33% of DW and ca. 200 mg TFA/l/day, respectively. The highest biomass TFA content (ca. 47% DW) and average lipid productivity of ca. 360 mg TFA/l/day were achieved at 13 g/l NaCl and 700 μmol photons/m(2)·s. Our data further support selecting Nannochloropsis as promising microalgae for biodiesel production. Moreover, appropriate cultivation regimes may render Nannochloropsis microalgae to produce simultaneously major valuable components, EPA, and TAG, while sustaining relatively high biomass growth rates.

  7. Optimization of Culture Conditions for Enhanced Growth, Lipid and Docosahexaenoic Acid (DHA) Production of Aurantiochytrium SW1 by Response Surface Methodology.

    PubMed

    Nazir, Yusuf; Shuib, Shuwahida; Kalil, Mohd Sahaid; Song, Yuanda; Hamid, Aidil Abdul

    2018-06-11

    In this study, optimization of growth, lipid and DHA production of Aurantiochytrium SW1 was carried out using response surface methodology (RSM) in optimizing initial fructose concentration, agitation speed and monosodium glutamate (MSG) concentration. Central composite design was applied as the experimental design and analysis of variance (ANOVA) was used to analyze the data. ANOVA analysis revealed that the process which adequately represented by quadratic model was significant (p < 0.0001) for all the response. All the three factors were significant (p < 0.005) in influencing the biomass and lipid data while only two factors (agitation speed and MSG) gave significant effect on DHA production (p < 0.005). The estimated optimal conditions for enhanced growth, lipid and DHA production were 70 g/L fructose, 250 rpm agitation speed and 10 g/L MSG. Consequently, the quadratic model was validated by applying the estimated optimum conditions, which confirmed the model validity where 19.0 g/L biomass, 9.13 g/L lipid and 4.75 g/L of DHA were produced. The growth, lipid and DHA were 28, 36 and 35% respectively higher than that produced in the original medium prior to optimization.

  8. Allergenic relevance of nonspecific lipid transfer proteins 2: Identification and characterization of Api g 6 from celery tuber as representative of a novel IgE-binding protein family.

    PubMed

    Vejvar, Eva; Himly, Martin; Briza, Peter; Eichhorn, Stephanie; Ebner, Christof; Hemmer, Wolfgang; Ferreira, Fatima; Gadermaier, Gabriele

    2013-11-01

    Apium graveolens represents a relevant food allergen source linked with severe systemic reactions. We sought to identify an IgE-binding nonspecific lipid transfer protein (nsLTP) in celery tuber. A low molecular weight protein exclusively present in celery tuber was purified and designated Api g 6. The entire protein sequence was obtained by MS and classified as member of the nsLTP2 family. Api g 6 is monomeric in solution with a molecular mass of 6936 Da. The alpha-helical disulfide bond-stabilized structure confers tremendous thermal stability (Tm > 90°C) and high resistance to gastrointestinal digestion. Endolysosomal degradation demonstrated low susceptibility and the presence of a dominant peptide cluster at the C-terminus. Thirty-eight percent of A. graveolens allergic patients demonstrated IgE reactivity to purified natural Api g 6 in ELISA and heat treatment did only partially reduce its allergenic activity. No correlation in IgE binding and limited cross-reactivity was observed with Api g 2 and Art v 3, nsLTP1 from celery stalks and mugwort pollen. Api g 6, a novel nsLTP2 from celery tuber represents the first well-characterized allergen in this protein family. Despite similar structural and physicochemical features as nsLTP1, immunological properties of Api g 6 are distinct which warrants its inclusion in molecule-based diagnosis of A. graveolens allergy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Maternal Supplementation with Small-Quantity Lipid-Based Nutrient Supplements Compared with Multiple Micronutrients, but Not with Iron and Folic Acid, Reduces the Prevalence of Low Gestational Weight Gain in Semi-Urban Ghana: A Randomized Controlled Trial.

    PubMed

    Adu-Afarwuah, Seth; Lartey, Anna; Okronipa, Harriet; Ashorn, Per; Ashorn, Ulla; Zeilani, Mamane; Arimond, Mary; Vosti, Stephen A; Dewey, Kathryn G

    2017-04-01

    Background: It is unclear whether maternal supplementation with small-quantity lipid-based nutrient supplements (SQ-LNSs; 118 kcal/d) affects maternal weight. Objective: We compared several secondary anthropometric measures between 3 groups of women in the iLiNS (International Lipid-based Nutrient Supplements)-DYAD trial in Ghana. Methods: Women ( n = 1320; <20 wk of gestation) were randomly assigned to receive 60 mg Fe + 400 μg folic acid/d (IFA), 18 vitamins and minerals/d [multiple micronutrients (MMNs)], or 20 g SQ-LNSs with 22 micronutrients/d (LNS) during pregnancy and a placebo (200 mg Ca/d), MMNs, or SQ-LNSs, respectively, for 6 mo postpartum. Weight, midupper arm circumference (MUAC), and triceps skinfold (TSF) thickness at 36 wk of gestation and 6 mo postpartum were analyzed, as were changes from estimated prepregnancy values. We assessed the adequacy of estimated gestational weight gain (GWG) by using Institute of Medicine (IOM) and International Fetal and Newborn Growth Standards for the 21st Century (INTERGROWTH-21st) guidelines. Results: The estimated prepregnancy prevalence of overweight or obesity was 38.5%. By 36 wk of gestation, women ( n = 1015) had a mean ± SD weight gain of 7.4 ± 3.7 kg and changes of -1.0 ± 1.7 cm in MUAC and -2.8 ± 4.1 mm in TSF thickness. The LNS group had a lower prevalence of inadequate GWG on the basis of IOM guidelines (57.4%) than the MMN (67.2%) but not the IFA (63.1%) groups ( P = 0.030), whereas the prevalence of adequate (26.9% overall) and excessive (10.4% overall) GWG did not differ by group. The percentages of normal-weight women (in kg/m 2 : 18.5 < body mass index < 25.0; n = 754) whose GWG was less than the third centile of the INTERGROWTH-21st standards were 23.0%, 28.7%, and 28.5% for the LNS, MMN, and IFA groups, respectively ( P = 0.36). At 6 mo postpartum, the prevalence of overweight or obesity was 45.3%, and the risk of becoming overweight or obese did not differ by group. Conclusion: SQ

  10. Targeting SREBP-1-driven lipid metabolism to treat cancer

    PubMed Central

    Guo, Deliang; Bell, Erica Hlavin; Mischel, Paul; Chakravarti, Arnab

    2014-01-01

    Metabolic reprogramming is a hallmark of cancer. Oncogenic growth signaling regulates glucose, glutamine and lipid metabolism to meet the bioenergetics and biosynthetic demands of rapidly proliferating tumor cells. Emerging evidence indicates that sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that controls lipid metabolism, is a critical link between oncogenic signaling and tumor metabolism. We recently demonstrated that SREBP-1 is required for the survival of mutant EGFR-containing glioblastoma, and that this pro-survival metabolic pathway is mediated, in part, by SREBP-1-dependent upregulation of the fatty acid synthesis and low density lipoprotein (LDL) receptor (LDLR). These results have identified EGFR/PI3K/Akt/SREBP-1 signaling pathway that promotes growth and survival in glioblastoma, and potentially other cancer types. Here, we summarize recent insights in the understanding of cancer lipid metabolism, and discuss the evidence linking SREBP-1 with PI3K/Akt signaling-controlled glycolysis and with Myc-regulated glutaminolysis to lipid metabolism. We also discuss the development of potential drugs targeting the SREBP-1-driven lipid metabolism as anti-cancer agents. PMID:23859617

  11. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    PubMed

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of polygenic risk scores on lipid levels and dyslipidemia in a psychiatric population receiving weight gain-inducing psychotropic drugs.

    PubMed

    Delacrétaz, Aurélie; Lagares Santos, Patricia; Saigi Morgui, Nuria; Vandenberghe, Frederik; Glatard, Anaïs; Gholam-Rezaee, Mehdi; von Gunten, Armin; Conus, Philippe; Eap, Chin B

    2017-12-01

    Dyslipidemia represents a major health issue in psychiatry. We determined whether weighted polygenic risk scores (wPRSs) combining multiple single-nucleotide polymorphisms (SNPs) associated with lipid levels in the general population are associated with lipid levels [high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides] and/or dyslipidemia in patients receiving weight gain-inducing psychotropic drugs. We also determined whether genetics improve the predictive power of dyslipidemia. The influence of wPRS on lipid levels was firstly assessed in a discovery psychiatric sample (n=332) and was then tested for replication in an independent psychiatric sample (n=140). The contribution of genetic markers to predict dyslipidemia was evaluated in the combined psychiatric sample. wPRSs were significantly associated with the four lipid traits in the discovery (P≤0.02) and in the replication sample (P≤0.03). Patients whose wPRS was higher than the median wPRS had significantly higher LDL, TC, and triglyceride levels (0.20, 0.32 and 0.26 mmol/l, respectively; P≤0.004) and significantly lower HDL levels (0.13 mmol/l; P<0.0001) compared with others. Adding wPRS to clinical data significantly improved dyslipidemia prediction of HDL (P=0.03) and a trend for improvement was observed for the prediction of TC dyslipidemia (P=0.08). Population-based wPRSs have thus significant effects on lipid levels in the psychiatric population. As genetics improved the predictive power of dyslipidemia development, only 24 patients need to be genotyped to prevent the development of one case of HDL hypocholesterolemia. If confirmed by further prospective investigations, the present results could be used for individualizing psychotropic treatment.

  13. Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats.

    PubMed

    Chiu, Chen-Yuan; Wang, Lou-Pin; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2018-04-25

    This study investigated the effects of dietary supplementation of fish oil on the signals of lipid metabolism involved in hepatic cholesterol and triglyceride influx and excretion in high-fat diet (HFD)-fed rats. Fish oil (FO) repressed body (HFD, 533 ± 18.2 g; HFD+FO, 488 ± 28.0 g, p < 0.05) and liver weights (HFD, 5.7 ± 0.6 g/100 g of body weight; HFD+FO, 4.8 ± 0.4 g/100 g of body weight, p < 0.05) in HFD-fed rats. Fish oil could also improve HFD-induced imbalance of lipid metabolism in blood, liver, and adipose tissues including the significant decreases in plasma and liver total cholesterol (TC) (plasma-HFD, 113 ± 33.6 mg/dL; HFD+FO, 50.0 ± 5.95 mg/dL, p < 0.05; liver-HFD, 102 ± 13.0 mg/dL; HFD+FO, 86.6 ± 7.81 mg/dL, p < 0.05), blood, liver, and adipose triglyceride (TG) (blood-HFD, 52.5 ± 20.4 mg/dL; HFD+FO, 29.8 ± 4.30 mg/dL, p < 0.05; liver-HFD, 56.2 ± 10.0 mg/dL; HFD+FO, 30.3 ± 5.28 mg/dL, p < 0.05; adipose-HFD, 614 ± 73.2 mg/dL; HFD+FO, 409 ± 334 mg/dL, p < 0.05), and low density (HFD, 79.8 ± 40.9 mg/dL; HFD+FO, 16.6 ± 5.47 mg/dL, p < 0.05) and very-low-density (HFD, 49.7 ± 33.3 mg/dL; HFD+FO, 10.4 ± 3.45 mg/dL, p < 0.05) lipoprotein and the significant increases in fecal TC (HFD, 12.2 ± 0.67 mg/dL; HFD+FO, 16.3 ± 2.04 mg/dL, p < 0.05) and TG (HFD, 2.09 ± 0.10 mg/dL; HFD+FO, 2.38 ± 0.22 mg/dL, p < 0.05) and lipoprotein lipase activity of adipose tissues (HFD, 16.6 ± 3.64 μM p-nitrophenol; HFD+FO, 24.5 ± 4.19 μM p-nitrophenol, p < 0.05). Moreover, fish oil significantly activated the protein expressions of hepatic lipid metabolism regulators (AMPKα and PPARα) and significantly regulated the lipid-transport-related signaling molecules (ApoE, MTTP, ApoB, Angptl4, ApoCIII, ACOX1, and SREBPF1) in blood or liver of HFD-fed rats. These results suggest that fish oil supplementation improves HFD-induced imbalance of lipid homeostasis in blood, liver, and adipose tissues in rats.

  14. Molecular dynamics simulations of glyphosate in a DPPC lipid bilayer.

    PubMed

    Frigini, Ezequiel N; López Cascales, J J; Porasso, Rodolfo D

    2018-07-01

    Extensive molecular dynamics simulations have been performed to study the effect of glyphosate (in their neutral and charged forms, GLYP and GLYP 2- , respectively) on fully hydrated DiPalmitoylPhosphatidylCholine (DPPC) lipid bilayer. First, we calculated the free energy profile (using the Umbrella Sampling technique) for both states of charge of glyphosate. The minimum value for the free energy for GLYP is ∼-60 kJ mol -1 located at z = ±1.7 nm (from the lipid bilayer center), and there is almost no maximum at the center of the lipid bilayer. By contrast, the minimum for GLYP 2- is ∼-35 kJ mol -1 located at z = ± 1.4 nm (from the lipid bilayer center), and the maximum reaches ∼35 kJ mol -1 at the center of the lipid bilayer. Then, different lipid bilayer properties were analyzed for different glyphosate:lipid (G:L) ratios. The mean area per lipid was slightly affected, increasing only 5% (in the presence of glyphosate at high concentrations), which is in agreement with the slight decrease in deuterium order parameters. As for the thickness of the bilayer, it is observed that the state of charge produces opposite effects. On one hand, the neutral state produces an increase in the thickness of the lipid bilayer; on the other, the charged form produces a decrease in the thickness, which not depend linearly on the G:L ratios, either. The orientation of the DPPC head groups is practically unaffected throughout the range of the G:L ratios studied. Finally, the mobility of the lipids of the bilayer is strongly affected by the presence of glyphosate, considerably increasing its lateral diffusion coefficient noteworthy (one order of magnitude), with increasing G:L ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition

    PubMed Central

    Oliveira, Bruno A. P.; Pinhel, Marcela A. S.; Nicoletti, Carolina F.; Oliveira, Cristiana C.; Quinhoneiro, Driele C. G.; Noronha, Natália Y.; Marchini, Júlio S.; Marchry, Ana J.; Junior, Wilson S.; Nonino, Carla B.

    2016-01-01

    Background/Objective Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery. Subjects/Methods This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression. Results Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period. Conclusions UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively. PMID:26959981

  16. Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II

    PubMed Central

    Ateh, Eugene; Oashi, Taiji; Lu, Wuyuan; Huang, Jing; Diepeveen-de Buin, Marlies; Bryant, Joseph; Breukink, Eefjan; MacKerell, Alexander D.; de Leeuw, Erik P. H.

    2013-01-01

    We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. PMID:24244161

  17. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-10-01

    Effects of Fe(3+) (0-0.12 g/L), Mg(2+) (0-0.73 g/L) and Ca(2+) (0-0.98 g/L) on the biomass and lipid accumulation of heterotrophic microalgae were investigated in dark environment. The biomass and lipid production exhibited an increasing trend with increasing the concentrations of metal ions. In cultures with 1.2 × 10(-3) g/L Fe(3+), 7.3 × 10(-3) g/L Mg(2+) and 9.8 × 10(-4) g/L Ca(2+), the maximum biomass, total lipid content and lipid productivity reached 3.49 g/L, 47.4% and 275.7 mg/L/d, respectively. More importantly, EDTA addition (1.0 × 10(-3) g/L) could enhance the solubility of metal ions (iron and calcium) and increase their availability by microalgae, which evidently promote the lipid accumulation. Compared with the control, the total lipid content and lipid productivity increased 28.2% and 29.7%, respectively. These show that appropriate concentrations of metal ions and EDTA in the culture medium were beneficial to lipid accumulation of heterotrophic Scenedesmus sp. cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Blending water- and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014.

    PubMed

    Park, Seonghwan; Kim, Jeongmi; Yoon, Youngjin; Park, Younghyun; Lee, Taeho

    2015-12-01

    The possibility of utilizing blended wastewaters from different streams was investigated for cost-efficient microalgal cultivation. The influent of a domestic wastewater treatment plant and the liquid fertilizer from a swine wastewater treatment plant were selected as water- and nutrient-source wastewaters, respectively. The growth of Micractinium inermum NLP-F014 in the blended wastewater medium without any pretreatment was comparable to that in Bold's Basal Medium. The optimum blending ratio of 5-15% (vv(-1)) facilitated biomass production up to 5.7 g-dry cell weight (DCW) L(-1), and the maximum biomass productivity (1.03 g-DCWL(-1)d(-1)) was achieved after three days of cultivation. Nutrient depletion induced lipid accumulation in the cell up to 39.1% (ww(-1)) and the maximum lipid productivity was 0.19 g-FAMEL(-1)d(-1). These results suggest that blending water- and nutrient-source wastewaters at a proper ratio without pretreatment can significantly cut costs in microalgae cultivation for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. HNF-4α regulated miR-122 contributes to development of gluconeogenesis and lipid metabolism disorders in Type 2 diabetic mice and in palmitate-treated HepG2 cells.

    PubMed

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Xue, Huan; Lan, Xiaoxin; Liu, Shuping; Hatch, Grant; Chen, Li

    2016-11-15

    Hepatocyte Nuclear Factor-4α (HNF-4α) is a key nuclear receptor protein required for liver development. miR-122 is a predominant microRNA expressed in liver and is involved in the regulation of cholesterol and fatty acid metabolism. HNF-4α is know to regulate expression of miR-122 in liver. We examined how HNF-4α regulated gluconeogenesis and lipid metabolism through miR-122 in vivo and in vitro. Expression of miR-122, HNF-4α, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), sterol response elementary binding protein-1 (SREBP-1), fatty acid synthase-1 (FAS-1), carnitine palmitoyltransferase-1 (CPT-1) and acetyl Coenzyme A carboxylase alpha (ACCα) were determined in livers of Type 2 diabetic mice and in insulin resistant palmitate-treated HepG2 cells. CPT-1 and phosphorylated ACCα expression were significantly decreased in livers of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. In contrast, expression of miR-122, HNF-4α, PEPCK, G6Pase, SREBP-1, FAS-1 and ACCα were significantly elevated in liver of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. Expression of HNF-4α increased whereas siRNA knockdown of HNF-4α decreased miR-122 levels in HepG2 cells compared to controls. In addition, expression of HNF-4α in HepG2 cells increased PEPCK, G6Pase, SREBP-1, FAS-1, ACCα mRNA and protein expression and decreased CPT-1 and p-ACCα mRNA and protein expression compared to controls. Addition of miR-122 inhibitors attenuated the HNF-4α mediated effect on expression of these gluconeogenic and lipid metabolism proteins. The results indicate that HNF-4α regulated miR-122 contributes to development of the gluconeogenic and lipid metabolism alterations observed in Type 2 diabetic mice and in palmitate-treated HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Birth weight and risk factors for cardiovascular disease and type 2 diabetes in US children and adolescents: 10 year results from NHANES.

    PubMed

    Zhang, Zhiying; Kris-Etherton, Penny M; Hartman, Terryl J

    2014-08-01

    Previous studies have shown that birth weight and other birth characteristics may be associated with risk for type 2 diabetes and cardiovascular disease (CVD) later in life; however, results using large US national survey data are limited. Our goal was to determine the aforementioned associations using nationally representative data. We studied children and adolescents 6-15 years using data from the National Health and Nutrition Examination Survey cycles 2001-2010. Survey and examination data included demographic and early childhood characteristics, current health status, physical activity information, anthropometric measurements, dietary data (total energy, saturated fat, sodium, and sugar intakes), biomarkers related to selected risk factors of CVD [systolic blood pressure (SBP), plasma C-reactive protein (CRP) and lipid profiles], and type 2 diabetes [fasting glucose, insulin, and homeostasis model assessment (HOMA)]. Birth weight (proxy-reported) was inversely associated with SBP among girls; SBP levels increased 1.4 mmHg for each 1,000 g decrease in birth weight (p = 0.003) after controlling for potential confounders. Birth weight was not associated with levels of CRP or lipid profiles across the three racial groups. In addition, birth weight was inversely related to levels of fasting insulin and HOMA among non-Hispanic Whites; for each 1,000 g decrease in birth weight, fasting insulin levels increased 9.1% (p = 0.007) and HOMA scores increased 9.8% (p = 0.007). Birth weight was inversely associated with the levels of SBP, fasting insulin, and HOMA. These results support a role for birth weight, independent of the strong effects of current body weight status, in increasing risk for CVD and type 2 diabetes.

  1. Effect of tension and curvature on the chemical potential of lipids in lipid aggregates.

    PubMed

    Grafmüller, Andrea; Lipowsky, Reinhard; Knecht, Volker

    2013-01-21

    Understanding the factors that influence the free energy of lipids in bilayer membranes is an essential step toward understanding exchange processes of lipids between membranes. In general, both lipid composition and membrane geometry can affect lipid exchange rates between bilayer membranes. Here, the free energy change ΔG(des) for the desorption of dipalmitoyl-phosphatidylcholine (DPPC) lipids from different lipid aggregates has been computed using molecular dynamics simulations and umbrella sampling. The value of ΔG(des) is found to depend strongly on the local properties of the aggregate, in that both tension and curvature lead to an increase in ΔG(des). A detailed analysis shows that the increased desorption free energy for tense bilayers arises from the increased conformational entropy of the lipid tails, which reduces the favorable component -TΔS(L) of the desorption free energy.

  2. A Review of the Efficacy and Safety of Litramine IQP-G-002AS, an Opuntia ficus-indica Derived Fiber for Weight Management

    PubMed Central

    Gruenwald, Joerg; Uebelhack, Ralf

    2014-01-01

    Sedentary lifestyle and caloric overconsumption are the key determinants of the escalating obesity prevalence. Reducing dietary fat absorption may help to induce a negative energy balance and thus help in managing weight problem. Apart from approved drug therapies, weight problems may also be aided with alternative and natural treatments. This paper compiled and reviewed the efficacy and safety of Litramine IQP-G-002AS, an Opuntia ficus-indica (OFI) derived fiber, in reducing dietary fat absorption and promoting weight loss. Evidence reviewed shows that Litramine IQP-G-002AS displays efficacy in promoting fat excretion and weight loss in four randomized, placebo-controlled clinical studies (including an unpublished pilot study). With a daily dosage of 3 g over a seven-day period, Litramine IQP-G-002AS showed an increased faecal fat excretion compared with placebo (15.8% (SD 5.8%) versus 4.6% (SD 3.1%); P < 0.001). In a 12-week study, significant greater weight loss (3.8 kg (SD 1.8 kg) versus 1.4 kg (SD 2.6 kg); P < 0.001) was observed in overweight and obese subjects treated with Litramine IQP-G-002AS as compared to placebo. No relevant gastrointestinal side effects have been reported for Litramine IQP-G-002AS at the dosages studied. PMID:25254061

  3. Antiobesity efficacy of GLP-1 receptor agonist liraglutide is associated with peripheral tissue-specific modulation of lipid metabolic regulators.

    PubMed

    Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-11-12

    To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  4. TyG Index Change Is More Determinant for Forecasting Type 2 Diabetes Onset Than Weight Gain.

    PubMed

    Navarro-González, David; Sánchez-Íñigo, Laura; Fernández-Montero, Alejandro; Pastrana-Delgado, Juan; Martinez, Jose Alfredo

    2016-05-01

    The risk of type 2 diabetes associated with obesity appears to be influenced by other metabolic abnormalities, and there is controversy about the harmless condition of the metabolically healthy obese (MHO) state. The aim of this study is to assess the risk of diabetes and the impact of changes in weight and in triglyceride-glucose index (TyG index), according to the metabolic health and obesity states.We analyzed prospective data of the Vascular Metabolic CUN cohort, a population-based study among a White European population (mean follow-up, 8.9 years). Incident diabetes was assessed in 1923 women and 3016 men with a mean age at baseline of 55.33 ± 13.68 and 53.78 ± 12.98 years old.A Cox proportional-hazard analysis was conducted to estimate the hazard ratio (HR) of diabetes on metabolically healthy nonobese (MHNO), metabolically healthy obese, metabolically unhealthy nonobese (MUNO), and metabolically unhealthy obese (MUO). A continuous standardized variable (z-score) was derived to compute the HR for diabetes per 1-SD increment in the body mass index (BMI) and the TyG index.MHO, MUNO, and MUO status were associated with the development of diabetes, HR of 2.26 (95% CI: 1.25-4.07), 3.04 (95% CI: 1.69-5.47), and 4.04 (95% CI: 2.14-7.63), respectively. MUNO individuals had 1.82 greater risk of diabetes compared to MHO subjects (95% CI: 1.04-3.22). The HRs for incident diabetes per 1-SD increment in BMI and TyG indexes were 1.23 (95% CI: 1.04-1.44) and 1.54 (95% CI: 1.40-1.68). The increase in BMI did not raise the risk of developing diabetes among metabolically unhealthy subjects, whereas increasing the TyG index significantly affect the risk in all metabolic health categories.Metabolic health is more important determinant for diabetes onset than weight gain. The increase in weight does not raise the risk of developing diabetes among metabolically unhealthy subjects.

  5. Maternal Supplementation with Small-Quantity Lipid-Based Nutrient Supplements Compared with Multiple Micronutrients, but Not with Iron and Folic Acid, Reduces the Prevalence of Low Gestational Weight Gain in Semi-Urban Ghana: A Randomized Controlled Trial123

    PubMed Central

    Vosti, Stephen A; Dewey, Kathryn G

    2017-01-01

    Background: It is unclear whether maternal supplementation with small-quantity lipid-based nutrient supplements (SQ-LNSs; 118 kcal/d) affects maternal weight. Objective: We compared several secondary anthropometric measures between 3 groups of women in the iLiNS (International Lipid-based Nutrient Supplements)-DYAD trial in Ghana. Methods: Women (n = 1320; <20 wk of gestation) were randomly assigned to receive 60 mg Fe + 400 μg folic acid/d (IFA), 18 vitamins and minerals/d [multiple micronutrients (MMNs)], or 20 g SQ-LNSs with 22 micronutrients/d (LNS) during pregnancy and a placebo (200 mg Ca/d), MMNs, or SQ-LNSs, respectively, for 6 mo postpartum. Weight, midupper arm circumference (MUAC), and triceps skinfold (TSF) thickness at 36 wk of gestation and 6 mo postpartum were analyzed, as were changes from estimated prepregnancy values. We assessed the adequacy of estimated gestational weight gain (GWG) by using Institute of Medicine (IOM) and International Fetal and Newborn Growth Standards for the 21st Century (INTERGROWTH-21st) guidelines. Results: The estimated prepregnancy prevalence of overweight or obesity was 38.5%. By 36 wk of gestation, women (n = 1015) had a mean ± SD weight gain of 7.4 ± 3.7 kg and changes of −1.0 ± 1.7 cm in MUAC and −2.8 ± 4.1 mm in TSF thickness. The LNS group had a lower prevalence of inadequate GWG on the basis of IOM guidelines (57.4%) than the MMN (67.2%) but not the IFA (63.1%) groups (P = 0.030), whereas the prevalence of adequate (26.9% overall) and excessive (10.4% overall) GWG did not differ by group. The percentages of normal-weight women (in kg/m2: 18.5 < body mass index < 25.0; n = 754) whose GWG was less than the third centile of the INTERGROWTH-21st standards were 23.0%, 28.7%, and 28.5% for the LNS, MMN, and IFA groups, respectively (P = 0.36). At 6 mo postpartum, the prevalence of overweight or obesity was 45.3%, and the risk of becoming overweight or obese did not differ by group. Conclusion: SQ

  6. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    PubMed

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  7. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

    PubMed Central

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes. PMID:24471074

  8. Effects of lipid emulsion particle size on satiety and energy intake: a randomised cross-over trial.

    PubMed

    Poppitt, Sally D; Budgett, Stephanie C; MacGibbon, Alastair K; Quek, Siew-Young; Kindleysides, Sophie; Wiessing, Katy R

    2018-03-01

    Emulsified lipids, with central lipid core surrounded by polar lipid 'protective coat', have been proposed to stimulate the ileal brake, alter appetite, food intake and aid weight control. In addition to lipid composition, emulsion particle size may contribute to efficacy with small droplets providing a larger surface area for gastrointestinal (GI) lipase action and larger droplets prolonging and delaying digestion in the GI tract. Tube feeding studies delivering emulsions directly into the small intestine show clear effects of smaller particle size on appetite and food intake, but evidence from oral feeding studies is sparse. The objective of this study was to determine the effects of lipid emulsion particle size on appetite response and food intake. In a three-arm randomised cross-over, high-phospholipid (PL) dairy lipid emulsions or matched control were consumed at breakfast within a yoghurt smoothie: (i) large-particle size emulsion, LPE (diameter 0.759 µm, 10 g lipid emulsion, 190 g yoghurt), (ii) small-particle size emulsion, SPE (diameter 0.290 µm, 10 g lipid emulsion, 190 g yoghurt), (iii) control non-emulsion, NE (10 g non-emulsion lipid, 190 g yoghurt). Twenty male participants completed the study, where postprandial appetite response was rated using visual analogue scales (VAS) and ad libitum energy intake at a lunch meal measured 3 h later. There was a trend for LPE to suppress hunger (P = 0.08) and enhance fullness (P = 0.24) relative to both SPE and NE but not statistically significant, and no significant effect of either emulsion on food intake at the lunch meal (P > 0.05). Altering particle size of a high-PL emulsion did not enhance satiety or alter eating behaviour in a group of lean men.

  9. Genetic Variations at ABCG5/G8 Genes Modulate Plasma Lipids Concentrations in Patients with Familial Hypercholesterolemia

    PubMed Central

    Garcia-Rios, A; Perez-Martinez, P; Fuentes, F; Mata, P; Lopez-Miranda, J; Alonso, R; Rodriguez, F; Garcia-Olid, A; Ruano, J; Ordovas, JM; Perez-Jimenez, F

    2010-01-01

    Objective To investigate the association of four common single nucleotide polymorphisms (SNPs) at ABCG5 (i7892A>G, i18429C>T, Gln604GluC>G, i11836G>A) and five at ABCG8 (5U145T>G, Tyr54CysA>G, Asp19HisG>C, i14222T>C, and Thr400LysG>T) with plasma lipids concentrations and to explore the interaction between those SNPs and smoking in patients with FH. Methods and Results ABCG5/G8 SNPs were genotyped in 500 subjects with genetic diagnosis of FH. Carriers of the minor A allele at the ABCG5_i11836G>A SNP displayed significantly higher HDL-C concentrations (P=0.023) than G/G subjects. In addition, carriers of the minor G allele at the ABCG5_Gln604GluC>G SNP had significantly lower VLDL-C (P=0.011) and lower TG (P=0.017) concentrations than homozygous C/C. Interestingly, a significant gene-smoking interaction was found, in which carriers of the minor alleles at ABCG5 (i7892A>G, i18429C>T, i11836G>A) SNPs displayed significantly lower HDL-C, higher TC and higher TG respectively, only in smokers. On the other hand, non-smokers carriers of the minor alleles at ABCG5 (i18429C>T and Gln604GluC>G) SNPs had significantly lower TG concentrations (P=0.012 and P=0.035) compared with homozygous for the major allele. Conclusions Our data support the notion that ABCG5/G8 genetic variants modulate plasma lipids concentrations in patients with FH and confirm that this effect could be influenced by smoking. Therefore, these results suggest that gene-environmental interactions can affect the clinical phenotype of FH. PMID:20172523

  10. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors

    PubMed Central

    2014-01-01

    Background Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. Results Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. Conclusion This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but

  11. Identification of a New Class of Lipid Droplet-Associated Proteins in Plants1[C][W][OPEN

    PubMed Central

    Horn, Patrick J.; James, Christopher N.; Gidda, Satinder K.; Kilaru, Aruna; Dyer, John M.; Mullen, Robert T.; Ohlrogge, John B.; Chapman, Kent D.

    2013-01-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues. PMID:23821652

  12. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.

    PubMed

    Algiert-Zielińska, Barbara; Batory, Mirella; Skubalski, Janusz; Rotsztejn, Helena

    2017-11-01

    The epidermis is an epidermal barrier which accumulates lipid substances and participates in skin moisturizing. An evaluation of the epidermal barrier efficiency can be made, among others, by the measurement of the following values: the lipid coat, the transepidermal water loss (TEWL) index, and pH. The study involved 50 Caucasian, healthy women aged 19-35 years (mean 20.56). Measurements were made using Courage & Khazaka Multi Probe Adapter MPA 580: Tewameter TM 300, pH-Meter PH 905, Sebumeter SM 815. The areas of measurements included forehead, nose, left cheek, right cheek, chin, and thigh. In the T-zone, the lipid coat was in the range between 0 and 270 μg/cm 2 (mean 128 μg/cm 2 ), TEWL between 1 and 55 g/m 2 /h (mean 11.1 g/m 2 /h), and pH 4.0-5.6 (mean 5.39). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL greater than 30 g/m 2 /h and less acidic pH of 5.6-9.0. In the U-zone the range of lipid coat was up to 200 μg/cm 2 (mean 65.2 μg/cm 2 ), the skin pH remained 4.0-5.6 (mean 5.47), and TEWL was in the range between 1 and 20 g/m 2 /h (mean 8.7 g/m 2 /h). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL between 1 and 20 g/m 2 /h and less acidic pH of 5.6-9.0. High values of the lipid coat between 180 and 200 μg/cm 2 were connected with TEWL of 1-15 g/m 2 /h. On the skin of the thigh, we observed a very thin lipid coat - 35 μg/cm 2 (mean 5.6 μg/cm 2 ), pH (mean 5.37), and TEWL (mean 8.5 g/m 2 /h) were considered by us to be within regular limits. In the T-zone, a thinner lipid coat resulted in relatively high TEWL and pH levels changing toward alkaline. In the U-zone, thinner lipid coat was accompanied by lower TEWL and pH changing toward alkaline. We also observed that lower values of lipid coat up to 100 μg/cm 2 were associated with higher pH values ranging toward the basic character pH 5.6-9.0). © 2017 The International Society of Dermatology.

  13. Kinetic modelling of starch and lipid formation during mixotrophic, nutrient-limited microalgal growth.

    PubMed

    Figueroa-Torres, Gonzalo M; Pittman, Jon K; Theodoropoulos, Constantinos

    2017-10-01

    Microalgal starch and lipids, carbon-based storage molecules, are useful as potential biofuel feedstocks. In this work, cultivation strategies maximising starch and lipid formation were established by developing a multi-parameter kinetic model describing microalgal growth as well as starch and lipid formation, in conjunction with laboratory-scale experiments. Growth dynamics are driven by nitrogen-limited mixotrophic conditions, known to increase cellular starch and lipid contents whilst enhancing biomass growth. Model parameters were computed by fitting model outputs to a range of experimental datasets from batch cultures of Chlamydomonas reinhardtii. Predictive capabilities of the model were established against different experimental data. The model was subsequently used to compute optimal nutrient-based cultivation strategies in terms of initial nitrogen and carbon concentrations. Model-based optimal strategies yielded a significant increase of 261% for starch (0.065gCL -1 ) and 66% for lipid (0.08gCL -1 ) production compared to base-case conditions (0.018gCL -1 starch, 0.048gCL -1 lipids). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Release of low molecular weight silicones and platinum from silicone breast implants.

    PubMed

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  15. Water and lipid diffusion MRI using chemical shift displacement-based separation of lipid tissue (SPLIT).

    PubMed

    Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi

    2017-06-01

    To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.

  16. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.

    PubMed

    Chen, Chun-Yen; Chang, Hsin-Yueh

    2016-03-01

    Microalgae-based biodiesel has been recognized as a sustainable and promising alternative to fossil diesel. High lipid productivity of microalgae is required for economic production of biodiesel from microalgae. This study was undertaken to enhance the growth and oil accumulation of an indigenous microalga Chlorella sorokiniana CY1 by applying engineering strategies using deep-sea water as the medium. First, the microalga was cultivated using LED as the immersed light source, and the results showed that the immersed LED could effectively enhance the oil/lipid content and final microalgal biomass concentration to 53.8% and 2.5 g/l, respectively. Next, the semi-batch photobioreactor operation with deep-sea water was shown to improve lipid content and microalgal growth over those from using batch and continuous cultures under similar operating conditions. The optimal replacement ratio was 50%, resulting in an oil/lipid content and final biomass concentration of 61.5% and 2.8 g/l, respectively. A long-term semi-batch culture utilizing 50%-replaced medium was carried out for four runs. The final biomass concentration and lipid productivity were 2.5 g/L and 112.2 mg/L/d, respectively. The fatty acid composition of the microalgal lipids was predominant by palmitic acid, stearic acid, oleic acid and linoleic acid, and this lipid quality is suitable for biodiesel production. This demonstrates that optimizing light source arrangement, bioreactor operation and deep-sea water supplements could effectively promote the lipid production of C. sorokiniana CY1 for the applications in microalgae-based biodiesel industry. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschi, Federico, E-mail: federico.boschi@univr.it; Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona; Rizzatti, Vanni

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and maturemore » (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We

  18. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    PubMed

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of a high-fructose diet on glucose tolerance, plasma lipid and hemorheological parameters during oral contraceptive administration in female rats.

    PubMed

    Olatunji, Lawrence Aderemi; Oyeyipo, Ibukun Peter; Usman, Taofeek Oluwamayowa

    2013-01-01

    Oral contraceptive (OC) use and increased fructose feeding have been associated with altered cardiometabolic effects. The effect of increased dietary fructose during OC use on cardiometabolic parameters is unknown. We investigated the effects of a high-fructose diet on body weight gain, fasting blood glucose, glucose tolerance, plasma lipid and hemorheological parameters in female rats treated with a combination of OC steroids (norgestrel/ethinyl estradiol; NEE). Rats were given (p.o.) vehicle, high-dose NEE (10.0 μg norgestrel/1.0 μg ethinyl estradiol) or low-dose NEE (1.0 μg norgestrel/0.1 μg ethinyl estradiol) with or without high dietary fructose daily for 6 weeks. Results demonstrated that high-dose NEE but not low-dose NEE treatment led to significant increases in hematocrit, blood viscosity, and decreases in body weight gain, glucose tolerance, and plasma HDL-cholesterol level. Both NEE treatments resulted in significant increases in plasma viscosity and triglyceride. Increased dietary fructose without NEE treatment produced significant increases in fasting blood glucose, hematocrit, blood and plasma viscosities, while increased dietary fructose significantly potentiated the effects on blood and plasma viscosities observed during NEE treatment. Conversely, the effects of NEE treatment on body weight gain, glucose tolerance, plasma triglyceride and HDL-cholesterol were significantly attenuated. In conclusion, the results indicate that increase in dietary fructose may worsen abnormal blood rheology. The results also demonstrate that increased dietary fructose may not impact negatively on glucose and lipid metabolisms during OC use. The findings imply that fructose-enriched diet might be an important consideration during OC use regarding blood rheological properties.

  20. Body fat percentage is better than indicators of weight status to identify children and adolescents with unfavorable lipid profile.

    PubMed

    Oliosa, Polyana Romano; Zaniqueli, Divanei; Alvim, Rafael de Oliveira; Barbosa, Miriam Carmo Rodrigues; Mill, José Geraldo

    2018-01-05

    To assess whether the indicators of weight status body mass index and waist-to-height ratio are similar to body fat percentage to identify obese children and adolescents with unfavorable lipid profile. This was a cross-sectional study involving 840 children and adolescents (6-18 years). The same individuals were classified as non-obese (

    weight status, body mass index, and waist-to-height ratio. Body fat percentage was obtained by multi-frequency bioelectrical impedance. Linear association between obesity and increased lipid fractions was tested by ANCOVA. Normal distribution curves of non-HDL cholesterol were designed for obese and non-obese. To provide the proportion of obese individuals with elevated non-HDL-c across all indicators, Z-score was calculated. Obese boys presented higher non-HDL cholesterol when compared with those non-obese, classified by body mass index (107±28 vs. 94±25mg/dL, p=0.001), waist-to-height ratio (115±29 vs. 94±25mg/dL, p<0.001) and body fat percentage (119±33 vs. 94±24mg/dL, p<0.001). Differently, obese girls presented with higher non-HDL cholesterol when compared with those non-obese only according to the body fat percentage classification (118±24 vs. 96±26mg/dL, p=0.001). A large shift to the right in the distribution curve of non-HDL cholesterol among obese girls compared with non-obese was observed only when body fat percentage was used to discriminate between obese and non-obese. Body fat percentage was better than the indicators of weight status to identify children and adolescents with unfavorable lipid profile, mainly among girls. Copyright © 2017. Published by Elsevier Editora Ltda.

  1. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Product-Weighted Reactivity Limits by... Pt. 59, Subpt. E, Table 1 Table 1 to Subpart E of Part 59—Product-Weighted Reactivity Limits by Coating Category Coating category Category code a Reactivity limit(g O3/g product) Clear Coatings CCP 1.50...

  2. 40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Product-Weighted Reactivity Limits by... Pt. 59, Subpt. E, Table 1 Table 1 to Subpart E of Part 59—Product-Weighted Reactivity Limits by Coating Category Coating category Category code a Reactivity limit(g O3/g product) Clear Coatings CCP 1.50...

  3. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  4. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates

    DOE PAGES

    Wei, Zhen; Zeng, Guangming; Huang, Fang; ...

    2015-07-04

    Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus ( R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF—hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids whilemore » growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Furthermore, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery.« less

  5. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    PubMed

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Brassica rapa Has Three Genes That Encode Proteins Associated with Different Neutral Lipids in Plastids of Specific Tissues1

    PubMed Central

    Kim, Hyun Uk; Wu, Sherry S.H.; Ratnayake, Chandra; Huang, Anthony H.C.

    2001-01-01

    Plastid lipid-associated protein (PAP), a predominant structural protein associated with carotenoids and other non-green neutral lipids in plastids, was shown to be encoded by a single nuclear gene in several species. Here we report three PAP genes in the diploid Brassica rapa; the three PAPs are associated with different lipids in specific tissues. Pap1 and Pap2 are more similar to each other (84% amino acid sequence identity) than to Pap3 (46% and 44%, respectively) in the encoded mature proteins. Pap1 transcript was most abundant in the maturing anthers (tapetum) and in lesser amounts in leaves, fruit coats, seeds, and sepals; Pap2 transcript was abundant only in the petals; and Pap3 transcript had a wide distribution, but at minimal levels in numerous organs. Immunoblotting after sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that most organs had several nanograms of PAP1 or PAP2 per milligram of total protein, the highest amounts being in the anthers (10.9 μg mg−1 PAP1) and petals (6.6 μg mg−1 PAP2), and that they had much less PAP3 (<0.02 μg mg−1). In these organs PAP was localized in isolated plastid fractions. Plants were subjected to abiotic stresses; drought and ozone reduced the levels of the three Pap transcripts, whereas mechanical wounding and altering the light intensity enhanced their levels. We conclude that the PAP gene family consists of several members whose proteins are associated with different lipids and whose expressions are controlled by distinct mechanisms. Earlier reports of the expression of one Pap gene in various organs in a species need to be re-examined. PMID:11351096

  7. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  8. Association of LIPC -250G>A polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    PubMed Central

    2010-01-01

    Background The association between -250G>A polymorphism in the promoter region of the hepatic lipase gene (LIPC) and plasma high-density lipoprotein cholesterol (HDL-C) concentration is contradictory in diverse ethnics. Bai Ku Yao is an isolated subgroup of the Yao minority in China. This study was designed to detect the association of LIPC -250G>A (rs2070895) polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 778 subjects of Bai Ku Yao and 648 participants of Han Chinese aged 15-80 were randomly selected from our previous stratified randomized cluster samples. Genotyping of the LIPC -250G>A was performed by polymerse chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), HDL-C, low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) AI were lower in Bai Ku Yao than in Han (P < 0.01 for all). The frequencies of GG, GA and AA genotypes were 50.0%, 43.3% and 6.7% in Bai Ku Yao, and 35.7%, 50.6% and 13.7% in Han (P < 0.01); respectively. The frequencies of G and A alleles were 71.7% and 28.3% in Bai Ku Yao, and 61.0% and 39.0% in Han (P < 0.01). The levels of HDL-C and the ratio of ApoAI to ApoB in Bai Ku Yao were lower in GG genotype than in GA or AA genotype (P < 0.05-0.01). The levels of TC, HDL-C, LDL-C and ApoB in Han were lower in GG genotype than in GA or AA genotype (P < 0.05-0.01). The levels of HDL-C and the ratio of ApoAI to ApoB in Bai Ku Yao, and the levels of HDL-C, LDL-C and ApoB in Han were correlated with genotype and/or allele (P < 0.05 for all). Serum lipid parameters were also correlated with age, sex, alcohol consumption, cigarette smoking, blood pressure, body weight, and body mass index in both ethnic groups. Conclusions The differences in the serum lipid profiles between the two ethnic groups might partly result from

  9. TyG Index Change Is More Determinant for Forecasting Type 2 Diabetes Onset Than Weight Gain

    PubMed Central

    Navarro-González, David; Sánchez-Íñigo, Laura; Fernández-Montero, Alejandro; Pastrana-Delgado, Juan; Martinez, Jose Alfredo

    2016-01-01

    Abstract The risk of type 2 diabetes associated with obesity appears to be influenced by other metabolic abnormalities, and there is controversy about the harmless condition of the metabolically healthy obese (MHO) state. The aim of this study is to assess the risk of diabetes and the impact of changes in weight and in triglyceride-glucose index (TyG index), according to the metabolic health and obesity states. We analyzed prospective data of the Vascular Metabolic CUN cohort, a population-based study among a White European population (mean follow-up, 8.9 years). Incident diabetes was assessed in 1923 women and 3016 men with a mean age at baseline of 55.33 ± 13.68 and 53.78 ± 12.98 years old. A Cox proportional-hazard analysis was conducted to estimate the hazard ratio (HR) of diabetes on metabolically healthy nonobese (MHNO), metabolically healthy obese, metabolically unhealthy nonobese (MUNO), and metabolically unhealthy obese (MUO). A continuous standardized variable (z-score) was derived to compute the HR for diabetes per 1-SD increment in the body mass index (BMI) and the TyG index. MHO, MUNO, and MUO status were associated with the development of diabetes, HR of 2.26 (95% CI: 1.25–4.07), 3.04 (95% CI: 1.69–5.47), and 4.04 (95% CI: 2.14–7.63), respectively. MUNO individuals had 1.82 greater risk of diabetes compared to MHO subjects (95% CI: 1.04–3.22). The HRs for incident diabetes per 1-SD increment in BMI and TyG indexes were 1.23 (95% CI: 1.04–1.44) and 1.54 (95% CI: 1.40–1.68). The increase in BMI did not raise the risk of developing diabetes among metabolically unhealthy subjects, whereas increasing the TyG index significantly affect the risk in all metabolic health categories. Metabolic health is more important determinant for diabetes onset than weight gain. The increase in weight does not raise the risk of developing diabetes among metabolically unhealthy subjects. PMID:27175686

  10. Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats.

    PubMed

    Nemoseck, Tricia M; Carmody, Erin G; Furchner-Evanson, Allison; Gleason, Marsa; Li, Amy; Potter, Hayley; Rezende, Lauren M; Lane, Kelly J; Kern, Mark

    2011-01-01

    Various dietary carbohydrates have been linked to obesity and altered adipose metabolism; however, the influences of honey vs common sweeteners have not been fully explored. We hypothesized that in comparison with sucrose, a honey-based diet would promote lower weight gain, adiposity, and related biomarkers (leptin, insulin, and adiponectin) as well as a better blood lipid profile. Thirty-six male Sprague-Dawley rats (228.1 ± 12.5 g) were equally divided by weight into 2 groups (n = 18) and provided free access to 1 of 2 diets of equal energy densities differing only in a portion of the carbohydrate. Diets contained 20% carbohydrate (by weight of total diet) from either clover honey or sucrose. After 33 days, epididymal fat pads were excised and weighed, and blood was collected for analyses of serum concentrations of lipids, glucose, and markers of adiposity and inflammation. Body weight gain was 14.7% lower (P ≤ .05) for rats fed honey, corresponding to a 13.3% lower (P ≤ .05) consumption of food/energy, whereas food efficiency ratios were nearly identical. Epididymal fat weight was 20.1% lower (P ≤ .05) for rats fed honey. Serum concentrations of triglycerides and leptin were lower (P ≤ .05) by 29.6% and 21.6%, respectively, and non-high-density lipoprotein cholesterol was higher (P ≤ .05) by 16.8% for honey-fed rats. No significant differences in serum total cholesterol, high-density lipoprotein cholesterol, adiponectin, C-reactive protein, monocyte chemoattractant protein-1, glucose, or insulin were detected. These results suggest that in comparison with sucrose, honey may reduce weight gain and adiposity, presumably due to lower food intake, and promote lower serum triglycerides but higher non-high-density lipoprotein cholesterol concentrations. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    PubMed

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Granuloma Weight and the α1-acute Phase Protein Response in Rats Injected with Turpentine

    PubMed Central

    Darcy, D. A.

    1970-01-01

    Rats of 6 different age (and weight) groups were injected with turpentine subcutaneously in a single depot at 4 different doses per kg. body weight. In each age/weight group the weight of the turpentine granuloma produced at 48 hr was proportional to log turpentine dose. The 48 hr response of the α1-AP (acute phase) globulin was also proportional to log turpentine dose and was proportional to the granuloma weight. When rats of different age/weight groups were compared it was found that granuloma weight increased logarithmically with body weight for a given turpentine dose per kg. body weight. More remarkably, granuloma weight increased logarithmically with body weight for a constant volume of turpentine injected per rat, thus 0·2 ml. of turpentine gave an 0·65 g. granuloma in 60 g. (4-week old) rats and a 5 g. granuloma in 371 g. (40-week old) rats. The possibility of an age influence on this phenomenon was not excluded by these experiments. The α1-AP globulin response also increased logarithmically with body weight for a given turpentine dose per kg. body weight. For a constant volume of turpentine per rat, the response increased logarithmically with body weight and directly with granuloma weight. It was concluded that this acute phase protein response is closely correlated with the size of the lesion. There was some evidence, however, that the age of the rat may make a contribution to the response. The histology of the granulomata is described. PMID:4190826

  13. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2017-10-01

    Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Body Mass Index and Cardiovascular Risk Factors in Children and Adolescents with High Birth Weight.

    PubMed

    Ledo, Daniel L; Suano-Souza, Fabíola Isabel; Franco, Maria do Carmo P; Strufaldi, Maria Wany L

    2018-01-01

    This study aimed to identify a possible association among high birth weight with overweight/obesity, high arterial blood pressure, dyslipidemia, and insulin resistance in children and adolescents. This is a cross-sectional study with 719 children and adolescents (6-12 years) stratified according to birth weight (low birth weight [LBW] <2,500 g, adequate birth weight [ABW] 2,500-3,999 g, and high birth weight [HBW] ≥4,000 g). Data collected were anthropometric data, arterial blood pressure levels, lipid profile, and insulin resistance (fasting glucose and insulin, used to calculate homeostatic model assessment-IR). The mean age of schoolchildren was 9.5 ± 2.0 years and 371 (51.6%) were male. LBW and HBW were observed in 79 of 719 (10.9%) and 40 of 719 (55.6%) children/adolescents, respectively. There was no increased risk of overweight (OR 0.9; 95% CI 0.4-2.1; p = 0.964) and obesity (OR 1.4; 95% CI 0.6-3.5; p = 0.588) in HBW group compared to LBW and ABW groups. HBW was not associated with high blood pressure, dyslipidemia, and insulin resistance. The LBW group was independently associated with higher values of systolic (OR 1.07; 95% CI 1.05-1.10; p < 0.01) and diastolic blood pressure (OR 1.04; 95% CI 1.00-1.07; p = 0.044). There was no association between HBW with overweight/obesity and classic cardiovascular risk factors in this group of children/adolescents. Only LBW was related to higher blood pressure levels. © 2018 S. Karger AG, Basel.

  15. Influence of Maternal Obesity and Gestational Weight Gain on Maternal and Foetal Lipid Profile.

    PubMed

    Cinelli, Giulia; Fabrizi, Marta; Ravà, Lucilla; Ciofi Degli Atti, Marta; Vernocchi, Pamela; Vallone, Cristina; Pietrantoni, Emanuela; Lanciotti, Rosalba; Signore, Fabrizio; Manco, Melania

    2016-06-15

    Fatty acids (FAs) are fundamental for a foetus's growth, serving as an energy source, structural constituents of cellular membranes and precursors of bioactive molecules, as well as being essential for cell signalling. Long-chain polyunsaturated FAs (LC-PUFAs) are pivotal in brain and visual development. It is of interest to investigate whether and how specific pregnancy conditions, which alter fatty acid metabolism (excessive pre-pregnancy body mass index (BMI) or gestational weight gain (GWG)), affect lipid supply to the foetus. For this purpose, we evaluated the erythrocyte FAs of mothers and offspring (cord-blood) at birth, in relation to pre-pregnancy BMI and GWG. A total of 435 mothers and their offspring (237 males, 51%) were included in the study. Distribution of linoleic acid (LA) and α-linolenic acid (ALA), and their metabolites, arachidonic acid, dihomogamma linoleic (DGLA) and ecosapentanoic acid, was significantly different in maternal and foetal erythrocytes. Pre-pregnancy BMI was significantly associated with maternal percentage of MUFAs (Coeff: -0.112; p = 0.021), LA (Coeff: -0.033; p = 0.044) and DHA (Coeff. = 0.055; p = 0.0016); inadequate GWG with DPA (Coeff: 0.637; p = 0.001); excessive GWG with docosaexahenoic acid (DHA) (Coeff. = -0.714; p = 0.004). Moreover, pre-pregnancy BMI was associated with foetus percentage of PUFAs (Coeff: -0.172; p = 0.009), omega 6 (Coeff: -0.098; p = 0.015) and DHA (Coeff: -0.0285; p = 0.036), even after adjusting for maternal lipids. Our findings show that maternal GWG affects maternal but not foetal lipid profile, differently from pre-pregnancy BMI, which influences both.

  16. Lamellar Biogels: Fluid-Membrane Based Hydrogels Containing Polymer-Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Davidson, P.; Slack, N. L.; Idziak, S. H. J.; Schmidt, H. W.; Safinya, C. R.

    1996-03-01

    A new class of lamellar biogels containing low molecular weight (MW 5181, 2053 and 576 g/mole) polyethylene glycol-surfactants is described (H. Warriner et. al., Science, (in press)). The gels were formed in 7 different systems using two types of polymer-surfactants: (i) polymer-lipids based on the lipid DMPE covalently attached to the different MW of PEG (ii) polymer-surfactants of the two largest PEG MW covalently attached to double-tailed phenyl surfactants with 14 or 18 carbon tails. Unlike isotropic hydrogels of polymer networks, these membrane-based liquid crystalline biogels, labeled L_α,g, form through the addition of water to a liquid-like L_α phase. The signature of the L_α,g regime in these systems is a dramatic increase in layer-dislocation defects, stabilized by aggregation of the PEG-surfactants to the high curvature defect regions. These regions connect and "entangle" the membranes, causing gelation. A simple model describing these phenomena is that the inclusion of the polymer-surfactants in lamellar membranes softens the free energy of high curvature line-defects, leading to proliferation and gelation.

  17. Saturation of SERCA's lipid annulus may protect against its thermal inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajardo, Val Andrew; Center for Bone and Muscle Health, Brock University, St. Catharines, ON; Department of Health Sciences, Brock University, St. Catharines, ON

    The sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps are integral membrane proteins that catalyze the active transport of Ca{sup 2+} into the sarcoplasmic reticulum, thereby eliciting muscle relaxation. SERCA pumps are highly susceptible to oxidative damage, and cytoprotection of SERCA dampens thermal inactivation and is a viable therapeutic strategy in combating diseases where SERCA activity is impaired, such as muscular dystrophy. Here, we sought to determine whether increasing the percent of saturated fatty acids (SFA) within SERCA's lipid annulus through diet could protect SERCA pumps from thermal inactivation. Female Wistar rats were fed either a semi-purified control diet (AIN93G, 7% soybeanmore » oil by weight) or a modified AIN93G diet containing high SFA (20% lard by weight) for 17 weeks. Soleus muscles were extracted and SERCA lipid annulus and activity under thermal stress were analyzed. Our results show that SERCA's lipid annulus is abundant with short-chain (12–14 carbon) fatty acids, which corresponds well with SERCA's predicted bilayer thickness of 21 Å. Under control-fed conditions, SERCA's lipid annulus was already highly saturated (79%), and high-fat feeding did not increase this any further. High-fat feeding did not mitigate the reductions in SERCA activity seen with thermal stress; however, correlational analyses revealed significant and strong associations between % SFA and thermal stability of SERCA activity with greater %SFA being associated with lower thermal inactivation and greater % polyunsaturation and unsaturation index being associated with increased thermal inactivation. Altogether, these findings show that SERCA's lipid annulus may influence its susceptibility to oxidative damage, which could have implications in muscular dystrophy and age-related muscle wasting. - Highlights: • SERCA's lipid annulus in rat soleus was measured after immunoconcentration. • Short fatty acid chains surround SERCA and may ensure

  18. The significance of fructose and MSG in affecting lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Rahman, Shariffah Nurhidayah Syed Abdul; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2018-04-01

    Optimization of fermentation medium for the production of docosahexaenoic acid (DHA) by Aurantiochytrium sp. SW1 was carried out. In this study, levels of fructose, monosodium glutamate (MSG) and sea salt were optimized for enhanced lipid and DHA production using response surface methodology (RSM). The design contains a total of 20 runs with 6 central points replication. Cultivation was carried out in 500 mL flasks containing 100 mL nitrogen limited medium at 30°C for 96h. Sequential model sum of squares (SS) revealed that the system was adequately represented by a quadratic model (p<0.0001). ANOVA results showed that fructose and MSG as a single factor has significant positive effect on the DHA content of SW1. The estimated optimal levels of the factors were 100 g/L fructose, 8 g/L MSG and 47% sea salt. Subsequent cultivation employing the suggested values confirmed that the predicted response values were experimentally achievable and reproducible, where 8.82 g/L DHA (51.34% g/g lipid) was achieved.

  19. Effects of 6-month sitagliptin treatment on glucose and lipid metabolism, blood pressure, body weight and renal function in type 2 diabetic patients: a chart-based analysis.

    PubMed

    Yanai, Hidekatsu; Adachi, Hiroki; Hamasaki, Hidetaka; Masui, Yoshinori; Yoshikawa, Reo; Moriyama, Sumie; Mishima, Shuichi; Sako, Akahito

    2012-08-01

    Sitagliptin is one of the dipeptidyl peptidase-4 (DPP-4) inhibitors which prevent the inactivation of incretins, increasing the endogenous active incretin levels. Incretins stimulate insulin secretion from pancreatic β-cells and inhibit glucagon secretion from pancreatic α-cells, which is favorable for the treatment of diabetes. Sitagliptin is released on December, 2009, in Japan. We retrospectively studied effects of 6-month-treatment with sitagliptin on glucose and lipid metabolism, blood pressure, body weight and renal function in patients with type 2 diabetes by a chart-based analysis. We retrospectively studied 220 type 2 diabetic patients who have taken sitagliptin for 6 months by a chart-based analysis. Subjects studied include patients treated with sitagliptin monotherapy, sitagliptin add-on therapy, and switching from glinide to sitagliptin. We selected patients who have both data before and after 6-month sitagliptin treatment and compared the data before the sitagliptin treatment with the data at 6 month after the sitagliptin treatment started. Body weight, blood pressure, plasma glucose, hemoglobin A1c (HbA1c), serum lipids, and estimated glomerular filtration rate in type 2 diabetic patients were measured almost at the same time points before and after 6-month-treatment with sitagliptin. Body weight was significantly reduced after 6-month sitagliptin treatment by 0.8 kg. HbA1c levels were also significantly decreased after the sitagliptin treatment by 0.6%. We found a significant and negative correlation between change in body weight and body mass index at baseline. We also observed a significant and negative correlation between change in HbA1c and HbA1c levels at baseline. The number of patients who showed the absence of urinary glucose was significantly increased after the sitagliptin treatment.

  20. Lipid parameters in obese and normal weight patients with or without chronic periodontitis.

    PubMed

    Cury, Eduardo Zaccarias; Santos, Vanessa Renata; Maciel, Suellen da Silva; Gonçalves, Tiago Eduardo Dias; Zimmermann, Glaucia Santos; Mota, Rosa Maria Salani; Figueiredo, Luciene Cristina; Duarte, Poliana Mendes

    2018-01-01

    The aim of this study was to evaluate the serum levels of lipids in patients with normal weight (NW) or obesity with or without chronic periodontitis (ChP). One hundred and sixty non-smoking patients without history of diabetes and/or cardiovascular events were allocated into one of the following groups: NW patients with periodontal health (NWH; n = 40), NW patients with ChP (NWChP; n = 40), obese patients with periodontal health (ObH; n = 40), and obese patients with ChP (ObChP; n = 40). Serum levels of total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides (TRG) were estimated. After adjustments for gender and age, both NW groups presented lower levels of TRG than both obese groups (p < 0.05). The NWH group presented lower levels of LDL than both periodontitis groups (p < 0.05) and the lowest TC/HDL ratio when compared to the other groups (p < 0.05). Females from the NWH group exhibited higher levels of HDL and lower LDL/HDL ratio than females from the ObChP group (p < 0.05). Furthermore, individuals from the ObChP group were more likely to have levels of LDL ≥130 mg/dl and HDL ≤40 mg/dl, compared to those from the NWH group (p < 0.05). ChP and obesity, jointly or individually, are associated with undesirable pro-atherogenic lipid profiles. There is interest in identifying clinical conditions associated with dyslipidemia to improve preventive and treatment strategies. This study demonstrated that ChP, obesity, and the association of both conditions might be related to pro-atherogenic lipid profiles.

  1. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Durgesh K.; Qian, Shuo

    Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. Here in this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratiomore » (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Finally, our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.« less

  2. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo

    2017-06-16

    Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. Here in this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratiomore » (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Finally, our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.« less

  3. Ultrasound active nanoscaled lipid formulations for thrombus lysis.

    PubMed

    Becker, Andreas; Marxer, Elena; Brüssler, Jana; Hoormann, Anne Sophia; Kuhnt, Daniela; Bakowsky, Udo; Nimsky, Christopher

    2011-04-01

    In the present study, we investigated the sonothrombolytic effect of new nanoscaled lipid formulations in human blood clots, using diagnostic ultrasound. Human blood clots of 1 ml were incubated with 1 μl of the different lipid dispersions DPPC/CH, DPPC/PEG40S, DSPC/PEG40S and the commercially available ultrasound contrast agent SonoVue®. Clots were stored for 3 days at 5 °C to obtain maximal clot retraction and lytic resistance. Each clot weight was determined before and after continuous insonation for 1h of insonation at 1.4 MHz. The pressure in the insonation chamber was 80 mm Hg to mimic middle arterial blood pressure. There were no significant differences in thrombus weight before insonation. All nanoscaled formulations and SonoVue® were able to reduce thrombus weight compared to the weight loss of clots that were not insonated but kept under pressure for one hour (p < 0.001). We found a highly significant weight reduction with DSPC/PEG40S compared to SonoVue® (p = 0.007). Nanoscaled DSPC/PEG40S dispersion could be a promising formulation in ultrasound enhanced thrombolysis even without thrombolytic drugs. Stable cavitation is a crucial parameter in fragmentation of thrombus architecture. Further studies of physicochemical properties of DSPC/PEG40S are necessary to corroborate our hypothesis. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Chlorogenic acid-enriched extract from Eucommia ulmoides leaves inhibits hepatic lipid accumulation through regulation of cholesterol metabolism in HepG2 cells.

    PubMed

    Hao, Shun; Xiao, Yuan; Lin, Yan; Mo, Zhentao; Chen, Yang; Peng, Xiaofeng; Xiang, Canhui; Li, Yiqi; Li, Wenna

    2016-01-01

    Eucommia ulmoides Oliver (Eucommiaceae) leaf exhibits beneficial lipid-lowering and anti-obesity effects. However, the mechanisms remain unknown. The objective of this study is to investigate the lipid-lowering effects of chlorogenic acid (CGA)-enriched extract from this plant (CAEF) in human hepatoma HepG2 cells, focusing on cholesterol metabolism. HepG2 cells were treated with CAEF (10, 20, 25, 40, 60, and 80 mg/L), CGA (0.3, 3, 30, 300, and 600 μmol/L), and simvastatin (0.1, 1, 10, 50, and 100 μmol/L) for 24 or 48 h. The cytotoxicity, Oil red O staining, total cholesterol, and triacylglycerol in supernatants were determined. The mRNA expression of genes involved in cholesterol metabolism was determined with RT-PCR. The protein expression of HMG-CoA reductase (HMGCR) was examined by immunocytochemistry and western-blot. The IC50 values were 59.2 mg/L for CAEF, 335.9 μmol/L for CGA, and 10.5 μmol/L for simvastatin. By treating cells with CAEF (25 mg/L), CGA (30 μmol/L), or simvastatin (10 μmol/L) for 48 h, the efflux of total cholesterol and triacylglycerol was increased (CAEF, 4.06- and 31.00-folds; CGA, 2.94- and 2.17-folds; and simvastatin, 3.94- and 24.67-folds), and the cellular lipid droplets were reduced in Oil red O staining. CAEF and CGA increased mRNA expression of ABCA1, CYP7A1, and AMPKα2, while CAEF and simvastatin decreased SREBP2. However, their effects on LXRα mRNA expression were variable. Importantly, all drugs significantly inhibited protein expression of HMGCR at mRNA and protein levels. CAEF is a promising dietary supplement to prevent obesity and dyslipidemia and the effects appear to be due, at least in part, to regulating cholesterol metabolism through inhibition of HMGCR in HepG2 cells.

  5. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans

    PubMed Central

    Ismail, Khaled MK; Haworth, Kim E; Mein, Charles; Carroll, William D

    2011-01-01

    Supplementation with folic acid during pregnancy is known to reduce the risk of neural tube defects and low birth weight. It is thought that folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. We examined the effects of folate on the human methylome using quantitative interrogation of 27,578 CpG loci associated with 14,496 genes at single-nucleotide resolution across 12 fetal cord blood samples. Consistent with previous studies, the majority of CpG dinucleotides located within CpG islands exhibited hypomethylation while those outside CpG islands showed mid-high methylation. However, for the first time in human samples, unbiased analysis of methylation across samples revealed a significant correlation of methylation patterns with plasma homocysteine, LINE-1 methylation and birth weight centile. Additionally, CpG methylation significantly correlated with either birth weight or LINE-1 methylation were predominantly located in CpG islands. These data indicate that levels of folate-associated intermediates in cord blood reflect their influence and consequences for the fetal epigenome and potentially on pregnancy outcome. In these cases, their influence might be exerted during late gestation or reflect those present during the peri-conceptual period. PMID:20864804

  6. Maternal weight change between 1 and 2 years postpartum: the importance of 1 year weight retention.

    PubMed

    Lipsky, Leah M; Strawderman, Myla S; Olson, Christine M

    2012-07-01

    Pregnancy weight gain may lead to long-term increases in maternal BMI for some women. The objective of this study was to examine maternal body weight change 1y-2y postpartum, and to compare classifications of 2y weight retention with and without accounting for 1y-2y weight gain. Early pregnancy body weight (EPW, first trimester) was measured or imputed, and follow-up measures obtained before delivery, 1 year postpartum (1y) and 2 years postpartum (2y) in an observational cohort study of women seeking prenatal care in several counties in upstate New York (n = 413). Baseline height was measured; demographic and behavioral data were obtained from questionnaires and medical records. Associations of 1y-2y weight change (kg) and 1y-2y weight gain (≥2.25 kg) with anthropometric, socioeconomic, and behavioral variables were evaluated using linear and logistic regressions. While mean ± SE 1y-2y weight change was 0.009 ± 4.6 kg, 1y-2y weight gain (≥2.25 kg) was common (n = 108, 26%). Odds of weight gain 1y-2y were higher for overweight (OR(adj) = 2.63, CI(95%) = 1.43-4.82) and obese (OR(adj) = 2.93, CI(95%) = 1.62-5.27) women than for women with BMI <25. Two year weight retention (2y-EPW ≥2.25 kg) was misclassified in 38% (n = 37) of women when 1y-2y weight gain was ignored. One year weight retention (1YWR) (1y-EPW) was negatively related to 1y-2y weight change (β(adj) ± SE = -0.28 ± 0.04, P < 0.001) and weight gain (≥2.25 kg) (OR(adj) = 0.91, CI(95%) = 0.87-0.95). Relations between 1y weight retention and 1y-2y weight change were attenuated for women with higher early pregnancy BMI. Weight change 1y-2y was predicted primarily by an inverse relation with 1y weight retention. The high frequency of weight gain has important implications for classification of postpartum weight retention.

  7. Maternal Weight Change Between 1 and 2 Years Postpartum: The Importance of 1 Year Weight Retention

    PubMed Central

    Lipsky, Leah M.; Strawderman, Myla S.; Olson, Christine M.

    2016-01-01

    Pregnancy weight gain may lead to long-term increases in maternal BMI for some women. The objective of this study was to examine maternal body weight change 1y–2y postpartum, and to compare classifications of 2y weight retention with and without accounting for 1y–2y weight gain. Early pregnancy body weight (EPW, first trimester) was measured or imputed, and follow-up measures obtained before delivery, 1 year postpartum (1y) and 2 years postpartum (2y) in an observational cohort study of women seeking prenatal care in several counties in upstate New York (n = 413). Baseline height was measured; demographic and behavioral data were obtained from questionnaires and medical records. Associations of 1y–2y weight change (kg) and 1y–2y weight gain (≥2.25 kg) with anthropometric, socioeconomic, and behavioral variables were evaluated using linear and logistic regressions. While mean ± SE 1y–2y weight change was 0.009 ± 4.6 kg, 1y–2y weight gain (≥2.25 kg) was common (n = 108, 26%). Odds of weight gain 1y–2y were higher for overweight (ORadj = 2.63, CI95% = 1.43–4.82) and obese (ORadj = 2.93, CI95% = 1.62–5.27) women than for women with BMI <25. Two year weight retention (2y–EPW ≥2.25 kg) was misclassified in 38% (n = 37) of women when 1y–2y weight gain was ignored. One year weight retention (1YWR) (1y–EPW) was negatively related to 1y–2y weight change (βadj ± SE = −0.28 ± 0.04, P < 0.001) and weight gain (≥2.25 kg) (ORadj = 0.91, CI95% = 0.87–0.95). Relations between 1y weight retention and 1y–2y weight change were attenuated for women with higher early pregnancy BMI. Weight change 1y–2y was predicted primarily by an inverse relation with 1y weight retention. The high frequency of weight gain has important implications for classification of postpartum weight retention. PMID:22334257

  8. Lipids and fatty acids in roasted chickens.

    PubMed

    Souza, S A; Visentainer, J V; Matsushita, M; Souza, N E

    1999-09-01

    Total lipids from meat portions of breast, thigh, wing, side and back with and without skin from 10 roasted chickens were extracted with chloroform and methanol and gravimetrically determined, and their fatty acids were analysed as methyl esters by gaseous chromatography, using a flame ionization detector and capillary column. The main fatty acids found were: C16:0, C18:1 omega 9, and C18:2 omega 6. The average ratio observed between PUFA/SFA was of 0.98, mainly due to the great concentration of the C18:2 omega 6 fatty acid, with an average of 26.75%. Regarding to the lipids content, the skinless breast showed the lowest content, 0.78 g/100 g, while the back with skin was the one with the highest content, 12.13 g/100 g except for the pure skin, with 26.54 grams of lipids by 100 grams.

  9. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Sun, Tian-Meng; Mao, Cheng-Qiong; Wang, Hong-Xia; Wang, Jun

    2011-12-10

    Delivery of small interfering RNA (siRNA) has been one of the major hurdles for the application of RNA interference in therapeutics. Here, we describe a cationic lipid assisted polymeric nanoparticle system with stealthy property for efficient siRNA encapsulation and delivery, which was fabricated with poly(ethylene glycol)-b-poly(d,l-lactide), siRNA and a cationic lipid, using a double emulsion-solvent evaporation technique. By incorporation of the cationic lipid, the encapsulation efficiency of siRNA into the nanoparticles could be above 90% and the siRNA loading weight ratio was up to 4.47%, while the diameter of the nanoparticles was around 170 to 200nm. The siRNA retained its integrity within the nanoparticles, which were effectively internalized by cancer cells and escaped from the endosome, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in HepG2-luciferase cells which stably express luciferase, and suppression of polo-like kinase 1 (Plk1) expression in HepG2 cells, following delivery of specific siRNAs by the nanoparticles. Furthermore, the nanoparticles carrying siRNA targeting the Plk1 gene were found to induce remarkable apoptosis in both HepG2 and MDA-MB-435s cancer cells. Systemic delivery of specific siRNA by nanoparticles significantly inhibited luciferase expression in an orthotopic murine liver cancer model and suppressed tumor growth in a MDA-MB-435s murine xenograft model, suggesting its therapeutic promise in disease treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The potential role of IDEAL MRI for identification of lipids and hemorrhage in carotid artery plaques.

    PubMed

    Khosa, Faisal; Clough, Rachel E; Wang, Xiaoen; Madhuranthakam, Ananth J; Greenman, Robert L

    2018-06-01

    Hemorrhage and lipid deposits contribute to instability in atherosclerotic plaques. Unstable carotid artery plaques can lead to cerebral ischemic events. While MRI studies have shown the ability to identify plaque components, the identification of hemorrhage and lipids has proven to be problematic. The purpose of this study was to quantitatively evaluate the potential of the MRI fat/water separation method known as iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) to complement and improve existing methods for the identification of hemorrhage and lipids in carotid artery plaques. Fifteen asymptomatic subjects with 50-79% stenosis of at least one carotid artery were enrolled. Hemorrhage and lipid components within carotid plaques were identified using previously published criteria based on the multiple contrast-weighted (MCW) method (3D Time-of-Flight (3D-TOF), T1-Weighted (T1W) and T2-Weighted (T2W)). The hemorrhage:muscle, lipid:muscle and intra-plaque lipid:hemorrhage signal intensity ratios (SIR) and contrast to noise ratios (CNR) were measured on MCW and compared to IDEAL black-blood images. No differences were found between any of the MCW methods for any of the SIRs measured. The IDEAL Fat images had higher lipid:muscle and lipid/hemorrhage SIRs (p<0.001) compared to IDEAL Water and all MCW image sequence types. The mean values of IDEAL Fat hemorrhage:muscle SIR and CNR were nearly unity (1.1±0.6) and nearly zero (0.1±1.1), respectively. The IDEAL Water imaging was not significantly different than any of the MCW methods for any of the SIRs or for the hemorrhage:muscle CNR of 3D-TOF, while its CNRs were significantly higher than IDEAL Fat lipid:muscle (p<0.05) and lipid:hemorrhage (p<0.001) and all MCW methods (p<0.001). The addition of IDEAL Water and Fat imaging to the MCW method shows potential to improve the identification of hemorrhage and lipid structures in carotid artery plaques. Copyright © 2017

  11. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum.

    PubMed

    De Luca, Arnaud; Frasquet-Darrieux, Marine; Gaud, Marie-Agnès; Christin, Patricia; Boquien, Clair-Yves; Millet, Christine; Herviou, Manon; Darmaun, Dominique; Robins, Richard J; Ingrand, Pierre; Hankard, Régis

    2016-01-01

    Exclusively breastfed infants born to obese mothers have previously been shown to gain less weight by 1-month postpartum than infants of normal-weight mothers. Our hypothesis is that human milk composition and volume may differ between obese and normal-weight mothers. To compare human milk leptin, macronutrient concentration, and volume in obese and normal-weight mothers. Mother and infant characteristics were studied as secondary aims. This cross-sectional observational study compared 50 obese mothers matched for age, parity, ethnic origin, and educational level with 50 normal-weight mothers. Leptin, macronutrient human milk concentration, and milk volume were determined at 1 month in exclusively breastfed infants. Mother characteristics and infant growth were recorded. Human milk leptin concentration was higher in obese mothers than normal-weight mothers (4.8±2.7 vs. 2.5±1.5 ng.mL-1, p<0.001). No difference was observed between obese and normal-weight mothers in protein, lipid, carbohydrate content, and volume, nor in infant weight gain. Leptin concentration was higher in the milk of obese mothers than that of normal-weight mothers, but macronutrient concentration was not. It remains to be established whether the higher leptin content impacts on infant growth beyond the 1-month of the study period.

  12. Biochemical analyses of lipids deposited on silicone hydrogel lenses

    PubMed Central

    Hatou, Shin; Fukui, Masaki; Yatsui, Keiichi; Mochizuki, Hiroshi; Akune, Yoko; Yamada, Masakazu

    2010-01-01

    Purpose This study was performed to determine the levels of lipids deposited on in vivo worn silicone hydrogel lenses. Methods Three silicone hydrogel materials, galyfilcon A, senofilcon A, and asmofilcon A, were worn for 2 weeks by 35 normal subjects. Total lipid deposition was determined by the sulfo-phospho-vanillin reaction. Cholesterol was estimated by a colorimetric probe through enzymatic oxidation. Phospholipid level was estimated by determining phosphorus with ammonium molybdate through enzymatic digestion. Results The total lipid content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 32.9 ± 33.8, 42.1 ± 14.0, and 36.6 ± 31.9 μg/lens, respectively. The cholesterol content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 26.2 ± 26.9, 28.6 ± 19.4, and 31.1 ± 21.1 μg/lens, respectively. There were no statistically significant differences in total lipids and cholesterol among the contact lens types. However, the quantity of phospholipid recovered from the asmofilcon A (7.0 ± 5.5 μg/lens) lenses was significantly higher than from galyfilcon A (1.1 ± 0.8 μg/lens) and senofilcon A (2.4 ± 0.8 mg/lens) lenses (p < 0.05, Mann-Whitney test). Conclusions The quantity of total lipid and cholesterol deposited on the 3 silicone hydrogel lenses tested did not differ. However, there were significant differences in the amounts of phospholipid deposited among the 3 silicone hydrogel lenses, of which clinical significance should be explored in the future study.

  13. Physico-chemical properties of a novel (-)-hydroxycitric acid extract and its effect on body weight, selected organ weights, hepatic lipid peroxidation and DNA fragmentation, hematology and clinical chemistry, and histopathological changes over a period of 90 days.

    PubMed

    Shara, Michael; Ohia, Sunny E; Schmidt, Robert E; Yasmin, Taharat; Zardetto-Smith, Andrea; Kincaid, Anthony; Bagchi, Manashi; Chatterjee, Archana; Bagchi, Debasis; Stohs, Sidney J

    2004-05-01

    Garcinia cambogia-derived (-)-hydroxycitric acid (HCA) is a popular and natural supplement for weight management. HCA is a competitive inhibitor of the enzyme ATP citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl CoA) in the cytosol. Acetyl CoA is used in the synthesis of fatty acids, cholesterol and triglycerides, and in the synthesis of acetylcholine in the central nervous system. Studies have demonstrated the efficacy of a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia (HCA-SX, Super CitriMax) in weight management. Results have shown that HCA-SX promotes fat oxidation, enhances serotonin release and availability in the brain cortex, normalizes lipid profiles, and lowers serum leptin levels in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity, as well as Ames bacterial reverse mutation studies and mouse lymphoma tests have demonstrated the safety of HCA-SX. However, no detailed long-term safety of HCA-SX or any other HCA extract has been previously assessed. We evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, selected organ weights, hepatic lipid peroxidation and DNA fragmentation, hematology and clinical chemistry over a period of 90 days. Furthermore, a 90-day histopathological evaluation was conducted. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX of feed intake and were sacrificed on 30, 60 or 90 days of treatment. The body weight and selected organ weights were assessed and correlated as a % of body weight and brain weight at 90 days of treatment. A significant reduction in body weight was observed in treated rats as compared to control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats, while no such difference in hepatic DNA fragmentation was observed as compared to the control

  14. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue is one of the major sites for fatty acid synthesis and lipid storage. We generated adipose (fat)-specific ACC1 knockout (FACC1KO) mice using the aP2-Cre/loxP system. FACC1KO mice showed prenatal growth retardation; after weaning, however, their weight gain was comparable to that of wi...

  15. Body weight lower limits of fetal postmortem MRI at 1.5 T.

    PubMed

    Jawad, N; Sebire, N J; Wade, A; Taylor, A M; Chitty, L S; Arthurs, O J

    2016-07-01

    To evaluate the diagnostic yield of postmortem magnetic resonance imaging (PM-MRI) compared with conventional autopsy in fetuses of early gestational age and low body weight. Fetuses of < 31 weeks' gestation that underwent 1.5-T PM-MRI and conventional autopsy were included. The findings of PM-MRI and conventional autopsy were reported blinded to each other. The reports of conventional autopsy and PM-MRI for each organ system (cardiovascular, neurological, abdominal, non-cardiac thoracic and musculoskeletal) were classified as either diagnostic or non-diagnostic. The likelihood of a non-diagnostic examination by PM-MRI was calculated according to fetal gestational age and body weight. Full datasets were examined of 204 fetuses, with mean gestational age of 20.95 ± 3.82 weeks (range, 12.0-30.7 weeks) and body-weight range of 15.9-1872 g. Body weight was the most significant predictor of diagnostic yield of PM-MRI. There was 95% confidence that 90% of fetuses will show diagnostic images by PM-MRI for all five organ systems when fetal body weight is ≥ 535 g, but < 50% of fetuses will have all five systems diagnostic on PM-MRI when body weight is < 122 g. PM-MRI is highly likely to provide adequate diagnostic images for fetuses with a body weight > 500 g. Below this weight, the diagnostic yield of standard 1.5-T PM-MRI decreases significantly. These data should help inform parents and clinicians on the suitability of performing PM-MRI in fetuses with low body weight. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  16. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection

    PubMed Central

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-01-01

    BACKGROUND: Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. METHODS: We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. RESULTS: We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. CONCLUSIONS: The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects. PMID:24567124

  17. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection.

    PubMed

    Drissi, F; Merhej, V; Angelakis, E; El Kaoutari, A; Carrière, F; Henrissat, B; Raoult, D

    2014-02-24

    Some Lactobacillus species are associated with obesity and weight gain while others are associated with weight loss. Lactobacillus spp. and bifidobacteria represent a major bacterial population of the small intestine where lipids and simple carbohydrates are absorbed, particularly in the duodenum and jejunum. The objective of this study was to identify Lactobacillus spp. proteins involved in carbohydrate and lipid metabolism associated with weight modifications. We examined a total of 13 complete genomes belonging to seven different Lactobacillus spp. previously associated with weight gain or weight protection. We combined the data obtained from the Rapid Annotation using Subsystem Technology, Batch CD-Search and Gene Ontology to classify gene function in each genome. We observed major differences between the two groups of genomes. Weight gain-associated Lactobacillus spp. appear to lack enzymes involved in the catabolism of fructose, defense against oxidative stress and the synthesis of dextrin, L-rhamnose and acetate. Weight protection-associated Lactobacillus spp. encoded a significant gene amount of glucose permease. Regarding lipid metabolism, thiolases were only encoded in the genome of weight gain-associated Lactobacillus spp. In addition, we identified 18 different types of bacteriocins in the studied genomes, and weight gain-associated Lactobacillus spp. encoded more bacteriocins than weight protection-associated Lactobacillus spp. The results of this study revealed that weight protection-associated Lactobacillus spp. have developed defense mechanisms for enhanced glycolysis and defense against oxidative stress. Weight gain-associated Lactobacillus spp. possess a limited ability to breakdown fructose or glucose and might reduce ileal brake effects.

  18. Role of -675 4G/5G in the plasminogen activator inhibitor-1 gene and -308G/A tumor necrosis factor-α gene polymorphisms in obese Argentinean patients.

    PubMed

    Wingeyer, Silvia D Perés; Graffigna, Mabel N; Belli, Susana H; Benetucci, Jorge; de Larrañaga, Gabriela F

    2012-05-01

    Plasminogen activator inhibitor-1 (PAI-1) and tumor necrosis factor-α (TNF-α) are increased in the circulation of obese persons. Because a direct link between PAI-1 and TNF-α in obesity has been observed, they are candidate genes for the development of obesity. We sought to evaluate the relation between the genotypic and allelic frequencies of the -675 4G/5G PAI-1 and -308 G/A TNF-α polymorphisms and their association with the risk for obesity in an Argentinean population. A group of 110 consecutive obese persons and a group of 111 lean controls were recruited. Polymerase chain reaction was used to determine the frequency of PAI-1 and TNF-α polymorphisms; serum fasting glucose, insulin, and lipid levels were measured by standard methods. Insulin sensitivity was evaluated by using homeostasis model assessment. The -308 TNF-α and -675 4G/5G PAI-1 genotype distribution did not significantly differ between the groups (p=0.544 and p=0.327, respectively). Homeostasis model assessment was the only positive independent determinant of body mass index (R(2)=0.493; p<0.001). The -675 4G/5G PAI-1 and the -308 TNF-α polymorphism variants tested in this study, individually or combined, were not associated with obesity in an Argentinean population.

  19. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer-bound lipid bilayer nanodiscs.

    PubMed

    Penny, William M; Palmer, Christopher P

    2018-03-01

    Styrene-maleic acid polymer-bound lipid bilayer nanodiscs have been investigated and characterized by electrokinetic chromatography. Linear solvation energy relationship analysis was employed to characterize the changes in solvation environment of nanodiscs of varied belt to lipid ratio, belt polymer chemistry and molecular weight, and lipid composition. Increases in the lipid to belt polymer ratio resulted in smaller, more cohesive nanodiscs with greater electrophoretic mobility. Nanodisc structures with belt polymers of different chemistry and molecular weight were compared and showed only minor changes in solvent characteristics and selectivity consistent with changes in structure of the lipid bilayer. Seven phospholipid and sphingomyelin nanodiscs of different lipid composition were characterized. Changes in lipid head group structure had a significant effect on bilayer-solute interactions. In most cases, changes in alkyl tail structure had no discernible effect on solvation environment aside from those explained by changes in the gel-liquid transition temperature. Comparison to vesicles of similar lipid composition show only minor differences in solvation environment, likely due to differences in lipid composition and bilayer curvature. Together these results provide evidence that the dominant solute-nanodisc interactions are with the lipid bilayer and that head group chemistry has a greater impact on bilayer-solute interactions than alkyl tail or belt polymer structure. Nanodisc electrokinetic chromatography is demonstrated to allow characterization of solute interactions with lipid bilayers of varied composition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel Interconnections in Lipid Metabolism Revealed by Overexpression of Sphingomyelin Synthase-1*

    PubMed Central

    Deevska, Gergana M.; Dotson, Patrick P.; Karakashian, Alexander A.; Isaac, Giorgis; Wrona, Mark; Kelly, Samuel B.; Merrill, Alfred H.; Nikolova-Karakashian, Mariana N.

    2017-01-01

    This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the palmitic acid is delivered as a complex with delipidated BSA (2:1, mol/mol) and does not induce significant lipotoxicity. Based on precursor labeling, the flux through SM synthase also increases, which is exacerbated in HepG2-SMS1 cells. In contrast, palmitate-induced lipid droplet formation is significantly reduced in HepG2-SMS1 cells. [14C]Choline and [3H]palmitate tracking shows that SMS1 overexpression apparently affects the partitioning of palmitate-enriched diacylglycerol between the phosphatidylcholine and triacylglycerol pathways, to the benefit of the former. Furthermore, triacylglycerols from HepG2-SMS1 cells are enriched in polyunsaturated fatty acids, which is indicative of active remodeling. Together, these results delineate novel metabolic interactions between glycerolipids and sphingolipids. PMID:28087695

  1. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    PubMed Central

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  2. Clinical and echocardiographic characteristics associated with the evolution of the ductus arteriosus in the neonate with birth weight lower than 1,500g.

    PubMed

    Visconti, Luiza Fortunato; Morhy, Samira Saady; Deutsch, Alice D'Agostini; Tavares, Gláucia Maria Penha; Wilberg, Tatiana Jardim Mussi; Rossi, Felipe de Souza

    2013-01-01

    To identify clinical and echocardiographic parameters associated with the evolution of the ductus arteriosus in neonates with birth weight lower than 1,500g. Retrospective study of 119 neonates in which clinical parameters (Prenatal: maternal age, risk of infection and chorioamnionitis, use of corticosteroid, mode of delivery and gestational age. Perinatal: weight, Apgar score, gender and birth weight/gestational age classification; Postnatal: use of surfactant, sepsis, fluid intake, heart murmur, heart rate, precordial movement and pulses, use of diuretics, oxygenation index, desaturation/apnea, ventilatory support, food intolerance, chest radiography, renal function, hemodynamic instability, and metabolic changes) and echocardiographic parameters (ductus arteriosus diameter, ductus arteriosus/weight ratio, left atrium/ aorta ratio, left ventricular diastolic diameter, and transductal flow direction, pattern and velocity) were analyzed. The clinical and echocardiographic parameters analyzed were considered statistically significant when p<0.05. In the 119 neonates, the incidence of patent ductus arteriosus was 61.3%; 56 received treatment (46 pharmacological and 10 surgical treatment), 11 had spontaneous closure, 4 died, and 2 were discharged with patent ductus arteriosus. A higher incidence of chorioamnionitis, use of surfactant, lower weight and gestational age, sepsis, heart murmur, ventilatory support and worse oxygenation indices were observed in the neonates receiving treatment. The group with spontaneous closure had a smaller ductus arteriosus diameter, lower ductus arteriosus/weight ratio, and higher transductal flow velocity. Based on clinical and echocardiographic parameters, the neonates with spontaneous closure of the ductus arteriosus could be differentiated from those who required treatment.

  3. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    PubMed

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ATP binding cassette G1-dependent cholesterol efflux during inflammation.

    PubMed

    de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-02-01

    ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.

  5. Maternal Lipids May Predict Fetal Growth in Type 2 Diabetes Mellitus and Gestational Diabetes Mellitus Pregnancies.

    PubMed

    Krstevska, Brankica; Jovanovska, Sasha Misevska; Krstevska, Slagjana Simeonova; Nakova, Valentina Velkoska; Serafimoski, Vladimir

    2016-11-01

    During diabetic pregnancy, complex metabolic changes occur in the lipid profile. The aim of the study was to determine the predictive values of maternal serum lipid levels on large-for-gestational age newborns during the third trimester in pregnancies of women with type 2 diabetes mellitus (DM2) and gestational diabetes mellitus (GDM). Data of forty three pregnancies of women with DM2 and two hundred women with GDM were analyzed. The analysis encompassed the following parameters: age, body mass index (BMI), lipid parameters, HbA1c in first, second and third trimester of pregnancy, preeclampsia and baby birth weight. DM2 and GDM groups showed statistically significant differences in the following variables: total lipids, triglycerides, total cholesterol, BMI, age, baby birth weight, incidence of SGA and preterm delivery (9.4 ± 2.3 vs. 11.0 ± 2.3 mmol/L, 2.4 ± 1.4 vs. 3.4 ± 1.6 mmol/L, 5.5 ± 1.2 vs. 6.4 ± 1.4 mmol/L, 30.6 ± 5.4 vs. 26.9 ± 5.2 kg/m2, 34 ± 7.8 vs. 31.5 ± 5.6 years, 3183 ± 972 vs. 3533 ± 699 g., 20% vs. 7.5%, 27.9 vs. 14%, respectively, p < 0.05). Linear multiple regression analysis demonstrated that triglycerides, LDL-C and total cholesterol were independent predictors of LGA (p < 0.05). Triglycerides and LDL-C in the third trimester of pregnancy are independent predictors for fetal macrosomia in DM2 and GDM pregnancies. Thus, the maternal serum triglycerides and LDL-C levels determined in the maternal blood taken in the third trimester of pregnancy may indentify women who will give birth to LGA newborns.

  6. Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis.

    PubMed

    Kul, Seval; Savaş, Esen; Öztürk, Zeynel Abidin; Karadağ, Gülendam

    2014-06-01

    In this study, we conducted a meta-analysis of self-controlled cohort studies comparing body weights, blood levels of lipids and fasting blood glucose levels before and after Ramadan taking into account gender differences. Several databases were searched up to June 2012 for studies showing an effect of Ramadan fasting in healthy subjects, yielding 30 articles. The primary finding of this meta-analysis was that after Ramadan fasting, low-density lipoprotein (SMD = -1.67, 95 % CI = -2.48 to -0.86) and fasting blood glucose levels (SMD = -1.10, 95 % CI = -1.62 to -0.58) were decreased in both sex groups and also in the entire group compared to levels prior to Ramadan. In addition, in the female subgroup, body weight (SMD = -0.04, 95 % CI = -0.20, 0.12), total cholesterol (SMD = 0.05, 95 % CI = -0.51 to 0.60), and triglyceride levels (SMD = 0.03, 95 % CI = -0.31, 0.36) remained unchanged, while HDL levels (SMD = 0.86, 95 % CI = 0.11 to 1.61, p = 0.03) were increased. In males, Ramadan fasting resulted in weight loss (SMD = -0.24, 95 % CI = -0.36, -0.12, p = 0.001). Also, a substantial reduction in total cholesterol (SMD = -0.44, 95 % CI = -0.77 to -0.11) and LDL levels (SMD = -2.22, 95 % CI = -3.47 to -0.96) and a small decrease in triglyceride levels (SMD = -0.35, 95 % CI = -0.67 to -0.02) were observed in males. In conclusion, by looking at this data, it is evident that Ramadan fasting can effectively change body weight and some biochemical parameters in healthy subjects especially in males compared to pre-Ramadan period.

  7. Peroxidised dietary lipids impair intestinal function and morphology of the small intestine villi of nursery pigs in a dose-dependent manner.

    PubMed

    Rosero, David S; Odle, Jack; Moeser, Adam J; Boyd, R Dean; van Heugten, Eric

    2015-12-28

    The objective of this study was to investigate the effect of increasing degrees of lipid peroxidation on structure and function of the small intestine of nursery pigs. A total of 216 pigs (mean body weight was 6·5 kg) were randomly allotted within weight blocks and sex and fed one of five experimental diets for 35 d (eleven pens per treatment with three to four pigs per pen). Treatments included a control diet without added lipid, and diets supplemented with 6 % soyabean oil that was exposed to heat (80°C) and constant oxygen flow (1 litre/min) for 0, 6, 9 and 12 d. Increasing lipid peroxidation linearly reduced feed intake (P<0·001) and weight gain (P=0·024). Apparent faecal digestibility of gross energy (P=0·001) and fat (P<0·001) decreased linearly as the degree of peroxidation increased. Absorption of mannitol (linear, P=0·097) and d-xylose (linear, P=0·089), measured in serum 2 h post gavage with a solution containing 0·2 g/ml of d-xylose and 0·3 g/ml of mannitol, tended to decrease progressively as the peroxidation level increased. Increasing peroxidation also resulted in increased villi height (linear, P<0·001) and crypt depth (quadratic, P=0·005) in the jejunum. Increasing peroxidation increased malondialdehyde concentrations (quadratic, P=0·035) and reduced the total antioxidant capacity (linear, P=0·044) in the jejunal mucosa. In conclusion, lipid peroxidation progressively diminished animal performance and modified the function and morphology of the small intestine of nursery pigs. Detrimental effects were related with the disruption of redox environment of the intestinal mucosa.

  8. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    PubMed

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  9. [Effects of adiponectin gene SNP45T/G on changes of serum lipid ratios induced by high-carbohydrate/low-fat diet in healthy Chinese youth].

    PubMed

    Li, Yu-jia; Fang, Ding-zhi; Gong, Ren-rong; Du, Juan; Huang, Xin

    2010-09-01

    To investigate the effects of adiponectin gene (APM1) SNP45T/G on serum lipid ratios and their responses to high-carbohydrate/low-fat (HC/LF) diet in healthy young Chinese. Fifty-six healthy young subjects were given two consecutive diets. The first was control diet (54% carbohydrate, 15% protein, and 31% fat) for 7 days, and the second was HC/LF diet (70% carbohydrate, 15% protein, and 15% fat) for 6 days. Before and after each diet, serum lipids and SNP45T/G were analyzed. The ratios of TG/HDL-C, log (TG/HDL-C), TC/HDL-C, and LDL-C/HDL-C were calculated. There was no significant difference of baseline lipid ratios between subjects with TT genotype and subjects carrying G allele (G carriers) in the whole population or in the males and females separately. The G allele was associated with significantly higher TC/HDL-C after HC/LF diet in the males (P < 0.05); and the males with TT genotype had significant decreases of LDL-C/HDL-C (P < 0.05) and TC/HDL-C (P < 0.05) after HC/LF diet compared with those before the diet, while G carriers only experienced significant decrease of TC/HDL-C (P < 0.01). In the females, TT genotype was associated with significantly higher TG/HDL-C (P < 0.05) and log (TG/HDL-C) (P < 0.05) both before and after the HC/LF diet. When compared with those before HC/LF diet, elevated TG/HDL-C (P < 0.05) and log (TG/ HDL-C) (P < 0.05) and declined TC/HDL-C (P < 0.01) were observed in the subjects with TT genotype after the diet. In the female subjects of G carriers, LDL-C/HDL-C (P < 0.05) and TC/HDL-C (P < 0.01) decreased significantly after the HC/LF diet. G allele of APM1 45T/G could inhibit increase of TG/HDL-C and log (TG/HDL-C) and promote the decrease of LDL-C/HDL-C induced by HC/LF diet in healthy young females. But in the healthy young males, it might eliminate the decline of LDL-C/HDL-C induced by HC/LF diet and increase TC/HDL-C.

  10. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5.

    PubMed

    Zhu, Jinliang; Li, Ming; Chen, Lixue; Liu, Ping; Qiao, Jie

    2014-07-01

    Does protein source or human serum albumin (HSA) in embryo culture media influence the subsequent birthweight? A significant difference was observed in gestational age- and gender-adjusted birthweight (Z scores) and the proportion of large-for-gestational age (LGA) babies between embryos cultured in G1 v5 and those cultured in G1-PLUS v5 media. It has been reported that the birthweights of singletons born from embryos cultured in Vitrolife are significantly higher than those cultured in the Cook group of media, and that G1-PLUS (Vitrolife, Gothenburg, Sweden) is associated with increased birth and placenta weights compared with Medicult ISMI. This study was a retrospective analysis of neonatal birthweights, and included 1097 singletons born from fresh embryo transfer cycles at the Center for Reproductive Medicine of Peking University Third Hospital between January 2011 and August 2012. The number of singletons born from G1 v5 culture media was 489, and the number of singletons born from G1-PLUS v5 media was 608. Patients <40 years of age with a BMI <30 kg/m² were analysed. Only data from newborns from singleton pregnancies and born alive after the 28th week of gestation were included. Patients with a vanishing twin or with pregnancy-related complications, such as diabetes and hypertension, were excluded, as were patients who received preimplantation genetic diagnosis or used donor oocytes. Multiple linear regression analysis was performed to determine the influence of individual factors on birthweights of singleton newborns. The birthweights and Z scores of singletons and LGA babies were compared between the G1 v5 and G1-PLUS v5 media groups. The absolute birthweights for singletons resulting from G1-PLUS v5 were not different from singletons resulting from G1 v5 (3375.9 ± 479.6 g versus 3333.2 ± 491.6 g, respectively; P = 0.14). However the Z scores for singletons from embryos cultured in G1-PLUS v5 were significantly higher than for singletons cultured in G1 v

  11. Liver lipid composition and intravenous, intraperitoneal, and enteral administration of intralipid.

    PubMed

    Morán Penco, J M; Maciá Botejara, E; Salas Martinez, J; Mahedero Ruiz, G; Climent Mata, V; Saenz de Santamaria, J; Vinagre Velasco, L M

    1994-01-01

    We studied the variations arising in plasma and liver lipids after intravenous (i.v.), intraperitoneal (IP), and intragastric (IG) administration of a fat overdose on the order of 4 g.kg-1 body wt.day-1 in the form of Intralipid (ITL) 20% to 33 New Zealand rabbits for 15 days. The control group was submitted for surgery but did not receive an ITL supplement. The results show weight gain in all animals and normal liver enzyme values. There was an increase in plasma lipids in groups supplemented by the parenteral route (i.v. and IP), and fatty acids showed a similar distribution, in terms of percentages, to that for ITL. In liver tissue, there was an increase in the fractions related to ethanolamine and a decrease in phospholipids of choline and serine. In the i.v. group, neutral lipids predominated compared with other groups. The livers of all supplemented animals (i.v., IP, and IG) showed a higher content of stearic and linoleic acid and a reduction in oleic acid. Study with optical microscopy showed a microvacuolization affecting the three areas of the hepatic acini in the i.v. group, seen with electron microscopy as vacuoles lacking membranes and surrounded by mitochondria. In conclusion, there is an increase in hepatic steatosis in parenteral groups and a greater deposit of neutral lipids in the i.v. group, related to the administration route, without biochemical signs of liver dysfunction.

  12. Changes in lipid indices and body composition one year after laparoscopic gastrectomy: a prospective study.

    PubMed

    Lee, Soo Jin; Kim, Ji Young; Ha, Tae Kyung; Choi, Yun Young

    2018-05-11

    The purpose of this prospective study was to investigate changes in lipid indices associated with whole body composition during 1 year of follow-up after laparoscopic gastrectomy. Thirty-seven patients with benign and malignant gastric neoplasm who underwent laparoscopic gastrectomy were prospectively enrolled. None of the patients were treated with adjuvant chemotherapy. Lipid indices and body composition were measured preoperatively and at six and 12 months after laparoscopic gastrectomy. Lipid indices included total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). Body weight, fat and lean body mass (LBM) were measured by dual-energy X-ray absorptiometry and the change in fat and LBM in the trunk, arms and legs was compared. Body weight significantly decreased from 63.0 ± 11.1 kg preoperatively to 56.8 ± 10.6 kg 12 months after laparoscopic gastrectomy, with a mean of 7.1% (4.6 kg) weight loss. Fat and LBM loss contributed 68.4% (3.1 kg) and 30.1% (1.4 kg) of the total weight loss, respectively. In both the non-obese and obese groups, body weight, fat and LBM did not change significantly between 6 months and 12 months after gastrectomy. TC and LDL-C levels significantly decreased during the first six-month period and HDL-C significantly increased until 12 months after gastrectomy in the non-obese group. In the obese group, the degree of reduction in fat mass was significantly higher and the LBM/weight ratio significantly increased compared with the non-obese group. However, there was no significant change in lipid indices in the obese group. The TG level was significantly correlated with fat, especially with trunk fat. Gastrectomy resulted in improved lipid indices and a reduction in body weight, fat and LBM. The HDL-C significantly increased in the non-obese group for 1 year after gastrectomy and the reduction of TG level was positively correlated with fat

  13. Higher gestational weight gain is associated with increasing offspring birth weight independent of maternal glycemic control in women with type 1 diabetes.

    PubMed

    Secher, Anna L; Parellada, Clara B; Ringholm, Lene; Asbjörnsdóttir, Björg; Damm, Peter; Mathiesen, Elisabeth R

    2014-10-01

    We evaluate the association between gestational weight gain and offspring birth weight in singleton term pregnancies of women with type 1 diabetes. One hundred fifteen consecutive women referred at <14 weeks were retrospectively classified as underweight (prepregnancy BMI <18.5 kg/m(2); n = 1), normal weight (18.5-24.9; n = 65), overweight (25.0-29.9; n = 39), or obese (≥30.0; n = 10). Gestational weight gain was categorized as excessive, appropriate, or insufficient according to the Institute of Medicine recommendations for each BMI class. Women with nephropathy, preeclampsia, and/or preterm delivery were excluded because of restrictive impact on fetal growth and limited time for total weight gain. HbA1c was comparable at ∼6.6% (49 mmol/mol) at 8 weeks and ∼6.0% (42 mmol/mol) at 36 weeks between women with excessive (n = 62), appropriate (n = 37), and insufficient (n = 16) gestational weight gain. Diabetes duration was comparable, and median prepregnancy BMI was 25.3 (range 18-41) vs. 23.5 (18-31) vs. 22.7 (20-30) kg/m(2) (P = 0.05) in the three weight gain groups. Offspring birth weight and birth weight SD score decreased across the groups (3,681 [2,374-4,500] vs. 3,395 [2,910-4,322] vs. 3,295 [2,766-4,340] g [P = 0.02] and 1.08 [-1.90 to 3.25] vs. 0.45 [-0.83 to 3.18] vs. -0.02 [-1.51 to 2.96] [P = 0.009], respectively). In a multiple linear regression analysis, gestational weight gain (kg) was positively associated with offspring birth weight (g) (β = 19; P = 0.02) and birth weight SD score (β = 0.06; P = 0.008) when adjusted for prepregnancy BMI, HbA1c at 36 weeks, smoking, parity, and ethnicity. Higher gestational weight gain in women with type 1 diabetes was associated with increasing offspring birth weight independent of glycemic control and prepregnancy BMI. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondala, Andro; Hernandez, Rafael; French, Todd

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less

  15. A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass.

    PubMed

    Treyzon, Leo; Chen, Steve; Hong, Kurt; Yan, Eric; Carpenter, Catherine L; Thames, Gail; Bowerman, Susan; Wang, He-Jing; Elashoff, Robert; Li, Zhaoping

    2008-08-27

    While high protein diets have been shown to improve satiety and retention of lean body mass (LBM), this study was designed to determine effects of a protein-enriched meal replacement (MR) on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack). One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1) 2.2 g protein/kg of LBM per day [high protein diet (HP)] or 2) 1.1 g protein/kg LBM/day standard protein diet (SP). LBM was determined using bioelectrical impedance analysis (BIA). Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 +/- 0.5 kg for HP group and -3.72 +/- 0.7 kg for SP group, p > 0.1). Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 +/- 0.63 kg; SP = -0.64 +/- 0.79 kg, P = 0.05) as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the standard and protein-enriched MR strategy for weight

  16. An examination of the role of feeding regimens in regulating metabolism during the broiler breeder grower period. 1. Hepatic lipid metabolism.

    PubMed

    de Beer, M; Rosebrough, R W; Russell, B A; Poch, S M; Richards, M P; Coon, C N

    2007-08-01

    A trial was conducted to determine the effects of feeding regimens on hepatic lipid metabolism in 16-wk-old broiler breeder pullets. A flock of 350 Cobb 500 breeder pullets was divided into 2 at 4 wk of age and fed either every day (ED) or skip-a-day (SKIP) from 4 to 16 wk of age. Total feed intake did not differ between the 2 groups. At 112 d, 52 randomly selected ED-fed pullets, and 76 SKIP-fed pullets were individually caged and fed a 74-g (ED) or 148-g (SKIP) meal. Four pullets from each group were killed at intervals after feeding and livers were collected, weighed, and snap-frozen for determination of lipogenic gene expression. Total RNA was isolated from livers using Trizol reagent and then quantitatively measured by noting the optical density 260:280 ratio and qualitatively measured by gel electrophoresis. The expression of certain regulatory genes in metabolism [acetyl coenzyme A carboxylase; fatty acid synthase; malic enzyme (MAE); isocitrate dehydrogenase (ICDH); and aspartate aminotransferase (AAT)] were determined by real-time reverse-transcription PCR. Remaining liver portions were analyzed for enzyme activity of MAE, ICDH, and AAT as well as glycogen and lipid contents. Liver weight was higher in SKIP than in ED birds. Feeding caused dramatic increases in liver weight, glycogen, and lipids of SKIP birds. Expression of acetyl coenzyme A carboxylase, FAS, and MAE genes were increased in SKIP birds 12 and 24 h after feeding, with the increases in MAE expression from 0 to 24 h after feeding being of the greatest magnitude. In contrast, SKIP decreased ICDH and AAT gene expression, which parallels findings noted in fasting-refeeding experiments conducted with much younger birds. Skip-a-day feeding resulted in far greater changes in gene expression compared with ED, which was indicative of the inconsistent supply of nutrients in such regimens. Enzyme activity of MAE, ICDH, and AAT was reflective of noted changes in gene expression. In summary, the feeding

  17. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1.

    PubMed

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; van Dam, Annie; Ivanova, Pavlina T; Milne, Stephen B; Myers, David S; Brown, H Alex; Permentier, Hjalmar; Kok, Jan W

    2010-09-15

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C(16) species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1.

  18. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    PubMed Central

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; vanDam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2013-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C16 species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1. PMID:20604746

  19. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    PubMed

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  20. The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide-dendrimer complexes with lipid membranes.

    PubMed

    Melikishvili, Sophie; Poturnayova, Alexandra; Ionov, Maksim; Bryszewska, Maria; Vary, Tomáš; Cirak, Julius; Muñoz-Fernández, María Ángeles; Gomez-Ramirez, Rafael; de la Mata, Francisco Javier; Hianik, Tibor

    2016-12-01

    In this study, dendrimers have been purposed as an alternative approach for delivery of HIV peptides to dendritic cells. We have investigated the interaction of dendriplexes formed from polyanionic HIV peptide Nef and cationic carbosilane dendrimer (CBD) with model lipid membranes - large unilamellar vesicles (LUVs), Langmuir monolayers and supported lipid membranes (sBLMs) containing various molar ratio of zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG 2000 ). In our experiments, the lipid membranes represented the model of the plasma membrane of the cell. PEGylated lipids were used in order to model glycocalyx which constitutes the outer leaflet of cellular membranes. The presence of PEGylated lipids resulted in an increase of the phase transition temperature of the lipid bilayer of LUVs, in a decrease of specific volume and adiabatic compressibility. Fluorescence anisotropy study suggests that PEGylated LUVs possessed higher lipid order and decreased fluidity when compared to zwitterionic DMPC vesicles. The interaction of dendriplexes with monolayers was accompanied by the formation of the aggregates as revealed by BAM experiments. This conclusion has been confirmed also by AFM imaging of sBLMs. We have demonstrated that dendriplexes interact with lipid membranes for all types of lipid composition. Moreover, the stronger interaction of cationic dendrimer/peptide complexes with lipid monolayers, vesicles and sBLMs was observed for membranes composed of zwitterionic lipids than for PEGylated lipid membranes. Increased concentration of PEGylated lipids made this interaction weaker. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  2. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  3. Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hirano, Mitsuharu; Tonosaki, Shozo; Ueno, Takahiro; Tanaka, Masato; Hasegawa, Takemi

    2014-02-01

    We report an improved method to visualize lipid distribution in axial and lateral direction within arterial vessel walls by spectroscopic spectral-domain Optical Coherence Tomography (OCT) at 1.7μm wavelength for identification of lipidrich plaque that is suspected to cause coronary events. In our previous method, an extended InGaAs-based line camera detects an OCT interferometric spectrum from 1607 to 1766 nm, which is then divided into twenty subbands, and A-scan OCT profile is calculated for each subband, resulting in a tomographic spectrum. This tomographic spectrum is decomposed into lipid spectrum having an attenuation peak at 1730 nm and non-lipid spectrum independent of wavelength, and the weight of each spectrum, that is, lipid and non-lipid score is calculated. In this paper, we present an improved algorithm, in which we have combined the lipid score and the non-lipid score to derive a corrected lipid score. We have found that the corrected lipid score is better than the raw lipid score in that the former is more robust against false positive occurring due to abrupt change in reflectivity at vessel surface. In addition, we have optimized spatial smoothing filter and reduced false positive and false negative due to detection noise and speckle. We have verified this improved algorithm by the use of measuring data of normal porcine coronary artery and lard as a model of lipid-rich plaque and confirmed that both the sensitivity and the specificity of lard are 92%.

  4. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids.

    PubMed

    Okada, Tomoko; Mizuno, Yasuyuki; Sibayama, Shinichi; Hosokawa, Masashi; Miyashita, Kazuo

    2011-01-01

    Based on previous research findings, a capsule was developed containing n-3 polyunsaturated fatty acid rich scallop phospholipids (PLs) with an incorporation of brown seaweed (Undaria pinnatifida) lipids (ULs) containing fucoxanthin. The antiobesity effects of the capsules were evaluated with an animal model using 3-wk-old male KK-A(y) mice. Each group received different combinations of lipid (UL, PL, UL + PL, or UL + PL capsule) either incorporated into the diet or into drinking water. Animals were sacrificed after a 4-wk experimental feeding period, and adipose tissues and organs were dissected and weighed. Blood samples were obtained to determine plasma lipid profiles. Uncoupling protein 1 (UCP1) mRNA expression levels were determined by real-time polymerase chain reaction analysis, and UCP1 expression was determined by western blotting analysis. Treatment with either UL alone or UL + PL (capsule) through drinking water resulted in a significant reduction in body weight, compared to the control group. The total white adipose tissue weight of mice fed the UL + PL capsule in drinking water was significantly reduced. Both UCP1 and UCP1 mRNA expression in epididymal fat from mice fed the capsule were significantly higher than in the control group. These results suggest that incorporation of UL into scallop-derived PL by means of capsulation may lead to an additive increase in the antiobesity properties of these bioactive lipids.

  5. Effect of dietary protein and lipid levels on growth, nutrient utilization and whole-body composition of blue gourami, Trichogaster trichopterus fingerlings.

    PubMed

    Mohanta, K N; Subramanian, S; Korikanthimath, V S

    2013-02-01

    Nine semi-purified diets were prepared with three levels each of protein (300, 350 and 400 g/kg) and lipid (60, 80 and 100 g/kg) and fed ad libitum to Trichogaster trichopterus fingerlings (0.61 ± 0.03 g) in triplicate groups (10 fish/replicate) for 90 days to determine optimum dietary protein and lipid levels. Twenty-seven flow-through fibre-reinforced plastic tanks (200 l capacity each with 100 l of water) were used for rearing the fish. The dietary protein, lipid and their interactions had significant effects (p < 0.05) on weight gain, feed conversion ratio, specific growth rate, nutrient retention and digestibility, but not on hepato- and viscerosomatic indexes (p > 0.05). Dietary protein and the interaction of protein with lipid had significant effect (p < 0.05) on whole-body dry matter, lipid and energy contents, but not on protein and ash contents (p > 0.05). But, the dietary lipid had significant (p < 0.05) effect on whole-body dry matter, protein, lipid and energy contents except the ash contents (p > 0.05). For each level of dietary protein, the increase in dietary lipid resulted significant increase (p < 0.05) in whole-body lipid contents without affecting the protein and ash contents (p > 0.05). Based on better growth and dietary performances, the optimum dietary protein and lipid levels of blue gourami fingerling are 350 and 80 g/kg diet respectively. © 2011 Blackwell Verlag GmbH.

  6. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.

    PubMed

    Feng, Pingzhong; Deng, Zhongyang; Hu, Zhengyu; Fan, Lu

    2011-11-01

    Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum

    PubMed Central

    Frasquet-Darrieux, Marine; Gaud, Marie-Agnès; Christin, Patricia; Boquien, Clair-Yves; Millet, Christine; Herviou, Manon; Darmaun, Dominique; Robins, Richard J.; Ingrand, Pierre; Hankard, Régis

    2016-01-01

    Introduction Exclusively breastfed infants born to obese mothers have previously been shown to gain less weight by 1-month postpartum than infants of normal-weight mothers. Our hypothesis is that human milk composition and volume may differ between obese and normal-weight mothers. Objective To compare human milk leptin, macronutrient concentration, and volume in obese and normal-weight mothers. Mother and infant characteristics were studied as secondary aims. Materials and Methods This cross-sectional observational study compared 50 obese mothers matched for age, parity, ethnic origin, and educational level with 50 normal-weight mothers. Leptin, macronutrient human milk concentration, and milk volume were determined at 1 month in exclusively breastfed infants. Mother characteristics and infant growth were recorded. Results Human milk leptin concentration was higher in obese mothers than normal-weight mothers (4.8±2.7 vs. 2.5±1.5 ng.mL-1, p<0.001). No difference was observed between obese and normal-weight mothers in protein, lipid, carbohydrate content, and volume, nor in infant weight gain. Conclusion Leptin concentration was higher in the milk of obese mothers than that of normal-weight mothers, but macronutrient concentration was not. It remains to be established whether the higher leptin content impacts on infant growth beyond the 1-month of the study period. PMID:28005966

  8. Lipid and fatty acid compositions of cod ( Gadus morhua), haddock ( Melanogrammus aeglefinus) and halibut ( Hippoglossus hippoglossus)

    NASA Astrophysics Data System (ADS)

    Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.

    2010-12-01

    This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.

  9. Clinical efficacy and metabolic impact of two different dosages of ethinyl-estradiol in association with drospirenone in normal-weight women with polycystic ovary syndrome: a randomized study.

    PubMed

    Romualdi, D; De Cicco, S; Busacca, M; Gagliano, D; Lanzone, A; Guido, M

    2013-09-01

    The estrogenic component of estro- progestin (EP) is responsible for a negative impact on the metabolic and lipid assessment in women with polycystic ovary syndrome (PCOS). To evaluate the risk/benefit ratio of two EP combinations, containing the same progestin (3 mg drospirenone) and a different dose of ethinyl-estradiol (EE) (20 vs 30 μg) and to compare their effects on the clinical and endocrine-metabolic parameters in normal-weight PCOS women. In this randomized pilot study, we enrolled 30 young normal-weight PCOS women. Fifteen subjects were allocated to group A (20 μg EE) and 15 PCOS subjects to group B (30 μg EE). Hirsutism score, hormonal assays, oral glucose tolerance test, euglycemic hyperinsulinemic clamp and lipid profile were performed at baseline, and after 6 and 12 months of therapy. Main outcome measures were signs of hyperandrogenism, glucose and insulin metabolism, lipid profile. Both treatment regimens induced a significant improvement in hirsutism score, testosterone, DHEAS, and SHBG levels. Androstenedione significantly dropped only in patients of Group A, while 17(OH)P only in those from Group B. Both the formulations did not significantly modify gluco-insulinemic metabolism. Total cholesterol, LDL cholesterol, and HDL cholesterol levels significantly increased in both groups. Triglycerides levels, which increased as well, resulted more markedly influenced by the formulation with 30 μg EE. In association with drospirenone, 20 μg EE results as effective as 30 μg in improving clinical and hormonal features of normal-weight PCOS women, while exhibiting a milder influence on lipidic parameters.

  10. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  11. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1.

    PubMed

    Desai, Tanvi J; Toombs, Jason E; Minna, John D; Brekken, Rolf A; Udugamasooriya, Damith Gomika

    2016-05-24

    Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents.

  12. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49.

    PubMed

    Tang, Xin; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Song, Yuanda; Chen, Wei

    2017-06-21

    Mucor circinelloides is one of few oleaginous fungi that produces a useful oil rich in γ-linolenic acid, but it usually only produces <25% total lipid. Nevertheless, we isolated a new strain WJ11 that can produce up to 36% lipid of cell dry weight. In this study, we have systematically analyzed the global changes in protein levels between the high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 (15%, lipid/cell dry weight) at lipid accumulation phase through comparative proteome analysis. Proteome analysis demonstrated that the branched-chain amino acid and lysine metabolism, glycolytic pathway, and pentose phosphate pathway in WJ11 were up-regulated, while the activities of tricarboxylic acid cycle and branch point enzyme for synthesis of isoprenoids were retarded compared with CBS 277.49. The coordinated regulation at proteome level indicate that more acetyl-CoA and NADPH are provided for fatty acid biosynthesis in WJ11 compared with CBS 277.49.

  13. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate.

    PubMed

    Yin, Jie; Zhang, Wenjing; Richards, Mark P

    2017-11-01

    Bovine hemolysate was purified by size exclusion chromatography, and one high molecular weight protein was detected relative to the hemoglobin (Hb) fraction. Purified Hb promoted lipid oxidation in washed muscle slightly but significantly better than hemolysate, which may have been due to the absence of catalase and peroxiredoxin in the purified Hb. Purified Hb auto-oxidized to metHb more rapidly than Hb in the hemolysate (P<0.05). OxyHb promoted lipid oxidation in washed muscle more effectively compared to oxyMb (P<0.05). This was ascribed to hemin, released from metHb, promoting lipid oxidation more readily than oxidative forms of Mb that retain their protoporphyrin moiety. A 3:1 ratio of Mb:Hb promoted lipid oxidation similarly compared to adding a 1:1 ratio of Mb:Hb to washed muscle. Lipid oxidation products due to Hb-mediated lipid oxidation were elevated 60-fold at pH 6.3 compared to pH 6.7. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of very low birth weight (≤ 1,500 g) as a risk indicator for sensorineural hearing loss.

    PubMed

    Borkoski-Barreiro, Silvia A; Falcón-González, Juan C; Limiñana-Cañal, José M; Ramos-Macías, Angel

    2013-01-01

    Hearing plays an essential role in the acquisition, development and maintenance of the properties of the speech and language. Birth weight is an indicator of biological maturation of the newborn. Premature newborns with very low birth weight (VLBW<1,500 g) constitute a group with the highest risk of sensorineural hearing loss. Our objective was to ascertain the degree of hearing loss, sensorineural hearing loss and presence of the association to other risk factors for hearing loss in VLBW infants included in the Universal Hearing Loss Screening Programme at the University Mother-Child Hospital of Gran Canaria (Spain) in the 2007-2010 period. This was a retrospective study of 364 infants with VLBW, measured by transient evoked otoacoustic emissions and auditory brainstem response. There were 112 newborn (30.8%) referred for auditory brainstem response. A diagnosis of hearing loss was given to 22 newborns (2.2%), 14 had conductive hearing loss and 8, sensorineural hearing loss (SNHL), of which 2 had bilateral profound hearing loss. The VLBW newborn presented the association to another risk factor in more than a quarter of the sample studied. All those diagnosed with SNHL were premature. The percentage of VLBW newborns diagnosed with hearing loss is higher than expected in the general population. All those diagnosed with SNHL were premature and presented one or 2 hearing risk factors associated with VLBW. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  15. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    PubMed

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of cinnamon on glucose control and lipid parameters.

    PubMed

    Baker, William L; Gutierrez-Williams, Gabriela; White, C Michael; Kluger, Jeffrey; Coleman, Craig I

    2008-01-01

    To perform a meta-analysis of randomized controlled trials of cinnamon to better characterize its impact on glucose and plasma lipids. A systematic literature search through July 2007 was conducted to identify randomized placebo-controlled trials of cinnamon that reported data on A1C, fasting blood glucose (FBG), or lipid parameters. The mean change in each study end point from baseline was treated as a continuous variable, and the weighted mean difference was calculated as the difference between the mean value in the treatment and control groups. A random-effects model was used. Five prospective randomized controlled trials (n = 282) were identified. Upon meta-analysis, the use of cinnamon did not significantly alter A1C, FBG, or lipid parameters. Subgroup and sensitivity analyses did not significantly change the results. Cinnamon does not appear to improve A1C, FBG, or lipid parameters in patients with type 1 or type 2 diabetes.

  17. ApoB-100 secretion by HepG2 cells is regulated by the rate of triglyceride biosynthesis but not by intracellular lipid pools.

    PubMed

    Benoist, F; Grand-Perret, T

    1996-10-01

    Triglycerides (TGs), cholesteryl esters (CEs), cholesterol, and phosphatidylcholine have been independently proposed as playing regulatory roles in apoB-100 secretion; the results depended on the cellular model used. In this study, we reinvestigate the role of lipids in apoB-100 production in HepG2 cells and in particular, we clarify the respective roles of intracellular mass and the biosynthesis of lipids in the regulation of apoB-100 production. In a first set of experiments, the pool size of cholesterol, CEs, and TGs was modulated by a 3-day treatment with either lipid precursors or inhibitors of enzymes involved in lipid synthesis. We used simvastatin (a hydroxymethylglutaryl coenzyme A reductase inhibitor), 58-035 (an acyl coenzyme A cholesterol acyltransferase inhibitor), 5-tetradecyloxy-2-furancarboxylic acid (TOFA, an inhibitor of fatty acid synthesis), and oleic acid. The secretion rate of apoB-100 was not affected by the large modulation of lipid mass induced by these various pre-treatments. In a second set of experiments, the same lipid modulators were added during a 4-hour labeling period. Simvastatin and 58-035 inhibited cholesterol and CE synthesis without affecting apoB-100 secretion. By contrast, treatment of HepG2 cells with TOFA resulted in the inhibition of TG synthesis and apoB-100 secretion. This effect was highly specific for apoB-100 and was reversed by adding oleic acid, which stimulated both TG synthesis and apoB-100 secretion. Moreover, a combination of oleic acid and 58-035 inhibited CE biosynthesis and increased both TG synthesis and apoB-100 secretion. These results show that in HepG2 cells TG biosynthesis regulates apoB-100 secretion, whereas the rate of cholesterol or CE biosynthesis has no effect.

  18. Lower weight gain and hepatic lipid content in hamsters fed high fat diets supplemented with white rice protein, brown rice protein, soy protein, and their hydrolysates.

    PubMed

    Zhang, Huijuan; Bartley, Glenn E; Mitchell, Cheryl R; Zhang, Hui; Yokoyama, Wallace

    2011-10-26

    The physiological effects of the hydrolysates of white rice protein (WRP), brown rice protein (BRP), and soy protein (SP) hydrolyzed by the food grade enzyme, alcalase2.4 L, were compared to the original protein source. Male Syrian Golden hamsters were fed high-fat diets containing either 20% casein (control) or 20% extracted proteins or their hydrolysates as the protein source for 3 weeks. The brown rice protein hydrolysate (BRPH) diet group reduced weight gain 76% compared with the control. Animals fed the BRPH supplemented diet also had lower final body weight, liver weight, very low density lipoprotein cholesterol (VLDL-C), and liver cholesterol, and higher fecal fat and bile acid excretion than the control. Expression levels of hepatic genes for lipid oxidation, PPARα, ACOX1, and CPT1, were highest for hamsters fed the BRPH supplemented diet. Expression of CYP7A1, the gene regulating bile acid synthesis, was higher in all test groups. Expression of CYP51, a gene coding for an enzyme involved in cholesterol synthesis, was highest in the BRPH diet group. The results suggest that BRPH includes unique peptides that reduce weight gain and hepatic cholesterol synthesis.

  19. Effectiveness of a Low-Calorie Weight Loss Program in Moderately and Severely Obese Patients

    PubMed Central

    Winkler, Julia K.; Schultz, Jobst-Hendrik; Woehning, Annika; Piel, David; Gartner, Lena; Hildebrand, Mirjam; Roeder, Eva; Nawroth, Peter P.; Wolfrum, Christian; Rudofsky, Gottfried

    2013-01-01

    Aims To compare effectiveness of a 1-year weight loss program in moderately and severely obese patients. Methods The study sample included 311 obese patients participating in a weight loss program, which comprised a 12-week weight reduction phase (low-calorie formula diet) and a 40-week weight maintenance phase. Body weight and glucose and lipid values were determined at the beginning of the program as well as after the weight reduction and the weight maintenance phase. Participants were analyzed according to their BMI class at baseline (30-34.9 kg/m2; 35-39.9 kg/m2; 40-44.9 kg/m2; 45-49.9 kg/m2; ≥50 kg/m2). Furthermore, moderately obese patients (BMI ℋ 40 kg/m2) were compared to severely obese participants (BMI ≥ 40 kg/m2). Results Out of 311 participants, 217 individuals completed the program. Their mean baseline BMI was 41.8 ± 0.5 kg/m2. Average weight loss was 17.9 ± 0.6%, resulting in a BMI of 34.3 ± 0.4 kg/m2 after 1 year (p ℋ 0.001). Overall weight loss was not significantly different in moderately and severely obese participants. Yet, severely obese participants achieved greater weight loss during the weight maintenance phase than moderately obese participants (−3.1 ± 0.7% vs. −1.2 ± 0.6%; p = 0.04). Improvements in lipid profiles and glucose metabolism were found throughout all BMI classes. Conclusion 1-year weight loss intervention improves body weight as well as lipid and glucose metabolism not only in moderately, but also in severely obese individuals. PMID:24135973

  20. Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions.

    PubMed

    Takegami, Shigehiko; Ueyama, Keita; Konishi, Atsuko; Kitade, Tatsuya

    2018-06-06

    The lipid fluidity of various lipid nanoemulsions (LNEs) without and with flutamide (FT) and containing one of two neutral lipids, one of four phosphatidylcholines as a surfactant, and sodium palmitate as a cosurfactant was investigated by the combination of 1 H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA). In the 1 H NMR spectra, the peaks from the methylene groups of the neutral lipids and surfactants for all LNE preparations showed downfield shifts with increasing temperature from 20 to 60 °C. PCA was applied to the 1 H NMR spectral data obtained for the LNEs. The PCA resulted in a model in which the first two principal components (PCs) extracted 88% of the total spectral variation; the first PC (PC-1) axis and second PC (PC-2) axis accounted for 73 and 15%, respectively, of the total spectral variation. The Score-1 values for PC-1 plotted against temperature revealed the existence of two clusters, which were defined by the neutral lipid of the LNE preparations. Meanwhile, the Score-2 values decreased with rising temperature and reflected the increase in lipid fluidity of each LNE preparation, consistent with fluorescence anisotropy measurements. In addition, the changes of Score-2 values with temperature for LNE preparations with FT were smaller than those for LNE preparations without FT. This indicates that FT encapsulated in LNE particles markedly suppressed the increase in lipid fluidity of LNE particles with rising temperature. Thus, PCA of 1 H NMR spectra will become a powerful tool to analyze the lipid fluidity of lipid nanoparticles. Graphical abstract ᅟ.

  1. The effect of palm oil, lard, and puff-pastry margarine on postprandial lipid and hormone responses in normal-weight and obese young women.

    PubMed

    Jensen, J; Bysted, A; Dawids, S; Hermansen, K; Hølmer, G

    1999-12-01

    Only a few studies have been published on the postprandial effects of different fatty acids in obese subjects. Therefore, the present study investigated the effects of three test meals containing palm oil (PO), lard (LD), or puff-pastry margarine (PPM), all normal dietary ingredients, on postprandial lipid and hormone responses in normal-weight and obese young women. The study was performed as a randomized, crossover design. The fats differed in the content of palmitic acid, stearic acid, and trans monounsaturated fatty acids allowing a dietary comparison of different 'solid' fatty acids. The obese women had significantly higher fasting concentrations and postprandial responses of plasma total triacylglycerol (TAG), chylomicron-TAG, and insulin compared with the normal-weight women but there was no significant difference in the postprandial responses between the three test meals. The obese women had fasting concentrations of leptin four times greater than the normal-weight women. There were no postprandial changes in the concentrations of leptin. The fasting concentrations of HDL-cholesterol were significantly lower in the obese women than in the normal-weight women, whereas there was no significant difference between the two groups in the concentrations of total cholesterol or LDL-cholesterol. These results provide evidence that obese women have exaggerated lipid and hormone responses compared with normal-weight women but the different contents of saturated and trans monounsaturated fatty acids provided by PO, LD, and PPM have no effect in either group.

  2. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    PubMed

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  3. Action of tributyltin (TBT) on the lipid content and potassium retention in the organotins degradating fungus Cunninghamella elegans.

    PubMed

    Bernat, Przemysław; Słaba, Mirosława; Długoński, Jerzy

    2009-09-01

    The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K(+) g dry weight(-1). The maximum concentration of K(+) was 15.06 mg g(-1) dry weight at 30 mg l(-1) of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5-30 mg l(-1) strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.

  4. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    PubMed

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Cak1p Protein Kinase Is Required at G(1)/S and G(2)/M in the Budding Yeast Cell Cycle

    PubMed Central

    Sutton, A.; Freiman, R.

    1997-01-01

    The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G(2) to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G(2) to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G(1) into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function. PMID:9286668

  7. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  8. Lipid composition of positively buoyant eggs of reef building corals

    NASA Astrophysics Data System (ADS)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  9. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: a randomised, double-blind clinical trial in premature infants requiring parenteral nutrition.

    PubMed

    Tomsits, Erika; Pataki, Margit; Tölgyesi, Andrea; Fekete, György; Rischak, Katalin; Szollár, Lajos

    2010-10-01

    Safety, tolerability, and efficacy of a novel lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOFlipid 20%) with reduced n-6 fatty acids (FA), increased monounsaturated and n-3 FA, and enriched in vitamin E were evaluated in premature infants compared with a soybean oil-based emulsion. Sixty (30/30) premature neonates (age 3-7 days, gestational age ≤ 34 weeks, birth weights 1000-2500 g) received parenteral nutrition (PN) with either SMOFlipid 20% (study group) or a conventional lipid emulsion (Intralipid 20%, control group) for a minimum of 7 up to 14 days. Lipid supply started at 0.5 g · kg body weight(-1) · day(-1) on day 1 and increased stepwise (by 0.5 g) up to 2 g · kg body weight(-1) · day(-1) on days 4 to 14. Safety and efficacy parameters were assessed on days 0, 8, and 15 if PN was continued. Adverse events, serum triglycerides, vital signs, local tolerance, and clinical laboratory did not show noticeable group differences, confirming the safety of study treatment. At study end, γ-glutamyl transferase was lower in the study versus the control group (107.8 ± 81.7 vs 188.8 ± 176.7 IU/L, P < 0.05). The relative increase in body weight (day 8 vs baseline) was 5.0% ± 6.5% versus 5.1% ± 6.6% (study vs control, not significant). In the study group, an increase in n-3 FA in red blood cell phospholipids and n-3:n-6 FA ratio was observed. Plasma α-tocopherol (study vs control) was increased versus baseline on day 8 (26.35 ± 10.03 vs 3.67 ± 8.06 μmol/L, P < 0.05) and at study termination (26.97 ± 18.32 vs 8.73 ± 11.41 μmol/L, P < 0.05). Parenteral infusion of SMOFlipid was safe and well tolerated and showed a potential beneficial influence on cholestasis, n-3 FA, and vitamin E status in premature infants requiring PN.

  10. Dose- and time-dependent effects of a novel (-)-hydroxycitric acid extract on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation and histopathological data over a period of 90 days.

    PubMed

    Shara, Michael; Ohia, Sunny E; Yasmin, Taharat; Zardetto-Smith, Andrea; Kincaid, Anthony; Bagchi, Manashi; Chatterjee, Archana; Bagchi, Debasis; Stohs, Sidney J

    2003-12-01

    (-)-Hydroxycitric acid (HCA), a natural extract from the dried fruit rind of Garcinia cambogia (family Guttiferae), is a popular supplement for weight management. The dried fruit rind has been used for centuries as a condiment in Southeastern Asia to make food more filling and satisfying. A significant number of studies highlight the efficacy of Super CitriMax (HCA-SX, a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia) in weight management. These studies also demonstrate that HCA-SX promotes fat oxidation, inhibits ATP-citrate lyase (a building block for fat synthesis), and lowers the level of leptin in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity studies have demonstrated the safety of HCA-SX. However, no long-term safety of HCA-SX or any other (-)-hydroxycitric acid extract has been previously assessed. In this study, we have evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation, liver and testis weight, expressed as such and as a % of body weight and brain weight, and histopathological changes over a period of 90 days. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX as feed intake and the animals were sacrificed on 30, 60 or 90 days of treatment. The feed and water intake were assessed and correlated with the reduction in body weight. HCA-SX supplementation demonstrated a reduction in body weight in both male and female rats over a period of 90 days as compared to the corresponding control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats as compared to the corresponding control animals. However, no such difference in hepatic DNA fragmentation and testicular lipid peroxidation and DNA fragmentation was observed. Furthermore, liver and testis weight, expressed as such and as a percentage of body

  11. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    PubMed

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Maternal Lipid Provisioning Mirrors Evolution of Reproductive Strategies in Direct-Developing Whelks.

    PubMed

    Carrasco, Sergio A; Phillips, Nicole E; Sewell, Mary A

    2016-06-01

    The energetic input that offspring receive from their mothers is a well-studied maternal effect that can influence the evolution of life histories. Using the offspring of three sympatric whelks: Cominella virgata (one embryo per capsule); Cominella maculosa (multiple embryos per capsule); and Haustrum scobina (multiple embryos per capsule and nurse-embryo consumption), we examined how contrasting reproductive strategies mediate inter- and intraspecific differences in hatchling provisioning. Total lipid content (as measured in μg hatchling(-1) ± SE) was unrelated to size among the 3 species; the hatchlings of H. scobina were the smallest but had the highest lipid content (33.8 ± 8.1 μg hatchling(-1)). In offspring of C. maculosa, lipid content was 6.6 ± 0.4 μg hatchling(-1), and in offspring of C. virgata, it was 21.7 ± 3.2 μg hatchling(-1) The multi-encapsulated hatchlings of C. maculosa and H. scobina were the only species that contained the energetic lipids, wax ester (WE) and methyl ester (ME). However, the overall composition of energetic lipid between hatchlings of the two Cominella species reflected strong affinities of taxonomy, suggesting a phylogenetic evolution of the non-adelphophagic development strategy. Inter- and intracapsular variability in sibling provisioning was highest in H. scobina, a finding that implies less control of allocation to individual hatchlings in this adelphophagic developer. We suggest that interspecific variability of lipids offers a useful approach to understanding the evolution of maternal provisioning in direct-developing species. © 2016 Marine Biological Laboratory.

  13. Lipid-based nutrient supplement increases the birth size of infants of primiparous women in Ghana.

    PubMed

    Adu-Afarwuah, Seth; Lartey, Anna; Okronipa, Harriet; Ashorn, Per; Zeilani, Mamane; Peerson, Janet M; Arimond, Mary; Vosti, Stephen; Dewey, Kathryn G

    2015-04-01

    The International Lipid-Based Nutrient Supplements Project developed a small-quantity (20 g/d) lipid-based nutrient supplement (LNS) for pregnant and lactating women. We evaluated the effects of prenatal LNS supplementation on fetal growth. In a community-based, partially double-blind, individually randomized controlled trial, 1320 women ≤20 wk pregnant received 60 mg Fe/400 μg folic acid (IFA), or 1-2 Recommended Dietary Allowances of 18 micronutrients, including 20 mg Fe (MMN), or LNS with the same micronutrients as the MMN group, plus 4 minerals and macronutrients contributing 118 kcal (LNS) daily until delivery. Fetal growth was compared across groups by using intention-to-treat analysis. The primary outcome was birth length. This analysis included 1057 women (IFA = 349, MMN = 354, LNS = 354). Groups did not differ significantly in mean birth length, length-for-age z score (LAZ), head circumference, or percentage low birth length but differed in mean birth weight (P = 0.044), weight-for-age z score (WAZ; P = 0.046), and BMI-for-age z score (BMIZ; P = 0.040), with a trend toward differences in low birth weight (P = 0.069). In pairwise comparisons, the LNS group had greater mean birth weight (+85 g; P = 0.040), WAZ (+0.19; P = 0.045), and BMIZ (+0.21; P = 0.035) and a lower risk of low birth weight (RR: 0.61, 95% CI: 0.39, 0.96; P = 0.032) than did the IFA group. The other group differences were not significant. The effect of intervention was modified by mother's parity, age, height, baseline hemoglobin, household food insecurity, and child sex, with parity being the most consistent modifier. Among primiparous women (IFA = 131; MMN = 110; LNS = 128), the LNS group had greater mean birth length (+0.91 cm; P = 0.001), LAZ (+0.47; P = 0.001), weight (+237 g; P < 0.001), WAZ (+0.56; P < 0.001), BMIZ (+0.52; P < 0.001), head circumference (0.50 cm; P = 0.017), and head circumference-for-age z score (+0.40; P = 0.022) than did the IFA group; similar differences were

  14. A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects.

    PubMed

    Dyson, P A; Beatty, S; Matthews, D R

    2007-12-01

    Low-carbohydrate diets are effective for weight reduction in people without diabetes, but there is limited evidence for people with Type 2 diabetes. Aims To assess the impact of a low-carbohydrate diet on body weight, glycated haemoglobin (HbA(1c)), ketone and lipid levels in diabetic and non-diabetic subjects. Thirteen Type 2 diabetic subjects (on diet or metformin) and 13 non-diabetic subjects were randomly allocated to either a low-carbohydrate diet (< or = 40 g carbohydrate/day) or a healthy-eating diet following Diabetes UK nutritional recommendations and were seen monthly for 3 months. Subjects (25% male) were (mean +/- sd) age 52 +/- 9 years, weight 96.3 +/- 16.6 kg, body mass index 35.1 kg/m(2), HbA(1c) 6.6 +/- 1.1%, total cholesterol 5.1 +/- 1.1 mmol/l, high-density lipoprotein cholesterol 1.3 +/- 0.4 mmol/l, low-density lipoprotein cholesterol 3.1 +/- 0.9 mmol/l, triglycerides (geometric mean) 1.55 (1.10, 2.35) mmol/l and ketones range 0.0-0.2 mmol/l. Analysis was by intention to treat with last observation carried forward. Twenty-two of the participants (85%) completed the study. Weight loss was greater (6.9 vs. 2.1 kg, P = 0.003) in the low-carbohydrate group, with no difference in changes in HbA(1c), ketone or lipid levels. The diet was equally effective in those with and without diabetes.

  15. Detailed Distribution of Lipids in Greenshell™ Mussel (Perna canaliculus)

    PubMed Central

    Miller, Matthew R.; Pearce, Luke; Bettjeman, Bodhi I.

    2014-01-01

    Greenshell™ mussels (GSM–Perna canaliculus) are a source of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). Farmed GSM are considered to be a sustainable source of LC-PUFA as they require no dietary inputs, gaining all of their oil by filter-feeding microorganisms from sea water. GSM oil is a high-value product, with a value as much as 1000 times that of fish oils. GSM oil has important health benefits, for example, anti-inflammatory activity. It also contains several minor lipid components that are not present in most fish oil products, and that have their own beneficial effects on human health. We have shown the lipid content of the female GSM (1.9 g/100 g ww) was significantly greater than that of the male (1.4 g/100 g ww). Compared with male GSM, female GSM contained more n-3 LC-PUFA, and stored a greater proportion of total lipid in the gonad and mantle. The higher lipid content in the female than the male GSM is most likely related to gamete production. This information will be useful to optimize extraction of oils from GSM, a local and sustainable source of n-3 LC-PUFA. PMID:24732016

  16. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling. Copyright © 2015 the American Physiological Society.

  17. Effects of dietary carbohydrate-to-lipid ratio on the growth performance and feed utilization of juvenile turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Miao, Shuyan; Nie, Qin; Miao, Huijun; Zhang, Wenbing; Mai, Kangsen

    2016-08-01

    A 9-week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO:LIP) on the growth performance and feed utilization of juvenile turbot Scophthalmus maximus (initial body weight 8.75 g ± 0.04 g). Four isonitrogenous and isoenergetic low protein level (39%) diets were formulated with increasing ratios of dietary carbohydrate to lipid (2:18, 6:18, 18:12 and 28:6). A high protein level (50%) diet with the 2:12 ratio of carbohydrate to lipid was used as the control. Results showed that the survival rate, contents of moisture, crude protein and ash in muscle were not significantly affected by dietary treatments. With the dietary CHO:LIP ratio increased from 2:18 to 18:12, weight gain rate significantly increased ( P < 0.05). Higher dietary CHO:LIP ratio (28:6) resulted in the significantly decreased weight gain rate ( P < 0.05). Meanwhile, this treatment also resulted in the highest daily feed intake and liver glycogen content, as well as the lowest feed efficiency ( P < 0.05). Muscle glycogen content in fish fed the diet with 2:12 or 2:18 CHO:LIP ratio was significantly lower than those fed with the other three diets ( P < 0.05). The present results confirmed that the juvenile turbot can utilize carbohydrate. Furthermore, the appropriate ratio of dietary carbohydrate to lipid was important to the growth and feed utilization of turbot. The proper CHO:LIP ratio based on the growth performance in the present study was determined to be 18:12 when the dietary protein level was 39%.

  18. Aromatic hydrocarbon biodegradation activates neutral lipid biosynthesis in oleaginous yeast.

    PubMed

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2018-05-01

    In this study, the biodegradation ability of oleaginous yeast Cryptococcus psychrotolerans IITRFD for aromatic hydrocarbons (AHs) was investigated. It was found to completely degrade range of AHs such as 1g/L phenol, 0.75 g/L naphthalene, 0.50 g/L anthracene and 0.50 g/L pyrene with lipid productivity (g/L/h) of 0.0444, 0.0441, 0.0394 and 0.0383, respectively. This work demonstrated the ring cleavage pathways of AHs by this yeast which follow ortho route for phenol and naphthalene while meta route for anthracene and pyrene degradation. The end products generated during biodegradation of AHs are feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway of oleaginous yeast. A high quantity of lipid content (46.54%) was observed on phenol as compared to lipid content on naphthalene (46.38%), anthracene (44.97%) and pyrene (44.16%). The lipid profile revealed by GC-MS analysis shows elevated monounsaturated fatty acid (MUFA) content with improved biodiesel quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Weight loss without losing muscle mass in pre-obese and obese subjects induced by a high-soy-protein diet.

    PubMed

    Deibert, P; König, D; Schmidt-Trucksaess, A; Zaenker, K S; Frey, I; Landmann, U; Berg, A

    2004-10-01

    To determine change of weight, body composition, metabolic and hormonal parameters induced by different intervention protocols. Randomized, controlled study including participants exhibiting a BMI between 27.5 and 35. Three different interventions containing lifestyle education (LE-G), or a substitutional diet containing a high-soy-protein low-fat diet with (SD/PA-G) or without (SD-G) a guided physical activity program. A total of 90 subjects (mean weight 89.9 kg; mean BMI 31.5), randomly assigned to one of three treatment groups. Change in body weight, fat mass and lean body mass measured with the Bod Pod device at baseline, 6 weeks and 6 months; change in metabolic and hormonal parameters. In all, 83 subjects completed the 6-months study. BMI dropped highly significantly in all groups (LE-G: -2.2+/-1.43 kg/m(2); SD-G: -3.1+/-1.29 kg/m(2); SD/PA-G: -3.0+/-1.29 kg/m(2)). Subjects in the SD-G and in the SD/PA-G lost more weight during the 6-months study (-8.9+/-3.9; -8.9+/-3.9 kg) than did those in the LE-G (-6.2+/-4.2 kg), and had a greater decrease in fat mass (-8.8+/-4.27; -9.4+/-4.54 kg) than those in the LE-G (-6.6+/-4.59 kg). In contrast, no significant intraindividual or between-group changes in the fat-free mass were seen. In all groups, metabolic parameters showed an improvement in glycemic control and lipid profile. Our data suggest that a high-soy-protein and low-fat diet can improve the body composition in overweight and obese people, losing fat but preserving muscle mass.

  20. A Secondary Antibody-Detecting Molecular Weight Marker with Mouse and Rabbit IgG Fc Linear Epitopes for Western Blot Analysis.

    PubMed

    Lin, Wen-Wei; Chen, I-Ju; Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R; Cheng, Tian-Lu

    2016-01-01

    Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.

  1. An independent effect of parental lipids on the offspring lipid levels in a cohort of adolescents with type 1 diabetes.

    PubMed

    Marcovecchio, M Loredana; Tossavainen, Paivi H; Heywood, James Jn; Dalton, R Neil; Dunger, David B

    2012-09-01

    Genetic factors modulate lipid levels and an intrafamilial aggregation of abnormal lipid profiles has been reported in the general population. As dyslipidemia is common among people with diabetes and has been related to diabetic nephropathy, we investigated whether parental lipid levels were related to lipids and albumin excretion in young offspring with childhood-onset type 1 diabetes (T1D). Non-fasting blood samples were collected from 895 offspring, 808 mothers and 582 fathers. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and non-HDL-C were measured. Three early morning urinary albumin-creatinine ratios (ACR), hemoglobin A1C (HbA1c) and anthropometric parameters were also assessed. The offspring's mean age (±SD) was 14.5 ± 2.2 yr, mean diabetes duration 5.5 ± 3.7 yr; the fathers' age was 45.7 ± 6.1 yr and the mothers' age was 42.8 ± 5.5 yr. After adjusting for the offspring age, gender, body mass index, HbA1c, maternal (TC: β = 0.242; TG: β = 0.152; HDL-C: β = 0.285; LDL-C: β = 0.278; non-HDL-C: β = 0.253; all p < 0.001) and paternal lipid levels (TC: β = 0.188; TG: β = 0.108; HDL-C: β = 0.253; LDL-C: β = 0.187; non-HDL-C: β = 0.173; all p < 0.001) were significantly associated with the offspring's lipid parameters. In contrast, no significant association was found between parental lipid levels and the offspring's ACR. In the present study, parental lipid levels were independently associated with the same traits in the offspring, suggesting a role of genetic influences and/or shared environmental factors in modulating the metabolic profile of adolescents with T1D. In contrast, there was no significant association between parental lipid levels and the offspring's albumin excretion. © 2012 John Wiley & Sons A/S.

  2. Liposomal gD Ectodomain (gD1-306) Vaccine Protects Against HSV2 Genital or Rectal Infection of Female and Male Mice

    PubMed Central

    Olson, K.; Macias, P.; Hutton, S.; Ernst, W. A.; Fujii, G.; Adler-Moore, J. P.

    2009-01-01

    Herpes simplex virus type 2 (HSV2) is the most common causative agent of genital herpes, with infection rates as high as 1 in 6 adults. The present studies were done to evaluate the efficacy of a liposomal HSV2 gD1-306 vaccine (L-gD1-306-HD) in an acute murine HSV2 infection model of intravaginal (female) or intrarectal (male or female) challenge. Two doses of L-gD1-306-HD containing 60μg gD1-306-HD and 15μg monophosphoryl lipid A (MPL) per dose provided protection against HSV2 intravaginal challenge (86-100% survival, P≤0.0003 vs control liposomes; P=0.06 vs L-gD1-306-HD without MPL). Both male and female mice (BALB/c and C57BL/6) immunized with L-gD1-306-HD/MPL were significantly protected against HSV2 intrarectal challenge, with higher survival rates compared to controls (71-100%, P≤0.007). L-gD1-306-HD/MPL also provided increased survival when compared to a liposomal peptide vaccine, L-gD264-285-HD/MPL (male BALB/c, P≤0.001; female BALB/c and male C57BL/6, P=0.06). Mice given L-gD1-306-HD/MPL also had minimal disease signs, reduced viral burden in their spinal cords and elevated neutralizing antibody titers in the females. The vaccine also stimulated gD1-306-HD specific splenocytes of both male and female mice with significantly elevated levels of IFN-γ compared to IL-4 (P≤0.01) indicating that there was an enhanced Th1 response. These results provide the first evidence that the L-gD1-306–HD vaccine can protect both male and female mice against intrarectal HSV2 challenge. PMID:19835825

  3. Effects of Increased Dietary Cholesterol with Carbohydrate Restriction on Hepatic Lipid Metabolism in Guinea Pigs

    PubMed Central

    deOgburn, Ryan; Leite, Jose O; Ratliff, Joseph; Volek, Jeff S; McGrane, Mary M; Fernandez, Maria Luz

    2012-01-01

    Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary carbohydrate restriction enhances liver cell proliferation. PMID:22546916

  4. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  5. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    PubMed

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  6. Structural interactions between lipids, water and S1-S4 voltage-sensing domains

    PubMed Central

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J.

    2012-01-01

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains, and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids, and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains, and that these interactions have lifetimes on the timescale of 10−3s. Arg residues within S1-S4 domains are well-hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid head groups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane, yet are well-hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. PMID:22858867

  7. Association between Lipid Ratios and Insulin Resistance in a Chinese Population

    PubMed Central

    Zhang, Liying; Chen, Shanying; Deng, Aiwen; Liu, Xinyu; Liang, Yan; Shao, Xiaofei; Sun, Mingxia; Zou, Hequn

    2015-01-01

    Aim To explore the association of lipid ratios and triglyceride (TG) with insulin resistance (IR) in a Chinese population. We also provide the clinical utility of lipid ratios to identify men and women with IR. Methods This cross-sectional study included 614 men and 1055 women without diabetes. Insulin resistance was defined by homeostatic model assessment of IR > 2.69. Lipid ratios included the TG/ high density lipoprotein cholesterol (HDL-C), the total cholesterol (TC)/HDL-C and the low density lipoprotein cholesterol (LDL-C)/HDL –C. Logistic regression models and accurate estimates of the area under the receiver operating characteristic (AUROC) curves were obtained. Results In normal-weight men, none of lipid ratios nor TG was associated with IR. In overweight/obese men, normal-weight women and overweight/obese women, the TG/HDL-C, the TC/HDL-C and TG were significantly associated with IR, and the associations were independent of waist circumference. All of the AUROCs for the TG/HDL-C and TG were > 0.7. The AUROCs for TC/HDL-C ratio were 0.69–0.77. The optimal cut-offs for TG/HDL-C were 1.51 in men and 0.84 in women. The optimal cut-offs for TG were 1.78 mmol/L in men and 1.49 mmol/L in women, respectively. In men, the optimal cut-off for LDL-C/HDL-C is 3.80. In women, the optimal cut-off for LDL-C/HDL-C is 3.82. Conclusion The TG/HDL-C, the TC/HDL-C and TG are associated with IR in overweight/obese men, normal-weight and overweight/obese women. The LDL-C/HDL-C is only associated with IR in normal-weight women. The TG/HDL-C and TG might be used as surrogate markers for assessing IR. PMID:25635876

  8. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  9. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type1 Diabetes.

    PubMed

    Dotzert, Michelle S; McDonald, Matthew W; Murray, Michael R; Nickels, J Zachary; Noble, Earl G; Melling, C W James

    2017-12-04

    Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  10. Ginsenoside Rb2 Alleviates Hepatic Lipid Accumulation by Restoring Autophagy via Induction of Sirt1 and Activation of AMPK.

    PubMed

    Huang, Qi; Wang, Ting; Yang, Liu; Wang, He-Yao

    2017-05-19

    Although Panax ginseng is a famous traditional Chinese medicine and has been widely used to treat a variety of metabolic diseases including hyperglycemia, hyperlipidemia, and hepatosteatosis, the effective mediators and molecular mechanisms remain largely unknown. In this study we found that ginsenoside Rb2, one of the major ginsenosides in Panax ginseng, was able to prevent hepatic lipid accumulation through autophagy induction both in vivo and in vitro. Treatment of male db/db mice with Rb2 significantly improved glucose tolerance, decreased hepatic lipid accumulation, and restored hepatic autophagy. In vitro, Rb2 (50 µmol/L) obviously increased autophagic flux in HepG2 cells and primary mouse hepatocytes, and consequently reduced the lipid accumulation induced by oleic acid in combination with high glucose. Western blotting analysis showed that Rb2 partly reversed the high fatty acid in combination with high glucose (OA)-induced repression of autophagic pathways including AMP-activated protein kinase (AMPK) and silent information regulator 1 (sirt1). Furthermore, pharmacological inhibition of the sirt1 or AMPK pathways attenuated these beneficial effects of Rb2 on hepatic autophagy and lipid accumulation. Taken together, these results suggested that Rb2 alleviated hepatic lipid accumulation by restoring autophagy via the induction of sirt1 and activation of AMPK, and resulted in improved nonalcoholic fatty liver disease (NAFLD) and glucose tolerance.

  11. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.

    PubMed

    Feng, Yujie; Li, Chao; Zhang, Dawei

    2011-01-01

    Chlorella vulgaris was used to study algal lipid production with wastewater treatment. Artificial wastewater was used to cultivate C. vulgaris in a column aeration photobioreactor (CAP) under batch and semi-continuous cultivation with various daily culture replacements (0.5l-1.5l per 2l reactor). The cell density was decreased from 0.89 g/l with the daily replacement of 0.5l to 0.28 g/l with 1.5l replacement. However, C. vulgaris culture achieved the highest lipid content (42%, average value of the phase) and the lipid productivity (147 mg/ld(-1)) with daily replacement of 1.0 l. And then the nutrient removal efficiency were 86% (COD), 97% (NH(4)(+)) and 96% (TP), respectively. Analyses of energy efficiency showed that the net energy ratio (NER) for lipid production with daily replacement of 1.0 l (1.25) was higher than the other volume replacement protocols. And cost analyses showed that the algal biomass can be competitive with petroleum at US$ 63.97 per barrel with the potential credit for wastewater treatment. According to the above results, it is concluded that the present research will lead to an economical technology of algal lipid production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid.

    PubMed

    Zhou, Wenjun; Wang, Hui; Chen, Lin; Cheng, Wentao; Liu, Tianzhong

    2017-09-01

    Heterotrophic fermentation and high valuable co-product producing are thought to be effective ways to improve the economic viability and feasibility of commercial production of microalgae biofuels. This work reported the heterotrophic cultivation of Tribonema minus for lipid and palmitoleic acid (a novel functional fatty acid) production. Firstly, the heterotrophic ability of T. minus was identified for the first time with significant promotion in biomass and lipid productivity, and glucose and urea were then selected as the optimal carbon and nitrogen sources. Moreover, nutrient concentrations and culture conditions were optimized. Highest biomass and lipid productivity of 30.8gL -1 and 730mgL -1 d -1 were obtained respectively by adding 80gL -1 glucose at once. In addition, 2gL -1 urea, 0.8gL -1 K 2 HPO 4 , 24mgL -1 ammonium ferric citrate, initial pH of 6, and temperature of 27°C were determined as the appropriate conditions for heterotrophic growth and lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pigmented rice bran and plant sterol combination reduces serum lipids in overweight and obese adults.

    PubMed

    Hongu, Nobuko; Kitts, David D; Zawistowski, Jerzy; Dossett, Cynthia M; Kopeć, Aneta; Pope, Benjamin T; Buchowski, Maciej S

    2014-01-01

    This study investigated the dietary effect of including pigmented rice bran with or without plant sterols on lipid profiles during energy restriction-induced weight loss in overweight and obese adults not taking cholesterol-lowering medication. In addition, the study examined the effect of intervention on biomarkers of oxidative stress and inflammation. A group of 24 overweight and obese adults (age: 43 ± 6 years, body mass index 32 ± 1 kg/m(2), 18 females) were randomized to a 25% calorie-restricted diet containing either pigmented rice bran (RB) or the RB with addition of plant sterols (RB+PS) snack bars for 8 weeks. The individualized nutrient-balanced diet contained ∼70% of daily energy needs assessed from indirect calorimetry measured resting energy expenditure (EE) and physical activity-related EE assessed using accelerometry. Anthropometrics, blood pressure, blood lipids, glucose, urinary F2-isoprostanes, C-reactive protein, insulin, and leptin were measured at baseline and after 8 weeks of intervention. Participants lost approximately 4.7 ± 2.2 kg (p < 0.001). Weight loss was not significant between the RB+PS and RB group (p = 0.056). Changes in body fat corresponded to changes in body weight. Average decrease in total cholesterol was significantly higher in the RB+PS group than in the RB group (difference 36 ± 25 g/dL vs 7 ± 16 g/dL; p = 0.044). A similar pattern was observed for the decrease in low-density lipoprotein (LDL) cholesterol (difference 22.3 ± 25.2 g/dL vs 4.4 ± 18.9 g/dL; p = 0.062). Changes in systolic blood pressure, serum levels of leptin, and F2-isoprostanes were significant between baseline values and after 8 weeks on the diet in both groups (p < 0.05) but did not differ between the 2 groups. A nutrient-balanced and energy-restricted diet supplemented with rice bran and plant sterols resulted in a significant decrease in total and LDL cholesterol in overweight and obese adults.

  14. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Lipid-coated mannitol core microparticles for sustained release of protein.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2018-07-01

    Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Liposomal gD ectodomain (gD1-306) vaccine protects against HSV2 genital or rectal infection of female and male mice.

    PubMed

    Olson, K; Macias, P; Hutton, S; Ernst, W A; Fujii, G; Adler-Moore, J P

    2009-12-11

    Herpes simplex virus type 2 (HSV2) is the most common causative agent of genital herpes, with infection rates as high as 1 in 6 adults. The present studies were done to evaluate the efficacy of a liposomal HSV2 gD(1-306) vaccine (L-gD(1-306)-HD) in an acute murine HSV2 infection model of intravaginal (female) or intrarectal (male or female) challenge. Two doses of L-gD(1-306)-HD containing 60 microg gD(1-306)-HD and 15 microg monophosphoryl lipid A (MPL) per dose provided protection against HSV2 intravaginal challenge (86-100% survival, P< or =0.0003 vs. control liposomes; P=0.06 vs. L-gD(1-306)-HD without MPL). Both male and female mice (BALB/c and C57BL/6) immunized with L-gD(1-306)-HD/MPL were significantly protected against HSV2 intrarectal challenge, with higher survival rates compared to controls (71-100%, P< or =0.007). L-gD(1-306)-HD/MPL also provided increased survival when compared to a liposomal peptide vaccine, L-gD(264-285)-HD/MPL (male BALB/c, PgD(1-306)-HD/MPL also had minimal disease signs, reduced viral burden in their spinal cords and elevated neutralizing antibody titers in the females. The vaccine also stimulated gD(1-306)-HD specific splenocytes of both male and female mice with significantly elevated levels of IFN-gamma compared to IL-4 (P< or =0.01) indicating that there was an enhanced Th1 response. These results provide the first evidence that the L-gD(1-306)-HD vaccine can protect both male and female mice against intrarectal HSV2 challenge.

  17. Fast ultrasound-assisted extraction of polar (phenols) and nonpolar (lipids) fractions in Heterotheca inuloides Cass.

    PubMed

    Ricárdez, O F Mijangos; Ruiz-Jiménez, J; Lagunez-Rivera, L; de Castro, M D Luque

    2011-01-01

    Heterotheca inuloides Cass., also known as "arnica", is used in traditional medicine in Mexico. Development of fast methods for the extraction of lipidic and phenolic fractions from arnica plants and their subsequent characterization. Ultrasound was applied to accelerate extraction of the target compounds from this plant and reduce the use of organic solvents as compared with conventional methods. Gas chromatography-ion trap mass spectrometry and liquid chromatography with diode-array detection were used for the characterization of the lipidic and phenolic fractions, respectively. Under optimal extraction conditions, 9 and 55 min were necessary to complete extraction of the lipidic and phenolic fractions, respectively. The fatty acids present at the highest concentrations in H. inuloides were eicosatetraenoic n3 (24.6 μg/g), cis-9-hexadecenoic n7 (23.1 μg/g), exacosanoic (22.7 μg/g) and cis-9-octadecenoic acid (21.3 μg/g), while the rest were in the range 7.6-1.3 μg/g. The most concentrated phenols were guaiacol (41.5 μg/g), catechin (38.7 μg/g), ellagic acid (35.9 μg/g), carbolic acid (24.2 μg/g) and p-coumaric acid (19.5 μg/g), while the rest were in the range 5.1-0.4 μg/g. Ultrasound reduces the time necessary to complete the extraction 160 and 26 times, the extraction volume 2.5 and 4 times, and increases the extraction efficiency 5 and 3 times for lipidic and phenolic fractions, respectively, in comparison with conventional extraction methods. In addition, the characterization of the lipidic and phenolic fractions constitutes a first approach to the H. inuloides metabolome. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Cabin noise and weight reduction program for the Gulfstream G200

    NASA Astrophysics Data System (ADS)

    Barton, C. Kearney

    2002-11-01

    This paper describes the approach and logic involved in a cabin noise and weight reduction program for an existing aircraft that was already in service with a pre-existing insulation package. The aircraft, a Gulfstream G200, was formally an IAI Galaxy, and the program was purchased from IAI in 2001. The approach was to investigate every aspect of the aircraft that could be a factor for cabin noise. This included such items as engine mounting and balancing criteria, the hydraulic system, the pressurization and air-conditioning system, the outflow valve, the interior shell and mounting system, antennae and other hull protuberances, as well as the insulation package. Each of these items was evaluated as potential candidates for noise and weight control modifications. Although the program is still ongoing, the results to date include a 175-lb weight savings and a 5-dB reduction in the cabin average Speech Interference Level (SIL).

  19. Lipid composition of Castanea sativa Mill. and Aesculus hippocastanum fruit oils.

    PubMed

    Zlatanov, Magdalen D; Antova, Ginka A; Angelova-Romova, Maria J; Teneva, Olga T

    2013-02-01

    Sweet and horse chestnut fruit contain carbohydrates, fibers, proteins, lipids, vitamins, glycosides and coumarin. The lipids are rich in biologically active substances as fatty acids, phospholipids, sterols and tocopherols. The fruit has been used as food, and for medicinal purposes to treat inflammatory and vascular problems. The fruits of sweet and horse chestnut contain 20 and 81 g kg(-1) glyceride oil respectively. The content of phospholipids in the oils was 49 and 3 g kg(-1). Sterols were found to be 8 and 12 g kg(-1). In the tocopherol fraction (1920 and 627 mg kg(-1)) γ-tocopherol predominated in the sweet chestnut oil (927 g kg(-1)); γ-tocopherol (591 g kg(-1)) and α-tocopherol (402 g kg(-1)) in horse chestnut oil. Palmitic, oleic and linoleic acids predominated in the triacylglycerols. Higher quantities of palmitic and oleic acids were established in the phospholipids and sterol esters. The fruits of horse and sweet chestnut have a close lipid composition. The oils are rich in essential fatty acids, such as linoleic and linolenic, as well as biologically active substances: phospholipids, sterols and tocopherols. This fact determines the good food value of sweet chestnut fruit and the possibilities for use of horse chestnuts in pharmacy and for technical purposes. © 2012 Society of Chemical Industry.

  20. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1.

    PubMed

    Zheng, Quan; Cao, Ying; Chen, Yalan; Wang, Jiqiu; Fan, Qiuju; Huang, Xian; Wang, Yiping; Wang, Tianshi; Wang, Xiuzhi; Ma, Jiao; Cheng, Jinke

    2018-06-01

    One major function of adipocytes is to store excess energy in the form of triglycerides. Insufficient adipose lipid storage is associated with many pathological conditions including hyperlipidemia, insulin resistance, and type 2 diabetes. In this study, we observed the overexpression of SUMO-specific protease 2 (Senp2) in adipose tissues during obesity. Adipocyte Senp2 deficiency resulted in less adipose lipid storage accompanied by an ectopic fat accumulation and insulin resistance under high-fat diet feeding. We further found that SET domain bifurcated 1 (Setdb1) was a SUMOylated protein and that SUMOylation promoted Setdb1 occupancy on the promoter locus of Pparg and Cebpa genes to suppress their expressions by H3K9me3. Senp2 could suppress Setdb1 function by de-SUMOylation. In adipocyte Senp2-deficiency mice, accumulation of the SUMOylated Setdb1 suppressed the expression of Pparg and Cebpa genes as well as lipid metabolism-related target genes, which would decrease the ability of lipid storage in adipocytes. These results revealed the crucial role of Senp2-Setdb1 axis in controlling adipose lipid storage.

  1. Synthesis and Characterization of Comb and Centipede Multigraft Copolymers P nBA- g-PS with High Molecular Weight Using Miniemulsion Polymerization

    DOE PAGES

    Wang, Wenwen; Wang, Weiyu; Lu, Xinyi; ...

    2014-10-23

    For this study, comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight massmore » spectrometry and 1H nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by 1H nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 26–32 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. In conclusion, these findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization.« less

  2. Characterization of Two Unique Cholesterol-Rich Lipid Particles Isolated from Human Atherosclerotic Lesions

    PubMed Central

    Chao, Fei-Fei; Blanchette-Mackie, E. Joan; Chen, Ya-Jun; Dickens, Benjamin F.; Berlin, Elliott; Amende, Lynn M.; Skarlatos, Sonia I.; Gamble, Wilbert; Resau, James H.; Mergner, Wolfgang T.; Kruth, Howard S.

    1990-01-01

    The authors' laboratory, using histochemicalmethods, previously identified two types of cholesterol-containing lipid particles in the extracellular spaces of human atherosclerotic lesions, one particle enriched in esterified cholesterol and the other particle enriched in unesterified cholesterol. The authors isolated and characterized these lipid particles. The esterified cholesterol-rich lipid particle was a small lipid droplet and differed from intracellular lipid dropletsfound in foam cells with respect to size and chemical composition. It had an esterified cholesterol core surrounded by aphospholipidunesterified cholesterol monolayer. Some aqueous spaces were seen within the particle core. Unesterified cholesterol-rich lipid particles were multilamellated, solid structures and vesicles comprised of single or multiple lamellas. The esterified cholesterol-rich particle had a density <1.01 g/ml, whereas the unesterified cholesterol-rich particle had a density between 1.03 and 1.05 g/ml. Both particles were similar in size fraction, whereas palmitate, stearate, oleate, and linoleate were predominant in the phospholipid fraction. The origins and the role of these two unusual lipid particles in vessel wall cholesterol metabolism remain to be determined. ImagesFigure 1Figure 3Figure 4Figure 5 PMID:2297045

  3. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  4. In vitro antitumor efficacy of berberine: solid lipid nanoparticles against human HepG2, Huh7 and EC9706 cancer cell lines

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Wang, Xiao; Wang, Huai-ling; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded solid lipid nanoparticles (Ber-SLN) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-SLN relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-SLN were 154.3 ± 4.1 nm and -11.7 ± 1.8 mV, respectively. MTT assay showed that Ber-SLN effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 10.6 μg/ml, 5.1 μg/ml, and 7.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-SLN is a promising approach for treating tumors.

  5. Bioconcentration factors and lipid solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, S.; Baughman, G.L.

    1991-03-01

    The log-log relationship between bioconcentration and hydrophobicity breaks down for several medium and high molecular weight solutes that bioconcentrate either to a small extent or not at all. Much of the failure is attributed to the relatively low solubility of these compounds in lipid. Inclusion of a term in octanol solubility (in place of lipid solubility, which is generally unavailable) considerably improves the quality of the relationship (r = 0.95). It is speculated that the octanol solubility term compensates for the relatively low solubility of large compounds in lipid.

  6. Electrostatic interactions of colicin E1 with the surface of Escherichia coli total lipid.

    PubMed

    Tian, Chunhong; Tétreault, Elaine; Huang, Christopher K; Dahms, Tanya E S

    2006-06-01

    The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.

  7. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposuremore » to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells.

  8. A Secondary Antibody-Detecting Molecular Weight Marker with Mouse and Rabbit IgG Fc Linear Epitopes for Western Blot Analysis

    PubMed Central

    Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R.; Cheng, Tian-Lu

    2016-01-01

    Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15–120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis. PMID:27494183

  9. Clustering of Rac1: Selective Lipid Sorting Drives Signaling.

    PubMed

    Maxwell, Kelsey N; Zhou, Yong; Hancock, John F

    2018-02-01

    The ability of lipid-anchored small GTPases to form nanometer-scale lipid domains on the cell plasma membrane (PM) is precipitating exciting new insights into membrane-anchored protein regulation. A recent article by Remorino et al. demonstrates that Rac1, similar to Ras, forms nanoclusters on the PM. The implications of these findings are discussed herein. Copyright © 2017. Published by Elsevier Ltd.

  10. Atherogenic dyslipidemia: prevalence and management in lipid clinics.

    PubMed

    Pedro-Botet, J; Flores-Le Roux, J A; Mostaza, J M; Pintó, X; de la Cruz, J J; Banegas, J R

    2014-12-01

    Atherogenic dyslipidemia, which is characterized by increased triglyceride levels and reduced HDL cholesterol levels, is underestimated and undertreated in clinical practice. We assessed its prevalence and the achievement of therapeutic objectives for HDL cholesterol and triglyceride levels in patients treated at lipid and vascular risk units in Spain. This was an observational, longitudinal, retrospective, multicenter study performed in 14 autonomous Spanish communities that consecutively included 1828 patients aged ≥18 years who were referred for dyslipidemia and vascular risk to 43 lipid clinics accredited by the Spanish Society of Arteriosclerosis. We collected information from the medical records corresponding to 2 visits conducted during 2010 and 2011-12, respectively. Of the 1649 patients who had a lipid profile in the first visit (90.2%), 295 (17.9%) had atherogenic dyslipidemia. The factors associated with atherogenic dyslipidemia were excess weight/obesity, not taking hypolipidemic drugs (statins and/or fibrates), diabetes, myocardial infarction and previous heart failure. Of the 273 (92.5%) patients with atherogenic dyslipidemia that had a lipid profile in the last visit, 44 (16.1%) achieved the therapeutic objectives for HDL cholesterol and triglyceride levels. The predictors of therapeutic success were normal weight and normoglycemia. One of every 6 patients treated in lipid and vascular risk units had atherogenic dyslipidemia. The degree to which the therapeutic goals for HDL cholesterol and triglyceride levels were achieved in these patients was very low. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).

    PubMed

    Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R

    2017-10-05

    The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B 1-25 ) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B 1-25 -induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B 1-25 using 2 H and 31 P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31 P T 2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.

  12. Anti-hepatocarcinoma effects of berberine-nanostructured lipid carriers against human HepG2, Huh7, and EC9706 cancer cell lines

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Fan, Hua; Wang, Yi-fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 +/- 3.7 nm and -19.3 +/- 1.4 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 9.1 μg/ml, 4.4 μg/ml, and 6.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  13. A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass

    PubMed Central

    Treyzon, Leo; Chen, Steve; Hong, Kurt; Yan, Eric; Carpenter, Catherine L; Thames, Gail; Bowerman, Susan; Wang, He-Jing; Elashoff, Robert; Li, Zhaoping

    2008-01-01

    Background While high protein diets have been shown to improve satiety and retention of lean body mass (LBM), this study was designed to determine effects of a protein-enriched meal replacement (MR) on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Methods Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack). One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1) 2.2 g protein/kg of LBM per day [high protein diet (HP)] or 2) 1.1 g protein/kg LBM/day standard protein diet (SP). LBM was determined using bioelectrical impedance analysis (BIA). Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Results Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 ± 0.5 kg for HP group and -3.72 ± 0.7 kg for SP group, p > 0.1). Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 ± 0.63 kg; SP = -0.64 ± 0.79 kg, P = 0.05) as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Conclusion Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the standard and

  14. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms

    USGS Publications Warehouse

    Krumme, M.L.; Timmis, K.N.; Dwyer, D.F.

    1993-01-01

    Pseudomonas cepacia G4 degrades trichloroethylene (TCE) via a degradation pathway for aromatic compounds which is induced by substrates such as phenol and tryptophan. P. cepacia G4 5223 PR1 (PR1) is a Tn5 insertion mutant which constitutively expresses the toluene ortho-monooxygenase responsible for TCE degradation. In groundwater microcosms, phenol-induced strain G4 and noninduced strain PR1 degraded TCE (20 and 50 microM) to nondetectable levels (< 0.1 microM) within 24 h at densities of 10(8) cells per ml; at lower densities, degradation of TCE was not observed after 48 h. In aquifer sediment microcosms, TCE was reduced from 60 to < 0.1 microM within 24 h at 5 x 10(8) PR1 organisms per g (wet weight) of sediment and from 60 to 26 microM over a period of 10 weeks at 5 x 10(7) PR1 organisms per g. Viable G4 and PR1 cells decreased from approximately 10(7) to 10(4) per g over the 10-week period.

  15. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    PubMed

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  16. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    PubMed

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Concentrations and distributions of polybrominated diphenyl ethers and novel brominated flame retardants in tree bark and human hair from Yunnan Province, China.

    PubMed

    Yuan, Haodong; Jin, Jun; Bai, Yao; Li, Qiuxu; Wang, Ying; Hu, Jicheng

    2016-07-01

    The concentrations and distributions of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in tree bark and hair samples from the same area in Yunnan Province, China, were determined. The total PBDE and NBFR concentrations in the tree bark samples were 3.8 ng/g lipid weight to 91 ng/g lipid weight and 0.23 ng/g lipid weight to 5.0 ng/g lipid weight, respectively. The total PBDE and NBFR concentrations in the hair samples were 2.1 ng/g dry weight to 14 ng/g dry weight and 0.083 ng/g dry weight to 0.29 ng/g dry weight, respectively. Decabromodiphenyl ether had similar distributions in the tree bark and hair samples, but other PBDE congeners and NBFRs had different distributions in the tree bark and hair samples. External exposure was found to be mainly responsible for the total PBDE and pentabromotoluene concentrations in hair, but both external and internal exposure were responsible for the pentabromophenyl and hexabromobenzene concentrations in hair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions

    NASA Astrophysics Data System (ADS)

    Gao, Baoyan; Chen, Ailing; Zhang, Wenyuan; Li, Aifen; Zhang, Chengwu

    2017-10-01

    The marine diatom Phaeodactylum tricornutum is a polymorphological, ecologically significant, and well-studied model of unicellular microalga. This diatom can accumulate diverse important metabolites. Herein, we cultured P. tricornutum in an internally installed tie-piece flat-plate photobioreactor under 14.5 m mol L-1 (high nitrogen, HN) and 2.9 m mol L-1 (low nitrogen, LN) of KNO3 and assessed its time-resolved changes in biochemical compositions. The results showed that HN was inductive to accumulate high biomass (4.1 g L-1). However, the LN condition could accelerate lipid accumulation in P. tricornutum. The maximum total lipid (TL) content under LN was up to 42.5% of biomass on day 12. Finally, neutral lipids (NLs) were 63.8% and 75.7% of TLs under HN and LN, respectively. The content of EPA ranged from 2.3% to 1.5% of dry weight during the growth period under the two culture conditions. Peak volumetric lipid productivity of 128.4 mg L-1d-1 was achieved in the HN group (on day 9). The highest volumetric productivity values of EPA, chrysolaminarin, and fucoxanthin were obtained in the exponential phase (on day 6) under HN, which were 9.6, 93.6, and 4.7 mg L-1d-1, respectively. In conclusion, extractable amounts of lipids, EPA, fucoxanthin, and chrysolaminarin could be obtained from P. tricornutum by regulating the culture conditions.

  19. LipidPedia: a comprehensive lipid knowledgebase.

    PubMed

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  20. Effect of dietary choline levels on growth performance, lipid deposition and metabolism in juvenile yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Luo, Zhi; Wei, Chuan-Chuan; Ye, Han-Mei; Zhao, Hai-Ping; Song, Yu-Feng; Wu, Kun

    2016-12-01

    The present experiment was conducted to determine the effect and mechanism of dietary choline levels on growth performance and lipid deposition of yellow catfish Pelteobagrus fulvidraco. Dietary choline was included at three levels of 239.2 (control (without extra choline addition), 1156.4 and 2273.6mg choline per kg diet, respectively) and fed to yellow catfish (mean initial weight: 3.45±0.02g mean±standard errors of mean (SEM)) for 8weeks. Fish fed the diet containing 1156.4mgkg -1 choline showed the higher weight gain (WG), specific growth rate (SGR) and feed intake (FI), but the lower feed conversion rate (FCR), than those in control and highest choline group. Hepatosomatic index (HSI) and hepatic lipid content declined with increasing dietary choline levels. Muscle lipid content was the lowest for fish fed adequate choline diets and showed no significant difference between other two groups. Choline contents in liver and muscle increased with increasing dietary choline levels. Dietary choline levels significantly influenced mRNA levels of genes involved in lipid homeostasis in muscle and liver, such as CTP:phosphocholine cytidylyltransferase a (CCTa), phosphatidylethanolamine N-methyl-transferase (PEMT), microsomal triglyceride transfer protein (MTP), apolipoprotein b (APOBb), apolipoprotein E (ApoE) and lipoprotein lipase (LPL), and effects of dietary choline levels on lipid deposition and metabolism were tissue-specific. Different responses of these genes at the mRNA levels partially explained the profiles of lipid deposition in liver and muscle for fish fed different choline diets. To our knowledge, this is the first to explore the effect of dietary choline level on mRNA expression of these genes, which provides new insights into choline nutrition in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex.

    PubMed

    Wadeesirisak, Kanthida; Castano, Sabine; Berthelot, Karine; Vaysse, Laurent; Bonfils, Frédéric; Peruch, Frédéric; Rattanaporn, Kittipong; Liengprayoon, Siriluck; Lecomte, Sophie; Bottier, Céline

    2017-02-01

    Rubber particle membranes from the Hevea latex contain predominantly two proteins, REF1 and SRPP1 involved in poly(cis-1,4-isoprene) synthesis or rubber quality. The repartition of both proteins on the small or large rubber particles seems to differ, but their role in the irreversible coagulation of the rubber particle is still unknown. In this study we highlighted the different modes of interactions of both recombinant proteins with different classes of lipids extracted from Hevea brasiliensis latex, and defined as phospholipids (PL), glycolipids (GL) and neutral lipids (NL). We combined two biophysical methods, polarization modulated-infrared reflection adsorption spectroscopy (PM-IRRAS) and ellipsometry to elucidate their interactions with monolayers of each class of lipids. REF1 and SRPP1 interactions with native lipids are clearly different; SRPP1 interacts mostly in surface with PL, GL or NL, without modification of its structure. In contrast REF1 inserts deeply in the lipid monolayers with all lipid classes. With NL, REF1 is even able to switch from α-helice conformation to β-sheet structure, as in its aggregated form (amyloid form). Interaction between REF1 and NL may therefore have a specific role in the irreversible coagulation of rubber particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of Piper nigrum extracts: Restorative perspectives of high-fat diet-induced changes on lipid profile, body composition, and hormones in Sprague-Dawley rats.

    PubMed

    Parim, BrahmaNaidu; Harishankar, Nemani; Balaji, Meriga; Pothana, Sailaja; Sajjalaguddam, Ramgopal Rao

    2015-01-01

    Piper nigrum Linn (Piperaceae) (PnL) is used in traditional medicine to treat gastric ailments, dyslipidemia, diabetes, and hypertension. The present study explores the possible protective effects of P. nigrum extracts on high-fat diet-induced obesity in rats. High-fat diet-induced obese rats were treated orally with 200 mg/kg bw of different extracts (hexane, ethylacetate, ethanol, and aqueous extracts) of PnL for 42 d. The effects of PnL extracts on body composition, insulin resistance, biochemical parameters, leptin, adiponectin, lipid profile, liver marker enzymes, and antioxidants were studied. The HFD control group rats showed a substantial raise in body weight (472.8 ± 9.3 g), fat% (20.8 ± 0.6%), and fat-free mass (165.9 ± 2.4 g) when compared with normal control rats whose body weight, fat%, and fat-free mass were 314.3 ± 4.4 g, 6.4 ± 1.4%, and 133.8 ± 2.2 g, respectively. Oral administration of ethyl acetate or aqueous extracts of PnL markedly reduced the body weight, fat%, and fat-free mass of HFD-fed rats. In contrast to the normal control group, a profound increase in plasma glucose, insulin resistance, lipid profile, leptin, thiobarbituric acid reactive substance (TBARS), and the activities of lipase and liver marker enzymes, and a decrease in adiponectin and antioxidant enzymes were noted in HFD control rats. Administration of PnL extracts to HFD-induced obese rats significantly (p < 0.05) restored the above profiles. PnL extracts significantly reduced the body weight, fat%, and ameliorated HFD-induced hyperlipidemia and its constituents.

  3. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans.

    PubMed

    Nakajima, Katsumasa; Chatelain, Ricardo; Clairmont, Kevin B; Commerford, Renee; Coppola, Gary M; Daniels, Thomas; Forster, Cornelia J; Gilmore, Thomas A; Gong, Yongjin; Jain, Monish; Kanter, Aaron; Kwak, Youngshin; Li, Jingzhou; Meyers, Charles D; Neubert, Alan D; Szklennik, Paul; Tedesco, Vivienne; Thompson, James; Truong, David; Yang, Qing; Hubbard, Brian K; Serrano-Wu, Michael H

    2017-06-08

    Modification of a gut restricted class of benzimidazole DGAT1 inhibitor 1 led to 9 with good oral bioavailability. The key structural changes to 1 include bioisosteric replacement of the amide with oxadiazole and α,α-dimethylation of the carboxylic acid, improving DGAT1 potency and gut permeability. Since DGAT1 is expressed in the small intestine, both 1 and 9 can suppress postprandial triglycerides during acute oral lipid challenges in rats and dogs. Interestingly, only 9 was found to be effective in suppressing body weight gain relative to control in a diet-induced obese dog model, suggesting the importance of systemic inhibition of DGAT1 for body weight control. 9 has advanced to clinical investigation and successfully suppressed postprandial triglycerides during an acute meal challenge in humans.

  4. The effects of coconut oil supplementation on the body composition and lipid profile of rats submitted to physical exercise.

    PubMed

    Resende, Nathália M; Félix, Henrique R; Soré, Murillo R; M M, Aníbal; Campos, Kleber E; Volpato, Gustavo T

    2016-05-13

    This study aims to verify the effects of coconut oil supplementation (COS) in the body composition and lipid profile of rats submitted to physical exercise. The animals (n=6 per group) were randomly assigned to: G1=Sedentary and Non-supplemented (Control Group), G2=Sedentary and Supplemented, G3=Exercised and Non-supplemented and G4=Exercised and Supplemented. The COS protocol used was 3 mL/Kg of body mass by gavage for 28 days. The physical exercise was the vertical jumping training for 28 days. It was determined the body mass parameters, Lee Index, blood glucose and lipid profile. The COS did not interfere with body mass, but the lean body mass was lower in G3 compared to G2. The final Lee Index classified G1 and G2 as obese (>30g/cm). The lipid profile showed total cholesterol was decreased in G3, LDL-c concentration was decreased in G2, triglycerides, VLDL-c and HDL-c concentrations were increased in G2 and G4 in relation to G1 and G3. The COS decreased LDL-c/HDL-c ratio. In conclusion, the COS associated or not to physical exercise worsen others lipid parameters, like triglycerides and VLDL-c level, showing the care with the use of lipid supplements.

  5. Anaerobic digestion of cattle offal: protein and lipid-rich substrate degradation and population dynamics of acidogens and methanogens.

    PubMed

    Lee, Joonyeob; Koo, Taewoan; Han, Gyuseong; Shin, Seung Gu; Hwang, Seokhwan

    2015-12-01

    Anaerobic digestion of cattle offal was investigated in batch reactors at 35 °C to determine the feasibility of using cattle offal as a feedstock. The organic content [i.e., volatile solids (VS)] of the cattle offal was mainly composed of protein (33.9%) and lipids (46.1%). Hydrolysis along with acidogenesis was monitored to investigate the substrate degradation and generation of intermediate products (e.g., volatile fatty acids, ammonia). Acetate (2.03 g/L), propionate (0.60 g/L), n-butyrate (0.39 g/L), and iso-valerate (0.37 g/L) were major acidogenesis products (91% of total volatile fatty acid concentration). Overall protein and lipid degradation were 82.9 and 81.8%, respectively. Protein degraded first, and four times faster (0.28 day(-1)) than lipid (0.07 day(-1)). Methane yields were 0.52 L CH4/g VSadded and 0.65 L CH4/g VSremoved, indicating that anaerobic digestion of the offal was feasible. A quantitative QPCR assay was conducted to understand the microbial dynamics. The variation patt erns in the gene concentrations successfully indicated the population dynamics of proteolytic and lipolytic acidogens. A fourth-order Runge-Kutta approximation was used to determine the kinetics of the acidogens. The molecular biotechnology approach was appropriate for the evaluation of the acidogenic biokinetics. The maximum growth rate, μ m, halfsaturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, of the proteolytic acidogens were 9.9 day(-1), 37.8 g protein/L, 1.1 × 10(10) copies/g protein, and 3.8 × 10(-1), respectively. Those for the lipolytic acidogens were 1.2 × 10(-1) day(-1), 8.3 g lipid/L, 1.5 × 10(9) copies/g lipid, and 9.9 × 10(-3) day(-1), respectively.

  6. Body adiposity but not insulin resistance is associated with -675 4G/5G polymorphism in the PAI-1 gene in a sample of Mexican children.

    PubMed

    de la Cruz-Mosso, Ulises; Muñoz-Valle, José Francisco; Salgado-Bernabé, Aralia Berenice; Castro-Alarcón, Natividad; Salgado-Goytia, Lorenzo; Sánchez-Corona, José; Flores-Martínez, Silvia Esperanza; Parra-Rojas, Isela

    2013-01-01

    To assess whether the -675 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene is associated with obesity and insulin resistance in Mexican children. A cross-sectional study was performed in 174 children, 89 with normal-weight and 85 with obesity, aged from 6 to 13 years. All children were from state of Guerrero, and recruited from three primary schools in the city of Chilpancingo, state of Guerrero, Mexico. Insulin levels were determined by immunoenzymatic assay. The homeostasis model assessment was used to determine insulin resistance. The -675 4G/5G polymorphism in PAI-1 gene was analyzed by polymerase chain reaction-restriction fragment length polymorphism. The prevalence of insulin resistance in the obese group was higher (49.41%) than in the normal-weight group (16.85%). The 4G/5G PAI-1 polymorphism was found in Hardy Weinberg equilibrium. The 4G/5G genotype contributed to a significant increase in waist-hip ratio (β=0.02, p=0.006), waist circumference (β=4.42, p=0.009), and subscapular skinfold thickness (β=1.79, p=0.04); however, it was not related with insulin resistance. The -675 4G/5G genotype of PAI-1 gene was associated with increase of body adiposity in Mexican children. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore,more » a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs

  8. Oxidation-Induced Increase In Photoreactivity of Bovine Retinal Lipid Extract.

    PubMed

    Koscielniak, A; Serafin, M; Duda, M; Oles, T; Zadlo, A; Broniec, A; Berdeaux, O; Gregoire, S; Bretillon, L; Sarna, T; Pawlak, A

    2017-12-01

    The mammalian retina contains a high level of polyunsaturated fatty acids, including docosahexaenoic acid (22:6) (DHA), which are highly susceptible to oxidation. It has been shown that one of the products of DHA oxidation-carboxyethylpyrrole (CEP), generated in situ, causes modifications of retinal proteins and induces inflammation response in the outer retina. These contributing factors may play a role in the development of age-related macular degeneration (AMD). It is also possible that some of the lipid oxidation products are photoreactive, and upon irradiation with blue light may generate reactive oxygen species. Therefore, in this work we analysed oxidation-induced changes in photoreactivity of lipids extracted from bovine neural retinas. Lipid composition of bovine neural retinas closely resembles that of human retinas making the bovine tissue a convenient model for studying the photoreactivity and potential phototoxicity of oxidized human retinal lipids. Lipid composition of bovine neural retinas Folch' extracts (BRex) was determined by gas chromatography (GC) and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS) analysis. Liposomes prepared from BRex, equilibrated with air, were oxidized in the dark at 37 °C for up to 400 h. The photoreactivity of BRex at different stages of oxidation was studied by EPR-oximetry and EPR-spin trapping. Photogeneration of singlet oxygen ( 1 O 2 , 1 Δ g ) by BRex was measured using time-resolved detection of the characteristic phosphorescence at 1270 nm. To establish contribution of lipid components to the analysed photoreactivity of Folch' extract of bovine retinas, a mixture of selected synthetic lipids in percent by weight (w/w %) ratio resembling that of the BRex has been also studied. Folch's extraction of bovine neural retinas was very susceptible to oxidation despite the presence of powerful endogenous antioxidants such as α-tocopherol and zeaxanthin. Non

  9. Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet.

    PubMed

    Adjoumani, Jean-Jacques Yao; Wang, Kaizhou; Zhou, Man; Liu, Wenbin; Zhang, Dingdong

    2017-12-01

    An 8-week feeding experiment was conducted to determine the effect of dietary betaine levels on the growth performance, antioxidant capacity, and lipid metabolism in high-fat diet-fed blunt snout bream (Megalobrama amblycephala) with initial body weight 4.3 ± 0.1 g [mean ± SEM]. Five practical diets were formulated to contain normal-fat diet (NFD), high-fat diet (HFD), and high-fat diet with betaine addition (HFB) at difference levels (0.6, 1.2, 1.8%), respectively. The results showed that the highest final body weight (FBW), weight gain ratio (WGR), specific growth rate (SGR), condition factor (CF), and feed intake (FI) (P < 0.05) were obtained in fish fed 1.2% betaine supplementation, whereas feed conversion ratio (FCR) was significantly lower in the same group compared to others. Hepatosomatic index (HSI) and abdominal fat rate (AFR) were significantly high in fat group compared to the lowest in NDF and 1.2% betaine supplementation, while VSI and survival rate (SR) were not affected by dietary betaine supplementation. Significantly higher (P < 0.05), plasma total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), aspartate transaminase (AST), alanine transaminase (ALT), cortisol, and lower high-density lipoprotein (HDL) content were observed in HFD but were improved when supplemented with 1.2% betaine. In addition, increase in superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in 1.2% betaine inclusion could reverse the increasing malondialdehyde (MDA) level induced by HFD. Based on the second-order polynomial analysis, the optimum growth of blunt snout bream was observed in fish fed HFD supplemented with 1.2% betaine. HFD upregulated fatty acid synthase messenger RNA (mRNA) expression and downregulated carnitine palmitoyltransferase 1, peroxisome proliferator-activated receptor α, and microsomal triglyceride transfer protein mRNA expression; nevertheless, 1.2% betaine supplementation significantly reversed

  10. Nutritional lipid liver disease of grass carp Ctenopharyngodon idullus (C. et V.)

    NASA Astrophysics Data System (ADS)

    Lin, Ding; Mao, Yongqing; Cai, Fasheng

    1990-12-01

    The inadequate nutrient content of pellet feeds widely used in recent years in China for grass carp farming led to lipid liver degeneration in the fish. The present studies show that the pathological features of lipid liver disease are anaemia and hepatic ceroidosis. Other clinical features are; the ratio of liver to body weight exceeds 3% and lipid content exceeds 5%. Extreme infiltration of hepaiocytes by lipid results in the following deteriorative effects: swelling of the liver cells, increase of lipid droplets in the cytoplasm and dislocation of the nucleus, loss of cytoplasm staining affinity, and increased activities of GOT and GPT in serum. Lipid liver degeneration of grass carp can be divided into three stages: 1) deposition of liver lipid; 2) lipid infiltration of hepatic parenchyma; 3) atrophy of liver nucleus. The causes of lipid liver degeneration are complicated, but the main cause is assumed to be an imbalance of nutrients in daily feed and the lock of some lipotropic substances.

  11. Effects of aerobic exercise on lipid profiles and high molecular weight adiponectin in Japanese workers.

    PubMed

    Guo, Wei; Kawano, Hiroaki; Piao, Lianhua; Itoh, Nana; Node, Koichi; Sato, Takeshi

    2011-01-01

    The metabolic syndrome is characterized by the accumulation of several metabolic risk factors. It is important to improve physical activity and dietary habits to reduce the risk of cardiovascular disease in humans. The study participants participated in a weekly aerobic exercise program that included a session composed of a brief meeting, warm-up exercises, and primary exercises (low and high impact, stretch, muscle training, and cooling down). To evaluate the effect of this intervention we measured body fat composition, holding power, and quality of life assessment. Blood tests were also carried out before and every 3 months during the study. Of the 37 participants enrolled in the exercise group, 31 (83.8%) completed the 12-week program. The control group consisted of 42 subjects, 36 (85.7%) of whom were available for follow-up at the end of the 12-week study period. In the exercise group, weight, body fat percentage, waist circumference, the World Health Organization quality of life 26 (WHO-QOL 26) score, triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol had improved significantly at the end of three months. The high molecular weight adiponectin concentration of the participants in the exercise group increased during the 9-month period of the study, although this change did not reach statistical significance compared with pre-exercise. Aerobic exercise led to an improvement in body composition and lipid profiles. High molecular weight adiponectin concentrations tended to improve compared with pre-aerobic exercise levels.

  12. TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wanlu; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province; Tang, Zhuqi

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion ofmore » TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.« less

  13. Magnesium Reduces Hepatic Lipid Accumulation in Yellow Catfish (Pelteobagrus fulvidraco) and Modulates Lipogenesis and Lipolysis via PPARA, JAK-STAT, and AMPK Pathways in Hepatocytes.

    PubMed

    Wei, Chuan-Chuan; Wu, Kun; Gao, Yan; Zhang, Li-Han; Li, Dan-Dan; Luo, Zhi

    2017-06-01

    Background: Magnesium influences hepatic lipid deposition in vertebrates, but the underlying mechanism is unknown. Objective: We used yellow catfish and their isolated hepatocytes to test the hypothesis that magnesium influences lipid deposition by modulating lipogenesis and lipolysis. Methods: Juvenile yellow catfish (mean ± SEM weight: 3.43 ± 0.02 g, 3 mo old, mixed sex) were fed a 0.14- (low), 0.87- (intermediate) or 2.11- (high) g Mg/kg diet for 56 d. Primary hepatocytes were incubated for 48 h in control or MgSO 4 -containing medium with or without 2-h pretreatment with an inhibitor (AG490, GW6471, or Compound C). Growth performance, cell viability, triglyceride (TG) concentrations, and expression of enzymes and genes involved in lipid metabolism were measured. Results: Compared with fish fed low magnesium, those fed intermediate or high magnesium had lower hepatic lipids (18%, 22%) and 6-phosphogluconate dehydrogenase (6PGD; 3.7%, 3.8%) and malic enzyme (ME; 35%, 48%) activities and greater mRNA levels of the lipolytic genes adipose triacylglyceride lipase ( atgl ; 82% and 1.7-fold) and peroxisome proliferator-activated receptor ( ppara ; 18% and 1.0-fold), respectively ( P < 0.05). Relative mRNA levels of AMP-activated protein kinase ( ampk ) a1 , ampka2 , ampkb1 , ampkb2 , ampkg1a , ampkg1b , Janus kinase (jak) 2a , jak2b, and signal transducers and activators of transcription ( stat ) 3 in fish fed high magnesium were higher (24% to 3.1-fold, P < 0.05) than in those fed low or intermediate magnesium. Compared with cells incubated with MgSO 4 alone, those incubated with MgSO 4 and pretreated with AG490, GW6471, or Compound C had greater TG concentrations (42%, 31%, or 56%), g6pd (98%, 59%, or 51%), 6pgd (68%, 73%, or 32%) mRNA expression, and activities of G6PD (35%, 45%, or 16%) and ME (1.5-fold, 1.3-fold, or 13%), and reduced upregulation (61%, 25%, or 45%) of the lipolytic gene, atgl ( P < 0.05). Conclusions: Magnesium reduced hepatic lipid

  14. Lipids, lipid genes, and incident age-related macular degeneration: the three continent age-related macular degeneration consortium.

    PubMed

    Klein, Ronald; Myers, Chelsea E; Buitendijk, Gabriëlle H S; Rochtchina, Elena; Gao, Xiaoyi; de Jong, Paulus T V M; Sivakumaran, Theru A; Burlutsky, George; McKean-Cowdin, Roberta; Hofman, Albert; Iyengar, Sudha K; Lee, Kristine E; Stricker, Bruno H; Vingerling, Johannes R; Mitchell, Paul; Klein, Barbara E K; Klaver, Caroline C W; Wang, Jie Jin

    2014-09-01

    To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD). Meta-analysis. setting: Three population-based cohorts. population: A total of 6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES), and Rotterdam Study (RS). observation procedures: Participants were followed over 20 years and examined at 5-year intervals. Hazard ratios associated with lipid levels per standard deviation above the mean or associated with each additional risk allele for each lipid pathway gene were calculated using random-effects inverse-weighted meta-analysis models, adjusting for known AMD risk factors. main outcome measures: Incidence of AMD. The average 5-year incidences of early AMD were 8.1%, 15.1%, and 13.0% in the BDES, BMES, and RS, respectively. Substantial heterogeneity in the effect of cholesterol and lipid pathway genes on the incidence and progression of AMD was evident when the data from the 3 studies were combined in meta-analysis. After correction for multiple comparisons, we did not find a statistically significant association between any of the cholesterol measures, statin use, or serum lipid genes and any of the AMD outcomes in the meta-analysis. In a meta-analysis, there were no associations of cholesterol measures, history of statin use, or lipid pathway genes to the incidence and progression of AMD. These findings add to inconsistencies in earlier reports from our studies and others showing weak associations, no associations, or inverse associations of high-density lipoprotein cholesterol and total cholesterol with AMD. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The effects of different lipid emulsions on the lipid profile, fatty acid composition, and antioxidant capacity of preterm infants: A double-blind, randomized clinical trial.

    PubMed

    Wang, Ying; Feng, Yi; Lu, Li-Na; Wang, Wei-Ping; He, Zhen-Juan; Xie, Li-Juan; Hong, Li; Tang, Qing-Ya; Cai, Wei

    2016-10-01

    Olive oil (OO), medium-chain triglycerides (MCT)/long-chain triglycerides (LCT) mixture and soybean oil (SO) lipid emulsions are currently used for preterm infants in China. The aim of our study was to compare the lipid profile, fatty acid composition, and antioxidant capacity of preterm infants administered OO, MCT/LCT, or SO lipid emulsions. In this study, 156 preterm infants (birth weight < 2000 g and gestational age < 37 weeks) received parenteral nutrition (PN) containing OO, MCT/LCT, or SO lipid emulsions for a minimum of 14 d. On days 0, 7, and 14, the lipid profile, fatty acid composition and antioxidant capacity were analyzed. On day 7, HDL levels in the MCT/LCT group were significantly lower than in the OO (1.06 ± 0.40 mmol/L) or SO groups. LDL levels were higher in the OO group than in the MCT/LCT or SO groups on day 7. A-I/B was higher in MCT/LCT than in OO or SO groups. Myristic acid (C14:0) levels on days 7 and 14 increased in MCT/LCT compared to the OO and SO groups. The OO group had higher oleic acid (C18:1n9) levels than the two other groups. Linoleic acid (C18:2n6), linolenic acid (C18:3n3), and eicosapentaenoic acid (20:5n3) were significantly lower in the OO group than in MCT/LCT or SO groups. Monounsaturated fatty acid levels decreased, and ω-6 polyunsaturated fatty acid and essential fatty acids levels increased in MCT/LCT and SO groups. No significant differences were obtained in SOD, MDA, GSH-Px, and T-AOC among the groups. The three lipid emulsions were safe and well tolerated in preterm infants. Oleic acid (C18:1n9) levels increased and LA (C18:2n6), ALA (C18:3n3), and EPA (C20:5n23) levels decreased in OO compared to MCT/LCT or SO. NCT01683162, https://register.clinicaltrials.gov/. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. The effect of a plant-based low-carbohydrate ("Eco-Atkins") diet on body weight and blood lipid concentrations in hyperlipidemic subjects.

    PubMed

    Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Greaves, Kathryn A; Paul, Gregory; Singer, William

    2009-06-08

    Low-carbohydrate, high-animal protein diets, which are advocated for weight loss, may not promote the desired reduction in low-density lipoprotein cholesterol (LDL-C) concentration. The effect of exchanging the animal proteins and fats for those of vegetable origin has not been tested. Our objective was to determine the effect on weight loss and LDL-C concentration of a low-carbohydrate diet high in vegetable proteins from gluten, soy, nuts, fruits, vegetables, cereals, and vegetable oils compared with a high-carbohydrate diet based on low-fat dairy and whole grain products. A total of 47 overweight hyperlipidemic men and women consumed either (1) a low-carbohydrate (26% of total calories), high-vegetable protein (31% from gluten, soy, nuts, fruit, vegetables, and cereals), and vegetable oil (43%) plant-based diet or (2) a high-carbohydrate lacto-ovo vegetarian diet (58% carbohydrate, 16% protein, and 25% fat) for 4 weeks each in a parallel study design. The study food was provided at 60% of calorie requirements. Of the 47 subjects, 44 (94%) (test, n = 22 [92%]; control, n = 22 [96%]) completed the study. Weight loss was similar for both diets (approximately 4.0 kg). However, reductions in LDL-C concentration and total cholesterol-HDL-C and apolipoprotein B-apolipoprotein AI ratios were greater for the low-carbohydrate compared with the high-carbohydrate diet (-8.1% [P = .002], -8.7% [P = .004], and -9.6% [P = .001], respectively). Reductions in systolic and diastolic blood pressure were also seen (-1.9% [P = .052] and -2.4% [P = .02], respectively). A low-carbohydrate plant-based diet has lipid-lowering advantages over a high-carbohydrate, low-fat weight-loss diet in improving heart disease risk factors not seen with conventional low-fat diets with animal products.

  17. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    PubMed

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  18. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.

    PubMed

    Lin, Yi; Ding, Dongxiao; Huang, Qiansheng; Liu, Qiong; Lu, Haoyang; Lu, Yanyang; Chi, Yulang; Sun, Xia; Ye, Guozhu; Zhu, Huimin; Wei, Jie; Dong, Sijun

    2017-09-01

    Exposure to Bisphenol A (BPA) has been associated with the development of nonalcoholic fatty liver disease (NAFLD) but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study was designed to explore whether exposure to BPA-triggered abnormal steatosis and lipid accumulation in the liver could be modulated by miR-192. We showed that male post-weaning C57BL/6 mice exposed to 50μg/kg/day of BPA by oral gavage for 90days displayed a NAFLD-like phenotype. In addition, we found in mouse liver and human HepG2 cells that BPA-induced hepatic steatosis and lipid accumulation were associated with decreased expression of miR-192, upregulation of SREBF1 and a series of genes involved in de novo lipogenesis. Downregulation of miR-192 in BPA-exposed hepatocytes could be due to defective pre-miR-192 processing by DROSHA. Using HepG2 cells, we further confirmed that miR-192 directly acted on the 3'UTR of SREBF1, contributing to dysregulation of lipid homeostasis in hepatocytes. MiR-192 mimic and lentivirus-mediated overexpression of miR-192 improved BPA-induced hepatic steatosis by suppressing SREBF1. Lastly, we noted that lipid accumulation was not a strict requirement for developing insulin resistance in mice after BPA treatment. In conclusion, this study demonstrated a novel mechanism in which NAFLD associated with BPA exposure arose from alterations in the miR-192-SREBF1 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    PubMed Central

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  20. Excretion of extracellular lipids by Streptococcus mutans BHT and FA-1.

    PubMed Central

    Cabacungan, E; Pieringer, R A

    1980-01-01

    Streptococcus mutans BHT and FA-1, when grown to log phase on chemically defined medium containing [14C]glycerol, excreted 15% of the total biosynthesized 14C-lipid into the medium. When grown to early stationary phase, 28 to 33% of the 14C-lipid was found in the medium. The radioactive lipids of these varieties of S. mutans were identified as diacylglycerol, diglucosyl diacylglycerol (DGD), monoglucosyl diacylglycerol, diphosphatidylglycerol, phosphatidylglycerol (PG), and smaller amounts of two other lipids tentatively were identified as amino acyl-PG and glycerol phosphoryl-DGD. All lipids were found as extracellular and intracellular components from cells grown to either log or stationary phase. However, there were some shifts in the relative percentage of these lipids as the cells changed from log to stationary phase. For example, the intracellular lipid content of log-phase S. mutans BHT was composed of 49% PG and 19% DGD, but these percents shifted to 18% PG and 57% DGD when the cells were grown to stationary phase. However, the extracellular lipids of this organism contained 50 to 60% PG and 20% DGD in both log and stationary phases. PMID:7380539

  1. Short-Term Use of Parenteral Nutrition With a Lipid Emulsion Containing a Mixture of Soybean Oil, Olive Oil, Medium-Chain Triglycerides, and Fish Oil

    PubMed Central

    Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    Background: For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Methods: Double-blind, controlled study in 53 neonates (<34 weeks’ gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1–3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6–14. Results: Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). Conclusions: The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile. PMID:22237883

  2. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.

    PubMed

    Choi, Sun-A; Jung, Joo-Young; Kim, Kyochan; Kwon, Jong-Hee; Lee, Jin-Suk; Kim, Seung Wook; Park, Ji-Yeon; Yang, Ji-Won

    2014-11-01

    In this study, lipid extraction from Aurantiochytrium sp. was performed using a molten-salt/ionic-liquid mixture. The total fatty acid content of Aurantiochytrium sp. was 478.8 mg/g cell, from which 145 mg/g cell (30.3% of total fatty acids) of docosahexaenoic acid (DHA) was obtained. FeCl3·6H2O showed a high lipid extraction yield (207.9 mg/g cell), when compared with that of [Emim]OAc, which was only 118.1 mg/g cell; notably however, when FeCl3·6H2O was mixed with [Emim]OAc (5:1, w/w), the yield was increased to 478.6 mg/g cell. When lipid was extracted by the FeCl3·6H2O/[Emim]OAc mixture at a 5:1 (w/w) blending ratio under 90 °C, 30 min reaction conditions, the fatty acid content of the extracted lipid was a high purity 997.7 mg/g lipid, with most of the DHA having been extracted (30.2% of total fatty acids). Overall, lipid extraction from Aurantiochytrium sp. was enhanced by the synergistic effects of the molten-salt/ionic-liquid mixture with different ions.

  3. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  4. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  5. Lipid Accumulation from Glucose and Xylose in an Engineered, Naturally Oleaginous Strain of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoshaug, Eric P; Van Wychen, Stefanie R; Zhang, Min

    Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1)more » genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.« less

  6. A cognitive behavioral therapy intervention to promote weight loss improves body composition and blood lipid profiles among overweight breast cancer survivors.

    PubMed

    Mefferd, Kari; Nichols, Jeanne F; Pakiz, Bilge; Rock, Cheryl L

    2007-08-01

    Overweight or obesity is an established negative prognostic factor in breast cancer. Co-morbidities associated with obesity, including cardiovascular disease (CVD), may negatively impact quality of life and survival in this population. Our purpose was to determine the effect of a cognitive behavioral therapy (CBT) intervention for weight loss through exercise and diet modification on risk factors for recurrence of breast cancer, and risks for CVD associated with obesity. Eighty-five overweight or obese breast cancer survivors were randomly assigned to a once weekly, 16-week intervention or wait-list control group. The intervention incorporated elements of CBT for obesity, addressing a reduction in energy intake, as well exercise, with a goal of an average of 1 h a day of moderate to vigorous activity. Body weight, total and regional body fat (by dual energy X-ray absorptiometry), waist and hip circumference, and blood lipids were assessed at baseline and following 16 weeks of intervention. Seventy six women (89.4%) completed the intervention. Independent t-test to evaluate group differences at 16 weeks showed significant differences in weight, body mass index, percent fat, trunk fat, leg fat, as well as waist and hip circumference between intervention and control groups (P weight management may reduce obesity and CVD risk in overweight breast cancer survivors.

  7. Red palm oil supplementation does not increase blood glucose or serum lipids levels in Wistar rats with different thyroid status.

    PubMed

    Rauchová, H; Vokurková, M; Pavelka, S; Vaněčková, I; Tribulová, N; Soukup, T

    2018-05-04

    Red palm oil (RPO) is a rich natural source of antioxidant vitamins, namely carotenes, tocopherols and tocotrienols. However, it contains approximately 50 % saturated fatty acids the regular consumption of which could negatively modify lipid profile. The aim of our study was to test whether 7 weeks of RPO supplementation (1 g/kg body weight/day) would affect blood glucose and lipid metabolism in adult male Wistar rats with altered thyroid status. We induced hypothyroidism and hyperthyroidism in rats by oral administration of either methimazole or mixture of thyroid hormones. Different thyroid status (EU - euthyroid, HY - hypothyroid and HT - hyperthyroid) was characterized by different serum thyroid hormones levels (total and free thyroxine and triiodothyronine), changes in the activity of a marker enzyme of thyroid status - liver mitochondrial glycerol-3-phosphate dehydrogenase, and altered absolute and relative heart weights. Fasting blood glucose levels were higher in HT rats in comparison with EU and HY rats, but the changes caused by RPO supplementation were not significant. The achievement of the HY status significantly increased serum levels of total cholesterol, as well as with high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol: 2.43+/-0.15, 1.48+/-0.09, 0.89+/-0.08 mmol/l, compared to EU: 1.14+/-0.06, 0.77+/-0.06, 0.34+/-0.05 mmol/l and HT: 1.01+/-0.06, 0.69+/-0.04, 0.20+/-0.03 mmol/l, respectively. RPO supplementation did not increase significantly levels of blood lipids but tended to increase glutathione levels in the liver. In conclusion, RPO supplementation did not induce the presumed deterioration of glucose and lipid metabolism in rats with three well-characterized alterations in thyroid status.

  8. The CD1 family: serving lipid antigens to T cells since the Mesozoic era.

    PubMed

    Zajonc, Dirk M

    2016-08-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).

  9. The CD1 family: serving lipid antigens to T cells since the Mesozoic era

    PubMed Central

    Zajonc, Dirk M.

    2016-01-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414

  10. Photosynthesis-fermentation hybrid system to produce lipid feedstock for algal biofuel.

    PubMed

    Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2013-01-01

    To avoid bacterial contamination due to medium replacement in the expanded application of a photosynthesis-fermentation model, an integrated photosynthesis-fermentation hybrid system was set up and evaluated for algal lipid production using Chlorella protothecoides. In this system, the CO2-rich off-gas from the fermentation process was recycled to agitate medium in thephotobioreactor, which could provide initial cells for the heterotrophic fermentation. The cell concentration reached 1.03 +/- 0.07 g/L during photoautotrophic growth and then the concentrated green cells were switched to heterotrophic fermentation after removing over 99.5% ofnitrogen in the medium by a nitrogen removal device. At the end offermentation in the system, the cell concentration could reach as high as 100.51 +/- 2.03 g/L, and 60.05 +/- 1.38% lipid content was achieved simultaneously. The lipid yield (60.36 +/- 2.63 g/L) in the hybrid system was over 700 times higher than that in a photobioreactor and exceeded that by fermentation alone (47.56 +/- 7.31 g/L). The developed photosynthesis-fermentation hybrid system in this study was not only a feasible option to enhance microalgal lipid production, but also an environment-friendly approach to produce biofuel feedstock through concurrent utilization of ammonia nitrogen, CO2, and organic carbons.

  11. The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater.

    PubMed

    Liu, Meng; Zhang, Xu; Tan, Tianwei

    2016-10-01

    In this paper, the components of amino acids in mixed starch wastewater (corn steep water/corn gluten water=1/3, v/v) were analyzed by GC-MS. Effects of amino acids on lipid production by Rhodotorula glutinis and COD removal were studied. The results showed that mixed starch wastewater contained 9 kinds of amino acids and these amino acids significantly improved the biomass (13.63g/L), lipid yield (2.48g/L) and COD removal compared to the basic medium (6.23g/L and 1.56g/L). In a 5L fermentor containing mixed starch wastewater as substrate to culture R. glutinis, the maximum biomass, lipid content and lipid yield reached 26.38g/L, 28.90% and 7.62g/L, with the associated removal rates of COD, TN and TP reaching 77.41%, 69.12% and 73.85%, respectively. The results revealed a promising approach for lipid production with using amino acids present in starch wastewater as an alternative nitrogen source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  13. Weight Science: Evaluating the Evidence for a Paradigm Shift

    PubMed Central

    2011-01-01

    Current guidelines recommend that "overweight" and "obese" individuals lose weight through engaging in lifestyle modification involving diet, exercise and other behavior change. This approach reliably induces short term weight loss, but the majority of individuals are unable to maintain weight loss over the long term and do not achieve the putative benefits of improved morbidity and mortality. Concern has arisen that this weight focus is not only ineffective at producing thinner, healthier bodies, but may also have unintended consequences, contributing to food and body preoccupation, repeated cycles of weight loss and regain, distraction from other personal health goals and wider health determinants, reduced self-esteem, eating disorders, other health decrement, and weight stigmatization and discrimination. This concern has drawn increased attention to the ethical implications of recommending treatment that may be ineffective or damaging. A growing trans-disciplinary movement called Health at Every Size (HAES) challenges the value of promoting weight loss and dieting behavior and argues for a shift in focus to weight-neutral outcomes. Randomized controlled clinical trials indicate that a HAES approach is associated with statistically and clinically relevant improvements in physiological measures (e.g., blood pressure, blood lipids), health behaviors (e.g., eating and activity habits, dietary quality), and psychosocial outcomes (such as self-esteem and body image), and that HAES achieves these health outcomes more successfully than weight loss treatment and without the contraindications associated with a weight focus. This paper evaluates the evidence and rationale that justifies shifting the health care paradigm from a conventional weight focus to HAES. PMID:21261939

  14. Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.

    PubMed

    Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantén, Daniela N; Blamey, Jenny M

    2014-05-01

    GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    PubMed

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  16. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, Jong Ryeal; Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27; Ahmed, Mahmoud

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 wasmore » highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases

  17. [The lipid metabolism abnormality in patients administered with olanzapine].

    PubMed

    Amano, Taku; Hosaka, Shigetoshi; Takami, Hiroshi; Sugiyama, Chie; Oda, Kazue; Morikawa, Ryuichi

    2012-11-01

    The atypical antipsychotic medication olanzapine is a useful agent in acute and maintenance treatment of schizophrenia and related disorders. It has beneficial effects on both positive and negative symptoms, an early onset of antipsychotic action and a favourable side effect profile. On the other hand, olanzapine has many reports of causing weight gain, glucose metabolism disturbances and lipidosis. We carried out blood tests (leptin, adiponectin, remnant-like lipoprotein cholesterol (RLP-C), total cholesterol, HbA1C, 75-OGTT and etc.) on patients with schizophrenia who had taken olanzapine. As a result, leptin, neutral lipid and RLP-C were significantly correlated by BMI. (The average blood test data and BMI revealed a normal range). Most analysis results of the lipoprotein fraction by a polyacrylamide-gel-electrophoresis method were normal patterns. Furthermore, the serum insulin concentrations from 75 g glucose tolerance (75 g-OGTT) 30 minutes later, in one third of patients receiving olanzapine, registered more than 100 microU/ml. The mechanism of the insulin secretion rise by olannzapine is unknown. Olanzapine may impair glucose tolerance due in part to increased insulin resistance. These findings do not necessarily imply that olanzapine is directly associated with a risk of impairment of weight gain, glucose metabolism disturbances and lipidosis. These results suggest that it is useful to promote diet cure and exercise therapy with patients with high BMI levels.

  18. Dietary Lipid Sources Influence Fatty Acid Composition in Tissue of Large Yellow Croaker (Larmichthys crocea) by Regulating Triacylglycerol Synthesis and Catabolism at the Transcriptional Level

    PubMed Central

    Qiu, Hong; Jin, Min; Li, Yi; Lu, You; Hou, Yingmei; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to evaluate the effects of dietary lipid sources on growth performance, fatty acid composition, rate-limiting enzyme activities and gene expression related to lipid metabolism in large yellow croaker (Larmichthys crocea). Five iso-nitrogenous and iso-lipidic experimental diets were formulated to contain different lipid sources, such as fish oil (FO), soybean oil (SO), linseed oil (LO), rapeseed oil (RO) and peanut oil (PO), respectively. Triplicate groups of 50 fish (initial weight 13.77±0.07g) were stocked in 15 floating net cages (1.5m×1.5m×2.0m). Fish fed the diets containing RO and LO had lower weight gain and specific growth rates than those fed the FO, SO and PO diets. Survival, feed efficiency, protein efficiency ratio, hepatosomatic index, viscerasomatic index and condition factor were not significantly affected by different dietary lipid sources. Fish fed the diet containing FO had higher lipid content in whole body compared with the other groups, whereas fish fed the SO diet had the lowest muscle lipid content. Fatty acid profiles of muscle and liver reflected the fatty acid composition of the diets. Plasma glucose, triglyceride, and the enzymatic activity of aspartate aminotransferase and alanine aminotransferase were significantly influenced by different dietary lipid sources, while total protein, cholesterol, superoxide dismutase or malondialdehyde in plasma were not affected by the different dietary lipid sources. Fish fed the LO diet had lower adipose triglyceride lipase and fatty acid synthase activities in liver than those fed the diets containing FO and RO, while the LO diet resulted in the highest hepatic carnitine palmitoultransferase-1 activity. Hepatic gene relative expression of adipose triglyceride lipase and carnitine palmitoyltransferase-1 in fish fed PO diet was significantly higher than all other groups, whereas fish fed the SO and LO diets had lower relative expression levels of lipoprotein

  19. Factors influencing particulate lipid production in the East Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Gašparović, B.; Frka, S.; Koch, B. P.; Zhu, Z. Y.; Bracher, A.; Lechtenfeld, O. J.; Neogi, S. B.; Lara, R. J.; Kattner, G.

    2014-07-01

    Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5-29.4 μg L-1) were higher than in samples from deep waters (3.2-9.3 μg L-1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13-25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking

  20. Fatty acid composition of polar and neutral meat lipids of goats browsing in native pasture of Brazilian Semiarid.

    PubMed

    Fonteles, Natália L O; Alves, Susana P; Madruga, Marta Suely; Queiroga, Rita R E; Andrade, Albericio P; Silva, Divan S; Leal, Amanda P; Bessa, Rui J B; Medeiros, Ariosvaldo N

    2018-05-01

    Thirty six male goats grazing Caatinga native pasture were randomly assigned to 4 concentrate supplementation levels (0, 5, 10 and 15g/kg of body weight) and slaughtered after 120days. Longissimus muscle meat lipids were extracted and fractionated into neutral (NL) and polar (PL) lipids. Supplementation of grazing goats increased linearly (P<0.05) intramuscular fat (1 to 1.5% of meat) and NL (0.3 to 1% of meat) but decreased linearly (P=0.044) the PL (0.66 to 0.50% of meat). On NL, supplementation increased linearly (P=0.047) the proportion of c9-18:1 (31 to 40% of FA) with supplementation. On PL, supplementation reduced linearly (P<0.03) the dimethyl acetals, 18:3n-3 and most of long chain polyunsaturated FA (PUFA) proportions but increased linearly (P<0.001) the c9-18:1. Considering the total meat FA, supplementation led to an increase of the saturated and monounsaturated FA contents and a decrease of the long chain n-6 and n-3 PUFA contents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of multivitamin and vitamin A supplements on weight gain during pregnancy among HIV-1-infected women.

    PubMed

    Villamor, Eduardo; Msamanga, Gernard; Spiegelman, Donna; Antelman, Gretchen; Peterson, Karen E; Hunter, David J; Fawzi, Wafaie W

    2002-11-01

    The pattern of weight gain during pregnancy among HIV-infected women is largely unknown. Multivitamin supplementation was shown to be effective in preventing adverse pregnancy outcomes among HIV-positive women. These protective effects could be mediated in part by an improvement in the pattern of gestational weight gain. We examined the effects of multivitamin and vitamin A supplements on weight gain during the second and third trimesters of pregnancy among HIV-infected women. We enrolled 1075 pregnant, HIV-1-positive women from Dar es Salaam, Tanzania, in a randomized, placebo-controlled trial. Using a 2-by-2 factorial design, we assigned each woman to 1 of 4 regimens: multivitamins (thiamine, riboflavin, niacin, folic acid, and vitamins B-6, B-12, C, and E), vitamin A, multivitamins including vitamin A, or placebo. The women took these oral supplements daily and were weighed monthly until the end of pregnancy. The mean rate of weight gain was 306 g/wk during the second trimester and 247 g/wk during the third trimester. During the third trimester, average weight gain was significantly greater (by 304 g; 95% CI: 17, 590; P = 0.04) and the risk of low rate of weight gain (g/wk) was significantly lower (relative risk: 0.73; 95% CI: 0.58, 0.93) in women who received multivitamins than in women who did not. Multivitamins including vitamin A were protective against low weight gain during the second trimester compared with multivitamins alone. Multivitamin supplementation during pregnancy improves the pattern of weight gain among HIV-infected women.

  2. Gender-specific interactions of MTHFR C677T and MTRR A66G polymorphisms with overweight/obesity on serum lipid levels in a Chinese Han population.

    PubMed

    Zhi, Xueyuan; Yang, Boyi; Fan, Shujun; Wang, Yanxun; Wei, Jian; Zheng, Quanmei; Sun, Guifan

    2016-10-28

    Little is known regarding the interactions of methylenetetrahydrofolate reductase (MTHFR) C677T and methionine synthase reductase (MTRR) A66G polymorphisms with overweight/obesity on serum lipid profiles. The aim of the current study was to explore interactions between the two polymorphisms and overweight/obesity on four common lipid levels in a Chinese Han population and further to evaluate whether these interactions exhibit gender-specificity. A total of 2239 participants (750 females and 1489 males) were enrolled into this study. The genotypes of the MTHFR C677T and MTRR A66G were determined by a TaqMan assay. Overweight and obesity were defined as a body mass index between 24 and 27.99 and ≥ 28 kg/m 2 , respectively. The interactions were examined by factorial design covariance analysis, and further multiple comparisons were conducted by Bonferroni correction. There was no significant difference in the genotypic and allelic frequencies between females and males (MTHFR 677 T allele: 54.47 % for females and 54.40 % for males; MTRR 66G allele: 24.73 % for females and 24.71 % for males). Interaction between the MTHFR C677T polymorphism and overweight/obesity on serum triglyceride levels, and interaction between the MTRR A66G polymorphism and overweight/obesity on serum high-density lipoprotein cholesterol levels were detected in women (P = 0.015 and P = 0.056, respectively). For female subjects with overweight/obesity, the serum triglyceride levels in MTHFR 677TT genotype [1.09 (0.78-1.50) mmol/L] were significantly higher as compared with MTHFR 677CC genotype [0.90 (0.60-1.15) mmol/L, P = 0.007], and the MTRR 66GG genotype carriers had higher serum high-density lipoprotein cholesterol levels than those with MTRR 66AG genotype (1.46 ± 0.50 vs. 1.19 ± 0.31 mmol/L, P = 0.058). Furthermore, in male subjects with overweight/obesity, the MTHFR 677CT genotype carriers had higher low-density lipoprotein cholesterol levels than those

  3. Relationship between CYP1A2 Localization and Lipid Microdomain Formation as a Function of Lipid Composition

    PubMed Central

    Brignac-Huber, Lauren M.; Reed, James R.; Eyer, Marilyn K.

    2013-01-01

    Cytochrome P450 (P450) function requires the interaction of P450 and NADPH-cytochrome P450 reductase (CPR) in membranes, and is frequently studied using reconstituted systems composed solely of phosphatidylcholine. There is increasing evidence that other endoplasmic reticulum (ER) lipids can affect P450 structure, activity, and interactions with CPR. Some of these lipid effects have been attributed to the formation of organized liquid-ordered (lo) domains. The goal of this study was to determine if lo domains were formed in P450 reconstituted systems mimicking the ER membrane. CYP1A2, when incorporated in “ER-like” lipid vesicles, displayed detergent insolubility after treatment with Brij 98 and centrifugation in a sucrose gradient. Lipid probes were employed to identify domain formation in both ER-like vesicles and model membranes known to form lo domains. Changes in fluorescence resonance energy transfer (FRET) using an established donor/acceptor FRET pair in both ER-like and model lo-forming systems demonstrated the coexistence of lo- and liquid-disordered domains as a function of cholesterol and sphingomyelin content. Similarly, 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan), a probe that reports on membrane organization, showed that cholesterol and sphingomyelin increased membrane order. Finally, brominated-phosphatidylcholine allowed for monitoring of the location of both CPR and CYP1A2 within the lo regions of ER-like systems. Taken together, the results demonstrate that ER-like vesicles generate microdomains, and both CYP1A2 and CPR predominantly localize into lo membrane regions. Probe fluorescent responses suggest that lipid microdomains form in these vesicles whether or not enzymes are included in the reconstituted systems. Thus, it does not appear that the proteins are critical for stabilizing lo domains. PMID:23963955

  4. LRH-1 regulates hepatic lipid homeostasis and maintains arachidonoyl phospholipid pools critical for phospholipid diversity

    PubMed Central

    Miranda, Diego A.; Krause, William C.; Suzawa, Miyuki; Escusa, Hazel; Foo, Juat Chin; Shihadih, Diyala S.; Stahl, Andreas; Nyangau, Edna; Hellerstein, Marc; Wenk, Markus R.; Silver, David L.; Ingraham, Holly A.

    2018-01-01

    Excess lipid accumulation is an early signature of nonalcoholic fatty liver disease (NAFLD). Although liver receptor homolog 1 (LRH-1) (encoded by NR5A2) is suppressed in human NAFLD, evidence linking this phospholipid-bound nuclear receptor to hepatic lipid metabolism is lacking. Here, we report an essential role for LRH-1 in hepatic lipid storage and phospholipid composition based on an acute hepatic KO of LRH-1 in adult mice (LRH-1AAV8-Cre mice). Indeed, LRH-1–deficient hepatocytes exhibited large cytosolic lipid droplets and increased triglycerides (TGs). LRH-1–deficient mice fed high-fat diet displayed macrovesicular steatosis, liver injury, and glucose intolerance, all of which were reversed or improved by expressing wild-type human LRH-1. While hepatic lipid synthesis decreased and lipid export remained unchanged in mutants, elevated circulating free fatty acid helped explain the lipid imbalance in LRH-1AAV8-Cre mice. Lipidomic and genomic analyses revealed that loss of LRH-1 disrupts hepatic phospholipid composition, leading to lowered arachidonoyl (AA) phospholipids due to repression of Elovl5 and Fads2, two critical genes in AA biosynthesis. Our findings reveal a role for the phospholipid sensor LRH-1 in maintaining adequate pools of hepatic AA phospholipids, further supporting the idea that phospholipid diversity is an important contributor to healthy hepatic lipid storage. PMID:29515023

  5. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung Hwan; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752; Lee, Yoo Jeong

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator ofmore » mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.« less

  6. Reversal of high fat diet-induced obesity through modulating lipid metabolic enzymes and inflammatory markers expressions in rats.

    PubMed

    A, Kalaivani; Uddandrao, V V Sathibabu; Parim, Brahmanaidu; Ganapathy, Saravanan; P R, Nivedha; Kancharla, Sushma Chandulee; P, Rameshreddy; K, Swapna; Sasikumar, Vadivukkarasi

    2018-03-19

    In this study, we evaluated the ameliorative potential of Cucurbita maxima seeds oil (CSO (100 mg/kg body weight)) supplementation to high fat diet (HFD)-induced obese rats for 30 days on the changes in body weight, markers of lipid metabolism such as LDL, HDL, triglycerides, total cholesterol, adiponectin, leptin, amylase, and lipase. We also investigated the effects of CSO on the changes of lipid metabolic enzymes such as fatty-acid synthase, acetyl CoA carboxylase, carnitine palmitoyl transferase-1, HMG CoA reductase, and inflammatory markers (TNF-α and IL-6). Administration of CSO revealed significant diminution in body weight gain, altered the activity, expressions of lipid marker enzymes and inflammatory markers. It demonstrated that CSO had considerably altered these parameters when evaluated with HFD control rats. In conclusion, this study suggested that CSO might ameliorate the HFD-induced obesity by altering the enzymes and mRNA expressions important to lipid metabolism.

  7. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    PubMed

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer

    PubMed Central

    Schlaepfer, Isabel R.; Rider, Leah; Rodrigues, Lindsey Ulkus; Gijón, Miguel A.; Pac, Colton T.; Romero, Lina; Cimic, Adela; Sirintrapun, S. Joseph; Glodé, L. Michael; Eckel, Robert H.; Cramer, Scott D.

    2014-01-01

    Prostate cancer (PCa) is the most commonly diagnosed malignancy among western men and accounts for the second leading cause of cancer-related deaths. PCa tends to grow slowly and recent studies suggest that it relies on lipid fuel more than on aerobic glycolysis. However, the biochemical mechanisms governing the relationships between lipid synthesis, lipid utilization, and cancer growth remain unknown. To address the role of lipid metabolism in PCa we have used Etomoxir and Orlistat, clinically safe drugs that block lipid oxidation and lipid synthesis/lipolysis, respectively. Etomoxir is an irreversible inhibitor of the carnitine palmitoyltransferase (CPT1) enzyme that decreases beta oxidation in the mitochondria. Combinatorial treatments using Etomoxir and Orlistat resulted in synergistic decreased viability in LNCaP, VCaP and patient-derived benign and PCa cells. These effects were associated with decreased androgen receptor (AR) expression, decreased mammalian target of Rapamycin (mTOR) signaling and increased caspase-3 activation. Knockdown of CPT1A enzyme in LNCaP cells resulted in decreased palmitate oxidation but increased sensitivity to Etomoxir, with inactivation of AKT kinase and activation of caspase-3. Systemic treatment with Etomoxir in nude nice resulted in decreased xenograft growth over 21 days, underscoring the therapeutic potential of blocking lipid catabolism to decrease PCa tumor growth. PMID:25122071

  9. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  10. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  11. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    PubMed

    Rosenberg, Julian N; Kobayashi, Naoko; Barnes, Austin; Noel, Eric A; Betenbaugh, Michael J; Oyler, George A

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L-1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1) d(-1) to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  12. Role of skeletal muscle mitochondrial density on exercise-stimulated lipid oxidation.

    PubMed

    Galgani, Jose E; Johannsen, Neil M; Bajpeyi, Sudip; Costford, Sheila R; Zhang, Zhengyu; Gupta, Alok K; Ravussin, Eric

    2012-07-01

    Reduced skeletal muscle mitochondrial density is proposed to lead to impaired muscle lipid oxidation and increased lipid accumulation in sedentary individuals. We assessed exercise-stimulated lipid oxidation by imposing a prolonged moderate-intensity exercise in men with variable skeletal muscle mitochondrial density as measured by citrate synthase (CS) activity. After a 2-day isoenergetic high-fat diet, lipid oxidation was measured before and during exercise (650 kcal at 50% VO(2)max) in 20 healthy men with either high (HI-CS = 24 ± 1; mean ± s.e.) or low (LO-CS = 17 ± 1 nmol/min/mg protein) muscle CS activity. Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Respiratory exchange data and blood samples were collected at rest and throughout the exercise. HI-CS subjects had higher VO(2)max (50 ± 1 vs. 44 ± 2 ml/kg fat free mass/min; P = 0.01), lower fasting respiratory quotient (RQ) (0.81 ± 0.01 vs. 0.85 ± 0.01; P = 0.04) and higher ex vivo muscle palmitate oxidation (866 ± 168 vs. 482 ± 78 nmol/h/mg muscle; P = 0.05) compared to LO-CS individuals. However, whole-body exercise-stimulated lipid oxidation (20 ± 2 g vs. 19 ± 1 g; P = 0.65) and plasma glucose, lactate, insulin, and catecholamine responses were similar between the two groups. In conclusion, in response to the same energy demand during a moderate prolonged exercise bout, reliance on lipid oxidation was similar in individuals with high and low skeletal muscle mitochondrial density. This data suggests that decreased muscle mitochondrial density may not necessarily impair reliance on lipid oxidation over the course of the day since it was normal under a high-lipid oxidative demand condition. Twenty-four-hour lipid oxidation and its relationship with mitochondrial density need to be assessed.

  13. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight

    PubMed Central

    Freathy, Rachel M; Mook-Kanamori, Dennis O; Sovio, Ulla; Prokopenko, Inga; Timpson, Nicholas J; Berry, Diane J; Warrington, Nicole M; Widen, Elisabeth; Hottenga, Jouke Jan; Kaakinen, Marika; Lange, Leslie A; Bradfield, Jonathan P; Kerkhof, Marjan; Marsh, Julie A; Mägi, Reedik; Chen, Chih-Mei; Lyon, Helen N; Kirin, Mirna; Adair, Linda S; Aulchenko, Yurii S; Bennett, Amanda J; Borja, Judith B; Bouatia-Naji, Nabila; Charoen, Pimphen; Coin, Lachlan J M; Cousminer, Diana L; de Geus, Eco J. C.; Deloukas, Panos; Elliott, Paul; Evans, David M; Froguel, Philippe; Glaser, Beate; Groves, Christopher J; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hirschhorn, Joel N; Hofman, Albert; Holly, Jeff M P; Hyppönen, Elina; Kanoni, Stavroula; Knight, Bridget A; Laitinen, Jaana; Lindgren, Cecilia M; McArdle, Wendy L; O'Reilly, Paul F; Pennell, Craig E; Postma, Dirkje S; Pouta, Anneli; Ramasamy, Adaikalavan; Rayner, Nigel W; Ring, Susan M; Rivadeneira, Fernando; Shields, Beverley M; Strachan, David P; Surakka, Ida; Taanila, Anja; Tiesler, Carla; Uitterlinden, Andre G; van Duijn, Cornelia M; Wijga, Alet H; Willemsen, Gonneke; Zhang, Haitao; Zhao, Jianhua; Wilson, James F; Steegers, Eric A P; Hattersley, Andrew T; Eriksson, Johan G; Peltonen, Leena; Mohlke, Karen L; Grant, Struan F A; Hakonarson, Hakon; Koppelman, Gerard H; Dedoussis, George V; Heinrich, Joachim; Gillman, Matthew W; Palmer, Lyle J; Frayling, Timothy M; Boomsma, Dorret I; Smith, George Davey; Power, Chris; Jaddoe, Vincent W V; Jarvelin, Marjo-Riitta; McCarthy, Mark I

    2010-01-01

    INTRODUCTORY PARAGRAPH To identify genetic variants associated with birth weight, we meta-analyzed six genome-wide association (GWA) studies (N=10,623 Europeans from pregnancy/birth cohorts) and followed up two lead signals in thirteen replication studies (N=27,591). Rs900400 near LEKR1 and CCNL1 (P=2×10−35), and rs9883204 in ADCY5 (P=7×10−15) were robustly associated with birth weight. Correlated SNPs in ADCY5 were recently implicated in regulation of glucose levels and type 2 diabetes susceptibility,1 providing evidence that the well described association between lower birth weight and subsequent type 2 diabetes2,3 has a genetic component, distinct from the proposed role of programming by maternal nutrition. Using data from both SNPs, the 9% of Europeans with 4 birth weight-lowering alleles were, on average, 113g (95%CI 89-137g) lighter at birth than the 24% with 0 or 1 allele (Ptrend=7×10−30). The impact on birth weight is similar to that of a mother smoking 4-5 cigarettes per day in the third trimester of pregnancy.4 PMID:20372150

  14. Lamin B1 mediated demyelination: Linking Lamins, Lipids and Leukodystrophies

    PubMed Central

    Padiath, Quasar S.

    2016-01-01

    ABSTRACT Autosomal Dominant Leukodystrophy (ADLD), a fatal adult onset demyelinating disorder, is the only human disease that has been linked to mutations of the nuclear lamina protein, lamin B1, and is primarily caused by duplications of the LMNB1 gene. Why CNS myelin is specifically targeted and the mechanisms underlying ADLD are unclear. Recent work from our group has demonstrated that over expression of lamin B1 in oligodendrocytes, the myelin producing cells in the CNS, resulted in age dependent epigenetic modifications, transcriptional down-regulation of lipogenic gene expression and significant reductions of myelin-enriched lipids. Given the high lipid content of meylin, we hypothesize that lipid loss is one of the primary drivers of the demyelination phenotype. These results can, at least partially, explain the age dependence and cell type specificity in ADLD and are discussed in the context of the existing literature, in an attempt to delineate potential pathways underlying the disease phenotype. PMID:27854160

  15. Levels in the U.S. population of those persistent organic pollutants (2003-2004) included in the Stockholm Convention or in other long range transboundary air pollution agreements.

    PubMed

    Patterson, Donald G; Wong, Lee-Yang; Turner, Wayman E; Caudill, Samuel P; Dipietro, Emily S; McClure, Patricia C; Cash, Troy P; Osterloh, John D; Pirkle, James L; Sampson, Eric J; Needham, Larry L

    2009-02-15

    We report human serum levels of selected persistent organic pollutants (POPs) categorized by age, sex, and race/ ethnicity from a statistically representative sampling of the U.S. population during 2003 and 2004. The serum levels are for several chemicals listed in the Stockholm Convention on Persistent Organic Pollutants, in the Geneva Convention on Long-Range Transboundary Air Pollution, or in both. Population data for each chemical are described by geometric means and percentiles and are categorized by age, sex, and race/ ethnicity. At the 90th and 95th percentile, the dioxin total toxic equivalency (TEQ), using the 2005 toxic equivalency factors (TEFs) for all persons 12 years of age and older was 30.9 pg/g lipid (95% confidence interval (CI): 28.2-33.9 pg/g lipid) and 37.8 pg/g lipid (95% CI: 35.3-43.4 pg/g lipid), respectively. At both the 90th and 95th percentiles total TEQ increased significantly with increasing age. The population geometric mean (GM) for the total PCB concentration (sum of 35 congeners) for all persons 12 years of age and older was 0.820 ng/g whole-weight (95% CI: 0.782-0.863 ng/g whole-weight) and 134.4 ng/g lipid (95% CI: 128.9-140.0 ng/g lipid). The population 95th percentile for the total PCB concentration for all persons 12 years of age and older was 3.53 ng/g whole-weight (95% CI: 3.23-3.92 ng/g whole-weight) and 531 ng/g lipid (95% CI: 498-570 ng/g lipid). The concentrations of aldrin, endrin, gamma-HCH, and o,p'-DDT were g lipid, 95% CI: 14.5-15.9 ng/g lipid). beta-HCH was detected in 69.5% of the persons aged 12 years and older (75th percentile: 14.0 ng/g lipid, 95% CI: 12.1-16.5 ng/g lipid). p,p'-DDT was detected in 73.8% of the persons aged 12 years and older (90th percentile: 11.9 ng/g lipid. 95% CI: 9.9-14.9 ng/g lipid). The DDT metabolite p,p'-DDE was detected in 99.7% of

  16. ToF-SIMS observation for evaluating the interaction between amyloid β and lipid membranes.

    PubMed

    Aoyagi, Satoka; Shimanouchi, Toshinori; Kawashima, Tomoko; Iwai, Hideo

    2015-04-01

    The adsorption behaviour of amyloid beta (Aβ), thought to be a key peptide for understanding Alzheimer's disease, was investigated by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS). Aβ aggregates depending on the lipid membrane condition though it has not been fully understood yet. In this study, Aβ samples on different lipid membranes, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were observed with ToF-SIMS and the complex ToF-SIMS data of the Aβ samples was interpreted using data analysis techniques such as principal component analysis (PCA), gentle-SIMS (G-SIMS) and g-ogram. DOPC and DMPC are liquid crystal at room temperature, while DPPC is gel at room temperature. As primary ion beams, Bi3(+) and Ar cluster ion beams were used and the effect of an Ar cluster ion for evaluating biomolecules was also studied. The secondary ion images of the peptide fragment ions indicated by G-SIMS and g-ogram were consistent with the PCA results. It is suggested that Aβ is adsorbed homogeneously on the liquid-crystalline-phase lipid membranes, while it aggregates along the lipid on the gel-phase lipid membrane. Moreover, in the results using the Ar cluster, the influence of contamination was reduced.

  17. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  18. Ratiometric imaging of gastrodermal lipid bodies in coral-dinoflagellate endosymbiosis

    NASA Astrophysics Data System (ADS)

    Luo, Y.-J.; Wang, L.-H.; Chen, W.-N. U.; Peng, S.-E.; Tzen, J. T.-C.; Hsiao, Y.-Y.; Huang, H.-J.; Fang, L.-S.; Chen, C.-S.

    2009-03-01

    Cnidaria-dinoflagellate endosymbiosis is the phenomenon of autotrophic symbionts living inside the gastrodermal cells of their animal hosts. The molecular mechanism that regulates this association remains unclear. Using quantitative microscopy, we now provide evidence that the dynamic lipid changes in gastrodermal “lipid bodies” (LBs) reflect the symbiotic status of the host cell and its symbiont in the hermatypic coral Euphyllia glabrescens. By dual-emission ratiometric imaging with a solvatochromic fluorescent probe, Nile red (9-diethylamino-5H-benzo[α]phenoxazine-5-one), we showed that the in situ distribution of polar versus neutral lipids in LBs in living gastrodermal cells and symbionts can be analyzed. The ratio of Nile red fluorescence at red (R) versus green (G) wavelength region (i.e., R/G ratio) correlated with the relative molar ratio of polar (P) versus neutral (NP) lipids (i.e., P/NP ratio). The R/G ratio in host LBs increased after bleaching, indicating a decrease in neutral lipid accumulation in gastrodermal cells. On the other hand, neutral lipid accumulation inside the symbiont LBs resulted in gradual decreases of the R/G ratio as a result of bleaching. In comparison with the bleaching event, there was no relative lipid concentration change in host LBs under continual light or dark treatments as shown by insignificant R/G ratio shift. Patterns of R/G ratio shift in symbiont LBs were also different between corals undergoing bleaching and continual light/dark treatment. In the latter, there was little lipid accumulation in symbionts, with no resulting R/G ratio decrease. These results, demonstrating that the symbiotic status positively correlated with morphological and compositional changes of lipid bodies, not only highlight the pivotal role of LBs, but also implicate an involvement of lipid trafficking in regulating the endosymbiosis.

  19. Update on the healthful lipid constituents of commercially important tree nuts.

    PubMed

    Robbins, Katherine S; Shin, Eui-Cheol; Shewfelt, Robert L; Eitenmiller, Ronald R; Pegg, Ronald B

    2011-11-23

    Uncharacteristic of most whole foods, the major component of tree nuts is lipid; surprisingly, information on the lipid constituents in tree nuts has been sporadic and, for the most part, not well reported. Most published papers focus on only one nut type, or those that report a cultivar lack a quality control program, thus making data comparisons difficult. The present study was designed to quantify the healthful lipid constituents of 10 different types of commercially important tree nuts (i.e., almonds, black walnuts, Brazil nuts, cashews, English walnuts, hazelnuts, macadamias, pecans, pine nuts, and pistachios) according to standardized, validated methods. The total lipid content of each nut type ranged from 44.4 ± 1.9% for cashews to 77.1 ± 1.7% for macadamias. As expected, the major fatty acids present in the tree nuts were unsaturated: oleic (18:1 ω9) and linoleic (18:2 ω6) acids. A majority of the lipid extracts contained <10% saturated fatty acids with the exceptions of Brazil nuts (24.5%), cashews (20.9%), macadamias (17.1%), and pistachios (13.3%). The total tocopherol (T) content ranged from 1.60 ± 1.27 mg/100 g nutmeat in macadamias to 32.99 ± 0.78 in black walnuts. The predominant T isomers in the nut types were α- and γ-T. Tocotrienols were also detected, but only in 6 of the 10 nut types (i.e., Brazil nut, cashews, English walnuts, macadamias, pine nuts, and pistachios). In most cases, total phytosterol contents were greater in the present study than reported in peer-reviewed journal papers and the USDA National Nutrient Database for Standard Reference, which is attributed to total lipid extraction and the inclusion of steryl glucosides in the analysis; the levels were highest for pistachios (301.8 ± 15.4 mg/100 g nutmeat) and pine nuts (271.7 ± 9.1 mg/100 g nutmeat). Minor sterols were also quantified and identified using GC-FID and GC-MS techniques.

  20. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses.

    PubMed

    Castanha, Rodrigo Fernandes; Mariano, Adriano Pinto; de Morais, Lilia Aparecida Salgado; Scramin, Shirlei; Monteiro, Regina Teresa Rosim

    2014-01-01

    This study aimed the optimization of culture condition and composition for production of Cryptococcus laurentii 11 biomass and lipids in cheese whey medium supplemented with sugarcane molasses. The optimization of pH, fermentation time, and molasses concentration according to a full factorial statistical experimental design was followed by a Plackett-Burman experimental design, which was used to determine whether the supplementation of the culture medium by yeast extract and inorganic salts could provide a further enhancement of lipids production. The following conditions and composition of the culture medium were found to optimize biomass and lipids production: 360 h fermentation, 6.5 pH and supplementation of (g L(-1)): 50 molasses, 0.5 yeast extract, 4 KH2PO4, 1 Na2HPO4, 0.75 MgSO4 · 7H2O and 0.002 ZnSO4 · H2O. Additional supplementation with inorganic salts and yeast extract was essential to optimize the production, in terms of product concentration and productivity, of neutral lipids by C. laurentii 11. Under this optimized condition, the production of total lipids increased by 133% in relation to control experiment (from 1.27 to 2.96 g L(-1)). The total lipids indicated a predominant (86%) presence of neutral lipids with high content of 16- and 18-carbon-chain saturated and monosaturated fatty acids. This class of lipids is considered especially suitable for the production of biodiesel.

  1. Lipid-based nutrient supplements for pregnant women reduce newborn stunting in a cluster-randomized controlled effectiveness trial in Bangladesh.

    PubMed

    Mridha, Malay K; Matias, Susana L; Chaparro, Camila M; Paul, Rina R; Hussain, Sohrab; Vosti, Stephen A; Harding, Kassandra L; Cummins, Joseph R; Day, Louise T; Saha, Stacy L; Peerson, Janet M; Dewey, Kathryn G

    2016-01-01

    Maternal undernutrition and newborn stunting [birth length-for-age z score (LAZ) <-2] are common in Bangladesh. The objective was to evaluate the effect of lipid-based nutrient supplements for pregnant and lactating women (LNS-PLs) on birth outcomes. We conducted a cluster-randomized effectiveness trial (the Rang-Din Nutrition Study) within a community health program in rural Bangladesh. We enrolled 4011 pregnant women at ≤20 gestational weeks; 48 clusters received iron and folic acid (IFA; 60 mg Fe + 400 μg folic acid) and 16 clusters received LNS-PLs (20 g/d, 118 kcal) containing essential fatty acids and 22 vitamins and minerals. Both of the supplements were intended for daily consumption until delivery. Primary outcomes were birth weight and length. Infants in the LNS-PL group had higher birth weights (2629 ± 408 compared with 2588 ± 413 g; P = 0.007), weight-for-age z scores (-1.48 ± 1.01 compared with -1.59 ± 1.02; P = 0.006), head-circumference-for-age z scores (HCZs; -1.26 ± 1.08 compared with -1.34 ± 1.12; P = 0.028), and body mass index z scores (-1.57 ± 1.05 compared with -1.66 ± 1.03; P = 0.005) than those in the IFA group; in adjusted models, the differences in length (47.6 ± 0.07 compared with 47.4 ± 0.04 cm; P = 0.043) and LAZ (-1.15 ± 0.04 compared with -1.24 ± 0.02; P = 0.035) were also significant. LNS-PLs reduced the risk of newborn stunting (18.7% compared with 22.6%; RR: 0.83; 95% CI: 0.71, 0.97) and small head size (HCZ <-2) (20.7% compared with 24.9%; RR: 0.85; 95% CI: 0.73, 0.98). The effects of LNS-PL on newborn stunting were greatest in infants born before a 10-wk interruption in LNS-PL distribution (n = 1301; 15.7% compared with 23.6%; adjusted RR: 0.69; 95% CI: 0.53, 0.89) and in infants born to women ≤24 y of age or with household food insecurity. Prenatal lipid-based nutrient supplements can improve birth outcomes in Bangladeshi women, especially those at higher risk of fetal growth restriction. This trial was

  2. Evaluation of the membrane lipid selectivity of the pea defensin Psd1.

    PubMed

    Gonçalves, Sónia; Teixeira, Alexandre; Abade, João; de Medeiros, Luciano Neves; Kurtenbach, Eleonora; Santos, Nuno C

    2012-05-01

    Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs

    PubMed Central

    2011-01-01

    Background The role of renal lipoprotein lipase (LPL) per se in kidney diseases is still controversial and obscure. The purpose of this study was to observe the preventive effects of Ibrolipim, a LPL activator, on lipid accumulation and LPL expression in the kidneys of minipigs fed a high-sucrose and high-fat diet (HSFD). Methods Male Chinese Bama minipigs were fed a control diet or HSFD with or without 0.1 g/kg/day Ibrolipim for 5 months. Body weight, plasma glucose, insulin, lipids, LPL activity, and urinary microalbumin were measured. Renal tissue was obtained for detecting LPL activity and contents of triglyceride and cholesterol, observing the renal lipid accumulation by Oil Red O staining, and examining the mRNA and protein expression of LPL by real time PCR, Western Blot and immunohistochemistry. Results Feeding HSFD to minipigs caused weight gain, hyperglycemia, hyperinsulinemia, hyperlipidemia and microalbuminuria. HSFD increased plasma LPL activity while it decreased the mRNA and protein expression and activity of LPL in the kidney. The increases in renal triglyceride and cholesterol contents were associated with the decrease in renal LPL activity of HSFD-fed minipigs. In contrast, supplementing Ibrolipim into HSFD lowered body weight, plasma glucose, insulin, triglyceride and urinary albumin concentrations while it increased plasma total cholesterol and HDL-C. Ibrolipim suppressed the renal accumulation of triglyceride and cholesterol, and stimulated the diet-induced down-regulation of LPL expression and activity in the kidney. Conclusions Ibrolipim exerts renoprotective and hypolipidemic effects via the increase in renal LPL activity and expression, and thus the increased expression and activity of renal LPL play a vital role in suppressing renal lipid accumulation and ameliorating proteinuria in diet-induced diabetic minipigs. PMID:21762526

  4. Gravity susception by buoyancy: floating lipid globules in sporangiophores of Phycomyces.

    PubMed

    Grolig, F; Herkenrath, H; Pumm, T; Gross, A; Galland, P

    2004-02-01

    To elucidate the mechanisms of gravity susception that operate in the sporangiophore of Phycomyces blakesleeanus, we characterized the function and topography of a large apical complex of lipid globules. Stage-1 sporangiophores (without sporangium) possess a roughly spherical complex of 100-200 large lipid globules whose center is localized 110 microm below the apex. The complex of lipid globules (CLG) is rather stable and is kept in place by positioning forces that resist centrifugal accelerations of up to 150 g. The lipid globules possess an average diameter of 2 to 2.5 microm and a density of 0.791 g cm(-3), which is below that of typical plant oleosomes. The potential energy which is generated by the buoyancy of a CLG of 100 globules is in the order of 10(-17) to 10(-16) J, which is 4 to 5 orders of magnitude above thermal noise. The formation of lipid globules can be suppressed by raising stage-1 sporangiophores for 24 hs at 5 degrees C. Sporangiophores with a reduced number of lipid globules display gravitropic bending angles that are 3 to 4 times smaller than those of sporangiophores with the normal number of lipid globules. The results suggest that the lipid globules function as gravisusceptors of Phycomyces and that buoyancy is the physical principle for their mode of action. The globules contain beta-carotene and two distinct fluorescing pigments that are, however, dispensable for graviperception.

  5. T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids.

    PubMed

    Wun, Kwok S; Reijneveld, Josephine F; Cheng, Tan-Yun; Ladell, Kristin; Uldrich, Adam P; Le Nours, Jérôme; Miners, Kelly L; McLaren, James E; Grant, Emma J; Haigh, Oscar L; Watkins, Thomas S; Suliman, Sara; Iwany, Sarah; Jimenez, Judith; Calderon, Roger; Tamara, Kattya L; Leon, Segundo R; Murray, Megan B; Mayfield, Jacob A; Altman, John D; Purcell, Anthony W; Miles, John J; Godfrey, Dale I; Gras, Stephanie; Price, David A; Van Rhijn, Ildiko; Moody, D Branch; Rossjohn, Jamie

    2018-04-01

    The hallmark function of αβ T cell antigen receptors (TCRs) involves the highly specific co-recognition of a major histocompatibility complex molecule and its carried peptide. However, the molecular basis of the interactions of TCRs with the lipid antigen-presenting molecule CD1c is unknown. We identified frequent staining of human T cells with CD1c tetramers across numerous subjects. Whereas TCRs typically show high specificity for antigen, both tetramer binding and autoreactivity occurred with CD1c in complex with numerous, chemically diverse self lipids. Such extreme polyspecificity was attributable to binding of the TCR over the closed surface of CD1c, with the TCR covering the portal where lipids normally protrude. The TCR essentially failed to contact lipids because they were fully seated within CD1c. These data demonstrate the sequestration of lipids within CD1c as a mechanism of autoreactivity and point to small lipid size as a determinant of autoreactive T cell responses.

  6. Seasonal variation of lipid-lowering effects of complex spa therapy.

    PubMed

    Strauss-Blasche, G; Ekmekcioglu, C; Leibetseder, V; Marktl, W

    2003-04-01

    It has been shown that spa therapy has a lipid-lowering effect. Also, seasonal variations in spa therapy effects have been found for some outcome measures. The aim of the present study is to investigate whether the lipid-lowering effects of spa therapy as a complex health intervention also are subject to seasonal variation. The effect of 3-week resident spa therapy at the Austrian spa Bad Tatzmannsdorf was studied in 395 patients with moderate musculoskeletal chronic pain over a time of 2 years. Spa therapy included balneotherapy, exercise therapy, and dietary measures. Total cholesterol (CHOL), HDL, LDL, triglycerides (TG), and the CHOL/HDL ratio were assessed at the beginning and end of therapy. Spa therapy was associated with a decrease of CHOL, HDL, and LDL (p < 0.001). TG and CHOL/HDL did not change. The decrease of lipids was smaller for older patients, females, and normal weight individuals. CHOL decrease showed a seasonal variation independent of weight loss (p = 0.04), being largest in fall (-6.1%) and smallest in spring (-2.4%). CHOL and CHOL/HDL for obese individuals showed the greatest decrease in winter (-10% for CHOL, -9% for CHOL/HDL ratio), whereas corresponding measures increased for normal-weight subjects. The lipid-lowering effect of spa therapy could be confirmed; it is partly moderated by season. The results suggest that the effect of some components of spa therapy such as exercise therapy, diet, and relaxation may be subject to seasonal variation. Copyright 2003 S. Karger GmbH, Freiburg

  7. Origin of 1/f noise in hydration dynamics on lipid membrane surfaces

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2015-01-01

    Water molecules on lipid membrane surfaces are known to contribute to membrane stability by connecting lipid molecules and acting as a water bridge. Although water structures and diffusivities near the membrane surfaces have been extensively studied, hydration dynamics on the surfaces has remained an open question. Here we investigate residence time statistics of water molecules on the surface of lipid membranes using all-atom molecular dynamics simulations. We show that hydration dynamics on the lipid membranes exhibits 1/f noise. Constructing a dichotomous process for the hydration dynamics, we find that residence times in each state follow a power-law with exponential cutoff and that the process can be regarded as a correlated renewal process where interoccurrence times are correlated. The results imply that the origin of the 1/f noise in hydration dynamics on the membrane surfaces is a combination of a power-law distribution with cutoff of interoccurrence times of switching events and a long-term correlation between the interoccurrence times. These results suggest that the 1/f noise attributed to the correlated renewal process may contribute to the stability of the hydration layers and lipid membranes. PMID:25743377

  8. Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production.

    PubMed

    Patel, Alok; Pravez, Mohammad; Deeba, Farha; Pruthi, Vikas; Singh, Rajesh P; Pruthi, Parul A

    2014-08-01

    Hemp seeds aqueous extract (HSAE) was used as cheap renewable feedstocks to grow novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 isolated from Himalayan permafrost soil. The yeast showed boosted triglyceride (TAG) accumulation in the lipid droplets (LDs) which were transesterified to biodiesel. The sonicated HSAE prepared lacked toxic inhibitors and showed enhanced total lipid content and lipid yield 55.56%, 8.39±0.57g/l in comparison to 41.92%, 6.2±0.8g/l from industrially used glucose synthetic medium, respectively. Supersized LDs (5.95±1.02μm) accumulated maximum TAG in sonicated HSAE grown cells were visualized by fluorescent BODIPY (505/515nm) stain. GC-MS analysis revealed unique longer carbon chain FAME profile containing Arachidic acid (C20:0) 5%, Behenic acid (C22:0) 9.7%, Heptacosanoic acid (C27:0) 14.98%, for the first time in this yeast when grown on industrially competent sonicated HSAE, showing more similarity to algal oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense

    DOE PAGES

    Fei, Qiang; Puri, Aaron W.; Smith, Holly; ...

    2018-05-04

    Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH 4), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH 4 for the production of biofuels is attractive. Biological fixation of CH 4 by methanotrophic bacteria capable of using CH 4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. Here, a fast-growingmore » and lipid-rich methanotroph, Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH 4 and O2. The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH 4/O 2 uptake and CO 2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under high cell

  10. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Puri, Aaron W.; Smith, Holly

    Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH 4), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH 4 for the production of biofuels is attractive. Biological fixation of CH 4 by methanotrophic bacteria capable of using CH 4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. Here, a fast-growingmore » and lipid-rich methanotroph, Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH 4 and O2. The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH 4/O 2 uptake and CO 2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under high cell

  11. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense.

    PubMed

    Fei, Qiang; Puri, Aaron W; Smith, Holly; Dowe, Nancy; Pienkos, Philip T

    2018-01-01

    Due to the success of shale gas development in the US, the production cost of natural gas has been reduced significantly, which in turn has made methane (CH 4 ), the major component of natural gas, a potential alternative substrate for bioconversion processes compared with other high-price raw material sources or edible feedstocks. Therefore, exploring effective ways to use CH 4 for the production of biofuels is attractive. Biological fixation of CH 4 by methanotrophic bacteria capable of using CH 4 as their sole carbon and energy source has obtained great attention for biofuel production from this resource. In this study, a fast-growing and lipid-rich methanotroph , Methylomicrobium buryatense 5GB1 and its glycogen-knock-out mutant (AP18) were investigated for the production of lipids derived from intracellular membranes, which are key precursors for the production of green diesel. The effects of culture conditions on cell growth and lipid production were investigated in high cell density cultivation with continuous feeding of CH 4 and O 2 . The highest dry cell weight observed was 21.4 g/L and the maximum lipid productivity observed was 45.4 mg/L/h obtained in batch cultures, which corresponds to a 2-fold enhancement in cell density and 3-fold improvement in lipid production, compared with previous reported data from cultures of 5GB1. A 90% enhancement of lipid content was achieved by limiting the biosynthesis of glycogen in strain AP18. Increased CH 4 /O 2 uptake and CO 2 evaluation rates were observed in AP18 cultures suggesting that more carbon substrate and energy are needed for AP18 growth while producing lipids. The lipid produced by M. buryatense was estimated to have a cetane number of 75, which is 50% higher than biofuel standards requested by US and EU. Cell growth and lipid production were significantly influenced by culture conditions for both 5GB1 and AP18. Enhanced lipid production in terms of titer, productivity, and content was achieved under

  12. Lipid metabolism and body composition in Gclm(-/-) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendig, Eric L.; Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267; Chen, Ying

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipidmore » for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and

  13. Converting lignin derived phenolic aldehydes into microbial lipid by Trichosporon cutaneum.

    PubMed

    Hu, Mingshan; Wang, Juan; Gao, Qiuqiang; Bao, Jie

    2018-06-18

    Lignin is one of the major components of lignocellulose biomass and chemically degrades into phenolic aldehydes including 4-hydroxybenzaldehyde, vanillin, and syringaldehyde. No lipid accumulation from the phenolic aldehydes by oleaginous microbes had been succeeded. Compared with vanillin and syringaldehyde, T. cutaneum ACCC 20271 have better tolerance to 4-hydroxybenzaldehyde. 4-Hydroxybenzaldehyde was found to be able as the substrate for lipid accumulation, while vanillin and syringaldehyde were only converted to less toxic phenolic alcohols and acids without observable lipid accumulation, perhaps due to the space shelling of methoxyl group(s) in the structures. A long term fed batch fermentation of 4-hydroxybenzaldehyde accumulated 0.85 g L -1 of lipid, equivalent to 0.039 g lipid per gram of 4-hydroxybenzaldehyde substrate, approximately 3.7 folds greater than the control without 4-hydroxybenzaldehyde addition. The fatty acid composition well met the need for biodiesel synthesis. The preliminary pathway from 4-hydroxybenzaldehyde to lipid was predicted. This study took the first experimental trial on utilizing phenolic aldehydes as the sole carbon sources for microbial lipid accumulation by T. cutaneum ACCC 20271. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Relationship between perilipin gene polymorphisms and body weight and body composition during weight loss and weight maintenance.

    PubMed

    Soenen, Stijn; Mariman, Edwin C M; Vogels, Neeltje; Bouwman, Freek G; den Hoed, Marcel; Brown, Louise; Westerterp-Plantenga, Margriet S

    2009-03-23

    Genetic variation in the perilipin (PLIN) gene may play a role in the etiology and treatment of obesity. To examine different polymorphisms in the PLIN gene in relation to body-weight regulation. 118 subjects followed a 6 wk VLCD, followed by 1 year weight maintenance. Body-weight (BW), body composition, leptin concentration, and polymorphisms of the PLIN gene: PLIN1:rs2289487, PLIN4:rs894160, PLIN6:rs1052700, PLIN5:rs2304795 and PLIN7:rs 2304796 were determined. BW loss during VLCD was 7.0+/-3.1 kg (p<0.05), and BW regain was 3.7+/-1.4 kg (p<0.05), including changes in body mass index (BMI), waist-circumference, body-composition and leptin concentrations (p<0.05). Linkage disequilibria were observed between PLIN1 and PLIN4: D' >0.9, r2=0.72; PLIN5 and PLIN7: D' >0.9, r2=0.85. In men, body weight, BMI, waist circumference, body fat, leptin concentrations were significantly lower for the haplotype of PLIN1 (C-alleles) and PLIN4 (A-alleles). In women weight loss and loss of fat mass were larger for the haplotype of PLIN1 (C-alleles) and PLIN4 (A-alleles). For PLIN6 genotypes body weight and body fat were lower for homozygotes of the minor allele (T/T) in the men; in the women leptin concentrations were lower. The haplotype of PLIN5 and PLIN7 consisting of A/G and G/G of PLIN5 and A/A of PLIN7 showed a reduction in FM: 5.9+/-0.6 kg vs 3.1+/-0.4 kg, % body fat: 5.5+/-0.6% vs 2.2+/-0.2%, and leptin: 20.5+/-10.8 ng/ml vs 12.9+/-6.7 ng/ml over time in the women (p<0.05). Since the haplotype of the minor alleles PLIN1-4, PLIN5-7 and PLIN6, was related to body-weight regulation at a lower level of body-weight in the men as well in the women we conclude that the PLIN1-4, 6, and 5-7 locus appears as a genetic influencer of obesity risk in humans.

  15. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    PubMed

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  16. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    PubMed

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  17. High-fat diets rich in ω-3 or ω-6 polyunsaturated fatty acids have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leanness.

    PubMed

    Dannenberger, Dirk; Nuernberg, Gerd; Renne, Ulla; Nuernberg, Karin; Langhammer, Martina; Huber, Korinna; Breier, Bernhard

    2013-05-01

    The aim of the study is to determine the response of muscle lipid peroxidation and the fatty-acid profile of three groups of mice-high body weight (DU6) obesity-prone mice, high treadmill performance (DUhTP) lean mice, and unselected control mice (DUK) fed high-fat diets (HFDs) rich in ω-3 or ω-6 polyunsaturated fatty acids (PUFA). The isocaloric HFDs were enriched with either ω-3 PUFA (27% fish oil, ω-3 HFD) or ω-6 PUFA (27% sunflower oil, ω-6 HFD), and the control group was fed standard chow (7.2% fat). Statistical calculations were done with procedure GLM of SAS. As expected, the ω-3 and ω-6 PUFA-rich HFDs showed significant effects on fatty-acid concentrations of skeletal muscle in all three lines of mice compared with the standard chow. The investigations of muscle lipid peroxidation revealed that the ω-3 PUFA-rich HFD caused the highest lipid peroxidation values in muscle of lean DUhTP mice and unselected control DUK mice. However, lower lipid peroxidation levels were observed in the obesity-prone DU6 mice. In contrast, the ω-6 PUFA-rich HFD did not influence lipid peroxidation in muscle of any of the different lines of mice. The present study suggests that a higher overall antioxidant capacity in the muscle tissue of obesity-prone DU6 mice may lead to lower levels of reactive oxygen species formation by ω-3 PUFA-rich HFDs in comparison with lean DUhTP mice. These studies raise the possibility that obesity per se may be protective against oxidative damage when high ω-3 PUFA diets are used. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Athenstaedt, Karin

    2011-10-01

    The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction1[OPEN

    PubMed Central

    Zhao, Guochao; Shi, Jianxin; Liang, Wanqi; Xue, Feiyang; Luo, Qian; Zhu, Lu; Qu, Guorun; Chen, Mingjiao; Schreiber, Lukas; Zhang, Dabing

    2015-01-01

    Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development. PMID:26392263

  20. Antispermatogenic Mechanism of Trona is Associated with Lipid Peroxidation but Not Testosterone Suppression.

    PubMed

    Ajayi, Ayodeji F; Akhigbe, Roland E

    2017-01-01

    About half of the cases of infertility in couples have been attributed to male factor. Despite the claim in folklore medicine that trona (a sesquicarbonate or hydrated carbonate of sodium) causes fetal loss, its effect on male reproductive function has not been investigated. This study sought to provide scientific evidence on the effect of trona on sperm characteristics, male reproductive hormones and organs, and lipid peroxidation. Forty male Wistar rats of comparable weights were used for the study. Rats were randomized into four different groups. The control received 1 mL of distilled water orally, whereas those in groups 1, 2, and 3 (test groups) received orally, same volume of trona preparation corresponding to 100, 200, and 400 mg/kg body weight, respectively, for 28 days. Body weight was monitored throughout the study period, and at the end of the experiment, testicular morphometry, sperm characteristic, reproductive hormones, and malondialdehyde (MDA), an index of lipid peroxidation, were determined. Sperm count, motility, progressibility, and percentage of normal sperm were significantly decreased in the trona-treated rats ( P < 0.05). The percentage of abnormal sperm, luteinizing hormone, follicle stimulating hormone, and MDA were significantly increased in the treated rats ( P < 0.05). Body weight, testicular morphometry, and testosterone level were comparable across all groups ( P > 0.05). The study showed that trona has a dose-dependent deleterious effect on sperm characteristic. The antispermatogenic effect of trona was associated with lipid peroxidation but not testosterone.

  1. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats.

    PubMed

    Estadella, Debora; Oyama, Lila M; Dâmaso, Ana R; Ribeiro, Eliane B; Oller Do Nascimento, Claudia M

    2004-02-01

    The present study was designed to examine 1) whether continuous feeding with a palatable hyperlipidic diet and cycling this diet with chow diet would affect lipid and carbohydrate metabolism in a similar way; and 2) whether the effect of chronic exercise on lipid and carbohydrate metabolism would be modified by these diet regimens. Male 25-d-old Wistar rats were assigned to one of six groups: sedentary rats fed with chow diet; exercised (swimming 90 min/d, 5 d/wk) rats fed with chow diet; sedentary rats fed with a palatable hyperlipidic diet; exercised rats fed with the palatable hyperlipidic diet; sedentary rats fed with food cycles (four cycles alternating the chow and hyperlipidic diets weekly); and exercised rats fed with food cycles. After 8 wk of treatment, the animals were killed 24 h after the last exercise session. The hyperlipidic diet and food cycles schedules caused similar increases in body weight gain, carcass lipogenesis rate and adiposity, lipid content of the liver and gastrocnemius muscle, and serum total lipid, triacylglycerol, insulin, and leptin levels. The exercise attenuated body weight gain, adipose tissue mass, and serum triacylglycerol, insulin, and leptin levels similarly in the hyperlipidic and food cycles groups. Carcass lipogenesis rate was not affected by exercise in any of the three groups. The data showed that the continuous intake of a hyperlipidic palatable diet for 8 wk and the alternation of the high-fat intake with periods of chow intake cause obesity and affected lipid metabolism in a similar way. Chronic exercise attenuated body weight gain and adiposity and improved serum lipid concentrations in both high-fat feeding regimens.

  2. MALDI mass spectrometry imaging of bioactive lipids in mouse brain with a Synapt G2-S mass spectrometer operated at elevated pressure: improving the analytical sensitivity and the lateral resolution to ten micrometers.

    PubMed

    Kettling, Hans; Vens-Cappell, Simeon; Soltwisch, Jens; Pirkl, Alexander; Haier, Jörg; Müthing, Johannes; Dreisewerd, Klaus

    2014-08-05

    Mass spectrometers from the Synapt-G1/G2 family (Waters) are widely employed for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). A lateral resolution of about 50 μm is typically achieved with these instruments, that is, however, below the often desired cellular resolution. Here, we show the first MALDI-MSI examples demonstrating a lateral resolution of about ten micrometers obtained with a Synapt G2-S HDMS mass spectrometer without oversampling. This improvement became possible by laser beam shaping using a 4:1 beam expander and a circular aperture for spatial mode filtering and by replacement of the default focusing lens. We used dithranol as an effective matrix for imaging of acidic lipids such as sulfatides, gangliosides, and phosphatidylinositols in the negative ion mode. At the same time, the matrix enables MS imaging of more basic lipids in the positive ion mode. Uniform matrix coatings with crystals having average dimensions between 0.5 and 3 μm were obtained upon spraying a chloroform/methanol matrix solution. Increasing the cooling gas pressure in the MALDI ion source after adding an additional gas line was furthermore found to increase the ion abundances of labile lipids such as gangliosides. The combined characteristics are demonstrated with the MALDI-MSI analysis of fine structures in coronal mouse brain slices.

  3. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    PubMed Central

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows. PMID:29593725

  4. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    PubMed

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  5. Effects of the dietary amount and source of protein, resistance training and anabolic-androgenic steroids on body weight and lipid profile of rats.

    PubMed

    Aparicio, V A; Sánchez, C; Ortega, F B; Nebot, E; Kapravelou, G; Porres, J M; Aranda, P

    2013-01-01

    Dietary protein amount and source, hypertrophy resistance training (RT) and anabolicandrogenic steroids (AAS) may affect body weight and plasma and hepatic lipid profile. 157 adult male Wistar rats were randomly distributed in 16 experimental groups resulting in: normal-protein (NP) or high-protein (HP) diets, whey or soy-protein diets, with or without RT and with or without AAS, for 3 months. Final body weight was lower in the RT and AAS groups compared to sedentary and non- AAS groups, respectively (all, p<0.001). Plasma total cholesterol (TC) was lower for the HP compared to the NP diets, for the whey compared to the soy-protein diets and for the AAS compared to the non-AAS groups (all, p<0.001). Plasma HDL-cholesterol was higher in the RT groups (p<0.05) but lower for the AAS groups (p<0.001), the HP and the soy-protein diets (p<0.05). Plasma triglycerides (TAG) were lower for the HP diet (p<0.001), for the RT (p=0.002) and the non-AAS groups (p=0.001). Liver TC was lower for the NP (p<0.01), for the soyprotein (p<0.05) and for the AAS groups (p<0.001). Liver TAG were lower for the whey-protein diet (p<0.001), RT and non-AAS groups (both, p<0.05). Some interactions were found, such as the greater effect of AAS on reducing body weight of rats that performed RT or ingested a HP diet (all, p<0.05). HDL-cholesterol was higher when RT was combined with HP diets (p=0.010) or non-AAS and when HP diets were combined with non-AAS (both,p<0.001). Groups that combined RT with non-AAS administration obtained the lowest hepatic TAG (p<0.05). Among all the interventions tested, AAS was the factor that most negatively affected plasma and hepatic lipid profile, whereas HP diets and RT could benefit lipid profile, especially when combined. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  6. Microwave-assisted extraction of lipid from fish waste

    NASA Astrophysics Data System (ADS)

    Rahimi, M. A.; Omar, R.; Ethaib, S.; Siti Mazlina, M. K.; Awang Biak, D. R.; Nor Aisyah, R.

    2017-06-01

    Processing fish waste for extraction of value added products such as protein, lipid, gelatin, amino acids, collagen and oil has become one of the most intriguing researches due to its valuable properties. In this study the extraction of lipid from sardine fish waste was carried out using microwave-assisted extraction (MAE) and compared with Soxhlets and Hara and Radin methods. A mixture of two organic solvents isopropanol/hexane and distilled water were used for MAE and Hara and Radin methods. Meanwhile, Soxhlet method utilized only hexane as solvent. The results show that the higher yield of lipid 80.5 mg/g was achieved using distilled water in MAE method at 10 min extraction time. Soxhlet extraction method only produced 46.6 mg/g of lipid after 4 hours of extraction time. Lowest yield of lipid was found at 15.8 mg/g using Hara and Radin method. Based on aforementioned results, it can be concluded MAE method is superior compared to the Soxhlet and Hara and Radin methods which make it an attractive route to extract lipid from fish waste.

  7. Effect of dietary copper addition on lipid metabolism in rabbits

    PubMed Central

    Lei, Liu; Xiaoyi, Sui; Fuchang, Li

    2017-01-01

    ABSTRACT The present study was conducted to investigate the effect of copper supplementation on lipid metabolism in rabbits. Our study showed dietary copper addition (5-45 mg/kg) increased body mass gain, but decreased fat and liver weights compared with those in the control group (P < 0.05). Copper (45 mg/kg) addition significantly increased the skeletal muscle weight, but inhibited cytoplasmic lipid accumulation in liver, skeletal muscle and adipose tissue (P < 0.05). Compared with the control group, dietary copper addition (45 mg/kg) significantly increased plasma triglyceride levels but decreased very low density lipoprotein levels (P < 0.05). Copper treatment significantly increased gene expression of carnitine palmitoyltransferase (CPT) 1, CPT2 and peroxisome proliferator-activated receptor (PPAR) a in liver (P < 0.05). In skeletal muscle, CPT1, CPT2, fatty acid transport protein, fatty acid-binding protein, and PPARa mRNA as well as phosphorylated AMP-activated protein kinase (AMPK) levels were significantly up-regulated by copper treatment (P < 0.05). Rabbits receiving copper supplementation had higher CPT1, CPT2, PPARa and hormone-sensitive lipase mRNA levels in adipose tissue (P < 0.05). In conclusion, copper promoted skeletal muscle growth and reduced fat accretion. PPARa signaling in liver, skeletal muscle and adipose tissues and AMPK signaling in skeletal muscle tissue were involved in the regulation of lipid metabolism by copper. PMID:28747869

  8. Evaluation of bioavailability, efficacy, and safety profile of doxorubicin-loaded solid lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Patro, Nagaraju M.; Devi, Kshama; Pai, Roopa S.; Suresh, Sarasija

    2013-12-01

    We investigated the bioavailability, efficacy, and toxicity of doxorubicin-loaded solid lipid nanoparticles (DOX-SLNs) prepared by a simple modified double-emulsification method. A 3-factor, 3-level Box-Behnken statistical design was adopted in the optimization of DOX-SLN formulation considering dependent factors particle size and entrapment efficiency. Optimized SLN formulation composed of lipid (2 %) consisting of soya lecithin and Precirol ATO 5 (1:3) with Pluronic F68 (0.3 %) resulted in 217.36 ± 3.31 nm particle size and 59.45 ± 1.75 % entrapment efficiency. DOX-SLN exhibited significant enhancement ( p < 0.05) in bioavailability as compared with free DOX in Sprague-Dawley (SD) rats. DOX-SLN exhibited higher peak plasma concentration (6.761 ± 0.08 vs. 2.412 ± 0.04 μg/ml), increased AUC (61.368 ± 3.54 vs. 5.812 ± 0.49 μg/ml h), decreased clearance (36 ± 0.01 vs. 619 ± 0.005 mL/h kg), and volume of distribution (733 ± 0.092 vs. 2,064 ± 0.061 mL/kg) when compared to free DOX. The collective results of cardiac and kidney enzyme assay, antioxidant enzyme levels, hematological parameters, effect on body weight and tumor volume, tumor necrosis factor-α level, histopathological examination, and survival analysis confirmed the improved efficacy and safety profile of DOX-SLN in 7,12-dimethyl benzanthracene-induced breast cancer in SD rats.

  9. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  10. Role of G1359A polymorphism of the cannabinoid receptor gene on weight loss and adipocytokines levels after two different hypocaloric diets.

    PubMed

    Antonio de Luis, Daniel; Sagrado, Manuel Gonzalez; Aller, Rocio; Conde, Rosa; Izaola, Olatz; de la Fuente, Beatriz; Primo, David

    2012-03-01

    A silent intragenic polymorphism (1359 G/A) of the cannabinoid receptor 1 gene resulting in the substitution of the G to A at nucleotide position 1359 in codon 435 (Thr) was reported as a common polymorphism in Caucasian populations. Intervention studies with this polymorphism have not been realized. We decide to investigate the role of missense polymorphism (G1359A) of cannabinoid receptor 1 gene on adipocytokines response and weight loss secondary to a low-fat versus a low-carbohydrate diet in obese patients. A population of 249 patients was analyzed. A nutritional evaluation was performed at the beginning and at the end of a 3-month period in which subjects received one of two diets (diet I: low fat vs. diet II: low carbohydrate). One hundred forty three patients (57.4%) had the genotype G1359G (wild-type group), and 106 (42.6%) patients had G1359A (92 patients, or 36.9%) or A1359A (14 patients, or 5.6%; mutant-type group). With both diets in wild-type and mutant-type groups, body mass index (BMI), weight, fat mass, waist circumference and systolic blood pressure levels decreased. With both diets and in wild-type group, glucose, total cholesterol and insulin levels and homeostasis model assessment test score decreased. No metabolic effects were observed in mutant-type group. Leptin levels decreased significantly in the wild-type group with both diets (diet I: 10.8% vs. diet II: 28.9%; P<.05). The novel finding of this study is the lack of metabolic improvement of the mutant-type groups G1359A and A1359A after weight loss with both diets. Decrease in leptin level was higher with low-carbohydrate diet than low-fat diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad; Akhtar, Saeed; Sohaib, Muhammad

    2013-11-04

    Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010-11 & 2011-12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio-evaluation of this kind of functional meat in

  12. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  13. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    PubMed

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.

  14. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    PubMed

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure.

    PubMed

    Bougaran, Gaël; Rouxel, Catherine; Dubois, Nolwenn; Kaas, Raymond; Grouas, Sophie; Lukomska, Ewa; Le Coz, Jean-René; Cadoret, Jean-Paul

    2012-11-01

    Microalgae offer a high potential for energetic lipid storage as well as high growth rates. They are therefore considered promising candidates for biofuel production, with the selection of high lipid-producing strains a major objective in projects on the development of this technology. We developed a mutation-selection method aimed at increasing microalgae neutral lipid productivity. A two step method, based on UVc irradiation followed by flow cytometry selection, was applied to a set of strains that had an initial high lipid content and improvement was assessed by means of Nile-red fluorescence measurements. The method was first tested on Isochrysis affinis galbana (T-Iso). Following a first round of mutation-selection, the total fatty acid content had not increased significantly, being 262 ± 21 mgTFA (gC)-1 for the wild type (WT) and 269 ± 49 mgTFA (gC)-1 for the selected population (S1M1). Conversely, fatty acid distribution among the lipid classes was affected by the process, resulting in a 20% increase for the fatty acids in the neutral lipids and a 40% decrease in the phospholipids. After a second mutation-selection step (S2M2), the total fatty acid content reached 409 ± 64 mgTFA (gC)-1 with a fatty acid distribution similar to the S1M1 population. Growth rate remained unaffected by the process, resulting in a 80% increase for neutral lipid productivity. Copyright © 2012 Wiley Periodicals, Inc.

  17. Polymorphisms in the bovine ghrelin precursor (GHRL) and Syndecan-1 (SDC1) genes that are associated with growth traits in cattle.

    PubMed

    Sun, Jiajie; Jin, Qijiang; Zhang, Chunlei; Fang, Xingtang; Gu, Chuanwen; Lei, Chuzhao; Wang, Juqiang; Chen, Hong

    2011-06-01

    Transgenically expressed Syndecan-1 was found in the hypothalamic nuclei that control energy balance, and was associated with maturity-onset obesity, while ghrelin has been shown to play important roles in the control of food intake, gastric acid secretion, energy homeostasis, and glucose and lipid metabolism. However, the roles of genetic variations of Syndecan-1 and ghrelin on growth trait have few been reported in cattle. Herein, five Chinese cattle breeds were analyzed by PCR-SSCP and DNA sequencing methods. The bovine ghrelin gene showed eleven SNPs g.[267G>A, 271G>A, 290C>T, 326A>G, 327T>C, 420C>A, 569A>G, 945C>T, 993C>T, 4491A>G, 4644G>A] and three SNPs g.[420C>A, 569 A>G, 945C>T] were firstly detected in cattle. The bovine Syndecan-1 gene showed two SNPs. One SNP showed a transition C>G at position 21514, resulting in a synonymous mutation p.G(GGC)169G(GGG) and another showed a transversion C>T at position 22591, resulting in a synonymous mutation p.D(GAC)283D(GAT). In ghrelin gene, no significant associations were revealed between any variant sites and body weight, average daily gain, body sizes for different growth periods (6, 12, 18, and 24 months old), as well as for the milk yield at 305 days, milk protein rate and milk fat percentage. However, the polymorphism of Syndecan-1 gene was significantly associated with bovine birth weight and body length. Hence, we first suggested that Syndecan-1 gene could be regarded as molecular marker for superior birth weight and body length.

  18. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance.

    PubMed

    Wang, Tao; Liu, Tingting; Wang, Zejian; Tian, Xiwei; Yang, Yi; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-05-01

    The rapid and real-time lipid determination can provide valuable information on process regulation and optimization in the algal lipid mass production. In this study, a rapid, accurate and precise quantification method of in vivo cellular lipids of Chlorella protothecoides using low field nuclear magnetic resonance (LF-NMR) was newly developed. LF-NMR was extremely sensitive to the algal lipids with the limits of the detection (LOD) of 0.0026g and 0.32g/L in dry lipid samples and algal broth, respectively, as well as limits of quantification (LOQ) of 0.0093g and 1.18g/L. Moreover, the LF-NMR signal was specifically proportional to the cellular lipids of C. protothecoides, thus the superior regression curves existing in a wide detection range from 0.02 to 0.42g for dry lipids and from 1.12 to 8.97gL(-1) of lipid concentration for in vivo lipid quantification were obtained with all R(2) higher than 0.99, irrespective of the lipid content and fatty acids profile variations. The accuracy of this novel method was further verified to be reliable by comparing lipid quantification results to those obtained by GC-MS. And the relative standard deviation (RSD) of LF-NMR results were smaller than 2%, suggesting the precision of this method. Finally, this method was successfully used in the on-line lipid monitoring during the algal lipid fermentation processes, making it possible for better understanding of the lipid accumulation mechanism and dynamic bioprocess control. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of clozapine on adipokine secretions/productions and lipid droplets in 3T3-L1 adipocytes.

    PubMed

    Tsubai, Tomomi; Yoshimi, Akira; Hamada, Yoji; Nakao, Makoto; Arima, Hiroshi; Oiso, Yutaka; Noda, Yukihiro

    2017-02-01

    Clozapine, a second-generation antipsychotic (SGA), is a cause of side effects related to metabolic syndrome. The participation of serotonin 5-HT 2C and histamine H 1 receptors in the central nervous system has been reported as a mechanism of the weight gain caused by clozapine. In the present study, we investigated the direct pharmacological action of clozapine on the 3T3-L1 adipocytes and compared it to that of blonanserin, an SGA with low affinity for both receptors. Short-term exposure to clozapine decreased secretion and mRNA expression of leptin. Long-term exposure decreased leptin as well as adiponectin secretion, and further increased lipid droplets accumulation. However, short- and long-term exposures to blonanserin did not affect these parameters. A selective serotonin 5-HT 2C , but not a histamine H 1 , receptor antagonist enhanced the decreased secretion of leptin induced by short-term exposure to clozapine, but did not affect the increased accumulation of lipid droplets. Our findings indicate that clozapine, but not blonanserin, strongly and directly affected the secretion of adipokines, such as leptin, in adipocytes and caused adipocyte enlargement. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Identification of superior lipid producing Lipomyces and Myxozyma yeasts

    USDA-ARS?s Scientific Manuscript database

    Oleaginous yeasts are of interest for production of single cell oils from sugars. Here 17 members of the Lipomyces and Myxozyma clade were screened for lipid production when cultured on glucose. The highest ranking yeasts included L. tetrasporus (21 g/l), L. kononenkoae (19.6 g/l), and L. lipofer (1...

  1. Preparation and characterization of citral-loaded solid lipid nanoparticles.

    PubMed

    Tian, Huaixiang; Lu, Zhuoyan; Li, Danfeng; Hu, Jing

    2018-05-15

    Citral-loaded solid lipid nanoparticles (citral-SLNs) were prepared via a high-pressure homogenization method, using glyceryl monostearate (GMS) as the solid lipid and a mixture of Tween 80 (T-80) and Span 80 (S-80) at a weight ratio of 1:1 as the surfactant. The microstructure and properties of the citral-SLNs were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The chemical stability of citral in the citral-SLNs was analyzed by solid-phase microextraction gas chromatography (SPME-GC). The GC results showed that 67.0% of the citral remained in the citral-SLN suspensions after 12 days, while only 8.22% remained in the control. Therefore, the encapsulation of citral in the solid lipid can enhance its stability in acidic surroundings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Coral lipids and environmental stress.

    PubMed

    Harriott, V J

    1993-04-01

    Environmental monitoring of coral reefs is presently limited by difficulties in recognising coral stress, other than by monitoring coral mortality over time. A recent report described an experiment demonstrating that a measured lipid index declined in shaded corals. The technique described might have application in monitoring coral health, with a decline in coral lipid index as an indicator of coral stress. The application of the technique as a practical monitoring tool was tested for two coral species from the Great Barrier Reef. Consistent with the previous results, lipid index for Pocillopora damicornis initially declined over a period of three weeks in corals maintained in filtered seawater in the dark, indicating possible utilization of lipid stored as energy reserves. However, lipid index subsequently rose to near normal levels. In contrast, lipid index of Acropora formosa increased after four weeks in the dark in filtered seawater. The results showed considerable variability in lipid content between samples from the same colony. Results were also found to be dependent on fixation times and sample weight, introducing potential error into the practical application of the technique. The method as described would be unsuitable for monitoring environmental stress in corals, but the search for a practical method to monitor coral health should continue, given its importance in coral reef management.

  3. Bioprospecting microbes for single-cell oil production from starchy wastes.

    PubMed

    Chaturvedi, Shivani; Kumari, Arti; Nain, Lata; Khare, Sunil K

    2018-03-16

    Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g -1 of biomass) followed by R. mucilaginosa (0.022 g g -1 of biomass) and G. wiiroense (0.020 g g -1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g -1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.

  4. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  5. Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells

    PubMed Central

    Hao, Lei; Ito, Kyoko; Huang, Kuan-Hsun; Sae-tan, Sudathip; Lambert, Joshua D.; Ross, A. Catharine

    2014-01-01

    Objective Patatin-like phospholipase domain containing 3 (PNPLA3, adiponutrin) has been identified as a modifier of lipid metabolism. To better understand the physiological role of PNPLA3/adiponutrin, we have investigated its regulation in intact mice and human hepatocytes under various nutritional/metabolic conditions. Material/Methods PNPLA3 gene expression was determined by real-time PCR in liver of C57BL/6 mice after dietary treatments and in HepG2 cells exposed to various nutritional/metabolic stimuli. Intracellular lipid content was determined in HepG2 cells after siRNA-mediated knockdown of PNPLA3. Results In vivo, mice fed a high-carbohydrate (HC) liquid diet had elevated hepatic lipid content, and PNPLA3 mRNA and protein expression, compared to chow-fed mice. Elevated expression was completely abrogated by addition of unsaturated lipid emulsion to the HC diet. By contrast, in mice with high-fat diet-induced steatosis, Pnpla3 expression did not differ compared to low-fat fed mice. In HepG2 cells, Pnpla3 expression was reversibly suppressed by glucose depletion and increased by glucose refeeding, but unchanged by addition of insulin and glucagon. Several unsaturated fatty acids each significantly decreased Pnpla3 mRNA, similar to lipid emulsion in vivo. However, Pnpla3 knockdown in HepG2 cells did not alter total lipid content in high glucose- or oleic acid-treated cells. Conclusions Our results provide evidence that PNPLA3 expression is an early signal/signature of carbohydrate-induced lipogenesis, but its expression is not associated with steatosis per se. Under lipogenic conditions due to high-carbohydrate feeding, certain unsaturated fatty acids can effectively suppress both lipogenesis and PNPLA3 expression, both in vivo and in a hepatocyte cell line. PMID:25060692

  6. Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells.

    PubMed

    Hao, Lei; Ito, Kyoko; Huang, Kuan-Hsun; Sae-tan, Sudathip; Lambert, Joshua D; Ross, A Catharine

    2014-10-01

    Patatin-like phospholipase domain containing 3 (PNPLA3, adiponutrin) has been identified as a modifier of lipid metabolism. To better understand the physiological role of PNPLA3/adiponutrin, we have investigated its regulation in intact mice and human hepatocytes under various nutritional/metabolic conditions. PNPLA3 gene expression was determined by real-time PCR in liver of C57BL/6 mice after dietary treatments and in HepG2 cells exposed to various nutritional/metabolic stimuli. Intracellular lipid content was determined in HepG2 cells after siRNA-mediated knockdown of PNPLA3. In vivo, mice fed a high-carbohydrate (HC) liquid diet had elevated hepatic lipid content, and PNPLA3 mRNA and protein expression, compared to chow-fed mice. Elevated expression was completely abrogated by addition of unsaturated lipid emulsion to the HC diet. By contrast, in mice with high-fat diet-induced steatosis, Pnpla3 expression did not differ compared to low-fat fed mice. In HepG2 cells, Pnpla3 expression was reversibly suppressed by glucose depletion and increased by glucose refeeding, but unchanged by addition of insulin and glucagon. Several unsaturated fatty acids each significantly decreased Pnpla3 mRNA, similar to lipid emulsion in vivo. However, Pnpla3 knockdown in HepG2 cells did not alter total lipid content in high glucose- or oleic acid-treated cells. Our results provide evidence that PNPLA3 expression is an early signal/signature of carbohydrate-induced lipogenesis, but its expression is not associated with steatosis per se. Under lipogenic conditions due to high-carbohydrate feeding, certain unsaturated fatty acids can effectively suppress both lipogenesis and PNPLA3 expression, both in vivo and in a hepatocyte cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Prichard, A.K.; Roby, D.D.

    2002-01-01

    Populations of the pigeon guillemot (Cepphus columba) and other piscivores have been in decline for several decades in the Gulf of Alaska and Bering Sea, and a decline in abundance of lipid-rich schooling fishes is hypothesized as the major cause. We tested this hypothesis by studying the breeding biology of pigeon guillemots during 1995-1999 while simultaneously measuring prey abundance with beach seines and bottom trawls. Our study area (Kachemak Bay, Alaska) comprises two oceanographically distinct areas. Populations of a lipid-rich schooling fish, Pacific sand lance (Ammodytes hexapterus), were higher in the warmer Inner Bay than in the colder Outer Bay, and sand lance abundance was higher during warm years. Populations of low-lipid content demersal fishes were similar between areas. Chick survival to age 15 days was 47% higher in the Inner Bay (high-lipid diet) than in the Outer Bay (low-lipid diet), and estimated reproductive success (chicks fledged nest-1) was 62% higher in the Inner Bay than in the Outer Bay. Chick provisioning rate (kJ chick-1 h-1) increased with the proportion of sand lance in the diet (r2=0.21), as did growth rate (g day-1) of younger (beta) chicks in two-chick broods (r2=0.14). Pigeon guillemots in the Inner Bay switched to demersal prey during years of below-average sand lance abundance, and these birds reacted to 38-fold interannual changes in sand lance abundance with reductions in beta chick growth rates, with no decline in beta chick survival. In contrast, the proportion of nests experiencing brood reduction in the Outer Bay (demersal diet) increased >300% during years of below-average demersal abundance, although demersal fish abundance varied only 4-fold among years. Our results support the hypothesis that recovery of pigeon guillemot populations from the effects of the Exxon Valdez oil spill is limited by availability of lipid-rich prey.

  8. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hodaka; Umemoto, Tomio; Kawano, Mikihiko

    Saturated fatty acids (SFAs) activate toll-like receptor 4 (TLR4) signal transduction in macrophages and are involved in the chronic inflammation accompanying obesity. High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) produce anti-inflammatory effects via reverse cholesterol transport. However, the underlying mechanisms by which HDL and apoA-I inhibit inflammatory responses in adipocytes remain to be determined. Here we examined whether palmitate increases the translocation of TLR4 into lipid rafts and whether HDL and apoA-I inhibit inflammation in adipocytes. Palmitate exposure (250 μM, 24 h) increased interleukin-6 and tumor necrosis factor-α gene expressions and translocation of TLR4 into lipid rafts in 3T3-L1 adipocytes. Pretreatment withmore » HDL and apoA-I (50 μg/mL, 6 h) suppressed palmitate-induced inflammatory cytokine expression and TLR4 translocation into lipid rafts. Moreover, HDL and apoA-I inhibited palmitate-induced phosphorylation of nuclear factor-kappa B. HDL showed an anti-inflammatory effect via ATP-binding cassette transporter G1 and scavenger receptor class B, member 1, whereas apoA-I showed an effect via ATP-binding cassette transporter A1. These results demonstrated that HDL and apoA-I reduced palmitate-potentiated TLR4 trafficking into lipid rafts and its related inflammation in adipocytes via these specific transporters. - Highlights: • Palmitate induces TLR4 translocation into lipid rafts in 3T3-L1 adipocytes. • Raft disruption by MβCD inhibits lipid raft formation. • HDL and apoA-I inhibit palmitate-induced translocation of TLR4 into lipid rafts. • Anti-inflammatory effects of HDL and apoA-I occur via specific transporters.« less

  9. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    PubMed

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.

  10. Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets.

    PubMed

    Chen, Gang; Zhang, Jun; Zhang, Yuzhe; Liao, Peng; Li, Tiejun; Chen, Lixiang; Yin, Yulong; Wang, Jinquan; Wu, Guoyao

    2014-01-01

    This experiment was conducted to investigate the effects of oral administration of monosodium glutamate (MSG) on expression of genes for hepatic lipid and nitrogen metabolism in piglets. A total of 24 newborn pigs were assigned randomly into one of four treatments (n = 6/group). The doses of oral MSG administration, given at 8:00 and 18:00 to sow-reared piglets between 0 and 21 days of age, were 0 (control), 0.06 (low dose), 0.5 (intermediate dose), and 1 (high dose) g/kg body weight/day. At the end of the 3-week treatment, serum concentrations of total protein and high-density lipoprotein cholesterol in the intermediate dose group were elevated than those in the control group (P < 0.05). Hepatic mRNA levels for fatty acid synthase, acetyl-coA carboxylase, insulin-like growth factor-1, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase were higher in the middle-dose group (P < 0.05), compared with the control group. MSG administration did not affect hepatic mRNA levels for hormone-sensitive lipase or carnitine palmitoyl transferase-1. We conclude that oral MSG administration alters hepatic expression of certain genes for lipid and nitrogen metabolism in suckling piglets.

  11. Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids

    PubMed Central

    Jaeger, Doris; Schoiswohl, Gabriele; Hofer, Peter; Schreiber, Renate; Schweiger, Martina; Eichmann, Thomas O.; Pollak, Nina M.; Poecher, Nadja; Grabner, Gernot F.; Zierler, Kathrin A.; Eder, Sandra; Kolb, Dagmar; Radner, Franz P.W.; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Kershaw, Erin E.; Haemmerle, Guenter

    2015-01-01

    Background & Aims Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. Methods Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. Results Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. Conclusions AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis. PMID:25733154

  12. Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology.

    PubMed

    Li, Tao; Li, Xin; Zhao, Xihai; Zhou, Weihua; Cai, Zulong; Yang, Li; Guo, Aitao; Zhao, Shaohong

    2012-05-01

    The objective of our study was to evaluate the feasibility of ex vivo high-resolution multicontrast-weighted MRI to accurately classify human coronary atherosclerotic plaques according to the American Heart Association classification. Thirteen human cadaver heart specimens were imaged using high-resolution multicontrast-weighted MR technique (T1-weighted, proton density-weighted, and T2-weighted). All MR images were matched with histopathologic sections according to the landmark of the bifurcation of the left main coronary artery. The sensitivity and specificity of MRI for the classification of plaques were determined, and Cohen's kappa analysis was applied to evaluate the agreement between MRI and histopathology in the classification of atherosclerotic plaques. One hundred eleven MR cross-sectional images obtained perpendicular to the long axis of the proximal left anterior descending artery were successfully matched with the histopathologic sections. For the classification of plaques, the sensitivity and specificity of MRI were as follows: type I-II (near normal), 60% and 100%; type III (focal lipid pool), 80% and 100%; type IV-V (lipid, necrosis, fibrosis), 96.2% and 88.2%; type VI (hemorrhage), 100% and 99.0%; type VII (calcification), 93% and 100%; and type VIII (fibrosis without lipid core), 100% and 99.1%, respectively. Isointensity, which indicates lipid composition on histopathology, was detected on MRI in 48.8% of calcified plaques. Agreement between MRI and histopathology for plaque classification was 0.86 (p < 0.001). Ex vivo high-resolution multicontrast-weighted MRI can accurately classify advanced atherosclerotic plaques in human coronary arteries.

  13. 41 CFR 302-7.20 - If my HHG shipment includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight additive is assessed by the... which a weight additive is assessed by the HHG carrier, am I responsible for payment? If your HHG shipment includes an item (e.g., boat or trailer of reasonable size) for which a weight additive is...

  14. 41 CFR 302-7.20 - If my HHG shipment includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... includes an item (e.g., boat, trailer, ultralight vehicle) for which a weight additive is assessed by the... which a weight additive is assessed by the HHG carrier, am I responsible for payment? If your HHG shipment includes an item (e.g., boat or trailer of reasonable size) for which a weight additive is...

  15. [The dependence of lipid peroxidation state and the antioxidant system of the myocardium from the thyroid status during short action of stressors].

    PubMed

    Gorodetskaia, I V; Evdokimova, O V

    2013-11-01

    In experiments at 78 adult white outbred male rats were demonstrated that experimental hypothyroidism (injection of 25 mg/kg merkazolil within 20 days) stimulates, while small doses of L-thyroxine (1.5-3.0 μg/kg within 28 days) limit the intensification of lipid peroxidation in the myocardium under short exposure to stressors of a different nature: physical (t 4-5 °C within 30 minutes), chemical (injection of 25% ethanol at a dose of 3.5 g/kg body weight), and emotional (free swimming of rats in the cage within 30 minutes) by influence on the activity of enzymatic (superoxide dismutase and catalase) and non-enzymatic (reduced glutathione) components of the antioxidant system.

  16. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954

  17. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ramasamy, Kalavathy; Sieo, Chin Chin; Ho, Yin Wan

    2017-01-01

    The ban or severe restriction on the use of antibiotics in poultry feeds to promote growth has led to considerable interest to find alternative approaches. Probiotics have been considered as such alternatives. In the present study, the effects of a Lactobacillus mixture composed from three previously isolated Lactobacillus salivarius strains (CI1, CI2 and CI3) from chicken intestines on performance, intestinal health status and serum lipids of broiler chickens has been evaluated. Supplementation of the mixture at a concentration of 0.5 or 1 g kg-1 of diet to broilers for 42 days improved body weight, body weight gain and FCR, reduced total cholesterol, LDL-cholesterol and triglycerides, increased populations of beneficial bacteria such as lactobacilli and bifidobacteria, decreased harmful bacteria such as E. coli and total aerobes, reduced harmful cecal bacterial enzymes such as β-glucosidase and β-glucuronidase, and improved intestinal histomorphology of broilers. Because of its remarkable efficacy on broiler chickens, the L. salivarius mixture could be considered as a good potential probiotic for chickens, and its benefits should be further evaluated on a commercial scale.

  18. Effect of dietary patterns differing in carbohydrate and fat content on blood lipid and glucose profiles based on weight-loss success of breast-cancer survivors.

    PubMed

    Thompson, Henry J; Sedlacek, Scot M; Paul, Devchand; Wolfe, Pamela; McGinley, John N; Playdon, Mary C; Daeninck, Elizabeth A; Bartels, Sara N; Wisthoff, Mark R

    2012-01-06

    Healthy body weight is an important factor for prevention of breast cancer recurrence. Yet, weight loss and weight gain are not currently included in clinical-practice guidelines for posttreatment of breast cancer. The work reported addresses one of the questions that must be considered in recommending weight loss to patients: does it matter what diet plan is used, a question of particular importance because breast cancer treatment can increase risk for cardiovascular disease. Women who completed treatment for breast cancer were enrolled in a nonrandomized, controlled study investigating effects of weight loss achieved by using two dietary patterns at the extremes of macronutrient composition, although both diet arms were equivalent in protein: high fat, low carbohydrate versus low fat, high carbohydrate. A nonintervention group served as the control arm; women were assigned to intervention arms based on dietary preferences. During the 6-month weight-loss program, which was menu and recipe defined, participants had monthly clinical visits at which anthropometric data were collected and fasting blood was obtained for safety monitoring for plasma lipid profiles and fasting glucose. Results from 142 participants are reported. Adverse effects on fasting blood lipids or glucose were not observed in either dietary arm. A decrease in fasting glucose was observed with progressive weight loss and was greater in participants who lost more weight, but the effect was not statistically significant, even though it was observed across both diet groups (P = 0.21). Beneficial effects of weight loss on cholesterol (4.7%; P = 0.001), triglycerides (21.8%; P = 0.01), and low-density lipoprotein (LDL) cholesterol (5.8%; P = 0.06) were observed in both groups. For cholesterol (P = 0.07) and LDL cholesterol (P = 0.13), greater reduction trends were seen on the low-fat diet pattern; whereas, for triglycerides (P = 0.01) and high-density lipoprotein (HDL) cholesterol (P = 0.08), a decrease

  19. Lipid, Detergent, and Coomassie Blue G-250 Affect the Migration of Small Membrane Proteins in Blue Native Gels

    PubMed Central

    Crichton, Paul G.; Harding, Marilyn; Ruprecht, Jonathan J.; Lee, Yang; Kunji, Edmund R. S.

    2013-01-01

    Blue native gel electrophoresis is a popular method for the determination of the oligomeric state of membrane proteins. Studies using this technique have reported that mitochondrial carriers are dimeric (composed of two ∼32-kDa monomers) and, in some cases, can form physiologically relevant associations with other proteins. Here, we have scrutinized the behavior of the yeast mitochondrial ADP/ATP carrier AAC3 in blue native gels. We find that the apparent mass of AAC3 varies in a detergent- and lipid-dependent manner (from ∼60 to ∼130 kDa) that is not related to changes in the oligomeric state of the protein, but reflects differences in the associated detergent-lipid micelle and Coomassie Blue G-250 used in this technique. Higher oligomeric state species are only observed under less favorable solubilization conditions, consistent with aggregation of the protein. Calibration with an artificial covalent AAC3 dimer indicates that the mass observed for solubilized AAC3 and other mitochondrial carriers corresponds to a monomer. Size exclusion chromatography of purified AAC3 in dodecyl maltoside under blue native gel-like conditions shows that the mass of the monomer is ∼120 kDa, but appears smaller on gels (∼60 kDa) due to the unusually high amount of bound negatively charged dye, which increases the electrophoretic mobility of the protein-detergent-dye micelle complex. Our results show that bound lipid, detergent, and Coomassie stain alter the behavior of mitochondrial carriers on gels, which is likely to be true for other small membrane proteins where the associated lipid-detergent micelle is large when compared with the mass of the protein. PMID:23744064

  20. Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production.

    PubMed

    Chakraborty, Sourabh; Mohanty, Debabrata; Ghosh, Supratim; Das, Debabrata

    2016-09-01

    Lipids extracted from microalgae have been considered as a potential source for the production of biodiesel. Enhancement of lipid has the limitations of low biomass productivity. So, the main objective of the present study was to deduce suitable conditions for the improvement of biomass production followed by enhancement of lipid content. After optimization, a strategy for two stage cultivation was utilized where high lipid content was obtained with a high biomass concentration. Optimization of biomass production of Chlorella minutissima MCC 5 was carried out under different intensities of light, temperatures, concentrations of nitrate and phosphate using Taguchi model. A suitable synergy of the four parameters yielded maximum biomass (1.93 g L(-1)) in airlift reactor. Temperature was found to be relatively effective than other parameters for higher biomass production. Activation energy for the cell growth was determined (47.95 kJ mol(-1)). Among the various (photo, thermal, nitrate and phosphate) stress conditions studied, nitrate limitation (1 mM) was found to be suitable for the enhancement of lipid resulting highest yield (48.26% w/w). Two stage cultivation of the microalgae yielded a maximum lipid content of 46% w/w with a biomass concentration of 2.2 g L(-1). Additionally, FAME analysis exhibited significant increase of oleic acid in the biodiesel. So, C. minutissima MCC 5 cultivated under nitrate stress could be a possible feedstock for biodiesel production. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.