Sample records for g-band bright points

  1. On the Relation Between Facular Bright Points and the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Shine, Richard; Tarbell, Theodore; Title, Alan; Scharmer, Goran

    1994-12-01

    Multi-spectral images of magnetic structures in the solar photosphere are presented. The images were obtained in the summers of 1993 and 1994 at the Swedish Solar Telescope on La Palma using the tunable birefringent Solar Optical Universal Polarimeter (SOUP filter), a 10 Angstroms wide interference filter tuned to 4304 Angstroms in the band head of the CH radical (the Fraunhofer G-band), and a 3 Angstroms wide interference filter centered on the Ca II--K absorption line. Three large format CCD cameras with shuttered exposures on the order of 10 msec and frame rates of up to 7 frames per second were used to create time series of both quiet and active region evolution. The full field--of--view is 60times 80 arcseconds (44times 58 Mm). With the best seeing, structures as small as 0.22 arcseconds (160 km) in diameter are clearly resolved. Post--processing of the images results in rigid coalignment of the image sets to an accuracy comparable to the spatial resolution. Facular bright points with mean diameters of 0.35 arcseconds (250 km) and elongated filaments with lengths on the order of arcseconds (10(3) km) are imaged with contrast values of up to 60 % by the G--band filter. Overlay of these images on contemporal Fe I 6302 Angstroms magnetograms and Ca II K images reveals that the bright points occur, without exception, on sites of magnetic flux through the photosphere. However, instances of concentrated and diffuse magnetic flux and Ca II K emission without associated bright points are common, leading to the conclusion that the presence of magnetic flux is a necessary but not sufficient condition for the occurence of resolvable facular bright points. Comparison of the G--band and continuum images shows a complex relation between structures in the two bandwidths: bright points exceeding 350 km in extent correspond to distinct bright structures in the continuum; smaller bright points show no clear relation to continuum structures. Size and contrast statistical cross

  2. Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    NASA Technical Reports Server (NTRS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael

    2014-01-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  3. Double bright band observations with high-resolution vertically pointing radar, lidar, and profilers

    NASA Astrophysics Data System (ADS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Micheal

    2014-07-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  4. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 1993 September 15-20 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on September 20. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured Full Width at Half Maximum (FWHM) distribution of the bright points in the image is lognormal with a modal value of 220 km (0 sec .30) and an average value of 250 km (0 sec .35). The smallest measured bright point diameter is 120 km (0 sec .17) and the largest is 600 km (O sec .69). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this

  5. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 15-20 Sept. 1993 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on 20 Sept. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured FWHM distribution of the bright points in the image is lognormal with a modal value of 220 km (0.30 sec) and an average value of 250 km (0.35 sec). The smallest measured bright point diameter is 120 km (0.17 sec) and the largest is 600 km (O.69 sec). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of

  6. The Characteristics of Thin Magnetic Flux Tubes in the Lower Solar Atmosphere Observed by Hinode/SOT in the G band and in Ca II H Bright Points

    NASA Astrophysics Data System (ADS)

    Xiong, Jianping; Yang, Yunfei; Jin, Chunlan; Ji, Kaifan; Feng, Song; Wang, Feng; Deng, Hui; Hu, Yu

    2017-12-01

    Photospheric bright points (PBPs) and chromospheric bright points (CBPs) reflect the cross sections of magnetic flux tubes at different heights of the lower solar atmosphere. We aim to study the fine 3D structures and transportation dynamics of the magnetic flux tubes using G-band and simultaneous Ca II H image-series from the Solar Optical Telescope (SOT) on board Hinode. A 3D track-while-detect method is proposed to detect and track PBPs and CBPs. The mean values of equivalent diameters, maximum intensity contrasts, transverse velocities, motion ranges, motion types, and diffusion indices of PBPs and CBPs are 180 ± 20 and 210 ± 30 km, 1.0+/- 0.1< {I}{QS\\_G}> and 1.2+/- 0.1< {I}{QS\\Ca}> , 1.6 ± 0.8 and 2.7 ± 1.4 km s‑1, 1.5 ± 0.6 and 1.7 ± 0.8, 0.8 ± 0.2 and 0.6 ± 0.2, and 1.7 ± 0.7 and 1.3 ± 0.7, respectively. Moreover, the ratios of each CBP characteristics to its corresponding PBP are derived to explore the change rates of the flux tubes. The corresponding ratios are 1.2 ± 0.2, 1.2 ± 0.1, 1.9 ± 0.1, 1.4 ± 0.3, 0.7 ± 0.2, and 0.9 ± 0.4, respectively. The statistical results imply that the majority magnetic flux tubes expand slightly with increasing solar height, look brighter than their surroundings, show a higher transverse velocity, a wider motion range, and a more erratic path, but the majority of the flux tubes diffuse slightly slower. The phenomenon might be explained by the conservation of momentum combined with a decrease in density. The more erratic path leads to a swing or twist of the flux tubes and therefore guides magnetohydrodynamic waves.

  7. Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Steiner, O.; Freytag, B.

    2016-11-01

    Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims: Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods: Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results: The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions: Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them. The movie associated to Fig. 1 is available at http://www.aanda.org

  8. Band-edge positions in G W : Effects of starting point and self-consistency

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Pasquarello, Alfredo

    2014-10-01

    We study the effect of starting point and self-consistency within G W on the band-edge positions of semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that the use of self-consistency is critical to obtain a good agreement with experiment.

  9. Coronal bright points in microwaves

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Nitta, N.

    1988-01-01

    An excellent map of the quiet sun showing coronal bright points at 20-cm wavelength was produced using the VLA on February 13, 1987. The locations of bright points (BPs) were studied relative to features on the photospheric magnetogram and Ca K spectroheliogram. Most bright points appearing in the full 5-hour synthesized map are associated with small bipolar structures on the photospheric magnetogram; and the brightest part of a BP tends to lie on the boundary of a supergranulation network. The bright points exhibit rapid variations in intensity superposed on an apparently slow variation.

  10. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.

    2018-02-01

    The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.

  11. Magnetic topological analysis of coronal bright points

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.

    2017-10-01

    Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at http://www.aanda.org

  12. X-ray bright points and He I lambda 10830 dark points

    NASA Technical Reports Server (NTRS)

    Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.

    1989-01-01

    Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with X-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.

  13. X-ray bright points and He I lambda 10830 dark points

    NASA Technical Reports Server (NTRS)

    Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.

    1989-01-01

    Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with x-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.

  14. Bright point study. [of solar corona

    NASA Technical Reports Server (NTRS)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona.

  15. At Bright Band Inside Victoria Crater

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A layer of light-toned rock exposed inside Victoria Crater in the Meridiani Planum region of Mars appears to mark where the surface was at the time, many millions of years ago, when an impact excavated the crater. NASA's Mars Exploration Rover Opportunity drove to this bright band as the science team's first destination for the rover during investigations inside the crater.

    Opportunity's left front hazard-identification camera took this image just after the rover finished a drive of 2.25 meters (7 feet, 5 inches) during the rover's 1,305th Martian day, or sol, (Sept. 25, 2007). The rocks beneath the rover and its extended robotic arm are part of the bright band.

    Victoria Crater has a scalloped shape of alternating alcoves and promontories around the crater's circumference. Opportunity descended into the crater two weeks earlier, within an alcove called 'Duck Bay.' Counterclockwise around the rim, just to the right of the arm in this image, is a promontory called 'Cabo Frio.'

  16. Simultaneous Multi-band Detection of Low Surface Brightness Galaxies with Markovian Modeling

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; van Driel, W.; Bonnarel, F.; Louys, M.; Sabatini, S.; MacArthur, L. A.

    2013-02-01

    for sources with r e > 3'' at a mean surface brightness level of μg = 27.7 mag arcsec-2 and a central surface brightness of μ0 g = 26.7 mag arcsec-2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our proposed Markovian LSB galaxy detection method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky. .

  17. A daytime measurement of the lunar contribution to the night sky brightness in LSST's ugrizy bands-initial results

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Stubbs, Christopher; Claver, Chuck

    2016-06-01

    We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3-0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.

  18. Coronal bright points at 6cm wavelength

    NASA Technical Reports Server (NTRS)

    Fu, Qijun; Kundu, M. R.; Schmahl, E. J.

    1988-01-01

    Results are presented from observations of bright points at a wavelength of 6-cm using the VLA with a spatial resolution of 1.2 arcsec. During two hours of observations, 44 sources were detected with brightness temperatures between 2000 and 30,000 K. Of these sources, 27 are associated with weak dark He 10830 A features at distances less than 40 arcsecs. Consideration is given to variations in the source parameters and the relationship between ephemeral regions and bright points.

  19. Brightness and magnetic evolution of solar coronal bright points

    NASA Astrophysics Data System (ADS)

    Ugarte Urra, Ignacio

    This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). The study was carried out using several instruments on board the Solar and Heliospheric Observatory, supported by the high resolution imaging from the Transition Region And Coronal Explorer. The results confirm that, down to 1" resolution, BPs are made of small loops with lengths of [approximate]6 Mm and cross-sections of ≈2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures, but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals the existence of quasi-periodic oscillations with periods ranging 400--1000s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal coronal images and magnetograms, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in terms of magnetic reconnection events. Finally, a electron density study of six coronal bright points produces values of ≈1.6×10 9 cm -3 , closer to active region plasma than to quiet Sun. The analysis of a large coronal loop (half length of 72 Mm) introduces the discussion on the prospects of future plasma diagnostics of BPs with forthcoming solar missions.

  20. A study of coronal bright points at 20 cm wavelength

    NASA Technical Reports Server (NTRS)

    Nitta, N.; Kundu, M. R.

    1988-01-01

    The paper presents the results of a study of coronal bright points observed at 20 cm with the VLA on a day when the sun was exceptionally quiet. Microwave maps of bright points were obtained using data for the entire observing period of 5 hours, as well as for shorter periods of a few minutes. Most bright points, especially those appearing in the full-period maps, appear to be associated with small bipolar structures on the photospheric magnetogram. Overlays of bright point (BP) maps on the Ca(+) K picture, show that the brightest part of BP tends to lie on the boundary of a supergranulation network.

  1. Observations of copolar correlation coefficient through a bright band at vertical incidence

    NASA Technical Reports Server (NTRS)

    Zrnic, D. S.; Raghavan, R.; Chandrasekar, V.

    1994-01-01

    This paper discusses an application of polarimetric measurements at vertical incidence. In particular, the correlation coefficients between linear copolar components are examined, and measurements obtained with the National Severe Storms Laboratory (NSSL)'s and National Center for Atmospheric Research (NCAR)'s polarimetric radars are presented. The data are from two well-defined bright bands. A sharp decrease of the correlation coefficient, confined to a height interval of a few hundred meters, marks the bottom of the bright band.

  2. Micro Coronal Bright Points Observed in the Quiet Magnetic Network by SOHO/EIT

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.

    1997-01-01

    When one looks at SOHO/EIT Fe XII images of quiet regions, one can see the conventional coronal bright points (> 10 arcsec in diameter), but one will also notice many smaller faint enhancements in brightness (Figure 1). Do these micro coronal bright points belong to the same family as the conventional bright points? To investigate this question we compared SOHO/EIT Fe XII images with Kitt Peak magnetograms to determine whether the micro bright points are in the magnetic network and mark magnetic bipoles within the network. To identify the coronal bright points, we applied a picture frame filter to the Fe XII images; this brings out the Fe XII network and bright points (Figure 2) and allows us to study the bright points down to the resolution limit of the SOHO/EIT instrument. This picture frame filter is a square smoothing function (hlargelyalf a network cell wide) with a central square (quarter of a network cell wide) removed so that a bright point's intensity does not effect its own background. This smoothing function is applied to the full disk image. Then we divide the original image by the smoothed image to obtain our filtered image. A bright point is defined as any contiguous set of pixels (including diagonally) which have enhancements of 30% or more above the background; a micro bright point is any bright point 16 pixels or smaller in size. We then analyzed the bright points that were fully within quiet regions (0.6 x 0.6 solar radius) centered on disk center on six different days.

  3. Temporal relations between magnetic bright points and the solar sunspot cycle

    NASA Astrophysics Data System (ADS)

    Utz, Dominik; Muller, Richard; Van Doorsselaere, Tom

    2017-12-01

    The Sun shows a global magnetic field cycle traditionally best visible in the photosphere as a changing sunspot cycle featuring roughly an 11-year period. In addition we know that our host star also harbours small-scale magnetic fields often seen as strong concentrations of magnetic flux reaching kG field strengths. These features are situated in inter-granular lanes, where they show up bright as so-called magnetic bright points (MBPs). In this short paper we wish to analyse an homogenous, nearly 10-year-long synoptic Hinode image data set recorded from 2006 November up to 2016 February in the G-band to inspect the relationship between the number of MBPs at the solar disc centre and the relative sunspot number. Our findings suggest that the number of MBPs at the solar disc centre is indeed correlated to the relative sunspot number, but with the particular feature of showing two different temporal shifts between the decreasing phase of cycle 23 including the minimum and the increasing phase of cycle 24 including the maximum. While the former is shifted by about 22 months, the latter is only shifted by less than 12 months. Moreover, we introduce and discuss an analytical model to predict the number of MBPs at the solar disc centre purely depending on the evolution of the relative sunspot number as well as the temporal change of the relative sunspot number and two background parameters describing a possibly acting surface dynamo as well as the strength of the magnetic field diffusion. Finally, we are able to confirm the plausibility of the temporal shifts by a simplistic random walk model. The main conclusion to be drawn from this work is that the injection of magnetic flux, coming from active regions as represented by sunspots, happens on faster time scales than the removal of small-scale magnetic flux elements later on.

  4. Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.

    2009-08-01

    We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.

  5. Brightness and magnetic evolution of solar coronal bright points

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, I.

    2004-12-01

    This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). BPs are loop-like features of enhanced emission in the coronal EUV and X-ray images of the Sun, that are associated to the interaction of opposite photospheric magnetic polarities with magnetic fluxes of ≈1018 - 1019 Mx. The study was carried out using several instruments on board the Solar and Heliospheric Observatory (SOHO): the Extreme Ultraviolet Imager (EIT), the Coronal Diagnostic Spectrometer (CDS) and the Michelson Doppler Imager (MDI), supported by the high resolution imaging from the Transition Region And Coronal Explorer (TRACE). The results confirm that, down to 1'' (i.e. ~715 km) resolution, BPs are made of small loops with lengths of ~6 Mm and cross-sections of ~2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures (in the range 3.2x10^4 - 3.5x10^5 K), but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals, for the first time, the existence of quasi-periodic oscillations with periods ranging 400 -- 1000 s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal TRACE and MDI images, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in

  6. Landcover Based Optimal Deconvolution of PALS L-band Microwave Brightness Temperature

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Crosson, William L.; Laymon, Charles A.; Njoku, Eni G.

    2004-01-01

    An optimal de-convolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on landcover, which is characterized by sharp boundaries. In this study, we mathematically de-convolve the observations into brightness temperature at the field scale (500-800m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.

  7. Bright Points and Subflares in Ultraviolet Lines and X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Reichmann, E.; Tandberg-Hanssen, E.

    1999-01-01

    We have analyzed an active region which was observed in H.alpha (Multichannel Subtractive Double Pass Spectrograph), in UV lines (SMM/UVSP), and in X-rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X-rays. Using an extrapolation based on the Fourier transform, we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find two different zones: (1) a high-shear region (> 70 deg) where subflares occur, and (2) a low-shear region along the magnetic inversion line where UV bright points are observed. In these latter regions the magnetic topology is complex with a mixture of polarities. According to the velocity field observed in the Si IV lamda.1402 line and the extrapolation of the magnetic field, we notice that each UV bright point is consistent with emission from low-rising loops with downflows at both ends. We notice some hard X-ray emissions above the bright-point regions with temperatures up to 8 x 10(exp 6) K, which suggests some induced reconnection due to continuous emergence of new flux. This reconnection is also enhanced by neighboring subflares.

  8. Classification and correction of the radar bright band with polarimetric radar

    NASA Astrophysics Data System (ADS)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  9. Anticorrelation of X-ray bright points with sunspot number, 1970-1978

    NASA Technical Reports Server (NTRS)

    Golub, L.; Davis, J. M.; Krieger, A. S.

    1979-01-01

    Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.

  10. Does the chromatic Mach bands effect exist?

    PubMed

    Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel

    2009-06-30

    The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.

  11. Identifying and Tracking Solar Photospheric Bright Points Based on Three-dimensional Segmentation Technology

    NASA Astrophysics Data System (ADS)

    Xiong, J. P.; Zhang, A. L.; Ji, K. F.; Feng, S.; Deng, H.; Yang, Y. F.

    2016-01-01

    Photospheric bright points (PBPs) are tiny and short-lived phenomena which can be seen within dark inter-granular lanes. In this paper, we develop a new method to identify and track the PBPs in the three-dimensional data cube. Different from the previous way such as Detection-Before-Tracking, this method is based on the Tracking-While-Detection. Using this method, the whole lifetime of a PBP can be accurately measured while this PBP is possibly separated into several with Laplacian and morphological dilation (LMD) method due to its weak intensity sometimes. With consideration of the G-band PBPs observed by Hinode/SOT (Solar Optical Telescope) for more than two hours, we find that the isolated PBPs have an average lifetime of 3 minutes, and the longest one is up to 27 minutes, which are greater than the values detected by the previous LMD method. Furthermore, we also find that the mean intensity of PBPs is 1.02 times of the mean photospheric intensity, which is less than the values detected by LMD method, and the intensity of PBPs presents a period of oscillation with 2-3 minutes during the whole lifetime.

  12. A search for outflows from X-ray bright points in coronal holes

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    Properties of X-ray bright points using two of the instruments on Solar Maximum Mission were investigated. The mass outflows from magnetic regions were modeled using a two dimensional MHD code. It was concluded that mass can be detected from X-ray bright points provided that the magnetic topology is favorable.

  13. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humiditymore » conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.« less

  14. [Application of single-band brightness variance ratio to the interference dissociation of cloud for satellite data].

    PubMed

    Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng

    2006-11-01

    In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.

  15. The correlation of Skylab L-band brightness temperatures with antecedent precipitation

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    The S194 L-band radiometer flown on the Skylab mission measured terrestrial radiation at the microwave wavelength of 21.4 cm. The terrain emissivity at this wavelength is strongly dependent on the soil moisture content, which can be inferred from antecedent precipitation. For the Skylab data acquisition pass from the Oklahoma panhandle to southeastern Texas on 11 June 1973, the S194 brightness temperatures are highly correlated with antecedent precipitation from the preceding eleven day period, but very little correlation was apparent for the preceding five day period. The correlation coefficient between the averaged antecedent precipitation index values and the corresponding S194 brightness temperatures between 230 K and 270 K, the region of apparent response to soil moisture in the data, was -0.97. The equation of the linear least squares line fitted to the data was: API (cm) = 31.99 -0.114 TB (K), where API is the antecedent precipitation index and TB is the S194 brightness temperature.

  16. Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points

    NASA Astrophysics Data System (ADS)

    Bagashvili, Salome R.; Shergelashvili, Bidzina M.; Japaridze, Darejan R.; Kukhianidze, Vasil; Poedts, Stefaan; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; De Causmaecker, Patrick

    2018-03-01

    A set of 23 observations of coronal jet events that occurred in coronal bright points has been analyzed. The focus was on the temporal evolution of the mean brightness before and during coronal jet events. In the absolute majority of the cases either single or recurrent coronal jets (CJs) were preceded by slight precursor disturbances observed in the mean intensity curves. The key conclusion is that we were able to detect quasi-periodical oscillations with characteristic periods from sub-minute up to 3–4 minute values in the bright point brightness that precedes the jets. Our basic claim is that along with the conventionally accepted scenario of bright-point evolution through new magnetic flux emergence and its reconnection with the initial structure of the bright point and the coronal hole, certain magnetohydrodynamic (MHD) oscillatory and wavelike motions can be excited and these can take an important place in the observed dynamics. These quasi-oscillatory phenomena might play the role of links between different epochs of the coronal jet ignition and evolution. They can be an indication of the MHD wave excitation processes due to the system entropy variations, density variations, or shear flows. It is very likely a sharp outflow velocity transverse gradients at the edges between the open and closed field line regions. We suppose that magnetic reconnections can be the source of MHD waves due to impulsive generation or rapid temperature variations, and shear flow driven nonmodel MHD wave evolution (self-heating and/or overreflection mechanisms).

  17. The Magnetic Evolution of Coronal Hole Bright Points

    NASA Astrophysics Data System (ADS)

    He, Y.; Muglach, K.

    2017-12-01

    Space weather refers to the state of the heliosphere and the geospace environment that are caused primarily by solar activity. Coronal mass ejections and flares originate in active regions and filaments close to the solar surface and can cause geomagnetic storms and solar energetic particles events, which can damage both spacecraft and ground-based systems that are critical for society's well-being. Coronal bright points are small-scale magnetic regions on the sun that seem to be similar to active regions, but are about an order of magnitude smaller. Due to their shorter lifetime, the complete evolutionary cycle of these mini active regions can be studied, from the time they appear in extreme-ultraviolet (EUV) images to the time they fade. We are using data from the Solar Dynamics Observatory (SDO) to study both the coronal EUV flux and the photospheric magnetic field and compare them to activities of the coronal bright point.

  18. C (G)-Band & X (I) - Band Noncoherent Radar Transponder Performance Specification Standard

    DTIC Science & Technology

    2002-04-01

    TRAINING RANGE NEVADA TEST SITE STANDARD 262-02 ELECTRONIC TRAJECTORY MEASUREMENTS GROUP C (G) – BAND & X (I) – BAND NONCOHERENT RADAR...Date 00 Apr 2002 Report Type N/A Dates Covered (from... to) - Title and Subtitle C (G)-Band & X (I) - Band Noncoherent Radar Transponder...Number of Pages 157 i STANDARD 262-02 C (G) – BAND & X (I) – BAND NONCOHERENT RADAR TRANSPONDER PERFORMANCE SPECIFICATION STANDARD APRIL 2002 Prepared by

  19. Sodium in weak G-band giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Lambert, David L.

    1994-01-01

    Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.

  20. The plasma filling factor of coronal bright points. II. Combined EIS and TRACE results

    NASA Astrophysics Data System (ADS)

    Dere, K. P.

    2009-04-01

    Aims: In a previous paper, the volumetric plasma filling factor of coronal bright points was determined from spectra obtained with the Extreme ultraviolet Imaging Spectrometer (EIS). The analysis of these data showed that the median plasma filling factor was 0.015. One interpretation of this result was that the small filling factor was consistent with a single coronal loop with a width of 1-2´´, somewhat below the apparent width. In this paper, higher spatial resolution observations with the Transition Region and Corona Explorer (TRACE) are used to test this interpretation. Methods: Rastered spectra of regions of the quiet Sun were recorded by the EIS during operations with the Hinode satellite. Many of these regions were simultaneously observed with TRACE. Calibrated intensities of Fe xii lines were obtained and images of the quiet corona were constructed from the EIS measurements. Emission measures were determined from the EIS spectra and geometrical widths of coronal bright points were obtained from the TRACE images. Electron densities were determined from density-sensitive line ratios measured with EIS. A comparison of the emission measure and bright point widths with the electron densities yielded the plasma filling factor. Results: The median electron density of coronal bright points is 3 × 109 cm-3 at a temperature of 1.6 × 106 K. The volumetric plasma filling factor of coronal bright points was found to vary from 3 × 10-3 to 0.3 with a median value of 0.04. Conclusions: The current set of EIS and TRACE coronal bright-point observations indicate the median value of their plasma filling factor is 0.04. This can be interpreted as evidence of a considerable subresolution structure in coronal bright points or as the result of a single completely filled plasma loop with widths on the order of 0.2-1.5´´ that has not been spatially resolved in these measurements.

  1. Investigation of the moving structures in a coronal bright point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Zongjun; Guo, Yang, E-mail: ningzongjun@pmo.ac.cn

    2014-10-10

    We have explored the moving structures in a coronal bright point (CBP) observed by the Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) on 2011 March 5. This CBP event has a lifetime of ∼20 minutes and is bright with a curved shape along a magnetic loop connecting a pair of negative and positive fields. AIA imaging observations show that a lot of bright structures are moving intermittently along the loop legs toward the two footpoints from the CBP brightness core. Such moving bright structures are clearly seen at AIA 304 Å. In order to analyze their features, the CBP ismore » cut along the motion direction with a curved slit which is wide enough to cover the bulk of the CBP. After integrating the flux along the slit width, we get the spacetime slices at nine AIA wavelengths. The oblique streaks starting from the edge of the CBP brightness core are identified as moving bright structures, especially on the derivative images of the brightness spacetime slices. They seem to originate from the same position near the loop top. We find that these oblique streaks are bi-directional, simultaneous, symmetrical, and periodic. The average speed is about 380 km s{sup –1}, and the period is typically between 80 and 100 s. Nonlinear force-free field extrapolation shows the possibility that magnetic reconnection takes place during the CBP, and our findings indicate that these moving bright structures could be the observational outflows after magnetic reconnection in the CBP.« less

  2. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.

    2017-01-01

    In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.

  3. β-relaxation related bright bands in thin film metallic glasses: Localized percolation of flow units captured via transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Huang, P.; Xu, K. W.; Wang, F.; Lu, T. J.

    2016-12-01

    We report that β-relaxation of amorphous NiW alloy film was effectively enhanced by adding two thin crystalline layers into the amorphous layer. Correspondingly, more bright bands, i.e., nano shear bands, were captured in the amorphous layer, which experienced more pronounced β-relaxations. Based on the potential energy landscape theory, the bright band was proposed to be the localized percolation of flow units corresponding to β-relaxation. Our findings may help connecting experimentally β-relaxation with flow units and shed light on the microstructure origin of β-relaxation.

  4. The correlation of Skylab L-band brightness temperatures with antecedent precipitation

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    The S194 L-band radiometer flown on the Skylab mission measured terrestrial radiation at the microwave wavelength of 21.4 cm. The terrain emissivity at this wavelength is strongly dependent on the soil moisture content, which can be inferred from antecedent precipitation. For the Skylab data acquisition pass from the Oklahoma panhandle to southeastern Texas on 11 June 1973, the S194 brightness temperatures are highly correlated with antecedent precipitation from the preceding eleven day period, but very little correlation was apparent for the preceding five day period. The correlation coefficient between the averaged antecedent precipitation index values and the corresponding S194 brightness temperatures between 230 K and 270 K, the region of apparent response to soil moisture in the data, was -0.97. The equation of the linear least squares line is given.

  5. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory; The CenterComplex Quantum Systems Team

    In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this 3-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems. We gratefully acknowledge funding from ARO Grant W911NF-14-1-0579 and NSF DMR-1507621.

  6. Bright Points and Subflares in UV Lines and in X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Tandberg-Hanssen, E.

    1998-01-01

    We have analysed an active region which was observed in Halpha (MSDP), UV lines (SMM/UVSP), and in X rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X rays. Using an extrapolation based on the Fourier transform we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find 2 different zones: 1. a high shear region (less than 70 degrees) where subflares occur 2. a low shear region along the magnetic inversion line where UV bright points are observed.

  7. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    NASA Astrophysics Data System (ADS)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more

  8. L band brightness temperature observations over a corn canopy during the entire growth cycle

    USDA-ARS?s Scientific Manuscript database

    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T¬B) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characte...

  9. Three-Dimensional Structure and Evolution of Extreme-Ultraviolet Bright Points Observed by STEREO/SECCHI/EUVI

    NASA Technical Reports Server (NTRS)

    Kwon, Ryun Young; Chae, Jongchul; Davila, Joseph M.; Zhang, Jie; Moon, Yong-Jae; Poomvises, Watanachak; Jones, Shaela I.

    2012-01-01

    We unveil the three-dimensional structure of quiet-Sun EUV bright points and their temporal evolution by applying a triangulation method to time series of images taken by SECCHI/EUVI on board the STEREO twin spacecraft. For this study we examine the heights and lengths as the components of the three-dimensional structure of EUV bright points and their temporal evolutions. Among them we present three bright points which show three distinct changes in the height and length: decreasing, increasing, and steady. We show that the three distinct changes are consistent with the motions (converging, diverging, and shearing, respectively) of their photospheric magnetic flux concentrations. Both growth and shrinkage of the magnetic fluxes occur during their lifetimes and they are dominant in the initial and later phases, respectively. They are all multi-temperature loop systems which have hot loops (approx. 10(exp 6.2) K) overlying cooler ones (approx 10(exp 6.0) K) with cool legs (approx 10(exp 4.9) K) during their whole evolutionary histories. Our results imply that the multi-thermal loop system is a general character of EUV bright points. We conclude that EUV bright points are flaring loops formed by magnetic reconnection and their geometry may represent the reconnected magnetic field lines rather than the separator field lines.

  10. Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.

    PubMed

    Zhenwei Miao; Xudong Jiang; Kim-Hui Yap

    2016-01-01

    The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.

  11. S-band 1.4 cell photoinjector design for high brightness beam generation

    NASA Astrophysics Data System (ADS)

    Pirez, E.; Musumeci, P.; Maxson, J.; Alesini, D.

    2017-09-01

    In this paper we study in detail the design of a novel S-band radiofrequency photogun structure to maximize the accelerating field experienced by the particles at injection. This is a critical quantity for electron sources as it has a direct impact on the maximum brightness achievable. The proposed design is based on a modification of the latest generation of S-band RF photoinjectors to include novel fabrication approaches. The gun is designed to operate at a 120 MV/m gradient and at an optimal injection phase of 70° providing the beam quality required to enable novel electron beam applications such as single shot time-resolved transmission electron microscopy and ultrafast electron nanodiffraction.

  12. Ephemeral active regions and coronal bright points: A solar maximum Mission 2 guest investigator study

    NASA Technical Reports Server (NTRS)

    Harvey, K. L.; Tang, F. Y. C.; Gaizauskas, V.; Poland, A. I.

    1986-01-01

    A dominate association of coronal bright points (as seen in He wavelength 10830) was confirmed with the approach and subsequent disappearance of opposite polarity magnetic network. While coronal bright points do occur with ephemeral regions, this association is a factor of 2 to 4 less than with sites of disappearing magnetic flux. The intensity variations seen in He I wavelength 10830 are intermittent and often rapid, varying over the 3 minute time resolution of the data; their bright point counterparts in the C IV wavelength 1548 and 20 cm wavelength show similar, though not always coincident time variations. Ejecta are associated with about 1/3 of the dark points and are evident in the C IV and H alpha data. These results support the idea that the anti-correlation of X-ray bright points with the solar cycle can be explained by the correlation of these coronal emission structures with sites of cancelling flux, indicating that, in some cases, the process of magnetic flux removal results in the release of energy. That the intensity variations are rapid and variable suggests that this process works intermittently.

  13. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  14. Ka-band monopulse antenna-pointing systems analysis and simulation

    NASA Technical Reports Server (NTRS)

    Lo, V. Y.

    1996-01-01

    NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.

  15. L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  16. Synchronized observations of bright points from the solar photosphere to the corona

    NASA Astrophysics Data System (ADS)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  17. Bright Solar Flare

    NASA Image and Video Library

    2017-12-08

    A bright solar flare is captured by the EIT 195Å instrument on 1998 May 2. A solar flare (a sudden, rapid, and intense variation in brightness) occurs when magnetic energy that has built up in the solar atmosphere is suddenly released, launching material outward at millions of km per hour. The Sun’s magnetic fields tend to restrain each other and force the buildup of tremendous energy, like twisting rubber bands, so much that they eventually break. At some point, the magnetic lines of force merge and cancel in a process known as magnetic reconnection, causing plasma to forcefully escape from the Sun. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  18. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    NASA Astrophysics Data System (ADS)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  19. Bright points and ejections observed on the sun by the KORONAS-FOTON instrument TESIS

    NASA Astrophysics Data System (ADS)

    Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2010-10-01

    Five-second observations of the solar corona carried out in the FeIX 171 Å line by the KORONAS-FOTON instrument TESIS are used to study the dynamics of small-scale coronal structures emitting in and around coronal bright points. The small-scale structures of the lower corona display complex dynamics similar to those of magnetic loops located at higher levels of the solar corona. Numerous detected oscillating structures with sizes below 10 000 km display oscillation periods from 50 to 350 s. The period distributions of these structures are different for P < 150 s and P > 150 s, which implies that different oscillation modes are excited at different periods. The small-scale structures generate numerous flare-like events with energies 1024-1026 erg (nanoflares) and with a spatial density of one event per arcsecond or more observed over an area of 4 × 1011 km2. Nanoflares are not associated with coronal bright points, and almost uniformly cover the solar disk in the observation region. The ejections of solar material from the coronal bright points demonstrate velocities of 80-110 km/s.

  20. K-band observations of boxy bulges - I. Morphology and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.

    2006-08-01

    In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself

  1. Detection of 17 GHz radio emission from X-ray-bright points

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Shibasaki, K.; Enome, S.; Nitta, N.

    1994-01-01

    Using observations made with the Nobeyama radio heliograph (NRH) at 17 GHz and the Yohkoh/SXT experiment, we report the first detection of 17 GHz signatures of coronal X-ray-bright points (XBPs). This is also the first reported detection of flaring bright points in microwaves. We have detected four BPs at 17 GHz out of eight identified in SXT data on 1992 July 31, for which we looked for 17 GHz emission. For one XBP located in a quiet mixed-polarity region, the peak times at 17 GHz and X-rays are very similar, and both are long-lasting-about 2 hr in duration. There is a second BP (located near an active region) which is most likely flaring also, but the time profiles in the two spectral domains are not similar. The other two 17 GHz BPs are quiescent with fluctuations superposed upon them. For the quiet region XBP, the gradual, long-lasting, and unpolarized emission suggests that the 17 GHz emission is thermal.

  2. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  3. Coronal Bright Points Associated with Minifilament Eruptions

    NASA Astrophysics Data System (ADS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong; Yang, Bo; Yang, Dan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 109 cm-3. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  4. Lidar and radar measurements of the melting layer: observations of dark and bright band phenomena

    NASA Astrophysics Data System (ADS)

    Di Girolamo, P.; Summa, D.; Cacciani, M.; Norton, E. G.; Peters, G.; Dufournet, Y.

    2012-05-01

    Multi-wavelength lidar measurements in the melting layer revealing the presence of dark and bright bands have been performed by the University of BASILicata Raman lidar system (BASIL) during a stratiform rain event. Simultaneously radar measurements have been also performed from the same site by the University of Hamburg cloud radar MIRA 36 (35.5 GHz), the University of Hamburg dual-polarization micro rain radar (24.15 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Measurements from BASIL and the radars are illustrated and discussed in this paper for a specific case study on 23 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS). Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE. Measurements and model results are found to confirm and support the conceptual microphysical/scattering model elaborated by Sassen et al. (2005).

  5. The empirical Gaia G-band extinction coefficient

    NASA Astrophysics Data System (ADS)

    Danielski, C.; Babusiaux, C.; Ruiz-Dern, L.; Sartoretti, P.; Arenou, F.

    2018-06-01

    Context. The first Gaia data release unlocked the access to photometric information for 1.1 billion sources in the G-band. Yet, given the high level of degeneracy between extinction and spectral energy distribution for large passbands such as the Gaia G-band, a correction for the interstellar reddening is needed in order to exploit Gaia data. Aims: The purpose of this manuscript is to provide the empirical estimation of the Gaia G-band extinction coefficient kG for both the red giants and main sequence stars in order to be able to exploit the first data release DR1. Methods: We selected two samples of single stars: one for the red giants and one for the main sequence. Both samples are the result of a cross-match between Gaia DR1 and 2MASS catalogues; they consist of high-quality photometry in the G-, J- and KS-bands. These samples were complemented by temperature and metallicity information retrieved from APOGEE DR13 and LAMOST DR2 surveys, respectively. We implemented a Markov chain Monte Carlo method where we used (G - KS)0 versus Teff and (J - KS)0 versus (G - KS)0, calibration relations to estimate the extinction coefficient kG and we quantify its corresponding confidence interval via bootstrap resampling. We tested our method on samples of red giants and main sequence stars, finding consistent solutions. Results: We present here the determination of the Gaia extinction coefficient through a completely empirical method. Furthermore we provide the scientific community with a formula for measuring the extinction coefficient as a function of stellar effective temperature, the intrinsic colour (G - KS)0, and absorption.

  6. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  7. Simple vertex correction improves G W band energies of bulk and two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.

    2017-11-01

    The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.

  8. Coronal bright points associated with minifilament eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellationmore » of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.« less

  9. [Influence of brightness value of supranasal point and apex nasi on dominant wavelength and excitation purity in complexion inspection of healthy adults].

    PubMed

    Zhu, Zhi-Rong; Zeng, Chang-Chun; Yang, Li; Liu, Han-Ping; Liu, Song-Hao

    2011-12-01

    In this study, to analyze the influence of the brightness value of the supranasal point and the apex nasi on their dominant wavelength and excitation purity according to the spectrocolorimetry data of the supranasal point and the apex nasi in healthy adults that were collected based on optical spectrum colorimetry. A total of 516 healthy adults were taken as the research subjects. The brightness, dominant wavelength and excitation purity values of the supranasal point and the apex nasi during the complexion inspection of subjects were calculated. This was based on the visible reflection spectrum, and the linear correlation/regression analysis between the brightness Y value and the dominant wavelength or excitation purity value. There was no correlation between the brightness Y value and the dominant wavelength of the normal supranasal point and the apex nasi; however, there was negative correlation between the brightness Y value and the excitation purity of the normal supranasal point and apex nasi. During the complexion inspection, the brightness Y value would not influence the dominant wavelength value, indicating that whiteness and/or blackness would not influence the normal individual complexion. However, the brightness Y value would influence the excitation purity of the supranasal point and the apex nasi, and the degree of saturation should be referred to as the brightness. This research provides a basic reference for diagnosing facial complexion in traditional Chinese medicine.

  10. Inter-Calibration of EIS, XRT and AIA using Active Region and Bright Point Data

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Winebarger, Amy R.; Farid, Samaiyah I.

    2012-01-01

    Certain limitations in our solar instruments have created the need to use several instruments together for long term and/or large field of view studies. We will, therefore, present an intercalibration study of the EIS, XRT and AIA instruments using active region and bright point data. We will use the DEMs calculated from EIS bright point observations to determine the expected AIA and XRT intensities. We will them compare to the observed intensities and calculate a correction factor. We will consider data taken over a year to see if there is a time dependence to the correction factor. We will then determine if the correction factors are valid for active region observations.

  11. Texas after Tropical Storm Allison (bands 2,1,3 in R,G,B)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS image of Texas (left), Oklahoma (top left), Louisiana (bottom right) and Arkansas (upper right) makes use of band combinations (groups of wavelengths) that make water stand out against land. In this image, the dark blue/black squiggles indicate water. The bright green area along the Texas coast is Galveston Bay, southeast of Houston. Houston was devastated in the past week from the rains from Tropical Storm Allison. The brightness of the Bay may be due to sediment runoff from all the floodwaters. Credit: Jacques Descloitres, MODIS Land Rapid Response Team

  12. Height formation of bright points observed by IRIS in Mg II line wings during flux emergence

    NASA Astrophysics Data System (ADS)

    Grubecka, M.; Schmieder, B.; Berlicki, A.; Heinzel, P.; Dalmasse, K.; Mein, P.

    2016-09-01

    Context. A flux emergence in the active region AR 111850 was observed on September 24, 2013 with the Interface Region Imaging Spectrograph (IRIS). Many bright points are associated with the new emerging flux and show enhancement brightening in the UV spectra. Aims: The aim of this work is to compute the altitude formation of the compact bright points (CBs) observed in Mg II lines in the context of searching Ellerman bombs (EBs). Methods: IRIS provided two large dense rasters of spectra in Mg II h and k lines, Mg II triplet, C II and Si IV lines covering all the active region and slit jaws in the two bandpasses (1400 Å and 2796 Å) starting at 11:44 UT and 15:39 UT, and lasting 20 min each. Synthetic profiles of Mg II and Hα lines are computed with non-local thermodynamic equlibrium (NLTE) radiative transfer treatment in 1D solar atmosphere model including a hotspot region defined by three parameters: temperature, altitude, and width. Results: Within the two IRIS rasters, 74 CBs are detected in the far wings of the Mg II lines (at +/-1 Å and 3.5 Å). Around 10% of CBs have a signature in Si IV and CII. NLTE models with a hotspot located in the low atmosphere were found to fit a sample of Mg II profiles in CBs. The Hα profiles computed with these Mg II CB models are consistent with typical EB profiles observed from ground based telescopes e.g. THEMIS. A 2D NLTE modelling of fibrils (canopy) demonstrates that the Mg II line centres can be significantly affected but not the peaks and the wings of Mg II lines. Conclusions: We conclude that the bright points observed in Mg II lines can be formed in an extended domain of altitudes in the photosphere and/or the chromosphere (400 to 750 km). Our results are consistent with the theory of heating by Joule dissipation in the atmosphere produced by magnetic field reconnection during flux emergence.

  13. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  14. Lidar and radar measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study: observations of dark and bright band phenomena

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Bhawar, R.; di Iorio, T.; Norton, E. G.; Peters, G.; Dufournet, Y.

    2011-11-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.

  15. Posterior uncertainty of GEOS-5 L-band radiative transfer model parameters and brightness temperatures after calibration with SMOS observations

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J.; Reichle, R. H.; Vrugt, J. A.

    2012-12-01

    Simulated L-band (1.4 GHz) brightness temperatures are very sensitive to the values of the parameters in the radiative transfer model (RTM). We assess the optimum RTM parameter values and their (posterior) uncertainty in the Goddard Earth Observing System (GEOS-5) land surface model using observations of multi-angular brightness temperature over North America from the Soil Moisture Ocean Salinity (SMOS) mission. Two different parameter estimation methods are being compared: (i) a particle swarm optimization (PSO) approach, and (ii) an MCMC simulation procedure using the differential evolution adaptive Metropolis (DREAM) algorithm. Our results demonstrate that both methods provide similar "optimal" parameter values. Yet, DREAM exhibits better convergence properties, resulting in a reduced spread of the posterior ensemble. The posterior parameter distributions derived with both methods are used for predictive uncertainty estimation of brightness temperature. This presentation will highlight our model-data synthesis framework and summarize our initial findings.

  16. A New Blind Pointing Model Improves Large Reflector Antennas Precision Pointing at Ka-Band (32 GHz)

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.

    2009-01-01

    The National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL)-Deep Space Network (DSN) subnet of 34-m Beam Waveguide (BWG) Antennas was recently upgraded with Ka-Band (32-GHz) frequency feeds for space research and communication. For normal telemetry tracking a Ka-Band monopulse system is used, which typically yields 1.6-mdeg mean radial error (MRE) pointing accuracy on the 34-m diameter antennas. However, for the monopulse to be able to acquire and lock, for special radio science applications where monopulse cannot be used, or as a back-up for the monopulse, high-precision open-loop blind pointing is required. This paper describes a new 4th order pointing model and calibration technique, which was developed and applied to the DSN 34-m BWG antennas yielding 1.8 to 3.0-mdeg MRE pointing accuracy and amplitude stability of 0.2 dB, at Ka-Band, and successfully used for the CASSINI spacecraft occultation experiment at Saturn and Titan. In addition, the new 4th order pointing model was used during a telemetry experiment at Ka-Band (32 GHz) utilizing the Mars Reconnaissance Orbiter (MRO) spacecraft while at a distance of 0.225 astronomical units (AU) from Earth and communicating with a DSN 34-m BWG antenna at a record high rate of 6-megabits per second (Mb/s).

  17. Chandra's Darkest Bright Star: not so Dark after All?

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2008-11-01

    The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.

  18. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    PubMed

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  19. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization

    PubMed Central

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771

  20. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  1. Large-Scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.

  2. ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczak, Jens; Lambert, David L., E-mail: adamczak@astro.as.utexas.edu

    We determined the chemical composition of a large sample of weak G band stars-a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normalmore » giants and the {sup 12}C/{sup 13}C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.« less

  3. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    NASA Astrophysics Data System (ADS)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  4. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  5. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  6. Hinode observations and 3D magnetic structure of an X-ray bright point

    NASA Astrophysics Data System (ADS)

    Alexander, C. E.; Del Zanna, G.; Maclean, R. C.

    2011-02-01

    Aims: We present complete Hinode Solar Optical Telescope (SOT), X-Ray Telescope (XRT)and EUV Imaging Spectrometer (EIS) observations of an X-ray bright point (XBP) observed on the 10, 11 of October 2007 over its entire lifetime (~12 h). We aim to show how the measured plasma parameters of the XBP change over time and also what kind of similarities the X-ray emission has to a potential magnetic field model. Methods: Information from all three instruments on-board Hinode was used to study its entire evolution. XRT data was used to investigate the structure of the bright point and to measure the X-ray emission. The EIS instrument was used to measure various plasma parameters over the entire lifetime of the XBP. Lastly, the SOT was used to measure the magnetic field strength and provide a basis for potential field extrapolations of the photospheric fields to be made. These were performed and then compared to the observed coronal features. Results: The XBP measured ~15´´ in size and was found to be formed directly above an area of merging and cancelling magnetic flux on the photosphere. A good correlation between the rate of X-ray emission and decrease in total magnetic flux was found. The magnetic fragments of the XBP were found to vary on very short timescales (minutes), however the global quasi-bipolar structure remained throughout the lifetime of the XBP. The potential field extrapolations were a good visual fit to the observed coronal loops in most cases, meaning that the magnetic field was not too far from a potential state. Electron density measurements were obtained using a line ratio of Fe XII and the average density was found to be 4.95 × 109 cm-3 with the volumetric plasma filling factor calculated to have an average value of 0.04. Emission measure loci plots were then used to infer a steady temperature of log Te [ K] ~ 6.1. The calculated Fe XII Doppler shifts show velocity changes in and around the bright point of ±15 km s-1 which are observed to change

  7. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    .]. -- Working Group 1. Summary of working group 1 on electron sources / M. Ferrario and G. Gatti. Design and RF measurements of an X-band accelerating structure for the SPARC project / D. Alesini ... [et al.]. Mitigation of RF gun breakdown by removal of tuning rods in high field regions / A.M. Cook... [et al.]. Measurements of quantum efficiency of Mg films produced by pulsed laser ablation deposition for application to bright electron sources / G. Gatti ... [et al.]. The S-band 1.6 cell RF gun correlated energy spread dependence on Pi and 0 mode relative amplitude / F. Schmerge ... [et al.]. RF gun photo-emission model for metal cathodes including time dependent emission / J.F. Schmerge ... [et al.]. Superconducting photocathodes / J. Smedley ... [et al.]. -- Working Group 2. Summary of Working Group 2: diagnostics and beam manipulation / G. Travish. Observation of coherent edge radiation emitted by a 100 Femtosecond compressed electron beam / G. Andonian, M, Dunning, E. Hemsing, J. B. Rosenzweig ... [et al.]. PARMELA simulations for PITZ: first machine studies and interpretation of measurements / M. Boscolo ... [et al.]. The LCLS single-shot relative bunch length monitor system / M.P. Dunning ... [et al.]. Beam shaping and permanent magnet quadrupole focusing with applications to the plasma wakefield accelerator / R.J. England ... [et al.]. Commissioning of the SPARC movable emittance meter and its first operation at PITZ / D. Filippetto... [et al.]. Experimental testing of dynamically optimized photoelectron beams / J.B. Rosenzweig ... [et al.]. Synchronization between the laser and electron beam in a photocathode RF gun / A. Sakumi ... [et al.]. Method of bunch radiation photochronography with 10 Femtosecond and less resolution / A. Tron and I. Merinov -- Working Group 3. New challenges in theory and modeling-summary for working group 3. L. Giannessi. Resonant modes in a 1.6 cells RF gun / M. Ferrario and C. Ronsivalle. Emittance degradation due to wake fields in a high

  8. The All Sky Automated Survey. The Catalog of Bright Variable Stars in the I-band, South of Declination +28o

    NASA Astrophysics Data System (ADS)

    Sitek, M.; Pojmański, G.

    2014-06-01

    This paper presents the results of our extensive search for the bright variable stars in approximately 30 000 square degrees of the south sky in the I-band data collected by 9o×9o camera of the All Sky Automated Survey between 2002 and 2009. Lists of over 27 000 variable stars brighter than 9 mag at maximum light, with amplitudes ranging from 0.02 mag to 7 mag and variability time-scales from hours to years, as well as corresponding light curves are provided. Automated classification algorithm based on stellar properties (period, Fourier coefficients, 2MASS J, H, K, colors, ASAS V-band data) was used to roughly classify objects. Despite low spatial resolution of the ASAS data (≍15'') we cross-identified all objects with other available data sources. Coordinates of the most probable 2MASS counterparts are provided. 27 705 stars brighter than I=9 mag were found to be variable, of which 7842 objects were detected to be variable for the first time. Brief statistics and discussion of the presented data is provided. All the photometric data is available over the Internet at http://www.astrouw.edu.pl/ gp/asas/AsasBrightI.html

  9. Modelling of the L-band brightness temperatures measured with ELBARA III radiometer on Bubnow wetland

    NASA Astrophysics Data System (ADS)

    Gluba, Lukasz; Sagan, Joanna; Lukowski, Mateusz; Szlazak, Radoslaw; Usowicz, Boguslaw

    2017-04-01

    Microwave radiometry has become the main tool for investigating soil moisture (SM) with remote sensing methods. ESA - SMOS (Soil Moisture and Ocean Salinity) satellite operating at L-band provides global distribution of soil moisture. An integral part of SMOS mission are calibration and validation activities involving measurements with ELBARA III which is an L-band microwave passive radiometer. It is done in order to improve soil moisture retrievals - make them more time-effective and accurate. The instrument is located at Bubnow test-site, on the border of cultivated field, fallow, meadow and natural wetland being a part of Polesie National Park (Poland). We obtain both temporal and spatial dependences of brightness temperatures for varied types of land covers with the ELBARA III directed at different azimuths. Soil moisture is retrieved from brightness temperature using L-band Microwave Emission of the Biosphere (L-MEB) model, the same as currently used radiative transfer model for SMOS. Parametrization of L-MEB, as well as input values are still under debate. We discuss the results of SM retrievals basing on data obtained during first year of the radiometer's operation. We analyze temporal dependences of retrieved SM for one-parameter (SM), two-parameter (SM, τ - optical depth) and three-parameter (SM, τ, Hr - roughness parameter) retrievals, as well as spatial dependences for specific dates. Special case of Simplified Roughness Parametrization, combining the roughness parameter and optical depth, is considered. L-MEB processing is supported by the continuous measurements of soil moisture and temperature obtained from nearby agrometeorological station, as well as studies on the soil granulometric composition of the Bubnow test-site area. Furthermore, for better estimation of optical depth, the satellite-derived Normalized Difference Vegetation Index (NDVI) was employed, supported by measured in situ vegetation parameters (such as Leaf Area Index and Vegetation

  10. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  11. Faint Ring, Bright Arc

    NASA Image and Video Library

    2010-01-12

    In this image taken by NASA Cassini spacecraft, the bright arc in Saturn faint G ring contains a little something special. Although it cant be seen here, the tiny moonlet Aegaeon orbits within the bright arc.

  12. Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME

    NASA Astrophysics Data System (ADS)

    Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.

    :Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.

  13. Branch-point energies and the band-structure lineup at Schottky contacts and heterostrucures

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2011-06-01

    Empirical branch-point energies of Si, the group-III nitrides AlN, GaN, and InN, and the group-II and group-III oxides MgO, ZnO, Al2O3 and In2O3 are determined from experimental valance-band offsets of their heterostructures. For Si, GaN, and MgO, these values agree with the branch-point energies obtained from the barrier heights of their Schottky contacts. The empirical branch-point energies of Si and the group-III nitrides are in very good agreement with results of previously published calculations using quite different approaches such as the empirical tight-binding approximation and modern electronic-structure theory. In contrast, the empirical branch-point energies of the group-II and group-III oxides do not confirm the respective theoretical results. As at Schottky contacts, the band-structure lineup at heterostructures is also made up of a zero-charge-transfer term and an intrinsic electric-dipole contribution. Hence, valence-band offsets are not equal to the difference of the branch-point energies of the two semiconductors forming the heterostructure. The electric-dipole term may be described by the electronegativity difference of the two solids in contact. A detailed analysis of experimental Si Schottky barrier heights and heterostructure valence-band offsets explains and proves these conclusions.

  14. Simultaneous observations of changes in coronal bright point emission at the 20 cm radio and He Lambda 10830 wavelengths

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Harvey, Karen L.

    1986-01-01

    Preliminary results of observations of solar coronal bright points acquired simultaneously from ground based observatories at the radio wavelength of 20 cm and in the He I wavelength 10830 line on September 8, 1985, are reported. The impetus for obtaining simultaneous radio and optical data is to identify correlations, if any, in changes of the low transition-coronal signatures of bright points with the evolution of the magnetic field, and to distinguish between intermittent heating and changes in the magnetic field topology. Although simultaneous observations of H alpha emission and the photospheric magnetic field at Big Bear were also made, as well as radio observations from Owen Valley Radio Interferometer and Solar Maximum Mission (SSM) (O VIII line), only the comparison between He 10830 and the Very Large Array (VLA) radio data are presented.

  15. L Band Brightness Temperature Observations over a Corn Canopy during the Entire Growth Cycle

    PubMed Central

    Joseph, Alicia T.; van der Velde, Rogier; O’Neill, Peggy E.; Choudhury, Bhaskar J.; Lang, Roger H.; Kim, Edward J.; Gish, Timothy

    2010-01-01

    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (TB) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. In the period May 22 to August 30, ten days of radiometer and ground measurements are available for a corn canopy with a vegetation water content (W) range of 0.0 to 4.3 kg m−2. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using TB measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season. PMID:22163585

  16. Model Development for MODIS Thermal Band Electronic Crosstalk

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong

    2016-01-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation

  17. Measuring night sky brightness: methods and challenges

    NASA Astrophysics Data System (ADS)

    Hänel, Andreas; Posch, Thomas; Ribas, Salvador J.; Aubé, Martin; Duriscoe, Dan; Jechow, Andreas; Kollath, Zoltán; Lolkema, Dorien E.; Moore, Chadwick; Schmidt, Norbert; Spoelstra, Henk; Wuchterl, Günther; Kyba, Christopher C. M.

    2018-01-01

    Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earth's atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the "Sky Quality Meter" continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.

  18. A compact dual band MIMO PIFA for 5G applications

    NASA Astrophysics Data System (ADS)

    Rachakonda, A.; Bang, P.; Mudiganti, J.

    2017-11-01

    5G applications support operations in 28, 37, 60 and 73GHz bands and is expected to support 1GHz bandwidth. In the present paper, planar inverted F antenna for 28GHz operation has been proposed for 5G applications for which a return loss of -17.46dB and a gain of 9.30dB have been observed. In addition, the design has been extended for dual band operation at 28 and 37GHz by implementing an L slot in the patch. An excellent return loss of -32.54dB and -18.57dB with a gain of 8.62dB has been observed. Moreover, a feasible bandwidth of 1.02GHz has been obtained in former design, while an enhanced bandwidth of 1.3GHz has been obtained at both bands in case of latter design. However, for better gain & data rate considerations, the previous design has been extended as a MIMO configuration with 2 antenna elements (2x1) and corresponding performance parameters have been evaluated.

  19. MAGNETIC FLUX SUPPLEMENT TO CORONAL BRIGHT POINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of anmore » MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.« less

  20. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources weremore » detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).« less

  1. Distribution of lifetimes for coronal soft X-ray bright points

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    The lifetime 'spectrum' of X-ray bright points (XBPs) is measured for a sample of 300 such features using soft X-ray images obtained with the S-054 X-ray spectrographic telescope aboard Skylab. 'Spectrum' here is defined as a function which gives the relative number of XBPs having a specific lifetime as a function of lifetime. The results indicate that a two-lifetime exponential can be fit to the decay curves of XBPs, that the spectrum is heavily weighted toward short lifetimes, and that the number of features lasting 20 to 30 hr or more is greater than expected. A short-lived component with an average lifetime of about 8 hr and a long-lived 1.5-day component are consistently found along with a few features lasting 50 hr or more. An examination of differences among the components shows that features lasting 2 days or less have a broad heliocentric-latitude distribution while nearly all the longer-lived features are observed within 30 deg of the solar equator.

  2. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in sub-syndromal seasonal affective disorder.

    PubMed

    Meesters, Ybe; Winthorst, Wim H; Duijzer, Wianne B; Hommes, Vanja

    2016-02-18

    The discovery of a novel photoreceptor in the retinal ganglion cells with a highest sensitivity of 470-490 nm blue light has led to research on the effects of short-wavelength light in humans. Several studies have explored the efficacy of monochromatic blue or blue-enriched light in the treatment of SAD. In this study, a comparison has been made between the effects of broad-wavelength light without ultraviolet (UV) wavelengths compared to narrow-band blue light in the treatment of sub-syndromal seasonal affective disorder (Sub-SAD). In a 15-day design, 48 participants suffering from Sub-SAD completed 20-minute sessions of light treatment on five consecutive days. 22 participants were given bright white-light treatment (BLT, broad-wavelength light without UV 10 000 lux, irradiance 31.7 Watt/m(2)) and 26 participants received narrow-band blue light (BLUE, 100 lux, irradiance 1.0 Watt/m(2)). All participants completed daily and weekly questionnaires concerning mood, activation, sleep quality, sleepiness and energy. Also, mood and energy levels were assessed by means of the SIGH-SAD, the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 54.8 %, effect size 1.7 and BLUE 50.7 %, effect size 1.9). No statistically significant differences were found on the main outcome measures. Light treatment is an effective treatment for Sub-SAD. The use of narrow-band blue-light treatment is equally effective as bright white-light treatment. This study was registered in the Dutch Trial Register (Nederlands Trial Register TC =  4342 ) (20-12-2013).

  3. Quasi-periodic Oscillation of a Coronal Bright Point

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Banerjee, Dipankar; Tian, Hui

    2015-06-01

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  4. L Band Brightness Temperature Observations Over a Corn Canopy During the Entire Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, Alicia T.; O'Neill, Peggy E.; Choudhury, Bhaskar J.; vanderVelde, Rogier; Lang, Roger H.; Gish, Timothy

    2011-01-01

    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T(sub B)) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg/square m, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T(sub B) measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized T(sub B) are employed to invert the H-polarized transmissivity (gamma-h) for the monitored corn growing season.

  5. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    PubMed

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  6. High Resolution Observations and Modeling of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, Thomas E.

    2001-01-01

    This research contract investigating the radiative transfer and dynamic physics of the smallest observable magnetic structures in the solar photosphere. Due to the lack of a high-resolution visible light satellite instrument for solar studies, all data were acquired using ground-based instrumentation. The primary goal of the investigation was to understand the formation and evolution of "G-band bright points" in relation to the associated magnetic elements. G-band bright points are small (on the order of 100 kin or less in diameter) bright signatures associated with magnetic flux elements in the photosphere. They are seen in the A2A-X2 4308 A molecular bandhead of the CH radical ill the solar spectrum and offer the highest spatial resolution and highest contrast "tracers" of small magnetic structure on the Sun.

  7. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.

    PubMed

    Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro

    2014-11-11

    The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1(st) sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2(nd) sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs.

  8. Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed?

    NASA Astrophysics Data System (ADS)

    Bará, Salvador

    2018-01-01

    A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist-Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec-2 (in the root-mean-square sense) of its true value in the Johnson-Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.

  9. Zernike analysis of all-sky night brightness maps.

    PubMed

    Bará, Salvador; Nievas, Miguel; Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2014-04-20

    All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.

  10. A population of faint low surface brightness galaxies in the Perseus cluster core

    NASA Astrophysics Data System (ADS)

    Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James

    2017-09-01

    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.

  11. "A Bright Supernova Discovered in the Nearby Galaxy NGC 5128" | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments in Cen A. In the near IR the luminous nucleus - the bright fuzzy object - of Cen A is prominent IR the luminous nucleus - the bright fuzzy object - of Cen A is prominent, while in the u band it is

  12. G-band atmospheric radars: new frontiers in cloud physics

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.

    2014-01-01

    Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud-scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G-band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G-band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

  13. G band atmospheric radars: new frontiers in cloud physics

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.

    2014-06-01

    Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

  14. 14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... time. A cumulus cloud formed locally and a cirrus layer that is physically separated from that cumulus... launch point at the same time. Bright band means an enhancement of radar reflectivity caused by frozen.... Cloud means a visible mass of water droplets or ice crystals produced by condensation of water vapor in...

  15. 14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... time. A cumulus cloud formed locally and a cirrus layer that is physically separated from that cumulus... launch point at the same time. Bright band means an enhancement of radar reflectivity caused by frozen.... Cloud means a visible mass of water droplets or ice crystals produced by condensation of water vapor in...

  16. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - I and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  17. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  18. Observations of the variability of coronal bright points by the Soft X-ray Telescope on Yohkoh

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Harvey, Karen; Hirayama, Tadashi; Nitta, Nariaki; Shimizu, Toshifumi; Tsuneta, Saku

    1992-01-01

    We present the initial results of a study of X-ray bright points (XBPs) made with data from the Yohkoh Soft X-ray Telescope. High temporal and spatial resolution observations of several XBPs illustrate their intensity variability over a wide variety of time scales from a few minutes to hours, as well as rapid changes in their morphology. Several XBPs produced flares during their lifetime. These XBP flares often involve magnetic loops, which are considerably larger than the XBP itself, and which brighten along their lengths at speeds of up to 1100 km/s.

  19. Interferometric Monitoring of Gamma-Ray Bright AGNs: S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jee Won; Lee, Sang-Sung; Hodgson, Jeffrey A.

    We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright active galactic nuclei (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from 2013 January 16 to 2016 March 1, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Based on themore » multiwavelength data between 15 GHz (Owens Valley Radio Observatory) and 230 GHz (Submillimeter Array), we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements by −16 ± 8 days. The turnover frequency was found to vary between 21 and 69 GHz during our observations. By assuming a synchrotron self-absorption model for the relativistic jet emission in S5 0716+714, we found the magnetic field strength in the mas emission region to be ≤5 mG during the observing period, yielding a weighted mean of 1.0 ± 0.6 mG for higher turnover frequencies (e.g., >45 GHz).« less

  20. Characterizing bars in low surface brightness disc galaxies

    NASA Astrophysics Data System (ADS)

    Peters, Wesley; Kuzio de Naray, Rachel

    2018-05-01

    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  1. Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X- and W-Bands

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2010-01-01

    Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright band, are checked by means of comparisons with simultaneous measurements of the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional water content of melting particle as an exponential function in particle radius, it is found that at X band the simulated radar bright-band profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured bright-band profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W band Doppler velocity measurements. The bright-band model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM and GPM satellite missions.

  2. IRAS surface brightness maps of reflection nebulae in the Pleiades

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  3. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    NASA Technical Reports Server (NTRS)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  4. Model development for MODIS thermal band electronic cross-talk

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)

    2016-10-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction

  5. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in seasonal affective disorder.

    PubMed

    Meesters, Ybe; Duijzer, Wianne B; Hommes, Vanja

    2018-05-01

    Ever since a new photoreceptor was discovered with a highest sensitivity to 470-490 nm blue light, it has been speculated that blue light has some advantages in the treatment of Seasonal Affective Disorder (SAD) over more traditional treatments. In this study we compared the effects of exposure to narrow-band blue light (BLUE) to those of broad-wavelength white light (BLT) in the treatment of SAD. In a 15-day design, 45 patients suffering from SAD completed 30-min sessions of light treatment on 5 consecutive days. 21 subjects received white-light treatment (BLT, broad-wavelength without UV, 10 000 lx, irradiance 31.7 W/m 2 ), 24 subjects received narrow-band blue light (BLUE, 100 lx, irradiance 1.0 W/m 2 ). All participants completed weekly questionnaires concerning mood and energy levels, and were also assessed by means of the SIGH-SAD, which is the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 73.2%, effect size 3.37; BLUE 67%, effect size 2.63), which outcomes were not statistically significant different between both conditions. Small sample size. Light treatment is an effective treatment for SAD. The use of narrow-band blue light is equally effective as a treatment using bright white-light. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Comparison of solar photospheric bright points between Sunrise observations and MHD simulations

    NASA Astrophysics Data System (ADS)

    Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.

    2014-08-01

    Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the

  7. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  8. Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness.

    PubMed

    Li, Junqiang; Shan, Xin; Bade, Sri Ganesh R; Geske, Thomas; Jiang, Qinglong; Yang, Xin; Yu, Zhibin

    2016-10-03

    Charge-carrier injection into an emissive semiconductor thin film can result in electroluminescence and is generally achieved by using a multilayer device structure, which requires an electron-injection layer (EIL) between the cathode and the emissive layer and a hole-injection layer (HIL) between the anode and the emissive layer. The recent advancement of halide perovskite semiconductors opens up a new path to electroluminescent devices with a greatly simplified device structure. We report cesium lead tribromide light-emitting diodes (LEDs) without the aid of an EIL or HIL. These so-called single-layer LEDs have exhibited a sub-band gap turn-on voltage. The devices obtained a brightness of 591 197 cd m -2 at 4.8 V, with an external quantum efficiency of 5.7% and a power efficiency of 14.1 lm W -1 . Such an advancement demonstrates that very high efficiency of electron and hole injection can be obtained in perovskite LEDs even without using an EIL or HIL.

  9. Bright Electroluminescence from Single Graphene Nanoribbon Junctions

    NASA Astrophysics Data System (ADS)

    Chong, Michael C.; Afshar-Imani, Nasima; Scheurer, Fabrice; Cardoso, Claudia; Ferretti, Andrea; Prezzi, Deborah; Schull, Guillaume

    2018-01-01

    Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic opto-electronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with {\\it ab initio} calculations indicate that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust and controllable graphene-based light emitting devices.

  10. Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells.

    PubMed

    Morandi, Fabio; Ferretti, Elisa; Castriconi, Roberta; Dondero, Alessandra; Petretto, Andrea; Bottino, Cristina; Pistoia, Vito

    2011-11-24

    Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G-mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56brigh) and CD56dim NK cells. Such sHLA-G-mediated down-modulations were reverted by adding anti-HLA-G or anti-ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G-treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G-mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G-mediated inhibition of NK-cell functions.

  11. Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward

    2012-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.

  12. Frequency Reconfigurable Antenna for Deca-Band 5 G/LTE/WWAN Mobile Terminal Applications

    NASA Astrophysics Data System (ADS)

    Yang, Lingsheng; Cheng, Biyu; Jia, Hongting

    2018-04-01

    In this paper, a frequency reconfigurable antenna for 5 G/LTE/WWAN mobile terminal applications is presented. The proposed antenna consists of a radiation element which is folded on a dielectric cuboid. Four PIN diodes located on the antenna element are used for frequency reconfigration. By controlling the states of four PIN diodes with an 8-bit microcontroller, a broad band which can cover deca-band as LTE700/2300/2500, GSM850/900/1800/1900, UMTS 2100, WLAN2400 and the future 5 G or LTE3600 is obtained with a compacted size of 40×8×5mm3. The antenna gain, efficiency and radiation characteristics are also shown.

  13. Does Stevens's Power Law for Brightness Extend to Perceptual Brightness Averaging?

    ERIC Educational Resources Information Center

    Bauer, Ben

    2009-01-01

    Stevens's power law ([Psi][infinity][Phi][beta]) captures the relationship between physical ([Phi]) and perceived ([Psi]) magnitude for many stimulus continua (e.g., luminance and brightness, weight and heaviness, area and size). The exponent ([beta]) indicates whether perceptual magnitude grows more slowly than physical magnitude ([beta] less…

  14. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  15. An Exploration of the Emission Properties of X-Ray Bright Points Seen with SDO

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Elsden, T.; Muglach, K.

    2012-01-01

    We present preliminary results of a study of X-ray Bright Point (XBP) EUV emission and its dependence on other properties. The XBPs were located using a new, automated XBP finder for AlA developed as part of the Feature Finding Team for SDO Computer Vision. We analyze XBPs near disk center, comparing AlA EUV fluxes, HMI LOS magnetic fields, and photospheric flow fields (derived from HMI data) to look for relationships between XBP emission, magnetic flux, velocity fields, and XBP local environment. We find some evidence for differences in the mean XBP temperature with environment. Unsigned magnetic flux is correlated with XBP emission, though other parameters play a role. The majority of XBP footpoints are approaching each other, though at a slight angle from head-on on average. We discuss the results in the context of XBP heating.

  16. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús

    2018-02-01

    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  17. VizieR Online Data Catalog: Gamma-ray bright blazars spectrophotometry (Williamson+, 2014)

    NASA Astrophysics Data System (ADS)

    Williamson, K. E.; Jorstad, S. G.; Marscher, A. P.; Larionov, V. M.; Smith, P. S.; Agudo, I.; Arkharov, A. A.; Blinov, D. A.; Casadio, C.; Efimova, N. V.; Gomez, J. L.; Hagen-Thorn, V. A.; Joshi, M.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Malmrose, M. P.; McHardy, I. M.; Molina, S. N.; Morozova, D. A.; Schmidt, G. D.; Taylor, B. W.; Troitsky, I. S.

    2017-03-01

    Since 2007, we have been collecting multi-waveband fluxes, polarization measurements, and radio images of blazars to provide the data for understanding the physics of the jets (see, e.g., Marscher 2012, arXiv:1201.5402). This study includes 28 of the original 30 objects selected for the monitoring campaign, confirmed as γ-ray sources by EGRET (Energetic γ-Ray Experiment Telescope) on the Compton Gamma Ray Observatory, have an R-band brightness exceeding 18 mag (bright enough for optical polarization measurements at a 1-2 m class optical telescope without needing excessive amounts of telescope time), exceed 0.5 Jy at 43 GHz, and have a declination accessible to the collaboration's observatories (> - 30°). Three additional BL Lacs (1055+018, 1308+326, and 1749+096) and two FSRQs (3C345 and 3C446) included in this analysis were among those added when they were detected as γ-ray sources by the Fermi LAT (Abdo et al. 2009, J/ApJ/700/597). (4 data files).

  18. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  19. The Surface Brightness Contribution of II Peg: A Comparison of TiO Band Analysis and Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Senavci, H. V.; O'Neal, D.; Hussain, G. A. J.; Barnes, J. R.

    2015-01-01

    We investigate the surface brightness contribution of the very well known active SB1 binary II Pegasi , to determine the star spot filling factor and the spot temperature parameters. In this context, we analyze 54 spectra of the system taken over 6 nights in September - October of 1996, using the 2.1m Otto Struve Telescope equipped with SES at the McDonald Observatory. We measure the spot temperatures and spot filling factors by fitting TiO molecular bands in this spectroscopic dataset, with model atmosphere approximation using ATLAS9 and with proxy stars obtained with the same instrument. The same dataset is then used to also produce surface spot maps using the Doppler imaging technique. We compare the spot filling factors obtained with the two independent techniques in order to better characterise the spot properties of the system and to better assess the limitations inherent to both techniques. The results obtained from both techniques show that the variation of spot filling factor as a function of phase agree well with each other, while the amount of TiO and DI spot

  20. G65.2+5.7: A Thermal Composite Supernova Remnant with a Cool Shell

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    This paper presents archival ROSAT PSPC observations of the G65.2+5.7 supernova remnant (also known as G65.3+5.7). Little material obscures this remnant and so it was well observed, even at the softest end of ROSATs bandpass (approx. 0.11 to 0.28 keV). These soft X-ray images reveal the remnant s centrally-filled morphology which, in combination with existing radio frequency observations, places G65.2+5.7 in the thermal composite (mixed morphology) class of supernova remnants. Not only might G65.2+5.7 be the oldest known thermal composite supernova remnant, but owing to its optically revealed cool, dense shell, this remnant supports the proposal that thermal composite supernova remnants lack X-ray bright shells because they have evolved beyond the adiabatic phase. These observations also reveal a slightly extended point source centered on RA = l9(sup h) 36(sup m) 46(sup s). dec = 30 deg.40 min.07 sec.and extending 6.5 arc min in radius in the band 67 map. The source of this emission has yet to be discovered, as there is no known pulsar at this location.

  1. Bright features in Neptune on 2013-2015 from ground-based observations with small (40 cm) and large telescopes (10 m)

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Delcroix, Marc; Baranec, Christoph; Sánchez-Lavega, Agustín; María Gómez-Forrellad, Josep; Félix Rojas, Jose; Luszcz-Cook, Statia; de Pater, Imke; de Kleer, Katherine; Colas, François; Guarro, Joan; Goczynski, Peter; Jones, Paul; Kivits, Willem; Maxson, Paul; Phillips, Michael; Sussenbach, John; Wesley, Anthony; Hammel, Heidi B.; Pérez-Hoyos, Santiago; Mendikoa, Iñigo; Riddle, Reed; Law, Nicholas M.; Sayanagi, Kunio

    2015-11-01

    Observations of Neptune over the last few years obtained with small telescopes (30-50 cm) have resulted in several detections of bright features on the planet. In 2013, 2014 and 2015, different observers have repeatedly observed features of high contrast at Neptune’s mid-latitudes using long-pass red filters. This success at observing Neptune clouds with such small telescopes is due to the presence of strong methane absorption bands in Neptune’s spectra at red and near infrared wavelengths; these bands provide good contrast for elevated cloud structures. In each case, the atmospheric features identified in the images survived at least a few weeks, but were essentially much more variable and apparently shorter-lived, than the large convective system recently reported on Uranus [de Pater et al. 2015]. The latest and brightest spot on Neptune was first detected on July 13th 2015 with the 2.2m telescope at Calar Alto observatory with the PlanetCam UPV/EHU instrument. The range of wavelengths covered by PlanetCam (from 350 nm to the H band including narrow-band and wide-band filters in and out of methane bands) allows the study of the vertical cloud structure of this bright spot. In particular, the spot is particularly well contrasted at the H band where it accounted to a 40% of the total planet brightness. Observations obtained with small telescopes a few days later provide a good comparison that can be used to scale similar structures in 2013 and 2014 that were observed with 30-50 cm telescopes and the Robo-AO instrument at Palomar observatory. Further high-resolution observations of the 2015 event were obtained in July 25th with the NIRC2 camera in the Keck 2 10-m telescope. These images show the bright spot as a compact bright feature in H band with a longitudinal size of 8,300 km and a latitudinal extension of 5,300 km, well separated from a nearby bright band. The ensemble of observations locate the structure at -41º latitude drifting at about +24.27º/day or

  2. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  3. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.

    2012-01-01

    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  4. Optical confirmation of Gaia18ayp brightness increase

    NASA Astrophysics Data System (ADS)

    Spano, M.; Blanco-Cuaresma, S.; Roelens, M.; Mowlavi, N.; Eyer, L.

    2018-04-01

    We report confirmation of Gaia_Science_Alerts, brightness increase of the QSO [VV2006] J233633.0-411547, Gaia18ayp . Images were obtained through modified Gunn R and V band filter of the ECAM instrument installed on the Swiss 1.2m Euler telescope at La Silla, on 2018 April 21- 22. Magnitudes according to the MJD of observations.

  5. Observation of spatial and temporal variations in X-ray bright point emergence patterns. [at solar surface

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.

  6. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    NASA Technical Reports Server (NTRS)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  7. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    NASA Astrophysics Data System (ADS)

    Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki

    2018-04-01

    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.

  8. High-Brightness Lasers with Spectral Beam Combining on Silicon

    NASA Astrophysics Data System (ADS)

    Stanton, Eric John

    Modern implementations of absorption spectroscopy and infrared-countermeasures demand advanced performance and integration of high-brightness lasers, especially in the molecular fingerprint spectral region. These applications, along with others in communication, remote-sensing, and medicine, benefit from the light source comprising a multitude of frequencies. To realize this technology, a single multi-spectral optical beam of near-diffraction-limited divergence is created by combining the outputs from an array of laser sources. Full integration of such a laser is possible with direct bonding of several epitaxially-grown chips to a single silicon (Si) substrate. In this platform, an array of lasers is defined with each gain material, creating a densely spaced set of wavelengths similar to wavelength division multiplexing used in communications. Scaling the brightness of a laser typically involves increasing the active volume to produce more output power. In the direction transverse to the light propagation, larger geometries compromise the beam quality. Lengthening the cavity provides only limited scaling of the output power due to the internal losses. Individual integrated lasers have low brightness due to combination of thermal effects and high optical intensities. With heterogeneous integration, many lasers can be spectrally combined on a single integrated chip to scale brightness in a compact platform. Recent demonstrations of 2.0-microm diode and 4.8-microm quantum cascade lasers on Si have extended this heterogeneous platform beyond the telecommunications band to the mid-infrared. In this work, low-loss beam combining elements spanning the visible to the mid-infrared are developed and a high-brightness multi-spectral laser is demonstrated in the range of 4.6-4.7-microm wavelengths. An architecture is presented where light is combined in multiple stages: first within the gain-bandwidth of each laser material and then coarsely between each spectral band to a

  9. Energy-exchange collisions of dark-bright-bright vector solitons.

    PubMed

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  10. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  11. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.

    PubMed

    Wang, Xuanye; Christopher, Jason W; Swan, Anna K

    2017-10-19

    Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

  12. On the Dynamics of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Title, A. M.

    1996-01-01

    We report on the dynamics of the small-scale solar magnetic field, based on analysis of very high resolution images of the solar photosphere obtained at the Swedish Vacuum Solar Telescope. The data sets are movies from 1 to 4 hr in length, taken in several wavelength bands with a typical time between frames of 20 s. The primary method of tracking small-scale magnetic elements is with very high contrast images of photospheric bright points, taken through a 12 A bandpass filter centered at 4305 A in the Fraunhofer 'G band.' Previous studies have established that such bright points are unambiguously associated with sites of small-scale magnetic flux in the photosphere, although the details of the mechanism responsible for the brightening of the flux elements remain uncertain. The G band bright points move in the intergranular lanes at speeds from 0.5 to 5 km/s. The motions appear to be constrained to the intergranular lanes and are primarily driven by the evolution of the local granular convection flow field. Continual fragmentation and merging of flux is the fundamental evolutionary mode of small-scale magnetic structures in the solar photosphere. Rotation and folding of chains or groups of bright points are also observed. The timescale for magnetic flux evolution in active region plage is on the order of the correlation time of granulation (typically 6-8 minutes), but significant morphological changes can occur on timescales as short as 100 S. Smaller fragments are occasionally seen to fade beyond observable contrast. The concept of a stable, isolated subarcsecond magnetic 'flux tube' in the solar photosphere is inconsistent with the observations presented here.

  13. An antenna-pointing mechanism for the ETS-6 K-band Single Access (KSA) antenna

    NASA Technical Reports Server (NTRS)

    Takada, Noboru; Amano, Takahiro; Ohhashi, Toshiro; Wachi, Shigeo

    1991-01-01

    Both the design philosophy for the Antenna Pointing Mechanism (APM) to be used for the K-band Single Access (KSA) antenna system and experimental results of the APM Engineering Model (EM) tests are described. The KSA antenna system will be flown on the Engineering Test Satellite 6 (ETS-6).

  14. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  15. Individual Differences in Chromatic Brightness Matching.

    DTIC Science & Technology

    1984-10-03

    very unreliable..." More recently, Boynton (15) has written, "Consider... a 555-nm green light on one side of a bi-partite field with a 4 6 5-nm blue...field immediately adjacent to it... We ask an observer to adjust the intensity of the blue field until it looks ’equally bright’ as the green one. This...clearly being blue, blue- green , green , yellow- green , yellow, and red. Their spectral transmittance curves are shown in Fig. 2. All were broad-band filters

  16. Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masahiko; Hu, Gongfang; Liu, Rui; Du, Hai; Lindsey, Jonathan S.

    2018-02-01

    Demands in flow cytometry for increased multiplexing (for detection of multiple antigens) and brightness (for detection of rare entities) require new fluorophores (i.e., "colors") with spectrally distinct fluorescence outside the relatively congested visible spectral region. Flow cytometry fluorophores typically must function in aqueous solution upon bioconjugation and ideally should exhibit a host of photophysical features: (i) strong absorption, (ii) sizable Stokes shift, (iii) modest if not strong fluorescence, and (iv) narrow fluorescence band. Tandem dyes have long been pursued to achieve a large effective Stokes shift, increased brightness, and better control over the excitation and emission wavelengths. Here, the attractive photophysical features of chlorophylls and bacteriochlorophylls - Nature's chosen photoactive pigments for photosynthesis - are described with regards to use in flow cytometry. A chlorophyll (or bacteriochlorophyll) constitutes an intrinsic tandem dye given the red (or near-infrared) fluorescence upon excitation in the higher energy ultraviolet (UV) or visible absorption bands (due to rapid internal conversion to the lowest energy state). Synthetic (bacterio)chlorins are available with strong absorption (near-UV molar absorption coefficient ɛ(λexc) 105 M-1cm-1), modest fluorescence quantum yield (Φf = 0.05-0.30), and narrow fluorescence band (10-25 nm) tunable from 600-900 nm depending on synthetic design. The "relative practical brightness" is given by intrinsic brightness [ɛ(λexc) x Φf] times ηf, the fraction of the fluorescence band that is captured by an emission filter in a multicolor experiment. The spectroscopic features of (bacterio)chlorins are evaluated quantitatively to illustrate practical brightness for this novel class of fluorophores in a prospective 8-color panel.

  17. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    NASA Astrophysics Data System (ADS)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  18. Dark-bright soliton pairs: Bifurcations and collisions

    NASA Astrophysics Data System (ADS)

    Katsimiga, G. C.; Kevrekidis, P. G.; Prinari, B.; Biondini, G.; Schmelcher, P.

    2018-04-01

    The statics, stability, and dynamical properties of dark-bright soliton pairs are investigated here, motivated by applications in a homogeneous two-component repulsively interacting Bose-Einstein condensate. One of the intraspecies interaction coefficients is used as the relevant parameter controlling the deviation from the integrable Manakov limit. Two different families of stationary states are identified consisting of dark-bright solitons that are either antisymmetric (out-of-phase) or asymmetric (mass imbalanced) with respect to their bright soliton. Both of the above dark-bright configurations coexist at the integrable limit of equal intra and interspecies repulsions and are degenerate in that limit. However, they are found to bifurcate from it in a transcritical bifurcation. This bifurcation interchanges the stability properties of the bound dark-bright pairs rendering the antisymmetric states unstable and the asymmetric ones stable past the associated critical point (and vice versa before it). Finally, on the dynamical side, it is found that large kinetic energies and thus rapid soliton collisions are essentially unaffected by the intraspecies variation, while cases involving near equilibrium states or breathing dynamics are significantly modified under such a variation.

  19. A multi-wavelength analysis of the diffuse H II region G25.8700+0.1350

    NASA Astrophysics Data System (ADS)

    Cichowolski, S.; Duronea, N. U.; Suad, L. A.; Reynoso, E. M.; Dorda, R.

    2018-02-01

    We present a multi-wavelength investigation of the H II region G25.8700+0.1350, located in the inner part of the Galaxy. In radio continuum emission, the region is seen as a bright arc-shaped structure. An analysis of the H I line suggests that G25.8700+0.1350 lies at a distance of 6.5 kpc. The ionized gas is bordered by a photodissociation region, which is encircled by a molecular structure where four molecular clumps are detected. At infrared wavelengths, the region is also very conspicuous. Given the high level of visual absorption in the region, the exciting stars should be searched for in the infrared band. In this context, we found in the literature one Wolf-Rayet and one red supergiant, which, together with 37 2MASS sources that are candidate O-type stars, could be related to the origin of G25.8700+0.1350. Finally, as expanding H II regions are hypothesized to trigger star formation, we used different infrared point source catalogues to search for young stellar object candidates (cYSOs). A total of 45 cYSOs were identified projected on to the molecular clouds.

  20. Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Yanxiao; Xiang, Yongyuan; Erdélyi, Robertus; Liu, Zhong; Li, Dong; Ning, Zongjun; Bi, Yi; Wu, Ning; Lin, Jun

    2018-03-01

    Properties of photospheric bright points (BPs) near an active region have been studied in TiO λ 7058 Å images observed by the New Vacuum Solar Telescope of the Yunnan Observatories. We developed a novel recognition method that was used to identify and track 2010 BPs. The observed evolving BPs are classified into isolated (individual) and non-isolated (where multiple BPs are observed to display splitting and merging behaviors) sets. About 35.1% of BPs are non-isolated. For both isolated and non-isolated BPs, the brightness varies from 0.8 to 1.3 times the average background intensity and follows a Gaussian distribution. The lifetimes of BPs follow a log-normal distribution, with characteristic lifetimes of (267 ± 140) s and (421 ± 255) s, respectively. Their size also follows log-normal distribution, with an average size of about (2.15 ± 0.74) × 104 km2 and (3.00 ± 1.31) × 104 km2 for area, and (163 ± 27) km and (191 ± 40) km for diameter, respectively. Our results indicate that regions with strong background magnetic field have higher BP number density and higher BP area coverage than regions with weak background field. Apparently, the brightness/size of BPs does not depend on the background field. Lifetimes in regions with strong background magnetic field are shorter than those in regions with weak background field, on average.

  1. Effects of evening bright light exposure on melatonin, body temperature and sleep.

    PubMed

    Bunnell; Treiber; Phillips; Berger

    1992-03-01

    Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.

  2. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting frommore » the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.« less

  3. Exposure to bright light biases effort-based decisions.

    PubMed

    Bijleveld, Erik; Knufinke, Melanie

    2018-06-01

    Secreted in the evening and the night, melatonin suppresses activity of the mesolimbic dopamine pathway, a brain pathway involved in reward processing. However, exposure to bright light diminishes-or even prevents-melatonin secretion. Thus, we hypothesized that reward processing, in the evening, is more pronounced in bright light (vs. dim light). Healthy human participants carried out three tasks that tapped into various aspects of reward processing (effort expenditure for rewards task [EEfRT]; two-armed bandit task [2ABT]; balloon analogue risk task [BART). Brightness was manipulated within-subjects (bright vs. dim light), in separate evening sessions. During the EEfRT, participants used reward-value information more strongly when they were exposed to bright light (vs. dim light). This finding supported our hypothesis. However, exposure to bright light did not significantly affect task behavior on the 2ABT and the BART. While future research is necessary (e.g., to zoom in on working mechanisms), these findings have potential implications for the design of physical work environments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. VizieR Online Data Catalog: XMM-Newton Bright Serendipitous Survey (Della Ceca+, 2004)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Maccacaro, T.; Caccianiga, A.; Severgnini, P.; Braito, V.; Barcons, X.; Carrera, F. J.; Watson, M. G.; Tedds, J. A.; Brunner, H.; Lehmann, I.; Page, M. J.; Lamer, G.; Schwope, A.

    2005-09-01

    We present here "The XMM-Newton Bright Serendipitous Survey", composed of two flux-limited samples: the XMM-Newton Bright Source Sample (BSS, hereafter) and the XMM-Newton "Hard" Bright Source Sample (HBSS, hereafter) having a flux limit of fX~7x10-14erg/cm2/s in the 0.5-4.5keV and 4.5-7.5keV energy band, respectively. After discussing the main goals of this project and the survey strategy, we present the basic data on a complete sample of 400 X-ray sources (389 of them belong to the BSS, 67 to the HBSS with 56 X-ray sources in common) derived from the analysis of 237 suitable XMM-Newton fields (211 for the HBSS). At the flux limit of the survey we cover a survey area of 28.10 (25.17 for the HBSS) sq. deg. The extragalactic number-flux relationships (in the 0.5-4.5keV and in the 4.5-7.5keV energy bands) are in good agreement with previous and new results making us confident about the correctness of data selection and analysis. (5 data files).

  5. Computational study of the shift of the G band of double-walled carbon nanotubes due to interlayer interactions

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Levshov, Dmitry I.; Sauvajol, Jean-Louis; Paillet, Matthieu

    2018-04-01

    The interactions between the layers of double-walled carbon nanotubes induce a measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in freestanding double-walled carbon nanotubes has been reported in the past several years, a comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty.

  6. Structural properties of faint low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Saha, Kanak

    2018-05-01

    We study the structural properties of Low Surface Brightness galaxies (LSB) using a sample of 263 galaxies observed by the Green Bank Telescope (Schneider et al. 1992). We perform 2D decompositions of these galaxies in the SDSS g, r and i bands using the GALFIT software. Our decomposition reveals that about 60% of these galaxies are bulgeless i.e., their light distributions are well modelled by pure exponential disks. The rest of the galaxies were fitted with two components: a Sersic bulge and an exponential disk. Most of these galaxies have bulge-to-total (B/T) ratio less than 0.1. However, of these 104 galaxies, 20% have B/T > 0.1 i.e., hosting significant bulge component and they are more prominent amongst the fainter LSBs. According to g - r colour criteria, most of the LSB galaxies in our sample are blue, with only 7 classified as red LSBs. About 15% of the LSB galaxies (including both blue and red) in our sample host stellar bars. The incidence of bars is more prominent in relatively massive blue LSB galaxies with very high gas fraction. These findings may provide important clues to the formation and evolution of LSB galaxies - in particular on the bar/bulge formation in faint LSB disks.

  7. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  8. DISCOVERING BRIGHT QUASARS AT INTERMEDIATE REDSHIFTS BASED ON OPTICAL/NEAR-INFRARED COLORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xue-Bing; Zuo, Wenwen; Yang, Jinyi

    2013-10-01

    The identification of quasars at intermediate redshifts (2.2 < z < 3.5) has been inefficient in most previous quasar surveys since the optical colors of quasars are similar to those of stars. The near-IR K-band excess technique has been suggested to overcome this difficulty. Our recent study also proposed to use optical/near-IR colors for selecting z < 4 quasars. To verify the effectiveness of this method, we selected a list of 105 unidentified bright targets with i ≤ 18.5 from the quasar candidates of SDSS DR6 with both SDSS ugriz optical and UKIDSS YJHK near-IR photometric data, which satisfy ourmore » proposed Y – K/g – z criterion and have photometric redshifts between 2.2 and 3.5 estimated from the nine-band SDSS-UKIDSS data. We observed 43 targets with the BFOSC instrument on the 2.16 m optical telescope at Xinglong station of the National Astronomical Observatory of China in the spring of 2012. We spectroscopically identified 36 targets as quasars with redshifts between 2.1 and 3.4. The high success rate of discovering these quasars in the SDSS spectroscopic surveyed area further demonstrates the robustness of both the Y – K/g – z selection criterion and the photometric redshift estimation technique. We also used the above criterion to investigate the possible stellar contamination rate among the quasar candidates of SDSS DR6, and found that the rate is much higher when selecting 3 < z < 3.5 quasar candidates than when selecting lower redshift candidates (z < 2.2). The significant improvement in the photometric redshift estimation when using the nine-band SDSS-UKIDSS data over the five-band SDSS data is demonstrated and a catalog of 7727 unidentified quasar candidates in SDSS DR6 selected with optical/near-IR colors and having photometric redshifts between 2.2 and 3.5 is provided. We also tested the Y – K/g – z selection criterion with the recently released SDSS-III/DR9 quasar catalog and found that 96.2% of 17,999 DR9 quasars with UKIDSS Y

  9. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiko; Kuroda, Daisuke; Kawashima, Yui

    WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solarmore » abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.« less

  10. High brightness diode laser module development at nLIGHT Photonics

    NASA Astrophysics Data System (ADS)

    Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob

    2009-05-01

    We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.

  11. High-power S-band experiment study: Objectives, description, planning and operation of experiment for ATS-G spacecraft

    NASA Technical Reports Server (NTRS)

    Walp, R. M.

    1972-01-01

    The results of a study to develop and define requirements for the high power S-band experiment for the ATS-G are summarized. The objectives of the experiment are: (1) to demonstrate high power technology at S-band frequencies in orbiting spacecraft, (2) to employ high power carrier from the spacecraft for conducting interference measurements with Instructional Television Fixed Service systems, and (3) to provide means for performing educationally oriented applications experiments. Experiment organization and operation, and hardware for flight on the ATS-G spacecraft are described. Earth stations designed for the experiment as well as other special ground equipment are also described.

  12. Pupillary Responses to Words That Convey a Sense of Brightness or Darkness

    PubMed Central

    Mathôt, Sebastiaan; Grainger, Jonathan; Strijkers, Kristof

    2017-01-01

    Theories about embodiment of language hold that when you process a word’s meaning, you automatically simulate associated sensory input (e.g., perception of brightness when you process lamp) and prepare associated actions (e.g., finger movements when you process typing). To test this latter prediction, we measured pupillary responses to single words that conveyed a sense of brightness (e.g., day) or darkness (e.g., night) or were neutral (e.g., house). We found that pupils were largest for words conveying darkness, of intermediate size for neutral words, and smallest for words conveying brightness. This pattern was found for both visually presented and spoken words, which suggests that it was due to the words’ meanings, rather than to visual or auditory properties of the stimuli. Our findings suggest that word meaning is sufficient to trigger a pupillary response, even when this response is not imposed by the experimental task, and even when this response is beyond voluntary control. PMID:28613135

  13. Intrathecal oligoclonal IgG bands are infrequently found in neuro-Behçet's disease.

    PubMed

    Saruhan-Direskeneli, Guher; Yentür, S P; Mutlu, Melike; Shugaiv, E; Yesilot, Nilufer; Kürtüncü, M; Akman-Demir, Gulsen

    2013-01-01

    Oligoclonal bands (OCB) of immunoglobulins (IgG) in the cerebrospinal fluid (CSF) provides an evidence for the humoral response and have been screened in the CSF and serum of patients revealing 5 different patterns. In this study, patients with Behçet's disease (BD) are screened in a larger sample to potentially provide information about the possible role of CSF oligoclonal immunoglobulins in the diagnosis of this disease. Paired CSF and serum samples from 121 consecutive BD patients with neurological complaints (43 women and 78 men) were included in this study. Parenchymal NBD was diagnosed in 74 patients, and 22 patients had cerebral venous sinus thrombosis (CVST); of the remaining patients, 18 had primary headache disorders not directly associated with BD, and 7 had a cerebrovascular event. OCB of IgG were detected by isoelectric focusing on agarose and immunoblotting of matched serum and CSF sample pairs. Intrathecal production of IgG only is considered positive (Pattern 2 or 3). In the whole group, only 8 patients had OCB in the CSF showing pattern 2. All these positive cases had parenchymal neuro-BD (10.8% positive and 78.4% negative in parenchymal neuro-BD group). All other groups were negative. The rare presence of oligoclonal IgG bands in CSF can be utilized as another laboratory finding in the diagnosis of NBD.

  14. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, A. J.; Sokolov, V. V.; Gorosabel, J.; Castro Cerón, J. M.; Greiner, J.; Wijers, R. A. M. J.; Jensen, B. L.; Hjorth, J.; Toft, S.; Pedersen, H.; Palazzi, E.; Pian, E.; Masetti, N.; Sagar, R.; Mohan, V.; Pandey, A. K.; Pandey, S. B.; Dodonov, S. N.; Fatkhullin, T. A.; Afanasiev, V. L.; Komarova, V. N.; Moiseev, A. V.; Hudec, R.; Simon, V.; Vreeswijk, P.; Rol, E.; Klose, S.; Stecklum, B.; Zapatero-Osorio, M. R.; Caon, N.; Blake, C.; Wall, J.; Heinlein, D.; Henden, A.; Benetti, S.; Magazzù, A.; Ghinassi, F.; Tommasi, L.; Bremer, M.; Kouveliotou, C.; Guziy, S.; Shlyapnikov, A.; Hopp, U.; Feulner, G.; Dreizler, S.; Hartmann, D.; Boehnhardt, H.; Paredes, J. M.; Martí, J.; Xanthopoulos, E.; Kristen, H. E.; Smoker, J.; Hurley, K.

    2001-05-01

    Broad-band optical observations of the extraordinarily bright optical afterglow of the intense gamma-ray burst GRB 991208 started ~2.1 days after the event and continued until 4 Apr. 2000. The flux decay constant of the optical afterglow in the R-band is -2.30 +/- 0.07 up to ~5 days, which is very likely due to the jet effect, and it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB optical afterglow. A negative detection in several all-sky films taken simultaneously with the event, that otherwise would have reached naked eye brightness, implies either a previous additional break prior to ~2 days after the occurrence of the GRB (as expected from the jet effect) or a maximum, as observed in GRB 970508. The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events, resembling GRB 000301C. Once the afterglow emission vanished, contribution of a bright underlying supernova was found on the basis of the late-time R-band measurements, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our redshift determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc (for Ho = 60 km s-1 Mpc-1, OMEGAo = 1 and LAMDAo = 0), implying an isotropic energy release of 1.15 x 1053 erg which may be relaxed by beaming by a factor >102. Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting a massive star origin. The absolute magnitude of the galaxy is MB = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) Msun yr-1, which is much larger than the present-day rate in our Galaxy. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow was determined ~3.5 day after the burst (Dec. 12.0) implying a cooling frequency nuc below the optical band, i.e. supporting a jet model with p = -2.30 as the index of

  15. An empirical basis for Mach bands

    PubMed Central

    Lotto, R. Beau; Williams, S. Mark; Purves, Dale

    1999-01-01

    Mach bands, the illusory brightness maxima and minima perceived at the initiation and termination of luminance gradients, respectively, are generally considered a direct perceptual manifestation of lateral inhibitory interactions among retinal or other lower order visual neurons. Here we examine an alternative explanation, namely that Mach bands arise as a consequence of real-world luminance gradients. In this first of two companion papers, we analyze the natural sources of luminance gradients, demonstrating that real-world gradients arising from curved surfaces are ordinarily adorned by photometric highlights and lowlights in the position of the illusory bands. The prevalence of such gradients provides an empirical basis for the generation of this perceptual phenomenon. PMID:10220450

  16. Spectral properties of bright Fermi-detected blazars in the gamma-ray band

    DOE PAGES

    Abdo, A. A.

    2010-01-28

    We investigated the gamma-ray energy spectra of bright blazars of the LAT Bright AGN Sample (LBAS) using Fermi-LAT data. Spectral properties (hardness, curvature, and variability) established using a data set accumulated over 6 months of operation are presented and discussed for different blazar classes and subclasses: flat spectrum radio quasars (FSRQs), low-synchrotron peaked BLLacs (LSP-BLLacs), intermediate-synchrotron peaked BLLacs (ISP-BLLacs), and high-synchrotron peaked BLLacs (HSP-BLLacs). Furthermore, the distribution of photon index (Γ, obtained from a power-law fit above 100 MeV) is found to correlate strongly with blazar subclass. The change in spectral index from that averaged over the 6 months observingmore » period is < 0.2-0.3 when the flux varies by about an order of magnitude, with a tendency toward harder spectra when the flux is brighter for FSRQs and LSP-BLLacs. A strong departure from a single power-law spectrum appears to be a common feature for FSRQs. Finally, we present this feature for some high-luminosity LSP-BLLacs, and a small number of ISP-BLLacs. It is absent in all LBAS HSP-BLLacs. For 3C 454.3 and AO 0235+164, the two brightest FSRQ source and LSP-BLLac source, respectively, a broken power law (BPL) gives the most acceptable of power law, BPL, and curved forms. The consequences of these findings are discussed.« less

  17. Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet

    NASA Astrophysics Data System (ADS)

    Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur

    2017-08-01

    Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.

  18. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    NASA Astrophysics Data System (ADS)

    Shimojo, M.; Hudson, H. S.; White, S. M.; Bastian, T.; Iwai, K.

    2017-12-01

    Eruptive phenomena are important features of energy releases events, such solar flares, and have the potential to improve our understanding of the dynamics of the solar atmosphere. The 304 A EUV line of helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously with ALMA, SDO/AIA, and Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ˜10^5 K plasma that is optically thin at 100 GHz, or a ˜10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  19. Tolerance of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis

    NASA Astrophysics Data System (ADS)

    Rianti, R. A.; Priaminiarti, M.; Syahraini, S. I.

    2017-08-01

    Image enhancement brightness and contrast can be adjusted on lateral cephalometric digital radiographs to improve image quality and anatomic landmarks for measurement by Steiner analysis. To determine the limit value for adjustments of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis. Image enhancement brightness and contrast were adjusted on 100 lateral cephalometric radiography in 10-point increments (-30, -20, -10, 0, +10, +20, +30). Steiner analysis measurements were then performed by two observers. Reliabilities were tested by the Interclass Correlation Coefficient (ICC) and significance tested by ANOVA or the Kruskal Wallis test. No significant differences were detected in lateral cephalometric analysis measurements following adjustment of the image enhancement brightness and contrast. The limit value of adjustments of the image enhancement brightness and contrast associated with incremental 10-point changes (-30, -20, -10, 0, +10, +20, +30) does not affect the results of Steiner analysis.

  20. Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses

    PubMed Central

    Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui; Tong, Shi; Liu, Yuan; Boppart, Stephen A.

    2013-01-01

    We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers. PMID:24104233

  1. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  2. STEREOSCOPIC DETERMINATION OF HEIGHTS OF EXTREME ULTRAVIOLET BRIGHT POINTS USING DATA TAKEN BY SECCHI/EUVI ABOARD STEREO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Ryun-Young; Chae, Jongchul; Zhang Jie

    2010-05-01

    We measure the heights of EUV bright points (BPs) above the solar surface by applying a stereoscopic method to the data taken by the Solar TErrestrial RElations Observatory/SECCHI/Extreme UltraViolet Imager (EUVI). We have developed a three-dimensional reconstruction method for point-like features such as BPs using the simple principle that the position of a point in the three-dimensional space is specified as the intersection of two lines of sight. From a set of data consisting of EUVI 171 A, 195 A, 284 A, and 304 A images taken on 11 days arbitrarily selected during a period of 14 months, we havemore » identified and analyzed 210 individual BPs that were visible on all four passband images and smaller than 30 Mm. The BPs seen in the 304 A images have an average height of 4.4 Mm, and are often associated with the legs of coronal loops. In the 171 A, 195 A, and 284 A images the BPs appear loop-shaped, and have average heights of 5.1, 6.7, and 6.1 Mm, respectively. Moreover, there is a tendency that overlying loops are filled with hotter plasmas. The average heights of BPs in 171 A, 195 A, and 284 A passbands are roughly twice the corresponding average lengths. Our results support the notion that an EUV BP represents a system of small loops with temperature stratification like flaring loops, being consistent with the magnetic reconnection origin.« less

  3. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    PubMed

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  4. G0-G1 Transition and the Restriction Point in Pancreatic β-Cells In Vivo

    PubMed Central

    Hija, Ayat; Salpeter, Seth; Klochendler, Agnes; Grimsby, Joseph; Brandeis, Michael; Glaser, Benjamin; Dor, Yuval

    2014-01-01

    Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic β-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of β-cells in mice. Quiescent β-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ∼5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing β-cell replication and mass in patients with diabetes. PMID:24130333

  5. XMM-Newton studies of the supernova remnant G350.0-2.0

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu.

    2016-11-01

    We report the results of XMM-Newton observations of the Galactic mixed-morphology supernova remnant G350.0-2.0. Diffuse thermal X-ray emission fills the north-western part of the remnant surrounded by radio shell-like structures. We did not detect any X-ray counterpart of the latter structures, but found several bright blobs within the diffuse emission. The X-ray spectrum of the most part of the remnant can be described by a collisionally ionized plasma model VAPEC with solar abundances and a temperature of ≈0.8 keV. The solar abundances of plasma indicate that the X-ray emission comes from the shocked interstellar material. The overabundance of Fe was found in some of the bright blobs. We also analysed the brightest point-like X-ray source 1RXS J172653.4-382157 projected on the extended emission. Its spectrum is well described by the two-temperature optically thin thermal plasma model MEKAL typical for cataclysmic variable stars. The cataclysmic variable source nature is supported by the presence of a faint (g ≈ 21) optical source with non-stellar spectral energy distribution at the X-ray position of 1RXS J172653.4-382157. It was detected with the XMM-Newton optical/UV monitor in the U filter and was also found in the archival Hα and optical/near-infrared broad-band sky survey images. On the other hand, the X-ray spectrum is also described by the power law plus thermal component model typical for a rotation powered pulsar. Therefore, the pulsar interpretation of the source cannot be excluded. For this source, we derived the upper limit for the pulsed fraction of 27 per cent.

  6. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad

    In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.

  7. Oligoclonal bands in cerebrospinal fluid in patients with Tourette's syndrome.

    PubMed

    Wenzel, Claudia; Wurster, Ulrich; Müller-Vahl, Kirsten R

    2011-02-01

    Since a postinfectious or autoimmune etiology is suggested to be involved in the pathogenesis of Tourette's syndrome (TS), we investigated oligoclonal bands (OB) of immunoglobulin G (IgG) in cerebrospinal fluid (CSF), indicating a humoral immune response in the central nervous system. CSF examinations including isoelectric focusing to analyze the presence of OB were performed in 21 TS patients [17 men/4 women, mean age = 29 ± 12 (SD) years]. Isoelectric focusing showed the presence of positive OB in 6, borderline bands in 2, and serum and CSF bands ("mirrored pattern") in another 2 patients. Clinical data did not correlate with CSF findings. Thus, 38% (8 of 21) of our patients exhibited pathological CSF bands. Since none of them suffered from another disease known to be associated with OB, our results suggest an association with the pathogenesis of TS itself and point to an involvement of immunological mechanisms in TS pathology. Copyright © 2010 Movement Disorder Society.

  8. Ultra-bright pulsed electron beam with low longitudinal emittance

    DOEpatents

    Zolotorev, Max

    2010-07-13

    A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.

  9. ASAS-SN Discovery of a Bright Be Star Undergoing a Possible Outburst

    NASA Astrophysics Data System (ADS)

    Jayasinghe, T.; Stanek, K. Z.; Kochanek, C. S.; Thorstensen, J.; Rupert, J.; Prieto, J. L.; Shields, J. V.; Thompson, T. A.; Holoien, T. W.-S.; Shappee, B. J.; Dong, Subo

    2017-09-01

    As part of an ongoing effort by ASAS-SN project (Shappee et al. 2014; Kochanek et al. 2017) to characterize and catalog all bright variable stars (e.g., Jayasinghe et al. 2017, ATel #10634, #10677), we report the discovery of a bright Be star undergoing a possible outburst.

  10. Daytime Sky Brightness Characterization for Persistent GEO SSA

    NASA Astrophysics Data System (ADS)

    Thomas, G.; Cobb, R. G.

    Space Situational Awareness (SSA) is fundamental to operating in space. SSA for collision avoidance ensures safety of flight for both government and commercial spacecraft through persistent monitoring. A worldwide network of optical and radar sensors gather satellite ephemeris data from the nighttime sky. Current practice for daytime satellite tracking is limited exclusively to radar as the brightening daytime sky prevents the use of visible-band optical sensors. Radar coverage is not pervasive and results in significant daytime coverage gaps in SSA. To mitigate these gaps, optical telescopes equipped with sensors in the near-infrared band (0.75-0.9m) may be used. The diminished intensity of the background sky radiance in the near-infrared band may allow for daylight tracking further into the twilight hours. To determine the performance of a near-infrared sensor for daylight custody, the sky background radiance must first be characterized spectrally as a function of wavelength. Using a physics-based atmospheric model with access to near-real time weather, we developed a generalized model for the apparent sky brightness of the Geostationary satellite belt. The model results are then compared to measured data collected from Dayton, OH through various look and Sun angles for model validation and spectral sky radiance quantification in the visible and near-infrared bands.

  11. Recombinant human G6PD for quality control and quality assurance of novel point-of-care diagnostics for G6PD deficiency.

    PubMed

    Kahn, Maria; LaRue, Nicole; Zhu, Changcheng; Pal, Sampa; Mo, Jack S; Barrett, Lynn K; Hewitt, Steve N; Dumais, Mitchell; Hemmington, Sandra; Walker, Adrian; Joynson, Jeff; Leader, Brandon T; Van Voorhis, Wesley C; Domingo, Gonzalo J

    2017-01-01

    A large gap for the support of point-of-care testing is the availability of reagents to support quality control (QC) of diagnostic assays along the supply chain from the manufacturer to the end user. While reagents and systems exist to support QC of laboratory screening tests for glucose-6-phosphate dehydrogenase (G6PD) deficiency, they are not configured appropriately to support point-of-care testing. The feasibility of using lyophilized recombinant human G6PD as a QC reagent in novel point-of-care tests for G6PD deficiency is demonstrated. Human recombinant G6PD (r-G6PD) was expressed in Escherichia coli and purified. Aliquots were stored at -80°C. Prior to lyophilization, aliquots were thawed, and three concentrations of r-G6PD (representing normal, intermediate, and deficient clinical G6PD levels) were prepared and mixed with a protective formulation, which protects the enzyme activity against degradation from denaturation during the lyophilization process. Following lyophilization, individual single-use tubes of lyophilized r-G6PD were placed in individual packs with desiccants and stored at five temperatures for one year. An enzyme assay for G6PD activity was used to ascertain the stability of r-G6PD activity while stored at different temperatures. Lyophilized r-G6PD is stable and can be used as a control indicator. Results presented here show that G6PD activity is stable for at least 365 days when stored at -80°C, 4°C, 30°C, and 45°C. When stored at 55°C, enzyme activity was found to be stable only through day 28. Lyophilized r-G6PD enzyme is stable and can be used as a control for point-of-care tests for G6PD deficiency.

  12. Investigating a population of infrared-bright gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-07-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX, and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further seven candidates are identified from the previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR, and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased towards low z, high M⋆, and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  13. Investigating a population of infrared-bright gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  14. Calibration of Hurricane Imaging Radiometer C-Band Receivers

    NASA Technical Reports Server (NTRS)

    Biswas, Sayak K.; Cecil, Daniel J.; James, Mark W.

    2017-01-01

    The laboratory calibration of airborne Hurricane Imaging Radiometer's C-Band multi-frequency receivers is described here. The method used to obtain the values of receiver frontend loss, internal cold load brightness temperature and injected noise diode temperature is presented along with the expected RMS uncertainty in the final calibration.

  15. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    USGS Publications Warehouse

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  16. VizieR Online Data Catalog: GALEX/S4G surface brightness profiles. I. (Bouquin+, 2018)

    NASA Astrophysics Data System (ADS)

    Bouquin, A. Y. K.; Gil de, Paz A.; Munoz-Mateos, J. C.; Boissier, S.; Sheth, K.; Zaritsky, D.; Peletier, R. F.; Knapen, J. H.; Gallego, J.

    2018-03-01

    The Spitzer Survey of Stellar Structure in Galaxies (S4G sample (Munoz-Mateos+ 2015ApJS..219....3M). We have collected these data from the IRSA database. We gathered all available GALEX FUV and NUV images and related data products for 1931 S4G galaxies that had been observed in at least one of these two UV bands. We collected imaging data from all kinds of surveys, such as the All-sky Imaging Survey, Medium Imaging Survey, Deep Imaging Survey, and Nearby Galaxy Survey, as well as from Guest Investigator (GIs/GIIs) Programs. (5 data files).

  17. Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans

    NASA Astrophysics Data System (ADS)

    Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.

    2018-01-01

    Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make

  18. Winter sky brightness & cloud cover over Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Moore, A. M.; Fu, J.; Ashley, M.; Cui, X.; Feng, L.; Gong, X.; Hu, Z.; Laurence, J.; LuongVan, D.; Riddle, R. L.; Shang, Z.; Sims, G.; Storey, J.; Tothill, N.; Travouillon, T.; Wang, L.; Yang, H.; Yang, J.; Zhou, X.; Zhu, Z.; Burton, M. G.

    2014-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical Observatories. The Gattini DomeA project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fish-eye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R), however, the absence of tracking systems, together with the ultra large field of view 85 degrees) and strong distortion have driven us to seek a unique way to build our data reduction pipeline. We present here the first measurements of sky brightness in the photometric B, V, and R band, cloud cover statistics measured during the 2009 winter season and an estimate of the transparency. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based location. A ~0.2 magnitude agreement of our simultaneous test at Palomar Observatory with NSBM(National Sky Brightness Monitor), as well as an 0.04 magnitude photometric accuracy for typical 6th magnitude stars limited by the instrument design, indicating we obtained reasonable results based on our ~7mm effective aperture fish-eye lens.

  19. Bright triplet excitons in caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  20. Extreme Ultraviolet Explorer Bright Source List

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  1. Asymmetry in band widening and quasiparticle lifetimes in SrVO3: Competition between screened exchange and local correlations from combined G W and dynamical mean-field theory G W + DMFT

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan M.; Casula, M.; Miyake, T.; Biermann, S.

    2014-10-01

    The very first dynamical implementation of the combined GW and dynamical mean-field scheme "G W + DMFT " for a real material was achieved recently [Tomczak et al., Europhys. Lett. 100, 67001 (2012), 10.1209/0295-5075/100/67001], and applied to the ternary transition metal oxide SrVO3. Here, we review and extend that work, giving not only a detailed account of full G W + DMFT calculations, but also discussing and testing simplified approximate schemes. We give insights into the nature of exchange and correlation effects: dynamical renormalizations in the Fermi liquid regime of SrVO3 are essentially local, and nonlocal correlations mainly act to screen the Fock exchange term. The latter substantially widens the quasiparticle band structure, while the band narrowing induced by the former is accompanied by a spectral weight transfer to higher energies. Most interestingly, the exchange broadening is more pronounced in the unoccupied part of the spectrum than in the occupied one. In addition, shorter lifetimes for unoccupied states further contribute to making the corrections to the Kohn-Sham band structure asymmetric with respect to the chemical potential. As a result, the G W + DMFT electronic structure of SrVO3 resembles the conventional density functional based dynamical mean-field (DFT + DMFT ) description for occupied states but is profoundly modified in the empty part. Our work leads to a reinterpretation of inverse photoemission spectroscopy (IPES) data. Indeed, we assign a prominent peak at about 2.7 eV dominantly to eg states, rather than to an upper Hubbard band of t2 g character. Similar surprises can be expected for other transition metal oxides. This prediction urgently calls for more detailed investigations of conduction band states in correlated materials.

  2. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    PubMed

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  3. Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS

    NASA Astrophysics Data System (ADS)

    Li, T.; Zhang, J.

    2016-05-01

    Context. The new Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of UV spectra and slit-jaw images (SJIs). These data have become available for investigating the dynamic features in the transition region (TR) below the on-disk filaments. Aims: The driver of "counter-streaming" flows along the filament spine is still unknown yet. The magnetic structures and the upflows at the footpoints of the filaments and their relations with the filament mainbody have not been well understood. We study the dynamic evolution at the footpoints of filaments in order to find some clues for solving these questions. Methods: Using UV spectra and SJIs from the IRIS, along with coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. Results: The BPs in the TR have a spatial scale of about 350-580 km and lifetimes of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel with a magnetic flux of about 1017-1018 Mx. Quasi-periodic brightenings and upflows are observed in the BPs, and the period is about 4-5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads, and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in the plane of sky is about 5-50 km s-1. The emission line of Si IV 1402.77 Å at the locations of upflows exhibits obvious blueshifts of about 5-30 km s-1, and the line profile is broadened with the width of more than 20 km s-1. Conclusions: The BPs seem to be the bases of filament threads, and the upflows are able to convey mass for the dynamic balance of the filament. The "counter-streaming" flows in previous observations

  4. High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, band constants, RKR potentials, Franck-Condon factors involving the X{sup 3}Σ{sub g}{sup −}, a{sup 1}Δ{sub g} and b{sup 1}Σ{sub g}{sup +} states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shanshan, E-mail: shanshan.yu@jpl.nasa.gov; Drouin, Brian J.; Miller, Charles E.

    We have updated the isotopically invariant Dunham fit of O{sub 2} with newly reported literature transitions to derive (1) the energy levels, partition sums, band-by-band molecular constants, and RKR potentials for the X{sup 3}Σ{sub g}{sup −}, a{sup 1}Δ{sub g}, and b{sup 1}Σ{sub g}{sup +} states of the six O{sub 2} isotopologues: {sup 16}O{sup 16}O, {sup 16}O{sup 17}O, {sup 16}O{sup 18}O, {sup 17}O{sup 17}O, {sup 17}O{sup 18}O, and {sup 18}O{sup 18}O; (2) Franck-Condon factors for their a{sup 1}Δ{sub g}−X{sup 3}Σ{sub g}{sup −}, b{sup 1}Σ{sub g}{sup +}−X{sup 3}Σ{sub g}{sup −}, and a{sup 1}Δ{sub g}−b{sup 1}Σ{sub g}{sup +} band systems. This new spectroscopicmore » parameterization characterizes all known transitions within and between the X{sup 3}Σ{sub g}{sup −}, a{sup 1}Δ{sub g}, and b{sup 1}Σ{sub g}{sup +} states within experimental uncertainty and can be used for accurate predictions of as yet unmeasured transitions. All of these results are necessary to provide a consistent linelist of all transitions which will be reported in a followup paper.« less

  5. Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, M. A.

    2013-01-01

    We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.

  6. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA.more » An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.« less

  7. Performance of a first generation X-band photoelectron rf gun

    DOE PAGES

    Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; ...

    2016-05-04

    Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rfmore » gun operates with up to a 200 MV/m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (~3×10 7 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. As a result, we report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.« less

  8. Performance of a first generation X-band photoelectron rf gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.

    Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rfmore » gun operates with up to a 200 MV/m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (~3×10 7 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. As a result, we report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.« less

  9. A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Pepijn Veefkind, J.; de Graaf, Martin; Sneep, Maarten; Stammes, Piet; de Haan, Johan F.; Sanders, Abram F. J.; Apituley, Arnoud; Tuinder, Olaf; Levelt, Pieternel F.

    2018-06-01

    This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.

  10. Assimilation of SMOS brightness temperatures in the ECMWF EKF for the analysis of soil moisture

    NASA Astrophysics Data System (ADS)

    Munoz-Sabater, Joaquin

    2012-07-01

    Since November 2nd 2009, the European Centre for Medium-Range Weather Forecasts (ECMWF) has being monitoring, in Near Real Time (NRT), L-band brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) satellite mission of the European Space Agency (ESA). The main objective of the monitoring suite for SMOS data is to systematically monitor the difference between SMOS observed brightness temperatures and the corresponding model equivalent simulated by the Community Microwave Emission Model (CMEM), the so-called first guess departures. This is a crucial step, as first guess departures is the quantity used in the analysis. The ultimate goal is to investigate how the assimilation of SMOS brightness temperatures over land improves the weather forecast skill, through a more accurate initialization of the global soil moisture state. In this presentation, some significant results from the activities preparing for the assimilation of SMOS data are shown. Among these activities, an effective data thinning strategy, a practical approach to reduce noise from the observed brightness temperatures and a bias correction scheme are of special interest. Firstly, SMOS data needs to be significantly thinned as the data volume delivered for a single orbit is too large for the current operational capabilities in any Numerical Weather Prediction system. Different thinning strategies have been analysed and tested. The most suitable one is the assimilation of SMOS brightness temperatures which match the ECMWF T511 (~40 km) reduced Gaussian Grid. Secondly, SMOS observational noise is reduced significantly by averaging the data in angular bins. In addition, this methodology contributes to further thinning of the SMOS data before the analysis. Finally, a bias correction scheme based on a CDF matching is applied to the observations to ensure an unbiased dataset ready for assimilation in the ECMWF surface analysis system. The current ECMWF operational soil moisture analysis

  11. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Masumi; Hudson, Hugh S.; White, Stephen M.

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, atmore » EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.« less

  12. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    PubMed

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  13. Permanent magnet focused X-band photoinjector

    DOEpatents

    Yu, David U. L.; Rosenzweig, James

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  14. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes - Role of Redox Stress and Band 3 Modifications.

    PubMed

    Arese, Paolo; Gallo, Valentina; Pantaleo, Antonella; Turrini, Franco

    2012-10-01

    G6PD catalyzes the first, pace-making reaction of pentosephosphate cycle (PPC) which produces NADPH. NADPH maintains glutathione and thiol groups of proteins and enzymes in the reduced state which is essential for protection against oxidative stress. Individuals affected by G6PD deficiency are unable to regenerate reduced glutathione (GSH) and are undefended against oxidative stress. G6PD deficiency accelerates normal senescence and enhances the precocious removal of chronologically young, yet biologically old cells. The term hemolytic anemia is misleading because RBCs do not lyse but are removed by phagocytosis. Acute hemolysis by fava bean ingestion in G6PD deficient individuals (favism) is described being the best-studied natural model of oxidant damage. It bears strong analogies to hemolysis by oxidant drugs or chemicals. Membrane alterations observed in vivo during favism are superimposable to changes in senescent RBCs. In summary, RBC membranes isolated from favic patients contained elevated amounts of complexes between IgG and the complement fragment C3b/C3c and were prone to vesiculation. Anti-band 3 IgG reacted to aggregated band 3-complement complexes. In favism extensive clustering of band 3 and membrane deposition of hemichromes were also observed. Severely damaged RBCs isolated from early crises had extensive membrane cross-bonding and very low GSH levels and were phagocytosed 10-fold more intensely compared to normal RBCs.

  15. Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael; Villanueva, G. L.; Bonev, B. P.; Mumma, M. J.; Paganini, L.; Gibb, E. L.; Magee-Sauer, K.

    2011-01-01

    For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2

  16. Sensible Ozone on Mars based on 2-D Maps of O 2(a 1△ g) Emission for L s=102° Comparison of (0,0) and (1,1) Bands

    NASA Astrophysics Data System (ADS)

    Novak, Robert E.; Mumma, Michael J.; Villanueva, Geronimo Luis

    2016-10-01

    We report 2-D maps of the O2(a1△g) emission rate (a tracer for high-altitude ozone) taken during early northern summer (Ls=102° on 30 January 2016) using CSHELL at NASA's IRTF. The entrance slit of the spectrometer was positioned N-S on Mars and stepped E-W at 0.5 arc-sec increments. Spectral extracts were taken at 0.6 arc-sec intervals along the slit. We also took data to compare the emission rates of the O2(a1△g) (1-1) band (1.28 μm) to the (0-0) band (1.27 μm) with the entrance slit centered at the sub-Earth point. A model consisting of the solar continuum with Fraunhofer lines, two-way transmission through Mars' atmosphere, and a one-way transmission through the Earth's atmosphere was used to isolate and analyze individual spectral emission lines from Mars. Boltzmann analysis of these lines yielded a rotational temperature (~165 K) that was used to determine the total emission rates for the a-X system from the measured line intensities. The line-of-sight emission rates were converted to vertical emission rates and O2(a1△g) column densities after geometric correction. The sensible O3 column implied by these data is compared with maps of total O3 in Mars standard atmosphere models.The 2-D map shows increased emission in the southern hemisphere when compared to previously reported results taken at earlier seasonal points (Ls=72° on 3 April 2010 and Ls=88° on 10 February 2014). Emission results of the O2(a1△g) (0-0) band (Local Time ~ 14:30) will be compared with MARCI results (LT ~ 15:00, Clancy et al., Icarus 266 (2016) 112-113). We searched for the (1-1) band in two adjacent wavelength ranges; (0-0) emissions were detected at these settings, but no (1-1) emissions were noticed above the noise level. An upper limit will be presented, and implications discussed.This work was partially funded by grants from NASA's Mars Fundamental Research Program (11-MFRP11-0066) and the NSF-RUI Program (AST-805540). The NASA Astrobiology Institute supported this work

  17. An Ultraviolet/Optical Atlas of Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Marcum, Pamela M.; O'Connell, Robert W.; Fanelli, Michael N.; Cornett, Robert H.; Waller, William H.; Bohlin, Ralph C.; Neff, Susan G.; Roberts, Morton S.; Smith, Andrew M.; Cheng, K.-P.; Collins, Nicholas R.; Hennessy, Gregory S.; Hill, Jesse K.; Hill, Robert S.; Hintzen, Paul; Landsman, Wayne B.; Ohl, Raymond G.; Parise, Ronald A.; Smith, Eric P.; Freedman, Wendy L.; Kuchinski, Leslie E.; Madore, Barry; Angione, Ronald; Palma, Christopher; Talbert, Freddie; Stecher, Theodore P.

    2001-02-01

    We present wide-field imagery and photometry of 43 selected nearby galaxies of all morphological types at ultraviolet and optical wavelengths. The ultraviolet (UV) images, in two broad bands at 1500 and 2500 Å, were obtained using the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission. The UV images have ~3" resolution, and the comparison sets of ground-based CCD images (in one or more of B, V, R, and Hα) have pixel scales and fields of view closely matching the UV frames. The atlas consists of multiband images and plots of UV/optical surface brightness and color profiles. Other associated parameters, such as integrated photometry and half-light radii, are tabulated. In an appendix, we discuss the sensitivity of different wavebands to a galaxy's star formation history in the form of ``history weighting functions'' and emphasize the importance of UV observations as probes of evolution during the past 10-1000 Myr. We find that UV galaxy morphologies are usually significantly different from visible band morphologies as a consequence of spatially inhomogeneous stellar populations. Differences are quite pronounced for systems in the middle range of Hubble types, Sa through Sc, but less so for ellipticals or late-type disks. Normal ellipticals and large spiral bulges are fainter and more compact in the UV. However, they typically exhibit smooth UV profiles with far-UV/optical color gradients which are larger than any at optical/IR wavelengths. The far-UV light in these cases is probably produced by extreme horizontal branch stars and their descendants in the dominant, low-mass, metal-rich population. The cool stars in the large bulges of Sa and Sb spirals fade in the UV while hot OB stars in their disks brighten, such that their Hubble classifications become significantly later. In the far-UV, early-type spirals often appear as peculiar, ringlike systems. In some spiral disks, UV-bright structures closely outline the spiral pattern; in others, the

  18. Active-passive synergy for interpreting ocean L-band emissivity: Results from the CAROLS airborne campaigns

    NASA Astrophysics Data System (ADS)

    Martin, A. C. H.; Boutin, J.; Hauser, D.; Dinnat, E. P.

    2014-08-01

    The impact of the ocean surface roughness on the ocean L-band emissivity is investigated using simultaneous airborne measurements from an L-band radiometer (CAROLS) and from a C-band scatterometer (STORM) acquired in the Gulf of Biscay (off-the French Atlantic coasts) in November 2010. Two synergetic approaches are used to investigate the impact of surface roughness on the L-band brightness temperature (Tb). First, wind derived from the scatterometer measurements is used to analyze the roughness contribution to Tb as a function of wind and compare it with the one simulated by SMOS and Aquarius roughness models. Then residuals from this mean relationship are analyzed in terms of mean square slope derived from the STORM instrument. We show improvement of new radiometric roughness models derived from SMOS and Aquarius satellite measurements in comparison with prelaunch models. Influence of wind azimuth on Tb could not be evidenced from our data set. However, we point out the importance of taking into account large roughness scales (>20 cm) in addition to small roughness scale (5 cm) rapidly affected by wind to interpret radiometric measurements far from nadir. This was made possible thanks to simultaneous estimates of large and small roughness scales using STORM at small (7-16°) and large (30°) incidence angles.

  19. Red-emission phosphor's brightness deterioration by x-ray and brightness recovery phenomenon by heating.

    PubMed

    Nakamura, Masaaki; Chida, Koichi; Inaba, Yohei; Kobayashi, Ryota; Zuguchi, Masayuki

    2017-06-26

    There are no feasible real-time and direct skin dosimeters for interventional radiology. One would be available if there were x-ray phosphors that had no brightness change caused by x-ray irradiation, but the emission of the Y 2 O 3 :Eu, (Y, Gd, Eu)BO 3 , and YVO 4 :Eu phosphors investigated in our previous study was reduced by x-ray irradiation. We found that the brightness of those phosphors recovered, and the purpose of this study is to investigate their recovery phenomena. It is expected that more kinds of phosphors could be used in x-ray dosimeters if the brightness changes caused by x-rays are elucidated and prevented. Three kinds of phosphors-Y 2 O 3 :Eu, (Y, Gd, Eu)BO 3 , and YVO 4 :Eu-were irradiated by x-rays (2 Gy) to reduce their brightness. After the irradiation, brightness changes occurring at room temperature and at 80 °C were investigated. The irradiation reduced the brightness of all the phosphors by 5%-10%, but the brightness of each recovered immediately both at room temperature and at 80 °C. The recovery at 80 °C was faster than that at room temperature, and at both temperatures the recovered brightness remained at 95%-98% of the brightness before the x-ray irradiation. The brightness recovery phenomena of Y 2 O 3 :Eu, (Y, Gd, Eu)BO 3 , and YVO 4 :Eu phosphors occurring after brightness deterioration due to x-ray irradiation were found to be more significant at 80 °C than at room temperature. More kinds of phosphors could be used in x-ray scintillation dosimeters if the reasons for the brightness changes caused by x-rays were elucidated.

  20. ZTF Bright Transient Survey classifications

    NASA Astrophysics Data System (ADS)

    Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.

    2018-06-01

    The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).

  1. UVIS Photometric Zero Points

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2009-07-01

    This proposal obtains the photometric zero points in 53 of the 62 UVIS/WFC3 filters: the 18 broad-band filters, 8 medium-band filters, 16 narrow-band filters, and 11 of the 20 quad filters {those being used in cycle 17}. The observations will be primary obtained by observing the hot DA white dwarf standards GD153 and G191-B2B. A redder secondary standard, P330E, will be observed in a subset of the filters to provide color corrections. Repeat observations in 16 of the most widely used cycle 17 filters will be obtained once per month for the first three months, and then once every second month for the duration of cycle 17, alternating and depending on target availability. These observations will enable monitoring of the stability of the photometric system. Photometric transformation equations will be calculated by comparing the photometry of stars in two globular clusters, 47 Tuc and NGC 2419, to previous measurements with other telescopes/instruments.

  2. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise

    PubMed Central

    Kline, Christopher E.; Elliott, Jeffrey A.; Zielinski, Mark R.; Devlin, Tina M.; Moore, Teresa A.

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210–2340 h, (2) treadmill exercise alone from 2210–2340 h, or (3) bright light (2210–2340 h) followed by exercise from 0410–0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935

  3. Bright high z SnIa: A challenge for ΛCDM

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.; Shafieloo, A.

    2009-06-01

    It has recently been pointed out by Kowalski et. al. [Astrophys. J. 686, 749 (2008).ASJOAB0004-637X10.1086/589937] that there is “an unexpected brightness of the SnIa data at z>1.” We quantify this statement by constructing a new statistic which is applicable directly on the type Ia supernova (SnIa) distance moduli. This statistic is designed to pick up systematic brightness trends of SnIa data points with respect to a best fit cosmological model at high redshifts. It is based on binning the normalized differences between the SnIa distance moduli and the corresponding best fit values in the context of a specific cosmological model (e.g. ΛCDM). These differences are normalized by the standard errors of the observed distance moduli. We then focus on the highest redshift bin and extend its size toward lower redshifts until the binned normalized difference (BND) changes sign (crosses 0) at a redshift zc (bin size Nc). The bin size Nc of this crossing (the statistical variable) is then compared with the corresponding crossing bin size Nmc for Monte Carlo data realizations based on the best fit model. We find that the crossing bin size Nc obtained from the Union08 and Gold06 data with respect to the best fit ΛCDM model is anomalously large compared to Nmc of the corresponding Monte Carlo data sets obtained from the best fit ΛCDM in each case. In particular, only 2.2% of the Monte Carlo ΛCDM data sets are consistent with the Gold06 value of Nc while the corresponding probability for the Union08 value of Nc is 5.3%. Thus, according to this statistic, the probability that the high redshift brightness bias of the Union08 and Gold06 data sets is realized in the context of a (w0,w1)=(-1,0) model (ΛCDM cosmology) is less than 6%. The corresponding realization probability in the context of a (w0,w1)=(-1.4,2) model is more than 30% for both the Union08 and the Gold06 data sets indicating a much better consistency for this model with respect to the BND statistic.

  4. Source of Quasi-Periodic Brightenings of Solar Coronal Bright Points: Waves or Repeated Reconnections

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Tian, Hui; Banerjee, Dipankar

    2016-07-01

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  5. Cross-linked g-C3 N4 /rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity.

    PubMed

    Li, Yibing; Zhang, Haimin; Liu, Porun; Wang, Dan; Li, Ying; Zhao, Huijun

    2013-10-11

    Cross-linked rather than non-covalently bonded graphitic carbon nitride (g-C3 N4 )/reduced graphene oxide (rGO) nanocomposites with tunable band structures have been successfully fabricated by thermal treatment of a mixture of cyanamide and graphene oxide with different weight ratios. The experimental results indicate that compared to pure g-C3 N4 , the fabricated CN/rGO nanocomposites show narrowed bandgaps with an increased in the rGO ratio. Furthermore, the band structure of the CN/rGO nanocomposites can be readily tuned by simply controlling the weight ratio of the rGO. It is found that an appropriate rGO ratio in nanocomposite leads to a noticeable positively shifted valence band edge potential, meaning an increased oxidation power. The tunable band structure of the CN/rGO nanocomposites can be ascribed to the formation of C-O-C covalent bonding between the rGO and g-C3 N4 layers, which is experimentally confirmed by Fourier transform infrared (FT-IR) and X-ray photoelectron (XPS) data. The resulting nanocomposites are evaluated as photocatalysts by photocatalytic degradation of rhodamine B (RhB) and 4-nitrophenol under visible light irradiation (λ > 400 nm). The results demonstrate that the photocatalytic activities of the CN/rGO nanocomposites are strongly influenced by rGO ratio. With a rGO ratio of 2.5%, the CN/rGO-2.5% nanocomposite exhibits the highest photocatalytic efficiency, which is almost 3.0 and 2.7 times that of pure g-C3 N4 toward photocatalytic degradation of RhB and 4-nitrophenol, respectively. This improved photocatalytic activity could be attributed to the improved visible light utilization, oxidation power, and electron transport property, due to the significantly narrowed bandgap, positively shifted valence band-edge potential, and enhanced electronic conductivity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aquarius Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface. [29

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GHz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  7. Mineralogical Composition of the Different Types of Bright Deposits on Vesta

    NASA Technical Reports Server (NTRS)

    Zambon, F.; Capaccioni, F.; DeSanctis, M. C.; Ammannito, E.; Li, J.-Y.; Longobardo, A.; Mittlefehldt, D. W.; Palomba, E.; Pieters, C. M.; Schroeder, S. E.; hide

    2013-01-01

    VIR-MS, Dawn's Visible and Infrared Mapping Spectrometer, obtained hyperspectral images of a wide part of Vesta's surface at a variety of spatial resolutions [1]. Vesta spectra are similar to those of the howardite-eucrite-diogenite (HED) meteorites. Moreover, they are characterized by the two iron-bearing pyroxene bands at 0.9 (band I) and 1.9 microns (band II). Vesta surface's is dominated by eucrite/howardite with some diogenitic regions situated in the southern hemisphere near the Rheasilvia basin [2]. The surface is heavily craterized and impacts can expose fresh material, thus generating the Bright Material Deposits (BMD) observed within and surrounding certain craters. BMD can be classified into six different types based on their morphological characteristics: Crater Wall/Scarp Material (CWM), Radial Material (RM), Slope Material (SM), Patchy Material (PM), Spot Material (SpM) and Diffuse Plains Material (DPM) [3]. The most widespread BMD are CWM, SM and RM. CWM, SM, RM originate from impacts. CWM is situated on the edge of the craters. Mass wasting from the crater walls and generates the SM, while RM is associated with the ejecta of the craters [4]. BMD are characterized by albedo greater than that of the vestan average, 0.38 [5]. Therefore the different types of deposits present distinct levels of reflectance respect to the Surrounding Regions (SR), in particular: the CWM and SM is approx.40% brighter, the RM is approx.30- 40% brighter; the SpM is about 20-25% brighter and the PM is about 20% brighter. Near the edge of the Rheasilvia basin it is possible to find some extremely bright areas 80% brighter than the vestan average [6].

  8. Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu

    2018-04-01

    We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i < 0.64) colors and a wide range of morphologies. Since we focus on extended galaxies (r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.

  9. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Backscattering enhancement for Marshall-Palmer distributed rains for a W-band nadir-pointing radar with a finite beam width

    NASA Technical Reports Server (NTRS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Oguchi, Tomohiro

    2005-01-01

    In this paper, we expand the previous theory to be applied to a generic drop size distribution with spheroidal raindrops including spherical raindrops. Results will be used to discuss the multiple scattering effects on the backscatter measurements acquired by a W-band nadir-pointing radar.

  11. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2010-11-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  12. The existence of inflection points for generalized log-aesthetic curves satisfying G1 data

    NASA Astrophysics Data System (ADS)

    Karpagavalli, R.; Gobithaasan, R. U.; Miura, K. T.; Shanmugavel, Madhavan

    2015-12-01

    Log-Aesthetic (LA) curves have been implemented in a CAD/CAM system for various design feats. LA curves possess linear Logarithmic Curvature Graph (LCG) with gradient (shape parameter) denoted as α. In 2009, a generalized form of LA curves called Generalized Log-Aesthetic Curves (GLAC) has been proposed which has an extra shape parameter as ν compared to LA curves. Recently, G1 continuous GLAC algorithm has been proposed which utilizes the extra shape parameter using four control points. This paper discusses on the existence of inflection points in a GLAC segment satisfying G1 Hermite data and the effect of inflection point on convex hull property. It is found that the existence of inflection point can be avoided by manipulating the value of α. Numerical experiments show that the increase of α may remove the inflection point (if any) in a GLAC segment.

  13. Infrared and X-ray study of the Galactic SNR G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Sasaki, Manami; Mäkelä, Minja M.; Klochkov, Dmitry; Santangelo, Andrea; Suleimanov, Valery

    2018-06-01

    G15.9+0.2 is a Galactic shell-type supernova remnant (SNR), which was detected in radio and has been confirmed in X-rays based on Chandra observations. An X-ray point source CXOUJ181852.0-150213 has been detected and suggested to be an associated neutron star. In a recent study, we have confirmed the source to be a central compact object (CCO). We have studied the SNR using high-resolution X-ray data taken with Chandra in combination with infrared (IR) data in order to understand its emission and to derive its physical parameters. This will also help to constrain, e.g., the age of the CCO and the environment in which it was born. The spectral analysis of the X-ray emission using the new Chandra data and the comparison to the IR data have shown that the SNR is relatively young with an age of a few thousand years and that its emission is dominated by that of shocked interstellar medium (ISM). However, the analysis of the spectrum of the bright eastern shell shows that there is an additional emission component with enhanced abundances of α elements and Fe, suggesting ejecta emission. The multi-wavelength emission is consistent with SNR G15.9+0.2 expanding in an ISM with a density gradient, while there is also colder material located in front of the SNR, which absorbs its thermal X-ray emission in the softer bands.

  14. Ground-based detection of G star superflares with NGTS

    NASA Astrophysics Data System (ADS)

    Jackman, James A. G.; Wheatley, Peter J.; Pugh, Chloe E.; Gänsicke, Boris T.; Gillen, Edward; Broomhall, Anne-Marie; Armstrong, David J.; Burleigh, Matthew R.; Chaushev, Alexander; Eigmüller, Philipp; Erikson, Anders; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Jenkins, James S.; McCormac, James; Raynard, Liam; Thompson, Andrew P. G.; Udry, Stéphane; Walker, Simon; Watson, Christopher A.; West, Richard G.

    2018-07-01

    We present high cadence detections of two superflares from a bright G8 star (V = 11.56) with the Next Generation Transit Survey (NGTS). We improve upon previous superflare detections by resolving the flare rise and peak, allowing us to fit a solar flare inspired model without the need for arbitrary break points between rise and decay. Our data also enables us to identify substructure in the flares. From changing star-spot modulation in the NGTS data, we detect a stellar rotation period of 59 h, along with evidence for differential rotation. We combine this rotation period with the observed ROSAT X-ray flux to determine that the star's X-ray activity is saturated. We calculate the flare bolometric energies as 5.4^{+0.8}_{-0.7}× 10^{34} and 2.6^{+0.4}_{-0.3}× 10^{34} erg and compare our detections with G star superflares detected in the Kepler survey. We find our main flare to be one of the largest amplitude superflares detected from a bright G star. With energies more than 100 times greater than the Carrington event, our flare detections demonstrate the role that ground-based instruments such as NGTS can have in assessing the habitability of Earth-like exoplanets, particularly in the era of PLATO.

  15. Ground-based detection of G star superflares with NGTS

    NASA Astrophysics Data System (ADS)

    Jackman, James A. G.; Wheatley, Peter J.; Pugh, Chloe E.; Gänsicke, Boris T.; Gillen, Edward; Broomhall, Anne-Marie; Armstrong, David J.; Burleigh, Matthew R.; Chaushev, Alexander; Eigmüller, Philipp; Erikson, Anders; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Jenkins, James S.; McCormac, James; Raynard, Liam; Thompson, Andrew P. G.; Udry, Stéphane; Walker, Simon; Watson, Christopher A.; West, Richard G.

    2018-04-01

    We present high cadence detections of two superflares from a bright G8 star (V = 11.56) with the Next Generation Transit Survey (NGTS). We improve upon previous superflare detections by resolving the flare rise and peak, allowing us to fit a solar flare inspired model without the need for arbitrary break points between rise and decay. Our data also enables us to identify substructure in the flares. From changing starspot modulation in the NGTS data we detect a stellar rotation period of 59 hours, along with evidence for differential rotation. We combine this rotation period with the observed ROSAT X-ray flux to determine that the star's X-ray activity is saturated. We calculate the flare bolometric energies as 5.4^{+0.8}_{-0.7}× 10^{34}and 2.6^{+0.4}_{-0.3}× 10^{34}erg and compare our detections with G star superflares detected in the Kepler survey. We find our main flare to be one of the largest amplitude superflares detected from a bright G star. With energies more than 100 times greater than the Carrington event, our flare detections demonstrate the role that ground-based instruments such as NGTS can have in assessing the habitability of Earth-like exoplanets, particularly in the era of PLATO.

  16. EUV brightness variations in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Brković, A.; Rüedi, I.; Solanki, S. K.; Fludra, A.; Harrison, R. A.; Huber, M. C. E.; Stenflo, J. O.; Stucki, K.

    2000-01-01

    The Coronal Diagnostic Spectrometer (CDS) onboard the SOHO satellite has been used to obtain movies of quiet Sun regions at disc centre. These movies were used to study brightness variations of solar features at three different temperatures sampled simultaneously in the chromospheric He I 584.3 Ä (2 * 104 K), the transition region O V 629.7 Ä (2.5 * 105 K) and coronal Mg IX 368.1 Ä (106 K) lines. In all parts of the quiet Sun, from darkest intranetwork to brightest network, we find significant variability in the He I and O V line, while the variability in the Mg IX line is more marginal. The relative variability, defined by rms of intensity normalised to the local intensity, is independent of brightness and strongest in the transition region line. Thus the relative variability is the same in the network and the intranetwork. More than half of the points on the solar surface show a relative variability, determined over a period of 4 hours, greater than 15.5% for the O V line, but only 5% of the points exhibit a variability above 25%. Most of the variability appears to take place on time-scales between 5 and 80 minutes for the He I and O V lines. Clear signs of ``high variability'' events are found. For these events the variability as a function of time seen in the different lines shows a good correlation. The correlation is higher for more variable events. These events coincide with the (time averaged) brightest points on the solar surface, i.e. they occur in the network. The spatial positions of the most variable points are identical in all the lines.

  17. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    PubMed

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  18. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    DOEpatents

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  19. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    NASA Astrophysics Data System (ADS)

    Ou-Peng, Li; Yong, Zhang; Rui-Min, Xu; Wei, Cheng; Yuan, Wang; Bing, Niu; Hai-Yan, Lu

    2016-05-01

    Design and characterization of a G-band (140-220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140-190 GHz respectively. The saturation output powers are -2.688 dBm at 210 GHz and -2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501091) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2014J003 and ZYGX2013J020).

  20. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  1. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    NASA Astrophysics Data System (ADS)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles

    2018-04-01

    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  2. Photoluminescence side band spectroscopy of individual single-walled carbon nanotubes

    DOE PAGES

    Kadria-Vili, Yara; Bachilo, Sergei M.; Blackburn, Jeffrey L.; ...

    2016-09-27

    Photoluminescence spectra of single-walled carbon nanotubes (SWCNTs) have been recorded and analyzed for selected individual nanotubes and structurally sorted bulk samples to clarify the nature of secondary emission features. Room temperature spectra show, in addition to the main peak arising from the E 11 bright exciton, three features at lower frequency, which are identified here (in descending order of energy difference from E 11 emission) as G 1, X 1, and Y 1. The weakest (G 1) is interpreted as a vibrational satellite of E 11 involving excitation of the ~1600 cm -1 G mode. The X 1 feature, althoughmore » more intense than G 1, has a peak amplitude only ~3% of E 11. X 1 emission was found to be polarized parallel to E 11 and to be separated from that peak by 1068 cm -1 in SWCNTs with natural isotopic abundance. The separation remained unchanged for several ( n,m) species, different nanotube environments, and various levels of induced axial strain. In 13C SWCNTs, the spectral separation decreased to 1023 cm -1. The measured isotopic shift points to a phonon-assisted transition that excites the D vibration. This supports prior interpretations of the X 1 band as emission from the dark K-momentum exciton, whose energy we find to be ~230 cm -1 above E 11. The remaining sideband, Y 1, is red-shifted ~300 cm -1 from E 11 and varies in relative intensity among and within individual SWCNTs. We assign it as defect-induced emission, either from an extrinsic state or from a brightened triplet state. In contrast to single-nanotube spectra, bulk samples show asymmetric zero-phonon E 11 peaks, with widths inversely related to SWCNT diameter. As a result, an empirical expression for this dependence is presented to aid the simulation of overlapped emission spectra during quantitative fluorimetric analysis of bulk SWCNT samples.« less

  3. Flow Shears at the Poleward Boundary of Omega Bands Observed During Conjunctions of Swarm and THEMIS ASI

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Lyons, L. R.; Archer, W. E.; Gallardo-Lacourt, B.; Nishimura, Y.; Zou, Ying; Gabrielse, C.; Weygand, J. M.

    2018-02-01

    Omega bands are curved aurora forms that evolve from a quiet arc located along the poleward edge of a diffuse auroral band within the midnight to morningside auroral oval. They usually propagate eastward. Because omega bands are a significant contributor to an active magnetotail, knowledge about their generation is important for understanding tail dynamics. Previous studies have shown that auroral streamers, footprints of fast flows in the tail, can propagate into omega bands. Such events, however, are limited, and it is still unclear whether and how the flows trigger the bands. The ionospheric flows associated with omega bands may provide valuable information on the driving mechanisms of the bands. We examine these flows taking advantage of the conjunctions between the Swarm spacecraft and Time History of Events and Macroscale Interactions during Substorms all-sky imagers, which allow us to demonstrate the relative location of the flows to the omega bands' bright arcs for the first time. We find that a strong eastward ionospheric flow is consistently present immediately poleward of the omega band's bright arc, resulting in a sharp flow shear near the poleward boundary of the band. This ionospheric flow shear should correspond to a flow shear near the inner edge of the plasma sheet. This plasma sheet shear may drive a Kelvin-Helmholz instability which then distorts the quiet arc to form omega bands. It seems plausible that the strong eastward flows are driven by streamer-related fast flows or enhanced convection in the magnetotail.

  4. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    USDA-ARS?s Scientific Manuscript database

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  5. Observations During GRIP from HIRAD: Images of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, W. L.; Ruf, C. S.; Uhlhorn, E. W.; Biswas, S.; May, C.; Shah, G.; Black, P.; Buckley, C. D.

    2012-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of vortex wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  6. The G1 restriction point as critical regulator of neocortical neuronogenesis

    NASA Technical Reports Server (NTRS)

    Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.

    1999-01-01

    Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.

  7. Bright and multicolor luminescent colloidal Si nanocrystals prepared by pulsed laser irradiation in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Toshihiro, E-mail: nakamura@el.gunma-u.ac.jp; Watanabe, Kanta; Adachi, Sadao

    2016-01-11

    We reported the preparation of bright and multicolor luminescent colloidal Si nanocrystal (Si-nc) by pulsed UV laser irradiation to porous Si (PSi) in an organic solvent. The different-luminescence-color (different-sized) colloidal Si-nc was produced by the pulsed laser-induced fragmentation of different-sized porous nanostructures. The colloidal Si-nc samples were found to have higher photoluminescence quantum efficiencies (20%–23%) than the PSi samples (1%–3%). The brighter emission of the colloidal Si-nc was attributed to an enhanced radiative band-to-band transition rate due to the presence of a surface organic layer formed by UV laser-induced hydrosilylation.

  8. Discovery of a Bright Equatorial Storm on Neptune

    NASA Astrophysics Data System (ADS)

    Molter, E. M.; De Pater, I.; Alvarez, C.; Tollefson, J.; Luszcz-Cook, S.

    2017-12-01

    Images of Neptune, taken with the NIRC2 instrument during testing of the new Twilight Zone observing program at Keck Observatory, revealed an extremely large bright storm system near Neptune's equator. The storm complex is ≈9,000 km across and brightened considerably between June 26 and July 2. Historically, very bright clouds have occasionally been seen on Neptune, but always in the midlatitude regions between ≈15° and ≈60° North or South. Voyager and HST observations have shown that cloud features large enough to dominate near-IR photometry are often "companion" clouds of dark anti-cyclonic vortices similar to Jupiter's Great Red Spot, interpreted as orographic clouds. In the past such clouds and their coincident dark vortices often persisted for one up to several years. However, the cloud complex we detect is unique: never before has a bright cloud been seen at, or so close to, the equator. The discovery points to a drastic departure in the dynamics of Neptune's atmosphere from what has been observed for the past several decades. Detections of the complex in multiple NIRC2 filters allows radiative transfer modeling to constrain the cloud's altitude and vertical extent.

  9. SMOS brightness temperature assimilation into the Community Land Model

    NASA Astrophysics Data System (ADS)

    Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.

    2017-11-01

    SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.

  10. The ASAS-SN bright supernova catalogue – I. 2013–2014

    DOE PAGES

    Holoien, T. W. -S.; Stanek, K. Z.; Kochanek, C. S.; ...

    2016-09-12

    We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (m V ≤ 17), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensivemore » catalogue of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses many previously existing biases. In particular, ASAS-SN systematically finds bright supernovae closer to the centres of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. In conclusion, this is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team.« less

  11. Origin of photoluminescence in β -G a2O3

    NASA Astrophysics Data System (ADS)

    Ho, Quoc Duy; Frauenheim, Thomas; Deák, Peter

    2018-03-01

    β -G a2O3 , a candidate material for power electronics and UV optoelectronics, shows strong room-temperature photoluminescence (PL). In addition to the three well-known bands of as-grown samples in the UV, blue, and green, also red PL was observed upon nitrogen doping. This raises the possibility of applying β -G a2O3 nanostructures as white phosphors. Using an optimized, Koopmans-compliant hybrid functional, we show that most intrinsic point defects, as well as substitutional nitrogen, act as deep acceptors, and each of the observed PL bands can be explained by electron recombination with a hole trapped in one of them. We suggest this mechanism to be general in wide-band-gap semiconductors which can only be doped n -type. Calculations on the nitrogen acceptor reproduce the observed red luminescence accurately. Earlier we have shown that not only the energy, but the polarization properties of the UV band can be explained by self-trapped hole states. Here we find that the blue band has its origin mainly in singly negative Ga-O divacancies, and the green band is caused dominantly by interstitial O atoms (with minor contribution of Ga vacancies to both). These assignments can explain the experimentally observed dependence of the PL bands on free-electron concentration and stoichiometry. The information provided here paves the way for the conscious tuning of light emission from β -G a2O3 .

  12. Interest point detection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Dorado-Muñoz, Leidy P.; Vélez-Reyes, Miguel; Roysam, Badrinath; Mukherjee, Amit

    2009-05-01

    This paper presents an algorithm for automated extraction of interest points (IPs)in multispectral and hyperspectral images. Interest points are features of the image that capture information from its neighbours and they are distinctive and stable under transformations such as translation and rotation. Interest-point operators for monochromatic images were proposed more than a decade ago and have since been studied extensively. IPs have been applied to diverse problems in computer vision, including image matching, recognition, registration, 3D reconstruction, change detection, and content-based image retrieval. Interest points are helpful in data reduction, and reduce the computational burden of various algorithms (like registration, object detection, 3D reconstruction etc) by replacing an exhaustive search over the entire image domain by a probe into a concise set of highly informative points. An interest operator seeks out points in an image that are structurally distinct, invariant to imaging conditions, stable under geometric transformation, and interpretable which are good candidates for interest points. Our approach extends ideas from Lowe's keypoint operator that uses local extrema of Difference of Gaussian (DoG) operator at multiple scales to detect interest point in gray level images. The proposed approach extends Lowe's method by direct conversion of scalar operations such as scale-space generation, and extreme point detection into operations that take the vector nature of the image into consideration. Experimental results with RGB and hyperspectral images which demonstrate the potential of the method for this application and the potential improvements of a fully vectorial approach over band-by-band approaches described in the literature.

  13. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  14. Fixed Point Results for G-α-Contractive Maps with Application to Boundary Value Problems

    PubMed Central

    Roshan, Jamal Rezaei

    2014-01-01

    We unify the concepts of G-metric, metric-like, and b-metric to define new notion of generalized b-metric-like space and discuss its topological and structural properties. In addition, certain fixed point theorems for two classes of G-α-admissible contractive mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space. Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are provided here to illustrate the usability of the obtained results. PMID:24895655

  15. Comparison of Measured Galactic Background Radiation at L-Band with Model

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten

    2004-01-01

    Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;

  16. Unidentified point sources in the IRAS minisurvey

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Aumann, H. H.; Clegg, P. E.; Gillett, F. C.; Habing, H. J.; Hauser, M. G.; Low, F. J.

    1984-01-01

    Nine bright, point-like 60 micron sources have been selected from the sample of 8709 sources in the IRAS minisurvey. These sources have no counterparts in a variety of catalogs of nonstellar objects. Four objects have no visible counterparts, while five have faint stellar objects visible in the error ellipse. These sources do not resemble objects previously known to be bright infrared sources.

  17. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    PubMed Central

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Purpose Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Methods Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10∶14 light∶dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Results Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1∶1 or 7∶7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. Conclusions The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1∶1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical

  18. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    PubMed

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  19. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyo, Jeonghyun; Jeong, Woong-Seob; Matsumoto, Toshio

    2012-12-01

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 {mu}m, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 {mu}m)more » are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 {mu}m), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 {+-} 0.23 nW m{sup -2} sr{sup -1} or 0.05% of the brightness at 24 {mu}m and at least 0.47 {+-} 0.14 nW m{sup -2} sr{sup -1} or 0.02% at 18 {mu}m. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2{sigma} error into account.« less

  20. The periodic very young source EC 53 reached its maximum brightness

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Lorenzetti, D.; Harutyunyan, A.; Licchelli, D.; Munari, U.

    2018-06-01

    In the framework of our EXor monitoring program dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed the object EC53 recently signaled by Johnston et al. (ATel #11614) as a strongly embedded source showing a sub-mm luminosity burst, They also provide H- and K-band observations detecting this brightness increase also in the near-IR, in the scattered light by the nebula surrounding a compact source, invisible at those wavelengths.

  1. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  2. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  3. Strange doings on Io. [Jupiter radio emission modification, sodium cloud, ionized sulfur and extreme brightness

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1978-01-01

    Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.

  4. Nature of the Diffuse Source and Its Central Point-like Source in SNR 0509–67.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litke, Katrina C.; Chu, You-Hua; Holmes, Abigail

    We examine a diffuse emission region near the center of SNR 0509−67.5 to determine its nature. Within this diffuse region we observe a point-like source that is bright in the near-IR, but is not visible in the B and V bands. We consider an emission line observed at 6766 Å and the possibilities that it is Ly α , H α , and [O ii] λ 3727. We examine the spectral energy distribution (SED) of the source, comprised of Hubble Space Telescope B , V , I , J , and H bands in addition to Spitzer /IRAC 3.6, 4.5,more » 5.8, and 8 μ m bands. The peak of the SED is consistent with a background galaxy at z ≈ 0.8 ± 0.2 and a possible Balmer jump places the galaxy at z ≈ 0.9 ± 0.3. These SED considerations support the emission line’s identification as [O ii] λ 3727. We conclude that the diffuse source in SNR 0509−67.5 is a background galaxy at z ≈ 0.82. Furthermore, we identify the point-like source superposed near the center of the galaxy as its central bulge. Finally, we find no evidence for a surviving companion star, indicating a double-degenerate origin for SNR 0509−67.5.« less

  5. VizieR Online Data Catalog: H-band spectroscopic analysis of 25 bright M31 GCs (Sakari+, 2016)

    NASA Astrophysics Data System (ADS)

    Sakari, C. M.; Shetrone, M. D.; Schiavon, R. P.; Bizyaev, D.; Prieto, C. A.; Beers, T. C.; Caldwell, N.; Garcia-Hernandez, D. A.; Lucatello, S.; Majewski, S.; O'Connell, R. W.; Pan, K.; Strader, J.

    2016-11-01

    H-band spectra (1.51-1.69um) of the target clusters were obtained with the moderately high resolution (R=22500) APOGEE spectrograph on the 2.5m Telescope at Apache Point Observatory in 2011 and 2013. The details of the observations can be found in Majewski+ (2015arXiv150905420M) and Zasowski+ (2013AJ....146...81Z), including descriptions of the plates and fibers that were utilized for the observations. The high-resolution optical abundances from Colucci et al. (2009, J/ApJ/704/385 and 2014ApJ...797..116C) are supplemented with new results for five globular clusters (GCs). The new optical spectra were obtained in 2009 and 2010 with the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory in Fort Davis, TX (R=30000; spectral coverage over ~5320-6290 and ~6360-7340Å in the blue and the red, respectively). (5 data files).

  6. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  7. Electronic band structures and excitonic properties of delafossites: A GW-BSE study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Meng, Weiwei; Yan, Yanfa

    2017-08-01

    We report the band structures and excitonic properties of delafossites CuMO2 (M=Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art GW-BSE approach. We evaluate different levels of self-consistency of the GW approximations, namely G0W0, GW0, GW, and QSGW, on the band structures and find that GW0, in general, predicts the band gaps in better agreement with experiments considering the electron-hole effect. For CuCrO2, the HSE wave function is used as the starting point for the perturbative GW0 calculations, since it corrects the band orders wrongly predicted by PBE. The discrepancy about the valence band characters of CuCrO2 is classified based on both HSE and QSGW calculations. The PBE wave functions, already good, are used for other delafossites. All the delafossites are shown to be indirect band gap semiconductors with large exciton binding energies, varying from 0.24 to 0.44 eV, in consistent with experimental findings. The excitation mechanisms are explained by examining the exciton amplitude projections on the band structures. Discrepancies compared with experiments are also addressed. The lowest and strongest exciton, mainly contributed from either Cu 3d → Cu 3p (Al, Ga, In) or Cu 3d → M 3d (M = Sc, Y, Cr) transitions, is always located at the L point of the rhombohedral Brillouin zone.

  8. New Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate From the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Buckley, C. D.; Biswas, S.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; hide

    2012-01-01

    HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  9. Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2015-01-01

    We study a two-component nonlinear Schrödinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright-solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes of potential stability, not only of the single-peak ground state (the dark-bright soliton), but also of excited states with one or more zero crossings in the bright component. When the states are identified as unstable, direct numerical simulations are used to investigate the outcome of the instability development. Although our principal focus is on the homogeneous setting, we also briefly touch upon the counterintuitive impact of the potential presence of a parabolic trap on the states of interest.

  10. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    NASA Astrophysics Data System (ADS)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  11. Detection of secondary eclipses of WASP-10b and Qatar-1b in the Ks band and the correlation between Ks-band temperature and stellar activity.

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; López-Morales, Mercedes; Birkby, Jayne; Fortney, Jonathan J.; Hodgkin, Simon

    2017-10-01

    The Calar Alto Secondary Eclipse study was a program dedicated to observe secondary eclipses in the near-IR of two known close-orbiting exoplanets around K-dwarfs: WASP-10b and Qatar-1b. Such observations reveal hints on the orbital configuration of the system and on the thermal emission of the exoplanet, which allows the study of the brightness temperature of its atmosphere. The observations were performed at the Calar Alto Observatory (Spain). We used the OMEGA2000 instrument (Ks band) at the 3.5m telescope. The data was acquired with the telescope strongly defocused. The differential light curve was corrected from systematic effects using the Principal Component Analysis (PCA) technique. The final light curve was fitted using an occultation model to find the eclipse depth and a possible phase shift by performing a MCMC analysis. The observations have revealed a secondary eclipse of WASP-10b with depth of 0.137%, and a depth of 0.196% for Qatar-1b. The observed phase offset from expected mid-eclipse was of -0.0028 for WASP-10b, and of -0.0079 for Qatar-1b. These measured offsets led to a value for |ecosω| of 0.0044 for the WASP-10b system, leading to a derived eccentricity which was too small to be of any significance. For Qatar-1b, we have derived a |ecosω| of 0.0123, however, this last result needs to be confirmed with more data. The estimated Ks-band brightness temperatures are of 1647 K and 1885 K for WASP-10b and Qatar-1b, respectively. We also found an empirical correlation between the (R'HK) activity index of planet hosts and the Ks-band brightness temperature of exoplanets, considering a small number of systems.

  12. Uranus - Disk structure within the 7300-A methane band

    NASA Technical Reports Server (NTRS)

    Price, M. J.; Franz, O. G.

    1979-01-01

    Orthogonal narrow-band (100 A) photoelectric slit scan photometry of Uranus has been used to infer the basic two-dimensional structure of the disk within the 7300-A methane band. Numerical image reconstruction and restoration techniques have been applied to quantitatively estimate the degrees of polar and limb brightening on the planet. Through partial removal of atmospheric smearing, an effective spatial resolution of approximately 0.9 arcsec has been achieved. Peak polar, limb, and central intensities on the disk are in the respective proportions 3:2:1. In addition, the bright polar feature is displaced from the geometric pole towards the equator of the planet.

  13. Progress in extremely high brightness LED-based light sources

    NASA Astrophysics Data System (ADS)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  14. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    DTIC Science & Technology

    2015-03-20

    In the bandstructure of graphene which is dominated by Dirac description, valence and conduction bands cross the Fermi level at a single point (K...of energy bands and appearance of Dirac cones near the ‘K’ point and Fermi level the electrons behave like massless Dirac fermions. For applications...results. Introduction Graphene, the super carbon , is now accepted as wonder material with new physics and it has caused major

  15. Analysis of a high brightness photo electron beam with self field and wake field effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surfacemore » and the self field of the bunch).« less

  16. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For

  17. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.; Anderson, Sharolyn J.; Luginbuhl, Christian B.; Baugh, Kimberly E.

    2018-07-01

    We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.

  18. PN G068.1+11.0: A young pre-cataclysmic variable with an extremely hot primary

    NASA Astrophysics Data System (ADS)

    Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.; Spiridonova, O. I.; Gabdeev, M. M.

    2016-02-01

    An analysis of spectroscopic and photometric data for the young pre-cataclysmic variable (PCV) PN G068.1+11.0, which passed through its common-envelope stage relatively recently, is presented. The spectroscopic and photometric data were obtained with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory. The light curves show sinusoidal brightness variations with the orbital-period time scale and brightness-variation amplitudes of Δ m = 1. m41, 1. m62, and 1. m57 in the B, V, and R bands, respectively. The system's spectrum exhibits weak HI (H β-H δ) andHeII λλ4541, 4686, 5411 Å absorption lines during the phases of minimum brightness, as well as HI, HeII, CIII, CIV, NIII, and OII emission lines whose intensity variations are synchronized with variations of the integrated brightness of the system. The emission-line formation in the spectra can be fully explained by the effects of fluorescence of the ultraviolet light from the primary at the surface of the cool star. All the characteristics of the optical light of PN G068.1+11.0 confirm that it is a young PCV containing sdO subdwarf. The radial velocities were measured from a blend of lines of moderately light elements, CIII+NIII λ4640 Å, which is formed at the surface of the secondary due to reflection effects. The ephemeris of the system has been improved through a joint analysis of the radial-velocity curves and light curves of pre-cataclysmic variable, using modelling of the reflection effects. The fundamental parameters of PN G068.1+11.0 have been determined using two evolutionary tracks for planetary-nebula nuclei of different masses (0.7 M ⊙and 0.78 M ⊙). The model spectra for the system and a comparison with the observations demonstrate the possibility of refining the components' effective temperatures if the quality of the spectra used is improved.

  19. Beyond 31 mag arcsec-2: The Frontier of Low Surface Brightness Imaging with the Largest Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Fliri, Jüergen

    2016-06-01

    The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5-2 mag deeper than most previous results within a reasonable amount of time (I.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ˜150 Mpc, by obtaining a radial profile of surface brightness down to μ r ˜ 33 mag arcsec-2. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ˜4 × 109 M ⊙, I.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.

  20. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  1. C(G)-Band and X(I)-Band Noncoherent Radar Transponder Performance Specification Standard

    DTIC Science & Technology

    2014-06-01

    transmitter with an integral power supply. The transponder must accept interrogation signals from single or multiple radar sets and provide a...the transponder receives a coded pulse interrogation from the ground radar and transmits a single pulse reply in the same frequency band. The...obtained by using either a single tracking station or several tracking stations along the flight path of the target vehicle. The accuracy gained by use

  2. Characterization and Correction of Aquarius Long Term Calibration Drift Using On-Earth Brightness Temperature Refernces

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Misra, Sidharth

    2013-01-01

    The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.

  3. An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Waller, William W.; Smith, Denise A.; Freedman, Wendy L.; Madore, Barry; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Bohlin, Ralph; Smith, Andrew M.; Stecher, Theodore P.

    1997-05-01

    During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 Å) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3" and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r <~ 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ~ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19" west, 10" north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other

  4. Revealing stellar brightness profiles by means of microlensing fold caustics

    NASA Astrophysics Data System (ADS)

    Dominik, M.

    2004-09-01

    With a handful of measurements of limb-darkening coefficients, galactic microlensing has already proven to be a powerful technique for studying atmospheres of distant stars. Survey campaigns such as OGLE-III are capable of providing ~10 suitable target stars per year that undergo microlensing events involving passages over the caustic created by a binary lens, which last from a few hours to a few days and allow us to resolve the stellar atmosphere by frequent broad-band photometry. For a caustic exit lasting 12 h and a photometric precision of 1.5 per cent, a moderate sampling interval of 30 min (corresponding to ~25-30 data points) is sufficient for providing a reliable measurement of the linear limb-darkening coefficient Γ with an uncertainty of ~8 per cent, which reduces to ~3 per cent for a reduced sampling interval of 6 min for the surroundings of the end of the caustic exit. While some additional points over the remaining parts of the light curve are highly valuable, a denser sampling in these regions provides little improvement. Unless an accuracy of less than 5 per cent is desired, limb-darkening coefficients for several filters can be obtained or observing time can be spent on other targets during the same night. The adoption of an inappropriate stellar brightness profile as well as the effect of acceleration between source and caustic yield distinguishable characteristic systematics in the model residuals. Acceleration effects are unlikely to affect the light curve significantly for most events, although a free acceleration parameter blurs the limb-darkening measurement if the passage duration cannot be accurately determined.

  5. Targeting myofascial taut bands by ultrasound.

    PubMed

    Thomas, Kisha; Shankar, Hariharan

    2013-07-01

    Myofascial pain syndrome (MPS) is a frequent diagnosis in chronic pain and is characterized by tender, taut bands known as trigger points. The trigger points are painful areas in skeletal muscle that are associated with a palpable nodule within a taut band of muscle fibers. Despite the prevalence of myofascial pain syndrome, diagnosis is based on clinical criteria alone. A growing body of evidence that suggests that taut bands are readily visualized under ultrasound-guided exam, especially when results are correlated with elastography, multidimensional imaging, and physical exam findings such as local twitch response. The actual image characteristic in B mode appears to be controversial. Ultrasonography provides an objective modality to assist with diagnosis and treatment of trigger points in the future.

  6. Intrinsic Brightness Temperatures of AGN Jets

    NASA Astrophysics Data System (ADS)

    Homan, D. C.; Kovalev, Y. Y.; Lister, M. L.; Ros, E.; Kellermann, K. I.; Cohen, M. H.; Vermeulen, R. C.; Zensus, J. A.; Kadler, M.

    2006-05-01

    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of active galactic nuclei (AGNs). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGNs to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time, as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, Tint~=3×1010 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2×1011 K, which is well in excess of the equipartition temperature. In this state, we estimate that the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~105. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature, the assumption of equipartition, or both may lead to large scatter or systematic errors in the derived values.

  7. MALS–NOT: Identifying Radio-bright Quasars for the MeerKAT Absorption Line Survey

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Gupta, N.; Noterdaeme, P.; Ranjan, A.; Fynbo, J. P. U.; Srianand, R.; Petitjean, P.; Combes, F.; Mahabal, A.

    2018-03-01

    We present a preparatory spectroscopic survey to identify radio-bright, high-redshift quasars for the MeerKAT Absorption Line Survey. The candidates have been selected on the basis of a single flux density limit at 1.4 GHz (>200 mJy), together with mid-infrared color criteria from the Wide-field Infrared Survey Explorer. Through spectroscopic observations using the Nordic Optical Telescope, we identify 72 quasars out of 99 candidates targeted. We measure the spectroscopic redshifts based on characteristic, broad emission lines present in the spectra. Of these 72 quasars, 64 and 48 objects are at sufficiently high redshift (z > 0.6 and z > 1.4) to be used for the L-band and UHF-band spectroscopic follow-up with the Square Kilometre Array precursor in South Africa: the MeerKAT.

  8. Quantitative Image Restoration in Bright Field Optical Microscopy.

    PubMed

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Stellar Surface Brightness Profiles of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; LITTLE THINGS Team

    2012-01-01

    Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. We have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2006, 2004). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and H-alpha from ground-based observations, and 3.6 and 4.5 microns from Spitzer. In this talk, I will highlight results from a semi-automatic fitting of this data set, including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 41 dwarfs of the LITTLE THINGS subsample. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  10. Identification of New Hot Bands in the Blue and Green Band Systems of FeH

    NASA Astrophysics Data System (ADS)

    Wilson, Catherine; Brown, John M.

    1999-10-01

    A particularly rich region of the electronic spectrum of FeH from 525 to 545 nm was investigated using the techniques of dispersed and undispersed laser-induced fluorescence. Analysis has led to the discovery that several different electronic transitions are embedded in this region; the (0, 0) and (1, 1) bands of the e6Π-a6Δ (green) system, the (0, 2) band of the g6Φ-X4Δ (intercombination) system, the (0, 1) band of the g6Φ-a6Δ (blue) system, and the (0, 0) band of the g6Φ-b6Π system. Seventy-five lines were assigned in the (0, 1) band of the g6Φ-a6Δ transition. These, with the assignment of an additional 14 lines in the 583 nm region to the (0, 1) band of the e6Π-a6Δ transition, led to the extension of the known term values to higher J values for the Ω = 9/2, 7/2, and 5/2 spin components of the v = 1 level of the a6Δ state and the novel characterization of the a6Δ3/2 (v = 1) and g6Φ5/2 (v = 0) components. A further 73 lines were assigned to the first four subbands of the (1, 1) band of the e6Π-a6Δ transition and term values for the lowest four spin components of the v = 1 level of the e6Π state were determined. This provides the first experimental measurement of a vibrational interval in one of the higher lying electronic states of FeH. The interval does not appear to vary strongly between the spin components (ΔG1/2 = 1717, 1713, 1710 cm-1 for Ω = 7/2, 5/2, 3/2, respectively). Remarkably few of the hot-band transitions assigned in this work could be identified in the complex, high-temperature spectrum of FeH recorded by P. McCormack and S. O'Connor [Astron. Astrophys. Suppl. 26, 373-380 (1976)].

  11. Do Low Surface Brightness Galaxies Host Stellar Bars?

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-09-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  12. Do Low Surface Brightness Galaxies Host Stellar Bars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less

  13. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  14. IRAS variables as galactic structure tracers - Classification of the bright variables

    NASA Technical Reports Server (NTRS)

    Allen, L. E.; Kleinmann, S. G.; Weinberg, M. D.

    1993-01-01

    The characteristics of the 'bright infrared variables' (BIRVs), a sample consisting of the 300 brightest stars in the IRAS Point Source Catalog with IRAS variability index VAR of 98 or greater, are investigated with the purpose of establishing which of IRAS variables are AGB stars (e.g., oxygen-rich Miras and carbon stars, as was assumed by Weinberg (1992)). Results of the analysis of optical, infrared, and microwave spectroscopy of these stars indicate that, out of 88 stars in the BIRV sample identified with cataloged variables, 86 can be classified as Miras. Results of a similar analysis performed for a color-selected sample of stars, using the color limits employed by Habing (1988) to select AGB stars, showed that, out of 52 percent of classified stars, 38 percent are non-AGB stars, including H II regions, planetary nebulae, supergiants, and young stellar objects, indicating that studies using color-selected samples are subject to misinterpretation.

  15. Map of Ceres' Bright Spots

    NASA Image and Video Library

    2017-12-12

    This map from NASA's Dawn mission shows locations of bright material on dwarf planet Ceres. There are more than 300 bright areas, called "faculae," on Ceres. Scientists have divided them into four categories: bright areas on the floors of crater (red), on the rims or walls of craters (green), in the ejecta blankets of craters (blue), and on the flanks of the mountain Ahuna Mons (yellow). https://photojournal.jpl.nasa.gov/catalog/PIA21914

  16. Effective Hamiltonian approach to bright and dark excitons in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Choi, Sangkook; Deslippe, Jack; Louie, Steven G.

    2009-03-01

    Recently, excitons in single-walled carbon nanotubes (SWCNTs) have generated great research interest due to the large binding energies and unique screening properties associated with one-dimensional (1D) materials. Considerable progress in their theoretical understanding has been achieved by studies employing the ab initio GW-Bethe-Salpeter equation methodology. For example, the presence of bright and dark excitons with binding energies of a large fraction of an eV has been predicted and subsequently verified by experiment. Some of these results have also been quantitatively reproduced by recent model calculations using a spatially dependent screened Coulomb interaction between the excited electron and hole, an approach that would be useful for studying large diameter and chiral nanotubes with many atoms per unit cell. However, this previous model neglects the degeneracy of the band states and hence the dark excitons. We present an extension of this exciton model for the SWCNT, incorporating the screened Coulomb interaction as well as state degeneracy, to understand and compute the characteristics of the bright and dark excitons, such as the bright and dark level splittings. Supported by NSF #DMR07-05941, DOE #De-AC02-05CH11231 and computational resources from Teragrid and NERSC.

  17. Observations of banding in first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.

    2004-08-01

    Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.

  18. Shuttle Ku-band and S-band communications implementation study

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-01-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.

  19. Search for very high energy γ radiation from the radio bright region DR4 of the SNR G78.2+2.1.

    NASA Astrophysics Data System (ADS)

    Prosch, C.; Feigl, E.; Plaga, R.; Arqueros, F.; Cortina, J.; Fernandez, J.; Fernandez, P.; Fonseca, V.; Funk, B.; Gonzalez, J. C.; Haustein, V.; Heinzelmann, G.; Karle, A.; Krawczynski, H.; Krennrich, F.; Kuehn, M.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Matheis, V.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Prahl, J.; Rhode, W.; Samorski, M.; Sanchez, J. A.; Sander, H.; Schmele, D.; Stamm, W.; Wahl, H.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M.

    1996-10-01

    Data from the HEGRA air shower array are used to set an upper limit on the emission of γ-radiation above 25(18)TeV from the direction of the radio bright region DR4 within the SNR G78.2+2.1 of 2.5(7.1)x10^-13^cm^-2^/s. The shock front of SNR G78.2+2.1 probably recently overtook the molecular cloud Cong 8 which then acts as a target for the cosmic rays produced within the SNR, thus leading to the expectation of enhanced γ-radiation. Using a model of Drury, Aharonian and Voelk which assumes that SNRs are the sources of galactic cosmic rays via first order Fermi acceleration, we calculated a theoretical prediction for the γ-ray flux from the DR4 region and compared it with our experimental flux limit. Our `best estimate' value for the predicted flux lies a factor of about 18 above the upper limit for γ-ray energies above 25TeV. Possible reasons for this discrepancy are discussed.

  20. Isoelectric point and adsorption activity of porous g-C3N4

    NASA Astrophysics Data System (ADS)

    Zhu, Bicheng; Xia, Pengfei; Ho, Wingkei; Yu, Jiaguo

    2015-07-01

    The isoelectric point (IEP) is an important physicochemical parameter of many compounds, such as oxides, hydroxides, and nitrides, and can contribute to estimation of the surface charges of compound particles at various pH conditions. In this work, three types of graphitic carbon nitrides (g-C3N4) were synthesized by directly heating melamine, thiourea, and urea. The prepared samples showed different microstructures and IEPs that influenced their adsorption activity. Differences in microstructure resulted from the various precursors used during synthesis. The IEPs of the obtained g-C3N4 were measured to be approximately 4-5, which is due to the equilibrium of chemical reactions between hydrogen ions, hydroxyl ions, and amine groups on the g-C3N4 surface. The IEP of g-C3N4 prepared from thiourea was lower than those of the corresponding samples prepared from melamine and urea. The adsorption activity of methylene blue on g-C3N4 prepared from urea and thiourea was excellent, which indicates that g-C3N4 is a promising adsorbent. This work provides a useful reference for choosing precursors with which to prepare g-C3N4 and combining g-C3N4 with other compounds in solution.

  1. Do pencil-point spinal needles decrease the incidence of postdural puncture headache in reality? A comparative study between pencil-point 25G Whitacre and cutting-beveled 25G Quincke spinal needles in 320 obstetric patients.

    PubMed

    Pal, Anirban; Acharya, Amita; Pal, Nidhi Dawar; Dawn, Satrajit; Biswas, Jhuma

    2011-01-01

    Postdural puncture headache (PDPH) is a distressing complication of the subarachnoid block. The previous studies conducted, including the recent ones, do not conclusively prove that pencil-point spinal needles decrease the incidence of PDPH. In this study, we have tried to find out whether a pencil-point Whitacre needle is a better alternative than the classic cutting beveled, commonly used, Quincke spinal needle, in patients at risk of PDPH. Three hundred and twenty obstetric patients, 20-36 years of age, ASA I and II, posted for Cesarean section under subarachnoid block, were randomly assigned into two groups W and Q, where 25G Whitacre and 25G Quincke spinal needles were used, respectively. The primary objective of the study was to find out the difference in incidence of PDPH, if any, between the two groups, by using the t test and Chi square test. The incidence of PDPH was 5% in group W and 28.12% in group Q, and the difference in incidence was statistically significant (P<0.001). The pencil-point 25G Whitacre spinal needle causes less incidence of PDPH compared to the classic 25G Quincke needle, and is recommended for use in patients at risk of PDPH.

  2. Do pencil-point spinal needles decrease the incidence of postdural puncture headache in reality? A comparative study between pencil-point 25G Whitacre and cutting-beveled 25G Quincke spinal needles in 320 obstetric patients

    PubMed Central

    Pal, Anirban; Acharya, Amita; Pal, Nidhi Dawar; Dawn, Satrajit; Biswas, Jhuma

    2011-01-01

    Background: Postdural puncture headache (PDPH) is a distressing complication of the subarachnoid block. The previous studies conducted, including the recent ones, do not conclusively prove that pencil-point spinal needles decrease the incidence of PDPH. In this study, we have tried to find out whether a pencil-point Whitacre needle is a better alternative than the classic cutting beveled, commonly used, Quincke spinal needle, in patients at risk of PDPH. Materials and Methods: Three hundred and twenty obstetric patients, 20-36 years of age, ASA I and II, posted for Cesarean section under subarachnoid block, were randomly assigned into two groups W and Q, where 25G Whitacre and 25G Quincke spinal needles were used, respectively. The primary objective of the study was to find out the difference in incidence of PDPH, if any, between the two groups, by using the t test and Chi square test. Results: The incidence of PDPH was 5% in group W and 28.12% in group Q, and the difference in incidence was statistically significant (P<0.001). Conclusion: The pencil-point 25G Whitacre spinal needle causes less incidence of PDPH compared to the classic 25G Quincke needle, and is recommended for use in patients at risk of PDPH. PMID:25885381

  3. Imaging the spotty surface of Betelgeuse in the H band

    NASA Astrophysics Data System (ADS)

    Haubois, X.; Perrin, G.; Lacour, S.; Verhoelst, T.; Meimon, S.; Mugnier, L.; Thiébaut, E.; Berger, J. P.; Ridgway, S. T.; Monnier, J. D.; Millan-Gabet, R.; Traub, W.

    2009-12-01

    Aims. This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. Methods: We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. Results: We measure an average limb-darkened diameter of 44.28 ± 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 ± 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 ± 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Conclusions: Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.

  4. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.

    PubMed

    Ni, Zhen Hua; Yu, Ting; Lu, Yun Hao; Wang, Ying Ying; Feng, Yuan Ping; Shen, Ze Xiang

    2008-11-25

    Graphene was deposited on a transparent and flexible substrate, and tensile strain up to approximately 0.8% was loaded by stretching the substrate in one direction. Raman spectra of strained graphene show significant red shifts of 2D and G band (-27.8 and -14.2 cm(-1) per 1% strain, respectively) because of the elongation of the carbon-carbon bonds. This indicates that uniaxial strain has been successfully applied on graphene. We also proposed that, by applying uniaxial strain on graphene, tunable band gap at K point can be realized. First-principle calculations predicted a band-gap opening of approximately 300 meV for graphene under 1% uniaxial tensile strain. The strained graphene provides an alternative way to experimentally tune the band gap of graphene, which would be more efficient and more controllable than other methods that are used to open the band gap in graphene. Moreover, our results suggest that the flexible substrate is ready for such a strain process, and Raman spectroscopy can be used as an ultrasensitive method to determine the strain.

  5. G-banded karotype and ideogram for the critically endangered North Atlantic right whale (Eubalanea glacialis)

    USGS Publications Warehouse

    Pause, K.C.; Bonde, R.K.; McGuire, P.M.; Zori, Roberto T.; Gray, B.A.

    2006-01-01

    Published cytogenetic data for extant cetacean species remain incomplete. In a review of the literature, we found karyotypic information for 6 of the 13 tentatively recognized species of the suborder Mysticeti (baleen whales). Among those yet to be described is the critically endangered North Atlantic right whale (Eubalaena glacialis). Herein, we describe and propose a first-generation G-banded karyotype and ideogram for this species (2n = 42), obtained from peripheral blood chromosome preparations from a stranded male calf. This information may prove useful for future genetic mapping projects and for interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  6. Documentation for the machine-readable version of the thirteen color photometry of 1380 bright stars

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.; Roman, N. G.

    1981-01-01

    The magnetic tape version of the catalogue of thirteen-color photometry of 1380 bright stars, containing data on the 13 color medium narrow band photometric system is described. Observations of essentially all stars brighter than fifth visual magnitude north of delta = -20 deg and brighter than fourth visual magnitude south of delta = -20 deg are included. It is intended to enable users to read and process the tape without the common difficulties and uncertainties.

  7. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  8. Converged G W quasiparticle energies for transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Ergönenc, Zeynep; Kim, Bongjae; Liu, Peitao; Kresse, Georg; Franchini, Cesare

    2018-02-01

    The ab initio calculation of quasiparticle (QP) energies is a technically and computationally challenging problem. In condensed matter physics, the most widely used approach to determine QP energies is the G W approximation. Although the G W method has been widely applied to many typical semiconductors and insulators, its application to more complex compounds such as transition metal oxide perovskites has been comparatively rare, and its proper use is not well established from a technical point of view. In this work, we have applied the single-shot G0W0 method to a representative set of transition metal oxide perovskites including 3 d (SrTiO3, LaScO3, SrMnO3, LaTiO3, LaVO3, LaCrO3, LaMnO3, and LaFeO3), 4 d (SrZrO3, SrTcO3, and Ca2RuO4 ), and 5 d (SrHfO3, KTaO3, and NaOsO3) compounds with different electronic configurations, magnetic orderings, structural characteristics, and band gaps ranging from 0.1 to 6.1 eV. We discuss the proper procedure to obtain well-converged QP energies and accurate band gaps within single-shot G0W0 by comparing the conventional approach based on an incremental variation of a specific set of parameters (number of bands, energy cutoff for the plane-wave expansion and number of k points) and the basis-set extrapolation scheme [J. Klimeš et al., Phys. Rev. B 90, 075125 (2014), 10.1103/PhysRevB.90.075125]. Although the conventional scheme is not supported by a formal proof of convergence, for most cases it delivers QP energies in reasonably good agreement with those obtained by the basis-set correction procedure and it is by construction more useful for calculating band structures. In addition, we have inspected the difference between the adoption of norm-conserving and ultrasoft potentials in G W calculations and found that the norm violation for the d shell can lead to less accurate results in particular for charge-transfer systems and late transition metals. A minimal statistical analysis indicates that the correlation of the G W data

  9. The bright-star masks for the HSC-SSP survey

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Czakon, Nicole; Bosch, James; Komiyama, Yutaka; Medezinski, Elinor; Miyazaki, Satoshi; Oguri, Masamune

    2018-01-01

    We present the procedure to build and validate the bright-star masks for the Hyper-Suprime-Cam Strategic Subaru Proposal (HSC-SSP) survey. To identify and mask the saturated stars in the full HSC-SSP footprint, we rely on the Gaia and Tycho-2 star catalogues. We first assemble a pure star catalogue down to GGaia < 18 after removing ˜1.5% of sources that appear extended in the Sloan Digital Sky Survey (SDSS). We perform visual inspection on the early data from the S16A internal release of HSC-SSP, finding that our star catalogue is 99.2% pure down to GGaia < 18. Second, we build the mask regions in an automated way using stacked detected source measurements around bright stars binned per GGaia magnitude. Finally, we validate those masks by visual inspection and comparison with the literature of galaxy number counts and angular two-point correlation functions. This version (Arcturus) supersedes the previous version (Sirius) used in the S16A internal and DR1 public releases. We publicly release the full masks and tools to flag objects in the entire footprint of the planned HSC-SSP observations at "ftp://obsftp.unige.ch/pub/coupon/brightStarMasks/HSC-SSP/".

  10. Little Bright Spot

    NASA Image and Video Library

    2015-01-12

    A bright spot can be seen on the left side of Rhea in this image. The spot is the crater Inktomi, named for a Lakota spider spirit. Inktomi is believed to be the youngest feature on Rhea (949 miles or 1527 kilometers across). The relative youth of the feature is evident by its brightness. Material that is newly excavated from below the moon's surface and tossed across the surface by a cratering event, appears bright. But as the newly exposed surface is subjected to the harsh space environment, it darkens. This is one technique scientists use to date features on surfaces. This view looks toward the trailing hemisphere of Rhea. North on Rhea is up and rotated 21 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2013. The view was obtained at a distance of approximately 1.0 million miles (1.6 million kilometers) fro http://photojournal.jpl.nasa.gov/catalog/PIA18300

  11. DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo

    2013-09-10

    We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3 {+-} 8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, K{sub S} ). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.''4 from near-infrared and IRAC sources.more » Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2) Multiplication-Sign 10{sup 14} {mu}{sup -1} L{sub Sun} and a star formation rate of 5600-39, 000 {mu}{sup -1} M{sub Sun} yr{sup -1}, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.« less

  12. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew S.

    2018-01-01

    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the

  13. Hidden edge Dirac point and robust quantum edge transport in InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Chang-An; Zhang, Song-Bo; Shen, Shun-Qing

    2018-01-01

    The robustness of quantum edge transport in InAs/GaSb quantum wells in the presence of magnetic fields raises an issue on the fate of topological phases of matter under time-reversal symmetry breaking. A peculiar band structure evolution in InAs/GaSb quantum wells is revealed: the electron subbands cross the heavy hole subbands but anticross the light hole subbands. The topologically protected band crossing point (Dirac point) of the helical edge states is pulled to be close to and even buried in the bulk valence bands when the system is in a deeply inverted regime, which is attributed to the existence of the light hole subbands. A sizable Zeeman energy gap verified by the effective g factors of edge states opens at the Dirac point by an in-plane or perpendicular magnetic field; however, it can also be hidden in the bulk valance bands. This provides a plausible explanation for the recent observation on the robustness of quantum edge transport in InAs/GaSb quantum wells subjected to strong magnetic fields.

  14. Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna

    2018-05-01

    Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.

  15. High-brightness-solar-pumped Nd:YAG laser design

    NASA Astrophysics Data System (ADS)

    Lando, Mordechai; Jenkins, David G.; Bernstein, Hana; O'Gallagher, Joseph J.; Winston, Roland; Lewandowski, Allan

    1995-06-01

    We have designed a Nd:YAG laser to be pumped by the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory. Based on the unique features of the HFSF, the design objectives are high brightness and superior efficiency in primary mirror area utilization. The HFSF has a primary mirror of 11.5 m2 and a 1.85 f-number. With such a high f-number, the target is set off-axis and does not block incoming solar flux. Moreover, large f-number enables concentration which approaches the theoretical limit, and a two- dimensional non-imaging concentrator deposits the solar flux onto the internal part of a 10 mm diameter laser rod. For high brightness, we plan a wide low-loss fundamental mode and a laser rod aperture that suppresses high order modes. To get a fundamental mode, of up to a 2.5 mm waist, we have designed a convex-concave resonator, following well-known g1g2 equals 0.5 design for resonators with internal beam focusing. We have used the edge ray principle to design the concentrator, and ray traced the deposited power inside the laser rod. A 1.3% Nd doping level supports a maximal power deposition inside a 5 mm diameter.

  16. Lunar and Venusian radar bright rings

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Saunders, R. S.; Weissman, D. E.

    1986-01-01

    Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.

  17. Airborne Multi-Band SAR in the Arctic

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Liang, R.; Ball, D.; Holt, B.; Thomson, J.

    2016-12-01

    As one component of the Office of Naval Research supported Sea State Departmental Research Initiative during October of 2015 the Naval Research Laboratory flew an ultrawide-band, low-frequency, polarimetric SAR over the southward advancing sea ice in Beaufort Sea. The flights were coordinated with the research team aboard the R/V Sikuliaq working near and in the advancing pack ice. The majority of the SAR data were collected with the L-Band sensor (1000-1500 MHz) from an altitude of 10,000', providing a useful swath 6 km wide with 75o and 25 o angles of incidence at the inner and outer edge of the swath respectively. Some data were also collected with the P-Band SAR (215-915 MHz). The extremely large bandwidths allowed for formation of image pixels as small as 30 cm, however, we selected 60 cm pixel size to reduce image speckle. The separate polarimetric images are calibrated to one pixel to allow for calculations such as polarimetric decompositions that require the images to be well aligned. Both frequencies are useful particularly for the detection of ridges and areas of deformed ice. There are advantages and disadvantages to airborne SAR imagery compared to satellites. The chief advantages being the enormous allowable bandwidth leading to very fine range resolution, and the ability to fly arbitrary trajectories on demand. The latter permits specific areas to be imaged at a given time with a specified illumination direction. An area can even be illuminated from all directions by flying a circular trajectory around the target area. This captures ice features that are sensitive to illumination direction such as cracks, sastrugi orientation, and ridges. The disadvantages include variation of intensity across the swath with range and incidence angle. In addition to the SAR data, we collected photogrammetric imagery from a DSS-439, scanning lidar from a Riegl Q560 and surface brightness temperatures from a KT-19. However, since all of these sensors are nadir pointing

  18. Bright compact bulges at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-07-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  19. HiRadProp: High-Frequency Modeling and Prediction of Tropospheric Radiopropagation Parameters from Ground-Based-Multi-Channel Radiometric Measurements between Ka and W Band

    DTIC Science & Technology

    2016-05-11

    new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are

  20. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan

    2017-12-01

    We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.

  1. Spatial and Temporal Patterns of SMAP Brightness Temperatures for Use in Level 1 TB Characterization

    NASA Astrophysics Data System (ADS)

    Kim, E. J.

    2015-12-01

    1. IntroductionThe recent launch of NASA's Soil Moisture Active Passive (SMAP) mission [Entekhabi, et al] has opened the door to improved brightness temperature (TB) calibration of satellite L-band microwave radiometers, through the use of SMAP's lower noise performance and better immunity to man-made interference (vs. ESA's Soil Moisture Ocean Salinity (SMOS) mission [Kerr, et al]), better spatial resolution (vs. NASA's Aquarius sea surface salinity mission [Le Vine, et al]), and cleaner antenna pattern (vs. SMOS). All three radiometers use/used large homogeneous places on Earth's surface as calibration targets—parts of the ocean, Antarctica, and tropical forests. Despite the recent loss of Aquarius data, there is still hope for creating a longer-term L-band data set that spans the timeframe of all 3 missions. 2. Description of Analyses and Expected Results In this paper, we analyze SMAP brightness temperature data to quantify the spatial and temporal characteristics of external target areas in the oceans, Antarctica, forests, and other areas. Existing analyses have examined these targets in terms of averages, standard deviations, and other basic statistics (for Aquarius & SMOS as well). This paper will approach the problem from a signal processing perspective. Coupled with the use of SMAP's novel RFI-mitigated TBs, and the aforementioned lower noise and cleaner antenna pattern, it is expected that of the 3 L-band missions, SMAP should do the best job of characterizing such external targets. The resulting conclusions should be useful to extract the best possible TB calibration from all 3 missions, helping to inter-compare the TB from the 3 missions, and to eventually inter-calibrate the TBs into a single long-term dataset.

  2. Bright Enceladus

    NASA Image and Video Library

    2011-02-14

    Saturn moon Enceladus reflects sunlight brightly while the planet and its rings fill the background in this view from NASA Cassini spacecraft. Enceladus is one of the most reflective bodies in the solar system.

  3. A BRIGHT SUBMILLIMETER SOURCE IN THE BULLET CLUSTER (1E0657-56) FIELD DETECTED WITH BLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rex, Marie; Devlin, Mark J.; Dicker, Simon R.

    2009-09-20

    We present the 250, 350, and 500 {mu}m detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST). The 500 {mu}m centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 {mu}m and 350 {mu}m centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with themore » Bullet Cluster. The submillimeter redshift estimate based on 250-1100 {mu}m photometry at the position of the AzTEC source is z{sub phot} = 2.9{sup +0.6}{sub -0.3}, consistent with the infrared color redshift estimation of the most likely Infrared Array Camera counterpart. These flux densities indicate an apparent far-infrared (FIR) luminosity of L{sub FIR} = 2 x 10{sup 13} L {sub sun}. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic FIR luminosity of the source is found to be L{sub FIR} <= 10{sup 12} L{sub sun}, consistent with typical luminous infrared galaxies.« less

  4. Floquet band structure of a semi-Dirac system

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Du, Liang; Fiete, Gregory A.

    2018-01-01

    In this work we use Floquet-Bloch theory to study the influence of circularly and linearly polarized light on two-dimensional band structures with semi-Dirac band touching points, taking the anisotropic nearest neighbor hopping model on the honeycomb lattice as an example. We find that circularly polarized light opens a gap and induces a band inversion to create a finite Chern number in the two-band model. By contrast, linearly polarized light can either open up a gap (polarized in the quadratically dispersing direction) or split the semi-Dirac band touching point into two Dirac points (polarized in the linearly dispersing direction) by an amount that depends on the amplitude of the light. Motivated by recent pump-probe experiments, we investigated the nonequilibrium spectral properties and momentum-dependent spin texture of our model in the Floquet state following a quench in the absence of phonons, and in the presence of phonon dissipation that leads to a steady state independently of the pump protocol. Finally, we make connections to optical measurements by computing the frequency dependence of the longitudinal and transverse optical conductivity for this two-band model. We analyze the various contributions from interband transitions and different Floquet modes. Our results suggest strategies for optically controlling band structures and experimentally measuring topological Floquet systems.

  5. BrightStat.com: free statistics online.

    PubMed

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  6. Intensity measurements for the /2, O/ gamma-band of O2, b 1Sigma-g/+/ - X 3Sigma-g/-/

    NASA Technical Reports Server (NTRS)

    Miller, J. H.; Giver, L. P.; Boese, R. W.

    1976-01-01

    Line intensities for the P sub P and P sub Q branches of the (2-O) vibrational band of the magnetic dipole electronic transition for the oxygen red system at 6280 A were measured, and the sum of the R sub R and R sub Q branch intensities was taken. A large number of repetitive spectral scans were required for accuracy, because of low absorption values even at optical path lengths from 300 to 600 m. A total of 557 individual measurements of P-branch lines yielded an intensity value for the P-branches, and equivalent widths for 24 spectral scans yielded an intensity value for the R-branch. R-branch to P-branch intensity ratios were taken for the A-band, B-band, and gamma-band (respectively, O-O at 7620 A, 1-O at 6880 A, and 2-O at 6280 A). Intensities for some rotational lines are found, and effects of combined rotation-vibration interaction are probed.

  7. Characterization of brightness and stoichiometry of bright particles by flow-fluorescence fluctuation spectroscopy.

    PubMed

    Johnson, Jolene; Chen, Yan; Mueller, Joachim D

    2010-11-03

    Characterization of bright particles at low concentrations by fluorescence fluctuation spectroscopy (FFS) is challenging, because the event rate of particle detection is low and fluorescence background contributes significantly to the measured signal. It is straightforward to increase the event rate by flow, but the high background continues to be problematic for fluorescence correlation spectroscopy. Here, we characterize the use of photon-counting histogram analysis in the presence of flow. We demonstrate that a photon-counting histogram efficiently separates the particle signal from the background and faithfully determines the brightness and concentration of particles independent of flow speed, as long as undersampling is avoided. Brightness provides a measure of the number of fluorescently labeled proteins within a complex and has been used to determine stoichiometry of protein complexes in vivo and in vitro. We apply flow-FFS to determine the stoichiometry of the group specific antigen protein within viral-like particles of the human immunodeficiency virus type-1 from the brightness. Our results demonstrate that flow-FFS is a sensitive method for the characterization of complex macromolecular particles at low concentrations. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. High-Capacity Communications from Martian Distances Part 4: Assessment of Spacecraft Pointing Accuracy Capabilities Required For Large Ka-Band Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Hodges, Richard E.; Sands, O. Scott; Huang, John; Bassily, Samir

    2006-01-01

    Improved surface accuracy for deployable reflectors has brought with it the possibility of Ka-band reflector antennas with extents on the order of 1000 wavelengths. Such antennas are being considered for high-rate data delivery from planetary distances. To maintain losses at reasonable levels requires a sufficiently capable Attitude Determination and Control System (ADCS) onboard the spacecraft. This paper provides an assessment of currently available ADCS strategies and performance levels. In addition to other issues, specific factors considered include: (1) use of "beaconless" or open loop tracking versus use of a beacon on the Earth side of the link, and (2) selection of fine pointing strategy (body-fixed/spacecraft pointing, reflector pointing or various forms of electronic beam steering). Capabilities of recent spacecraft are discussed.

  9. CSF oligoclonal banding

    MedlinePlus

    ... oligoclonal bands may point to a diagnosis of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  10. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives

  11. Operational Observation of Australian Bioregions with Bands 8-19 of Modis

    NASA Astrophysics Data System (ADS)

    McAtee, B. K.; Gray, M.; Broomhall, M.; Lynch, M.; Fearns, P.

    2012-07-01

    Data from bands 1-7 are the most common bands of the MODIS instrument used for near-real time terrestrial earth observation operations in Australia. However, many of Australia's bioregions present unique scenarios which constitute a challenge for quantitative environmental remote sensing. We believe that data from MODIS bands 8-19 may provide significant benefit to Earth observation over particular bioregions of the Australian continent. Examples here include the use of band 8 in characterising aerosol optical depth over typically bright land surfaces and accounting for anomalous retrievals of atmospheric water vapour obtained using MOD05 based on the abundance of Australia's 'red dirt', which exhibits absorption features in the near infrared bands 17-19 of MODIS. Bioregion-focused applications such as those mentioned above have driven the development of automated processing, infrastructure for the atmospheric and BRDF correction of the first 19 bands of MODIS rather than only the first 7, which is more often the case. This work has been facilitated by the AusCover project which is the remote sensing component of the Terrestrial Ecosystem Research Network (TERN), itself a program designed to create a new generation of infrastructure for ecological study of the Australian landscape.

  12. Winter sky brightness and cloud cover at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Yang, Yi; Fu, Jianning; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel M.; Riddle, Reed; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Tothill, Nicholas F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2013-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.

  13. An X-ray survey of variable radio bright quasars

    NASA Technical Reports Server (NTRS)

    Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.

    1984-01-01

    A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.

  14. Brightness and transparency in the early visual cortex.

    PubMed

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  15. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in themore » reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.« less

  16. Deep Wideband Single Pointings and Mosaics in Radio Interferometry: How Accurately Do We Reconstruct Intensities and Spectral Indices of Faint Sources?

    NASA Astrophysics Data System (ADS)

    Rau, U.; Bhatnagar, S.; Owen, F. N.

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1-2 GHz)) and 46-pointing mosaic (D-array, C-Band (4-8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μJy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  17. Invited Talk: Photometry of Bright Variable Stars with the BRITE Constellation Nano-Satellites: Opportunities for Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2014-06-01

    (Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv < 4 mag.) variable stars. BRITE consists of a "Constellation" of 20 × 20 × 20-cm nano-satellite cubes equipped with wide field (20 × 24 deg.) CCD cameras, control systems, solar panels, onboard computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations

  18. Color effects associated with the 1999 microlensing brightness peaks in gravitationally lensed quasar Q2237+0305

    NASA Astrophysics Data System (ADS)

    Vakulik, V. G.; Schild, R. E.; Dudinov, V. N.; Minakov, A. A.; Nuritdinov, S. N.; Tsvetkova, V. S.; Zheleznyak, A. P.; Konichek, V. V.; Sinelnikov, I. Ye.; Burkhonov, O. A.; Artamonov, B. P.; Bruevich, V. V.

    2004-06-01

    We present photometry of the Q2237+0305 gravitational lens system in VRI spectral bands with the 1.5-m telescope of the high-altitude Maidanak observatory in 1995-2000. The time interval includes the epoch of the dramatic brightness peaks discovered previously in the A and C image components (Wozniak et al. \\cite{wo100},b). By good luck three nights of observation in 1999 were almost at the time of the strong brightness peak of image C, and approximately in the middle of the ascending slope of the brightness peak of image A. Having reached its brightness maximum at the very end of June 1999, the C component had changed its (V-I) color from 0.3m to 0.12m since August 1998, and from 0.56m to 0.12m since August 1997. It was the bluest component in the system in 1998 and 1999, but by October 2000 that was no longer the case. We do not know the color of the A component exactly at its brightness peak, but we do know that it became 0.47m brighter in R and 0.15m bluer in (V-R) between August 1998 and August 2000, about three months before the peak. More intensive monitoring of Q2237+0305 in July-October 2000, made on a nearly daily basis, did not reveal rapid (night-to-night and intranight) brightness variations of the components during this time period, exceeding the photometry error bars. Rather slow changes of magnitudes of the components were observed, in particular, nearly synchronous 0.08m fading of B and C components, and 0.05m brightening of D in the R band during July 23-October 7, 2000, while the B component had become the faintest in all filters by the end of this time period. The behavior of the colors of the components was analyzed on the basis of all our VRI observations, made in 1995-2000 on Maidanak. A qualitative tendency of the components to become bluer as their brightness increases, noted in our previous works, was confirmed quantitatively. A correlation between the color variations and variations of magnitudes of the components is demonstrated to be

  19. Teradiode's high brightness semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, <0.08 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. Our TeraBlade industrial platform achieves world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  20. iPTF discovery and identification of bright transients

    NASA Astrophysics Data System (ADS)

    Adams, Scott; Karamehmetoglu, Emir; Roy, Rupak; Neill, James D.; Walters, Richard; Cook, Dave; Kupfer, Thomas; Cannella, Chris; Blagorodnova, Nadejda; Yan, Lin; Kasliwal, Mansi; Kulkarni, Shri

    2017-02-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery of the following bright transients. We report as ATel alerts all objects brighter than 19 mag. Our discoveries are reported in two filters: sdss-g and Mould-I, denoted as g and I. All magnitudes are obtained using difference image photometry based on the PTFIDE pipeline described in Masci et al. 2016.Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R), and RB5 (Wozniak et al. 2013AAS...22143105W).

  1. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  2. Dark trions and biexcitons in WS2 and WSe2 made bright by e-e scattering

    NASA Astrophysics Data System (ADS)

    Danovich, Mark; Zólyomi, Viktor; Fal'Ko, Vladimir I.

    2017-04-01

    The direct band gap character and large spin-orbit splitting of the valence band edges (at the K and K’ valleys) in monolayer transition metal dichalcogenides have put these two-dimensional materials under the spot-light of intense experimental and theoretical studies. In particular, for Tungsten dichalcogenides it has been found that the sign of spin splitting of conduction band edges makes ground state excitons radiatively inactive (dark) due to spin and momentum mismatch between the constituent electron and hole. One might similarly assume that the ground states of charged excitons and biexcitons in these monolayers are also dark. Here, we show that the intervalley (K ⇆ K‧) electron-electron scattering mixes bright and dark states of these complexes, and estimate the radiative lifetimes in the ground states of these “semi-dark” trions and biexcitons to be ~10 ps, and analyse how these complexes appear in the temperature-dependent photoluminescence spectra of WS2 and WSe2 monolayers.

  3. Hi-C Observations of Penumbral Bright Dots

    NASA Astrophysics Data System (ADS)

    Alpert, S.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.; Winebarger, A. R.

    2014-12-01

    We use high-quality data obtained by the High Resolution Coronal Imager (Hi-C) to examine bright dots (BDs) in a sunspot's penumbra. The sizes of these BDs are on the order of 1 arcsecond (1") and are therefore hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6" pixel-1 resolution. These BDs become readily apparent with Hi-C's 0.1" pixel-1 resolution. Tian et al. (2014) found penumbral BDs in the transition region (TR) by using the Interface Region Imaging Spectrograph (IRIS). However, only a few of their dots could be associated with any enhanced brightness in AIA channels. In this work, we examine the characteristics of the penumbral BDs observed by Hi-C in a sunspot penumbra, including their sizes, lifetimes, speeds, and intensity. We also attempt to relate these BDs to the IRIS BDs. There are fewer Hi-C BDs in the penumbra than seen by IRIS, though different sunspots were studied. We use 193Å Hi-C data from July 11, 2012 which observed from ~18:52:00 UT--18:56:00 UT and supplement it with data from AIA's 193Å passband to see the complete lifetime of the dots that were born before and/or lasted longer than Hi-C's 5-minute observation period. We use additional AIA passbands and compare the light curves of the BDs at different temperatures to test whether the Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement, and of those that do, they move in a radial direction, toward or away from the sunspot umbra. Single BDs interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to move less. Our BDs are similar to the exceptional IRIS BDs: they move slower on average and their sizes and lifetimes are on the high end of the distribution of IRIS BDs. We infer that our penumbral BDs are some of the larger BDs observed by IRIS, those that are bright enough in TR emission to be seen in the 193Å band of Hi-C.

  4. Topological Maxwell Metal Bands in a Superconducting Qutrit

    NASA Astrophysics Data System (ADS)

    Tan, Xinsheng; Zhang, Dan-Wei; Liu, Qiang; Xue, Guangming; Yu, Hai-Feng; Zhu, Yan-Qing; Yan, Hui; Zhu, Shi-Liang; Yu, Yang

    2018-03-01

    We experimentally explore the topological Maxwell metal bands by mapping the momentum space of condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we engineer and observe the topological phase transition from the topological Maxwell metal to a trivial insulator, and report the first experiment to measure the Chern numbers that are higher than one.

  5. Brightness perception of unrelated self-luminous colors.

    PubMed

    Withouck, Martijn; Smet, Kevin A G; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Koenderink, Jan; Hanselaer, Peter

    2013-06-01

    The perception of brightness of unrelated self-luminous colored stimuli of the same luminance has been investigated. The Helmholtz-Kohlrausch (H-K) effect, i.e., an increase in brightness perception due to an increase in saturation, is clearly observed. This brightness perception is compared with the calculated brightness according to six existing vision models, color appearance models, and models based on the concept of equivalent luminance. Although these models included the H-K effect and half of them were developed to work with unrelated colors, none of the models seemed to be able to fully predict the perceived brightness. A tentative solution to increase the prediction accuracy of the color appearance model CAM97u, developed by Hunt, is presented.

  6. THE GALACTIC CENTER CLOUD G2 AND ITS GAS STREAMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfuhl, Oliver; Gillessen, Stefan; Eisenhauer, Frank

    2015-01-10

    We present new, deep near-infrared SINFONI @ VLT integral field spectroscopy of the gas cloud G2 in the Galactic Center, from late 2013 August, 2014 April, and 2014 July. G2 is visible in recombination line emission. The spatially resolved kinematic data track the ongoing tidal disruption. The cloud reached minimum distance to the MBH of 1950 Schwarzschild radii. As expected for an observation near the pericenter passage, roughly half of the gas in 2014 is found at the redshifted, pre-pericenter side of the orbit, while the other half is at the post-pericenter, blueshifted side. We also present an orbital solutionmore » for the gas cloud G1, which was discovered a decade ago in L'-band images when it was spatially almost coincident with Sgr A*. The orientation of the G1 orbit in the three angles is almost identical to that of G2, but it has a lower eccentricity and smaller semi-major axis. We show that the observed astrometric positions and radial velocities of G1 are compatible with the G2 orbit, assuming that (1) G1 was originally on the G2 orbit preceding G2 by 13 yr, and (2) a simple drag force acted on it during pericenter passage. Taken together with the previously described tail of G2, which we detect in recombination line emission and thermal broadband emission, we propose that G2 may be a bright knot in a much more extensive gas streamer. This matches purely gaseous models for G2, such as a stellar wind clump or the tidal debris from a partial disruption of a star.« less

  7. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.

    2015-12-15

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recoveredmore » that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.« less

  8. Occator Bright Spots in 3-D

    NASA Image and Video Library

    2017-03-09

    This 3-D image, or anaglyph, shows the center of Occator Crater, the brightest area on dwarf planet Ceres, using data from NASA's Dawn mission. The bright central area, including a dome that is 0.25 miles (400 meters) high, is called Cerealia Facula. The secondary, scattered bright areas are called Vinalia Faculae. A 2017 study suggests that the central bright area is significantly younger than Occator Crater. Estimates put Cerealia Facula at 4 million years old, while Occator Crater is approximately 34 million years old. The reflective material that appears so bright in this image is made of carbonate salts, according to Dawn researchers. The Vinalia Faculae seem to be composed of carbonates mixed with dark material. http://photojournal.jpl.nasa.gov/catalog/PIA21398

  9. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  10. Band nesting, massive Dirac fermions, and valley Landé and Zeeman effects in transition metal dichalcogenides: A tight-binding model

    NASA Astrophysics Data System (ADS)

    Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł

    2018-02-01

    We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.

  11. BEYOND 31 mag arcsec{sup −2}: THE FRONTIER OF LOW SURFACE BRIGHTNESS IMAGING WITH THE LARGEST OPTICAL TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trujillo, Ignacio; Fliri, Jüergen, E-mail: trujillo@iac.es; Departamento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife

    2016-06-01

    The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec{sup −2} (3 σ in 10 × 10 arcsec boxes; r -band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5–2 mag deeper than most previous results within a reasonable amount of time (i.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec{sup −2} (3 σ in 10 ×more » 10 arcsec boxes; r -band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ∼150 Mpc, by obtaining a radial profile of surface brightness down to μ{sub r} ∼ 33 mag arcsec{sup −2}. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ∼4 × 10{sup 9} M {sub ⊙}, i.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.« less

  12. Evidence for a decay of the faint flaring rate of Sgr A* from 2013 Aug., 13 months before a rise of the before a rise of the bright one

    NASA Astrophysics Data System (ADS)

    Mossoux, E.; Grosso, N.

    2017-10-01

    Thanks to the overall 1999-2015 Chandra, XMM-Newton and Swift observations of the supermassive black hole at the center of our Galaxy, Sgr A*, we tested the significance and persistence of the increase of 'bright and very bright' X-ray flaring rate (FR) argued by Ponti et al. (2015). We detected the flares observed with Swift using the binned light curves whereas those observed by XMM-Newton and Chandra were detected using the two-steps Bayesian blocks (BB) algorithm with a prior number of change-points properly calibrated. We then applied this algorithm on the flare arrival times corrected from the detection efficiency computed for each observation thanks to the observed distribution of flare fluxes and durations. We confirmed a constant overall FR and a rise of the FR for the faintest flares from 2014 Aug. 31 and identified a decay of the FR for the brightest flares from 2013 Aug. and Nov. A mass transfer from the Dusty S-cluster Object/G2 to Sgr A* is not required to produce the rise of bright FR since the energy saved by the decay of the number of faint flares during a long time period may be later released by several bright flares during a shorter time period.

  13. Band gap scaling laws in group IV nanotubes.

    PubMed

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-17

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2  + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  14. State-Of High Brightness RF Photo-Injector Design

    NASA Astrophysics Data System (ADS)

    Ferrario, Massimo; Clendenin, Jym; Palmer, Dennis; Rosenzweig, James; Serafini, Luca

    2000-04-01

    The art of designing optimized high brightness electron RF Photo-Injectors has moved in the last decade from a cut and try procedure, guided by experimental experience and time consuming particle tracking simulations, up to a fast parameter space scanning, guided by recent analytical results and a fast running semi-analytical code, so to reach the optimum operating point which corresponds to maximum beam brightness. Scaling laws and the theory of invariant envelope provide to the designers excellent tools for a first parameters choice and the code HOMDYN, based on a multi-slice envelope description of the beam dynamics, is tailored to describe the space charge dominated dynamics of laminar beams in presence of time dependent space charge forces, giving rise to a very fast modeling capability for photo-injectors design. We report in this talk the results of a recent beam dynamics study, motivated by the need to redesign the LCLS photoinjector. During this work a new effective working point for a split RF photoinjector has been discovered by means of the previous mentioned approach. By a proper choice of rf gun and solenoid parameters, the emittance evolution shows a double minimum behavior in the drifting region. If the booster is located where the relative emittance maximum and the envelope waist occur, the second emittance minimum can be shifted at the booster exit and frozen at a very low level (0.3 mm-mrad for a 1 nC flat top bunch), to the extent that the invariant envelope matching conditions are satisfied.

  15. Bright Compact Bulges (BCBs) at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-04-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z < 1.0), disc dominated (nB < 2.5) galaxies from HST/ACS and WFC3 in Chandra Deep Field South, in rest-frame B and I-band, we found a new class of bulges which is brighter and more compact than ellipticals. We refer to them as "Bright, Compact Bulges" (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12% of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al. (2011), we find that only ˜0.2% of the bulges can be classified as BCBs in the local Universe. Bulge to total ratio (B/T) of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact and passive elliptical galaxies observed at higher redshifts. Those high redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs supports a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  16. The effect of bright light on lens compensation in chicks.

    PubMed

    Ashby, Regan S; Schaeffel, Frank

    2010-10-01

    It has been shown that sunlight or bright indoor light can inhibit the development of deprivation myopia in chicks. It remains unclear whether light merely acts on deprivation myopia or, more generally, modulates the rate of emmetropization and its set point. This study was conducted to test how bright light interacts with compensation for imposed optical defocus. Furthermore, a dopamine antagonist was applied to test whether the protective effect of light is mediated by dopamine. Experiment A: Chicks monocularly wore either -7 or +7 D lenses for a period of 5 days, either under normal laboratory illuminance (500 lux, n = 12 and 16, respectively) or under high ambient illuminance (15,000 lux, n = 12 and 16). Experiment B: Chicks wore diffusers for a period of 4 days, either under normal laboratory illuminance (500 lux, n = 9) or high ambient illuminance (15,000 lux), with the bright-light group intravitreally injected daily with either the dopamine D(2) antagonist spiperone (500 μM, n = 9) or a vehicle solution (0.1% ascorbic acid, n = 9), with an untreated group serving as the control (n = 6). Axial length and refraction were measured at the commencement and cessation of all treatments. Exposure to high illuminances (15,000 lux) for 5 hours per day significantly slowed compensation for negative lenses, compared with that seen under 500 lux, although full compensation was still achieved. Compensation for positive lenses was accelerated by exposure to high illuminances but, again, the end point refraction was unchanged, compared with that of the 500-lux group. High illuminance also reduced deprivation myopia by roughly 60%, compared with that seen under 500 lux. This protective effect was abolished, however, by the daily injection of spiperone, but was unaffected by the injection of a vehicle solution. High illuminance levels reduce the rate of compensation for negative lenses and enhance the rate for positive lenses, but do not change the set point of

  17. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    NASA Astrophysics Data System (ADS)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  18. Tunable electronic structure in stained two dimensional van der Waals g-C2N/XSe2 (X = Mo, W) heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Z. D.; Wang, X. C.; Mi, W. B.

    2017-10-01

    The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.

  19. Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method

    NASA Astrophysics Data System (ADS)

    Ha, J.; Kim, J.; Kwak, M.; Ha, K.

    2007-12-01

    A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.

  20. The electronic band structure of Ge1-x Sn x in the full composition range: indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-Moss effect

    NASA Astrophysics Data System (ADS)

    Polak, M. P.; Scharoch, P.; Kudrawiec, R.

    2017-05-01

    A comprehensive and detailed study of the composition dependence of lattice constants, band gaps and band offsets has been performed for bulk Ge1-x Sn x alloy in the full composition range using state-of-the-art density functional theory methods. A spectral weight approach to band unfolding has been applied as a means of distinguishing the indirect and direct band gaps from folded supercell band structures. In this way, four characteristic regions of the band gap character have been identified for Ge1-x Sn x alloy: an indirect band gap (x  <  6.5%), a direct band gap (6.5%  <  x  <  25%) and an inverse band gap (x  >  25%) with inverse spin-orbit split-off for 45%  <  x  <  85%. In general, it has been observed that the bowing parameters of band edges (Γ and L-point in conduction band (CBΓ and CB L ), valence band (VB), and spin-orbit (SO) band) are rather large ({{b}\\text{C{{\\text{B}} Γ }}}   =  2.43  ±  0.06 eV, {{b}\\text{C{{\\text{B}}L}}}   =  0.64  ±  0.04 eV, {{b}\\text{VB}}   =  -0.59  ±  0.04 eV, and {{b}\\text{SO}}   =  -0.49  ±  0.05 eV). This indicates that Ge1-x Sn x behaves like a highly mismatched group IV alloy. The composition dependence of lattice constant shows negligible bowing (b a   =  -0.083 Å). Obtained results have been compared with available experimental data. The origin of band gap reduction and large bowing has been analyzed and conclusions have been drawn regarding the relationship between experimental and theoretical results. It is shown that due to the low DOS at the Γ-point, a significant filling of CB by electrons in the direct gap regime may easily take place. Therefore, the Burstein-Moss effect should be considered when comparing experimental data with theoretical predictions as has already been shown for other intrinsic n-type narrow gap semiconductors (e.g. InN).

  1. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Kleijn, Gijs Verdoes; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; van de Ven, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesús

    2017-12-01

    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc g', r' and i'-band images of the Fornax Deep Survey (FDS), in order to identify LSB galaxies in an area of 4 deg2 in the center of the Fornax cluster. The identified galaxies are divided into UDGs and dwarf-sized LSB galaxies, and their properties are compared. Methods: We identified visually all extended structures having r'-band central surface brightness of μ0,r' > 23 mag arcsec-2. We classified the objects based on their appearance into galaxies and tidal structures, and perform 2D Sérsic model fitting with GALFIT to measure the properties of those classified as galaxies. We analyzed their radial distribution and orientations with respect of the cluster center, and with respect to the other galaxies in our sample. We also studied their colors and compare the LSB galaxies in Fornax with those in other environments. Results: Our final sample complete in the parameter space of the previously known UDGs, consists of 205 galaxies of which 196 are LSB dwarfs (with Re < 1.5 kpc) and nine are UDGs (Re > 1.5 kpc). We show that the UDGs have (1) g'-r' colors similar to those of LSB dwarfs of the same luminosity; (2) the largest UDGs (Re > 3 kpc) in our sample appear different from the other LSB galaxies, in that they are significantly

  2. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  3. Optical Sky Brightness and Transparency during the Winter Season at Dome A Antarctica from the Gattini-All-Sky Camera

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Moore, Anna M.; Krisciunas, Kevin; Wang, Lifan; Ashley, Michael C. B.; Fu, Jianning; Brown, Peter J.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel; Riddle, Reed L.; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Suntzeff, Nicholas B.; Tothill, Nick; Travouillon, Tony; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2017-07-01

    The summit of the Antarctic plateau, Dome A, is proving to be an excellent site for optical, near-infrared, and terahertz astronomical observations. Gattini is a wide-field camera installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in 2009 January. We present here the measurements of sky brightness with the Gattini ultra-large field of view (90^\\circ × 90^\\circ ) in the photometric B-, V-, and R-bands; cloud cover statistics measured during the 2009 winter season; and an estimate of the sky transparency. A cumulative probability distribution indicates that the darkest 10% of the nights at Dome A have sky brightness of S B = 22.98, S V = 21.86, and S R = 21.68 mag arcsec-2. These values were obtained during the year 2009 with minimum aurora, and they are comparable to the faintest sky brightness at Maunakea and the best sites of northern Chile. Since every filter includes strong auroral lines that effectively contaminate the sky brightness measurements, for instruments working around the auroral lines, either with custom filters or with high spectral resolution instruments, these values could be easily obtained on a more routine basis. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based site. These light curves will be published in a future paper.

  4. Fermi Surface of Metallic V_{2}O_{3} from Angle-Resolved Photoemission: Mid-level Filling of e_{g}^{π} Bands.

    PubMed

    Lo Vecchio, I; Denlinger, J D; Krupin, O; Kim, B J; Metcalf, P A; Lupi, S; Allen, J W; Lanzara, A

    2016-10-14

    Using angle resolved photoemission spectroscopy, we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V_{2}O_{3}. Along the c axis we observe both an electron pocket and a triangular holelike FS topology, showing that both V 3d a_{1g} and e_{g}^{π} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.

  5. A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    2005-01-01

    Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.

  6. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  7. Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758

    NASA Astrophysics Data System (ADS)

    Reggiani, M.; Christiaens, V.; Absil, O.; Mawet, D.; Huby, E.; Choquet, E.; Gomez Gonzalez, C. A.; Ruane, G.; Femenia, B.; Serabyn, E.; Matthews, K.; Barraza, M.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Habraken, S.; Jolivet, A.; Karlsson, M.; Orban de Xivry, G.; Piron, P.; Surdej, J.; Vargas Catalan, E.; Wertz, O.

    2018-03-01

    Context. Transition disks offer the extraordinary opportunity to look for newly born planets and to investigate the early stages of planet formation. Aim. In this context we observed the Herbig A5 star MWC 758 with the L'-band vector vortex coronagraph installed in the near-infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Methods: Our high-contrast imaging observations show a bright (ΔL' = 7.0 ± 0.3 mag) point-like emission south of MWC 758 at a deprojected separation of 20 au (r = 0.''111 ± 0.''004) from the central star. We also recover the two spiral arms (southeast and northwest), already imaged by previous studies in polarized light, and discover a third arm to the southwest of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.''6 from the star. Results: We propose that the bright L'-band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A74

  8. The acoustical bright spot and mislocalization of tones by human listeners

    PubMed Central

    Macaulay, Eric J.; Hartmann, William M.; Rakerd, Brad

    2010-01-01

    Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0° (straight ahead) to 90° (extreme right). During this task, the tone levels and phases were measured in the listeners’ ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55°. In a source-identification task, listeners’ localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener’s identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD). PMID:20329844

  9. The acoustical bright spot and mislocalization of tones by human listeners.

    PubMed

    Macaulay, Eric J; Hartmann, William M; Rakerd, Brad

    2010-03-01

    Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0 degrees (straight ahead) to 90 degrees (extreme right). During this task, the tone levels and phases were measured in the listeners' ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55 degrees . In a source-identification task, listeners' localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener's identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD).

  10. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    NASA Astrophysics Data System (ADS)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  11. Effects of melting layer on Ku-band signal depolarization

    NASA Astrophysics Data System (ADS)

    Sarkar, Thumree; Das, Saurabh; Maitra, Animesh

    2014-09-01

    Propagation effects on Ku-band over an earth-space path is carried out at Kolkata, India, a tropical location, by receiving a Ku-band signal with horizontal plane polarization transmitted from the geostationary satellite NSS-6 (at 95°E). The amplitude of co-polar attenuation has been monitored along with the measurements of rain rate, rain drop size distribution and height profile of rain rate. The cross-polar enhancement of the signal is also monitored by receiving the same signal in orthogonal direction with another identical receiver. The experimental observations are used to study the effect of melting layer on both co-polar attenuation and cross-polar enhancement for the rain events observed during 2012-2013. Melting layer is indicated by the bright band signature in vertical profile of rain rate. The ground based drop size measurements indicate that the stratiform rain has more number of small drops whereas convective rain composed of large rain drops. The results indicate that the depolarization due to melting layer is more dominant compared to that due to the drop deformation mechanism at low rain rates.

  12. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.

    2017-12-01

    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  13. Network based sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  14. Strategies for the design of bright upconversion nanoparticles for bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Wiesholler, Lisa M.; Hirsch, Thomas

    2018-06-01

    In recent years upconversion nanoparticles (UCNPs) received great attention because of their outstanding optical properties. Especially in bioanalytical applications this class of materials can overcome limitations of common probes like high background fluorescence or blinking. Nevertheless, the requirements for UCNPs to be applicable in biological samples, e.g. small size, water-dispersibility, excitation at low power density are in contradiction with the demand of high brightness. Therefore, a lot of attention is payed to the enhancement of the upconversion luminescence. This review discuss the recent trends and strategies to boost the brightness of UCNPs, classified in three main directions: a) improving the efficiency of energy absorption by the sensitizer via coupling to plasmonic or photonic structures or via attachment of ligands for light harvesting; b) minimizing non-radiative deactivation by variations in the architecture of UCNPs; and c) changing the excitation wavelength to get bright particles at low excitation power density for applications in aqueous systems. These strategies are critically reviewed including current limitations as well as future perspectives for the design of efficient UCNPs especially for sensing application in biological samples or cells.

  15. Detection of significant cm to sub-mm band radio and  γ-ray correlated variability in Fermi bright blazars

    DOE PAGES

    Fuhrmann, L.; Larsson, S.; Chiang, J.; ...

    2014-05-12

    The exact location of the γ-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA programme) and γ-ray (0.1–300 GeV) ~3.5 yr light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. These results reveal: (i) the first highly significant multiband radio and γ-ray correlations (radio lagging γ rays) when averaging over the whole sample, (ii) average time delays (source frame: 76 ± 23 to 7 ±more » 9 d), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence τr, γ(ν) ∝ ν -1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk γ-ray production region typically located within/upstream of the 3 mm core region (τ3mm, γ = 12 ± 8 d), (iv) mean distances between the region of γ-ray peak emission and the radio ‘τ = 1 photosphere’ decreasing from 9.8 ± 3.0 pc (11 cm) to 0.9 ± 1.1 pc (2 mm) and 1.4 ± 0.8 pc (0.8 mm), (v) 3 mm/γ-ray correlations in nine individual sources at a significance level where one is expected by chance (probability: 4 × 10 -6), (vi) opacity and ‘time lag core shift’ estimates for quasar 3C 454.3 providing a lower limit for the distance of the bulk γ-ray production region from the supermassive black hole (SMBH) of ~0.8–1.6 pc, i.e. at the outer edge of the broad-line region (BLR) or beyond. A 3 mm τ = 1 surface at ~2–3 pc from the jet base (i.e. well outside the ‘canonical BLR’) finally suggests that BLR material extends to several parsec distances from the SMBH.« less

  16. Bright light induces choroidal thickening in chickens.

    PubMed

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2013-11-01

    Bright light is a potent inhibitor of myopia development in animal models. Because development of refractive errors has been linked to changes in choroidal thickness, we have studied in chickens whether bright light may exert its effects on myopia also through changes in choroidal thickness. Three-day-old chickens were exposed to "bright light" (15,000 lux; n = 14) from 10 AM to 4 PM but kept under "normal light" (500 lux) during the remaining time of the light phase for 5 days (total duration of light phase 8 AM to 6 PM). A control group (n = 14) was kept under normal light during the entire light phase. Choroidal thickness was measured in alert, hand-held animals with optical coherence tomography at 10 AM, 4 PM, and 8 PM every day. Complete data sets were available for 12 chicks in bright light group and nine in normal light group. The striking inter-individual variability in choroidal thickness (coefficient of variance: 23%) made it necessary to normalize changes to the individual baseline thickness of the choroid. During the 6 hours of exposure to bright light, choroidal thickness decreased by -5.2 ± 4.0% (mean ± SEM). By contrast, in the group kept under normal light, choroidal thickness increased by +15.4 ± 4.7% (difference between both groups p = 0.003). After an additional 4 hours, choroidal thickness increased also in the "bright light group" by +17.8 ± 3.5%, while there was little further change (+0.6 ± 4.0%) in the "normal light group" (difference p = 0.004). Finally, the choroid was thicker in the "bright light group" (+7.6 ± 26.0%) than in the "normal light group" (day 5: -18.6 ± 26.9%; difference p = 0.036). Bright light stimulates choroidal thickening in chickens, although the response is smaller than with experimentally imposed myopic defocus, and it occurs with some time delay. It nevertheless suggests that choroidal thickening is also involved in myopia inhibition by bright light.

  17. Spatiotemporal analysis of brightness induction

    PubMed Central

    McCourt, Mark E.

    2011-01-01

    Brightness induction refers to a class of visual illusions in which the perceived intensity of a region of space is influenced by the luminance of surrounding regions. These illusions are significant because they provide insight into the neural organization of the visual system. A novel quadrature-phase motion cancelation technique was developed to measure the magnitude of the grating induction brightness illusion across a wide range of spatial frequencies, temporal frequencies and test field heights. Canceling contrast is greatest at low frequencies and declines with increasing frequency in both dimensions, and with increasing test field height. Canceling contrast scales as the product of inducing grating spatial frequency and test field height (the number of inducing grating cycles per test field height). When plotted using a spatial axis which indexes this product, the spatiotemporal induction surfaces for four test field heights can be described as four partially overlapping sections of a single larger surface. These properties of brightness induction are explained in the context of multiscale spatial filtering. The present study is the first to measure the magnitude of grating induction as a function of temporal frequency. Taken in conjunction with several other studies (Blakeslee & McCourt, 2008; Robinson & de Sa, 2008; Magnussen & Glad, 1975) the results of this study illustrate that at least one form of brightness induction is very much faster than that reported by DeValois et al. (1986) and Rossi and Paradiso (1996), and are inconsistent with the proposition that brightness induction results from a slow “filling in” process. PMID:21763339

  18. 2-tiered antibody testing for early and late Lyme disease using only an immunoglobulin G blot with the addition of a VlsE band as the second-tier test.

    PubMed

    Branda, John A; Aguero-Rosenfeld, Maria E; Ferraro, Mary Jane; Johnson, Barbara J B; Wormser, Gary P; Steere, Allen C

    2010-01-01

    Standard 2-tiered immunoglobulin G (IgG) testing has performed well in late Lyme disease (LD), but IgM testing early in the illness has been problematic. IgG VlsE antibody testing, by itself, improves early sensitivity, but may lower specificity. We studied whether elements of the 2 approaches could be combined to produce a second-tier IgG blot that performs well throughout the infection. Separate serum sets from LD patients and control subjects were tested independently at 2 medical centers using whole-cell enzyme immunoassays and IgM and IgG immunoblots, with recombinant VlsE added to the IgG blots. The results from both centers were combined, and a new second-tier IgG algorithm was developed. With standard 2-tiered IgM and IgG testing, 31% of patients with active erythema migrans (stage 1), 63% of those with acute neuroborreliosis or carditis (stage 2), and 100% of those with arthritis or late neurologic involvement (stage 3) had positive results. Using new IgG criteria, in which only the VlsE band was scored as a second-tier test among patients with early LD (stage 1 or 2) and 5 of 11 IgG bands were required in those with stage 3 LD, 34% of patients with stage 1, 96% of those with stage 2, and 100% of those with stage 3 infection had positive responses. Both new and standard testing achieved 100% specificity. Compared with standard IgM and IgG testing, the new IgG algorithm (with VlsE band) eliminates the need for IgM testing; it provides comparable or better sensitivity, and it maintains high specificity.

  19. The local metallicity-surface brightness relationship in galactic disks

    NASA Technical Reports Server (NTRS)

    Ryder, Stuart D.

    1995-01-01

    We present the results of a first attempt to employ multiaperture masks to obtain spectrophotometry of H II regions in nearby galaxies. A total of 97 H II regions in six southern spiral galaxies were observed using a combination of multiaperture masks and conventional long-slit spectrophotometry. The oxygen abundances derived from the multiaperture mask observations using the empirical abundance diagnostic R(sub 23) are shown to be consistent with those from long-slit spectra and generally show better reproducibility and object definition. Although the number of objects that can be observed simultaneously with this particular system is still quite limited compared with either imaging spectrophotometry or fiber-fed spectrographs, the spectral resolution offered and high throughput in the blue help make multiaperture spectrophotometry a competitive technique for increasing the sampling of H II regions in both radial distance and luminosity. There is still no clear trend of abundance gradient with either the galaxy's luminosity or its Hubble type, although the extrapolated central abundance does appear to correlate with galaxy luminosity/mass. In order to avoid difficulty in choosing an appropriate normalizing radius, we instead plot the oxygen abundance against the underlying I-band surface brightness at the radial distance of the H II region and confirm the existence of a local metallicity-surface brightness reltaionship within the disks of spiral galaxies. Although the simple closed-boc model of galaxy evolution predicts almost the right form of this relationship, a more realistic multizone model employing expnentially decreasing gas infall provides a more satisfactory fit to the observational data, provided the expected enriched gas return from dying low-mass stars shedding their envelopes at late epochs is properly taken into account. This same model, with a star formation law based upon self-regulating star formation in a three-dimensional disk (Dopita & Ryder

  20. Galaxy Selection and the Surface Brightness Distribution

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  1. Band 3 in aging and neurological disease.

    PubMed

    Kay, M M

    1991-01-01

    Senescent cell antigen appears on old cells and marks them for death by initiating the binding of IgG autoantibody and subsequent removal by phagocytes in mammals and other vertebrates. We have created a synthetic aging antigen that blocks binding of IgG to senescent cells in vitro. Synthetic senescent cell antigen might be effective in preventing cellular destruction in vivo in certain diseases, and can be used to manipulate cellular life span in situ. Senescent cell antigen is generated by the modification of an important structural and transport membrane molecule, protein band 3. Band 3 is present in cellular, nuclear, Golgi, and mitochondrial membranes as well as in cell membranes. Band 3 proteins in nucleated cells participate in cell surface patching and capping. Band 3 maintains acid-base balance by mediating the exchange of anions (e.g., chloride, bicarbonate), and is the binding site for glycolytic enzymes. It is responsible for CO2 exchange in all tissues and organs. Thus, it is the most heavily used anion transport system in the body. Band 3 is a major transmembrane structural protein which attaches the plasma membrane to the internal cell cytoskeleton by binding to band 2.1 (ankyrin). Oxidation generates senescent cell antigen in situ. Band 3 is present in the central nervous system, and differences have been described in band 3 between young and aging brain tissue. One autosomal recessive neurological disease, choreoacanthocytosis, is associated with band 3 abnormalities. The 150 residues of the carboxyl terminus segment of band 3 appear to be altered. In brains from Alzheimer's disease patients, antibodies to aged band 3 label the amyloid core of classical plaques and the microglial cells located in the middle of the plaque in tissue sections, and an abnormal band 3 in immunoblots. Band 3 protein(s) in mammalian brain performs the same functions as that of erythroid band 3. These functions is anion transport, ankyrin binding, and generation of

  2. A brightness exceeding simulated Langmuir limit

    NASA Astrophysics Data System (ADS)

    Nakasuji, Mamoru

    2013-08-01

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  3. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Ding, Ya-qiong; Ren, Jie; Sun, Yong; Li, Yunhui; Jiang, Haitao; Chen, Hong

    2018-05-01

    The Zak phase, which refers to Berry's phase picked up by a particle moving across the Brillouin zone, characterizes the topological properties of Bloch bands in a one-dimensional periodic system. Here the Zak phase in dimerized one-dimensional locally resonant metamaterials is investigated. It is found that there are some singular points in the bulk band across which the Bloch states contribute π to the Zak phase, whereas in the rest of the band the contribution is nearly zero. These singular points associated with zero reflection are caused by two different mechanisms: the dimerization-independent antiresonance of each branch and the dimerization-dependent destructive interference in multiple backscattering. The structure undergoes a topological phase-transition point in the band structure where the band inverts, and the Zak phase, which is determined by the numbers of singular points in the bulk band, changes following a shift in dimerization parameter. Finally, the interface state between two dimerized metamaterial structures with different topological properties in the first band gap is demonstrated experimentally. The quasi-one-dimensional configuration of the system allows one to explore topology-inspired new methods and applications on the subwavelength scale.

  4. Flat bands in lattices with non-Hermitian coupling

    NASA Astrophysics Data System (ADS)

    Leykam, Daniel; Flach, Sergej; Chong, Y. D.

    2017-08-01

    We study non-Hermitian photonic lattices that exhibit competition between conservative and non-Hermitian (gain/loss) couplings. A bipartite sublattice symmetry enforces the existence of non-Hermitian flat bands, which are typically embedded in an auxiliary dispersive band and give rise to nondiffracting "compact localized states". Band crossings take the form of non-Hermitian degeneracies known as exceptional points. Excitations of the lattice can produce either diffracting or amplifying behaviors. If the non-Hermitian coupling is fine-tuned to generate an effective π flux, the lattice spectrum becomes completely flat, a non-Hermitian analog of Aharonov-Bohm caging in which the magnetic field is replaced by balanced gain and loss. When the effective flux is zero, the non-Hermitian band crossing points give rise to asymmetric diffraction and anomalous linear amplification.

  5. Integrative rehabilitation of elderly stroke survivors: the design and evaluation of the BrightArm™.

    PubMed

    Rabin, Bryan A; Burdea, Grigore C; Roll, Doru T; Hundal, Jasdeep S; Damiani, Frank; Pollack, Simcha

    2012-07-01

    To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations.

  6. Integrative rehabilitation of elderly stroke survivors: The design and evaluation of the BrightArm™

    PubMed Central

    Rabin, Bryan A.; Burdea, Grigore C.; Roll, Doru T.; Hundal, Jasdeep S.; Damiani, Frank; Pollack, Simcha

    2011-01-01

    Purpose To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. Method The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Results Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Conclusions Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations. PMID:22107353

  7. Aqueous origins of bright salt deposits on Ceres

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2017-11-01

    Bright materials have been reported in association with impact craters on Ceres. The abundant Na2CO3 and some ammonium salts, NH4HCO3 and/or NH4Cl, were detected in bright deposits within Occator crater with Dawn near infrared spectroscopy. The composition and appearance of the salts suggest their aqueous mobilization and emplacement after formation of the crater. Here we consider origins of the bright deposits through calculation of speciation in the H-C-N-O-Na-Cl water-salt type system constrained by the mass balance of observed salts. Calculations of chemical equilibria show that initial solutions had the pH of ∼10. The temperature and salinity of solutions could have not exceeded ∼273 K and ∼100 g per kg H2O, respectively. Freezing models reveal an early precipitation of Na2CO3·10H2O followed by minor NaHCO3. Ammonium salts precipitate near eutectic from brines enriched in NH4+, Cl- and Na+. A late-stage precipitation of NaCl·2H2O is modeled for solution compositions with added NaCl. Calculated eutectics are above 247 K. The apparently unabundant ammonium and chloride salts in Occator's deposits imply a rapid emplacement without a compositional evolution of solution. Salty ice grains could have deposited from post-impact ballistic plumes formed through low-pressure boiling of subsurface solutions. Hydrated and ammonium salts are unstable at maximum temperatures of Ceres' surface and could decompose through space weathering. Occator's ice-free salt deposits formed through a post-depositional sublimation of ice followed by dehydration of Na2CO3·10H2O and NaHCO3 to Na2CO3. In other regions, excavated and exposed bright materials could be salts initially deposited from plumes and accumulated at depth via post-impact boiling. The lack of detection of sulfates and an elevated carbonate/chloride ratio in Ceres' materials suggest an involvement of compounds abundant in the outer solar system.

  8. Magnetic field structure in single late-type giants: The weak G-band giant 37 Comae from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Tsvetkova, S.; Petit, P.; Konstantinova-Antova, R.; Aurière, M.; Wade, G. A.; Palacios, A.; Charbonnel, C.; Drake, N. A.

    2017-03-01

    Aims: This work studies the magnetic activity of the late-type giant 37 Com. This star belongs to the group of weak G-band stars that present very strong carbon deficiency in their photospheres. The paper is a part of a global investigation into the properties and origin of magnetic fields in cool giants. Methods: We use spectropolarimetric data, which allows the simultaneous measurement of the longitudinal magnetic field Bl, line activity indicators (Hα, Ca II IRT, S-index) and radial velocity of the star, and consequently perform a direct comparison of their time variability. Mean Stokes V profiles are extracted using the least squares deconvolution (LSD) method. One map of the surface magnetic field of the star is reconstructed via the Zeeman Doppler imaging (ZDI) inversion technique. Results: A periodogram analysis is performed on our dataset and it reveals a rotation period of 111 days. We interpret this period to be the rotation period of 37 Com. The reconstructed magnetic map reveals that the structure of the surface magnetic field is complex and features a significant toroidal component. The time variability of the line activity indicators, radial velocity and magnetic field Bl indicates a possible evolution of the surface magnetic structures in the period from 2008 to 2011. For completeness of our study, we use customized stellar evolutionary models suited to a weak G-band star. Synthetic spectra are also calculated to confirm the peculiar abundance of 37 Com. Conclusions: We deduce that 37 Com is a 6.5 M⊙ weak G-band star located in the Hertzsprung gap, whose magnetic activity is probably due to dynamo action. Based on observations obtained at the Télescope Bernard Lyot (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and Université de Toulouse, and at the Canada-France-Hawaii Telescope (CFHT) which is

  9. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  10. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  11. Evaluation of AIRS, MODIS, and HIRS 11 Micron Brightness Temperature Difference Changes from 2002 through 2006

    NASA Technical Reports Server (NTRS)

    Broberg, Steven E.; Aumann, Hartmut H.; Gregorich, David T.; Xiong, X.

    2006-01-01

    In an effort to validate the accuracy and stability of AIRS data at low scene temperatures (200-250 K range), we evaluated brightness temperatures at 11 microns with Aqua MODIS band 31 and HIRS/3 channel 8 for Antarctic granules between September 2002 and May 2006. We found excellent agreement with MODIS (at the 0.2 K level) over the full emperature range in data from early in the Aqua mission. However, in more recent data, starting in April 2005, we found a scene temperature dependence in MODIS-AIRS brightness temperature differences, with a discrepancy of 1- 1.5 K at 200 K. The comparison between AIRS and HIRS/3 (channel 8) on NOAA 16 for the same time period yields excellent agreement. The cause and time dependence of the disagreement with MODIS is under evaluation, but the change was coincident with a change in the MODIS production software from collection 4 to 5.

  12. Formation of a Bright Polar Hood over the Summer North Pole of Saturn in 2016

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Blalock, John J.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn P.

    2016-10-01

    We report that a bright polar hood has formed over the north pole of Saturn, seen first in images captured by the Cassini ISS camera in 2016. When the north pole was observed during the previous period of Cassini spacecraft's high-inclination orbits in 2012-2013, the concentration of light-scattering aerosols within 2-degree latitude of the north pole appeared to be less than that of the surrounding region, and appeared as a dark hole in all ISS filters, in particular in the shorter wavelength filters BL1 (460 nm), and VIO (420 nm). The north pole's appearance in 2012 was in contrast to that of the south pole in 2007, when the south pole had a bright polar hood in those short wavelengths; the south pole appeared dark in all other ISS filters in 2007. The difference between the south pole in 2007 and the north pole in 2012 was interpreted to be seasonal; in 2007, Saturn was approaching the equinox of 2009 and the south pole had been continuously illuminated since the previous equinox in 1995. In 2012, the north pole had been illuminated for only ~3 years after the long winter polar night. The bright hood over the summer south pole in 2007 was hypothesized to consist of aerosols produced by ultraviolet photodissociation of hydrocarbon molecules. Fletcher et al (2015) predicted that a similar bright hood should form over the north pole as Saturn approaches the 2017 solstice. In 2016, the Cassini spacecraft raised its orbital inclination again in preparation for its Grande Finale phase of the mission, from where it has a good view of the north pole. New images captured in 2016 show that the north pole has developed a bright polar hood. We present new images of the north polar region captured in 2016 that show the north pole, and other seasonally evolving high-latitude features including the northern hexagon. Our research has been supported by the Cassini Project, NASA grants OPR NNX11AM45G, CDAPS NNX15AD33G PATM NNX14AK07G, and NSF grant AAG 1212216.

  13. Flat band in disorder-driven non-Hermitian Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Zyuzin, A. A.; Zyuzin, A. Yu.

    2018-01-01

    We study the interplay of disorder and band-structure topology in a Weyl semimetal with a tilted conical spectrum around the Weyl points. The spectrum of particles is given by the eigenvalues of a non-Hermitian matrix, which contains contributions from a Weyl Hamiltonian and complex self-energy due to electron elastic scattering on disorder. We find that the tilt-induced matrix structure of the self-energy gives rise to either a flat band or a nodal line segment at the interface of the electron and hole pockets in the bulk band structure of type-II Weyl semimetals depending on the Weyl cone inclination. For the tilt in a single direction in momentum space, each Weyl point expands into a flat band lying on the plane, which is transverse to the direction of the tilt. The spectrum of the flat band is fully imaginary and is separated from the in-plane dispersive part of the spectrum by the "exceptional nodal ring" where the matrix of the Green's function in momentum-frequency space is defective. The tilt in two directions might shrink a flat band into a nodal line segment with "exceptional edge points." We discuss the connection to the non-Hermitian topological theory.

  14. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S

    NASA Astrophysics Data System (ADS)

    Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.

    2018-05-01

    We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.

  15. Bright-light mask treatment of delayed sleep phase syndrome.

    PubMed

    Cole, Roger J; Smith, Julian S; Alcalá, Yvonne C; Elliott, Jeffrey A; Kripke, Daniel F

    2002-02-01

    We treated delayed sleep phase syndrome (DSPS) with an illuminated mask that provides light through closed eyelids during sleep. Volunteers received either bright white light (2,700 lux, n = 28) or dim red light placebo (0.1 lux, n = 26) for 26 days at home. Mask lights were turned on (< 0.01 lux) 4 h before arising, ramped up for 1 h, and remained on at full brightness until arising. Volunteers also attempted to systematically advance sleep time, avoid naps, and avoid evening bright light. The light mask was well tolerated and produced little sleep disturbance. The acrophase of urinary 6-sulphatoxymelatonin (6-SMT) excretion advanced significantly from baseline in the bright group (p < 0.0006) and not in the dim group, but final phases were not significantly earlier in the bright group (ANCOVA ns). Bright treatment did produce significantly earlier phases, however, among volunteers whose baseline 6-SMT acrophase was later than the median of 0602 h (bright shift: 0732-0554 h, p < 0.0009; dim shift: 0746-0717 h, ns; ANCOVA p = 0.03). In this subgroup, sleep onset advanced significantly only with bright but not dim treatment (sleep onset shift: bright 0306-0145 h, p < 0.0002; dim 0229-0211 h, ns; ANCOVA p < .05). Despite equal expectations at baseline, participants rated bright treatment as more effective than dim treatment (p < 0.04). We conclude that bright-light mask treatment advances circadian phase and provides clinical benefit in DSPS individuals whose initial circadian delay is relatively severe.

  16. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.

    2014-12-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R{sub 25}) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with themore » values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for

  18. Use of abnormal preprophase bands to decipher division plane determination

    NASA Technical Reports Server (NTRS)

    Granger, C.; Cyr, R.

    2001-01-01

    Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.

  19. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    NASA Astrophysics Data System (ADS)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-06-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.

  20. Blow-up solutions for L 2 supercritical gKdV equations with exactly k blow-up points

    NASA Astrophysics Data System (ADS)

    Lan, Yang

    2017-08-01

    In this paper we consider the slightly L 2-supercritical gKdV equations \\partialt u+(uxx+u\\vert u\\vert p-1)_x=0 , with the nonlinearity 5 and 0<\\varepsilon\\ll 1 . In the previous work of the author, we know that there exists a stable self-similar blow-up dynamics for slightly L 2-supercritical gKdV equations. Such solutions can be viewed as solutions with a single blow-up point. In this paper we will prove the existence of solutions with multiple blow-up points, and give a description of the formation of the singularity near the blow-up time.

  1. Microwave Brightness Temperatures of Tilted Convective Systems

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.

    1998-01-01

    Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.

  2. Next generation diode lasers with enhanced brightness

    NASA Astrophysics Data System (ADS)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  3. Effect of evening exposure to bright or dim light after daytime bright light on absorption of dietary carbohydrates the following morning.

    PubMed

    Hirota, Naoko; Sone, Yoshiaki; Tokura, Hiromi

    2010-01-01

    We had previously reported on the effect of exposure to light on the human digestive system: daytime bright light exposure has a positive effect, whereas, evening bright light exposure has a negative effect on the efficiency of dietary carbohydrate absorption from the evening meal. These results prompted us to examine whether the light intensity to which subjects are exposed in the evening affects the efficiency of dietary carbohydrate absorption the following morning. In this study, subjects were exposed to either 50 lux (dim light conditions) or 2,000 lux (bright light conditions) in the evening for 9 h (from 15:00 to 24:00) after staying under bright light in the daytime (under 2,000 lux from 07:00 to 15:00). We measured unabsorbed dietary carbohydrates using the breath-hydrogen test the morning after exposure to either bright light or dim light the previous evening. Results showed that there was no significant difference between the two conditions in the amount of breath hydrogen. This indicates that evening exposure to bright or dim light after bright light exposure in the daytime has no varying effect on digestion or absorption of dietary carbohydrates in the following morning's breakfast.

  4. The Brightness of Colour

    PubMed Central

    Corney, David; Haynes, John-Dylan; Rees, Geraint; Lotto, R. Beau

    2009-01-01

    Background The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this ‘illusion’ to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. Results Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI. Conclusions The data suggest that perceptions of brightness

  5. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  6. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  7. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  8. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  9. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  10. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  11. MOST detects corotating bright spots on the mid-O-type giant ξ Persei

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Chené, André-Nicolas; Richardson, Noel D.; Henrichs, Huib F.; Desforges, Sébastien; Antoci, Victoria; Rowe, Jason F.; Matthews, Jaymie M.; Kuschnig, Rainer; Weiss, Werner W.; Sasselov, Dimitar; Rucinski, Slavek M.; Guenther, David B.

    2014-06-01

    We have used the MOST (Microvariability and Oscillations of STars) microsatellite to obtain four weeks of contiguous high-precision broad-band visual photometry of the O7.5III(n)((f)) star ξ Persei in 2011 November. This star is well known from previous work to show prominent DACs (discrete absorption components) on time-scales of about 2 d from UV spectroscopy and non-radial pulsation with one (l = 3) p-mode oscillation with a period of 3.5 h from optical spectroscopy. Our MOST-orbit (101.4 min) binned photometry fails to reveal any periodic light variations above the 0.1 mmag 3σ noise level for periods of a few hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer period variations are unlikely due to pulsations, including gravity modes. From our simulations based upon a simple spot model, we deduce that we are seeing the photometric modulation of several corotating bright spots on the stellar surface. In our model, the starting times (random) and lifetimes (up to several rotations) vary from one spot to another yet all spots rotate at the same period of 4.18 d, the best-estimated rotation period of the star. This is the first convincing reported case of corotating bright spots on an O star, with important implications for drivers of the DACs (resulting from corotating interaction regions) with possible bright-spot generation via a breakout at the surface of a global magnetic field generated by a subsurface convection zone.

  12. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    NASA Astrophysics Data System (ADS)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.

  13. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  14. Circadian rhythm of acute phase proteins under the influence of bright/dim light during the daytime.

    PubMed

    Kanikowska, Dominika; Hyun, Ki-Ja; Tokura, Hiromi; Azama, Takashi; Nishimura, Shinya

    2005-01-01

    We investigated the influence of two different light intensities, dim (100 lx) and bright (5000 lx), during the daytime on the circadian rhythms of selected acute phase proteins of C-reactive protein (CRP), alpha1-acid glycoprotein (AGP), alpha1-antichymotrypsin (ACT), transfferin (TF), alpha2-macroglobulin (alpha2-m), haptoglobin (HP), and ceruloplasmin (CP). Serum samples were collected from 7 healthy volunteers at 4 h intervals during two separate single 24 h spans during which they were exposed to the respective light intensity conditions. A circadian rhythm was detected only in ACT concentration in the bright light condition. The concentration of ACT, a positive acute phase protein (APP), increased (significantly significant differences in the ACT concentration were detected at 14:00 and 22:00 h) and AGP showed a tendency to be higher under the daytime bright compared to dim light conditions. There were no significant differences between the time point means under daytime dim and bright light conditions for alpha2-M, AGP, Tf, Cp, or Hp. The findings suggest that some, but not all, APP may be influenced by the environmental light intensity.

  15. NLTE ANALYSIS OF HIGH-RESOLUTION H -BAND SPECTRA. II. NEUTRAL MAGNESIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junbo; Shi, Jianrong; Liu, Chao

    Aiming at testing the validity of our magnesium atomic model and investigating the effects of non-local thermodynamical equilibrium (NLTE) on the formation of the H -band neutral magnesium lines, we derive the differential Mg abundances from selected transitions for 13 stars either adopting or relaxing the assumption of local thermodynamical equilibrium (LTE). Our analysis is based on high-resolution and high signal-to-noise ratio H -band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and optical spectra from several instruments. The absolute differences between the Mg abundances derived from the two wavelength bands are always less than 0.1 dex inmore » the NLTE analysis, while they are slightly larger for the LTE case. This suggests that our Mg atomic model is appropriate for investigating the NLTE formation of the H -band Mg lines. The NLTE corrections for the Mg i H -band lines are sensitive to the surface gravity, becoming larger for smaller log g values, and strong lines are more susceptible to departures from LTE. For cool giants, NLTE corrections tend to be negative, and for the strong line at 15765 Å they reach −0.14 dex in our sample, and up to −0.22 dex for other APOGEE stars. Our results suggest that it is important to include NLTE corrections in determining Mg abundances from the H -band Mg i transitions, especially when strong lines are used.« less

  16. The ZTF Bright Transient Survey

    NASA Astrophysics Data System (ADS)

    Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Miller, A. A.; Taggart, K.; Perley, D. A.; Gooba, A.

    2018-06-01

    As a supplement to the Zwicky Transient Facility (ZTF; ATel #11266) public alerts (ATel #11685) we plan to report (following ATel #11615) bright probable supernovae identified in the raw alert stream from the ZTF Northern Sky Survey ("Celestial Cinematography"; see Bellm & Kulkarni, 2017, Nature Astronomy 1, 71) to the Transient Name Server (https://wis-tns.weizmann.ac.il) on a daily basis; the ZTF Bright Transient Survey (BTS; see Kulkarni et al., 2018; arXiv:1710.04223).

  17. Novel high-brightness fiber coupled diode laser device

    NASA Astrophysics Data System (ADS)

    Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas

    2007-02-01

    High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.

  18. Gamut relativity: a new computational approach to brightness and lightness perception.

    PubMed

    Vladusich, Tony

    2013-01-09

    This article deconstructs the conventional theory that "brightness" and "lightness" constitute perceptual dimensions corresponding to the physical dimensions of luminance and reflectance, and builds in its place the theory that brightness and lightness correspond to computationally defined "modes," rather than dimensions, of perception. According to the theory, called gamut relativity, "blackness" and "whiteness" constitute the perceptual dimensions (forming a two-dimensional "blackness-whiteness" space) underlying achromatic color perception (black, white, and gray shades). These perceptual dimensions are postulated to be related to the neural activity levels in the ON and OFF channels of vision. The theory unifies and generalizes a number of extant concepts in the brightness and lightness literature, such as simultaneous contrast, anchoring, and scission, and quantitatively simulates several challenging perceptual phenomena, including the staircase Gelb effect and the effects of task instructions on achromatic color-matching behavior, all with a single free parameter. The theory also provides a new conception of achromatic color constancy in terms of the relative distances between points in blackness-whiteness space. The theory suggests a host of striking conclusions, the most important of which is that the perceptual dimensions of vision should be generically specified according to the computational properties of the brain, rather than in terms of "reified" physical dimensions. This new approach replaces the computational goal of estimating absolute physical quantities ("inverse optics") with the goal of computing object properties relatively.

  19. The ammonia absorption behavior on Jupiter during 2005-2015

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. Khozhenetz

    2017-10-01

    V.G.Tejfel, V.D.Vdovichenko, A.M.Karimov, P.G.Lysenko, , G.A.Kirienko, , V.A.Filippov, G.A.Kharitonova, A.S. KhozhenetzFessenkov Astrophysical Institute, Almaty, KazakhstanWe measured the intensity of the 645 and 787 nm NH3 absorption bands in five latitudinal belts of Jupiter (STrZ, SEB, EZ, NEB and NTrZ) during almost full period of its revolution around the Sun: from 2005 to 2015. The variations in the equivalent widths of the bands were investigated. The permanently lowered intensity of the 787 nm NH3 band in NEB is confirmed. There are also some systematic differences in latitudinal and temporal variations between the 645 and 787 nm ammonia bands. The equivalent width of the 787 nm NH3 band was averaged for all years of observations. Its maximum (W = 18.95 ± 0.75 A) corresponds to EZ, its minimum (W = 15.82 ± 0.68 A) corresponds to NEB. The 645 nm NH3 band shows the maximum in SEB (W = 6.78 ± 0.45 A), and the minimum in NTrZ (W = 5.38 ± 0.36 A). The weakened ammonia absorption is also observed in the Great Red Spot. However, this is due to the increased density of the clouds inside the Spot storm, but not to decreased gaseous ammonia abundance, in contrast to NEB. The brightness temperature of GRS in the infrared and millimeter ranges of thermal radiation is lower, in contrast to NEB, where an increased brightness temperature is observed. The enhanced cloud density may explain also a pretty high brightness of GRS observed in strong methane absorption bands such as the 887 nm CH4 band and more long waved ones.

  20. The perception of coherent and non-coherent auditory objects: a signature in gamma frequency band.

    PubMed

    Knief, A; Schulte, M; Bertran, O; Pantev, C

    2000-07-01

    The pertinence of gamma band activity in magnetoencephalographic and electroencephalographic recordings for the performance of a gestalt recognition process is a question at issue. We investigated the functional relevance of gamma band activity for the perception of auditory objects. An auditory experiment was performed as an analog to the Kanizsa experiment in the visual modality, comprising four different coherent and non-coherent stimuli. For the first time functional differences of evoked gamma band activity due to the perception of these stimuli were demonstrated by various methods (localization of sources, wavelet analysis and independent component analysis, ICA). Responses to coherent stimuli were found to have more features in common compared to non-coherent stimuli (e.g. closer located sources and smaller number of ICA components). The results point to the existence of a pitch processor in the auditory pathway.

  1. Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Giribono, A.; Lollo, V.; Marongiu, M.; Mostacci, A.; Di Pirro, G.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2017-10-01

    We report on the experimental characterization of the effect that a passive plasma lens in the overdense regime has on high-brightness bunch quality by means of 6D phase-space analysis. The passive lens is generated by confining hydrogen gas with a capillary tube pre-ionized with a high-voltage discharge. We observed that the optimum condition is retrieved at the end of the overdense regime with almost no effect on bunch brightness. The presence of gas jets, leaking from the hollow capillary end-points, extends the lens effects also outside of the capillary, resulting in longer focusing channels. Experimental results are supported with numerical simulations of the complete accelerator line together with the plasma channel section.

  2. The night sky brightness at McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  3. Intrinsic properties of high-spin band structures in triaxial nuclei

    NASA Astrophysics Data System (ADS)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  4. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    NASA Technical Reports Server (NTRS)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  5. Extended Bright Bodies - Flight and Ground Software Challenges on the Cassini Mission at Saturn

    NASA Technical Reports Server (NTRS)

    Sung, Tina S.; Burk, Thomas A.

    2016-01-01

    Extended bright bodies in the Saturn environment such as Saturn's rings, the planet itself, and Saturn's satellites near the Cassini spacecraft may interfere with the star tracker's ability to find stars. These interferences can create faulty spacecraft attitude knowledge, which would decrease the pointing accuracy or even trip a fault protection response on board the spacecraft. The effects of the extended bright body interference were observed in December of 2000 when Cassini flew by Jupiter. Based on this flight experience and expected star tracker behavior at Saturn, the Cassini AACS operations team defined flight rules to suspend the star tracker during predicted interference windows. The flight rules are also implemented in the existing ground software called Kinematic Predictor Tool to create star identification suspend commands to be uplinked to the spacecraft for future predicted interferences. This paper discusses the details of how extended bright bodies impact Cassini's acquisition of attitude knowledge, how the observed data helped the ground engineers in developing flight rules, and how automated methods are used in the flight and ground software to ensure the spacecraft is continuously operated within these flight rules. This paper also discusses how these established procedures will continue to be used to overcome new bright body challenges that Cassini will encounter during its dips inside the rings of Saturn for its final orbits of a remarkable 20-year mission at Saturn.

  6. Color Dispersion as an Indicator of Stellar Population Complexity: Insights from the Pixel Color–Magnitude Diagrams of 32 Bright Galaxies in Abell 1139 and Abell 2589

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Pak, Mina; Lee, Hye-Ran; Oh, Sree

    2018-04-01

    We investigate the properties of bright galaxies of various morphological types in Abell 1139 and Abell 2589, using pixel color–magnitude diagram (pCMD) analysis. The sample contains 32 galaxies brighter than M r = ‑21.3 mag with spectroscopic redshifts, which are deeply imaged in the g and r bands using the MegaCam mounted on the Canada–France–Hawaii Telescope. After masking contaminants with two-step procedures, we examine how the detailed properties in the pCMDs depend on galaxy morphology and infrared color. The mean g ‑ r color as a function of surface brightness (μ r ) in the pCMD of a galaxy shows good performance in distinguishing between early- and late-type galaxies, but it is not perfect because of the similarity between elliptical galaxies and bulge-dominated spiral galaxies. On the other hand, the g ‑ r color dispersion as a function of μ r works better. We find that the best set of parameters for galaxy classification is a combination of the minimum color dispersion at μ r ≤ 21.2 mag arcsec‑2 and the maximum color dispersion at 20.0 ≤ μ r ≤ 21.0 mag arcsec‑2 the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Finally, the color dispersion measurements of an elliptical galaxy appear to be correlated with the Wide-field Infrared Survey Explorer infrared color ([4.6]–[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  7. Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation

    NASA Astrophysics Data System (ADS)

    Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  8. L-band radiometry for sea ice applications

    NASA Astrophysics Data System (ADS)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Peake (1976). This expression was used by Menashi et al. (1993) to derive the thickness of sea ice from UHF (0.6 GHz) radiometer. Second, retrieval algorithms for sea ice parameters with emphasis on ice-water discrimination from L-band observations considering the specific SMOS observations modes and geometries are investigated. A modified Menashi model with the permittivity depending on brine volume and temperature suggests a thickness sensitivity of up to 150 cm for low salinity (multi year or brackish) sea ice at low temperatures. At temperatures approaching the melting point the thickness sensitivity reduces to a few centimetres. For first year ice the modelled thickness sensitivity is roughly half a meter. Runs of the model MEMLS with input data generated from a 1-d thermodynamic sea ice model lead to similar conclusio. The results of the forward model may strongly vary with the input microphysical details. E.g. if the permittivity is modelled to depend in addition on the sea ice thickness as supported by several former field campaigns for thin ice, the model predictions change strongly. Prior to the launch of SMOS, an important source of observational data is the SMOS Sea-Ice campaign held near Kokkola, Finland, March 2007 conducted as an add-on of the POL-ICE campaign. Co-incident L-band observations taken with the EMIRAD instrument of the Technical University of Denmark, ice thickness values determined from the EM bird of AWI and in situ observations during the campaign are combined. Although the campaign data are to be use with care, for selected parts of the flights the sea ice thickness can be retrieved correctly. However, as the instrumental conditions and calibration were not optimal, more in situ data, preferably from the Arctic, will be needed before drawing clear conclusions about a future the sea ice thickness product based on SMOS data. Use of additional information from other microwave sensors like AMSR-E might be needed to constrain the conditions, e.g

  9. Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development.

    PubMed

    Behnke, Thomas; Mathejczyk, Julia E; Brehm, Robert; Würth, Christian; Gomes, Fernanda Ramos; Dullin, Christian; Napp, Joanna; Alves, Frauke; Resch-Genger, Ute

    2013-01-01

    Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Ka-Band Site Characterization of the NASA Near Earth Network in Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Morse, J.; Nessel, J.; Zemba, M.; Tuttle, K.; Caroglanian, A.; Younes, B.; Pedersen, Sten-Chirstian

    2011-01-01

    Critical to NASA s rapid migration toward Ka-Band is the comprehensive characterization of the communication channels at NASA's ground sites to determine the effects of the atmosphere on signal propagation and the network's ability to support various classes of users in different orbits. Accordingly, NASA has initiated a number of studies involving the ground sites of its Near Earth and Deep Space Networks. Recently, NASA concluded a memorandum of agreement (MOA) with the Norwegian Space Centre of the Kingdom of Norway and began a joint site characterization study to determine the atmospheric effects on Ka-Band links at the Svalbard Satellite Station in Norway, which remains a critical component of NASA s Near Earth Communication Network (NEN). System planning and design for Ka-band links at the Svalbard site cannot be optimally achieved unless measured attenuation statistics (e.g. cumulative distribution functions (CDF)) are obtained. In general, the CDF will determine the necessary system margin and overall system availability due to the atmospheric effects. To statistically characterize the attenuation statistics at the Svalbard site, NASA has constructed a ground-based monitoring station consisting of a multi-channel total power radiometer (25.5 - 26.5 GHz) and a weather monitoring station to continuously measure (at 1 second intervals) attenuation and excess noise (brightness temperature). These instruments have been tested in a laboratory environment as well as in an analogous outdoor climate (i.e. winter in Northeast Ohio), and the station was deployed in Svalbard, Norway in May 2011. The measurement campaign is planned to last a minimum of 3 years but not exceeding a maximum of 5 years.

  11. THE THIRD SIGNATURE OF GRANULATION IN BRIGHT-GIANT AND SUPERGIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F.; Pugh, Teznie, E-mail: dfgray@uwo.ca

    2012-04-15

    We investigated third-signature granulation plots for 18 bright giants and supergiants and one giant of spectral classes G0 to M3. These plots reveal the net granulation velocities, averaged over the stellar disk, as a function of depth. Supergiants show significant differences from the 'standard' shape seen for lower-luminosity stars. Most notable is a striking reversal of slope seen for three of the nine supergiants, i.e., stronger lines are more blueshifted than weaker lines, opposite the solar case. Changes in the third-signature plot of {alpha} Sco (M1.5 Iab) with time imply granulation cells that penetrate only the lower portion of themore » photosphere. For those stars showing the standard shape, we derive scaling factors relative to the Sun that serve as a first-order measure of the strength of the granulation relative to the Sun. For G-type stars, the third-signature scale of the bright giants and supergiants is approximately 1.5 times as strong as in dwarfs, but for K stars, there in no discernible difference between higher-luminosity stars and dwarfs. Classical macroturbulence, a measure of the velocity dispersion of the granulation, increases with the third-signature-plot scale factors, but at different rates for different luminosity classes.« less

  12. Radial Distribution of X-Ray Point Sources Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas

    2009-11-01

    We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB

  13. Analysis and machine mapping of the distribution of band recoveries

    USGS Publications Warehouse

    Cowardin, L.M.

    1977-01-01

    A method of calculating distance and bearing from banding site to recovery location based on the solution of a spherical triangle is presented. X and Y distances on an ordinate grid were applied to computer plotting of recoveries on a map. The advantages and disadvantages of tables of recoveries by State or degree block, axial lines, and distance of recovery from banding site for presentation and comparison of the spatial distribution of band recoveries are discussed. A special web-shaped partition formed by concentric circles about the point of banding and great circles at 30-degree intervals through the point of banding has certain advantages over other methods. Comparison of distributions by means of a X? contingency test is illustrated. The statistic V = X?/N can be used as a measure of difference between two distributions of band recoveries and its possible use is illustrated as a measure of the degree of migrational homing.

  14. Color constancy using bright-neutral pixels

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Luo, Yupin

    2014-03-01

    An effective illuminant-estimation approach for color constancy is proposed. Bright and near-neutral pixels are selected to jointly represent the illuminant color and utilized for illuminant estimation. To assess the representing capability of pixels, bright-neutral strength (BNS) is proposed by combining pixel chroma and brightness. Accordingly, a certain percentage of pixels with the largest BNS is selected to be the representative set. For every input image, a proper percentage value is determined via an iterative strategy by seeking the optimal color-corrected image. To compare various color-corrected images of an input image, image color-cast degree (ICCD) is devised using means and standard deviations of RGB channels. Experimental evaluation on standard real-world datasets validates the effectiveness of the proposed approach.

  15. Moon night sky brightness simulation for the Xinglong station

    NASA Astrophysics Data System (ADS)

    Yao, Song; Zhang, Hao-Tong; Yuan, Hai-Long; Zhao, Yong-Heng; Dong, Yi-Qiao; Bai, Zhong-Rui; Deng, Li-Cai; Lei, Ya-Juan

    2013-10-01

    Using a sky brightness monitor at the Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences, we collected data from 22 dark clear nights and 90 moon nights. We first measured the sky brightness variation with time for dark nights and found a clear correlation between sky brightness and human activity. Then with a modified sky brightness model of moon nights and data from these nights, we derived the typical value for several important parameters in the model. With these results, we calculated the sky brightness distribution under a given moon condition for the Xinglong station. Furthermore, we simulated the sky brightness distribution of a moon night for a telescope with a 5° field of view (such as LAMOST). These simulations will be helpful for determining the limiting magnitude and exposure time, as well as planning the survey for LAMOST during moon nights.

  16. REVERBERATION MAPPING WITH INTERMEDIATE-BAND PHOTOMETRY: DETECTION OF BROAD-LINE Hα TIME LAGS FOR QUASARS AT 0.2 < z < 0.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Linhua; Shen, Yue; McGreer, Ian D.

    2016-02-20

    We present a reverberation mapping (RM) experiment that combines broad- and intermediate-band photometry; it is the first such attempt targeting 13 quasars at 0.2 < z < 0.9. The quasars were selected to have strong Hα or Hβ emission lines that are located in one of three intermediate bands (with FWHM around 200 Å) centered at 8045, 8505, and 9171 Å. The imaging observations were carried out in the intermediate bands and the broad i and z bands using the prime-focus imager 90Prime on the 2.3 m Bok telescope. Because of the large (∼1 deg{sup 2}) field of view (FOV) of 90Prime, we includedmore » the 13 quasars within only five telescope pointings or fields. The five fields were repeatedly observed over 20–30 epochs that were unevenly distributed over a duration of 5–6 months. The combination of the broad- and intermediate-band photometry allows us to derive accurate light curves for both optical continuum emission (from the accretion disk) and line emission (from the broad-line region, or BLR). We detect Hα time lags between the continuum and line emission in six quasars. These quasars are at relatively low redshifts 0.2 < z < 0.4. The measured lags are consistent with the current BLR size–luminosity relation for Hβ at z < 0.3. While this experiment appears successful in detecting lags of the bright Hα line, further investigation is required to see if it can also be applied to the fainter Hβ line for quasars at higher redshifts. Finally we demonstrate that, by using a small telescope with a large FOV, intermediate-band photometric RM can be efficiently executed for a large sample of quasars at z > 0.2.« less

  17. Nonthermal X-Ray Emission from the Shell-Type Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.; Gaensler, Bryan M.; Dame, T. M.; Hughes, John P.; Plucinsky, Paul P.; Green, Anne

    2002-01-01

    Recent Advanced Spacecraft for Cosmology Astrophysics (ASCA) observations of G347.3-0.5, a supernova remnant (SNR) discovered in the ROSAT All-Sky Survey, reveal nonthermal emission from a region along the northwestern shell. Here we report on new pointed ASCA observations of G347.3-0.5 that confirm this result for all the bright shell regions and also reveal similar emission, although with slightly different spectral properties, from the remainder of the SNR. Curiously, no thermal X-ray emission is detected anywhere in the remnant. We derive limits on the amount of thermal emitting material present in G347.3-0.5 and present new radio continuum, CO, and infrared results that indicate that the remnant is distant and of moderate age. We show that our observations are broadly consistent with a scenario that has most of the supernova remnant shock wave still within the stellar wind bubble of its progenitor star, while part of it appears to be interacting with denser material. A point source at the center of the remnant has spectral properties similar to those expected for a neutron star and may represent the compact relic of the supernova progenitor.

  18. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of

  19. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 micrometer region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1993-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrow bands at 8, 11, and 12 mu m has been proposed by Ackerman et al. (1990). In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria (1992), we have found that the brightness temperature differences between the 8 and 11 mu m bands for soils, rocks and minerals, and dry vegetation can vary between approximately -8 K and +8 K due solely to surface emissivity variations. We conclude that although the method of Ackerman et al. is useful for detecting cirrus clouds over areas covered by green vegetation, water, and ice, it is less effective for detecting cirrus clouds over areas covered by bare soils, rocks and minerals, and dry vegetation. In addition, we recommend that in future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  20. 325 and 610 MHz radio counterparts of SNR G353.6-0.7 also known as HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Nayana, A. J.; Chandra, Poonam; Roy, Subhashis; Green, David A.; Acero, Fabio; Lemoine-Goumard, Marianne; Marcowith, Alexandre; Ray, Alak K.; Renaud, Matthieu

    2017-05-01

    HESS J1731-347 also known as SNR G353.6-0.7 is one of the five known shell-type supernova remnants (SNRs) emitting in the very high energy (VHE, energy > 0.1 TeV) γ-ray domain. We observed this TeV SNR with the Giant Metrewave Radio Telescope (GMRT) in 1390, 610 and 325 MHz bands. In this paper, we report the discovery of 325 and 610 MHz radio counterparts of the SNR HESS J1731-347 with the GMRT. Various filaments of the SNR are clearly seen in the 325 and 610 MHz bands. However, the faintest feature in the radio bands corresponds to the peak in VHE emission. We explain this anti-correlation in terms of a possible leptonic origin of the observed VHE γ-ray emission. We determine the spectral indices of the bright individual filaments, which were detected in both the 610 and the 325 MHz bands. Our values range from -1.11 to -0.15, consistent with the non-thermal radio emission. We also report a possible radio counterpart of a nearby TeV source HESS J1729-345 from the 843 MHz Molonglo Galactic Plane Survey and the 1.4 GHz Southern Galactic Plane Survey maps. The positive radio spectral index of this possible counterpart suggests a thermal origin of the radio emission of this nearby TeV source.

  1. Dark-bright soliton pairs in nonlocal nonlinear media.

    PubMed

    Lin, Yuan Yao; Lee, Ray-Kuang

    2007-07-09

    We study the formation of dark-bright vector soliton pairs in nonlocal Kerr-type nonlinear medium. We show, by analytical analysis and direct numerical calculation, that in addition to stabilize of vector soliton pairs nonlocal nonlinearity also helps to reduce the threshold power for forming a guided bright soliton. With help of the nonlocality, it is expected that the observation of dark-bright vector soliton pairs in experiments becomes more workable.

  2. Dynamic resetting of the human circadian pacemaker by intermittent bright light

    NASA Technical Reports Server (NTRS)

    Rimmer, D. W.; Boivin, D. B.; Shanahan, T. L.; Kronauer, R. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    In humans, experimental studies of circadian resetting typically have been limited to lengthy episodes of exposure to continuous bright light. To evaluate the time course of the human endogenous circadian pacemaker's resetting response to brief episodes of intermittent bright light, we studied 16 subjects assigned to one of two intermittent lighting conditions in which the subjects were presented with intermittent episodes of bright-light exposure at 25- or 90-min intervals. The effective duration of bright-light exposure was 31% or 63% compared with a continuous 5-h bright-light stimulus. Exposure to intermittent bright light elicited almost as great a resetting response compared with 5 h of continuous bright light. We conclude that exposure to intermittent bright light produces robust phase shifts of the endogenous circadian pacemaker. Furthermore, these results demonstrate that humans, like other species, exhibit an enhanced sensitivity to the initial minutes of bright-light exposure.

  3. Comparison of measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Barella-Ortiz, Anaïs; Polcher, Jan; de Rosnay, Patricia; Piles, Maria; Gelati, Emiliano

    2017-01-01

    L-band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM estimates. The work exposed compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The two modelled sets were estimated using a radiative transfer model and state variables from two land-surface models: (i) ORCHIDEE and (ii) H-TESSEL. The radiative transfer model used is the CMEM. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations at the moment. Further hypotheses are proposed and will be explored in a forthcoming paper. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies.

  4. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  5. The Brightest of Reionizing Galaxies Survey: Constraints on the Bright End of the z ~ 8 Luminosity Function

    NASA Astrophysics Data System (ADS)

    Bradley, L. D.; Trenti, M.; Oesch, P. A.; Stiavelli, M.; Treu, T.; Bouwens, R. J.; Shull, J. M.; Holwerda, B. W.; Pirzkal, N.

    2012-12-01

    We report the discovery of 33 Lyman-break galaxy candidates at z ~ 8 detected in Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging as part of the Brightest of Reionizing Galaxies (BoRG) pure-parallel survey. The ongoing BoRG survey currently has the largest area (274 arcmin2) with Y 098 (or Y 105), J 125, and H 160 band coverage needed to search for z ~ 8 galaxies, about three times the current CANDELS area, and slightly larger than what will be the final CANDELS wide component with Y 105 data (required to select z ~ 8 sources). Our sample of 33 relatively bright Y 098-dropout galaxies have J 125-band magnitudes between 25.5 and 27.4 mag. This is the largest sample of bright (J 125 <~ 27.4) z ~ 8 galaxy candidates presented to date. Combining our data set with the Hubble Ultra-Deep Field data set, we constrain the rest-frame ultraviolet galaxy luminosity function at z ~ 8 over the widest dynamic range currently available. The combined data sets are well fitted by a Schechter function, i.e., \\phi (L) = \\phi _{*} (L/L_{*})^{\\alpha }\\ e^{-(L/L_{*})}, without evidence for an excess of sources at the bright end. At 68% confidence, for h = 0.7 we derive phi* = (4.3+3.5 -2.1) × 10-4 Mpc-3, M * = -20.26+0.29 -0.34, and a very steep faint-end slope α = -1.98+0.23 -0.22. While the best-fit parameters still have a strong degeneracy, especially between phi* and M *, our improved coverage at the bright end has reduced the uncertainty of the faint-end power-law slope at z ~ 8 compared to the best previous determination at ±0.4. With a future expansion of the BoRG survey, combined with planned ultradeep WFC3/IR observations, it will be possible to further reduce this uncertainty and clearly demonstrate the steepening of the faint-end slope compared to measurements at lower redshift, thereby confirming the key role played by small galaxies in the reionization of the universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space

  6. Topological Band Theory for Non-Hermitian Hamiltonians

    NASA Astrophysics Data System (ADS)

    Shen, Huitao; Zhen, Bo; Fu, Liang

    2018-04-01

    We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify "gapped" bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated "exceptional points" in momentum space. We also systematically classify all types of band degeneracies.

  7. Split-face comparison between single-band and dual-band pulsed light technology for treatment of photodamage.

    PubMed

    Varughese, Neal; Keller, Lauren; Goldberg, David J

    2016-08-01

    Intense pulsed light (IPL) has a well-recognized role in the treatment of photodamaged skin. To assess the safety and efficacy of a novel single-band IPL handpiece versus dual-band IPL handpiece in the treatment of photodamage. This was a prospective, single-center split-face study with 20 enrolled participants. Three treatments, 21 days apart, were administered to the subjects and follow-up was performed for 20 weeks. The left side of the face was treated with the single-band handpiece. The right side of the face was treated with the dual-band handpiece. Blinded investigators assessed the subjects' skin texture, pigmented components of photodamage, and presence of telangiectasia both before and after treatment, utilizing a five-point scale. Pigmented components of photodamage, skin texture, and presence of telangiectasias on the left and right side of the face were improved at the end of treatment. At 20-week follow-up, the side treated with single-band handpiece showed improvement in telangiectasia and pigmentation that was statistically superior to the contralateral side treated with the dual-band handpiece. Both devices equally improved textural changes. No adverse effects were noted with either device. Both single-band and dual-band IPL technology are safe and effective in the treatment of photodamaged facial skin. IPL treatment with a single-band handpiece yielded results comparable or superior to dual-band technology.

  8. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  9. VizieR Online Data Catalog: Deep Herschel PACS point spread functions (Bocchio+, 2016)

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Bianchi, A.; Abergel, S.

    2016-06-01

    Herschel PACS dedicated PSF observations are scanmaps centred on various objects taken at 70 (blue channel), 100 (green channel) and 160 (red channel) um. The core of the PSF is best characterised observing faint objects (e.g. the asteroid Vesta), while the wings of the PSF can only be seen in observations of bright objects (e.g. Mars). Using a combination of images of bright and faint objects it is therefore possible to have a good characterisation of the PACS PSFs. (2 data files).

  10. Bright ZTF transients

    NASA Astrophysics Data System (ADS)

    Fremling, C.; Kulkarni, S. R.; Taggart, K.; Perley, D.

    2018-05-01

    As a part of ongoing commissioning of the Zwicky Transient Facility (ZTF; ATel #11266) Alert Infrastructure, here we report bright probable supernovae identified in the raw alert stream resulting from the public ZTF Northern Sky Survey ("Celestial Cinematagrophy"; see Bellm & Kulkarni, Nature Astronomy 1, 71, 2017).

  11. Albus 1: A Very Bright White Dwarf Candidate

    NASA Astrophysics Data System (ADS)

    Caballero, José Antonio; Solano, Enrique

    2007-08-01

    We have serendipitously discovered a previously unknown, bright source (BT=11.75+/-0.07 mag) with a very blue VT-Ks color, which we have named Albus 1. A photometric and astrometric study using Virtual Observatory tools has shown that it possesses an appreciable proper motion and magnitudes and colors very similar to those of the well-known white dwarf G191-B2B. We consider Albus 1 as a DA-type white dwarf located at about 40 pc. If its nature is confirmed, Albus 1 would be the sixth brightest isolated white dwarf in the sky, which would make it an excellent spectrophotometric standard.

  12. Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole

    NASA Astrophysics Data System (ADS)

    Ma, Shuai-Bing; Lei, Wei-Hua; Gao, He; Xie, Wei; Chen, Wei; Zhang, Bing; Wang, Ding-Xiong

    2018-01-01

    Mergers of neutron star–neutron star (NS–NS) or neutron star–black hole (NS–BH) binaries are candidate sources of gravitational waves (GWs). At least a fraction of the merger remnants should be a stellar mass BH with sub-relativistic ejecta. A collimated jet is launched via the Blandford–Znajek mechanism from the central BH to trigger a short gamma-ray burst (sGRB). At the same time, a near-isotropic wind may be driven by the Blandford–Payne mechanism (BP). In previous work, additional energy injection to the ejecta from the BP mechanism was ignored, and radioactive decay has long been thought to be the main source of the kilonova energy. In this Letter, we propose that the wind driven by the BP mechanism from the newborn BH’s disk can heat up and push the ejecta during the prompt emission phase or even at late times when there is fall-back accretion. Such a BP-powered merger-nova could be bright in the optical band even for a low-luminosity sGRB. The detection of a GW merger event with a BH clearly identified as a remnant, accompanied by a bright merger-nova, would provide robust confirmation of our model.

  13. a Strange Combination Band of the Cross-Shaped Complex CO_2-CS_2

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, Nasser; McKellar, Bob

    2015-06-01

    The spectrum of the weakly-bound CO_2-CS_2 complex was originally studied by the USC group, using a pulsed supersonic expansion and a tunable diode laser in the CO_2 νb{3} region. Their derived structure was nonplanar X-shaped (C2v symmetry), a relatively unusual geometry among linear molecule dimers. Very recently, there has been a detailed theoretical study of this complex based on a high-level ab initio potential surface. The theoretical ground state is X-shaped, in good agreement with experiment, and a very low-lying (3 wn at equilibrium, or 8 wn zero-point) slipped-parallel isomer is also found. We report here two new combination bands of X-shaped CO_2-CS_2 which involve the same νb{3} fundamental (2346.546 wn) plus a low-frequency intermolecular vibration. The first band has b-type rotational selection rules (the fundamental is c-type). This, and its location (2361.838 wn), clearly identify it as being due to the intermolecular torsional mode. The second band (2388.426 wn) is a-type and can be assigned to the CO_2 rocking mode. Both observed intermolecular frequencies (15.29 and 41.88 wn) are in extremely good agreement with theory (15.26 and 41.92 wn).b The torsional band is well-behaved, but the 2388 wn band is bizarre, with its Ka = 2 ← 2 and 4 ← 4 components displaced upward by 2.03 and 2.62 wn relative to the K_a = 0 ← 0 origin (odd K_a values are nuclear spin forbidden). A qualitatively similar shift (+2.4 wn) was noted for the (forbidden) Ka = 1 level of this mode by Brown et al.,b but the calculation was limited to J = 0 and 1. These huge shifts are presumably due to hindered internal rotation effects. C.C. Dutton, D.A. Dows, R. Eikey. S. Evans, R.A. Beaudet, J. Phys. Chem. A 102, 6904 (1998). J. Brown, X.-G. Wang, T. Carrington, Jr., G.S. Grubbs II, and R. Dawes, J. Chem. Phys. 140, 114303 (2014). J. Brown, X.-G. Wang, T. Carrington, Jr., G.S. Grubbs II, and R. Dawes, J. Chem. Phys. 140, 114303 (2014).

  14. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    NASA Astrophysics Data System (ADS)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  15. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

    PubMed Central

    He, Wen-Yu; Chan, C. T.

    2015-01-01

    We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993

  16. The nu sub 9 fundamental of ethane - Integrated intensity and band absorption measurements with application to the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Cess, R. D.; Bangaru, B. R. P.

    1974-01-01

    Measurements of the absolute intensity and integrated band absorption have been performed for the nu sub 9 fundamental band of ethane. The intensity is found to be about 34 per sq cm per atm at STP, and this is significantly higher than previous estimates. It is shown that a Gaussian profile provides an empirical representation of the apparent spectral absorption coefficient. Employing this empirical profile, a simple expression is derived for the integrated band absorption, which is in excellent agreement with experimental values. The band model is then employed to investigate the possible role of ethane as a source of thermal infrared opacity within the atmospheres of Jupiter and Saturn, and to interpret qualitatively observed brightness temperatures for Saturn.

  17. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    NASA Astrophysics Data System (ADS)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  18. High-contrast imaging of HD 163296 with the Keck/NIRC2 L΄-band vortex coronograph

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Ruane, G.; Williams, J. P.; Mawet, D.; Testi, L.; Zurlo, A.; Absil, O.; Bottom, M.; Choquet, É.; Christiaens, V.; Castellá, B. Femenía; Huby, E.; Isella, A.; Kastner, J.; Meshkat, T.; Reggiani, M.; Riggs, A.; Serabyn, E.; Wallack, N.

    2018-06-01

    We present observations of the nearby (D˜100 pc) Herbig star HD 163296 taken with the vortex coronograph at Keck/NIRC2 in the L' band (3.7 μm), to search for planetary mass companions in the ringed disc surrounding this pre-main sequence star. The images reveal an arc-like region of scattered light from the disc surface layers that is likely associated with the first bright ring detected with ALMA in the λ=1.3mm dust continuum at ˜65 au. We also detect a point-like source at ˜0{^''.}5 projected separation in the North-East direction, close to the inner edge of the second gap in the millimetre images. Comparing the point source photometry with the atmospheric emission models of non-accreting giant planets, we obtain a mass of 6-7 MJ for a putative protoplanet, assuming a system age of 5 Myr. Based on the contrast at a 95% level of completeness calculated on the emission-free regions of our images, we set upper limits for the masses of giant planets of 8-15 MJ, 4.5-6.5 MJ and 2.5-4.0 MJ at the locations of the first, second and third gap in the millimetre dust continuum, respectively. Further deep, high resolution thermal IR imaging of the HD 163296 system are warranted, to confirm the presence and nature of the point source and to better understand the structure of the dust disc.

  19. Study on Variability and Spectral Properties of Blazar 3C 273 with Long-term Multi-band Optical Monitoring from 2006 to 2015

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Zhao, Qing-Jiang; Dai, Ben-Zhong; Jiang, Ze-Jun; Geng, Xiong-Fei; Yang, Shen-Bang; Liu, Zhen; Wang, Dong-Dong; Feng, Zhang-Jing; Zhang, Li

    2018-02-01

    We present long-term optical multi-band photometric monitoring of blazar 3C 273, from 2006 May 19 to 2015 March 31 with high temporal resolution in the BVRI bands. The source is in a steady state and showed very small variability, with the values of the fractional variability amplitude of {F}{var}=0.457+/- 0.014 % , 0.391+/- 0.012 % , 0.264+/- 0.043 % and 0.460+/- 0.014 % in B, V, R and I, respectively. The intra-night point-to-point fractional variability (F pp ) in each band is below 1.0%, and the F pp variation amplitude increase from the B-band to the I-band. We find a variability with the timescale of 5.8 ± 2.9 minutes in the I-band on 2009 March 11. This fast variability requires the comoving magnetic field strength in the jet above 18 G with a Doppler factor {δ }D∼ 10. Using the discrete correlation function (DCF), the B- and I-band light curves are examined for correlation on whole campaign. Low significance (∼99.73 percent confidence) correlations with the I-band lags the B-band variations are observed. The spectral behaviors in the different variability episodes are studied. “Bluer-when-brighter” spectral behavior is presented for the whole campaign, while there is an opposite tendency when {{{F}}}V> 30.2 {mJy}. The weak of the correlation between B- and I-band and the spectrum analysis indicate that the optical radiation consists of two variable components.

  20. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  1. Spatial and Temporal Stability of Airglow Measured in the Meinel Band Window at 1191.3 nm

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien T.; Zemcov, Michael; Battle, John; Bock, James J.; Hristov, Viktor; Korngut, Phillip; Meek, Andrew

    2016-09-01

    We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using a λ/Δλ = 320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. At low airmasses, the absolute sky brightness at this wavelength is found to be 5330 ± 30 nW m-2 sr-1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ˜100 s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-infrared line intensity mapping may be feasible from ground-based sites.

  2. Effective Tree Scattering and Opacity at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    This paper investigates vegetation effects at L-band by using a first-order radiative transfer (RT) model and truck-based microwave measurements over natural conifer stands to assess the applicability of the tau-omega) model over trees. The tau-omega model is a zero-order RT solution that accounts for vegetation effects with effective vegetation parameters (vegetation opacity and single-scattering albedo), which represent the canopy as a whole. This approach inherently ignores multiple-scattering effects and, therefore, has a limited validity depending on the level of scattering within the canopy. The fact that the scattering from large forest components such as branches and trunks is significant at L-band requires that zero-order vegetation parameters be evaluated (compared) along with their theoretical definitions to provide a better understanding of these parameters in the retrieval algorithms as applied to trees. This paper compares the effective vegetation opacities, computed from multi-angular pine tree brightness temperature data, against the results of two independent approaches that provide theoretical and measured optical depths. These two techniques are based on forward scattering theory and radar corner reflector measurements, respectively. The results indicate that the effective vegetation opacity values are smaller than but of similar magnitude to both radar and theoretical estimates. The effective opacity of the zero-order model is thus set equal to the theoretical opacity and an explicit expression for the effective albedo is then obtained from the zero- and first- order RT model comparison. The resultant albedo is found to have a similar magnitude as the effective albedo value obtained from brightness temperature measurements. However, it is less than half of that estimated using the theoretical calculations (0.5 - 0.6 for tree canopies at L-band). This lower observed albedo balances the scattering darkening effect of the large theoretical albedo

  3. Comparative study of mitotic chromosomes in two blowflies, Lucilia sericata and L. cluvia (Diptera, Calliphoridae), by C- and G-like banding patterns and rRNA loci, and implications for karyotype evolution

    PubMed Central

    Chirino, Mónica G.; Rossi, Luis F.; Bressa, María J.; Luaces, Juan P.; Merani, María S.

    2015-01-01

    Abstract The karyotypes of Lucilia cluvia (Walker, 1849) and Lucilia sericata (Meigen, 1826) from Argentina were characterized using conventional staining and the C- and G-like banding techniques. Besides, nucleolus organizer regions (NORs) were detected by fluorescent in situ hybridization (FISH) and silver staining technique. The chromosome complement of these species comprises five pairs of autosomes and a pair of sex chromosomes (XX/XY, female/male). The autosomes of both species have the same size and morphology, as well as C- and G-like banding patterns. The X and Y chromosomes of Lucilia cluvia are subtelocentric and easily identified due to their very small size. In Lucilia sericata, the X chromosome is metacentric and the largest of the complement, showing a secondary constriction in its short arm, whereas the Y is submetacentric and smaller than the X. The C-banding patterns reflect differences in chromatin structure and composition between the subtelocentric X and Y chromosomes of Lucilia cluvia and the biarmed sex chromosomes of Lucilia sericata. These differences in the sex chromosomes may be due to distinct amounts of constitutive heterochromatin. In Lucilia cluvia, the NORs are placed at one end of the long-X and of the long-Y chromosome arms, whereas one of the NORs is disposed in the secondary constriction of the short-X chromosome arm and the other on the long-Y chromosome arm in Lucilia sericata. Although the G-like banding technique does not yield G-bands like those in mammalian chromosomes, it shows a high degree chromosomal homology in both species because each pair of autosomes was correctly paired. This chromosome similarity suggests the absence of autosomal rearrangements during karyotype evolution in the two species studied. PMID:25893078

  4. The nature of solar brightness variations

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  5. All-electron GW quasiparticle band structures of group 14 nitride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Iek-Heng; Cheng, Hai-Ping, E-mail: cheng@qtp.ufl.edu; Kozhevnikov, Anton

    We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γmore » point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.« less

  6. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, J. T.; Martens, P. C. H.; Tarr, L.

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for daysmore » and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.« less

  7. Are solar brightness variations faculae- or spot-dominated?

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Yeo, K. L.; Schmutz, W. K.

    2016-05-01

    Context. Regular spaceborne measurements have revealed that solar brightness varies on multiple timescales, variations on timescales greater than a day being attributed to a surface magnetic field. Independently, ground-based and spaceborne measurements suggest that Sun-like stars show a similar, but significantly broader pattern of photometric variability. Aims: To understand whether the broader pattern of stellar variations is consistent with the solar paradigm, we assess relative contributions of faculae and spots to solar magnetically-driven brightness variability. We investigate how the solar brightness variability and its facular and spot contributions depend on the wavelength, timescale of variability, and position of the observer relative to the ecliptic plane. Methods: We performed calculations with the SATIRE model, which returns solar brightness with daily cadence from solar disc area coverages of various magnetic features. We took coverages as seen by an Earth-based observer from full-disc SoHO/MDI and SDO/HMI data and projected them to mimic out-of-ecliptic viewing by an appropriate transformation. Results: Moving the observer away from the ecliptic plane increases the amplitude of 11-year variability as it would be seen in Strömgren (b + y)/2 photometry, but decreases the amplitude of the rotational brightness variations as it would appear in Kepler and CoRoT passbands. The spot and facular contributions to the 11-year solar variability in the Strömgren (b + y)/2 photometry almost fully compensate each other so that the Sun appears anomalously quiet with respect to its stellar cohort. Such a compensation does not occur on the rotational timescale. Conclusions: The rotational solar brightness variability as it would appear in the Kepler and CoRoT passbands from the ecliptic plane is spot-dominated, but the relative contribution of faculae increases for out-of-ecliptic viewing so that the apparent brightness variations are faculae-dominated for

  8. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  9. Narrow band imaging versus autofluorescence imaging for head and neck squamous cell carcinoma detection: a prospective study.

    PubMed

    Ni, X-G; Zhang, Q-Q; Wang, G-Q

    2016-11-01

    This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.

  10. L-Band Microwave Experiment On Russian Investigational Satellite, First Results And Comparison With SMOS Data

    NASA Astrophysics Data System (ADS)

    Smirnov, M.; Khaldin, A.

    2013-12-01

    The main scientific objective of mission with Zond-PP on Russian investigational satellite MKA-FKI No1 is development of techniques for retrieval: sea salinity in open oceans, soil moisture in global scales, vegetation state characteristics, sea ice characteristics. At the beginning stage of space experiments the main goals were to develop and test new space microwave radiometric instrument in order to solve technical objectives: investigation of RFI in L-band all over the globe, development and testing in-flight calibration techniques and others. First obtained results of our observations are presented. Zond-PP results were compared with MIRAS. For comparison were used results of brightness temperatures measurements obtained from Zond-PP and MIRAS in the same regions with minimal time difference. Results of comparison show general accordance in the brightness temperatures levels.

  11. Effect of dim and bright light exposure on some immunological parameters measured under thermal neutral conditions.

    PubMed

    Hyun, Ki-Ja; Kondo, Masayuki; Koh, Taichin; Tokura, Hiromi; Tamotsu, Satoshi; Oishi, Tadashi

    2005-01-01

    This study assesses the effects of ambient light conditions, under a thermoneutral environment, on selected immunological parameters of 7 healthy young women (aged 19 to 22 yrs). Subjects entered the bioclimatic chamber at 11: 00 h, controlled at 26 degrees C and 60% relative humidity, a "neutral climate". They lead a well-regulated life in the climatic chamber (pre-condition) while exposed to dim (200 lux) or, on the next day, bright (5000 lux) light between 06 : 00 to 12 : 00 h. Just before the end of each period of light exposure, a blood sample was taken for later immunological assay of white blood cell count (WBC), phagocytosis, interferon-gamma (IFN-gamma), interleukin-4 (IL-4), CD69 T cells (CD69), CD4+CD25+ T cells (CD4+CD25+), and transforming growth factor-beta 1 (TGF-beta1). The results, when compared with the pre-condition, were as follows: 1) CD69 and IFN-gamma increased during normal conditions without thermal stress under dim light; 2) WBC increased and IL-4 decreased under bright light; 3) as shown by the highly significant decrease of TGF-beta1, the immune system was activated under bright light; 4) phagocytosis tended to increase under bright light exposure; 5) CD69 and IFN-gamma were significantly higher, and CD4+CD25+ tended to decrease under bright light; 6) phagocytosis tended to be lower and TGF-beta1 significantly higher under dim light, indicating a decline of immune system function. Taken together, this preliminary single time-point sampling study infers that some parameters are activated (CD69) while others are attenuated (phagocytosis, TGF-beta1) according to the environmental light intensity, dim vs. bright, in women adhering to a standardized routine in the absence of thermal stress. These findings are discussed in terms of inhibition of the sympathetic and excitation of the parasympathetic nervous system under the influence of life-style regularity and daytime bright light exposure.

  12. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  13. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  14. Bright Lights, Green City

    NASA Image and Video Library

    2010-07-28

    Two extremely bright stars illuminate a greenish mist in this image from the new GLIMPSE360 survey from NASA Spitzer Space Telescope. The fog is comprised of hydrogen and carbon compounds called polycyclic aromatic hydrocarbons.

  15. Prospective Identification of Oligoclonal/Abnormal Band of the Same Immunoglobulin Type as the Malignant Clone by Differential Location of M-Spike and Oligoclonal Band.

    PubMed

    Vyas, Shikhar G; Singh, Gurmukh

    2017-10-01

    Serum and urine protein electrophoreses and immunofixation electrophoreses are the gold standards in diagnosing monoclonal gammopathy. Identification of oligoclonal bands in post-treatment patients has emerged as an important issue and recording the location of the malignant monoclonal peak may facilitate prospective identification of a new "monoclonal" spike as being distinct from the malignant peak. We recorded the locations of monoclonal spikes in descriptive terms, such as being in the cathodal region, mid-gamma region, anodal region, and beta region. The location of monoclonal or restricted heterogeneity bands in subsequent protein electrophoreses was compared to the location of the original malignant spike. In a patient with plasma cell myeloma, the original monoclonal IgG kappa band was located at the anodal end of gamma region. Post-treatment, an IgG kappa band was noted in mid-gamma region and the primary malignant clone was not detectable by serum protein immunofixation electrophoresis (SIFE) in post-treatment sample. Even though the κ/λ ratio remained abnormal, we were able to recognize stringent complete response by noting the different location of the new IgG kappa band as a benign regenerative process. Recording the location of the malignant monoclonal spike facilitates the identification of post-treatment oligoclonal bands, prospectively. Recognizing the regenerative, benign, bands in post-transplant patients facilitates the determination of stringent complete response despite an abnormal κ/λ ratio.

  16. Shadow mechanism and the opposition effect of brightness of atmosphereless celestial bodies

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.; Vidmachenko, A. P.

    2013-09-01

    We consider the Irvine-Yanovistkii modification of the shadow model developed by Hapke for the opposition effect of brightness. The relation between the single scattering albedo ω and the transparency coefficient of particles κ is suggested to be used in the form κ = (1 - ω) n, which allows the number of unknowns in the model to be reduced to two parameters (the packing density of particles g and ω) and the single-scattering phase function Ξ(α). The analysis of spectrophotometric measurements of the moon and Mars showed that the data on the observed opposition effect and the changes in the color index with the phase angle α well agree if the values of n = 0.25 and g = 0.4 (the moon) and 0.6 (Mars) are assumed in calculations. When being applied to asteroids of several types, this method also yielded a satisfactory agreement. For the E-type asteroids, the sets of parameters are [g = 0.6, ω = 0.6, A g = 0.21, and q = 0.83] or [g = 0.3, ω = 0.4, A g = 0.15, and q = 0.71] under the Martian single-scattering phase function; for the M-type asteroids, it is [g = 0.4, ω ≤ 0.1, A g ≤ 0.075, and q ≤ 0.42] under the lunar single-scattering phase function; for the S-type asteroids, it is [g = 0.4, ω = 0.4, A g = 0.28, and q = 0.49] under the lunar single-scattering phase function; and for the C-type asteroids, it is [g = 0.6, ω ≤ 0.1, A g ≤ 0.075, and q = 0.43] under the modified lunar single-scattering phase function. The polarization measurements fulfilled by Gehrels et al. (1964) for the bright feature on the lunar surface, Copernicus (L = -20°08', φ = +10°11'), at a phase angle α = 1.6° revealed the deviations in the position of the polarization plane from that typical for the negative branch. They were 22° and 12° in the G and I filters, respectively. At the same time, the deviation was within the error (±3° in the U filter and for the dark feature Plato (L = -10°32', φ = +51°25'), which can be caused by the coherent mechanism of the

  17. False-color L-band image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This false-color L-band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour on its 46th orbit. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. Blue areas show low returns at VV poloarization; hence the bright blue colors of the smooth river surfaces. Green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro, a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north toward a tributary or Rio Negro. The Jet Propulsion Laboratory alternative photo number is P-43895.

  18. Apparent Brightness and Topography Images of Vibidia Crater

    NASA Image and Video Library

    2012-03-09

    The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.

  19. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and farmore » inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ∼90 μG, is stronger than that far inside, ∼30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.« less

  20. Ku-band multiple beam antenna

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Franklin, C. F.

    1980-01-01

    The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.

  1. False Color Bands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it.

    Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. The dynamics of a shear band

    NASA Astrophysics Data System (ADS)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  3. Self-deflection of a bright soliton in a separate bright-dark spatial soliton pair based on a higher-order space charge field

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Song; Hao, Zhong-Hua

    2003-10-01

    The self-deflection of a bright solitary beam can be controlled by a dark solitary beam via a parametric coupling effect between the bright and dark solitary beams in a separate bright-dark spatial soliton pair supported by an unbiased series photorefractive crystal circuit. The spatial shift of the bright solitary beam centre as a function of the input intensity of the dark solitary beam (hat rho) is investigated by taking into account the higher-order space charge field in the dynamics of the bright solitary beam via both numerical and perturbation methods under steady-state conditions. The deflection amount (Deltas0), defined as the value of the spatial shift at the output surface of the crystal, is a monotonic and nonlinear function of hat rho. When hat rho is weak or strong enough, Deltas0 is, in fact, unchanged with hat rho, whereas Deltas0 increases or decreases monotonically with hat rho in a middle range of hat rho. The corresponding variation range (deltas) depends strongly on the value of the input intensity of the bright solitary beam (r). There are some peak and valley values in the curve of deltas versus r under some conditions. When hat rho increases, the bright solitary beam can scan toward both the direction same as and opposite to the crystal's c-axis. Whether the direction is the same as or opposite to the c-axis depends on the parameter values and configuration of the crystal circuit, as well as the value of r. Some potential applications are discussed.

  4. Multi-wave band SMM-VLA observations of an M2 flare and an associated coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.; Lang, Kenneth R.; Schmelz, Joan T.; Gonzalez, Raymond D.; Smith, Kermit L.

    1991-01-01

    Results are presented of observations of an M2 flare and an associated coronal mass ejection CME by instruments on the SMM as well as by the VLA and other ground-based observatories on September 30, 1988. The multiwave band data show a gradual slowly changing event which lasted several hours. The microwave burst emission was found to originate in compact moderately circularly polarized sources located near the sites of bright H-alpha and soft X-ray emission. These data are combined with estimates of an electron temperature of 1.5 x 10 to the 7th K and an emission measure of about 2.0 x 10 to the 49th/cu cm obtained from Ca XIX and Fe XXV spectra to show that the microwave emission can be attributed to thermal gyrosynchrotron radiation in regions where the magnetic field strength is 425-650 G. The CME acceleration at low altitudes is measured on the basis of ground- and space-based coronagraphs.

  5. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  6. O2 A Band Studies for Cloud Detection and Algorithm Improvement

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    1996-01-01

    Detection of cloud parameters from space-based spectrometers can employ the vibrational bands of O2 in the (sup b1)Sigma(sub +)(sub g) yields X(sub 3) Sigma(sup -)(sub g) spin-forbidden electronic transition manifold, particularly the Delta nu = 0 A band. The GOME instrument uses the A band in the Initial Cloud Fitting Algorithm (ICFA). The work reported here consists of making substantial improvements in the line-by-line spectral database for the A band, testing whether an additional correction to the line shape function is necessary in order to correctly model the atmospheric transmission in this band, and calculating prototype cloud and ground template spectra for comparison with satellite measurements.

  7. Observations of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2013-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and at the time of this writing plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  8. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

    NASA Astrophysics Data System (ADS)

    Ryan, Colan Graeme Matthew

    Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates

  9. VizieR Online Data Catalog: Photometry of YSOs in eight bright-rimmed clouds (Sharma+, 2016)

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Pandey, A. K.; Borissova, J.; Ojha, D. K.; Ivanov, V. D.; Ogura, K.; Kobayashi, N.; Kurtev, R.; Gopinathan, M.; Yadav, R. K.

    2016-08-01

    Near-infrared (J, H, K') data for eight selected Bright-Rimmed Clouds (BRCs) along with two nearby field regions (see Table1) were collected with the Infrared Side Port Imager (ISPI) camera (FOV~10.5*10.5arcmin2; scale 0.3arcsec/pixel) on the 4m Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO), Chile, during the nights of 2010 March 03-04. The seeing was ~1arcsec. The individual exposure times were 60 s per frame for all filters. The total exposure time for the target fields was 540s for each J, H, and K' band. We also used the infrared archived data taken from the Infrared Array Camera (IRAC) of the space-based Spitzer telescope at the 3.6, 4.5, 5.8, and 8.0μm bands. We obtained Basic Calibrated Data (BCD) from the Spitzer data archive for all BRCs (except SFO 76, which has no Spitzer data). The exposure time of each BCD was 10.4s (4 data files).

  10. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide

    NASA Astrophysics Data System (ADS)

    Haffouz, Sofiane; Zeuner, Katharina D.; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D.; Zwiller, Valery; Williams, Robin L.

    2018-05-01

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  11. High brightness diode lasers controlled by volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  12. Stunningly bright optical emission

    NASA Astrophysics Data System (ADS)

    Heinke, Craig O.

    2017-12-01

    The detection of bright, rapid optical pulsations from pulsar PSR J1023+0038 have provided a surprise for researchers working on neutron stars. This discovery poses more questions than it answers and will spur on future work and instrumentation.

  13. Point-spread Function Ramifications and Deconvolution of a Signal Dependent Blur Kernel Due to Interpixel Capacitive Coupling

    NASA Astrophysics Data System (ADS)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi

    2018-07-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling that results in a portion of the collected signal incident on one pixel of a hybridized detector array being measured in adjacent pixels. Data collected by light sensitive HgCdTe arrays which exhibit this coupling typically goes uncorrected or is corrected by treating the coupling as a fixed point-spread function. Evidence suggests that this IPC coupling is not uniform across different signal and background levels. This variation invalidates assumptions that are key in decoupling techniques such as Wiener Filtering or application of the Lucy–Richardson algorithm. Additionally, the variable IPC results in the point-spread function (PSF) depending upon a star’s signal level relative to the background level, among other parameters. With an IPC ranging from 0.68% to 1.45% over the full well depth of a sensor, as is a reasonable range for the H2RG arrays, the FWHM of the JWSTs NIRCam 405N band is degraded from 2.080 pix (0.″132) as expected from the diffraction pattern to 2.186 pix (0.″142) when the star is just breaching the sensitivity limit of the system. For example, When attempting to use a fixed PSF fitting (e.g., assuming the PSF observed from a bright star in the field) to untangle two sources with a flux ratio of 4:1 and a center to center distance of 3 pixels, flux estimation can be off by upwards of 1.5% with a separation error of 50 millipixels. To deal with this issue an iterative non-stationary method for deconvolution is here proposed, implemented, and evaluated that can account for the signal dependent nature of IPC.

  14. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  15. `Giant' nanocrystal quantum dots (gNQDs) as FRET donors

    NASA Astrophysics Data System (ADS)

    Chern, Margaret; Nguyen, Thuy; Dennis, Allison

    2017-02-01

    High-quality core/shell CdSe/xCdS quantum dots (QDs) ranging from 3 to 20 nm in diameter were synthesized for use as Förster Resonance Energy Transfer (FRET) donors. gNQDs are carefully characterized for size, emission, absorption, QY, and brightness in both organic and aqueous solution. FRET has been verified in optimally designed systems that use short capping ligands and donor-acceptor pairs that have well-matched emission and absorption spectra. The interplay between shell thickness, donor-acceptor distance, and particle brightness is systematically analyzed to optimize our biosensor design.

  16. Compact filtering monopole patch antenna with dual-band rejection.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a compact ultra-wideband patch antenna with dual-band rejection is proposed. The proposed antenna filters 3.3-3.8 GHz WiMAX and 5.15-5.85 GHz WLAN by respectively rejecting these bands through a C-shaped slit and a λg/4 resonator. The λg/4 resonator is positioned as a pair, centered around the microstrip line, and a C-type slit is inserted into an elliptical patch. The impedance bandwidth of the proposed antenna is 2.9-9.3 GHz, which satisfies the bandwidth for ultra-wideband communication systems. Further, the proposed antenna provides dual-band rejection at two bands: 3.2-3.85 and 4.7-6.03 GHz. The radiation pattern of the antenna is omnidirectional, and antenna gain is maintained constantly while showing -8.4 and -1.5 dBi at the two rejected bands, respectively.

  17. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.

    PubMed

    Tian, Xiaoqing; Xu, Jianbin; Wang, Xiaomu

    2010-09-09

    The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the graphene layers could reach 0.070 V/A. The charge transfer and band gap opening of the F4-TCNQ-doped graphene can be further modulated by an externally applied electric field (E(ext)). At 0.077 V/A, the gap opening at the Dirac point (K), DeltaE(K) = 306 meV, and the band gap, E(g) = 253 meV, are around 71% and 49% larger than those of the pristine bilayer under the same E(ext).

  18. Iapetus Bright and Dark Terrains

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Saturn's outermost large moon, Iapetus, has a bright, heavily cratered icy terrain and a dark terrain, as shown in this Voyager 2 image taken on August 22, 1981. Amazingly, the dark material covers precisely the side of Iapetus that leads in the direction of orbital motion around Saturn (except for the poles), whereas the bright material occurs on the trailing hemisphere and at the poles. The bright terrain is made of dirty ice, and the dark terrain is surfaced by carbonaceous molecules, according to measurements made with Earth-based telescopes. Iapetus' dark hemisphere has been likened to tar or asphalt and is so dark that no details within this terrain were visible to Voyager 2. The bright icy hemisphere, likened to dirty snow, shows many large impact craters. The closest approach by Voyager 2 to Iapetus was a relatively distant 600,000 miles, so that our best images, such as this, have a resolution of about 12 miles. The dark material is made of organic substances, probably including poisonous cyano compounds such as frozen hydrogen cyanide polymers. Though we know a little about the dark terrain's chemical nature, we do not understand its origin. Two theories have been developed, but neither is fully satisfactory--(1) the dark material may be organic dust knocked off the small neighboring satellite Phoebe and 'painted' onto the leading side of Iapetus as the dust spirals toward Saturn and Iapetus hurtles through the tenuous dust cloud, or (2) the dark material may be made of icy-cold carbonaceous 'cryovolcanic' lavas that were erupted from Iapetus' interior and then blackened by solar radiation, charged particles, and cosmic rays. A determination of the actual cause, as well as discovery of any other geologic features smaller than 12 miles across, awaits the Cassini Saturn orbiter to arrive in 2004.

  19. Color and emotion: effects of hue, saturation, and brightness.

    PubMed

    Wilms, Lisa; Oberfeld, Daniel

    2017-06-13

    Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.

  20. Bright light and thermoregulatory responses to exercise.

    PubMed

    Atkinson, G; Barr, D; Chester, N; Drust, B; Gregson, W; Reilly, T; Waterhouse, J

    2008-03-01

    The thermoregulatory responses to morning exercise after exposure to different schedules of bright light were examined. At 07:00 h, six males ran on two occasions in an environmental chamber (temperature = 31.4 +/- 1.0 degrees C, humidity = 66 +/- 6 %) for 40 min at 60 % of maximal oxygen uptake. Participants were exposed to bright light (10,000 lux) either between 22:00 - 23:00 h (BT (low)) or 06:00 - 07:00 h (BT (high)). Otherwise, participants remained in dim light (< 50 lux). It was hypothesized that BT (low) attenuates core temperature during morning exercise via the phase-delaying properties of evening bright light and by avoiding bright light in the morning. Evening bright light in BT (low) suppressed (p = 0.037) the increase in melatonin compared to dim light (1.1 +/- 11.4 vs. 15.2 +/- 19.7 pg x ml (-1)) and delayed (p = 0.034) the core temperature minimum by 1.46 +/- 1.24 h. Core temperature was 0.20 +/- 0.17 degrees C lower in BT (low) compared to BT (high) during the hour before exercise (p = 0.036), with evidence (p = 0.075) that this difference was maintained during exercise. Conversely, mean skin temperature was 1.0 +/- 1.7 degrees C higher during the first 10 min of exercise in BT (low) than in BT (high) (p = 0.030). There was evidence that the increase in perceived exertion was attenuated in BT (low) (p = 0.056). A chronobiologically-based light schedule can lower core temperature before and during morning exercise in hot conditions.