Sample records for g-protein coupled estrogen

  1. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  2. GPR30: A G protein-coupled receptor for estrogen.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B; Sklar, Larry A

    2007-02-01

    Estrogen is a critical steroid in human physiology exerting its effect both at the transcriptional level as well as at the level of rapid intracellular signaling through second messengers. Many of estrogen's transcriptional effects have long been known to be mediated through classical nuclear steroid receptors but recent studies also demonstrate the existence of a 7-transmembrane G protein-coupled receptor, GPR30 that responds to estrogen with rapid cellular signaling. There is currently controversy over the ability of classical estrogen receptors to recapitulate GPR30-mediated signaling mechanisms and vice versa. This article will summarize recent literature and address the relationship between GPR30 and conventional estrogen receptor signaling.

  3. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish.

    PubMed

    Cabas, Isabel; Rodenas, M Carmen; Abellán, Emilia; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa

    2013-11-01

    Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.

  4. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  5. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2009-09-01

    GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7-transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications.

  6. G-Protein-Coupled Estrogen Receptor Antagonist G15 Decreases Estrogen-Induced Development of Non-Small Cell Lung Cancer.

    PubMed

    Liu, Changyu; Liao, Yongde; Fan, Sheng; Fu, Xiangning; Xiong, Jing; Zhou, Sheng; Zou, Man; Wang, Jianmiao

    2017-08-25

    G-protein-coupled estrogen receptor (GPER) was found to promote Non-small cell lung cancer (NSCLC) by estrogen, indicating the potential necessity of inhibiting GPER by selective antagonist. This study was performed to elucidate the function of GPER selective inhibitor G15 in NSCLC development. Cytoplasmic GPER (cGPER) and nuclear GPER (nGPER) were detected by immunohistochemical analysis in NSCLC samples. The relation of GPER and estrogen receptor β (ERβ) expression and correlation between GPER, ERβ and clinical factors were analyzed. The effects of activating GPER and function of G15 were analyzed in proliferation of A549, H1793 cell lines and development of urethane-induced adenocarcinoma. Overexpression of cGPER and nGPER was detected in 80.49% (120/150) and 52.00% (78/150) of the NSCLC samples. High expression of GPER related with higher stages, poorer differentiation and high expression of ERβ. Protein level of GPER in A549 and H1793 cell lines increased by treatment of E2, G1 (GPER agonist) or Ful (fulvestrant, ERβ antagonist), and decreased by G15. Administration with G15 reversed the E2- or G1-induced cell growth by inhibiting GPER. In urethane-induced adenocarcinoma mice, number of tumor nodules and tumor index increased in E2 or G1 group and decreased by treatment of G15. These findings deomonstrate that using of G15 to block GPER signaling may be considered as a new therapeutic target in NSCLC.

  7. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    PubMed Central

    Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  8. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.

    PubMed

    Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  9. Cardioprotective role of G-Protein Coupled Estrogen Receptor 1 (GPER1).

    PubMed

    Koganti, Sivaramakrishna

    2015-01-01

    G-Protein Coupled Estrogen Receptor 1 (GPER1), also known as G-Protein Coupled Receptor 30 (GPR30) and initially considered an orphan receptor, has become one of the most important pharmacological targets in cardiovascular research. Since the gene encoding this putative receptor was cloned nearly 20 years ago, researchers have addressed its role in various aspects of physiology, including cardioprotection. Although extensive research has been carried out to understand the role of GPER1 as a pharmacological target to treat cardiovascular diseases, there are few current reviews addressing the overall cardioprotective benefits of this receptor and the signaling intermediates involved. This review considers the origins of GPER1, its cell biology, its physiological and pharmacological roles as a therapeutic target in cardiovascular disease, and what future research on GPER1 might entail. More specifically, the review focuses on GPER1 regulation of Angiotensin Type I Receptor (AT1R) and the role of estrogen receptors, epidermal growth factor receptor (EGFR) and matrix metalloproteinases (MMPs) in bringing about the cardioprotective effects of GPER1. Areas where improved knowledge of GPER1 biology is still needed to better understand the receptor's cardioprotective effects are also discussed.

  10. G protein-coupled estrogen receptor 1/G protein-coupled receptor 30 localizes in the plasma membrane and traffics intracellularly on cytokeratin intermediate filaments.

    PubMed

    Sandén, Caroline; Broselid, Stefan; Cornmark, Louise; Andersson, Krister; Daszkiewicz-Nilsson, Joanna; Mårtensson, Ulrika E A; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2011-03-01

    G protein-coupled receptor 30 [G protein-coupled estrogen receptor 1 (GPER1)], has been introduced as a membrane estrogen receptor and a candidate cancer biomarker and therapeutic target. However, several questions surround the subcellular localization and signaling of this receptor. In native cells, including mouse myoblast C(2)C(12) cells, Madin-Darby canine kidney epithelial cells, and human ductal breast epithelial tumor T47-D cells, G-1, a GPER1 agonist, and 17β-estradiol stimulated GPER1-dependent cAMP production, a defined plasma membrane (PM) event, and recruitment of β-arrestin2 to the PM. Staining of fixed and live cells showed that GPER1 was localized both in the PM and on intracellular structures. One such intracellular structure was identified as cytokeratin (CK) intermediate filaments, including those composed of CK7 and CK8, but apparently not endoplasmic reticulum, Golgi, or microtubules. Reciprocal coimmunoprecipitation of GPER1 and CKs confirmed an association of these proteins. Live staining also showed that the PM receptors constitutively internalize apparently to reach CK filaments. Receptor localization was supported using FLAG- and hemagglutinin-tagged GPER1. We conclude that GPER1-mediated stimulation of cAMP production and β-arrestin2 recruitment occur in the PM. Furthermore, the PM receptors constitutively internalize and localize intracellularly on CK. This is the first observation that a G protein-coupled receptor is capable of associating with intermediate filaments, which may be important for GPER1 regulation in epithelial cells and the relationship of this receptor to cancer.

  11. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation.

    PubMed

    Sharma, Geetanjali; Mauvais-Jarvis, Franck; Prossnitz, Eric R

    2018-02-01

    Metabolic homeostasis is differentially regulated in males and females. The lower incidence of obesity and associated diseases in pre-menopausal females points towards the beneficial role of the predominant estrogen, 17β-estradiol (E2). The actions of E2 are elicited by nuclear and extra-nuclear estrogen receptor (ER) α and ERβ, as well as the G protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in the regulation of metabolism are only beginning to emerge and much remains unclear. The present review highlights recent advances implicating the importance of GPER in metabolic regulation. Assessment of the specific metabolic roles of GPER employing GPER-deficient mice and highly selective GPER-targeted pharmacological agents, agonist G-1 and antagonists G-15 and G36, is also presented. Evidence from in vitro and in vivo studies involving either GPER deficiency or selective activation suggests that GPER is involved in body weight regulation, glucose and lipid homeostasis as well as inflammation. The therapeutic potential of activating GPER signaling through selective ligands for the treatment of obesity and diabetes is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils.

    PubMed

    Tamaki, Mami; Konno, Yasunori; Kobayashi, Yoshiki; Takeda, Masahide; Itoga, Masamichi; Moritoki, Yuki; Oyamada, Hajime; Kayaba, Hiroyuki; Chihara, Junichi; Ueki, Shigeharu

    2014-07-01

    Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor α and G-Protein-Coupled Estrogen Receptor.

    PubMed

    Gros, Robert; Hussain, Yasin; Chorazyczewski, Jozef; Pickering, J Geoffrey; Ding, Qingming; Feldman, Ross D

    2016-11-01

    Estrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen's effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension. © 2016 American Heart Association, Inc.

  14. G Protein-Coupled Estrogen Receptor in Energy Homeostasis and Obesity Pathogenesis

    PubMed Central

    Shi, Haifei; Dharshan Senthil Kumar, Shiva Priya; Liu, Xian

    2013-01-01

    Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. PMID:23317786

  15. Estrogen rapidly enhances incisional pain of ovariectomized rats primarily through the G protein-coupled estrogen receptor.

    PubMed

    An, Guanghui; Li, Wenhui; Yan, Tao; Li, Shitong

    2014-06-11

    It has become increasingly apparent that the pain threshold of females and males varies in an estrogen dependent manner. To investigate the modulation of pain by estrogen and the molecular mechanisms involved in this process. A total of 48 rats were ovariectomized (OVX). At 14 and 20 days after OVX, rats were divided into eight groups: groups 1-4 were administered drugs intravenously (IV); groups 5-8 were administered through intrathecal (IT) catheter. Hind paw incision was made in all animals to determine incisional pain. Paw withdraw threshold (PWT) was tested prior to and 24 h after incision. The test drugs were applied 24 h after the incision. Rats were either IV or IT administered with: 17-β-estradiol (E2), G protein-coupled estrogen receptor (GPER)-selective agonist (G1), GPER-selective antagonist (G15) and E2 (G15+E2), or solvent. Before and 30 min after IV drug administration and 20 min during the IT catheter administration, PWT was tested and recorded. 24 h after incisional surgery, the PWT of all rats significantly decreased. Both in the IV group and IT group: administration of E2 and G1 significantly decreased PWT. Neither administration of G15+E2 nor solvent significantly changed PWT. Estrogen causes rapid reduction in the mechanical pain threshold of OVX rats via GPER.

  16. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.

    PubMed

    Zekas, Erin; Prossnitz, Eric R

    2015-10-15

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  17. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives.

    PubMed

    Barton, Matthias; Filardo, Edward J; Lolait, Stephen J; Thomas, Peter; Maggiolini, Marcello; Prossnitz, Eric R

    2018-02-01

    Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial

  18. G protein-coupled estrogen receptor (GPER) expression in normal and abnormal endometrium.

    PubMed

    Plante, Beth J; Lessey, Bruce A; Taylor, Robert N; Wang, Wei; Bagchi, Milan K; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A; Young, Steven L

    2012-07-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen's importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis.

  19. The G protein-coupled estrogen receptor GPER in health and disease

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2012-01-01

    Estrogens mediate profound effects throughout the body, and regulate physiological and pathological processes in both women and men. The decreased incidence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, however, several manmade and plant-derived molecules also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1, (GPER, formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in cell experiments and preclinical studies, and the use of GPER-knockout mice, many more potential roles for GPER are currently being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer. GPER is emerging as a novel therapeutic target and prognostic indicator for these diseases. PMID:21844907

  20. The G-protein-coupled estrogen receptor GPER in health and disease.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2011-08-16

    Estrogens mediate profound effects throughout the body and regulate physiological and pathological processes in both women and men. The low prevalence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, several man-made and plant-derived molecules, such as bisphenol A and genistein, also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1 (GPER; formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in vitro and in preclinical studies and with the use of Gper knockout mice, many more potential roles for GPER are being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer, for which GPER is emerging as a novel therapeutic target and prognostic indicator.

  1. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish

    PubMed Central

    Romano, Shannon N.; Edwards, Hailey E.; Ryan, Kevin J.

    2017-01-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. PMID:29065151

  2. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish.

    PubMed

    Romano, Shannon N; Edwards, Hailey E; Souder, Jaclyn Paige; Ryan, Kevin J; Cui, Xiangqin; Gorelick, Daniel A

    2017-10-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels.

  3. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B

    2015-07-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. Copyright

  4. G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    PubMed Central

    Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.

    2012-01-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861

  5. Estrogen stabilizes hypoxia-inducible factor 1α through G protein-coupled estrogen receptor 1 in eutopic endometrium of endometriosis.

    PubMed

    Zhang, Ling; Xiong, Wenqian; Li, Na; Liu, Hengwei; He, Haitang; Du, Yu; Zhang, Zhibing; Liu, Yi

    2017-02-01

    To investigate whether G protein-coupled estrogen receptor (GPER, also known as GPR30 and GPER1) stabilizes hypoxia-inducible factor 1α (HIF-1α) in eutopic endometrium (EuEM) of endometriosis. Immunohistochemical analysis and experimental in vitro study. University hospital. Patients with or without endometriosis. The EuEM and normal control endometrium (CoEM) were obtained by curettage. Primary cultured endometrial stromal cells (ESCs) were treated with 17β-E 2 , G1, or G15. The EuEM and CoEM were collected for immunohistochemistry. Western blot, polymerase chain reaction, ELISA, and dual luciferase experiments were used to detect expression of GPER, HIF-1α, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP9) in ESCs. Estradiol and G1 were used as agonists of GPER, G15 as an antagonist. Migration of ESCs and endothelial tube formation of human umbilical vein endothelial cells cultured in medium collected from ESCs were measured. Protein levels of GPER and HIF-1α were higher in EuEM than in CoEM. Protein levels of HIF-1α but not HIF-1α mRNA levels increased concurrently with GPER after E 2 and G1 treatment. Furthermore, expression and activity of VEGF and MMP9 increased under E 2 and G1 stimulation. However, these effects disappeared when GPER was blocked. G protein-coupled estrogen receptor stabilizes HIF-1α and thus promotes HIF-1α-induced VEGF and MMP9 in ESCs, which play critical roles in endometriosis. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.

  6. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1).

    PubMed

    Bruno, Agostino; Aiello, Francesca; Costantino, Gabriele; Radi, Marco

    2016-09-01

    Estrogens exert their action mainly by binding three receptors, namely estrogen receptors α and β (ERα and ERβ) and GPER-1 (G-protein coupled estrogen receptor 1). While the patho-physiological role of both ERα and ERβ has been deeply investigated, the role of GPER-1 in estrogens' signaling has not been clearly defined yet. Unfortunately, only few GPER-1 selective ligands were discovered so far, and the real efficiency of such compounds is still matter of debate. To better understand the physiological relevance of GPER-1, new selective chemical probes are higly needed. In this scenario, we report herein the generation and validation of a three-dimensional (3-D) GPER-1 homology model by means of docking studies and molecular dynamics simulations. The model thus generated was employed to (i) decipher the structural basis underlying the ability of estrogens and some Selective Estrogen Receptor Modulators (SERMs) to bind GPER-1 and classical ERα and ERβ, and (ii) generate a reliable G1/GPER-1 complex useful in rationalizing the pharmacological profile of G1 reported in the literature. The G1/GPER-1 complex herein reported could be further exploited in drug design approaches aimed at improving the pharmacological profile of G1 or at identifying new chemical entities (NCEs) as potential modulators of GPER-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2017-01-01

    Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.

  8. Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER).

    PubMed

    Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T

    2016-01-01

    The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.

  9. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.

    PubMed

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck

    2009-10-01

    We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.

  10. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning.

    PubMed

    Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena

    2015-08-01

    Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain.

    PubMed

    Zielińska, M; Fichna, J; Bashashati, M; Habibi, S; Sibaev, A; Timmermans, J-P; Storr, M

    2017-07-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy. © 2017 John Wiley & Sons Ltd.

  12. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells.

    PubMed

    Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; Andò, Sebastiano; Maggiolini, Marcello

    2008-08-01

    Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-alpha and -beta, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17beta-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5'-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5'-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells.

  13. Estrogen stabilizes hypoxia inducible factor 1 α through G protein coupled estrogen receptor 1 in eutopic endometrium of endometriosis

    PubMed Central

    Zhang, Ling; Xiong, Wenqian; Li, Na; Liu, Hengwei; He, Haitang; Du, Yu; Zhang, Zhibing; Liu, Yi

    2016-01-01

    Objective To investigate whether G protein-coupled estrogen receptor (GPER, also known as GPR30 and GPER1) stabilizes Hypoxia inducible factor 1α (HIF-1α) in eutopic endometrium (EuEM) of endometriosis? Design Immunohistochemical analysis and experimental in vitro study. Setting University hospital Patient(s) Patients with or without endometriosis Intervention(s) The EuEM and normal control endometrium (CoEM) were obtained by curettage. Primary cultured endometrial stromal cells (ESCs) were treated with 17β-estrogen (E2), G1 or G15. Main Outcome Measure(s) The EuEM and CoEM were collected for immunohistochemistry. Western blot, PCR, Elisa, and dual luciferase experiments were used to detect expression of GPER, HIF-1α, VEGF, and MMP9 in ESCs. E2 and G1 were used as agonists of GPER while G15 as an antagonist. Migration of ESCs and endothelial tube formation of HUVECs cultured in medium collected from ESCs were measured. Results Protein levels of GPER and HIF-1α were higher in EuEM than in CoEM. HIF-1α protein levels but not HIF-1α mRNA levels increased concurrently with GPER after E2 and G1 treatment. Furthermore, expression and activity of VEGF and MMP9 increased under E2 and G1 stimulation. However these effects disappeared when GPER was blocked. Conclusion GPER stabilizes HIF-1α thus promotes HIF-1α induced vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP9) in ESCs, which plays critical roles in endometriosis. PMID:27939762

  14. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone.

    PubMed

    Heino, Terhi J; Chagin, Andrei S; Sävendahl, Lars

    2008-05-01

    Estrogens have significant impact on bone mineral metabolism. Besides the classical estrogen receptors (ERalpha and ERbeta), a trans-membrane G-protein-coupled receptor (GPR30) has been demonstrated to mediate estrogenic effects. We aimed to study whether GPR30 is expressed in bone cells and if so, whether the level of expression is developmentally regulated. Metaphyseal bone biopsies were collected from the tibia in 14 boys and 6 girls, all at different stages of puberty. GPR30 protein expression was studied by immunohistochemistry in paraffin-embedded sections. GPR30-positive osteocytes and osteoblasts were quantified and linear regression analysis was applied. Cytoplasmic GPR30 expression was detected in osteoblasts, osteocytes, and osteoclasts. Osteocytes were more frequently positive for GPR30 than osteoblasts (58+/-4% vs 46+/-3% positive cells respectively, P<0.05). Detailed analysis demonstrated that GPR30 positivity declined during pubertal development in osteocytes (R=-0.56, P<0.01) but not in osteoblasts (R=-0.31, P>0.05). No sex difference was observed in the numbers of GPR30-positive osteoblasts or osteocytes. Furthermore, GPR30 expression did not correlate with chronological or bone age. In conclusion, the novel ER GPR30 is expressed in osteoblasts, osteocytes, and osteoclasts suggesting that non-genomic estrogen signaling via GPR30 may exist in bone. However, the functional role of GPR30 in bone tissue remains to be elucidated.

  15. G protein-coupled estrogen receptor (GPER) mediates NSCLC progression induced by 17β-estradiol (E2) and selective agonist G1.

    PubMed

    Liu, Changyu; Liao, Yongde; Fan, Sheng; Tang, Hexiao; Jiang, Zhixiao; Zhou, Bo; Xiong, Jing; Zhou, Sheng; Zou, Man; Wang, Jianmiao

    2015-04-01

    Estrogen classically drives lung cancer development via estrogen receptor β (ERβ). However, fulvestrant, an anti-estrogen-based endocrine therapeutic treatment, shows limited effects for non-small cell lung cancer (NSCLC) in phase II clinical trials. G protein-coupled estrogen receptor (GPER), a third estrogen receptor that binds to estrogen, has been found to be activated by fulvestrant, stimulating the progression of breast, endometrial, and ovarian cancers. We here demonstrated that cytoplasm-GPER (cGPER) (80.49 %) and nucleus-GPER (53.05 %) were detected by immunohistochemical analysis in NSCLC samples. cGPER expression was related to stages IIIA-IV, lymph node metastasis, and poorly differentiated NSCLC. Selective agonist G1 and 17β-estradiol (E2) promoted the GPER-mediated proliferation, invasion, and migration of NSCLC cells. Additionally, in vitro administration of E2 and G1 increased the number of tumor nodules, tumor grade, and tumor index in a urethane-induced adenocarcinoma model. Importantly, the pro-tumorigenic effects of GPER induced by E2 were significantly reduced by co-administering the GPER inhibitor G15 and the ERβ inhibitor fulvestrant, as compared to administering fulvestrant alone both in vitro and in vivo. Moreover, the phosphorylation of MAPK and Akt was involved in E2/G1-induced GPER activation. In conclusion, our results indicated that a pro-tumor function of GPER exists that mediated E2-/G1-dependent NSCLC progression and showed better efficiency regarding the co-targeting of GPER and ERβ, providing a rationale for further investigation of anti-estrogen clinical therapy.

  16. The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner

    PubMed Central

    Wang, Cheng; Lv, Xiangmin; Jiang, Chao; Davis, John S

    2012-01-01

    G-protein coupled estrogen receptor 1 (GPER) plays an important role in mediating estrogen action in many different tissues under both physiological and pathological conditions. G-1 (1-[4-(6-bromobenzo[1,3]dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl]-ethanone) has been developed as a selective GPER agonist to distinguish estrogen actions mediated by GPER from those mediated by classic estrogen receptors. In the present study, we surprisingly found that G-1 suppressed proliferation and induced apoptosis of KGN cells (a human ovarian granulosa cell tumor cell line), actions that were not blocked by a selective GPER antagonist G15 or siRNA knockdown of GPER. G-1 also suppressed proliferation and induced cell apoptosis in GPER-negative HEK-293 cells and MDA-MB 231 breast cancer cells. Our results demonstrate that G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. G-1 may be a candidate for the development of drugs against ovarian and breast cancer. PMID:23145207

  17. G-protein coupled estrogen receptor 1 expression in rat and human heart: Protective role during ischaemic stress.

    PubMed

    Patel, Vanlata H; Chen, Jing; Ramanjaneya, Manjunath; Karteris, Emmanouil; Zachariades, Elena; Thomas, Peter; Been, Martin; Randeva, Harpal S

    2010-08-01

    G-protein coupled estrogen receptor 1, GPER, formerly known as GPR30, is a seven transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. To date, little is known about the role of GPER during ischaemia/reperfusion injury. In this study, we report both mRNA and protein expression of GPER in the rat and human heart. The role of GPER in estrogen protection against ischaemic stress in the rat heart was also assessed using the isolated Langendorff system. Pre-treatment with 17beta-estradiol (E2) significantly decreased infarct size, (61.48+/-2.2% to 27.92+/-2.9% (P<0.001). Similarly, treatment with the GPER agonist G1 prior to 30-min global ischaemia followed by 120-min reperfusion significantly reduced infarct size from 61.48+/-2.2% to 23.85+/-3.2% (P<0.001), whilst addition of GPR30 antibody, abolished the protective effect of G1 (infarct size: 55.42+/-1.3%). The results suggest that GPER under cardiac stress exerts direct protection in the heart and may serve as a potential therapeutic target for cardiac drug therapy.

  18. Dilation of epicardial coronary arteries by the G protein-coupled estrogen receptor agonists G-1 and ICI 182,780.

    PubMed

    Meyer, Matthias R; Baretella, Oliver; Prossnitz, Eric R; Barton, Matthias

    2010-01-01

    Endogenous estrogens protect from coronary artery disease in premenopausal women, but the mechanisms involved are only partly understood. This study investigated whether activation of the novel G protein-coupled estrogen receptor (GPER, formerly known as GPR30) affects coronary artery tone, and whether this is affected by concomitant blockade of estrogen receptors (ER) alpha and beta. Rings of epicardial porcine coronary arteries suspended in organ chambers were precontracted with prostaglandin F(2)alpha, and direct effects of G-1 (GPER agonist) and ICI 182,780 (GPER agonist and ERalpha/ERbeta antagonist) were determined. In addition, indirect effects on contractility to endothelin-1 and serotonin (a vasoconstrictor released from aggregating platelets during acute myocardial infarction) were assessed. ICI 182,780 and G-1 caused acute dilation of coronary arteries to a comparable degree (p < 0.05 vs. solvent control). Both GPER agonists attenuated contractions to endothelin-1 (p < 0.05 vs. ethanol), but not to serotonin (n.s.). In summary, these findings provide evidence for direct and indirect coronary artery dilator effects of GPER independent of ERalpha and ERbeta, and are the first demonstration of arterial vasodilation in response to ICI 182,780. Copyright 2010 S. Karger AG, Basel.

  19. G protein-coupled estrogen receptor 1 (GPER 1) mediates estrogen-induced, proliferation of leiomyoma cells.

    PubMed

    Jiang, Xiuxiu; Ye, Xiaolei; Ma, Junyan; Li, Wen; Wu, Ruijin; Jun, Lin

    2015-01-01

    G protein-coupled estrogen receptor 1 (GPER-1, formerly known as GPR30) has been proposed as the receptor for estrogen-induced, growth of leiomyomas though its precise mechanisms of action are not clear. We obtained leiomyoma cells (LC) and normal smooth muscle cells from 28 women (n = 28, median age 38 years, median parity 1.0). We incubated them with 17-β estradiol (E(2)), after blocking, or upregulating, expression of GPER-1 with ICI182,780 (a GPER-1 agonist) and siGPR30, respectively. We evaluated the role of GPER-1 in the mitogen-activated protein kinase (MAPK) signaling pathway using Western blot analysis. We studied cell proliferation with 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, and, mitotic activity with phosphohistone H3 (PPH3) expression in leiomyoma, and, matched, normal, smooth muscle tissues using standard immunohistochemistry. Downregulation of GPER-1 expression with siGPR30 partially attenuated the E(2)-activated MAPK signaling pathway (p < 0.01). Upregulation of GPER-1 with ICI182,780 enhanced the E(2)-activated MAPK signaling pathway (p < 0.01). ICI182,780 enhanced E(2)-induced proliferation of LC (p < 0.01), while knock down of the GPER-1 gene with GPER-1 small interfering RNA partially inhibited E(2)-induced cell proliferation (p < 0.01). There were no significant differences in PPH3 expression between LCs and normal smooth muscle tissues (p > 0.05). Neither ICI182,780 nor siGPR30 increased mitosis in LCs (p > 0.05). Our results indicate that GPER-1 mediates proliferation of estrogen-induced, LC by activating the MAPK pathway, and, not by promoting mitosis.

  20. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio).

    PubMed

    Peyton, Candace; Thomas, Peter

    2011-07-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.

  1. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.

    PubMed

    Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena

    2017-03-01

    Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights

  2. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway.

    PubMed

    Cao, Lin-Ying; Ren, Xiao-Min; Li, Chuan-Hai; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong

    2017-10-03

    Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.

  4. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

    PubMed

    Waters, Elizabeth M; Thompson, Louisa I; Patel, Parth; Gonzales, Andreina D; Ye, Hector Zhiyu; Filardo, Edward J; Clegg, Deborah J; Gorecka, Jolanta; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2015-02-11

    Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions. Copyright © 2015 the authors 0270-6474/15/352384-14$15.00/0.

  5. Involvement of Epidermal Growth Factor Receptor Signaling in Estrogen Inhibition of Oocyte Maturation Mediated Through the G Protein-Coupled Estrogen Receptor (Gper) in Zebrafish (Danio rerio)1

    PubMed Central

    Peyton, Candace; Thomas, Peter

    2011-01-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression. PMID:21349822

  6. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story.

    PubMed

    Gaudet, H M; Cheng, S B; Christensen, E M; Filardo, E J

    2015-12-15

    GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.

    PubMed

    Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne

    2018-04-25

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights

  8. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer.

    PubMed

    Filardo, Edward J

    2002-02-01

    The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible transcription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer biology are discussed further in this review.

  9. G protein-coupled receptor 30 in tumor development.

    PubMed

    Wang, Dengfeng; Hu, Lina; Zhang, Guonan; Zhang, Lin; Chen, Chen

    2010-08-01

    Estrogen plays several important physiological and pathological functions in not only reproductive system but many other systems as well. Its transcriptional activation has been traditionally described as being mediated by classic nuclear estrogen receptors (ERs). It is however established recently that a novel functional estrogen transmembrane receptor, G protein-coupled receptor 30 (GPR30), modulates both rapid non-genomic events and genomic transcriptional events of estrogen. It has been demonstrated that GPR30 promotes the progress of estrogen-related tumors through mitogen-activated protein kinase (MAPK) signaling pathways. Effects mediated by GPR30 are maintained when classic ERs are absent or blocked. In addition, GPR30 is involved in drug resistance, which is often occurring during cancer treatments. All these new findings strongly imply that GPR30 may be an important therapeutic target for estrogen-related tumors. Simultaneously blocking both GPR30 and classic ERs may be a better strategy for the treatment of estrogen-related tumors.

  10. Sexually Dimorphic Role of G Protein-Coupled Estrogen Receptor (GPER) in Modulating Energy Homeostasis

    PubMed Central

    Davis, Kathryn E.; Carstens, Elizabeth J.; Irani, Boman G.; Gent, Lana M.; Hahner, Lisa M.; Clegg, Deborah J.

    2014-01-01

    The classical estrogen receptors, estrogen receptor-α and estrogen receptor-β are well established in the regulation of body weight and energy homeostasis in both male and female mice, whereas, the role for G protein-coupled estrogen receptor 1 (GPER) as a modulator of energy homeostasis remains controversial. This study sought to determine whether gene deletion of GPER (GPER KO) alters body weight, body adiposity, food intake, and energy homeostasis in both males and females. Male mice lacking GPER developed moderate obesity and larger adipocyte size beginning at 8 weeks of age, with significant reductions in energy expenditure, but not food intake or adipocyte number. Female GPER KO mice developed increased body weight relative to WT females a full 6 weeks later than the male GPER KO mice. Female GPER KO mice also had reductions in energy expenditure, but not significant increases in body fat content. Consistent with their decrease in energy expenditure, GPER KO males and females showed significant reductions in two brown fat thermogenic proteins. GPER KO females, prior to their divergence in body weight, were less sensitive than WT females to the feeding-inhibitory effects of leptin and CCK. Additionally, body weight was not as modulated by ovariectomy or estradiol replacement in GPER KO mice. Estradiol treatment activated phosphorylated extracellular signal-regulated kinase (pERK) in WT but not GPER KO females. For the first time, GPER expression was found in the adipocyte but not the stromal fraction of adipose tissue. Together, these results provide new information elucidating a sexual dimorphism in GPER function in the development of postpubertal energy balance. PMID:24560890

  11. G-protein coupled estrogen receptor (GPER) inhibits final oocyte maturation in common carp, Cyprinus carpio.

    PubMed

    Majumder, Suravi; Das, Sumana; Moulik, Sujata Roy; Mallick, Buddhadev; Pal, Puja; Mukherjee, Dilip

    2015-01-15

    GPR-30, now named as GPER (G protein-coupled estrogen receptor) was first identified as an orphan receptor and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. Later studies demonstrated that GPER has the characteristics of a high affinity estrogen membrane receptor on Atlantic croaker and zebra fish oocytes and mediates estrogen inhibition of oocyte maturation in these two distantly related teleost. To determine the broad application of these findings to other teleost, expression of GPER mRNA and its involvement in 17β-estradiol mediated inhibition of oocyte maturation in other cyprinid, Cyprinus carpio was investigated. Carp oocytes at pre-vitellogenic, late-vitellogenic and post-vitellogenic stages of development contained GPER mRNA and its transcribed protein with a maximum at late-vitellogenic oocytes. Ovarian follicular cells did not express GPER mRNA. Carp oocytes GPER mRNA was essentially identical to that found in other perciformes and cyprinid fish oocytes. Both spontaneous and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced oocyte maturation in carp was significantly decreased when they were incubated with either E2, or GPER agonist G-1. On the other hand spontaneous oocyte maturation was significantly increased when carp ovarian follicles were incubated with an aromatase inhibitor, fadrozole, GPER antagonist, G-15 and enzymatic removal of the ovarian follicle cell layers. This increase in oocyte maturation was partially reversed by co-treatment with E2. Consistent with previous findings with human and fish GPR30, E2 treatment in carp oocytes caused increase in cAMP production and simultaneously decrease in oocyte maturation, which was inhibited by the addition of 17,20β-P. The results suggest that E2 and GPER play a critical role in regulating re-entry in to meiotic cell cycle in carp oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: Dysregulated glandular homeostasis, survival and metastasis.

    PubMed

    Filardo, Edward J

    2018-02-01

    Mechanisms of carcinogenesis by estrogen center on its mitogenic and genotoxic potential on tumor target cells. These models suggest that estrogen receptor (ER) signaling promotes expansion of the transformed population and that subsequent accumulation of somatic mutations that drive cancer progression occur via metabolic activation of cathecol estrogens or by epigenetic mechanisms. Recent findings that GPER is linked to obesity, vascular pathology and immunosuppression, key events in the development of metabolic syndrome and intra-tissular estrogen synthesis, provides an alternate view of estrogen-induced carcinogenesis. Consistent with this concept, GPER is directly associated with clinicopathological indices that predict cancer progression and poor survival in breast and gynecological cancers. Moreover, GPER manifests cell biological responses and a microenvironment conducive for tumor development and cancer progression, regulating cellular responses associated with glandular homeostasis and survival, invading surrounding tissue and attracting a vascular supply. Thus, the cellular actions attributed to GPER fit well with the known molecular mechanisms of G-protein coupled receptors, GPCRs, namely, their ability to transactivate integrins and EGF receptors and alter the interaction between glandular epithelia and their extracellular environment, affecting epithelial-to-mesenchymal transition (EMT) and allowing for tumor cell survival and dissemination. This perspective reviews the molecular and cellular responses manifested by GPER and evaluates its contribution to female reproductive cancers as diseases that progress as a result of dysregulated glandular homeostasis resulting in chronic inflammation and metastasis. This review is organized in sections as follows: I) a brief synopsis of the current state of knowledge regarding estrogen-induced carcinogenesis, II) a review of evidence from clinical and animal-based studies that support a role for GPER in cancer

  13. Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER).

    PubMed

    Feldman, Ross D; Ding, Qingming; Hussain, Yasin; Limbird, Lee E; Pickering, J Geoffrey; Gros, Robert

    2016-06-01

    Although aldosterone is a known regulator of renal and cardiovascular function, its role as a regulator of cancer growth and spread has not been widely considered. This study tested the hypothesis that aldosterone regulates cancer cell growth/spread via G protein-coupled estrogen receptor (GPER) activation. In vitro in murine renal cortical adenocarcinoma (RENCA) cells, a widely used murine in vitro model for the study of renal cell adenocarcinoma, aldosterone increased RENCA cell proliferation to a maximum of 125 ± 3% of control at a concentration of 10 nM, an effect blocked by the GPER antagonist G15 or by GPER knockdown using short interfering (sh) RNA techniques. Further, aldosterone increased RENCA cell migration to a maximum of 170 ± 20% of control at a concentration of 100 nM, an effect also blocked by G15 or by GPER down-regulation. In vivo, after orthotopic RENCA cell renal transplantation, pulmonary tumor spread was inhibited by pharmacologic blockade of aldosterone effects with spironolactone (percentage of lung occupied by metastasis: control = 68 ± 13, spironolactone = 26 ± 8, P < 0.05) or inhibition of aldosterone synthesis with a high dietary salt diet (percentage of lung: control = 44 ± 6, high salt = 12 ± 3, P < 0.05), without reducing primary tumor size. Additionally, adrenalectomy significantly reduced the extent of pulmonary tumor spread, whereas aldosterone infusion recovered pulmonary metastatic spread toward baseline levels. Finally, inhibition of GPER either with the GPER antagonist G15 or by GPER knockdown comparably inhibited RENCA cell pulmonary metastatic cancer spread. Taken together, these findings provide strong evidence for aldosterone serving a causal role in renal cell cancer regulation via its GPER receptor; thus, antagonism of GPER represents a potential new target for treatment to reduce metastatic spread.-Feldman, R. D., Ding, Q., Hussain, Y., Limbird, L. E., Pickering, J. G., Gros, R. Aldosterone mediates metastatic

  14. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis.

    PubMed

    Davis, Kathryn E; Carstens, Elizabeth J; Irani, Boman G; Gent, Lana M; Hahner, Lisa M; Clegg, Deborah J

    2014-06-01

    This article is part of a Special Issue "Energy Balance". The classical estrogen receptors, estrogen receptor-α and estrogen receptor-β are well established in the regulation of body weight and energy homeostasis in both male and female mice, whereas, the role for G protein-coupled estrogen receptor 1 (GPER) as a modulator of energy homeostasis remains controversial. This study sought to determine whether gene deletion of GPER (GPER KO) alters body weight, body adiposity, food intake, and energy homeostasis in both males and females. Male mice lacking GPER developed moderate obesity and larger adipocyte size beginning at 8 weeks of age, with significant reductions in energy expenditure, but not food intake or adipocyte number. Female GPER KO mice developed increased body weight relative to WT females a full 6 weeks later than the male GPER KO mice. Female GPER KO mice also had reductions in energy expenditure, but no significant increases in body fat content. Consistent with their decrease in energy expenditure, GPER KO males and females showed significant reductions in two brown fat thermogenic proteins. GPER KO females, prior to their divergence in body weight, were less sensitive than WT females to the feeding-inhibitory effects of leptin and CCK. Additionally, body weight was not as modulated by ovariectomy or estradiol replacement in GPER KO mice. Estradiol treatment activated phosphorylated extracellular signal-regulated kinase (pERK) in WT but not GPER KO females. For the first time, GPER expression was found in the adipocyte but not the stromal fraction of adipose tissue. Together, these results provide new information elucidating a sexual dimorphism in GPER function in the development of postpubertal energy balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    PubMed

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells*

    PubMed Central

    Teng, Yun; Radde, Brandie N.; Litchfield, Lacey M.; Ivanova, Margarita M.; Prough, Russell A.; Clark, Barbara J.; Doll, Mark A.; Hein, David W.; Klinge, Carolyn M.

    2015-01-01

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3–12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. PMID:25969534

  17. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland.

    PubMed

    Rago, V; Romeo, F; Giordano, F; Ferraro, A; Carpino, A

    2016-01-01

    Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements. © 2015 American Society of Andrology and European Academy of Andrology.

  18. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. PMID:26093261

  19. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-07-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Expression and signaling of G protein-coupled estrogen receptor 1 (GPER) in rat sertoli cells.

    PubMed

    Lucas, Thaís F G; Royer, Carine; Siu, Erica R; Lazari, Maria Fatima M; Porto, Catarina S

    2010-08-01

    The aim of the present study was to investigate the expression and signaling of the G protein-coupled estrogen receptor 1 (GPER) in cultured immature rat Sertoli cells--in which we have previously described the classical estrogen receptors (ESR1 and ESR2). Expression of GPER in cultured Sertoli cells from 15-day-old rats was detected by RT-PCR and immunoassays. Gper transcripts also were present in testes from 5-, 15-, and 120-day-old rats. Short-term treatment of Sertoli cells with 17beta-estradiol (E2), the GPER agonist G-1, or the ESR antagonist ICI 182,780 (ICI) rapidly activated MAPK3/1 (ERK1/2), even after down-regulation of ESR1 and ESR2, suggesting a role for GPER in the rapid E2 action in these cells. MAPK3/1 phosphorylation induced by ICI or G-1 was blocked by pertussis toxin, selective inhibitor of the SRC family of protein tyrosine kinases, metalloprotease inhibitor, MAP2K1/2 inhibitor, and epidermal growth factor receptor (EGFR) kinase inhibitor. Furthermore, E2, but not G-1, induced up-regulation of cyclin D1 in the Sertoli cells. This effect was blocked by ICI. E2 and G-1 decreased BAX and increased BCL2 expression and these effects were blocked by MAP2K1/2 inhibitor and EGFR kinase inhibitor. The pretreatment with ICI did not block the effect of E2. Taken together, these results indicate that in Sertoli cells 1) GPER-mediated MAPK3/1 activation occurs via EGFR transactivation through G protein beta gamma subunits that promote SRC-mediated metalloprotease-dependent release of EGFR ligands, which bind to EGFR and lead to MAPK3/1 phosphorylation; 2) E2-ESRs play a role in Sertoli cell proliferation; and 3) E2-GPER may regulate gene expression involved with apoptosis. ESR and GPER may mediate actions important for Sertoli cell function and maintenance of normal testis development and homeostasis.

  1. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30.

    PubMed

    Ramesh, Chinnasamy; Nayak, Tapan K; Burai, Ritwik; Dennis, Megan K; Hathaway, Helen J; Sklar, Larry A; Prossnitz, Eric R; Arterburn, Jeffrey B

    2010-02-11

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.

  2. Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy.

    PubMed

    Kurt, Akif Hakan; Bosnak, Mehmet; Inan, Salim Yalcın; Celik, Ahmet; Uremis, Muhammed Mehdi

    2016-02-01

    G protein-coupled estrogen receptor 1 (GPER-1) has been demonstrated in several parts of the brain and may play an important role in estrogen downstream signaling pathway. However, the effects of this receptor on epileptic seizure are not clearly known. Therefore, the effects of GPER-1 agonist, G-1, GPER-1 antagonist, G-15 and the main estrogenic hormone, 17β-estradiol were investigated on seizures and brain tissue oxidative damages induced by pentylenetetrazole (PTZ) in rats. In this study, 30 adult male Wistar albino rats were used. Due to intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35mg/kg) which was repeated 12 times every 48h, chemical kindling occurred and kindling seizure was recorded for 30min. The rats were injected with 17β-estradiol (5μg/kg, ip) or G-1 (5μg/kg, ip), G-15 (5μg/kg, ip), Saline, Ethanol and Dimethyl sulfoxide (DMSO) 30min before each dose of PTZ. Observed seizures were classified between the phase 0-5. Thirty minutes later when the last 12. PTZ administration, all rats were sacrificed and the brain cortex, hippocampus sections were removed and the tissue superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) levels on these tissues were studied. GPER1 agonist, G-1 and estrogenic hormone, 17β-estradiol significantly increased the development of PTZ kindling the seizures. However, GPER1 antagonist, G-15 did not change the development of PTZ kindling the seizures. In the cortex and hippocampus homogenates, the NO levels after G-1 administration had significantly increased (p<0.05) compared to the PTZ groups but SOD activities and MDA levels demonstrated no difference between the groups. This is the first study that explores that GPER-1 receptors have epileptogenic effect on PTZ-induced kindling rat. GPER1 may mediate the epileptogenic effect of estrogens by changing the oxidative or anti-oxidative parameters in the brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences

  3. Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane.

    PubMed

    Filardo, E; Quinn, J; Pang, Y; Graeber, C; Shaw, S; Dong, J; Thomas, P

    2007-07-01

    G protein-coupled receptor 30 (GPR30), a seven-transmembrane receptor (7TMR), is associated with rapid estrogen-dependent, G protein signaling and specific estrogen binding. At present, the subcellular site of GPR30 action is unclear. Previous studies using antibodies and fluorochrome-labeled estradiol (E2) have failed to detect GPR30 on the cell surface, suggesting that GPR30 may function uniquely among 7TMRs as an intracellular receptor. Here, we show that detectable expression of GPR30 on the surface of transfected HEK-293 cells can be selected by fluorescence-activated cell sorting. Expression of GPR30 on the cell surface was confirmed by confocal microscopy using the lectin concanavalin A as a plasma membrane marker. Stimulation of GPR30-expressing HEK-293 cells with 17beta-E2 caused sequestration of GPR30 from the cell surface and resulted in its codistribution with clathrin and mobilization of intracellular calcium stores. Evidence that GPR30 signals from the cell surface was obtained from experiments demonstrating that the cell-impermeable E2-protein conjugates E2-BSA and E2-horseradish peroxidase promote GPR30-dependent elevation of intracellular cAMP concentrations. Subcellular fractionation studies further support the plasma membrane as a site of GPR30 action with specific [3H]17beta-E2 binding and G protein activation associated with plasma membrane but not microsomal, or other fractions, prepared from HEK-293 or SKBR3 breast cancer cells. These results suggest that GPR30, like other 7TMRs, functions as a plasma membrane receptor.

  4. G protein-coupled estrogen receptor (GPER) regulates mammary tumorigenesis and metastasis

    PubMed Central

    Marjon, Nicole A.; Hu, Chelin

    2014-01-01

    The role of 17β-estradiol (E2) in breast cancer development and tumor growth has traditionally been attributed exclusively to the activation of ERα. Although targeted inhibition of ERα is a successful approach for patients with ERα+ breast cancer, many patients fail to respond or become resistant to anti-estrogen therapy. The discovery of the G protein-coupled estrogen receptor (GPER1) suggested an additional mechanism through which E2 could exert its effects in breast cancer. Studies have demonstrated clinical correlations between GPER expression in human breast tumor specimens and increased tumor size, distant metastasis, and recurrence, as well as established a proliferative role for GPER in vitro; however, direct in vivo evidence has been lacking. To this end, a GPER null mutation [GPER knockout (KO)] was introduced, through interbreeding, into a widely used transgenic mouse model of mammary tumorigenesis [MMTV-PyMT (PyMT)]. Early tumor development, assessed by the extent of hyperplasia and proliferation, was not different between GPER wild-type/PyMT (WT/PyMT) and those mice harboring the GPER null mutation (KO/PyMT). However, by 12-13 weeks of age, tumors from KO/PyMT mice were smaller with decreased proliferation compared to those from WT/PyMT mice. Furthermore, tumors from the KO/PyMT mice were of histologically lower grade compared to tumors from their WT counterparts, suggesting less aggressive tumors in the KO/PyMT mice. Finally, KO/PyMT mice displayed dramatically fewer lung metastases compared to WT/PyMT mice. Combined, these data provide the first in vivo evidence that GPER plays a critical role in breast tumor growth and distant metastasis. PMID:25030371

  5. Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke.

    PubMed

    Broughton, Brad R S; Brait, Vanessa H; Kim, Hyun Ah; Lee, Seyoung; Chu, Hannah X; Gardiner-Mann, Chantelle V; Guida, Elizabeth; Evans, Megan A; Miller, Alyson A; Arumugam, Thiruma V; Drummond, Grant R; Sobey, Christopher G

    2014-03-01

    Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein-coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that GPER activation may have a greater neuroprotective effect in males than in females after stroke. Vehicle (dimethyl sulfoxide), a GPER agonist (G-1, 30 μg/kg), or a GPER antagonist (G-15, 300 μg/kg) were administered alone or in combination to young or aged male mice, or young intact or ovariectomized female mice, 1 hour before or 3 hours after cerebral ischemia-reperfusion. Some mice were treated with a combination of G-1 and the pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), 1 hour before stroke. We evaluated functional and histological end points of stroke outcome up to 72 hours after ischemia-reperfusion. In addition, apoptosis was examined using cleaved caspase-3 immunohistochemistry. Surprisingly, G-1 worsened functional outcomes and increased infarct volume in males poststroke, in association with an increased expression of cleaved caspase-3 in peri-infarct neurons. These effects were blocked by G-15 or Q-VD-OPh. Conversely, G-15 improved functional outcomes and reduced infarct volume after stroke in males, whether given before or after stroke. In contrast to findings in males, G-1 reduced neurological deficit, apoptosis, and infarct volume in ovariectomized females, but had no significant effect in intact females. Future therapies for acute stroke could exploit the modulation of GPER activity in a sex-specific manner.

  6. Aberrant ligand-induced activation of G protein-coupled estrogen receptor 1 (GPER) results in developmental malformations during vertebrate embryogenesis.

    PubMed

    Jayasinghe, B Sumith; Volz, David C

    2012-01-01

    G protein-coupled estrogen receptor 1 (GPER) is a G protein-coupled receptor (GPCR) unrelated to nuclear estrogen receptors but strongly activated by 17β-estradiol in both mammals and fish. To date, the distribution and functional characterization of GPER within reproductive and nonreproductive vertebrate organs have been restricted to juvenile and adult animals. In contrast, virtually nothing is known about the spatiotemporal distribution and function of GPER during vertebrate embryogenesis. Using zebrafish as an animal model, we investigated the potential functional role and expression of GPER during embryogenesis. Based on real-time PCR and whole-mount in situ hybridization, gper was expressed as early as 1 h postfertilization (hpf) and exhibited strong stage-dependent expression patterns during embryogenesis. At 26 and 38 hpf, gper mRNA was broadly distributed throughout the body, whereas from 50 to 98 hpf, gper expression was increasingly localized to the heart, brain, neuromasts, craniofacial region, and somite boundaries of developing zebrafish. Continuous exposure to a selective GPER agonist (G-1)-but not continuous exposure to a selective GPER antagonist (G-15)-from 5 to 96 hpf, or within three developmental windows ranging from 10 to 72 hpf, resulted in adverse concentration-dependent effects on survival, gross morphology, and somite formation within the trunk of developing zebrafish embryos. Importantly, based on co-exposure studies, G-15 blocked severe G-1-induced developmental toxicity, suggesting that G-1 toxicity is mediated via aberrant activation of GPER. Overall, our findings suggest that xenobiotic-induced GPER activation represents a potentially novel and understudied mechanism of toxicity for environmentally relevant chemicals that affect vertebrate embryogenesis.

  7. G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17β-estradiol in developing hippocampal neurons.

    PubMed

    Ruiz-Palmero, Isabel; Hernando, Maria; Garcia-Segura, Luis M; Arevalo, Maria-Angeles

    2013-06-15

    Estradiol promotes neuritogenesis in developing hippocampal neurons by a mechanism involving the upregulation of neurogenin 3, a Notch-regulated transcription factor. In this study we have explored whether G-protein coupled estrogen receptor 1 (GPER) participates in this hormonal action. GPER agonists (17β-estradiol, G1, ICI 182,780) increased neurogenin 3 expression and neuritogenesis in mouse primary hippocampal neurons and this effect was blocked by the GPER antagonist G15 and by a siRNA for GPER. In addition, GPER agonists increased Akt phosphorylation in ser473, which is indicative of the activation of phosphoinositide-3-kinase (PI3K). G15 or GPER silencing prevented the estrogenic induction of Akt phosphorylation. Furthermore, the PI3K inhibitor wortmannin prevented the effect of G1 and estradiol on neurogenin 3 expression and the effect of estradiol on neuritogenesis. These findings suggest that GPER participates in the control of hippocampal neuritogenesis by a mechanism involving the activation of PI3K signaling. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. G-protein-coupled estrogen receptor-30 gene polymorphisms are associated with uterine leiomyoma risk.

    PubMed

    Kasap, Burcu; Öztürk Turhan, Nilgün; Edgünlü, Tuba; Duran, Müzeyyen; Akbaba, Eren; Öner, Gökalp

    2016-01-06

    The G-protein-coupled estrogen receptor (GPR30, GPER-1) is a member of the G-protein-coupled receptor 1 family and is expressed significantly in uterine leiomyomas. To understand the relationship between GPR30 single nucleotide polymorphisms and the risk of leiomyoma, we measured the follicle-stimulating hormone (FSH) and estradiol (E2) levels of 78 perimenopausal healthy women and 111 perimenopausal women with leiomyomas. The participants' leiomyoma number and volume were recorded. DNA was extracted from whole blood with a GeneJET Genomic DNA Purification Kit. An amplification-refractory mutation system polymerase chain reaction approach was used for genotyping of the GPR30 gene (rs3808350, rs3808351, and rs11544331). The differences in genotype and allele frequencies between the leiomyoma and control groups were calculated using the chi-square (χ2) and Fischer's exact test. The median FSH level was higher in controls (63 vs. 10 IU/L, p=0.000), whereas the median E2 level was higher in the leiomyoma group (84 vs. 9.1 pg/mL, p=0.000). The G allele of rs3808351 and the GG genotype of both the rs3808350 and rs3808351 polymorphisms and the GGC haplotype increased the risk of developing leiomyoma. There was no significant difference in genotype frequencies or leiomyoma volume. However, the GG genotype of the GPR30 rs3808351 polymorphism and G allele of the GPR30 rs3808351 polymorphism were associated with the risk of having a single leiomyoma. Our results suggest that the presence of the GG genotype of the GPR30 rs3808351 polymorphism and the G allele of the GPR30 rs3808351 polymorphism affect the characteristics and development of leiomyomas in the Turkish population.

  9. G-protein-coupled estrogen receptor-30 gene polymorphisms are associated with uterine leiomyoma risk

    PubMed Central

    Kasap, Burcu; Turhan, Nilgün Öztürk; Edgünlü, Tuba; Duran, Müzeyyen; Akbaba, Eren; Öner, Gökalp

    2016-01-01

    The G-protein-coupled estrogen receptor, GPER-1) is a member of the G-protein-coupled receptor 1 family and is expressed significantly in uterine leiomyomas. To understand the relationship between GPR30 single nucleotide polymorphisms and the risk of leiomyoma, we measured the follicle-stimulating hormone (FSH) and estradiol (E2) levels of 78 perimenopausal healthy women and 111 perimenopausal women with leiomyomas. The participants’ leiomyoma number and volume were recorded. DNA was extracted from whole blood with a GeneJET Genomic DNA Purification Kit. An amplification-refractory mutation system polymerase chain reaction approach was used for genotyping of the GPR30 gene (rs3808350, rs3808351, and rs11544331). The differences in genotype and allele frequencies between the leiomyoma and control groups were calculated using the chi-square (χ2) and Fischer’s exact test. The median FSH level was higher in controls (63 vs. 10 IU/L, p=0.000), whereas the median E2 level was higher in the leiomyoma group (84 vs. 9.1 pg/mL, p=0.000). The G allele of rs3808351 and the GG genotype of both the rs3808350 and rs3808351 polymorphisms and the GGC haplotype increased the risk of developing leiomyoma. There was no significant difference in genotype frequencies or leiomyoma volume. However, the GG genotype of the GPR30 rs3808351 polymorphism and G allele of the GPR30 rs3808351 polymorphism were associated with the risk of having a single leiomyoma. Our results suggest that the presence of the GG genotype of the GPR30 rs3808351 polymorphism and the G allele of the GPR30 rs3808351 polymorphism affect the characteristics and development of leiomyomas in the Turkish population. PMID:26773178

  10. Role of G-protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes.

    PubMed

    Thomas, Peter

    2017-03-01

    An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E 2 ) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (G s ) on oocyte plasma membranes resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E 2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE 2 ) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH

  11. The G-Protein-Coupled Estrogen Receptor (GPER/GPR30) in Ovarian Granulosa Cell Tumors

    PubMed Central

    Heublein, Sabine; Mayr, Doris; Friese, Klaus; Jarrin-Franco, Maria Cristina; Lenhard, Miriam; Mayerhofer, Artur; Jeschke, Udo

    2014-01-01

    Ovarian granulosa cell tumors (GCTs) are thought to arise from cells of the ovarian follicle and comprise a rare entity of ovarian masses. We recently identified the G-protein-coupled estrogen receptor (GPER/GPR30) to be present in granulosa cells, to be regulated by gonadotropins in epithelial ovarian cancer and to be differentially expressed throughout folliculogenesis. Thus, supposing a possible role of GPER in GCTs, this study aimed to analyze GPER in GCTs. GPER immunoreactivity in GCTs (n = 26; n (primary diagnosis) = 15, n (recurrence) = 11) was studied and correlated with the main clinicopathological variables. Positive GPER staining was identified in 53.8% (14/26) of GCTs and there was no significant relation of GPER with tumor size or lymph node status. Those cases presenting with strong GPER intensity at primary diagnosis showed a significant reduced overall survival (p = 0.002). Due to the fact that GPER is regulated by estrogens, as well as gonadotropins, GPER may also be affected by endocrine therapies applied to GCT patients. Moreover, with our data supposing GPER to be associated with GCT prognosis, GPER might be considered as a possible confounder when assessing the efficacy of hormone-based therapeutic approaches in GCTs. PMID:25167139

  12. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1*

    PubMed Central

    Tran, Quang-Kim; Firkins, Rachel; Giles, Jennifer; Francis, Sarah; Matnishian, Vahe; Tran, Phuong; VerMeer, Mark; Jasurda, Jake; Burgard, Michelle Ann; Gebert-Oberle, Briana

    2016-01-01

    Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca2+ signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca2+ and Ca2+-CaM indicated that E2 also increases free Ca2+-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca2+-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca2+ efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca2+ signals and promote Ca2+-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca2+/CaM signals and functional linkage in the endothelial CaM target network. PMID:26987903

  13. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1.

    PubMed

    Tran, Quang-Kim; Firkins, Rachel; Giles, Jennifer; Francis, Sarah; Matnishian, Vahe; Tran, Phuong; VerMeer, Mark; Jasurda, Jake; Burgard, Michelle Ann; Gebert-Oberle, Briana

    2016-05-13

    Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca(2+) signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca(2+) and Ca(2+)-CaM indicated that E2 also increases free Ca(2+)-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca(2+)-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca(2+) efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca(2+) signals and promote Ca(2+)-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca(2+)/CaM signals and functional linkage in the endothelial CaM target network. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Activation of G protein-coupled estrogen receptor 1 (GPER-1) ameliorates blood-brain barrier permeability after global cerebral ischemia in ovariectomized rats.

    PubMed

    Lu, Dan; Qu, Yan; Shi, Fei; Feng, Dayun; Tao, Kai; Gao, Guodong; He, Shiming; Zhao, Tianzhi

    2016-08-19

    G protein-coupled estrogen receptor 1 (GPER-1) plays important roles in estrogen-mediated neuroprotection. However, protective effects of GPER-1 on blood-brain barrier (BBB) after ischemic stroke have not been determined. The aim of present study was to determine whether GPER-1 activation ameliorates BBB permeability in ovariectomized rats with induced global cerebral ischemia (GCI). GCI was induced by 4-vessel occlusion for 20 min followed by 24 h reperfusion period. The GPER-1 agonist (G1) was bilaterally administered immediately upon reperfusion by intracerebroventricular (icv) injection. We found that the GPER-1 agonist could significantly decrease immunoglobulin G (IgG) extravasation and increase the levels of tight junctions (occludin and claudin-5) in the CA1 at 24 h of reperfusion after GCI. Further, protein levels of vascular endothelial growth factor A (VEGF-A) was significantly decreased in the ischemic CA1 by G1. Our results suggest that GPER-1 activation reduce tight junctions disruption via inhibition of VEGF-A expression after ischemic injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis.more » Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.« less

  16. G protein-coupled estrogen receptor (GPER) in adult boar testes, epididymis and spermatozoa during epididymal maturation.

    PubMed

    Krejčířová, Romana; Maňasová, Marie; Sommerová, Veronika; Langhamerová, Eva; Rajmon, Radko; Maňásková-Postlerová, Pavla

    2018-05-04

    The G protein-coupled estrogen receptor (GPER) is a transmembrane receptor considered as a mediator of rapid non-genomic responses. GPER has been found in the male reproductive tract of many mammalian species. However, in adult boars, GPER has been reported only in ejaculated spermatozoa. Therefore, we focused on GPER detection in testicular and epididymal tissues and sperm cells in adult boars. We found GPER in Leydig cells and seminiferous tubules of boar testes and in the secretory epithelium of epididymis. A weaker signal was visible in smooth muscle cells and spermatozoa in the epididymal tubule. In spermatozoa isolated from epididymal parts, GPER was found to localize mainly in the sperm acrosome and flagellum. We immunodetected several protein bands in the extracts of the tissues and epididymal spermatozoa. A significantly higher amount of GPER mRNA was detected in the spermatozoa from caput epididymis, whereas the mRNA expression was lower in tissues of testes and caput epididymal. Our results showed the first evidence of GPER in boar epididymal spermatozoa. Moreover, the GPER localization in adult boar testes, epididymis, and mature spermatozoa suggests the involvement of estrogens via transmembrane receptor and rapid non-genomic signaling in both the sperm development and post-testicular maturation. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells.

    PubMed

    Ariazi, Eric A; Brailoiu, Eugen; Yerrum, Smitha; Shupp, Heather A; Slifker, Michael J; Cunliffe, Heather E; Black, Michael A; Donato, Anne L; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R; Dun, Nae J; Jordan, V Craig

    2010-02-01

    The G protein-coupled receptor GPR30 binds 17beta-estradiol (E(2)) yet differs from classic estrogen receptors (ERalpha and ERbeta). GPR30 can mediate E(2)-induced nongenomic signaling, but its role in ERalpha-positive breast cancer remains unclear. Gene expression microarray data from five cohorts comprising 1,250 breast carcinomas showed an association between increased GPR30 expression and ERalpha-positive status. We therefore examined GPR30 in estrogenic activities in ER-positive MCF-7 breast cancer cells using G-1 and diethylstilbestrol (DES), ligands that selectively activate GPR30 and ER, respectively, and small interfering RNAs. In expression studies, E(2) and DES, but not G-1, transiently downregulated both ER and GPR30, indicating that this was ER mediated. In Ca(2+) mobilization studies, GPR30, but not ERalpha, mediated E(2)-induced Ca(2+) responses because E(2), 4-hydroxytamoxifen (activates GPR30), and G-1, but not DES, elicited cytosolic Ca(2+) increases not only in MCF-7 cells but also in ER-negative SKBr3 cells. Additionally, in MCF-7 cells, GPR30 depletion blocked E(2)-induced and G-1-induced Ca(2+) mobilization, but ERalpha depletion did not. Interestingly, GPR30-coupled Ca(2+) responses were sustained and inositol triphosphate receptor mediated in ER-positive MCF-7 cells but transitory and ryanodine receptor mediated in ER-negative SKBr3 cells. Proliferation studies involving GPR30 depletion indicated that the role of GPR30 was to promote SKBr3 cell growth but reduce MCF-7 cell growth. Supporting this, G-1 profoundly inhibited MCF-7 cell growth, potentially via p53 and p21 induction. Further, flow cytometry showed that G-1 blocked MCF-7 cell cycle progression at the G(1) phase. Thus, GPR30 antagonizes growth of ERalpha-positive breast cancer and may represent a new target to combat this disease.

  18. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling.

    PubMed

    Zhou, Kewen; Sun, Peng; Zhang, Yaxing; You, Xinchao; Li, Ping; Wang, Tinghuai

    2016-07-01

    Estrogen mediates important cellular activities in estrogen receptor negative (ER-) breast cancer cells via membrane associated G protein-coupled receptor 30 (GPR30). However, the biological role and mechanism of estrogen action on cell motility and invasion in this aggressive kind of tumors remains poorly understood. We showed here that treatment with 17β-estradiol (E2) in ER-negative cancer cells resulted in ezrin-dependent cytoskeleton rearrangement and elicited a stimulatory effect on cell migration and invasion. Mechanistically, E2 induced ezrin activation was mediated by distinct mechanisms in different cell contexts. In SK-BR-3 cells with a high GPR30/ERβ ratio, silencing of GPR30 was able to abolish E2 induced ERK1/2, AKT phosphorylation and ezrin activation, whereas in MDA-MB-231 cells with low GPR30/ERβ ratio, E2 stimulated ezrin activation was mediated by the ERβ/PI3K/AKT signaling pathway. Importantly, we showed that activation of GPR30 signaling significantly prevents ERβ activation induced ezrin phosphorylation, cell migration and invasion, indicating an antagonist effect between GPR30 and ERβ signaling in MDA-MB-231 cells. These findings highlight the important interplay between different estrogen receptors in estrogen induced cell motility and invasiveness in ER-negative breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD).

    PubMed

    Sahin, Nilfer; Altun, Hatice; Kurutaş, Ergül Belge; Fındıklı, Ebru

    2018-05-20

    Estrogen has a crucial role in the regulation of reproductive and neuroendocrine function and exerts its effects through two classes of receptors, nuclear and membrane estrogen receptors (mERs). G protein-coupled estrogen receptor 1 (GPER) is a member of mERs, and despite limited research on the levels of GPER in patients with psychiatric diseases, a role of GPER in such conditions has been suggested. Here we evaluated serum estrogen and GPER levels in children with attention deficit hyperactivity disorder (ADHD) in relation to their age- and gender-matched healthy controls. A total of 82 children were included in the study, 47 drug- naïve patients with ADHD (age: 6-12 years; male/female: 34/13) and 35 healthy controls (age: 6-12 years; male/female: 19/16). The subgroups according to ADHD types were inattentive, hyperactive/impulsive, and combined. Serum estrogen was measured using an immunoassay system, while serum GPER was determined using a commercial sandwich enzyme-linked immunosorbent assay kit. Estrogen levels in children with ADHD were similar as in control group, while GPER levels were significantly lower in ADHD group compared to controls (p < 0.05). Logistic regression analysis showed a significant association between GPER levels and ADHD (p < 0.05), and no association between estrogen levels and ADHD (p > 0.05). No significant differences were found in GPER and estrogen levels between ADHD subgroups (p > 0.05). To the best of our knowledge, this study is the first to investigate estrogen and GPER levels in ADHD. Our preliminary findings suggest a relationship between serum GPER levels and ADHD, and this should be further investigated.

  20. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  1. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    PubMed Central

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  2. Minireview: G Protein-Coupled Estrogen Receptor-1, GPER-1: Its Mechanism of Action and Role in Female Reproductive Cancer, Renal and Vascular Physiology

    PubMed Central

    Thomas, Peter

    2012-01-01

    Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its “pregenomic” signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology. PMID:22495674

  3. Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology.

    PubMed

    Filardo, Edward J; Thomas, Peter

    2012-07-01

    Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its "pregenomic" signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology.

  4. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  5. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  6. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium.

    PubMed

    Tica, Andrei A; Dun, Erica C; Tica, Oana S; Gao, Xin; Arterburn, Jeffrey B; Brailoiu, G Cristina; Oprea, Tudor I; Brailoiu, Eugen

    2011-11-01

    G protein-coupled estrogen receptor 1 (GPER), also named GPR30, has been previously identified in the female reproductive system. In this study, GPER expression was found in the female rat myometrium by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Using GPER-selective ligands, we assessed the effects of the GPER activation on resting membrane potential and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in rat myometrial cells, as well as on contractility of rat uterine strips. G-1, a specific GPER agonist, induced a concentration-dependent depolarization and increase in [Ca(2+)](i) in myometrial cells. The depolarization was abolished in Na(+)-free saline. G-1-induced [Ca(2+)](i) increase was markedly decreased by nifedipine, a L-type Ca(2+) channel blocker, by Ca(2+)-free or Na(+)-free saline. Intracellular administration of G-1 produced a faster and transitory increase in [Ca(2+)](i), with a higher amplitude than that induced by extracellular application, supporting an intracellular localization of the functional GPER in myometrial cells. Depletion of internal Ca(2+) stores with thapsigargin produced a robust store-activated Ca(2+) entry; the Ca(2+) response to G-1 was similar to the constitutive Ca(2+) entry and did not seem to involve store-operated Ca(2+) entry. In rat uterine strips, administration of G-1 increased the frequency and amplitude of contractions and the area under the contractility curve. The effects of G-1 on membrane potential, [Ca(2+)](i), and uterine contractility were prevented by pretreatment with G-15, a GPER antagonist, further supporting the involvement of GPER in these responses. Taken together, our results indicate that GPER is expressed and functional in rat myometrium. GPER activation produces depolarization, elevates [Ca(2+)](i) and increases contractility in myometrial cells.

  7. Epigenetic down regulation of G protein-coupled estrogen receptor (GPER) functions as a tumor suppressor in colorectal cancer.

    PubMed

    Liu, Qiao; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Yang, Xiangling; Huang, Hongbin; Liu, Huanliang; Du, Jun; Wang, Hongsheng

    2017-05-05

    Estrogenic signals are suggested to have protection roles in the development of colorectal cancer (CRC). The G protein-coupled estrogen receptor (GPER) has been reported to mediate non-genomic effects of estrogen in hormone related cancers except CRC. Its expression and functions in CRC were investigated. The expression of GPER and its associations with clinicopathological features were examined. The mechanisms were further investigated using cells, mouse xenograft models, and clinical human samples. GPER was significantly (p < 0.01) down regulated in CRC tissues compared with their matched adjacent normal tissues in our two cohorts and three independent investigations from Oncomine database. Patients whose tumors expressing less (n = 36) GPER showed significant (p < 0.01) poorer survival rate as compared with those with greater levels of GPER (n = 54). Promoter methylation and histone H3 deacetylation were involved in the down regulation of GPER in CRC cell lines and clinical tissues. Activation of GPER by its specific agonist G-1 inhibited proliferation, induced cell cycle arrest, mitochondrial-related apoptosis and endoplasmic reticulum (ER) stress of CRC cells. The upregulation of reactive oxygen species (ROS) induced sustained ERK1/2 activation participated in G-1 induced cell growth arrest. Further, G-1 can inhibit the phosphorylation, nuclear localization, and transcriptional activities of NF-κB via both canonical IKKα/ IκBα pathways and phosphorylation of GSK-3β. Xenograft model based on HCT-116 cells confirmed that G-1 can suppress the in vivo progression of CRC. Epigenetic down regulation of GPER acts as a tumor suppressor in colorectal cancer and its specific activation might be a potential approach for CRC treatment.

  8. Activation of G protein-coupled receptor 30 by thiodiphenol promotes proliferation of estrogen receptor α-positive breast cancer cells.

    PubMed

    Lei, Bingli; Peng, Wei; Xu, Gang; Wu, Minghong; Wen, Yu; Xu, Jie; Yu, Zhiqiang; Wang, Yipei

    2017-02-01

    Many studies have been shown that environmental estrogen bisphenol A (BPA) can activate nuclear receptor (estrogen receptor alpha, ERα) or membrane receptor (G-protein-coupled receptor, GPR30) in breast cancer cells and exerts genomic or nongenomic actions inducing cell proliferation. 4,4'-thiodiphenol (TDP) as one of BPA derivatives exhibits more potent estrogenic activity than BPA does. However, comparatively little is known about the ways in which TDP interferes with these signaling pathways and produces cell biological changes. This study evaluated the effect of TDP on cell viability, reactive oxygen species (ROS) formation, and intercellular calcium (Ca 2+ ) fluctuation in MCF-7 breast cancer cells. The underlying molecular mechanism of cell proliferation induced by TDP was analyzed by examining the activation of ERα and GPR30-mediated phosphatidylinotidol 3-kinase/protein kinase B (PI3K/AKT) and extracellular-signa1regulated kinase (ERK1/2) signaling pathways. The results showed that exposure to 0.1-10 μM TDP for 24, 48, and 72 h significantly increased viability of MCF-7 cells. At the same concentration range, TDP exposure for 3 and 24 h markedly elevated ROS production and intracellular Ca 2+ levels. In addition, 0.01-1 μM TDP significantly increased the expression of ERα, GPR30, p-AKT and p-ERK1/2 protein. Specific protein inhibitors blocked phosphorylation of ERK1/2 and AKT and decreased TDP-induced cell proliferation. These findings show that TDP activated the GPR30-PI3K/AKT and ERK1/2 pathways, and the resulting interaction with ERα stimulated MCF-7 cell proliferation. Our results indicate a novel mechanism through which TDP may exert relevant estrogenic action in ERα positive cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. G protein-coupled estrogen receptor 1 agonist G-1 induces cell cycle arrest in the mitotic phase, leading to apoptosis in endometriosis.

    PubMed

    Mori, Taisuke; Ito, Fumitake; Matsushima, Hiroshi; Takaoka, Osamu; Tanaka, Yukiko; Koshiba, Akemi; Kusuki, Izumi; Kitawaki, Jo

    2015-05-01

    To demonstrate the effects of the selective G protein-coupled estrogen receptor 1 (GPER) agonist G-1 in human ovarian endometriotic stromal cells (ESCs). Experimental in vitro study. University hospital. A total of 33 patients with ovarian endometrioma. Endometriotic stromal cells from ovarian chocolate cysts were treated with the GPER agonist G-1. The primary outcomes were cell proliferation, measured using the WST-8 assay; cell cycle, as analyzed using flow cytometry, fluorescent immunocytochemistry, and cytotoxicity; caspase activity, as measured by fluorescent and luminescent enzyme assays; and protein expression levels, as determined by Western blot analysis. G-1 suppressed ESC proliferation in a concentration-dependent manner. The inhibitory effect was not blocked when GPER signaling pathways, including the GPER itself, were inhibited. G-1 induced cell cycle arrest and accumulation in the sub-G1 phase in ESCs. Immunofluorescence analysis demonstrated that G-1 interrupted microtubule assembly at the mitotic phase. G-1 also induced caspase-3-dependent apoptosis without significant cytotoxicity. G-1 suppressed proliferation and induced apoptosis in ESCs, suggesting the potential use of this compound as a therapeutic drug for the treatment of endometriosis. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. G protein-coupled estrogen receptor 1 (GPER, GPR 30) in normal human endometrium and early pregnancy decidua.

    PubMed

    Kolkova, Z; Noskova, V; Ehinger, A; Hansson, S; Casslén, B

    2010-10-01

    The recently identified trans-membrane G protein-coupled estrogen receptor 1 (GPER, GPR30) has been implicated in rapid non-genomic effects of estrogens. This focuses on expression and localization of GPER mRNA and protein in normal cyclic endometrium and early pregnancy decidua. Real-time PCR, western blotting, in situ hybridization and immuno-histochemistry were used. Endometrial expression of GPER mRNA was lower in the secretory phase than in the proliferative phase, and even lower in the decidua. The expression pattern was similar to that of ERα mRNA, but different from that of ERβ mRNA. Western blot detected GPER protein as a 54 kDa band in all endometrial and decidual samples. In contrast to the mRNA, GPER protein did not show cyclic variations. Apparently, a lower amount of mRNA is sufficient to maintain protein levels in the secretory phase. GPER mRNA was predominantly localized in the epithelium of mid- and late-proliferative phase endometrium, whereas expression in early proliferative and secretory glands could not be distinguished from the diffuse stromal signal, which was present throughout the cycle. Immuno-staining for GPER was stronger in glandular and luminal epithelium than in the stroma throughout the cycle. The cyclic variations of GPER mRNA obviously relate to strong epithelial expression in the proliferative phase, and the expression pattern suggests regulation by ovarian steroids. GPER protein is present in endometrial tissue throughout the cycle, and the epithelial localization suggests potential functions during sperm migration at mid-cycle, as well as decidualization and blastocyst implantation in the mid-secretory phase.

  12. Reprint of "Role of G protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes".

    PubMed

    Thomas, Peter

    2018-02-01

    An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E 2 ) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (G s ) on oocyte plasma membranes, resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E 2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE 2 ) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH

  13. The role of estrogen G-protein coupled receptor 30 (GPR30) and sexual experience in sexual incentive motivation in male rats.

    PubMed

    Hawley, W R; Battista, C; Divack, S R; Morales Núñez, N B

    2017-08-01

    Male rats exhibit reductions in sexual motivation following systemic administration of drugs that inhibit the conversion of testosterone to estrogen, which indicates that estrogen signaling plays a role in male rat sexual motivation. Given that estrogen G-protein coupled receptor 30 (GPR30) is expressed in brain areas that are important for male sexual behaviors and endocrine function, the primary aim of the current study was to examine the role that GPR30 plays in sexual motivation in both sexually naïve and sexually experienced male rats. Following the final treatment with either a GPR30 antagonist (G-15) or vehicle control, male rats were placed into the center chamber of a larger three-chambered testing arena that was designed to assess sexual incentive motivation. A sexually receptive stimulus female rat and a stimulus male rat were individually confined to one of the two smaller chambers that were each separated by a perforated partition from the larger end chambers, which test rats had access to. Relative to vehicle treated rats, male rats treated with G-15 exhibited a reduction in the percentage of time spent in the vicinity of a sexually receptive female rat. Although G-15 reduced sexual incentive motivation independent of sexual experience, only sexually-naïve rats treated with G-15 did not exhibit a preference for the sexually receptive stimulus female rat. Collectively, these results indicate that interference with estrogen signaling at GPR30 reduces sexual motivation and that the lack of preference for a sexually receptive female rat over a male rat following G-15 treatment is abrogated by previous sexual experience. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes.

    PubMed

    Fitzgerald, Amanda C; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-12-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10-100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10-200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5-100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. © 2015 by the Society for the Study of Reproduction, Inc.

  15. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.

    PubMed

    Gonzalez de Valdivia, Ernesto; Broselid, Stefan; Kahn, Robin; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2017-06-16

    G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of G i/o Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that G i/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two G i/o -mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.

  17. Activation of G-protein coupled estrogen receptor inhibits the proliferation of cervical cancer cells via sustained activation of ERK1/2.

    PubMed

    Zhang, Qiong; Wu, Yuan-Zhe; Zhang, Yan-Mei; Ji, Xiao-Hong; Hao, Qun

    2015-04-01

    Cervical cancer is one of the most common gynaecological women cancer and suggested to be modulated by estrogenic signals. G protein-coupled receptor (GPER), a seven-transmembrane G protein-coupled receptor, has been reported to regulate the cell proliferation of various cancers. But there is no study investigating the effects of GPER on the progression of cervical cancer. In the present study, we revealed for the first time that GPER was also highly expressed in various human cervical cancer cells. Activation of GPER via its specific agonist G-1 induced G2/M cell cycle arrest and down regulation of cyclin B via a time dependent manner. Furthermore, G-1 treatment induced sustained activation of extracellular-signal-regulated kinases (ERK)1/2 via epidermal growth factor receptor (EGFR) signals. Both inhibitors of ERK1/2 and EGFR significantly abolished G-1-induced suppression of cell proliferation and down regulation of cyclin B. Generally, our study revealed that GPER is highly expressed in human cervical cancer cells and its activation inhibits cell proliferation via EGFR/ERK1/2 signals. It suggested that G-1 can be considered as a potential new pharmacological tool to reduce the growth of cervical cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Differential expression of G-protein-coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle.

    PubMed

    Tian, Ruijuan; Wang, Zengyong; Shi, Zhan; Li, Dong; Wang, Yuebing; Zhu, Yingjun; Lin, Wanjun; Gui, Yu; Zheng, Xi-Long

    2013-01-01

    To determine differential expression of G-protein-coupled receptor 30 (GPR30) in uterine leiomyoma and its matched myometrium. GPR30 expression examined in both tissues and cultured cells. Research laboratories. Women 35 to 50 years old with uterine leiomyomas. Hysterectomy. GPR30 expression profile. Using Western blot and real-time quantitative polymerase chain reaction analyses, we found that GPR30 was highly expressed in uterine leiomyomas compared with their matched myometrium. In only three out of nine patients examined was GPR30 protein detectable by Western blot analysis in myometrial tissues, but at statistically significantly lower levels than in their leiomyomas. Confocal microscopy revealed the nuclear localization of GPR30 in leiomyoma tissues and cultured leiomyoma smooth muscle cells (SMCs). Treatment with 0.1 μM 17β-estradiol increased mRNA expression of GPR30 in leiomyoma SMCs but decreased expression in myometrial SMCs. Treatment with G-1, a GPR30 agonist, stimulated phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) in both SMC types. PD98059, the MEK inhibitor, completely inhibited G-1-induced phosphorylation of p44/42 in myometrium SMCs, but not in SMCs from leiomyoma. GPR30 is abundantly expressed in uterine leiomyomas, likely resulting from estrogen stimulation. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines.

    PubMed

    Skrzypczak, Maciej; Schüler, Susanne; Lattrich, Claus; Ignatov, Atanas; Ortmann, Olaf; Treeck, Oliver

    2013-11-01

    The G protein-coupled estrogen receptor (GPER, GPR30) is suggested to be involved in non-nuclear estrogen signaling and is expressed in a variety of hormone dependent cancer entities. This study was performed to further elucidate the role of this receptor in endometrial adenocarcinoma. We first analyzed GPER expression at the mRNA level in 88 endometrial cancer or normal endometrial tissue samples and compared it to those of nuclear steroid hormone receptors. GPER transcript levels were found to be about 6-fold reduced, but still present in endometrial cancer. Expression of this receptor was decreased in all grading subgroups when compared to pre- or postmenopausal endometrium. GPER mRNA expression was associated with PR mRNA levels (Spearman's rho 0.4610, p<0.001). We then tested the effect of the GPER ligand G-1 on growth of three endometrial cancer cell lines with different GPER expression. GPER protein levels were highest in RL95-2 cells, moderate in HEC-1A cells and not detectable in HEC-1B cells. The moderate expression level in HEC-1A cells was similar to average tumor tissue expression. Treatment with G-1 significantly inhibited growth of the GPER-positive cell lines RL95-2 and HEC-1A in a dose-dependent manner, whereas the GPER-negative line HEC-1B was not affected. Though GPER transcript levels were found to be reduced in endometrial cancer, our in vitro data suggest that moderate GPER expression might be sufficient to mediate growth-inhibitory effects triggered by its agonist G-1. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells.

    PubMed

    Vivacqua, Adele; Lappano, Rosamaria; De Marco, Paola; Sisci, Diego; Aquila, Saveria; De Amicis, Francesca; Fuqua, Suzanne A W; Andò, Sebastiano; Maggiolini, Marcello

    2009-11-01

    In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.

  1. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes1

    PubMed Central

    Fitzgerald, Amanda C.; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-01-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10–100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10–200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5–100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. PMID:26490843

  2. Tamoxifen and ICI 182, 780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats

    PubMed Central

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-01-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30 minutes compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. PMID:28063803

  3. Tamoxifen and ICI 182,780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats.

    PubMed

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-03-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. Published by Elsevier Inc.

  4. Expression pattern of G protein‑coupled estrogen receptor 1 (GPER) in human cumulus granulosa cells (CGCs) of patients with PCOS.

    PubMed

    Zang, Lili; Zhang, Quan; Zhou, Yi; Zhao, Yan; Lu, Linlin; Jiang, Zhou; Peng, Zhen; Zou, Shuhua

    2016-06-01

    Estradiol mediates its actions by binding to classical nuclear receptors, estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and the non-classical G protein-coupled estrogen receptor 1(GPER). Several gene knockdown models have shown the importance of the receptors for growth of the oocyte and for ovulation. The aim of our study was to identify the pattern of GPER expression in human cumulus granulosa cells (CGCs) from ovarian follicles at different stages of oocyte maturation, and the differences of GPER expression between polycystic ovary syndrome (PCOS) patients and non-PCOS women. Thirty-eight cases of PCOS patients and a control group of thirty-two infertile women without PCOS were used in this study. GPER's location in CGCs was investigated by immunohistochemistry. Quantitative RT-PCR and western blot were used to identify the quantify GPER expression. Here we demonstrated that GPER was expressed in CGCs of both PCOS patients and non-PCOS women, and the expression of GPER was decreased significantly during oocyte maturation. But the expression levels of GPER in CGCs of PCOS patients and non-PCOS women were not significantly different. The data indicate that GPER may play a role during human oocyte maturation through its action in cumulus granulosa cells. AMHRIIs: anti-Mullerian hormone type II receptors; BMI: body mass index; CGCs: cumulus granulosa cells; COH: controlled ovarian hyperstimulation; E2: estradiol; EGFR: epidermal growth factor receptor; ER-α: estrogen receptor; ER-β: estrogen receptor β; FF: follicular fluid; FSH: follicle-stimulating hormone; GCs: granulosa cells; GPER: G protein-coupled estrogen receptor 1; GV: germinal vesicle; GVBD: germinal vesicle breakdown; HCG: human chorionic gonadotropin; IRS: immunoreactive score; IVF-ET: in vitro fertilization and embryo transfer; MI: metaphase I; MII: metaphase II; MAPK: mitogen-activated protein kinase; OCCCs: oocyte corona cumulus complexes; PCOS: polycystic ovarian syndrome; q

  5. G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation.

    PubMed

    Chakrabarti, Subhadeep; Davidge, Sandra T

    2012-01-01

    Estrogen, the female sex hormone, is known to exert anti-inflammatory and anti-atherogenic effects. Traditionally, estrogen effects were believed to be largely mediated through the classical estrogen receptors (ERs). However, there is increasing evidence that G-protein coupled receptor 30 (GPR30), a novel estrogen receptor, can mediate many estrogenic effects on the vasculature. Despite this, the localization and functional significance of GPR30 in the human vascular endothelium remains poorly understood. Given this background, we examined the subcellular location and potential anti-inflammatory roles of GPR30 using human umbilical vein endothelial cells as a model system. Inflammatory changes were induced by treatment with tumor necrosis factor (TNF), a pro-inflammatory cytokine involved in atherogenesis and many other inflammatory conditions. We found that GPR30 was located predominantly in the endothelial cell nuclei. Treatment with the selective GPR30 agonist G-1 partially attenuated the TNF induced upregulation of pro-inflammatory proteins such as intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was completely abolished by the selective GPR30 antagonist G-15, suggesting that it was indeed mediated in a GPR30 dependent manner. Interestingly, estrogen alone had no effects on TNF-treated endothelium. Concomitant activation of the classical ERs blocked the anti-inflammatory effects of G-1, indicating opposing effects of GPR30 and the classical ERs. Our findings demonstrate that endothelial GPR30 is a novel regulator of the inflammatory response which could be a potential therapeutic target against atherosclerosis and other inflammatory diseases.

  6. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor.

    PubMed

    Bouskine, Adil; Nebout, Marielle; Brücker-Davis, Françoise; Benahmed, Mohamed; Fenichel, Patrick

    2009-07-01

    Fetal exposure to environmental estrogens may contribute to hypofertility and/or to testicular germ cell cancer. However, many of these xenoestrogens have only a weak affinity for the classical estrogen receptors (ERs,) which is 1,000-fold less potent than the affinity of 17beta-estradiol (E(2)). Thus, several mechanisms have been suggested to explain how they could affect male germ cell proliferation at low environmental relevant concentrations. In this study we aimed to explore the possible promoting effect of bisphenol A (BPA) on human testicular seminoma cells. BPA is a well-recognized estrogenic endocrine disruptor used as a monomer to manufacture poly carbonate plastic and released from resin-lined food or beverage cans or from dental sealants. BPA at very low concentrations (10(-9) to 10(-12) M) similar to those found in human fluids stimulated JKT-1 cell proliferation in vitro. BPA activated both cAMP-dependent protein kinase and cGMP-dependent protein kinase pathways and triggered a rapid (15 min) phosphorylation of the transcription factor cAMP response-element-binding protein (CREB) and the cell cycle regulator retinoblastoma protein (Rb). This nongenomic activation did not involve classical ERs because it could not be reversed by ICI 182780 (an ER antagonist) or reproduced either by E(2) or by diethylstilbestrol (a potent synthetic estrogen), which instead triggered a suppressive effect. This activation was reproduced only by E(2) coupled to bovine serum albumin (BSA), which is unable to enter the cell. As with E(2)-BSA, BPA promoted JKT-1 cell proliferation through a G-protein-coupled nonclassical membrane ER (GPCR) involving a Galpha(s) and a Galpha(i)/Galpha(q) subunit, as shown by the reversible effect observed by the corresponding inhibitors NF449 and pertussis toxin. This GPCR-mediated nongenomic action represents--in addition to the classical ER-mediated effect--a new basis for evaluating xenoestrogens such as BPA that, at low doses and with a

  7. Retrograde transport of the transmembrane estrogen receptor, G-protein-coupled-receptor-30 (GPR30/GPER) from the plasma membrane towards the nucleus.

    PubMed

    Cheng, Shi-Bin; Graeber, Carl T; Quinn, Jeffrey A; Filardo, Edward J

    2011-08-01

    G-protein-coupled receptor 30 (GPR30/GPER) belongs to the seven transmembrane receptor (7TMR) superfamily, the most common class of surface receptor with approximately 800 known members. GPER promotes estrogen binding and rapid signaling via membrane-associated enzymes resulting in increased cAMP and release of heparan bound epidermal growth factor (proHB-EGF) from breast cancer cells. However, GPER is predominately localized intracellularly in breast cancer cells with minor amounts of receptor on the cell surface, an observation that has caused some controversy regarding its potential role as a plasma membrane estrogen receptor. Using the widely employed approach of tracking recombinant 7TMRs by surface labeling live cells, we have begun to characterize and compare the endocytic fate of GPER to other similarly labeled 7TMRs. Upon ectopic expression in human embryonic kidney HEK-293 cells, functional GPER is generated as these cells acquire the capacity to stimulate cAMP and activate cyclic AMP responsive binding protein in response to estradiol-17 beta stimulation. GPER is detectable on the cell surface by immunofluorescent analysis using HA-specific antibodies, albeit the bulk of the receptor is located intracellularly. Like β1AR (beta 1 adrenergic receptor) and CXCR4 (C-X-C chemokine receptor 4), GPER exits the plasma membrane via clathrin-coated pits and enters early endosomes. Interestingly, GPER has a destination that is uncommon among 7TMRs, as it accumulates in a perinuclear compartment. Like many 7TMRs (approximately one-third), GPER trafficking from the plasma membrane is constitutive (occurs in the absence of agonist). However, its route of intracellular trafficking is highly unusual, as 7TMRs typically recycle to the plasma membrane (e.g. β1AR) or are degraded in lysosomes (e.g. CXCR4). The accumulation of GPER in the perinuclear space and its possible significance for attenuating estrogen action via this newly recognized membrane estrogen receptor is

  8. Post-synaptic Density-95 (PSD-95) Binding Capacity of G-protein-coupled Receptor 30 (GPR30), an Estrogen Receptor That Can Be Identified in Hippocampal Dendritic Spines*

    PubMed Central

    Akama, Keith T.; Thompson, Louisa I.; Milner, Teresa A.; McEwen, Bruce S.

    2013-01-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity. PMID:23300088

  9. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines.

    PubMed

    Akama, Keith T; Thompson, Louisa I; Milner, Teresa A; McEwen, Bruce S

    2013-03-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.

  10. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer.

    PubMed

    Ignatov, Atanas; Ignatov, Tanja; Weissenborn, Christine; Eggemann, Holm; Bischoff, Joachim; Semczuk, Andrzej; Roessner, Albert; Costa, Serban Dan; Kalinski, Thomas

    2011-07-01

    Recently, we have shown that the new G-protein-coupled estrogen receptor GPR30 plays an important role in the development of tamoxifen resistance in vitro. This study was undertaken to evaluate the correlation between GPR30 and tamoxifen resistance in breast cancer patients. GPR30 protein expression was evaluated by immunohistochemical analysis in 323 patients with primary operable breast cancer. The association between GPR30 expression and tamoxifen resistance was confirmed in a second cohort of 103 patients treated only with tamoxifen. Additionally, we evaluated GPR30 expression in 33 primary tumors and in recurrent tumors from the same patients. GPR30 expression was detected in 56.7% of the breast cancer specimens investigated and it correlated with overexpression of HER-2 (P = 0.021), EGFR (P = 0.024) and lymph node status (P = 0.047). In a first cohort, survival analysis showed that GPR30 was negatively correlated with relapse-free survival (RFS) only in patients treated with tamoxifen (tamoxifen with or without chemotherapy). GPR30 expression was associated with shorter RFS (HR = 1.768; 95% CI, 1.156-2.703; P = 0.009). In a subset of patients treated only with tamoxifen, multivariate analysis revealed that GPR30 expression is an independent unfavorable factor for RFS (HR = 4.440; 95% CI, 1.408-13.997; P = 0.011). In contrast, GPR30 tended to be a favorable factor regarding RFS in patients who did not receive tamoxifen. In 33 paired biopsies obtained before and after adjuvant therapy, GPR30 expression significantly increased only under tamoxifen treatment (P = 0.001). GPR30 expression in breast cancer independently predicts a poor RFS in patients treated with tamoxifen.

  11. Synthesis and Characterization of Tricarbonyl-Re/Tc(I) Chelate Probes Targeting the G Protein-Coupled Estrogen Receptor GPER/GPR30

    PubMed Central

    Burai, Ritwik; Ramesh, Chinnasamy; Nayak, Tapan K.; Dennis, Megan K.; Bryant, Bj K.; Prossnitz, Eric R.; Arterburn, Jeffrey B.

    2012-01-01

    The discovery of the G protein-coupled estrogen receptor GPER (also GPR30) and the resulting development of selective chemical probes have revealed new aspects of estrogen receptor biology. The potential clinical relevance of this receptor has been suggested from numerous studies that have identified GPER expression in breast, endometrial, ovarian and other cancers. Thus GPER can be considered a candidate biomarker and target for non-invasive imaging and therapy. We have designed and synthesized a series of organometallic tricarbonyl-rhenium complexes conjugated to a GPER-selective small molecule derived from tetrahydro-3H-cyclopenta[c]quinoline. The activity and selectivity of these chelates in GPER-mediated signaling pathways were evaluated. These results demonstrate that GPER targeting characteristics depend strongly on the structure of the chelate and linkage. Ethanone conjugates functioned as agonists, a 1,2,3-triazole spacer yielded an antagonist, and derivatives with increased steric volume exhibited decreased activities. Promising GPER selectivity was observed, as none of the complexes interacted with the nuclear estrogen receptors. Radiolabeling with technetium-99m in aqueous media was efficient and gave radioligands with high radiochemical yields and purity. These chelates have favorable physicochemical properties, show excellent stability in biologically relevant media, exhibit receptor specificity and are promising candidates for continuing development as diagnostic imaging agents targeting GPER expression in cancer. PMID:23077529

  12. 17β-estradiol confers protection after traumatic brain injury in the rat and involves activation of G protein-coupled estrogen receptor 1.

    PubMed

    Day, Nicole L; Floyd, Candace L; D'Alessandro, Tracy L; Hubbard, William J; Chaudry, Irshad H

    2013-09-01

    Abstract Traumatic brain injury (TBI) is a significant public health problem in the United States. Despite preclinical success of various drugs, to date all clinical trials investigating potential therapeutics have failed. Recently, sex steroid hormones have sparked interest as possible neuroprotective agents after traumatic injury. One of these is 17β-estradiol (E2), the most abundant and potent endogenous vertebrate estrogen. The goal of our study was to investigate the acute potential protective effects of E2 or the specific G protein-coupled estrogen receptor 1 (GPER) agonist G-1 when administered in an intravenous bolus dose 1 hour post-injury in the lateral fluid percussion (LFP) rodent model of TBI. The results of this study show that, when assessed at 24 hours post-injury, E2 or G-1 confers protection in adult male rats subjected to LFP brain injury. Specifically, we found that an acute bolus dose of E2 or G-1 administered intravenously 1 hour post-TBI significantly increases neuronal survival in the ipsilateral CA 2/3 region of the hippocampus and decreases neuronal degeneration and apoptotic cell death in both the ipsilateral cortex and CA 2/3 region of the hippocampus. We also report a significant reduction in astrogliosis in the ipsilateral cortex, hilus, and CA 2/3 region of the hippocampus. Finally, these effects were observed to be chiefly dose-dependent for E2, with the 5 mg/kg dose generating a more robust level of protection. Our findings further elucidate estrogenic compounds as a clinically relevant pharmacotherapeutic strategy for treatment of secondary injury following TBI, and intriguingly, reveal a novel potential therapeutic target in GPER.

  13. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  14. The G-protein-coupled estrogen receptor (GPER) is expressed in normal human ovaries and is upregulated in ovarian endometriosis and pelvic inflammatory disease involving the ovary.

    PubMed

    Heublein, Sabine; Lenhard, Miriam; Vrekoussis, Thomas; Schoepfer, Jutta; Kuhn, Christina; Friese, Klaus; Makrigiannakis, Antonis; Mayr, Doris; Jeschke, Udo

    2012-11-01

    Estrogens play a crucial role in maintaining ovarian function. Deregulation of estrogen signals is associated with fertility-impairing disorders. The aim of this study was to investigate whether the G-protein-coupled estrogen receptor (GPER) is present in the human ovary. Additionally, we  analyzed the folliculogenesis and ovarian endometriosis in GPER expression. Seventy-nine patients (ovarian endometriosis, n = 26; ovarian pelvic inflammatory disease [PID], n = 10; normal ovaries/endometrium, n = 30/13) were analyzed by immunohistochemistry. Normal ovaries were also assessed by real-time polymerase chain reaction and double immunofluorescence. The most intense expression of GPER was noted in the ovarian surface epithelium. Theca cells and oocytes were also significantly positive. Expression of GPER was more frequent in mature follicles/oocytes than in primordial ones, implying that GPER could be a selector during folliculogenesis. Moreover, GPER was upregulated in ovarian endometriosis and PID. Overexpression of GPER in both inflammation and endometriosis affecting the ovary may prove useful in explaining/predicting the main endometriosis-related symptoms.

  15. The G protein-coupled estrogen receptor 1 (GPER/GPR30) does not predict survival in patients with ovarian cancer

    PubMed Central

    2012-01-01

    Background Even though ovarian tumors are not generally considered estrogen-sensitive, estrogens may still have an impact on ovarian tumor progression. The recently identified trans-membrane estrogen receptor GPER is involved in rapid estrogen signaling. Furthermore, it binds selective estrogen receptor modulators with agonistic effect, which could explain tamoxifen controversies. Methods GPER mRNA was assayed with quantitative real-time PCR (qPCR) in 42 primary ovarian tumors and 7 ovarian cancer cell lines. ERα and ERβ mRNA were analyzed for comparison. GPER protein was semi-quantified with densitometric scanning of Western blots and its tissue distribution analyzed with immunohistochemistry (IHC) in 40 ovarian tumors. In addition, IHC was evaluated in a tissue microarray (TMA) of 150 primary malignant ovarian tumors. Results All tumor samples contained GPER mRNA. The content of mRNA was not different between benign and malignant tumors, but one third of malignant samples over-expressed GPER mRNA. The content of ERα mRNA was higher in malignant than in benign tumors, whereas ERβ mRNA was higher in benign than in malignant tumors. GPER mRNA was detected in all seven ovarian cancer cell lines with highest levels in TOV21G and TOV112D cells. Similar expression pattern was seen for ERβ mRNA. Western blot demonstrated GPER protein in all tumor samples. Semi-quantification showed no difference between benign and malignant tumors, but about one third of malignant samples over-expressed GPER protein. GPER staining was localized mainly in epithelial cells. In the TMA study we found no correlation between GPER staining and clinical stage, histological grade or patient survival. Conclusions GPER mRNA as well as GPER protein is present in both benign and malignant ovarian tumor tissue. About one third of malignant tumors over-expressed both GPER mRNA and protein. This, however, correlated neither with histological or clinical parameters nor with patient survival. PMID

  16. Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1.

    PubMed

    Tran, Quang-Kim; Vermeer, Mark

    2014-01-01

    The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific ligands or a Ca(2+)-elevating agent. To confirm direct interaction and locate the calmodulin-binding domain(s), we designed a series of FRET biosensors that consist of enhanced cyan and yellow fluorescent proteins flanking each of GPER's submembrane domains (SMDs). Responses of these biosensors showed that all four submembrane domains directly bind calmodulin. Modifications of biosensor linker identified domains that display the strongest calmodulin-binding affinities and largest biosensor dynamics, including a.a. 83-93, 150-175, 242-259, 330-351, corresponding respectively to SMDs 1, 2, 3, and the juxta-membranous section of SMD4. These biosensors bind calmodulin in a strictly Ca(2+)-dependent fashion and with disparate affinities in the order SMD2>SMD4>SMD3>SMD1, apparent K d values being 0.44 ± 0.03, 1.40 ± 0.16, 8.01 ± 0.29, and 136.62 ± 6.56 µM, respectively. Interestingly, simultaneous determinations of biosensor responses and suitable Ca(2+) indicators identified separate Ca(2+) sensitivities for their interactions with calmodulin. SMD1-CaM complexes display a biphasic Ca(2+) response, representing two distinct species (SMD1 sp1 and SMD1 sp2) with drastically different Ca(2+) sensitivities. The Ca(2+) sensitivities of CaM-SMDs interactions follow the order SMD1sp1>SMD4>SMD2>SMD1sp2>SMD3, EC50(Ca(2+)) values being 0.13 ± 0.02, 0.75 ± 0.05, 2.38 ± 0.13, 3.71 ± 0.13, and 5.15 ± 0.25 µM, respectively. These data indicate that calmodulin may regulate GPER

  17. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach.

    PubMed

    Arnatt, Christopher K; Zhang, Yan

    2013-07-01

    G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β 2 -adrenergic receptors (β 2 AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications.

  18. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach

    PubMed Central

    Arnatt, Christopher K.; Zhang, Yan

    2015-01-01

    G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β2-adrenergic receptors (β2AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications. PMID:26229572

  19. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yan; Li, Zheng; He, Yan

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but notmore » calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI.« less

  20. Tamoxifen regulation of bone growth and endocrine function in the ovariectomized rat: discrimination of responses involving estrogen receptor α/estrogen receptor β, G protein-coupled estrogen receptor, or estrogen-related receptor γ using fulvestrant (ICI 182780).

    PubMed

    Fitts, James M; Klein, Robert M; Powers, C Andrew

    2011-07-01

    Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterine and somatic growth, bone, the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis, and pituitary prolactin were analyzed to pharmacologically discriminate tamoxifen effects that may be mediated by ERα/ERβ versus ERRγ versus GPER. Ovariectomized rats received tamoxifen (0.6 mg/kg/daily) plus fulvestrant at 0, 3, 6, or 12 mg/kg/daily for 5 weeks; controls received vehicle or 6 mg/kg fulvestrant daily. Tamoxifen effects to increase uterine weight, decrease serum IGF-I, increase pituitary prolactin, and increase bone mineral density could be fully blocked by fulvestrant, indicating mediation by ERα/ERβ. Tamoxifen effects to decrease pituitary GH, tibia length, and body weight were only partially blocked by fulvestrant, indicating involvement of mechanisms unrelated to ERα/ERβ. Fulvestrant did not inhibit tamoxifen actions to reduce total pituitary protein, again indicating effects not mediated by ERα/ERβ. Tamoxifen actions to reduce serum GH were mimicked rather than inhibited by fulvestrant, pharmacological features consistent with GPER involvement. However, fulvestrant alone increased IGF-I and also blocked tamoxifen-evoked IGF-I decreases; thus fulvestrant effects on serum GH might reflect increased IGF-I feedback inhibition. Fulvestrant alone had no effect on the other parameters. The findings indicate that mechanisms unrelated to ERα/ERβ contribute to tamoxifen effects on body weight, bone growth, and pituitary function.

  1. Role of G protein-coupled estrogen receptor-1 in estradiol 17β-induced alterations in protein synthesis and protein degradation rates in fused bovine satellite cell cultures.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2017-01-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters in several countries. Treatment with E2 stimulates protein synthesis rate and suppresses protein degradation rate in fused bovine satellite cell (BSC) cultures; however, the mechanisms involved in these effects are not known with certainty. Although the genomic effects of E2 mediated through the classical estrogen receptors have been characterized, recent studies indicate that binding of E2 to the G protein-coupled estrogen receptor (GPER)-1 mediates nongenomic effects of E2 on cellular function. Our current data show that inhibition of GPER-1, matrix metalloproteinases 2 and 9 (MMP2/9), or heparin binding epidermal growth factor-like growth factor (hbEGF) suppresses E2 stimulate protein synthesis rate in cultured BSCs (P < 0.001) suggesting that all of these are required in order for E2 to stimulate protein synthesis in these cultures. In contrast, inhibition of GPER-1, MMP2/9, or hbEGF has no effect on the ability of E2 to suppress protein degradation rates in fused BSC cultures indicating that these factors are not required in order for E2 to suppress protein degradation rate in these cells. Furthermore, treatment of fused BSC cultures with E2 increased (P < 0.05) pAKT levels indicating that the pAKT pathway may play a role in E2-stimulated effects on cultured BSC. In summary, our current data show that active GPER-1, MMP2/9, and hbEGF are necessary for E2-stimulated protein synthesis but not for E2-simulated suppression of protein degradation in cultured BSC. In addition, E2 treatment increases pAKT levels in cultured BSC. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

    PubMed Central

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck

    2009-01-01

    OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358

  3. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell-matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis.

    PubMed

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia; Wan, Lei; Wang, Xudong

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The G protein-coupled estrogen receptor (GPER/GPR30) may serve as a prognostic marker in early-stage cervical cancer.

    PubMed

    Friese, Klaus; Kost, Bernd; Vattai, Aurelia; Marmé, Frederik; Kuhn, Christina; Mahner, Sven; Dannecker, Christian; Jeschke, Udo; Heublein, Sabine

    2018-01-01

    Estrogen signalling is transmitted via various receptors and multiple intracellular signalling pathways. Estrogen receptor alpha (ERα)-mediated transcription of target genes has been demonstrated to be closely linked to human papilloma virus (HPV)-induced carcinogenesis in case of cervical cancer. So far, the role of non-genomic estrogen signals in cervical cancer, e.g. transmitted by the G protein-coupled estrogen receptor (GPER) remains to be rather elusive. Today's knowledge on the role of GPER in cervical cancer is sparse and-to the best of our knowledge-GPER has not been investigated in context with clinicopathological parameters or prognosis of cervical cancer. Therefore, the current study investigated whether GPER is expressed in cervical cancer tissue. Further, GPER was correlated to clinicopathological parameters, tissue markers of cervical carcinogenesis and to patient overall and recurrence-free survival. Cervical cancer tissue was collected from 156 patients during surgery between 1993 and 2002. GPER immunostaining was performed on all the cases and correlated to clinicopathological data. More than half of all patients were diagnosed at advanced stage (FIGO II-IV 93/156; 59.6%) of disease. The large majority of patients presented with tumours of intermediate or high grade (G2-3 140/152, 92.1%). 22 cervical cancer-related deaths (22/156, 14.1%) were documented during the follow-up period. GPER was detected in various subcellular staining patterns. In 129/156 (82.7%) cases GPER was expressed in the tumour cell cytoplasm (GPER cyt ). GPER immunopositivity at the cell membrane (GPER mem ) was found in 114/156 (73.1%) cases. While co-occurrence of both membrane and cytoplasmic staining (GPER cyt  + GPER mem ) was detected in the majority of tissue samples (101/156; 64.7%), only few cases (14/156, 9.0%) were classified as not expressing GPER at all. GPER cyt was positively correlated with tumour grade. Statistical associations of GPER and both p16 and p53

  5. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia.

    PubMed

    Tong, Chao; Feng, Xiang; Chen, Jun; Qi, Xingchen; Zhou, Liyuan; Shi, Shuming; Kc, Kamana; Stanley, Joanna L; Baker, Philip N; Zhang, Hua

    2016-04-01

    Preeclampsia is known to be associated with reduced circulating levels of estrogen. The effects of estrogen in preeclampsia are normally mediated by the classical estrogen receptors. Intriguingly, a novel estrogen receptor, G protein-coupled receptor 30 (GPR30), has been recently found to play an important role in several estrogenic effects. However, the mechanisms by which GPR30 may mediate the development of preeclampsia remain unknown. We observed that the expression of GPR30 in placental trophoblast cells is lower in preeclamptic placentas compared with normotensive controls. We then investigated the role of GPR30 in trophoblast cell invasion by utilizing placental explants and the immortalized human trophoblast cell line (HTR8/SVneo). The selective GPR30 agonist G1 and a general estrogen receptors agonist 17-β-estradiol (E2) both improved trophoblast cells invasion by upregulating MMP9 expression and the PI3K-Akt signaling pathway. This effect was abolished by a selective GPR30 inhibitor G15, implying that GPR30 may be involved in regulating trophoblast invasion, and that down-regulation of this receptor may result in the development of preeclampsia. The present study suggests that GPR30 is a critical regulator of trophoblast cell invasion, and as such may be a potential therapeutic interventional target for preeclampsia and other pregnancy complications resulting from impaired trophoblast invasion.

  6. G protein-coupled receptor 30 contributes to improved remyelination after cuprizone-induced demyelination.

    PubMed

    Hirahara, Yukie; Matsuda, Ken Ichi; Yamada, Hisao; Saitou, Akira; Morisaki, Shinsuke; Takanami, Keiko; Boggs, Joan M; Kawata, Mitsuhiro

    2013-03-01

    Estrogen exerts neuroprotective and promyelinating actions. The therapeutic effect has been shown in animal models of multiple sclerosis, in which the myelin sheath is specifically destroyed in the central nervous system. However, it remains unproven whether estrogen is directly involved in remyelination via the myelin producing cells, oligodendrocytes, or which estrogen receptors are involved. In this study, we found that the membrane-associated estrogen receptor, the G protein-coupled receptor 30 (GPR30), also known as GPER, was expressed in oligodendrocytes in rat spinal cord and corpus callosum. Moreover, GPR30 was expressed throughout oligodendrocyte differentiation and promyelinating stages in primary oligodendrocyte cultures derived from rat spinal cords and brains. To evaluate the role of signaling via GPR30 in promyelination, a specific agonist for GPR30, G1, was administered to a rat model of demyelination induced by cuprizone treatment. Histological examination of the corpus callosum with oligodendrocyte differentiation stage-specific markers showed that G1 enhanced oligodendrocyte maturation in corpus callosum of cuprizone-treated animals. It also enhanced oligodendrocyte ensheathment of dorsal root ganglion (DRG) neurons in co-culture and myelination in cuprizone-treated animals. This study is the first evidence that GPR30 signaling promotes remyelination by oligodendrocytes after demyelination. GPR30 ligands may provide a novel therapy for the treatment of multiple sclerosis. Copyright © 2012 Wiley Periodicals, Inc.

  7. Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation.

    PubMed

    Chakrabarti, Subhadeep; Davidge, Sandra T

    2016-01-01

    The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting.

  8. G Protein-Coupled Estrogen Receptor-1 Is Involved in the Protective Effect of Protocatechuic Aldehyde against Endothelial Dysfunction

    PubMed Central

    Kong, Byung Soo; Cho, Yoon Hee; Lee, Eun Jig

    2014-01-01

    Protocatechuic aldehyde (PCA), a phenolic aldehyde, has therapeutic potency against atherosclerosis. Although PCA is known to inhibit the migration and proliferation of vascular smooth muscle cells and intravascular thrombosis, the underlying mechanism remains unclear. In this study, we investigated the protective effect of PCA on endothelial cells and injured vessels in vivo in association with G protein-coupled estrogen receptor-1 (GPER-1). With PCA treatment, cAMP production was increased in HUVECs, while GPER-1 expression was increased in both HUVECs and a rat aortic explant. PCA and G1, a GPER-1 agonist, reduced H2O2 stimulated ROS production in HUVECs, whereas, G15, a GPER-1 antagonist, increased ROS production further. These elevations were inhibited by co-treatment with PCA or G1. TNFα stimulated the expression of inflammatory markers (VCAM-1, ICAM-1 and CD40), phospho-NF-κB, phospho-p38 and HIF-1α; however, co-treatment with PCA or G1 down-regulated this expression significantly. Likewise, increased expression of inflammatory markers by treatment with G15 was inhibited by co-treatment with PCA. In re-endothelization, aortic ring sprouting and neointima formation assay, rat aortas treated with PCA or G1 showed accelerated re-endothelization of the endothelium and reduced sprouting and neointima formation. However, aortas from G15-treated rats showed decelerated re-endothelization and increased sprouting and neointima formation. The effects of G15 were restored by co-treatment with PCA or G1. Also, in the endothelia of these aortas, PCA and G1 increased CD31 and GPER-1 and decreased VCAM-1 and CD40 expression. In contrast, the opposite effect was observed in G15-treated endothelium. These results suggest that GPER-1 might mediate the protective effect of PCA on the endothelium. PMID:25411835

  9. G protein-coupled estrogen receptor-1 is involved in the protective effect of protocatechuic aldehyde against endothelial dysfunction.

    PubMed

    Kong, Byung Soo; Cho, Yoon Hee; Lee, Eun Jig

    2014-01-01

    Protocatechuic aldehyde (PCA), a phenolic aldehyde, has therapeutic potency against atherosclerosis. Although PCA is known to inhibit the migration and proliferation of vascular smooth muscle cells and intravascular thrombosis, the underlying mechanism remains unclear. In this study, we investigated the protective effect of PCA on endothelial cells and injured vessels in vivo in association with G protein-coupled estrogen receptor-1 (GPER-1). With PCA treatment, cAMP production was increased in HUVECs, while GPER-1 expression was increased in both HUVECs and a rat aortic explant. PCA and G1, a GPER-1 agonist, reduced H2O2 stimulated ROS production in HUVECs, whereas, G15, a GPER-1 antagonist, increased ROS production further. These elevations were inhibited by co-treatment with PCA or G1. TNFα stimulated the expression of inflammatory markers (VCAM-1, ICAM-1 and CD40), phospho-NF-κB, phospho-p38 and HIF-1α; however, co-treatment with PCA or G1 down-regulated this expression significantly. Likewise, increased expression of inflammatory markers by treatment with G15 was inhibited by co-treatment with PCA. In re-endothelization, aortic ring sprouting and neointima formation assay, rat aortas treated with PCA or G1 showed accelerated re-endothelization of the endothelium and reduced sprouting and neointima formation. However, aortas from G15-treated rats showed decelerated re-endothelization and increased sprouting and neointima formation. The effects of G15 were restored by co-treatment with PCA or G1. Also, in the endothelia of these aortas, PCA and G1 increased CD31 and GPER-1 and decreased VCAM-1 and CD40 expression. In contrast, the opposite effect was observed in G15-treated endothelium. These results suggest that GPER-1 might mediate the protective effect of PCA on the endothelium.

  10. The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors.

    PubMed

    Bondar, Alexey; Lazar, Josef

    2017-06-09

    The G i/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of G i/o -GPCR coupling and the high rate of G i/o signal transduction have been hypothesized to be enabled by the existence of stable associates between G i/o proteins and their cognate GPCRs in the inactive state (G i/o -GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gα i1 subunits labeled with fluorescent proteins and four GPCRs: the α 2A -adrenergic receptor, GABA B , cannabinoid receptor type 1 (CB 1 R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gα i1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gα i1 subunits and α 2A -adrenergic receptor, GABA B , or dopamine receptor type 2 receptors did not reveal any interaction between the G i1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB 1 R exhibited an interaction with the G i1 protein. Further experiments revealed that this interaction is caused solely by CB 1 R basal activity; no preassembly between CB 1 R and the G i1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active G i1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and G i1 (basal coupling). These findings suggest that G i1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.

    PubMed

    Wan, Qingwen; Okashah, Najeah; Inoue, Asuka; Nehmé, Rony; Carpenter, Byron; Tate, Christopher G; Lambert, Nevin A

    2018-05-11

    G protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells. Mini G (mG) proteins are engineered GTPase domains of Gα subunits that were developed for structural studies of active-state GPCRs. Confocal imaging revealed that mG proteins fused to fluorescent proteins were located diffusely in the cytoplasm and translocated to sites of receptor activation at the cell surface and at intracellular organelles. Bioluminescence resonance energy transfer (BRET) assays with mG proteins fused to either a fluorescent protein or luciferase reported agonist, superagonist, and inverse agonist activities. Variants of mG proteins (mGs, mGsi, mGsq, and mG12) corresponding to the four families of Gα subunits displayed appropriate coupling to their cognate GPCRs, allowing quantitative profiling of subtype-specific coupling to individual receptors. BRET between luciferase-mG fusion proteins and fluorescent markers indicated the presence of active GPCRs at the plasma membrane, Golgi apparatus, and endosomes. Complementation assays with fragments of NanoLuc luciferase fused to GPCRs and mG proteins reported constitutive receptor activity and agonist-induced activation with up to 20-fold increases in luminescence. We conclude that mG proteins are versatile tools for studying GPCR activation and coupling specificity in cells and should be useful for discovering and characterizing G protein subtype-biased ligands. © 2018 Wan et al.

  12. The G Protein-Coupled Estrogen Receptor-1, GPER-1, Promotes Fibrillogenesis via a Shc-Dependent Pathway Resulting in Anchorage-Independent Growth

    PubMed Central

    Magruder, Hilary T.; Quinn, Jeffrey A.; Schwartzbauer, Jean E.; Reichner, Jonathan; Huang, Allan

    2016-01-01

    The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in “hanging drop” assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression. PMID:25096985

  13. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity.

    PubMed

    Ilyaskina, Olga S; Lemoine, Horst; Bünemann, Moritz

    2018-05-08

    G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of G i/o , G q/11 , G s , and G 12/13 proteins to muscarinic M 1 , M 2 , and M 3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M 3 -R interactions but rather the affinities of G q and G o proteins to M 3 -Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.

  14. Estrogenic G protein-coupled receptor 30 signaling is involved in regulation of endometrial carcinoma by promoting proliferation, invasion potential, and interleukin-6 secretion via the MEK/ERK mitogen-activated protein kinase pathway.

    PubMed

    He, Yin-Yan; Cai, Bin; Yang, Yi-Xia; Liu, Xue-Lian; Wan, Xiao-Ping

    2009-06-01

    The regulatory mechanism of endometrial carcinoma and the signal transduction pathways involved in hormone action are poorly defined. It has become apparent that the G protein-coupled receptor (GPR) 30 mediates the non-genomic signaling of 17beta-estradiol (E2). Here we show that GPR30 is highly expressed in endometrial cancer tissues and cancer cell lines and positively regulates cell proliferation and invasion. GPR30 expression was detected in 50 human endometrial carcinomas. The transcription level of GPR30 was significantly higher in the tissue of endometrial carcinoma than in normal endometrium (P < 0.05). Immunohistochemical assays revealed that the positive expression rate of GPR30 protein in endometrial carcinoma tissue (35/50, 70%) was statistically higher than in normal endometrium tissue (8/30, 26.67%) (chi2 = 14.16, P = 0.0002). GPR30 overexpression was correlated with high-grade endometrial carcinoma. GPR30 expression was also found in two human endometrial cancer cell lines: RL95-2 (estrogen receptor positive) and KLE (estrogen receptor negative). The roles of GPR30 in proliferative and invasive responses to E2 and G1, a non-steroidal GPR30-specific agonist, in RL95-2 and KLE cell lines were then explored. We showed that E2 and G1 could initiate the MAPK/ERK mitogen-activated protein kinase pathway in both cell lines. What's more, E2 and G1 promoted KLE and RL95-2 proliferation and stimulated matrix metalloproteinase production and activity via the GPR30-mediated MEK/ERK mitogen-activated protein kinase pathway, as well as increased interleukin-6 secretion. These findings suggest that GPR30-mediated non-genomic signaling could play an important role in endometrial cancer.

  15. Identification of Breast Cancer Inhibitors Specific for G Protein-Coupled Estrogen Receptor (GPER)-Expressing Cells.

    PubMed

    Aiello, Francesca; Carullo, Gabriele; Giordano, Francesca; Spina, Elena; Nigro, Alessandra; Garofalo, Antonio; Tassini, Sabrina; Costantino, Gabriele; Vincetti, Paolo; Bruno, Agostino; Radi, Marco

    2017-08-22

    Together with estrogen receptors ERα and ERβ, the G protein-coupled estrogen receptor (GPER) mediates important pathophysiological signaling pathways induced by estrogens and is currently regarded as a promising target for ER-negative (ER-) and triple-negative (TN) breast cancer. Only a few selective GPER modulators have been reported to date, and their use in cancer cell lines has often led to contradictory results. Herein we report the application of virtual screening and cell-based studies for the identification of new chemical scaffolds with a specific antiproliferative effect against GPER-expressing breast cancer cell lines. Out of the four different scaffolds identified, 8-chloro-4-(4-chlorophenyl)pyrrolo[1,2-a]quinoxaline 14 c was found to be the most promising compound able to induce: 1) antiproliferative activity in GPER-expressing cell lines (MCF7 and SKBR3), similarly to G15; 2) no effect on cells that do not express GPER (HEK293); 3) a decrease in cyclin D1 expression; and 4) a sustained induction of cell-cycle negative regulators p53 and p21. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo.

    PubMed

    Wei, W; Chen, Z-J; Zhang, K-S; Yang, X-L; Wu, Y-M; Chen, X-H; Huang, H-B; Liu, H-L; Cai, S-H; Du, J; Wang, H-S

    2014-10-02

    There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER-) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER--breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER--breast cancer cells in vitro. Treatment of ER--breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER- breast cancer treatment.

  17. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1.

    PubMed

    Pelekanou, Vasiliki; Kampa, Marilena; Kiagiadaki, Foteini; Deli, Alexandra; Theodoropoulos, Panayiotis; Agrogiannis, George; Patsouris, Efstratios; Tsapis, Andreas; Castanas, Elias; Notas, George

    2016-02-01

    Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes. © Society for Leukocyte Biology.

  18. Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and G-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Huff, Mary O; Todd, Sarah L; Smith, Aaron L; Elpers, Julie T; Smith, Alexander P; Murphy, Robert D; Bleser-Shartzer, Allison S; Hoerter, Jacob E; Radde, Brandie N; Klinge, Carolyn M

    2016-07-01

    Epidemiological evidence indicates that cadmium and arsenic exposure increase lung cancer risk. Cadmium and arsenic are environmental contaminants that act as endocrine disruptors (EDs) by activating estrogen receptors (ERs) in breast and other cancer cell lines but their activity as EDs in lung cancer is untested. Here, we examined the effect of cadmium chloride (CdCl2) and sodium arsenite (NaAsO2) on the proliferation of human lung adenocarcinoma cell lines. Results demonstrated that both CdCl2 and NaAsO2 stimulated cell proliferation at environmentally relevant nM concentrations in a similar manner to 17β-estradiol (E2) in H1793, H2073, and H1944 cells but not in H1792 or H1299 cells. Further studies in H1793 cells showed that 100 nM CdCl2 and NaAsO2 rapidly stimulated mitogen-activated protein kinase (MAPK, extracellular-signal-regulated kinases) phosphorylation with a peak detected at 15 min. Inhibitor studies suggest that rapid MAPK phosphorylation by NaAsO2, CdCl2, and E2 involves ER, Src, epidermal growth factor receptor, and G-protein coupled ER (GPER) in a pertussis toxin-sensitive pathway. CdCl2 and E2 activation of MAPK may also involve ERβ. This study supports the involvement of membrane ER and GPER signaling in mediating cellular responses to environmentally relevant nM concentrations of CdCl2 and NaAsO2 in lung adenocarcinoma cells. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells.

    PubMed

    Ribeiro, Mariana P C; Santos, Armanda E; Custódio, José B A

    2017-11-01

    The activation of the G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 inhibits prostate cancer and 17β-estradiol-stimulated breast cancer cell proliferation. Tamoxifen (TAM), which also activates the GPER, decreases melanoma cell proliferation, but its action mechanism remains controversial. Here we investigated the expression and the effects of GPER activation by G-1, TAM and its key metabolite endoxifen (EDX) on melanoma cells. Mouse melanoma K1735-M2 cells expressed GPER and G-1 reduced cell biomass, and the number of viable cells, without increasing cell death. Rather, G-1 decreased cell division by blocking cell cycle progression in G2. Likewise, TAM and EDX exhibited an antiproliferative activity in melanoma cells due to decreased cell division. Both G-1 and the antiestrogens showed a trend to decrease the levels of phosphorylated ERK 1/2 after 1 h treatment, although only EDX, the most potent antiproliferative antiestrogen, induced significant effects. Importantly, the targeting of GPER with siRNA abolished the cytostatic activity of both G-1 and antiestrogens, suggesting that the antitumor actions of antiestrogens in melanoma cells involve GPER activation. Our results unveil a new target for melanoma therapy and identify GPER as a key mediator of antiestrogen antiproliferative effects, which may contribute to select the patients that benefit from an antiestrogen-containing regimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts.

    PubMed

    Albanito, Lidia; Lappano, Rosamaria; Madeo, Antonio; Chimento, Adele; Prossnitz, Eric R; Cappello, Anna Rita; Dolce, Vincenza; Abonante, Sergio; Pezzi, Vincenzo; Maggiolini, Marcello

    2015-05-01

    The pesticide atrazine does not bind to or activate the classical estrogen receptor (ER), but it up-regulates the aromatase activity in estrogen-sensitive tumor cells. The G protein estrogen receptor (GPR30/GPER) has been reported to be involved in certain biological responses to endogenous estrogens and environmental compounds exerting estrogen-like activity. We aimed to evaluate the potential of atrazine to trigger GPER-mediated signaling in cancer cells and cancer-associated fibroblasts (CAFs). Using gene reporter assays in diverse types of cancer cells, we found that atrazine did not transactivate endogenous ERα or chimeric proteins that encode the ERα and ERβ hormone binding domains. Conversely, atrazine was able to bind to GPER to induce ERK activation and the expression of estrogen target genes, which, interestingly, appeared to rely on both GPER and ERα expression. As a biological counterpart, atrazine stimulated the proliferation of ovarian cancer cells that depend on GPER and ERα, as evidenced by gene silencing experiments and the use of specific signaling inhibitors. Of note, through GPER, atrazine elicited ERK phosphorylation, gene expression, and migration in CAFs, thus extending its stimulatory role to these main players of the tumor microenvironment. Our results suggest a novel mechanism through which atrazine may exert relevant biological effects in cancer cells and CAFs. On the basis of our data, atrazine should be included among the environmental contaminants that may elicit estrogenic activity through GPER-mediated signaling.

  1. The treatment effects of flaxseed-derived secoisolariciresinol diglycoside and its metabolite enterolactone on benign prostatic hyperplasia involve the G protein-coupled estrogen receptor 1.

    PubMed

    Ren, Guan-Yu; Chen, Chun-Yang; Chen, Wei-Guo; Huang, Ya; Qin, Li-Qiang; Chen, Li-Hua

    2016-12-01

    Secoisolariciresinol diglucoside (SDG), a lignan extracted from flaxseed, has been shown to suppress benign prostatic hyperplasia (BPH). However, little is known about the mechanistic basis for its anti-BPH activity. The present study showed that enterolactone (ENL), the mammalian metabolite of SDG, shared the similar binding site of G1 on a new type of membranous estrogen receptor, G-protein-coupled estrogen eceptor 1 (GPER), by docking simulations method. ENL and G1 (the specific agonist of GPER) inhibited the proliferation of human prostate stromal cell line WPMY-1 as shown by MTT assay and arrested cell cycle at the G0/G1 phase, which was displayed by propidium iodide staining following flow cytometer examination. Silencing GPER by short interfering RNA attenuated the inhibitory effect of ENL on WPMY-1 cells. The therapeutic potential of SDG in the treatment of BPH was confirmed in a testosterone propionate-induced BPH rat model. SDG significantly reduced the enlargement of the rat prostate and the number of papillary projections of prostatic alveolus and thickness of the pseudostratified epithelial and stromal cells when comparing with the model group. Mechanistic studies showed that SDG and ENL increased the expression of GPER both in vitro and in vivo. Furthermore, ENL-induced cell cycle arrest may be mediated by the activation of GPER/ERK pathway and subsequent upregulation of p53 and p21 and downregulation of cyclin D1. This work, in tandem with previous studies, will enhance our knowledge regarding the mechanism(s) of dietary phytochemicals on BPH prevention and ultimately expand the scope of adopting alternative approaches in BPH treatment.

  2. Contribution of G protein-coupled estrogen receptor 1 (GPER) to 17β-estradiol-induced developmental toxicity in zebrafish.

    PubMed

    Diamante, Graciel; Menjivar-Cervantes, Norma; Leung, Man Sin; Volz, David C; Schlenk, Daniel

    2017-05-01

    Exposure to 17β-estradiol (E2) influences the regulation of multiple signaling pathways, and E2-mediated disruption of signaling events during early development can lead to malformations such as cardiac defects. In this study, we investigated the potential role of the G-protein estrogen receptor 1 (GPER) in E2-induced developmental toxicity. Zebrafish embryos were exposed to E2 from 2h post fertilization (hpf) to 76 hpf with subsequent transcriptional measurements of heart and neural crest derivatives expressed 2 (hand2), leucine rich repeat containing 10 (lrrc10), and gper at 12, 28 and 76 hpf. Alteration in the expression of lrrc10, hand2 and gper was observed at 12 hpf and 76 hpf, but not at 28 hpf. Expression of these genes was also altered after exposure to G1 (a GPER agonist) at 76 hpf. Expression of lrrc10, hand2 and gper all coincided with the formation of cardiac edema at 76 hpf as well as other developmental abnormalities. While co-exposure of G1 with G36 (a GPER antagonist) rescued G1-induced abnormalities and altered gene expression, co-exposure of E2 with G36, or ICI 182,780 (an estrogen receptor antagonist) did not rescue E2-induced cardiac deformities or gene expression. In addition, no effects on the concentrations of downstream ER and GPER signaling molecules (cAMP or calcium) were observed in embryo homogenates after E2 treatment. These data suggest that the impacts of E2 on embryonic development at this stage are complex and may involve multiple receptor and/or signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b*

    PubMed Central

    Tran, Quang-Kim; VerMeer, Mark; Burgard, Michelle A.; Hassan, Ali B.; Giles, Jennifer

    2015-01-01

    The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca2+-ATPase (PMCA) is essential for removal of cytoplasmic Ca2+ and for shaping the time courses of Ca2+-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca2+ extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17β-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca2+ signaling and GPER/GPR30-mediated activities. PMID:25847233

  4. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b.

    PubMed

    Tran, Quang-Kim; VerMeer, Mark; Burgard, Michelle A; Hassan, Ali B; Giles, Jennifer

    2015-05-22

    The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca(2+)-ATPase (PMCA) is essential for removal of cytoplasmic Ca(2+) and for shaping the time courses of Ca(2+)-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca(2+) extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17β-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca(2+) signaling and GPER/GPR30-mediated activities. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    PubMed

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Genistein regulates the IL-1 beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30.

    PubMed

    Luo, Li-Jun; Liu, Feng; Lin, Zhi-Kai; Xie, Yu-Feng; Xu, Jia-Li; Tong, Qing-Chun; Shu, Rong

    2012-06-01

    Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  8. Pregnancy Augments G Protein Estrogen Receptor (GPER) Induced Vasodilation in Rat Uterine Arteries via the Nitric Oxide - cGMP Signaling Pathway.

    PubMed

    Tropea, Teresa; De Francesco, Ernestina Marianna; Rigiracciolo, Damiano; Maggiolini, Marcello; Wareing, Mark; Osol, George; Mandalà, Maurizio

    2015-01-01

    The regulation of vascular tone in the uterine circulation is a key determinant of appropriate uteroplacental blood perfusion and successful pregnancy outcome. Estrogens, which increase in the maternal circulation throughout pregnancy, can exert acute vasodilatory actions. Recently a third estrogen receptor named GPER (G protein-coupled estrogen receptor) was identified and, although several studies have shown vasodilatory effects in several vascular beds, nothing is known about its role in the uterine vasculature. The aim of this study was to determine the function of GPER in uterine arteries mainly during pregnancy. Uterine arteries were isolated from nonpregnant and pregnant rats. Vessels were contracted with phenylephrine and then incubated with incremental doses (10-12-10-5 M) of the selective GPER agonist G1. G1 induced a dose-dependent vasodilation which was: 1) significantly increased in pregnancy, 2) endothelium-dependent, 3) primarily mediated by NO/cGMP pathway and 4) unaffected by BKca channel inhibition. This is the first study to show the potential importance of GPER signaling in reducing uterine vascular tone during pregnancy. GPER may therefore play a previously unrecognized role in the regulation of uteroplacental blood flow and normal fetus growth.

  9. A novel estrogen receptor GPER mediates proliferation induced by 17β-estradiol and selective GPER agonist G-1 in estrogen receptor α (ERα)-negative ovarian cancer cells.

    PubMed

    Liu, Huidi; Yan, Yan; Wen, Haixia; Jiang, Xueli; Cao, Xuefeng; Zhang, Guangmei; Liu, Guoyi

    2014-05-01

    G protein-coupled estrogen receptor (GPER) is recently identified as a membrane-associated estrogen receptor that mediates non-genomic effects of estrogen. Our previous immunohistochemistry study found an association between GPER and the proliferation of epithelial ovarian cancer. However, the contributions and mechanisms of GPER in the proliferation of ovarian cancers are not clear. We have examined the role of GPER in estrogen receptor α (ERα)-negative/GPER positive OVCAR5 ovarian cancer cell line. MTT assay was used to detect cell proliferation. BrdU incorporation assay was used to measure the cells in S-phase. Protein expression of marker genes of proliferation, cell cycle and apoptosis were examined by Western blot. The results showed that 17β-estradiol and selective GPER agonist G-1 stimulated the proliferation of OVCAR5 cells and increased the cells in S-phase. Both ligands upregulated the protein levels of c-fos and cyclin D1. Small interfering RNA targeting GPER or G protein inhibitor pertussin toxin (PTX) inhibited basal cell proliferation and attenuated 17β-estradiol- or G-1-induced cell proliferation. GPER mediated cell growth was also associated with the apoptosis of OVCAR5 cells. These findings suggest that GPER has an important function in the proliferation of ovarian cancer cells lacking ERα. GPER might be a promising therapeutic target in ovarian cancer. © 2014 International Federation for Cell Biology.

  10. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    PubMed

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells.

    PubMed

    Oliveira, Pedro F; Alves, Marco G; Martins, Ana D; Correia, Sara; Bernardino, Raquel L; Silva, Joaquina; Barros, Alberto; Sousa, Mário; Cavaco, José E; Socorro, Sílvia

    2014-05-15

    The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERβ) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Expression of the G protein-coupled estrogen receptor (GPER) in endometriosis: a tissue microarray study.

    PubMed

    Samartzis, Nicolas; Samartzis, Eleftherios P; Noske, Aurelia; Fedier, André; Dedes, Konstantin J; Caduff, Rosmarie; Fink, Daniel; Imesch, Patrick

    2012-04-20

    The G protein-coupled estrogen receptor (GPER) is thought to be involved in non-genomic estrogen responses as well as processes such as cell proliferation and migration. In this study, we analyzed GPER expression patterns from endometriosis samples and normal endometrial tissue samples and compared these expression profiles to those of the classical sex hormone receptors. A tissue microarray, which included 74 samples from different types of endometriosis (27 ovarian, 19 peritoneal and 28 deep-infiltrating) and 30 samples from normal endometrial tissue, was used to compare the expression levels of the GPER, estrogen receptor (ER)-alpha, ER-beta and progesterone receptor (PR). The immunoreactive score (IRS) was calculated separately for epithelium and stroma as the product of the staining intensity and the percentage of positive cells. The expression levels of the hormonal receptors were dichotomized into low (IRS < 6) and high (IRS > = 6) expression groups. The mean epithelial IRS (+/- standard deviation, range) of cytoplasmic GPER expression was 1.2 (+/- 1.7, 0-4) in normal endometrium and 5.1 (+/- 3.5, 0-12) in endometriosis (p < 0.001), of nuclear GPER 6.4 (+/- 2.6, 0-12) and 6.8 (+/- 2.9, 2-12; p = 0.71), of ER-alpha 10.6 (+/- 2.4, 3-12) and 9.8 (+/- 3.0, 2-12; p = 0.26), of ER-beta 2.4 (+/- 2.2; 0-8) and 5.6 (+/- 2.6; 0-10; p < 0.001), and of PR 11.5 (+/- 1.7; 3-12) and 8.1 (+/- 4.5; 0-12; p < 0.001), respectively. The mean stromal IRS of nuclear GPER expression was 7.7 (+/- 3.0; 2-12) in endometrium and 10.8 (+/- 1.7; 6-12) in endometriosis (p < 0.001), of ER-alpha 8.7 (+/- 3.1; 2-12) and 10.6 (+/- 2.4; 2-12; p = 0.001), of ER-beta 1.8 (+/- 2.0; 0-8) and 5.4 (+/- 2.5; 0-10; p < 0.001), and of PR 11.7 (+/- 0.9; 8-12) and 10.9 (+/- 2.0; 3-12; p = 0.044), respectively. Cytoplasmic GPER expression was not detectable in the stroma of endometrium and endometriosis. The observed frequency of high epithelial cytoplasmic

  13. Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis.

    PubMed

    Wang, Hao; Sun, Xuming; Chou, Jeff; Lin, Marina; Ferrario, Carlos M; Zapata-Sudo, Gisele; Groban, Leanne

    2017-08-01

    Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Activation of G protein coupled estrogen receptor (GPER) promotes the migration of renal cell carcinoma via the PI3K/AKT/MMP-9 signals.

    PubMed

    Guan, Bao-Zhang; Yan, Rui-Ling; Huang, Jian-Wei; Li, Fo-Lan; Zhong, Ying-Xue; Chen, Yu; Liu, Fan-Na; Hu, Bo; Huang, Si-Bo; Yin, Liang-Hong

    2018-03-04

    Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. However, the mechanisms responsible for RCC metastasis are still needed further illustration. Our present study revealed that a seven-transmembrane receptor G-protein coupled estrogen receptor (GPER) was highly detected in various RCC cell lines such as ACHN, OS-RC-2 and SW839. The activation of GPER by its specific agonist G-1 significantly promoted the in vitro migration and invasion of ACHN and OS-RC-2 cells. G-1 also up regulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. The inhibitor of MMP-9 (Cat-444278), but not MMP-2 (Sc-204092), abolished G-1 induced cell migration, which suggested that MMP-9 is the key molecule mediating G-1 induced RCC progression. Further, G-1 treatment resulted in phosphorylation of AKT and ERK in RCC cells. PI3K/AKT inhibitor (LY294002), while not ERK inhibitor (PD98059), significantly abolished G-1 induced up regulation of MMP-9 in both AHCN and OS-RC-2 cells. Generally, our data revealed that activation of GPER by its specific agonist G-1 promoted the metastasis of RCC cells through PI3K/AKT/MMP-9 signals, which might be a promising new target for drug discovery of RCC patients.

  15. The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer.

    PubMed

    Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be

  16. The G Protein-Coupled Estrogen Receptor (GPER) Is Expressed in Two Different Subcellular Localizations Reflecting Distinct Tumor Properties in Breast Cancer

    PubMed Central

    Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological

  17. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms

    PubMed Central

    Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.

    2016-01-01

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate

  18. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits.

    PubMed

    Suga, Hinako; Haga, Tatsuya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.

  19. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol.

    PubMed

    Otto, Christiane; Rohde-Schulz, Beate; Schwarz, Gilda; Fuchs, Iris; Klewer, Mario; Brittain, Dominic; Langer, Gernot; Bader, Benjamin; Prelle, Katja; Nubbemeyer, Reinhard; Fritzemeier, Karl-Heinrich

    2008-10-01

    The classical estrogen receptor (ER) mediates genomic as well as rapid nongenomic estradiol responses. In case of genomic responses, the ER acts as a ligand-dependent transcription factor that regulates gene expression in estrogen target tissues. In contrast, nongenomic effects are initiated at the plasma membrane and lead to rapid activation of cytoplasmic signal transduction pathways. Recently, an orphan G protein-coupled receptor, GPR30, has been claimed to bind to and to signal in response to estradiol. GPR30 therefore might mediate some of the nongenomic estradiol effects. The present study was performed to clarify the controversy about the subcellular localization of GPR30 and to gain insight into the in vivo function of this receptor. In transiently transfected cells as well as cells endogenously expressing GPR30, we confirmed that the receptor localized to the endoplasmic reticulum. However, using radioactive estradiol, we observed only saturable, specific binding to the classical ER but not to GPR30. Estradiol stimulation of cells expressing GPR30 had no impact on intracellular cAMP or calcium levels. To elucidate the physiological role of GPR30, we performed in vivo experiments with estradiol and G1, a compound that has been claimed to act as selective GPR30 agonist. In two classical estrogen target organs, the uterus and the mammary gland, G1 did not show any estrogenic effect. Taken together, we draw the conclusion that GPR30 is still an orphan receptor.

  20. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries

    PubMed Central

    Yu, Xuan; Stallone, John N.; Heaps, Cristine L.

    2018-01-01

    Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over

  1. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries.

    PubMed

    Yu, Xuan; Stallone, John N; Heaps, Cristine L; Han, Guichun

    2018-01-01

    Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over

  2. 17β-Estradiol on the Expression of G-Protein Coupled Estrogen Receptor (GPER/GPR30) Mitophagy, and the PI3K/Akt Signaling Pathway in ATDC5 Chondrocytes In Vitro

    PubMed Central

    Fan, Dong-xiao; Yang, Xu-hao; Li, Yi-nan

    2018-01-01

    Background Osteoarthritis is a progressive inflammatory joint disease resulting in damage to articular cartilage. G-protein coupled estrogen receptor (GPER/GPR30) activates cell signaling in response to 17β-estradiol, which can be blocked by the GPR30 agonist, G15, an analog of G-1. The aims of this study were to investigate the effects of 17β-estradiol on the expression of G-protein coupled estrogen receptor (GPER/GPR30) on mitophagy and the PI3K/Akt signaling pathway in ATDC5 chondrocytes in vitro. Material/Methods Cultured ATDC5 chondrocytes were treated with increasing concentrations of 17β-estradiol with and without G15, p38 inhibitor (SB203580), JNK inhibitor (SP600125), PI3K inhibitor (LY294002, S1737), and mTOR inhibitor (S1842). Expression of GPER/GPR30 and components of the PI3K/Akt pathway in cultured ATDC5 chondrocytes were detected by immunofluorescence (IF) staining, Western blot, and real-time polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) and IF were used to detect mitophagosomes. Expression of LC-3, LAMP2, TOM20, Hsp60, p-Akt, p-mTOR, p-p38, and p-JNK was investigated by Western blot. Proliferation and viability of the ATDC5 chondrocytes were determined using BrdU and MTT assays. Results In 17β-estradiol-treated ATDC5 chondrocytes, increased expression of GPER/GPR30 was found, but fewer mitophagosomes were observed, and decreased numbers of TOM20-positive granules were co-localized with decreased LAMP2 and increased expression levels of TOM20, Hsp60, p-Akt, and p-mTOR, and reduced expression of LC3-II, were found. In 17β-estradiol-treated ATDC5 chondrocytes, the proliferation and viability of the 17β-estradiol-treated ATDC5 chondrocytes were significantly elevated. Conclusions Treatment with 17β-estradiol protected ATDC5 chondrocytes against mitophagy via the GPER/GPR30 and the PI3K/Akt signaling pathway. PMID:29608013

  3. Regulation of ERRα Gene Expression by Estrogen Receptor Agonists and Antagonists in SKBR3 Breast Cancer Cells: Differential Molecular Mechanisms Mediated by G Protein-Coupled Receptor GPR30/GPER-1

    PubMed Central

    Li, Yin; Birnbaumer, Lutz; Teng, Christina T.

    2010-01-01

    In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM. PMID:20211987

  4. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms.

    PubMed

    Kim, Jaekyoon; Szinte, Julia S; Boulware, Marissa I; Frick, Karyn M

    2016-03-16

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female

  5. 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30.

    PubMed

    Vivacqua, Adele; Bonofiglio, Daniela; Albanito, Lidia; Madeo, Antonio; Rago, Vittoria; Carpino, Amalia; Musti, Anna Maria; Picard, Didier; Andò, Sebastiano; Maggiolini, Marcello

    2006-10-01

    The higher incidence of thyroid carcinoma (TC) in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogens have suggested a pathogenetic role exerted by these steroids in the development of TC. In the present study, we evaluated the potential of 17beta-estradiol (E2), genistein (G), and 4-hydroxyta-moxifen (OHT) to regulate the expression of diverse estrogen target genes and the proliferation of human WRO, FRO, and ARO thyroid carcinoma cells, which were used as a model system. We have ascertained that ARO cells are devoid of estrogen receptors (ERs), whereas both WRO and FRO cells express a single variant of ERalpha that was neither transactivated, modulated, nor translocated into the nucleus upon treatment with ligands. However, E2, G, and OHT were able either to induce the transcriptional activity of c-fos promoter constructs, including those lacking the estrogen-responsive elements, or to increase c-fos, cyclin A, and D1 expression. It is noteworthy that we have demonstrated that the G protein-coupled receptor 30 (GPR30) and the mitogen-activated protein kinase (MAPK) pathway mediate both the up-regulation of c-fos and the growth response to E2, G, and OHT in TC cells studied, because these stimulatory effects were prevented by silencing GPR30 and using the MEK inhibitor 2'-amino-3'-methoxyflavone (PD 98059). Our findings provide new insight into the molecular mechanisms through which estrogens may induce the progression of TC.

  6. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    PubMed

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  7. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  8. The G-protein coupled estrogen receptor (GPER/GPR30) is a gonadotropin receptor dependent positive prognosticator in ovarian carcinoma patients.

    PubMed

    Heublein, Sabine; Mayr, Doris; Vrekoussis, Thomas; Friese, Klaus; Hofmann, Simone S; Jeschke, Udo; Lenhard, Miriam

    2013-01-01

    Follicle stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) were demonstrated to impact upon survival of patients suffering from epithelial ovarian cancer (EOC). Though structure wise the G-protein coupled estrogen receptor (GPER/GPR30) is related to FSHR/LHCGR, its prognostic impact in EOC remains controversial. We recently found that FSHR negative patients represent a specific EOC subgroup that may behave differently in respect to both treatment response and prognosis. Hence, the current study aimed to analyze how GPER may interact with the FSHR/LHCGR system in EOC and whether the prognostic significance of GPER in EOC cases (n=151) may be dependent on the FSHR/LHCGR immunophenotype of the tumor. Ovarian cancer cell lines were used to study how FSH and LH regulate GPER and whether GPER activation differentially affects in vitro cell proliferation in presence/absence of activated FSHR/LHCGR. In EOC tissue, GPER correlated with FSHR/LHCGR and was related to prolonged overall survival only in FSHR/LHCGR negative patients. Although GPER was found to be specifically induced by LH/FSH, GPER agonists (4-Hydroxy-Tamoxifen, G1) reduced EOC cell proliferation only in case of LH/FSH unstimulated pathways. To the same direction, only patients characterized as LHCGR/FSHR negative seem to gain from GPER in terms of survival. Our combined tissue and in vitro results support thus the hypothesis that GPER activation could be of therapeutic benefit in LHCGR/FSHR negative EOC patients. Further studies are needed to evaluate the impact of GPER activation on a clinical scheme.

  9. The G-Protein Coupled Estrogen Receptor (GPER/GPR30) is a Gonadotropin Receptor Dependent Positive Prognosticator in Ovarian Carcinoma Patients

    PubMed Central

    Heublein, Sabine; Mayr, Doris; Vrekoussis, Thomas; Friese, Klaus; Hofmann, Simone S.

    2013-01-01

    Follicle stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) were demonstrated to impact upon survival of patients suffering from epithelial ovarian cancer (EOC). Though structure wise the G-protein coupled estrogen receptor (GPER/GPR30) is related to FSHR/LHCGR, its prognostic impact in EOC remains controversial. We recently found that FSHR negative patients represent a specific EOC subgroup that may behave differently in respect to both treatment response and prognosis. Hence, the current study aimed to analyze how GPER may interact with the FSHR/LHCGR system in EOC and whether the prognostic significance of GPER in EOC cases (n = 151) may be dependent on the FSHR/LHCGR immunophenotype of the tumor. Ovarian cancer cell lines were used to study how FSH and LH regulate GPER and whether GPER activation differentially affects in vitro cell proliferation in presence/absence of activated FSHR/LHCGR. In EOC tissue, GPER correlated with FSHR/LHCGR and was related to prolonged overall survival only in FSHR/LHCGR negative patients. Although GPER was found to be specifically induced by LH/FSH, GPER agonists (4-Hydroxy-Tamoxifen, G1) reduced EOC cell proliferation only in case of LH/FSH unstimulated pathways. To the same direction, only patients characterized as LHCGR/FSHR negative seem to gain from GPER in terms of survival. Our combined tissue and in vitro results support thus the hypothesis that GPER activation could be of therapeutic benefit in LHCGR/FSHR negative EOC patients. Further studies are needed to evaluate the impact of GPER activation on a clinical scheme. PMID:23951246

  10. GPR30, the Non-Classical Membrane G Protein Related Estrogen Receptor, Is Overexpressed in Human Seminoma and Promotes Seminoma Cell Proliferation

    PubMed Central

    Chevalier, Nicolas; Vega, Aurélie; Bouskine, Adil; Siddeek, Bénazir; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick

    2012-01-01

    Background Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. Results We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. Conclusion These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas. PMID

  11. GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation.

    PubMed

    Chevalier, Nicolas; Vega, Aurélie; Bouskine, Adil; Siddeek, Bénazir; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick

    2012-01-01

    Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.

  12. G-protein-coupled receptor 30 mediates the effects of estrogen on endothelial cell tube formation in vitro.

    PubMed

    Zhou, Liyuan; Chen, Hong; Mao, Xun; Qi, Hongbo; Baker, Philip N; Zhang, Hua

    2017-06-01

    The placenta is the exchange organ between the mother and the fetus. The inadequate function of this organ is associated with a number of pregnancy disorders. Hypoxia and oxidative stress during placental development may induce endothelial dysfunction, resulting in the reduction in the perfusion of the placenta. During pregnancy, the levels of estrogen are increased. Decreased estrogen levels have been reported in women with preeclampsia. However, whether estrogen is involved in placental angiogenesis remains unclear. In this study, we aimed to investigate the effects of estrogen on endothelial cell tube formation and to elucidate the underlying mechanisms. For this purpose, human umbilical vein endothelial cells (HUVECs) were cultured with 17‑β‑estradiol under conditions of hypoxia/reoxygenation (H/R). The total pipe length of the tube‑like structure on endothelial cells was measured. The expression levels of G‑protein‑coupled receptor 30 (GPR30) and endothelial nitric oxide synthase (eNOS) and Akt were also measured in the endothelial cells following treatment with 17‑β‑estradiol under H/R conditions by western blot analysis and immunostaining. We found that the total pipe length of the tube‑like structure on endothelial cells was significantly reduced. This reduction was reversed by treatment with 17‑β‑estradiol. The expression of GPR30 in endothelial cells was significantly increased following treatment with 17‑β‑estradiol under H/R conditions. Furthermore, the levels of eNOS and Akt in endothelial cells were also significantly increased following treatment with 17-β-estradiol under H/R conditions. The activation of eNOS was inhibited by wortmannin, an inhibitor of PI3K/Akt. Our data thus demonstrate that estrogen prevents the failure of endothelial cell tube formation induced by H/R. GPR30 plays an important role in these protective effects through the activation of eNOS and Akt in endothelial cells. Our data suggest that

  13. Genetic variants of GPER/GPR30, a novel estrogen-related G protein receptor, are associated with human seminoma.

    PubMed

    Chevalier, Nicolas; Paul-Bellon, Rachel; Camparo, Philippe; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick

    2014-01-21

    Testicular germ cell tumors (TGCTs) are the most common solid cancers in young men, with an increasing incidence over several years. However, their pathogenesis remains a matter of debate. Some epidemiological data suggest the involvement of both environmental and genetic factors. We reported two distinct effects of estrogens and/or xeno-estrogens on in vitro human seminoma-derived cells proliferation: (1) an antiproliferative effect via a classical estrogen receptor beta-dependent pathway, and (2) a promotive effect via a non-classical membrane G-protein-coupled receptor, GPR30/GPER, which is only overexpressed in seminomas, the most common TGCT. In order to explain this overexpression, we investigated the possible association of polymorphisms in the GPER gene by using allele-specific tetra-primer polymerase chain reaction performed on tissue samples from 150 paraffin-embedded TGCT specimens (131 seminomas, 19 non seminomas). Compared to control population, loss of homozygous ancestral genotype GG in two polymorphisms located in the promoter region of GPER (rs3808350 and rs3808351) was more frequent in seminomas but not in non-seminomas (respectively, OR = 1.960 (1.172-3.277) and 7.000 (2.747-17.840); p < 0.01). These polymorphisms may explain GPER overexpression and represent a genetic factor of susceptibility supporting the contribution of environmental GPER ligands in testicular carcinogenesis.

  14. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: cellular and population genetic studies.

    PubMed

    Hussain, Yasin; Ding, Qingming; Connelly, Philip W; Brunt, J Howard; Ban, Matthew R; McIntyre, Adam D; Huff, Murray W; Gros, Robert; Hegele, Robert A; Feldman, Ross D

    2015-01-01

    Estrogen deficiency is linked with increased low-density lipoprotein (LDL) cholesterol. The hormone receptor mediating this effect is unknown. G-protein estrogen receptor (GPER) is a recently recognized G-protein-coupled receptor that is activated by estrogens. We recently identified a common hypofunctional missense variant of GPER, namely P16L. However, the role of GPER in LDL metabolism is unknown. Therefore, we examined the association of the P16L genotype with plasma LDL cholesterol level. Furthermore, we studied the role of GPER in regulating expression of the LDL receptor and proprotein convertase subtilisin kexin type 9. Our discovery cohort was a genetically isolated population of Northern European descent, and our validation cohort consisted of normal, healthy women aged 18 to 56 years from London, Ontario. In addition, we examined the effect of GPER on the regulation of proprotein convertase subtilisin kexin type 9 and LDL receptor expression by the treatment with the GPER agonist, G1. In the discovery cohort, GPER P16L genotype was associated with a significant increase in LDL cholesterol (mean±SEM): 3.18±0.05, 3.25±0.08, and 4.25±0.33 mmol/L, respectively, in subjects with CC (homozygous for P16), CT (heterozygotes), and TT (homozygous for L16) genotypes (P<0.05). In the validation cohort (n=339), the GPER P16L genotype was associated with a similar increase in LDL cholesterol: 2.17±0.05, 2.34±0.06, and 2.42±0.16 mmol/L, respectively, in subjects with CC, CT, and TT genotypes (P<0.05). In the human hepatic carcinoma cell line, the GPER agonist, G1, mediated a concentration-dependent increase in LDL receptor expression, blocked by either pretreatment with the GPER antagonist G15 or by shRNA-mediated GPER downregulation. G1 also mediated a GPER- and concentration-dependent decrease in proprotein convertase subtilisin kexin type 9 expression. GPER activation upregulates LDL receptor expression, probably at least, in part, via proprotein convertase

  15. Signaling through G protein coupled receptors.

    PubMed

    Tuteja, Narendra

    2009-10-01

    Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.

  16. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  17. Association of a reduction of G-protein coupled receptor 30 expression and the pathogenesis of preeclampsia

    PubMed Central

    Feng, Xiang; Zhou, Liyuan; Mao, Xun; Tong, Chao; Chen, Xuyang; Zhao, Diqi; Baker, Philip N.; Xia, Yinyin; Zhang, Hua

    2017-01-01

    Preeclampsia is a pregnancy-specific disorder, which is a leading cause of maternal and perinatal mortality and morbidity. A lower increase of estrogen, compared with the increase in progesterone, is associated with pathogenesis of the disease during pregnancy. G-protein-coupled receptor 30 (GPR30) mediates the action of estrogen, however remains to be investigated in preeclampsia. The levels of GPR30 were measured in placentae from uncomplicated pregnancies and pregnancies complicated by preeclampsia using immunohistochemistry and western blotting. GPR30 expression was additionally measured in placental HTR8/SVneo cells following 17β-estrogen (E2) treatment in normal or hypoxia-reoxygenation conditions by western blotting. In addition, the outgrowth of HTR8/SVneo cells following E2 treatment in hypoxia-reoxygenation conditions was measured. Levels of GPR30 were significantly reduced in placentae from women with preeclampsia as compared with uncomplicated pregnancies. Treatment with E2 significantly increased the expression of GPR30 in HTR8/SVneo cells, in normal and hypoxia-reoxygenation conditions. Furthermore, treatment with E2 increased the outgrowth of HTR8/SVneo cells in hypoxia-reoxygenation conditions. The present study demonstrated lowered placental expression of GPR30 in preeclampsia. Estrogen treatment increases GPR30 expression in extravillous trophoblast and GPR30 may be involved in extravillous trophoblast invasion. PMID:28849224

  18. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models

    PubMed Central

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-01-01

    ABSTRACT Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. PMID:26183213

  19. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models.

    PubMed

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-10-01

    Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. © 2015. Published by The Company of Biologists Ltd.

  20. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.

    PubMed

    Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi

    2010-04-01

    Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.

  1. Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury.

    PubMed

    Wang, Ze-Fen; Pan, Zhi-Yong; Xu, Cheng-Shi; Li, Zhi-Qiang

    2017-01-22

    Previous studies experimentally reveal that G-protein coupled estrogen receptor 1(GPER) has neuroprotection against ischemic injury. However, its effect on traumatic brain injury (TBI) is less well-established. Cognitive impairment following human TBI is a common clinical observation, and TBI is considered as a risk factor for Alzheimer's disease (AD). This study aimed to observe the possible protective effect of GPER on early-onset cognitive impairment after a single TBI and investigate the cellular mechanism underlying its actions. We found that selective GPER agonist G-1 significantly reduced hippocampal CA1 neuronal loss and improved cognitive impairment in TBI rats. Although previous studies have shown that AD-like tau pathology occurs many years after both repetitive and single TBI, accumulation of hyperphosphorylated tau was not observed within days (detected at 24 h and 7d) after TBI. Furthermore, tau phosphorylation was not altered by G-1 treatment. It was found that G-1 administration caused an increase in p-Akt level. However, the neuroprotective effects of G-1 on spatial cognition and neuronal death were attenuated by PI3K/Akt inhibitor LY294002. These findings indicate that GPER agonist G-1 had protection on cognitive function via activation of PI3K/Akt signaling. Early-onset cognitive impairment following a single TBI was closely associated with acute hippocampal neuronal loss rather than tau pathology. This study suggests that early activation of GPER might be a promising therapeutic strategy for improvement of TBI-induced cognitive outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells

    PubMed Central

    Pupo, Marco; Bodmer, Alexandre; Berto, Melissa; Maggiolini, Marcello; Dietrich, Pierre-Yves; Picard, Didier

    2017-01-01

    GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer. PMID:28596490

  3. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells.

    PubMed

    Pupo, Marco; Bodmer, Alexandre; Berto, Melissa; Maggiolini, Marcello; Dietrich, Pierre-Yves; Picard, Didier

    2017-07-18

    GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer.

  4. The catecholestrogen, 2-hydroxyestradiol-17beta, acts as a G protein-coupled estrogen receptor 1 (GPER/GPR30) antagonist to promote the resumption of meiosis in zebrafish oocytes.

    PubMed

    Chourasia, Tapan K; Pang, Yefei; Thomas, Peter

    2015-03-01

    Estradiol-17beta (E2) maintains high cAMP levels and meiotic arrest in zebrafish oocytes through activation of G protein-coupled estrogen receptor (GPER). The catecholestrogen 2-hydroxyestradiol-17beta (2-OHE2) has an opposite effect to that of E2 on oocyte maturation (OM) and cAMP levels in Indian catfish oocytes. We tested the hypothesis that 2-OHE2 is produced in zebrafish ovaries and promotes the resumption of oocyte meiosis through its action as a GPER antagonist. Ovarian 2-OHE2 production by estrogen-2-hydroxylase (EH) was up-regulated by gonadotropin treatment at the onset of OM, consistent with a physiological role for 2-OHE2 in regulating OM. The increases in EH activity and OM were blocked by treatment with CYP1A1 and CYP1B1 inhibitors. Expression of cyp1a, cyp1b1, and cyp1c mRNAs was increased by gonadotropin treatment, further implicating these Cyp1s in 2-OHE2 synthesis prior to OM. Conversely, aromatase activity and cyp19a1 mRNA expression declined during gonadotropin induction of OM. 2-OHE2 treatment significantly increased spontaneous OM in defolliculated zebrafish oocytes and reversed the inhibition of OM by E2 and the GPER agonist G-1. 2-OHE2 was an effective competitor of [(3)H]-E2 binding to recombinant zebrafish GPER expressed in HEK-293 cells. 2-OHE2 also antagonized estrogen actions through GPER on cAMP production in zebrafish oocytes, resulting in a reduction in cAMP levels. Stimulation of OM by 2-OHE2 was blocked by pretreatment of defolliculated oocytes with the GPER antibody. Collectively, the results suggest that 2-OHE2 functions as a GPER antagonist and promotes OM in zebrafish through blocking GPER-dependent E2 inhibition of the resumption of OM. © 2015 by the Society for the Study of Reproduction, Inc.

  5. Probing receptor structure/function with chimeric G-protein-coupled receptors.

    PubMed

    Yin, Dezhong; Gavi, Shai; Wang, Hsien-yu; Malbon, Craig C

    2004-06-01

    Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.

  6. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.

  7. Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction

    PubMed Central

    Mnpotra, Jagjeet S.; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L.; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P.; Pitman, Michael C.; Song, Zhao-Hui; Reggio, Patricia H.

    2014-01-01

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. PMID:24855641

  8. When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation.

    PubMed

    DiGiacomo, Vincent; Marivin, Arthur; Garcia-Marcos, Mikel

    2018-01-23

    Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.

  9. G protein-coupled receptors: the inside story.

    PubMed

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  10. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells.

    PubMed

    Albanito, Lidia; Madeo, Antonio; Lappano, Rosamaria; Vivacqua, Adele; Rago, Vittoria; Carpino, Amalia; Oprea, Tudor I; Prossnitz, Eric R; Musti, Anna Maria; Andò, Sebastiano; Maggiolini, Marcello

    2007-02-15

    Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood. Here, we show that, in ERalpha-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE-responsive reporter gene, indicating that GPR30 signaling does not activate ERalpha-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERalpha expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression. Interestingly, we show that both GPR30 and ERalpha expression along with active EGFR signaling are required for E2-stimulated and G-1-stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERalpha-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERalpha expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.

  11. Involvement of estradiol-17beta and its membrane receptor, G protein coupled receptor 30 (GPR30) in regulation of oocyte maturation in zebrafish, Danio rario.

    PubMed

    Pang, Yefei; Thomas, Peter

    2009-03-01

    The orphan G protein coupled receptor, GPR30, has the characteristics of a high affinity, specific estrogen membrane receptor on Atlantic croaker oocytes and mediates estrogen inhibition of oocyte maturation in this perciform fish. In order to determine the broad applicability of these findings to other teleosts, similar experiments were conducted in a cyprinid fish, zebrafish, in the present study. GPR30 mRNA expression was detected in zebrafish oocytes but not in the ovarian follicular cells. Both spontaneous and 17, 20beta-dihyroxy-4-pregnen-3-one (DHP)-induced maturation of follicle-enclosed zebrafish oocytes was significantly decreased when they were incubated with either estradiol-17beta, or the GPR30 agonists, ICI 182 780 and tamoxifen, or with the GPR30 specific agonist G-1. On the other hand spontaneous oocyte maturation increased two-fold when zebrafish ovarian follicles were incubated with an aromatase inhibitor, ATD. Moreover, the stimulatory effects of ATD on germinal vesicle breakdown (GVBD) were partially reversed by co-treatment with 100 nM of E2 or G-1. These results suggest that endogenous estrogens acting through GPR30 are involved in maintaining meiotic arrest of zebrafish oocytes.

  12. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  13. Gi- and Gs-coupled GPCRs show different modes of G-protein binding.

    PubMed

    Van Eps, Ned; Altenbach, Christian; Caro, Lydia N; Latorraca, Naomi R; Hollingsworth, Scott A; Dror, Ron O; Ernst, Oliver P; Hubbell, Wayne L

    2018-03-06

    More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, G s , and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR-G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin-G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, G i , using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin-G i complex, G i engages rhodopsin in a manner distinct from previous GPCR-G s structures, providing insight into specificity determinants. Copyright © 2018 the Author(s). Published by PNAS.

  14. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).

    PubMed

    Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A; Manglik, Aashish; Tesmer, John J G; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2015-04-24

    G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. G-protein-coupled receptors signaling pathways in new antiplatelet drug development.

    PubMed

    Gurbel, Paul A; Kuliopulos, Athan; Tantry, Udaya S

    2015-03-01

    Platelet G-protein-coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein-coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein-coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein-coupled receptor-mediated signaling may allow the tailoring of antiplatelet therapy. © 2015 American Heart Association, Inc.

  16. 17β-estradiol rapidly facilitates lordosis through G protein-coupled estrogen receptor 1 (GPER) via deactivation of medial preoptic nucleus μ-opioid receptors in estradiol primed female rats.

    PubMed

    Long, Nathan; Serey, Chhorvann; Sinchak, Kevin

    2014-09-01

    In female rats sexual receptivity (lordosis) can be induced with either a single large dose of estradiol benzoate (EB), or a priming dose of EB that does not induce sexual receptivity followed by 17β-estradiol (E2). Estradiol priming initially inhibits lordosis through a multi-synaptic circuit originating in the arcuate nucleus of the hypothalamus (ARH) that activates and internalizes μ-opioid receptors (MOR) in medial preoptic nucleus (MPN) neurons. Lordosis is facilitated when MPN MOR are deactivated after the initial estradiol-induced activation. We tested the hypothesis that E2 given 47.5 h post EB acts rapidly through G protein-coupled estrogen receptor 1 (GPER) in the ARH to deactivate MPN MOR and facilitate lordosis. Ovariectomized Long Evans rats implanted with a third ventricle cannula were primed with 2 μg EB. DMSO control, E2, or G1 (GPER selective agonist) was infused 47.5 h later, and rats were tested for sexual receptivity. E2 and G1 infusions significantly increased levels of sexual receptivity compared to DMSO controls and pretreatment with G15 (GPER antagonist) blocked the facilitation of sexual receptivity. Brains were processed for MPN MOR immunohistochemistry to measure MPN MOR activation levels. E2 and G1 both significantly reduced MPN MOR activation compared to DMSO controls, while pretreatment with G15 blocked MPN MOR deactivation. In another group of EB treated ovariectomized rats, GPER immunofluorescence positive staining was observed throughout the ARH. Together these data indicate that in the 2 μg EB primed rat, E2 rapidly signals through GPER in the ARH to deactivate MPN MOR and facilitate lordosis. Published by Elsevier Inc.

  17. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.

    PubMed

    Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea

    2018-03-15

    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.

  18. G protein-coupled odorant receptors: From sequence to structure.

    PubMed

    de March, Claire A; Kim, Soo-Kyung; Antonczak, Serge; Goddard, William A; Golebiowski, Jérôme

    2015-09-01

    Odorant receptors (ORs) are the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date and atomic-level insights are likely to be obtained by means of molecular modeling. In this article, we critically align sequences of ORs with those GPCRs for which a structure is available. Here, an alignment consistent with available site-directed mutagenesis data on various ORs is proposed. Using this alignment, the choice of the template is deemed rather minor for identifying residues that constitute the wall of the binding cavity or those involved in G protein recognition. © 2015 The Protein Society.

  19. [G protein-coupled receptors in the spot light].

    PubMed

    Benleulmi-Chaachoua, Abla; Wojciech, Stefanie; Jockers, Ralf

    2013-01-01

    G protein-coupled receptors (GPCRs), also known as seven transmembrane domain-spanning proteins (7TM), play an important role in tissue homeostasis and cellular and hormonal communication. GPCRs are targeted by a large panel of natural ligands such as photons, ions, metabolites, lipids and proteins but also by numerous drugs. Research efforts in the GPCR field have been rewarded in 2012 by the Nobel Price in Chemistry. The present article briefly summarizes our current knowledge on GPCRs and discusses future challenges in terms of fundamental aspects and therapeutic applications. © Société de Biologie, 2013.

  20. Estrogen biology: new insights into GPER function and clinical opportunities.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2014-05-25

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.

  2. Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats.

    PubMed

    Hawley, Wayne R; Grissom, Elin M; Moody, Nicole M; Dohanich, Gary P; Vasudevan, Nandini

    2014-04-01

    In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the α or β isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1 μg) of estradiol 48 h and 24 h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48 h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25 μg) 48 h and 24 h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. How much do we know about the coupling of G-proteins to serotonin receptors?

    PubMed Central

    2014-01-01

    Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis. PMID:25011628

  4. How much do we know about the coupling of G-proteins to serotonin receptors?

    PubMed

    Giulietti, Matteo; Vivenzio, Viviana; Piva, Francesco; Principato, Giovanni; Bellantuono, Cesario; Nardi, Bernardo

    2014-07-10

    Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis.

  5. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  6. Role of natriuretic peptide receptor 2-mediated signaling in meiotic arrest of zebrafish oocytes and its estrogen regulation through G protein-coupled estrogen receptor (Gper).

    PubMed

    Pang, Yefei; Thomas, Peter

    2018-03-22

    Natriuretic peptide type C (NPPC) and its receptor, natriuretic peptide receptor 2 (NPR2), have essential roles in maintaining meiotic arrest of oocytes in several mammalian species. However, it is not known if a similar mechanism exists in non-mammalian vertebrates. Using zebrafish as a model, we show that Nppc is expressed in ovarian follicle cells, whereas Npr2 is mainly detected in oocytes. Treatment of intact and defolliculated oocytes with 100 nM NPPC for 6 h caused a large increase in cGMP concentrations, and a significant decrease in oocyte maturation (OM), an effect that was mimicked by treatment with 8-Br-cGMP. Treatment with E2 and G-1, the specific GPER agonist, also increased cGMP levels. Cyclic AMP levels were also increased by treatments with 8-Br-cGMP, E2 and G1. The estrogen upregulation of cAMP levels was blocked by co-treatment with AG1478, an inhibitor of EGFR activation. Gene expression of npr2, but not nppc, was significantly upregulated in intact oocytes by 6 h treatments with 20 nM E2 and G-1. Both cilostamide, a phosphodiesterase 3 (PDE3) inhibitor, and rolipram, a PDE4 inhibitor, significantly decreased OM of intact and defolliculated oocytes, and enhanced the inhibitory effects of E2 and G-1 on OM. These findings indicate the presence of a Nppc/Npr2/cGMP pathway maintaining meiotic arrest in zebrafish oocytes that is upregulated by estrogen activation of Gper. Collectively, the results suggest that Nppc through Npr2 cooperates with E2 through Gper in upregulation of cGMP levels to inhibit phosphodiesterase activity resulting in maintenance of oocyte meiotic arrest in zebrafish. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Conformational dynamics of activation for the pentameric complex of dimeric G proteincoupled receptor and heterotrimeric G protein

    PubMed Central

    Orban, Tivadar; Jastrzebska, Beata; Gupta, Sayan; Wang, Benlian; Miyagi, Masaru; Chance, Mark R.; Palczewski, Krzysztof

    2012-01-01

    Summary Photoactivation of rhodopsin (Rho), a G protein-coupled receptor (GPCR), causes conformational changes that provide a specific binding site for the rod G protein, Gt. In this work we employed structural mass spectrometry (MS) techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho*) and in the pentameric complex between dimeric Rho* and heterotrimeric Gt. Observed differences in hydroxyl radical labeling and deuterium uptake between Rho* and the (Rho*)2-Gt complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon Gt coupling. In contrast, nucleotide-free Gt in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho* and Gt exhibit dissimilar conformational changes when they are coupled in the (Rho*)2-Gt complex. PMID:22579250

  8. Estrogen Biology: New Insights into GPER Function and Clinical Opportunities

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2014-01-01

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen’s rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and certain drugs such as SERMs and SERDs in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. PMID:24530924

  9. G protein-coupled odorant receptors: From sequence to structure

    PubMed Central

    de March, Claire A; Kim, Soo-Kyung; Antonczak, Serge; Goddard, William A; Golebiowski, Jérôme

    2015-01-01

    Odorant receptors (ORs) are the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date and atomic-level insights are likely to be obtained by means of molecular modeling. In this article, we critically align sequences of ORs with those GPCRs for which a structure is available. Here, an alignment consistent with available site-directed mutagenesis data on various ORs is proposed. Using this alignment, the choice of the template is deemed rather minor for identifying residues that constitute the wall of the binding cavity or those involved in G protein recognition. PMID:26044705

  10. In vivo functions of GPR30/GPER-1, a membrane receptor for estrogen: from discovery to functions in vivo.

    PubMed

    Mizukami, Yoichi

    2010-01-01

    G protein-coupled receptor 30/G protein-coupled estrogen receptor-1 (GPR30/GPER-1) was reported as a novel membrane receptor for estrogen in 2005. However, the research on GPR30 has produced conflicting reports with regard to its intracellular localization, the tissue distribution of its expression, and some its functions. Recently, in addition to the finding of G-1, a GPR30 agonist, GPR30 KO mice have been produced in laboratories, and this has significantly increased the confidence in the data. In this review, the intrinsic appearance of GPR30 is approached based mainly on data obtained in vivo.

  11. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  12. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  13. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    PubMed Central

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319

  14. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  15. Functional assay for T4 lysozyme-engineered G protein-coupled receptors with an ion channel reporter.

    PubMed

    Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J

    2014-01-07

    Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling.

    PubMed

    Alvarez-Curto, Elisa; Inoue, Asuka; Jenkins, Laura; Raihan, Sheikh Zahir; Prihandoko, Rudi; Tobin, Andrew B; Milligan, Graeme

    2016-12-30

    G protein-coupled receptors (GPCRs) can initiate intracellular signaling cascades by coupling to an array of heterotrimeric G proteins and arrestin adaptor proteins. Understanding the contribution of each of these coupling options to GPCR signaling has been hampered by a paucity of tools to selectively perturb receptor function. Here we employ CRISPR/Cas9 genome editing to eliminate selected G proteins (Gα q and Gα 11 ) or arrestin2 and arrestin3 from HEK293 cells together with the elimination of receptor phosphorylation sites to define the relative contribution of G proteins, arrestins, and receptor phosphorylation to the signaling outcomes of the free fatty acid receptor 4 (FFA4). A lack of FFA4-mediated elevation of intracellular Ca 2+ in Gα q /Gα 11 -null cells and agonist-mediated receptor internalization in arrestin2/3-null cells confirmed previously reported canonical signaling features of this receptor, thereby validating the genome-edited HEK293 cells. FFA4-mediated ERK1/2 activation was totally dependent on G q / 11 but intriguingly was substantially enhanced for FFA4 receptors lacking sites of regulated phosphorylation. This was not due to a simple lack of desensitization of G q / 11 signaling because the G q / 11 -dependent calcium response was desensitized by both receptor phosphorylation and arrestin-dependent mechanisms, whereas a substantially enhanced ERK1/2 response was only observed for receptors lacking phosphorylation sites and not in arrestin2/3-null cells. In conclusion, we validate CRISPR/Cas9 engineered HEK293 cells lacking G q / 11 or arrestin2/3 as systems for GPCR signaling research and employ these cells to reveal a previously unappreciated interplay of signaling pathways where receptor phosphorylation can impact on ERK1/2 signaling through a mechanism that is likely independent of arrestins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Conformational Fluctuations in G-Protein-Coupled Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  18. Receptor recruitment: A mechanism for interactions between G protein-coupled receptors

    PubMed Central

    Holtbäck, Ulla; Brismar, Hjalmar; DiBona, Gerald F.; Fu, Michael; Greengard, Paul; Aperia, Anita

    1999-01-01

    There is a great deal of evidence for synergistic interactions between G protein-coupled signal transduction pathways in various tissues. As two specific examples, the potent effects of the biogenic amines norepinephrine and dopamine on sodium transporters and natriuresis can be modulated by neuropeptide Y and atrial natriuretic peptide, respectively. Here, we report, using a renal epithelial cell line, that both types of modulation involve recruitment of receptors from the interior of the cell to the plasma membrane. The results indicate that recruitment of G protein-coupled receptors may be a ubiquitous mechanism for receptor sensitization and may play a role in the modulation of signal transduction comparable to that of the well established phenomenon of receptor endocytosis and desensitization. PMID:10377404

  19. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less

  1. 4-Hydroxytamoxifen-stimulated processing of cyclin E is mediated via G protein-coupled receptor 30 (GPR30) and accompanied by enhanced migration in MCF-7 breast cancer cells.

    PubMed

    Li, Yang; Chen, Yan; Zhu, Zhu-Xia; Liu, Xiao-Hong; Yang, Li; Wan, Lei; Lei, Ting-Wen; Wang, Xu-Dong

    2013-07-05

    Over-expression of cleaved cyclin E in breast tumors is closely associated with tumor progression and resistance to antiestrogens. 17β-Estradiol (E2) has been recently shown to induce cyclin E processing in breast cancer cells. Tamoxifen has been used in patients with estrogen-sensitive breast cancer, yet resistance to antiestrogens and recurrence will appear in some of the patients after its continued use. We therefore addressed possible effects of tamoxifen on the generation of cleaved cyclin E and its signal mechanism(s) in estrogen-responsive MCF-7 breast cancer cells that express both G protein-coupled protein (GPR) 30 and estrogen receptor α (ERα). 4-Hydroxytamoxifen (OHT, tamoxifen's active form) failed to prevent E2-induced proteolysis of cyclin E and migration, but rather triggered cyclin E cleavage coincident with augmented migration. OHT-induced cyclin E truncation also occurred in SK-BR-3 cells that express GPR30 and lack ERα, but not in MDA-MB-231 cells that express neither GPR30 nor ERα. G1, a specific GPR 30 agonist, caused dramatic proteolysis of cyclin E and enhanced migration. Furthermore, OHT-stimulated cleavage of cyclin E and migration were tremendously attenuated by G15, a GPR30 antagonist, or siRNA against GPR30. In addition, inhibitors for EGFR or ERK1/2 remarkably suppressed OHT-induced truncation of cyclin E, suggesting involvement of EGFR signaling. Collectively, our data indicate that OHT contributes to the production of proteolyzed cyclin E via GPR30 with augmented migration in MCF-7 cells. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. GPER - novel membrane estrogen receptor

    PubMed Central

    Zimmerman, Margaret A.; Budish, Rebecca A.; Kashyap, Shreya; Lindsey, Sarah H.

    2016-01-01

    The recent discovery of the G protein-coupled estrogen receptor (GPER) presents new challenges and opportunities for understanding the physiology, pathophysiology, and pharmacology of many diseases. This review will focus on the expression and function of GPER in hypertension, kidney disease, atherosclerosis, vascular remodeling, heart failure, reproduction, metabolic disorders, cancer, environmental health, and menopause. Furthermore, this review will highlight the potential of GPER as a therapeutic target. PMID:27154744

  3. G protein-coupled receptor 30 down-regulates cofactor expression and interferes with the transcriptional activity of glucocorticoid.

    PubMed

    Ylikomi, Timo; Vienonen, Annika; Ahola, Tytti M

    2004-11-01

    G protein-coupled receptor 30 (GPR30) has previously been described to be important in steroid-mediated growth and to inhibit cell proliferation. Here we investigated whether the effect of GPR30 on cell growth is dependent on steroid hormone receptors. We stably introduced GPR30 in immortalized normal mammary epithelial (HME) cells using retroviruses for gene delivery. GPR30 inhibited the growth and proliferation of the cells. They expressed glucocorticoid receptor, but not estrogen or progesterone receptor. GPR30 down-regulated the expression of cofactor transcription intermediary factor 2 (TIF2) analyzed using quantitative RT-PCR analysis, and also diminished the expression of TIF2 at protein level analyzed by Western blotting using nuclear extracts from mammary epithelial cells. When HME cells were transiently transfected with the glucocorticoid response element MMTV-luc reporter plasmid, stable expression of GPR30 resulted in the abolition of ligand-induced transactivation of the promoter. In COS cells, transient transfection of GPR30 with glucocorticoid receptor alpha resulted in an abrogation of the MMTV-luc and GRE-luc reporter activities induced by dexamethasone. The results suggest a novel mechanism by which membrane-initiated signaling interferes with steroid signaling.

  4. Structural studies of G protein-coupled receptors.

    PubMed

    Lu, Mengjie; Wu, Beili

    2016-11-01

    G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y 1 R and P2Y 12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  5. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor.

    PubMed

    Nakajima, Ken-ichiro; Wess, Jürgen

    2012-10-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M₃ muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types.

  6. Constitutive Gαi coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein.

    PubMed

    Hu, Qiao-Xia; Dong, Jun-Hong; Du, Hai-Bo; Zhang, Dao-Lai; Ren, Hong-Ze; Ma, Ming-Liang; Cai, Yuan; Zhao, Tong-Chao; Yin, Xiao-Lei; Yu, Xiao; Xue, Tian; Xu, Zhi-Gang; Sun, Jin-Peng

    2014-08-29

    The very large G protein-coupled receptor 1 (VLGR1) is a core component in inner ear hair cell development. Mutations in the vlgr1 gene cause Usher syndrome, the symptoms of which include congenital hearing loss and progressive retinitis pigmentosa. However, the mechanism of VLGR1-regulated intracellular signaling and its role in Usher syndrome remain elusive. Here, we show that VLGR1 is processed into two fragments after autocleavage at the G protein-coupled receptor proteolytic site. The cleaved VLGR1 β-subunit constitutively inhibited adenylate cyclase (AC) activity through Gαi coupling. Co-expression of the Gαiq chimera with the VLGR1 β-subunit changed its activity to the phospholipase C/nuclear factor of activated T cells signaling pathway, which demonstrates the Gαi protein coupling specificity of this subunit. An R6002A mutation in intracellular loop 2 of VLGR1 abolished Gαi coupling, but the pathogenic VLGR1 Y6236fsx1 mutant showed increased AC inhibition. Furthermore, overexpression of another Usher syndrome protein, PDZD7, decreased the AC inhibition of the VLGR1 β-subunit but showed no effect on the VLGR1 Y6236fsx1 mutant. Taken together, we identified an independent Gαi signaling pathway of the VLGR1 β-subunit and its regulatory mechanisms that may have a role in the development of Usher syndrome. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  8. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer.

    PubMed

    Molina, Luis; Figueroa, Carlos D; Bhoola, Kanti D; Ehrenfeld, Pamela

    2017-08-01

    Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.

  9. Induction of Cardiac Fibrosis by β-Blocker in G Protein-independent and G Protein-coupled Receptor Kinase 5/β-Arrestin2-dependent Signaling Pathways*

    PubMed Central

    Nakaya, Michio; Chikura, Satsuki; Watari, Kenji; Mizuno, Natsumi; Mochinaga, Koji; Mangmool, Supachoke; Koyanagi, Satoru; Ohdo, Shigehiro; Sato, Yoji; Ide, Tomomi; Nishida, Motohiro; Kurose, Hitoshi

    2012-01-01

    G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers. PMID:22888001

  10. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins.

    PubMed

    Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W; Skjærven, Lars; Traynor, John R; Sivaramakrishnan, Sivaraj; Grant, Barry J

    2016-02-26

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

    PubMed Central

    Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier; Wang, Jue; Santarelli, Lindsey C.; Savigner, Agnes; Qiao, Xin; Wang, Zhenshan; Storm, Daniel R.; Ma, Minghong

    2015-01-01

    Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction. PMID:25550517

  12. Regulation of neuronal communication by G protein-coupled receptors.

    PubMed

    Huang, Yunhong; Thathiah, Amantha

    2015-06-22

    Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. The G protein-coupled receptors deorphanization landscape.

    PubMed

    Laschet, Céline; Dupuis, Nadine; Hanson, Julien

    2018-07-01

    G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor

    PubMed Central

    Nakajima, Ken-ichiro

    2012-01-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M3 muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types. PMID:22821234

  15. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    PubMed

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling

    PubMed Central

    Walther, Cornelia

    2015-01-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107

  17. A physiologically required G protein-coupled receptor (GPCR)-regulator of G protein signaling (RGS) interaction that compartmentalizes RGS activity.

    PubMed

    Croft, Wayne; Hill, Claire; McCann, Eilish; Bond, Michael; Esparza-Franco, Manuel; Bennett, Jeannette; Rand, David; Davey, John; Ladds, Graham

    2013-09-20

    G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.

  18. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-01-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063

  19. G-protein-coupled receptors participate in cytokinesis

    PubMed Central

    Zhang, Xin; Bedigian, Anne V.; Wang, Wenchao; Eggert, Ulrike S.

    2014-01-01

    Cytokinesis, the last step during cell division, is a highly coordinated process that involves the relay of signals from both the outside and inside of the cell. We have a basic understanding of how cells regulate internal events, but how cells respond to extracellular cues is less explored. In a systematic RNAi screen of G-protein-coupled receptors (GPCRs) and their effectors, we found that some GPCRs are involved in cytokinesis. RNAi knockdown of these GPCRs caused increased binucleated cell formation, and live cell imaging showed that most formed midbodies but failed at the abscission stage. OR2A4 localized to cytokinetic structures in cells and its knockdown caused cytokinesis failure at an earlier stage, likely due to effects on the actin cytoskeleton. Identifying the downstream components that transmit GPCR signals during cytokinesis will be the next step and we show that GIPC1, an adaptor protein for GPCRs, may play a part. RNAi knockdown of GIPC1 significantly increased binucleated cell formation. Understanding the molecular details of GPCRs and their interaction proteins in cytokinesis regulation will give us important clues about GPCRs signaling as well as how cells communicate with their environment during division. PMID:22888021

  20. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Hickner, Robert C

    2013-08-01

    Premenopausal women demonstrate a distinctive gynoid body fat distribution and circulating estrogen status is associated with the maintenance of this adiposity patterning. Estrogen's role in modulation of regional adiposity may occur through estrogen receptors (ERs), which are present in human adipose tissue. The purpose of this study was to determine regional differences in the protein content of ERα, ERβ, and the G protein-coupled estrogen receptor (GPER) between the abdominal (AB) and gluteal (GL) subcutaneous adipose tissue of overweight-to-obese premenopausal women. Biopsies of the subcutaneous AB and GL adipose tissue were performed in 15 premenopausal women (7 Caucasian/8 African American, 25.1 ± 1.8 years, BMI 29.5 ± 0.5kg/m(2)). Adipose tissue protein content was measured by western blot analysis and correlation analyses were conducted to assess the relationship between ER protein content and anthropometric indices/body composition measurements. We found that ERα protein was higher in AB than GL (AB 1.0 ± 0.2 vs GL 0.67 ± 0.1 arbitrary units [AU], P=0.02), ERβ protein was higher in GL than AB (AB 0.78 ± 0.12 vs GL 1.3 ± 0.2 AU, P=0.002), ERα/ERβ ratio was higher in AB than GL (AB 1.9 ± 0.4 vs GL 0.58 ± 0.08 AU, P=0.007), and GPER protein content was similar in AB and GL (P=0.80) subcutaneous adipose tissue. Waist-to-hip ratio was inversely related to gluteal ERβ (r(2)=0.315, P=0.03) and positively related to gluteal ERα/ERβ ratio (r(2)=0.406, P=0.01). These results indicate that depot specific ER content may be an important underlying determinant of regional effects of estrogen in upper and lower body adipose tissue of overweight-to-obese premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. G Protein-Coupled Receptor 30 (GPR30) Expression Pattern in Inflammatory Bowel Disease Patients Suggests its Key Role in the Inflammatory Process. A Preliminary Study.

    PubMed

    Włodarczyk, Marcin; Sobolewska-Włodarczyk, Aleksandra; Cygankiewicz, Adam I; Jacenik, Damian; Piechota-Polańczyk, Aleksandra; Stec-Michalska, Krystyna; Krajewska, Wanda M; Fichna, Jakub; Wiśniewska-Jarosińska, Maria

    2017-03-01

    G protein-coupled receptor 30 (GPR30) is a recently de-orphanized estrogen receptor that mediates the effects of estrogens on different cells. It has been postulated that in inflammatory bowel diseases (IBD) activation of GPR30 blocks the pathways dependent on pro-inflammatory cytokines. The aim of our study was to investigate GPR30 expression in patients with IBD and its potential implication in future therapies. Fifty-seven patients were enrolled in our study: 20 subjects with Crohn's disease (CD), 22 with ulcerative colitis (UC) and 15 controls. In each subject, biopsies were taken from various left-colonic locations. Gene and protein expression of GPR30 was quantified using real time RT-PCR or Western blot. GPR30 mRNA and protein expression were detected in all tested colonic tissues. No significant differences in GPR30 gene expression were observed. In non-inflamed areas, GPR30 protein was strongly increased in CD patients, but moderately in UC patients (p= 0.014 and p=0.143, respectively, vs. controls). In CD patients, a significantly lower GPR30 protein content in inflamed than in non-inflamed tissue was observed (p=0.039). The change was independent of patient gender. Our observations indicate that GPR30 may play a role in the development and progression of inflammatory lesions in IBD, thus affecting disease severity, and consequently IBD treatment. Therefore, GPR30 may become an attractive target for novel anti-IBD drugs, particularly in CD.

  2. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    PubMed Central

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  3. The recent progress in research on effects of anesthetics and analgesics on G protein-coupled receptors.

    PubMed

    Minami, Kouichiro; Uezono, Yasuhito

    2013-04-01

    The exact mechanisms of action behind anesthetics and analgesics are still unclear. Much attention was focused on ion channels in the central nervous system as targets for anesthetics and analgesics in the 1980s. During the 1990s, major advances were made in our understanding of the physiology and pharmacology of G protein coupled receptor (GPCR) signaling. Thus, several lines of studies have shown that G protein coupled receptors (GPCRs) are one of the targets for anesthetics and analgesics and especially, that some of them inhibit the functions of GPCRs, i.e,, muscarinic receptors and substance P receptors. However, these studies had been focused on only G(q) coupled receptors. There has been little work on G(s)- and G(i)-coupled receptors. In the last decade, a new assay system, using chimera G(i/o)-coupled receptor fused to Gq(i5), has been established and the effects of anesthetics and analgesics on the function of G(i)-coupled receptors is now more easily studied. This review highlights the recent progress of the studies regarding the effects of anesthetics and analgesics on GPCRs.

  4. Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation.

    PubMed

    Li, Yi-Ran; Ren, Chun-E; Zhang, Quan; Li, Ji-Chun; Chian, Ri-Cheng

    2013-02-01

    To determine expression of G-protein estrogen receptor (GPER) in mouse oocyte membrane during maturation. The expression of GPER from different maturation stages of oocytes, in vivo and in vitro matured oocytes as well as aging oocytes was examined by immune-fluorescence GPR30 antibody and the images were analyzed by laser scanning confocal microscope. Further confirmation was performed by Western blots for cell fractionation. Significant fluorescent signal was observed on the surface of mouse oocytes. The image expression was lower in germinal vesicle (GV) stage than mature metaphase-II (M-II) stage oocytes. There was high expression in in-vivo matured oocytes compared to in vitro matured oocytes. The highest expression was observed in aging oocytes compared with other oocytes. The changes of expression of GPER on mouse oocytes plasma membrane confirm oocyte membrane maturation, suggesting that those changes of GPER may be related to the functional role of oocyte maturation.

  5. GPER Mediates Non-Genomic Effects of Estrogen.

    PubMed

    Pupo, Marco; Maggiolini, Marcello; Musti, Anna Maria

    2016-01-01

    Estrogens are important modulators of a broad spectrum of physiological functions in humans. However, despite their beneficial actions, a number of lines of evidence correlate the sustained exposure to exogenous estrogen with increased risk of the onset of various cancers. Mainly these steroid hormones induce their effects by binding and activating estrogen receptors (ERα and ERβ). These receptors belong to the family of ligand-regulated transcription factors, and upon activation they regulate the expression of different target genes by binding directly to specific DNA sequences. On the other hand, in recent years it has become clear that the G protein-coupled estrogen receptor 30 (GPR30/GPER) is able to mediate non-genomic action of estrogens in different cell contexts. In particular, GPER has been shown to specifically bind estrogens, and in turn to functionally cross-react with diverse cell signaling systems such as the epidermal growth factor receptor (EGFR) pathway, the Notch signaling pathway and the mitogen-activated protein kinases (MAPK) pathway. In this chapter we will present some of the different experimental techniques currently used to demonstrate the functional role of GPER in mediating non-genomic actions of estrogens, such as the dual luciferase assay, assessment of the involvement of GPER in the stimulation of cell migration in breast cancer cell lines and in cancer-associated fibroblasts, and chromatin immunoprecipitation assay. Overall, the experimental procedures described herein represent key instruments for assessing the biological role of GPER in mediating non-genomic signals of estrogen.

  6. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    DOE PAGES

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; ...

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less

  7. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less

  8. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    PubMed Central

    Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim

    2014-01-01

    X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322

  9. Visualization of arrestin recruitment by a G Protein-Coupled Receptor

    PubMed Central

    Reis, Rosana I.; Huang, Li-Yin; Tripathi-Shukla, Prachi; Qian, Jiang; Li, Sheng; Blanc, Adi; Oleskie, Austin N.; Dosey, Anne M.; Su, Min; Liang, Cui-Rong; Gu, Ling-Ling; Shan, Jin-Ming; Chen, Xin; Hanna, Rachel; Choi, Minjung; Yao, Xiao Jie; Klink, Bjoern U.; Kahsai, Alem W.; Sidhu, Sachdev S.; Koide, Shohei; Penczek, Pawel A.; Kossiakoff, Anthony A.; Jr, Virgil L. Woods; Kobilka, Brian K.; Skiniotis, Georgios; Lefkowitz, Robert J.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins. PMID:25043026

  10. Cellular and molecular biology of orphan G protein-coupled receptors.

    PubMed

    Oh, Da Young; Kim, Kyungjin; Kwon, Hyuk Bang; Seong, Jae Young

    2006-01-01

    The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.

  11. Estrogen action and prostate cancer

    PubMed Central

    Nelles, Jason L; Hu, Wen-Yang; Prins, Gail S

    2011-01-01

    Early work on the hormonal basis of prostate cancer focused on the role of androgens, but more recently estrogens have been implicated as potential agents in the development and progression of prostate cancer. In this article, we review the epidemiological, laboratory and clinical evidence that estrogen may play a causative role in human prostate cancer, as well as rodent and grafted in vivo models. We then review recent literature highlighting potential mechanisms by which estrogen may contribute to prostate cancer, including estrogenic imprinting and epigenetic modifications, direct genotoxicity, hyperprolactinemia, inflammation and immunologic changes, and receptor-mediated actions. We discuss the work performed so far separating the actions of the different known estrogen receptors (ERs), ERα and ERβ, as well as G-protein-coupled receptor 30 and their specific roles in prostate disease. Finally, we predict that future work in this field will involve more investigations into epigenetic changes, experiments using new models of hormonal dysregulation in developing human prostate tissue, and continued delineation of the roles of the different ER subtypes, as well as their downstream signaling pathways that may serve as therapeutic targets. PMID:21765856

  12. In-situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens.

    PubMed

    Liang, Huei-Chen; Liu, Yi-Chen; Chen, Hsin; Ku, Ming Chun; Do, Quynh-Trang; Wang, Chih-Yen; Tzeng, Shun-Fen; Chen, Shu-Hui

    2018-06-13

    Catechol estrogens (CEs) are metabolic electrophiles that actively undergo covalent interaction with cellular proteins, influencing molecular function. There is no feasible method to identify their binders in a living system. Herein, we developed a click chemistry-based approach using ethinylestradiol (EE2) as the precursor probe coupled with quantitative proteomics to identify protein targets of CEs and classify their binding strengths. Using in-situ metabolic conversion and click reaction in liver microsomes, CEs-protein complex was captured by the probe, digested by trypsin, stable isotope labeled via reductive amination, and analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of 334 liver proteins were repeatedly identified (n  2); 274 identified proteins were classified as strong binders based on precursor mass mapping. The binding strength was further scaled by D/H ratio (activity probe/solvent): 259 strong binders had D/H > 5.25; 46 weak binders had 5.25 > D/H > 1; 5 non-specific binders (keratins) had D/H < 1. These results were confirmed using spiked covalent control (strong binder) and noncovalent control (weak binder), as well as in vitro testing of cytochrome c (D/H = 5.9) which showed covalent conjugation with CEs. Many identified strong binders, such as glutathione transferase, catechol-O-methyl transferase, superoxide dismutase, catalase, glutathione peroxidase, and cytochrome c, are involved in cellular redox processes or detoxification activities. CE conjugation was shown to suppress the superoxide oxidase activity of cytochrome c, suggesting that CEs modification may alter the redox action of cellular proteins. Due to structural similarity and inert alkyne group, EE2 probe is very likely to capture protein targets of CEs in general. Thus, this strategy can be adopted to explore the biological impact of CEs modification in living systems.

  13. Lordosis facilitated by GPER-1 receptor activation involves GnRH-1, progestin and estrogen receptors in estrogen-primed rats.

    PubMed

    Domínguez-Ordóñez, R; Garcia-Juárez, M; Lima-Hernández, F J; Gómora-Arrati, P; Domínguez-Salazar, E; Blaustein, J D; Etgen, A M; González-Flores, O

    2018-02-01

    The present study assessed the participation of membrane G-protein coupled estrogen receptor 1 (GPER-1) and gonadotropin releasing hormone 1 (GnRH-1) receptor in the display of lordosis induced by intracerebroventricular (icv) administration of G1, a GPER-1 agonist, and by unesterified 17β-estradiol (free E 2 ). In addition, we assessed the participation of both estrogen and progestin receptors in the lordosis behavior induced by G1 in ovariectomized (OVX), E 2 -benzoate (EB)-primed rats. In Experiment 1, icv injection of G1 induced lordosis behavior at 120 and 240min. In Experiment 2, icv injection of the GPER-1 antagonist G15 significantly reduced lordosis behavior induced by either G1 or free E 2 . In addition, Antide, a GnRH-1 receptor antagonist, significantly depressed G1 facilitation of lordosis behavior in OVX, EB-primed rats. Similarly, icv injection of Antide blocked the stimulatory effect of E 2 on lordosis behavior. In Experiment 3, systemic injection of either tamoxifen or RU486 significantly reduced lordosis behavior induced by icv administration of G1 in OVX, EB-primed rats. The results suggest that GnRH release activates both estrogen and progestin receptors and that this activation is important in the chain of events leading to the display of lordosis behavior in response to activation of GPER-1 in estrogen-primed rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Zelman-Femiak, Monika; Brugarolas, Marc; Moreno, Estefania; Aguinaga, David; Perez-Benito, Laura; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Pardo, Leonardo; García-Sáez, Ana J; McCormick, Peter J; Franco, Rafael

    2016-04-05

    G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.

  15. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Expression, Purification, and Analysis of G-Protein-Coupled Receptor Kinases

    PubMed Central

    Sterne-Marr, Rachel; Baillargeon, Alison I.; Michalski, Kevin R.; Tesmer, John J.G.

    2015-01-01

    G-protein-coupled receptor (GPCR) kinases (GRKs) were first identified based on their ability to specifically phosphorylate activated GPCRs. Although many soluble substrates have since been identified, the chief physiological role of GRKs still remains the uncoupling of GPCRs from heterotrimeric G-proteins by promoting β-arrestin binding through the phosphorylation of the receptor. It is expected that GRKs recognize activated GPCRs through a docking site that not only recognizes the active conformation of the transmembrane domain of the receptor but also stabilizes a more catalytically competent state of the kinase domain. Many of the recent gains in understanding GRK-receptor interactions have been gleaned through biochemical and structural analysis of recombinantly expressed GRKs. Described herein are current techniques and procedures being used to express, purify, and assay GRKs in both in vitro and living cells. PMID:23351749

  17. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    PubMed

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  18. G-protein-coupled receptor structures were not built in a day.

    PubMed

    Blois, Tracy M; Bowie, James U

    2009-07-01

    Among the most exciting recent developments in structural biology is the structure determination of G-protein-coupled receptors (GPCRs), which comprise the largest class of membrane proteins in mammalian cells and have enormous importance for disease and drug development. The GPCR structures are perhaps the most visible examples of a nascent revolution in membrane protein structure determination. Like other major milestones in science, however, such as the sequencing of the human genome, these achievements were built on a hidden foundation of technological developments. Here, we describe some of the methods that are fueling the membrane protein structure revolution and have enabled the determination of the current GPCR structures, along with new techniques that may lead to future structures.

  19. Ligand-induced dynamical change of G-protein-coupled receptor revealed by neutron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Mamontov, Eugene; Chu, Xiang-Qiang

    Light activation of the visual G-protein-coupled receptor rhodopsin leads to the significant change in protein conformation and structural fluctuations, which further activates the cognate G-protein (transducin) and initiates the biological signaling. In this work, we studied the rhodopsin activation dynamics using state-of-the-art neutron scattering technique. Our quasi-elastic neutron scattering (QENS) results revealed a broadly distributed relaxation rate of the hydrogen atom in rhodopsin on the picosecond to nanosecond timescale (beta-relaxation region), which is crucial for the protein function. Furthermore, the application of mode-coupling theory to the QENS analysis uncovers the subtle changes in rhodopsin dynamics due to the retinal cofactor. Comparing the dynamics of the ligand-free apoprotein, opsin versus the dark-state rhodopsin, removal of the retinal cofactor increases the relaxation time in the beta-relaxation region, which is due to the possible open conformation. Moreover, we utilized the concept of free-energy landscape to explain our results for the dark-state rhodopsin and opsin dynamics, which can be further applied to other GPCR systems to interpret various dynamic behaviors in ligand-bound and ligand-free protein.

  20. Down-modulation of the G-protein-coupled Estrogen Receptor, GPER, from the Cell Surface Occurs via a trans-Golgi-Proteasome Pathway*

    PubMed Central

    Cheng, Shi-Bin; Quinn, Jeffrey A.; Graeber, Carl T.; Filardo, Edward J.

    2011-01-01

    GPER is a Gs-coupled seven-transmembrane receptor that has been linked to specific estrogen binding and signaling activities that are manifested by plasma membrane-associated enzymes. However, in many cell types, GPER is predominately localized to the endoplasmic reticulum (ER), and only minor amounts of receptor are detectable at the cell surface, an observation that has caused controversy regarding its role as a plasma membrane estrogen receptor. Here, we show that GPER constitutively buds intracellularly into EEA-1+ endosomes from clathrin-coated pits. Nonvisual arrestins-2/-3 do not co-localize with GPER, and expression of arrestin-2 dominant-negative mutants lacking clathrin- or β-adaptin interaction sites fails to block GPER internalization suggesting that arrestins are not involved in GPER endocytosis. Like β1AR, which recycles to the plasma membrane, GPER co-traffics with transferrin+, Rab11+ recycling endosomes. However, endocytosed GPER does not recycle to the cell surface, but instead returns to the trans-Golgi network (TGN) and does not re-enter the ER. GPER is ubiquitinated at the cell surface, exhibits a short half-life (t½ <1 h), and is protected from degradation by the proteasome inhibitor, MG132. Disruption of the TGN by brefeldin A induces the accumulation of endocytosed GPER in Rab11+ perinuclear endosomes and prevents GPER degradation. Our results provide an explanation as to why GPER is not readily detected on the cell surface in some cell types and further suggest that TGN serves as the checkpoint for degradation of endocytosed GPER. PMID:21540189

  1. GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release.

    PubMed

    Filardo, Edward J; Thomas, Peter

    2005-10-01

    Heterotrimeric G proteins and seven-transmembrane-spanning (7TM) receptors are implicated in rapid estrogen signaling. The orphan 7TM receptor GPR30 is linked to estrogen-mediated activation of adenylyl cyclase, release of epidermal growth factor (EGF)-related ligands, and specific estrogen binding. GPR30 acts independently of estrogen receptors, ERalpha and ERbeta, and probably functions as a heptahelical ER. 7TM receptors elicit signals that stimulate second messengers, and convey intracellular signals via EGF receptors. Identification of GPR30 as a Gs-coupled 7TM receptor that triggers release of heparin-binding EGF establishes its role in cell signaling cascades initiated by estrogens, and explains their capacity to activate second messengers and promote EGF-like effects. Thus, estrogen can signal by the same mechanism as various other hormones, through a specific 7TM receptor.

  2. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*

    PubMed Central

    Smith, Jeffrey S.; Rajagopal, Sudarshan

    2016-01-01

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408

  3. Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells

    PubMed Central

    De Marco, Paola; Cirillo, Francesca; Vivacqua, Adele; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello

    2015-01-01

    The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression. PMID:25798130

  4. Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells.

    PubMed

    De Marco, Paola; Cirillo, Francesca; Vivacqua, Adele; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello

    2015-01-01

    The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression.

  5. Molecular Dynamics Simulations of G Protein-Coupled Receptors.

    PubMed

    Bruno, Agostino; Costantino, Gabriele

    2012-04-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane-bound receptors with more than 800 members encoded by 351 genes in humans. It has been estimated that more than 50 % of clinically available drugs act on GPCRs, with an amount of 400, 50 and 25 druggable proteins for the class A, B and C, respectively. Furthermore, Class A GPCRs with approximately 25 % of marketed small drugs represent the most attractive pharmaceutical class. The recent availability of high-resolution 3-dimensional structures of some GPCRs supports the notion that GPCRs are dynamically versatile, and their functions can be modulated by several factors. In this scenario, molecular dynamics (MD) simulations techniques appear to be crucial when studying GPCR flexibility associated to functioning and ligand recognition. A general overview of biased and unbiased MD techniques is here presented with special emphasis on the recent results obtained in the GPCRs field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural organization of G-protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Lomize, Andrei L.; Pogozheva, Irina D.; Mosberg, Henry I.

    1999-07-01

    Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur-aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.

  7. GPR30 mediates anorectic estrogen-induced STAT3 signaling in the hypothalamus.

    PubMed

    Kwon, Obin; Kang, Eun Seok; Kim, Insook; Shin, Sora; Kim, Mijung; Kwon, Somin; Oh, So Ra; Ahn, Young Soo; Kim, Chul Hoon

    2014-11-01

    Estrogen plays an important role in the control of energy balance in the hypothalamus. Leptin-independent STAT3 activation (i.e., tyrosine(705)-phosphorylation of STAT3, pSTAT3) in the hypothalamus is hypothesized as the primary mechanism of the estrogen-induced anorexic response. However, the type of estrogen receptor that mediates this regulation is unknown. We investigated the role of the G protein-coupled receptor 30 (GPR30) in estradiol (E2)-induced STAT3 activation in the hypothalamus. Regulation of STAT3 activation by E2, G-1, a specific agonist of GPR30 and G-15, a specific antagonist of GPR30 was analyzed in vitro and in vivo. Effect of GPR30 activation on eating behavior was analyzed in vivo. E2 stimulated pSTAT3 in cells expressing GPR30, but not expressing estrogen receptor ERα and ERβ. G-1 induced pSTAT3, and G-15 inhibited E2-induced pSTAT3 in primary cultures of hypothalamic neurons. A cerebroventricular injection of G-1 increased pSTAT3 in the arcuate nucleus of mice, which was associated with a decrease in food intake and body weight gain. These results suggest that GPR30 is the estrogen receptor that mediates the anorectic effect of estrogen through the STAT3 pathway in the hypothalamus. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  9. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function

    PubMed Central

    Gahbauer, Stefan; Böckmann, Rainer A.

    2016-01-01

    The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function. PMID:27826255

  10. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  11. A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

    PubMed

    Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen

    2016-04-08

    Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation.

    PubMed

    Jia, Lixia; Chisari, Mariangela; Maktabi, Mohammad H; Sobieski, Courtney; Zhou, Hao; Konopko, Aaron M; Martin, Brent R; Mennerick, Steven J; Blumer, Kendall J

    2014-02-28

    Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.

  13. Oligomerization of G protein-coupled receptors: computational methods.

    PubMed

    Selent, J; Kaczor, A A

    2011-01-01

    Recent research has unveiled the complexity of mechanisms involved in G protein-coupled receptor (GPCR) functioning in which receptor dimerization/oligomerization may play an important role. Although the first high-resolution X-ray structure for a likely functional chemokine receptor dimer has been deposited in the Protein Data Bank, the interactions and mechanisms of dimer formation are not yet fully understood. In this respect, computational methods play a key role for predicting accurate GPCR complexes. This review outlines computational approaches focusing on sequence- and structure-based methodologies as well as discusses their advantages and limitations. Sequence-based approaches that search for possible protein-protein interfaces in GPCR complexes have been applied with success in several studies, but did not yield always consistent results. Structure-based methodologies are a potent complement to sequence-based approaches. For instance, protein-protein docking is a valuable method especially when guided by experimental constraints. Some disadvantages like limited receptor flexibility and non-consideration of the membrane environment have to be taken into account. Molecular dynamics simulation can overcome these drawbacks giving a detailed description of conformational changes in a native-like membrane. Successful prediction of GPCR complexes using computational approaches combined with experimental efforts may help to understand the role of dimeric/oligomeric GPCR complexes for fine-tuning receptor signaling. Moreover, since such GPCR complexes have attracted interest as potential drug target for diverse diseases, unveiling molecular determinants of dimerization/oligomerization can provide important implications for drug discovery.

  14. Estrogens in Male Physiology.

    PubMed

    Cooke, Paul S; Nanjappa, Manjunatha K; Ko, CheMyong; Prins, Gail S; Hess, Rex A

    2017-07-01

    Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues. Copyright © 2017 the American Physiological Society.

  15. Constitutive phospholipid scramblase activity of a G protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-10-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.

  16. G Protein–Coupled Receptor-Type G Proteins Are Required for Light-Dependent Seedling Growth and Fertility in Arabidopsis[W

    PubMed Central

    Jaffé, Felix W.; Freschet, Gian-Enrico C.; Valdes, Billy M.; Runions, John; Terry, Matthew J.; Williams, Lorraine E.

    2012-01-01

    G protein–coupled receptor-type G proteins (GTGs) are highly conserved membrane proteins in plants, animals, and fungi that have eight to nine predicted transmembrane domains. They have been classified as G protein–coupled receptor-type G proteins that function as abscisic acid (ABA) receptors in Arabidopsis thaliana. We cloned Arabidopsis GTG1 and GTG2 and isolated new T-DNA insertion alleles of GTG1 and GTG2 in both Wassilewskija and Columbia backgrounds. These gtg1 gtg2 double mutants show defects in fertility, hypocotyl and root growth, and responses to light and sugars. Histological studies of shoot tissue reveal cellular distortions that are particularly evident in the epidermal layer. Stable expression of GTG1pro:GTG1-GFP (for green fluorescent protein) in Arabidopsis and transient expression in tobacco (Nicotiana tabacum) indicate that GTG1 is localized primarily to Golgi bodies and to the endoplasmic reticulum. Microarray analysis comparing gene expression profiles in the wild type and double mutant revealed differences in expression of genes important for cell wall function, hormone response, and amino acid metabolism. The double mutants isolated here respond normally to ABA in seed germination assays, root growth inhibition, and gene expression analysis. These results are inconsistent with their proposed role as ABA receptors but demonstrate that GTGs are fundamentally important for plant growth and development. PMID:23001037

  17. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors.

    PubMed

    Carre-Pierrat, Maïté; Baillie, David; Johnsen, Robert; Hyde, Rhonda; Hart, Anne; Granger, Laure; Ségalat, Laurent

    2006-12-01

    Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.

  18. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan

    2016-04-22

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes.

    PubMed

    Ikeda, Yasumasa; Tajima, Soichiro; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Tomita, Shuhei; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2012-01-01

    Hepcidin, a liver-derived iron regulatory protein, plays a crucial role in iron metabolism. It is known that gender differences exist with respect to iron storage in the body; however, the effects of sex steroid hormones on iron metabolism are not completely understood. We focused on the effects of the female sex hormone estrogen on hepcidin expression. First, ovariectomized (OVX) and sham-operated mice were employed to investigate the effects of estrogen on hepcidin expression in an in vivo study. Hepcidin expression was decreased in the livers of OVX mice compared to the sham-operated mice. In OVX mice, bone morphologic protein-6 (BMP6), a regulator of hepcidin, was also found to be downregulated in the liver, whereas ferroportin (FPN), an iron export protein, was upregulated in the duodenum. Both serum and liver iron concentrations were elevated in OVX mice relative to their concentrations in sham-operated mice. In in vitro studies, 17β-estradiol (E(2)) increased the mRNA expression of hepcidin in HepG2 cells in a concentration-dependent manner. E(2)-induced hepatic hepcidin upregulation was not inhibited by ICI 182720, an inhibitor of the estrogen receptor; instead, hepcidin expression was increased by ICI 182720. E(2) and ICI 182720 exhibit agonist actions with G-protein coupled receptor 30 (GPR30), the 7-transmembrane estrogen receptor. G1, a GPR30 agonist, upregulated hepcidin expression, and GPR30 siRNA treatment abolished E(2)-induced hepcidin expression. BMP6 expression induced by E(2) was abolished by GPR30 silencing. Finally, both E(2) and G1 supplementation restored reduced hepatic hepcidin and BMP6 expression and reversed the augmentation of duodenal FPN expression in the OVX mice. In contrast, serum hepcidin was elevated in OVX mice, which was reversed in these mice with E(2) and G1. Thus, estrogen is involved in hepcidin expression via a GPR30-BMP6-dependent mechanism, providing new insight into the role of estrogen in iron metabolism.

  20. Role of detergents in conformational exchange of a G protein-coupled receptor.

    PubMed

    Chung, Ka Young; Kim, Tae Hun; Manglik, Aashish; Alvares, Rohan; Kobilka, Brian K; Prosser, R Scott

    2012-10-19

    The G protein-coupled β(2)-adrenoreceptor (β(2)AR) signals through the heterotrimeric G proteins G(s) and G(i) and β-arrestin. As such, the energy landscape of β(2)AR-excited state conformers is expected to be complex. Upon tagging Cys-265 of β(2)AR with a trifluoromethyl probe, (19)F NMR was used to assess conformations and possible equilibria between states. Here, we report key differences in β(2)AR conformational dynamics associated with the detergents used to stabilize the receptor. In dodecyl maltoside (DDM) micelles, the spectra are well represented by a single Lorentzian line that shifts progressively downfield with activation by appropriate ligand. The results are consistent with interconversion between two or more states on a time scale faster than the greatest difference in ligand-dependent chemical shift (i.e. >100 Hz). Given that high detergent off-rates of DDM monomers may facilitate conformational exchange between functional states of β(2)AR, we utilized the recently developed maltose-neopentyl glycol (MNG-3) diacyl detergent. In MNG-3 micelles, spectra indicated at least three distinct states, the relative populations of which depended on ligand, whereas no ligand-dependent shifts were observed, consistent with the slow exchange limit. Thus, detergent has a profound effect on the equilibrium kinetics between functional states. MNG-3, which has a critical micelle concentration in the nanomolar regime, exhibits an off-rate that is 4 orders of magnitude lower than that of DDM. High detergent off-rates are more likely to facilitate conformational exchange between distinct functional states associated with the G protein-coupled receptor.

  1. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  2. Altered G Protein Coupling in Olfactory Neuroepithelial Cells From Patients With Schizophrenia

    PubMed Central

    Borgmann-Winter, Karin E.; Wang, Hoau-Yan; Ray, Rabindranath; Willis, Brooke R.; Moberg, Paul J.; Rawson, Nancy E.; Gur, Raquel E.; Turetsky, Bruce I.; Hahn, Chang-Gyu

    2016-01-01

    Increasing evidence suggests that olfactory dysfunction is an endophenotype of schizophrenia, and thus the olfactory system can be studied both in relation to this sensory dysfunction and also as a means of examining pathophysiologic mechanisms of schizophrenia. In this study, we examined human olfactory neuroepithelial (ON) biopsy tissues and their in vitro culture cells for ligand-induced guanine nucleotide-binding protein (G protein) activation and downstream signaling. We assessed the binding of a nonhydrolyzable GTP analogue [35S]GTPγS binding to specific G protein subtypes in response to odorants, dopamine, or serotonin in ON cell membranes from matched schizophrenia-control subjects. In response to odorant mixtures, we found decreased [35S]GTPγS binding to Gαs/olf in schizophrenia patients. These changes were not mediated by mRNA expression of key molecules of G protein coupling, including adenylate cyclase III (ACIII), protein kinase A (PKA), protein kinase Cγ (PKCγ), or Gαs or Gαolf in ON cells or ON biopsy tissues. In contrast, dopamine (DA)- and serotonin (5HT)-induced S35-GTPγS binding to Gαs/olf and Gαq/11 were significantly increased in schizophrenia cases, while these parameters were strikingly reduced by in vitro treatment with antipsychotics. Patients with schizophrenia exhibit increases in electrolfactogram (EOG) recordings, suggesting enhanced odorant-induced activation. Our results of decreased odorant-induced G protein activation may point further downstream for underlying mechanisms for increased EOG measures. Increased G protein activation in response to DA and 5HT may suggest increased postreceptor DA or 5HT signaling as an additional mechanism of dopaminergic or serotonergic dysregulation in schizophrenia. PMID:26373539

  3. Estrogens and Coronary Artery Disease: New Clinical Perspectives.

    PubMed

    Meyer, M R; Barton, M

    2016-01-01

    In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development. © 2016 Elsevier Inc. All rights reserved.

  4. Estrogen Receptors Modulation of Anxiety-Like Behavior.

    PubMed

    Borrow, A P; Handa, R J

    2017-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. © 2017 Elsevier Inc. All rights reserved.

  5. Recombinant G protein-coupled receptor expression in Saccharomyces cerevisiae for protein characterization.

    PubMed

    Blocker, Kory M; Britton, Zachary T; Naranjo, Andrea N; McNeely, Patrick M; Young, Carissa L; Robinson, Anne S

    2015-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that mediate signaling across the cellular membrane and facilitate cellular responses to external stimuli. Due to the critical role that GPCRs play in signal transduction, therapeutics have been developed to influence GPCR function without an extensive understanding of the receptors themselves. Closing this knowledge gap is of paramount importance to improving therapeutic efficacy and specificity, where efforts to achieve this end have focused chiefly on improving our knowledge of the structure-function relationship. The purpose of this chapter is to review methods for the heterologous expression of GPCRs in Saccharomyces cerevisiae, including whole-cell assays that enable quantitation of expression, localization, and function in vivo. In addition, we describe methods for the micellular solubilization of the human adenosine A2a receptor and for reconstitution of the receptor in liposomes that have enabled its biophysical characterization. © 2015 Elsevier Inc. All rights reserved.

  6. Obesity, Insulin Resistance and Diabetes: Sex Differences and Role of Estrogen Receptors

    PubMed Central

    Meyer, Matthias R.; Clegg, Deborah J.; Prossnitz, Eric R.; Barton, Matthias

    2010-01-01

    Obesity increases the risk of coronary artery disease through insulin resistance, diabetes, arterial hypertension, and dyslipidemia. The prevalence of obesity has increased worldwide and is particularly high among middle-aged women and men. After menopause, women are at an increased risk to develop visceral obesity due to the loss of endogenous ovarian hormone production. Effects of estrogens are classically mediated by the two nuclear estrogen receptors (ERs) α and β. In addition, more recent research has shown that the intracellular transmembrane G protein-coupled estrogen receptor, GPER, originally designated as GPR30, also mediates some of the actions attributed to estrogens. Estrogen and its receptors are important regulators of body weight and insulin sensitivity not only in women, but also in men as demonstrated by ER mutations in rodents and humans. This article reviews the role of sex hormones and estrogen receptors in the context of obesity, insulin sensitivity and diabetes as well as the related clinical issues in females and males. PMID:21281456

  7. Estrogenic involvement in social learning, social recognition and pathogen avoidance.

    PubMed

    Choleris, Elena; Clipperton-Allen, Amy E; Phan, Anna; Valsecchi, Paola; Kavaliers, Martin

    2012-04-01

    Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.

    PubMed

    Rojas, Asheebo; Dingledine, Raymond

    2013-04-01

    The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.

  9. The G protein estrogen receptor (GPER) is regulated by endothelin-1 mediated signaling in cancer cells.

    PubMed

    Bartella, Viviana; De Francesco, Ernestina Marianna; Perri, Maria Grazia; Curcio, Rosita; Dolce, Vincenza; Maggiolini, Marcello; Vivacqua, Adele

    2016-02-01

    Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor involved in many diseases, including certain cardiovascular disorders and cancer. As previous studies have shown that the G protein estrogen receptor (GPER) may regulate ET-1 dependent effects on the vascular system, we evaluated whether GPER could contribute to the effects elicited by ET-1 in breast cancer and hepatocarcinoma cells. Here, we demonstrate that ET-1 increases GPER expression through endothelin receptor A (ETAR) and endothelin receptor B (ETBR) along with the activation of PI3K/ERK/c-Fos/AP1 transduction pathway. In addition, we show that GPER is involved in important biological responses observed upon ET-1 exposure, as the migration of the aforementioned tumor cells and the formation of tube-like structures in human umbilical vein endothelial cells (HUVECs). Our data suggest that GPER may contribute to ET-1 action toward the progression of some types of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat.

    PubMed

    Alencar, Allan K; da Silva, Jaqueline S; Lin, Marina; Silva, Ananssa M; Sun, Xuming; Ferrario, Carlos M; Cheng, Cheping; Sudo, Roberto T; Zapata-Sudo, Gisele; Wang, Hao; Groban, Leanne

    2017-02-01

    Age-associated changes in cardiac structure and function, together with estrogen loss, contribute to the progression of heart failure with preserved ejection fraction in older women. To investigate the effects of aging and estrogen loss on the development of its precursor, asymptomatic left ventricular diastolic dysfunction, echocardiograms were performed in 10 middle-aged (20 months) and 30 old-aged (30 months) female Fischer344×Brown-Norway rats, 4 and 8 weeks after ovariectomy (OVX) and sham procedures (gonads left intact). The cardioprotective potential of administering chronic G1, the selective agonist to the new G-protein-coupled estrogen receptor (GPER), was further evaluated in old rats (Old-OVX+G1) versus age-matched, vehicle-treated OVX and gonadal intact rats. Advanced age and estrogen loss led to decreases in myocardial relaxation and elevations in filling pressure, in part, due to reductions in phosphorylated phospholamban and increases in cardiac collagen deposition. Eight weeks of G-protein-coupled estrogen receptor activation in Old-OVX+G1 rats reversed the adverse effects of age and estrogen loss on myocardial relaxation through increases in sarcoplasmic reticulum Ca 2+ ATPase expression and reductions in interstitial fibrosis. These findings may explain the preponderance of heart failure with preserved ejection fraction in older postmenopausal women and provide a promising, late-life therapeutic target to reverse or halt the progression of left ventricular diastolic dysfunction. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. G protein-coupled estrogen receptor mediates the up-regulation of fatty acid synthase induced by 17β-estradiol in cancer cells and cancer-associated fibroblasts.

    PubMed

    Santolla, Maria Francesca; Lappano, Rosamaria; De Marco, Paola; Pupo, Marco; Vivacqua, Adele; Sisci, Diego; Abonante, Sergio; Iacopetta, Domenico; Cappello, Anna Rita; Dolce, Vincenza; Maggiolini, Marcello

    2012-12-21

    Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many tumors. Fatty acid synthase (FASN) is a key lipogenic enzyme catalyzing the terminal steps in the de novo biogenesis of fatty acids. In cancer cells, FASN may act as a metabolic oncogene, given that it confers growth and survival advantages to these cells, whereas its inhibition effectively and selectively kills tumor cells. Hormones such as estrogens and growth factors contribute to the transcriptional regulation of FASN expression also through the activation of downstream signaling and a cross-talk among diverse transduction pathways. In this study, we demonstrate for the first time that 17β-estradiol (E2) and the selective GPER ligand G-1 regulate FASN expression and activity through the GPER-mediated signaling, which involved the EGF receptor/ERK/c-Fos/AP1 transduction pathway, as ascertained by using specific pharmacological inhibitors, performing gene-silencing experiments and ChIP assays in breast SkBr3, colorectal LoVo, hepatocarcinoma HepG2 cancer cells, and breast cancer-associated fibroblasts. In addition, the proliferative effects induced by E2 and G-1 in these cells involved FASN as the inhibitor of its activity, named cerulenin, abolished the growth response to both ligands. Our data suggest that GPER may be included among the transduction mediators involved by estrogens in regulating FASN expression and activity in cancer cells and cancer-associated fibroblasts that strongly contribute to cancer progression.

  12. Estrogen Receptors Modulation of Anxiety-Like Behavior

    PubMed Central

    Borrow, A.P.; Handa, R.J.

    2018-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens’ effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic–pituitary–adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. PMID:28061972

  13. Modulation of Pain Transmission by G Protein-Coupled Receptors

    PubMed Central

    Pan, Hui-Lin; Wu, Zi-Zhen; Zhou, Hong-Yi; Chen, Shao-Rui; Zhang, Hong-Mei; Li, De-Pei

    2010-01-01

    The heterotrimeric G protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors and proteins. GPCRs are widely distributed in the peripheral and central nervous systems and are one of the most important therapeutic targets in pain medicine. GPCRs are present on the plasma membrane of neurons and their terminals along the nociceptive pathways and are closely associated with the modulation of pain transmission. GPCRs that can produce analgesia upon activation include opioid, cannabinoid, α2-adrenergic, muscarinic acetylcholine, γ-aminobutyric acidB (GABAB), group II and III metabotropic glutamate, and somatostatin receptors. Recent studies have led to a better understanding of the role of these GPCRs in the regulation of pain transmission. Here, we review the current knowledge about the cellular and molecular mechanisms that underlie the analgesic actions of GPCR agonists, with a focus on their effects on ion channels expressed on nociceptive sensory neurons and on synaptic transmission at the spinal cord level. PMID:17959251

  14. Automated large-scale purification of a G protein-coupled receptor for neurotensin.

    PubMed

    White, Jim F; Trinh, Loc B; Shiloach, Joseph; Grisshammer, Reinhard

    2004-04-30

    Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.

  15. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors.

    PubMed

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Christopher Octeau, J; Kovoor, Abraham

    2013-10-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. © 2013 International Society for Neurochemistry.

  16. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  17. Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*

    PubMed Central

    Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.

    2014-01-01

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280

  18. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Yan, Feng; Chong, Beng H; Diwan, Ashish D

    2016-04-01

    Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.

    PubMed

    Bridge, L J; Mead, J; Frattini, E; Winfield, I; Ladds, G

    2018-04-07

    Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (α GTP ), towards the analysis of dynamic functional responses. The model is generally applicable to systems with N G G proteins and N* active receptor states. Numerical simulations for N G =N * =2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (G i and G s ) that become activated upon stimulation of the adenosine A 1

  1. GPR30: a novel therapeutic target in estrogen-related disease.

    PubMed

    Prossnitz, Eric R; Sklar, Larry A; Oprea, Tudor I; Arterburn, Jeffrey B

    2008-03-01

    Estrogen is a crucial hormone in human physiology that regulates a multitude of biological processes. It is also an important target in many diseases such as cancer and skeletal, neurological and immunological conditions. The actions of estrogen have traditionally been ascribed to one of two closely related classical nuclear hormone receptors, ERalpha and ERbeta, which are best characterized for regulating gene expression. Recent studies have revealed the contribution of a novel estrogen receptor GPR30, which belongs to the family of seven-transmembrane G-protein-coupled receptors, to many of the rapid biological responses to estrogen. Many drugs, such as tamoxifen and fulvestrant, which seem to selectively inhibit the activities of the classical estrogen receptors, are in widespread clinical use. However, recent results indicate that these same drugs activate multiple cellular-signaling pathways via GPR30. Unraveling the pharmacological profiles and specificities of ERalpha, ERbeta and GPR30 will be vital for understanding not only the physiological roles of each receptor but also for the development of the next generation of receptor-specific drugs.

  2. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  3. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Role of Detergents in Conformational Exchange of a G Protein-coupled Receptor*

    PubMed Central

    Chung, Ka Young; Kim, Tae Hun; Manglik, Aashish; Alvares, Rohan; Kobilka, Brian K.; Prosser, R. Scott

    2012-01-01

    The G protein-coupled β2-adrenoreceptor (β2AR) signals through the heterotrimeric G proteins Gs and Gi and β-arrestin. As such, the energy landscape of β2AR-excited state conformers is expected to be complex. Upon tagging Cys-265 of β2AR with a trifluoromethyl probe, 19F NMR was used to assess conformations and possible equilibria between states. Here, we report key differences in β2AR conformational dynamics associated with the detergents used to stabilize the receptor. In dodecyl maltoside (DDM) micelles, the spectra are well represented by a single Lorentzian line that shifts progressively downfield with activation by appropriate ligand. The results are consistent with interconversion between two or more states on a time scale faster than the greatest difference in ligand-dependent chemical shift (i.e. >100 Hz). Given that high detergent off-rates of DDM monomers may facilitate conformational exchange between functional states of β2AR, we utilized the recently developed maltose-neopentyl glycol (MNG-3) diacyl detergent. In MNG-3 micelles, spectra indicated at least three distinct states, the relative populations of which depended on ligand, whereas no ligand-dependent shifts were observed, consistent with the slow exchange limit. Thus, detergent has a profound effect on the equilibrium kinetics between functional states. MNG-3, which has a critical micelle concentration in the nanomolar regime, exhibits an off-rate that is 4 orders of magnitude lower than that of DDM. High detergent off-rates are more likely to facilitate conformational exchange between distinct functional states associated with the G protein-coupled receptor. PMID:22893704

  5. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system.

    PubMed

    Segura-Uribe, Julia J; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E; Guerra-Araiza, Christian

    2017-08-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.

  6. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system

    PubMed Central

    Segura-Uribe, Julia J.; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E.; Guerra-Araiza, Christian

    2017-01-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects. PMID:28966632

  7. Identification of a G protein coupled receptor induced in activated T cells.

    PubMed

    Kaplan, M H; Smith, D I; Sundick, R S

    1993-07-15

    Many genes are induced after T cell activation to make a cell competent for proliferation and ultimately, function. Many of these genes encode surface receptors for growth factors that signal a cell to proliferate. We have cloned a novel gene (clone 6H1) that codes for a member of the G protein-coupled receptor superfamily. This gene was isolated from a chicken activated T cell cDNA library by low level hybridization to mammalian IL-2 cDNA probes. The 308 amino acid open reading frame has seven hydrophobic, presumably transmembrane domains and a consensus site for interaction with G proteins. Tissue distribution studies suggest that gene expression is restricted to activated T cells. The message appears by 1 h after activation and is maintained for at least 45 h. Transcription of 6H1 is induced by a number of T cell stimuli and is inhibited by cyclosporin A, but not by cycloheximide. This is the first description of a member of this superfamily expressed specifically in activated T cells. The gene product may provide a link between T cell growth factors and G protein activation.

  8. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    PubMed

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  9. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    PubMed

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. GPER mediates activation of HIF1α/VEGF signaling by estrogens.

    PubMed

    De Francesco, Ernestina Marianna; Pellegrino, Michele; Santolla, Maria Francesca; Lappano, Rosamaria; Ricchio, Emilia; Abonante, Sergio; Maggiolini, Marcello

    2014-08-01

    Biological responses to estrogens in normal and malignant tissues are mainly mediated by the estrogen receptors ERα and ERβ, which function as ligand-activated transcription factors. In addition, the G protein-coupled receptor GPR30 (GPER) mediates estrogenic signaling in breast cancer cells and cancer-associated fibroblasts (CAF) that contribute to cancer progression. In this study, we evaluated the role elicited by GPER in the estrogen-regulated expression and function of vascular endothelial growth factor (VEGF) in ER-negative breast cancer cells and CAF. We demonstrated that 17β-estradiol (E2) and the GPER-selective ligand G-1 triggered a GPER/EGFR/ERK/c-fos signaling pathway that leads to increased VEGF via upregulation of HIF1α. In further extending the mechanisms involved in E2-supported angiogenesis, we also showed that conditioned medium from CAF treated with E2 and G-1 promoted human endothelial tube formation in a GPER-dependent manner. In vivo, ligand-activated GPER was sufficient to enhance tumor growth and the expression of HIF1α, VEGF, and the endothelial marker CD34 in a mouse xenograft model of breast cancer. Our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HIF1α-dependent VEGF expression that supports angiogenesis and progression in breast cancer. ©2014 American Association for Cancer Research.

  11. Peptide drugs to target G protein-coupled receptors.

    PubMed

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    PubMed

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives.

    PubMed

    Guccione, Manuela; Ettari, Roberta; Taliani, Sabrina; Da Settimo, Federico; Zappalà, Maria; Grasso, Silvana

    2016-10-27

    G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.

  14. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    PubMed

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  15. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells.

    PubMed

    Ahola, Tytti M; Manninen, Tommi; Alkio, Niina; Ylikomi, Timo

    2002-09-01

    The issue of how progesterone affects mammary gland growth is controversial, and the mechanism governing the effects of the hormone remains mostly unknown. We have previously shown that G protein-coupled receptor 30 (GPR30) is a progestin target gene whose expression correlates with progestin-induced growth inhibition in breast cancer cells. In this study, we investigate the role of GPR30 in regulating cell proliferation and mediating progestin-induced growth inhibition. When progestin failed to inhibit the growth of MCF-7 cells and instead stimulated growth, GPR30 was down-regulated. In this way, the inhibitory or stimulatory affects that progestin has on proliferation correlated with the level of expression of GPR30. Transient expression of GPR30 resulted in a marked inhibition of cell proliferation independent of estrogen treatment. GPR30 antisense was used to evaluate the role of GPR30 expression in progestin-induced growth inhibition. A diminished GPR30 mRNA expression by the antisense stimulated growth. Interestingly, GPR30 antisense abrogated the growth inhibitory effect of progestin and progesterone. Indeed, progestin induced 1) a reduction in cell proliferation, 2) G1-phase arrest, and 3) down-regulation of cyclin D1 was diminished. These data suggest that the orphan receptor, GPR30, is important for the inhibitory effect of progestin on growth.

  16. Small molecules targeting heterotrimeric G proteins.

    PubMed

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy.

    PubMed

    Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien

    2012-04-24

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.

  18. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  19. Activation of G-protein-coupled receptor 30 increases T-type calcium currents in trigeminal ganglion neurons via the cholera toxin-sensitive protein kinase A pathway.

    PubMed

    Yue, Jingxia; Zhang, Yi; Li, Xuemin; Gong, Shan; Tao, Jin; Jiang, Xinghong

    2014-11-01

    G protein-coupled receptor 30 (GPR30) is a seven transmembrane domain G protein coupled receptor. In our study, GPR30 expression was found in trigeminal ganglia (TG) in mice, detected by RT-PCR and western blotting. We examined the effects of GPR30 activation on T-type calcium channels using GPR30-specific compound 1 (G-1), a GPR30-selective agonist, in TG neurons and demonstrated that G-1 induced an increase in T-type calcium channel currents (T-currents) in TGs. Intracellular infusion of GDP-β-S and pre-treatment of the neurons with cholera toxin (CTX) blocked the effects of G-1, suggesting that the G(s)-protein was involved. Intracellular application of the protein kinase A (PKA) inhibitor PKI 6-22 or pretreatment of the neurons with H89 abolished G-1 -induced enhancement of T-currents in TG neurons. However, incubation with PKC inhibitor elicited no such effects. In conclusion, our study shows that activation of GPR30 by G-1 increases T-currents via the CTX-sensitive and PKA-dependent pathway.

  20. Design, Synthesis, and Evaluation of N- and C-Terminal Protein Bioconjugates as G Protein-Coupled Receptor Agonists.

    PubMed

    Healey, Robert D; Wojciechowski, Jonathan P; Monserrat-Martinez, Ana; Tan, Susan L; Marquis, Christopher P; Sierecki, Emma; Gambin, Yann; Finch, Angela M; Thordarson, Pall

    2018-02-21

    A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.

  1. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    PubMed

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  2. Role of G protein-coupled estrogen receptor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17β-stimulated bovine satellite cell proliferation.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2014-10-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy

    PubMed Central

    Tscheschner, Henrike; Gao, Erhe; Schumacher, Sarah M.; Yuan, Ancai; Backs, Johannes; Most, Patrick; Wieland, Thomas; Koch, Walter J.; Katus, Hugo A.; Raake, Philip W.

    2017-01-01

    The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity. PMID:28759639

  4. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    DOEpatents

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  5. The role of estrogens for male bone health.

    PubMed

    Ohlsson, Claes; Vandenput, Liesbeth

    2009-06-01

    Sex steroids are important for the growth and maintenance of both the female and the male skeleton. However, the relative contribution of androgens versus estrogens in the regulation of the male skeleton is unclear. Experiments using mice with inactivated sex steroid receptors demonstrated that both activation of the estrogen receptor (ER)alpha and activation of the androgen receptor result in a stimulatory effect on both the cortical and trabecular bone mass in males. ERbeta is of no importance for the skeleton in male mice while it modulates the ERalpha-action on bone in female mice. Previous in vitro studies suggest that the membrane G protein-coupled receptor GPR30 also might be a functional ER. Our in vivo analyses of GPR30-inactivated mice revealed no function of GPR30 for estrogen-mediated effects on bone mass but it is required for normal regulation of the growth plate and estrogen-mediated insulin-secretion. Recent clinical evidence suggests that a threshold exists for estrogen effects on bone in men: rates of bone loss and fracture risk seem to be the highest in men with estradiol levels below this threshold. Taken together, even though these findings do not exclude an important role for testosterone in male skeletal homeostasis, it is now well-established that estrogens are important regulators of bone health in men.

  6. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments.

    PubMed

    Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A; Hanyaloglu, Aylin C

    2014-02-14

    Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.

  7. Estrogen regulates Hippo signaling via GPER in breast cancer.

    PubMed

    Zhou, Xin; Wang, Shuyang; Wang, Zhen; Feng, Xu; Liu, Peng; Lv, Xian-Bo; Li, Fulong; Yu, Fa-Xing; Sun, Yiping; Yuan, Haixin; Zhu, Hongguang; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2015-05-01

    The G protein-coupled estrogen receptor (GPER) mediates both the genomic and nongenomic effects of estrogen and has been implicated in breast cancer development. Here, we compared GPER expression in cancerous tissue and adjacent normal tissue in patients with invasive ductal carcinoma (IDC) of the breast and determined that GPER is highly upregulated in cancerous cells. Additionally, our studies revealed that GPER stimulation activates yes-associated protein 1 (YAP) and transcriptional coactivator with a PDZ-binding domain (TAZ), 2 homologous transcription coactivators and key effectors of the Hippo tumor suppressor pathway, via the Gαq-11, PLCβ/PKC, and Rho/ROCK signaling pathways. TAZ was required for GPER-induced gene transcription, breast cancer cell proliferation and migration, and tumor growth. Moreover, TAZ expression positively correlated with GPER expression in human IDC specimens. Together, our results suggest that the Hippo/YAP/TAZ pathway is a key downstream signaling branch of GPER and plays a critical role in breast tumorigenesis.

  8. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    PubMed

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  9. Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling

    PubMed Central

    2012-01-01

    Background A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β2-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling. Results C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface. Conclusions We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer. PMID:22429589

  10. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.

    PubMed

    Schöneberg, Johannes; Heck, Martin; Hofmann, Klaus Peter; Noé, Frank

    2014-09-02

    Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Modeling G Protein-Coupled Receptors: a Concrete Possibility

    PubMed Central

    Costanzi, Stefano

    2010-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of membrane bound signaling proteins that are involved in the regulation of a wide range of physiological functions and constitute the most common target for therapeutic intervention. Due to the paucity of crystal structures, homology modeling has become a widespread technique for the construction of GPCR models, which have been applied to the study of their structure-function relationships and to the identification of lead ligands through virtual screening. Rhodopsin has been for years the only available template. However, recent breakthroughs in GPCR crystallography have led to the solution of the structures of a few additional receptors. In light of these newly elucidated crystal structures, we have been able to produce a substantial amount of data to demonstrate that accurate models of GPCRs in complex with their ligands can be constructed through homology modeling followed by fully flexible molecular docking. These results have been confirmed by our success in the first blind assessment of GPCR modeling and docking, organized in coordination with the solution of the X-ray structure of the adenosine A2A receptor. Taken together, these data indicate that: a) the transmembrane helical bundle can be modeled with considerable accuracy; b) predicting the binding mode of a ligand, although doable, is challenging; c) modeling of the extracellular and intracellular loops is still problematic. PMID:21253444

  12. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action.

    PubMed

    Lewohl, J M; Wilson, W R; Mayfield, R D; Brozowski, S J; Morrisett, R A; Harris, R A

    1999-12-01

    G-protein-coupled inwardly rectifying potassium channels (GIRKs) are important for regulation of synaptic transmission and neuronal firing rates. Because of their key role in brain function, we asked if these potassium channels are targets of alcohol action. Ethanol enhanced function of cerebellar granule cell GIRKs coupled to GABAB receptors. Enhancement of GIRK function by ethanol was studied in detail using Xenopus oocytes expressing homomeric or heteromeric channels. Function of all GIRK channels was enhanced by intoxicating concentrations of ethanol, but other, related inwardly rectifying potassium channels were not affected. GIRK2/IRK1 chimeras and GIRK2 truncation mutants were used to identify a region of 43 amino acids in the carboxyl (C) terminus that is critical for the action of ethanol on these channels.

  13. Regulation of CaV2 calcium channels by G protein coupled receptors

    PubMed Central

    Zamponi, Gerald W.; Currie, Kevin P.M.

    2012-01-01

    Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655

  14. Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics

    PubMed Central

    Conn, P. Michael

    2014-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases. PMID:24661201

  15. The Role of Estrogens in Pancreatic Islet Physiopathology.

    PubMed

    Mauvais-Jarvis, Franck; Le May, Cedric; Tiano, Joseph P; Liu, Suhuan; Kilic-Berkmen, Gamze; Kim, Jun Ho

    2017-01-01

    In rodent models of insulin-deficient diabetes, 17β-estradiol (E2) protects pancreatic insulin-producing β-cells against oxidative stress, amyloid polypeptide toxicity, gluco-lipotoxicity, and apoptosis. Three estrogen receptors (ERs)-ERα, ERβ, and the G protein-coupled ER (GPER)-have been identified in rodent and human β-cells. This chapter describes recent advances in our understanding of the role of ERs in islet β-cell function, nutrient homeostasis, survival from pro-apoptotic stimuli, and proliferation. We discuss why and how ERs represent potential therapeutic targets for the maintenance of functional β-cell mass.

  16. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum.

    PubMed

    Liu, Ying; Li, Yueqin; Zhang, Di; Liu, Jiali; Gou, Kemian; Cui, Sheng

    2015-05-01

    The corpus luteum (CL) is a transient endocrine gland developed from the ovulated follicles, and the most important function is to synthesize and secrete progesterone (P(4)), a key hormone to maintain normal pregnancy and estrous cycle in most mammals. It is known that estrogen has a vital role in stimulating P(4) synthesis in CL, but it still remains unclear about the mechanism of estradiol (E(2)) regulating P(4) production in CL. Our results here first show that all of the CL cells express MAPK 8 (MAP3K8), and the MAP3K8 level is much higher at the midstage than at the early and late stages during CL development. The further functional studies show that the forced inhibition of endogenous MAP3K8 by using MAP3K8 small interfering RNA and MAP3K8 signaling inhibitor (MAP3K8i) in the luteal cells significantly block the P(4) synthesis and neutralize the enhancing effect of E(2) on P(4) production in the CL. In addition, our results here demonstrate that the stimulating effect of E(2) on P(4) synthesis relies on the estrogen no-classical protein-coupled receptor 30, and MAP3K8 is involved in mediating the protein-coupled receptor 30signaling of E(2) affecting P(4) synthesis via stimulating ERK phosphorylation. These novel findings are critical for our understanding the ovary physiology and pathological mechanism.

  17. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.

    PubMed

    Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

    2015-04-01

    Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.

  18. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    PubMed

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  19. Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis

    PubMed Central

    Li, Chenggang; Li, Na; Liu, Xiaolei; Zhang, Erik Y.; Sun, Yang; Masuda, Kouhei; Li, Jing; Sun, Julia; Morrison, Tasha; Li, Xiangke; Chen, Yuanguang; Wang, Jiang; Karim, Nagla A.; Zhang, Yi; Blenis, John; Reginato, Mauricio J.; Henske, Elizabeth P.; Yu, Jane J.

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient–derived cells’ resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient–derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient–derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM. PMID:27882343

  20. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation.

    PubMed

    Schöneberg, Torsten; Liebscher, Ines; Luo, Rong; Monk, Kelly R; Piao, Xianhua

    2015-06-01

    The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.

  1. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors.

    PubMed

    Wittenberger, T; Schaller, H C; Hellebrand, S

    2001-03-30

    We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families. Copyright 2001 Academic Press.

  2. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  3. Do Plants Contain G Protein-Coupled Receptors?1[C][W][OPEN

    PubMed Central

    Taddese, Bruck; Upton, Graham J.G.; Bailey, Gregory R.; Jordan, Siân R.D.; Abdulla, Nuradin Y.; Reeves, Philip J.; Reynolds, Christopher A.

    2014-01-01

    Whether G protein-coupled receptors (GPCRs) exist in plants is a fundamental biological question. Interest in deorphanizing new GPCRs arises because of their importance in signaling. Within plants, this is controversial, as genome analysis has identified 56 putative GPCRs, including G protein-coupled receptor1 (GCR1), which is reportedly a remote homolog to class A, B, and E GPCRs. Of these, GCR2 is not a GPCR; more recently, it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix-alignment method, which has been benchmarked against the class A-class B-class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologs to class A, class B, and class F GPCRs and shown that GCR1 is closer to class A and/or class B GPCRs than class A, class B, or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the six GPCR classes. Variability comparisons provide additional evidence that GCR1 homologs have the GPCR fold. From the alignments and a GCR1 comparative model, we have identified motifs that are common to GCR1, class A, B, and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fold. PMID:24246381

  4. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.

    PubMed

    Brunner, Kurt; Omann, Markus; Pucher, Marion E; Delic, Marizela; Lehner, Sylvia M; Domnanich, Patrick; Kratochwill, Klaus; Druzhinina, Irina; Denk, Dagmar; Zeilinger, Susanne

    2008-12-01

    Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affiliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus.

  5. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-08-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

  6. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein.

    PubMed

    Liu, Songling; Premont, Richard T; Rockey, Don C

    2014-06-27

    Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Construction of uniformly sized pseudo template imprinted polymers coupled with HPLC-UV for the selective extraction and determination of trace estrogens in chicken tissue samples.

    PubMed

    Wang, Shu; Li, Yun; Wu, Xiaoli; Ding, Meijuan; Yuan, Lihua; Wang, Ruoyu; Wen, Tingting; Zhang, Jun; Chen, Lina; Zhou, Xuemin; Li, Fei

    2011-02-28

    To assess the potential risks associated with the environmental exposure of steroid estrogens, a novel highly efficient and selective estrogen enrichment procedure based on the use of molecularly imprinted polymer has been developed and evaluated. Herein, analogue of estrogens, namely 17-ethyl estradiol (EE(2)) was used as the pseudo template, to avoid the leakage of a trace amount of the target analytes. The resulting pseudo molecularly imprinted polymers (PMIPs) showed large sorption capacity, high recognition ability and fast binding kinetics for estrogens. Moreover, using these imprinted particles as dispersive solid-phase extraction (DSPE) materials, the amounts of three estrogens (E(1), E(2) and E(3)) which were detected by HPLC-UV from the chicken tissue samples were 0.28, 0.31 and 0.17 μg g(-1), and the recoveries were 72.5-78.7%, 90.3-95.2% and 80.5-83.6% in spiked chicken tissue samples with RSD <7%, respectively. All these results reveal that EE(2)-PMIPs as DSPE materials coupled with HPLC-UV could be applied to the highly selective separation and sensitive determination of trace estrogens in chicken tissue samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Actions of Tamoxifen and Estrogen on Osteoblast Protein Kinase C Expression.

    DTIC Science & Technology

    1996-07-01

    extended period of time over which estrogen deficiency -induced bone loss occurs. Postmenopausal bone loss occurs gradually over several years, and changes...Identification of luteal estrogen-modulated lipid- stimulated kinase as protein kinase C5. J Biol Chem 267:17061-17068. 24. Cutler RE Jr, Maizels ET

  9. Ezetimibe prevents the formation of estrogen-induced cholesterol gallstones in mice

    PubMed Central

    de Bari, Ornella; Wang, Helen H.; Portincasa, Piero; Paik, Chang-Nyol; Liu, Min; Wang, David Q.-H.

    2014-01-01

    Background Estrogen is an important risk factor for cholesterol cholelithiasis not only in women of childbearing age taking oral contraceptives and postmenopausal women undergoing hormone replacement therapy, but also in male patients receiving estrogen therapy for prostatic cancer. In women, hormonal changes occurring during pregnancy markedly increase the risk of developing gallstones. We investigated whether the potent cholesterol absorption inhibitor ezetimibe could prevent the formation of estrogen-induced cholesterol gallstones in mice. Design Following ovariectomy, female AKR mice were implanted subcutaneously with pellets releasing 17β-estradiol at 6 μg/day and fed a lithogenic diet supplemented with ezetimibe in doses of 0 or 8 mg/kg/day for 8 weeks. Cholesterol crystallization and gallstone prevalence, lipid concentrations and composition in bile, and biliary lipid output were analyzed by physical-chemical methods. Intestinal cholesterol absorption efficiency was determined by fecal dual-isotope ratio methods. Results Ezetimibe inhibited intestinal cholesterol absorption, while significantly reducing hepatic secretion of biliary cholesterol. Consequently, bile was desaturated through the formation of numerous unsaturated micelles and gallstones were prevented by ezetimibe in mice exposed to high doses of estrogen and fed the lithogenic diet. Ezetimibe did not influence mRNA levels of the classical estrogen receptors α (ERα) and ERβ, as well as a novel estrogen receptor the G protein-coupled receptor 30 (GPR30) in the liver. Conclusions Ezetimibe protects against the estrogen-mediated lithogenic actions on gallstone formation in mice. Our finding may provide an efficacious novel strategy for the prevention of cholesterol gallstones in high-risk subjects, especially those exposed to high levels of estrogen. PMID:25303682

  10. Homology Modeling of Class A G Protein-Coupled Receptors

    PubMed Central

    Costanzi, Stefano

    2012-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of membrane bound signaling proteins that hold great pharmaceutical interest. Since experimentally elucidated structures are available only for a very limited number of receptors, homology modeling has become a widespread technique for the construction of GPCR models intended to study the structure-function relationships of the receptors and aid the discovery and development of ligands capable of modulating their activity. Through this chapter, various aspects involved in the constructions of homology models of the serpentine domain of the largest class of GPCRs, known as class A or rhodopsin family, are illustrated. In particular, the chapter provides suggestions, guidelines and critical thoughts on some of the most crucial aspect of GPCR modeling, including: collection of candidate templates and a structure-based alignment of their sequences; identification and alignment of the transmembrane helices of the query receptor to the corresponding domains of the candidate templates; selection of one or more templates receptor; election of homology or de novo modeling for the construction of specific extracellular and intracellular domains; construction of the three-dimensional models, with special consideration to extracellular regions, disulfide bridges, and interhelical cavity; validation of the models through controlled virtual screening experiments. PMID:22323225

  11. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.

    PubMed

    Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr

    2015-01-01

    HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between

  12. Molecular evolution of a chordate specific family of G protein-coupled receptors

    PubMed Central

    2011-01-01

    Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become

  13. Stereochemistry of an agonist determines coupling preference of beta2-adrenoceptor to different G proteins in cardiomyocytes.

    PubMed

    Woo, Anthony Yiu-Ho; Wang, Tian-Bing; Zeng, Xiaokun; Zhu, Weizhong; Abernethy, Darrell R; Wainer, Irving W; Xiao, Rui-Ping

    2009-01-01

    A fundamental question regarding receptor-G protein interaction is whether different agonists can lead a receptor to different intracellular signaling pathways. Our previous studies have demonstrated that although most beta(2)-adrenoceptor agonists activate both G(s) and G(i) proteins, fenoterol, a full agonist of beta(2)-adrenoceptor, selectively activates G(s) protein. Fenoterol contains two chiral centers and may exist as four stereoisomers. We have synthesized a series of stereoisomers of fenoterol and its derivatives and characterized their receptor binding and pharmacological properties. We tested the hypothesis that the stereochemistry of an agonist determines selectivity of receptor coupling to different G protein(s). We found that the R,R isomers of fenoterol and methoxyfenoterol exhibited more potent effects to increase cardiomyocyte contraction than their S,R isomers. It is noteworthy that although (R,R)-fenoterol and (R,R)-methoxyfenoterol preferentially activate G(s) signaling, their S,R isomers were able to activate both G(s) and G(i) proteins as evidenced by the robust pertussis toxin sensitivities of their effects on cardiomyocyte contraction and on phosphorylation of extracellular signal-regulated kinase 1/2. The differential G protein selectivities of the fenoterol stereoisomers were further confirmed by photoaffinity labeling studies on G(s),G(i2), and G(i3) proteins. The inefficient G(i) signaling with the R,R isomers is not caused by the inability of the R,R isomers to trigger the protein kinase A (PKA)-mediated phosphorylation of the beta(2)-adrenoceptor, because the R,R isomers also markedly increased phosphorylation of the receptor at serine 262 by PKA. We conclude that in addition to receptor subtype and phosphorylation status, the stereochemistry of a given agonist plays an important role in determining receptor-G protein selectivity and downstream signaling events.

  14. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    PubMed

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.

    PubMed

    Zhou, X Edward; He, Yuanzheng; de Waal, Parker W; Gao, Xiang; Kang, Yanyong; Van Eps, Ned; Yin, Yanting; Pal, Kuntal; Goswami, Devrishi; White, Thomas A; Barty, Anton; Latorraca, Naomi R; Chapman, Henry N; Hubbell, Wayne L; Dror, Ron O; Stevens, Raymond C; Cherezov, Vadim; Gurevich, Vsevolod V; Griffin, Patrick R; Ernst, Oliver P; Melcher, Karsten; Xu, H Eric

    2017-07-27

    G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Niacin activates the G protein estrogen receptor (GPER)-mediated signalling.

    PubMed

    Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Lappano, Rosamaria; Rosano, Camillo; Abonante, Sergio; Maggiolini, Marcello

    2014-07-01

    Nicotinic acid, also known as niacin, is the water soluble vitamin B3 used for decades for the treatment of dyslipidemic diseases. Its action is mainly mediated by the G protein-coupled receptor (GPR) 109A; however, certain regulatory effects on lipid levels occur in a GPR109A-independent manner. The amide form of nicotinic acid, named nicotinamide, acts as a vitamin although neither activates the GPR109A nor exhibits the pharmacological properties of nicotinic acid. In the present study, we demonstrate for the first time that nicotinic acid and nicotinamide bind to and activate the GPER-mediated signalling in breast cancer cells and cancer-associated fibroblasts (CAFs). In particular, we show that both molecules are able to promote the up-regulation of well established GPER target genes through the EGFR/ERK transduction pathway. As a biological counterpart, nicotinic acid and nicotinamide induce proliferative and migratory effects in breast cancer cells and CAFs in a GPER-dependent fashion. Moreover, nicotinic acid prevents the up-regulation of ICAM-1 triggered by the pro-inflammatory cytokine TNF-α and stimulates the formation of endothelial tubes through GPER in HUVECs. Together, our findings concerning the agonist activity for GPER displayed by both nicotinic acid and nicotinamide broaden the mechanisms involved in the biological action of these molecules and further support the potential of a ligand to induce different responses mediated in a promiscuous manner by distinct GPCRs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Expression pattern and signalling pathways in neutrophil like HL-60 cells after treatment with estrogen receptor selective ligands.

    PubMed

    Blesson, Chellakkan Selvanesan; Sahlin, Lena

    2012-09-25

    Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2008-01-01

    The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin–receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These “custom-designed” arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling. PMID:16460808

  19. The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery

    PubMed Central

    Salon, John A.; Lodowski, David T.

    2011-01-01

    Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination. PMID:21969326

  20. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  1. GPCRdb: an information system for G protein-coupled receptors

    PubMed Central

    Isberg, Vignir; Mordalski, Stefan; Munk, Christian; Rataj, Krzysztof; Harpsøe, Kasper; Hauser, Alexander S.; Vroling, Bas; Bojarski, Andrzej J.; Vriend, Gert; Gloriam, David E.

    2016-01-01

    Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis. PMID:26582914

  2. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  3. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level.

    PubMed

    Fischer, Jana; Kleinau, Gunnar; Rutz, Claudia; Zwanziger, Denise; Khajavi, Noushafarin; Müller, Anne; Rehders, Maren; Brix, Klaudia; Worth, Catherine L; Führer, Dagmar; Krude, Heiko; Wiesner, Burkhard; Schülein, Ralf; Biebermann, Heike

    2018-06-01

    G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of G q/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.

  4. Pharmacology, signaling and physiological relevance of the G protein-coupled receptor 55.

    PubMed

    Balenga, Nariman A B; Henstridge, Christopher M; Kargl, Julia; Waldhoer, Maria

    2011-01-01

    According to The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), ∼70 million European adults have consumed cannabis on at least one occasion. Cannabis consumption leads to a variety of psychoactive effects due to the presence of the constituent Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Δ(9)-THC interacts with the endocannabinoid system (ECS), which consists of the seven transmembrane spanning (7TM)/G protein-coupled receptors (GPCRs) CB(1) and CB(2), their respective ligands (endocannabinoids), and enzymes involved in their biosynthesis and degradation. This system plays a critical role in many physiological processes such as learning and memory, appetite control, pain sensation, motor coordination, lipogenesis, modulation of immune response, and the regulation of bone mass. Therefore, a huge effort has been spent trying to fully elucidate the composition and function of the ECS. The G protein-coupled receptor 55 (GPR55) was recently proposed as a novel component of this system; however, its classification as a cannabinoid receptor has been significantly hampered by its complex pharmacology, signaling, and cellular function. GPR55 is phylogenetically distinct from the traditional cannabinoid receptors, but in some experimental paradigms, it is activated by endocannabinoids, phytocannabinoids, and synthetic cannabinoid ligands. However, the most potent compound appears to be a lysophospholipid known as lysophosphatidylinositol (LPI). Here, we provide a comprehensive evaluation of the current pharmacology and signaling of GPR55 and review the proposed role of this receptor in a number of physiological and pathophysiological processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling.

    PubMed

    Casella, Ida; Ambrosio, Caterina; Grò, Maria Cristina; Molinari, Paola; Costa, Tommaso

    2011-08-15

    The functional selectivity of adrenergic ligands for activation of β1- and β2-AR (adrenoceptor) subtypes has been extensively studied in cAMP signalling. Much less is known about ligand selectivity for arrestin-mediated signalling pathways. In the present study we used resonance energy transfer methods to compare the ability of β1- and β2-ARs to form a complex with the G-protein β-subunit or β-arrestin-2 in response to a variety of agonists with various degrees of efficacy. The profiles of β1-/β2-AR selectivity of the ligands for the two receptor-transducer interactions were sharply different. For G-protein coupling, the majority of ligands were more effective in activating the β2-AR, whereas for arrestin coupling the relationship was reversed. These data indicate that the β1-AR interacts more efficiently than β2-AR with arrestin, but less efficiently than β2-AR with G-protein. A group of ligands exhibited β1-AR-selective efficacy in driving the coupling to arrestin. Dobutamine, a member of this group, had 70% of the adrenaline (epinephrine) effect on arrestin via β1-AR, but acted as a competitive antagonist of adrenaline via β2-AR. Thus the structure of such ligands appears to induce an arrestin-interacting form of the receptor only when bound to the β1-AR subtype. © The Authors Journal compilation © 2011 Biochemical Society

  6. Estrogens and their receptors in the medial amygdala rapidly facilitate social recognition in female mice.

    PubMed

    Lymer, Jennifer M; Sheppard, Paul A S; Kuun, Talya; Blackman, Andrea; Jani, Nilay; Mahbub, Sahnon; Choleris, Elena

    2018-03-01

    Estrogens have been shown to rapidly (within 1 h) affect learning and memory processes, including social recognition. Both systemic and hippocampal administration of 17β-estradiol facilitate social recognition in female mice within 40 min of administration. These effects were likely mediated by estrogen receptor (ER) α and the G-protein coupled estrogen receptor (GPER), as administration of the respective receptor agonists (PPT and G-1) also facilitated social recognition on a rapid time scale. The medial amygdala has been shown to be necessary for social recognition and long-term manipulations in rats have implicated medial amygdalar ERα. As such, our objective was to investigate whether estrogens and different ERs within the medial amygdala play a role in the rapid facilitation of social recognition in female mice. 17β-estradiol, G-1, PPT, or ERβ agonist DPN was infused directly into the medial amygdala of ovariectomized female mice. Mice were then tested in a social recognition paradigm, which was completed within 40 min, thus allowing the assessment of rapid effects of treatments. 17β-estradiol (10, 25, 50, 100 nM), PPT (300 nM), DPN (150 nM), and G-1 (50 nM) each rapidly facilitated social recognition. Therefore, estrogens in the medial amygdala rapidly facilitate social recognition in female mice, and the three main estrogen receptors: ERα, ERβ, and the GPER all are involved in these effects. This research adds to a network of brain regions, including the medial amygdala and the dorsal hippocampus, that are involved in mediating the rapid estrogenic facilitation of social recognition in female mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  8. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  9. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.

    PubMed

    Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.

  10. Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor

    PubMed Central

    Ghanouni, Pejman; Steenhuis, Jacqueline J.; Farrens, David L.; Kobilka, Brian K.

    2001-01-01

    The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands. PMID:11353823

  11. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30.

    PubMed

    Revankar, Chetana M; Mitchell, Hugh D; Field, Angela S; Burai, Ritwik; Corona, Cesear; Ramesh, Chinnasamy; Sklar, Larry A; Arterburn, Jeffrey B; Prossnitz, Eric R

    2007-08-17

    Estrogen mediates its effects through multiple cellular receptors. In addition to the classical nuclear estrogen receptors (ERalpha and ERbeta), estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPCR) GPR30. Although estrogen is a cell-permeable ligand, it is often assumed that all GPCRs function solely as cell surface receptors. Our previous results showed that GPR30 appeared to be expressed predominantly in the endoplasmic reticulum. A critical question that arises is whether this localization represents the site of functional receptor. To address this question, we synthesized a collection of cell-permeable and cell-impermeable estrogen derivatives. We hypothesized that if functional GPR30 were expressed at the cell surface, both permeable and impermeable derivatives would show activity. However, if functional GPR30 were predominantly intracellular, like ERalpha, only the permeable ligands should show activity. Cell permeability was assessed using cells expressing ERalpha as a model intracellular estrogen-binding receptor. Our results reveal that despite exhibiting similar binding affinities for GPR30, only the cell-permeable ligands are capable of stimulating rapid calcium mobilization and phosphoinositide 3-kinase (PI3K) activation. We conclude that GPR30 expressed intracellularly is capable of initiating cellular signaling and that there is insufficient GPR30 expressed on the cell surface to initiate signaling in response to impermeable ligands in the cell lines examined. To our knowledge, this is the first definitive demonstration of a functional intracellular transmembrane estrogen receptor.

  13. Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: An alternative role of estrogen in mammary carcinoma development.

    PubMed

    Luo, Haojun; Liu, Manran; Luo, Shujuan; Yu, Tenghua; Wu, Chengyi; Yang, Guanglun; Tu, Gang

    2016-08-01

    Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs. Copyright © 2016. Published by Elsevier Inc.

  14. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2016-10-25

    G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M 2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M 2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M 2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.

  15. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases.

    PubMed

    Cabral-Marques, Otavio; Riemekasten, Gabriela

    2017-11-01

    G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.

  16. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  17. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    PubMed

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Application of RGS box proteins to evaluate G-protein selectivity in receptor-promoted signaling.

    PubMed

    Hains, Melinda D; Siderovski, David P; Harden, T Kendall

    2004-01-01

    Regulator of G-protein signaling (RGS) domains bind directly to GTP-bound Galpha subunits and accelerate their intrinsic GTPase activity by up to several thousandfold. The selectivity of RGS proteins for individual Galpha subunits has been illustrated. Thus, the expression of RGS proteins can be used to inhibit signaling pathways activated by specific G protein-coupled receptors (GPCRs). This article describes the use of specific RGS domain constructs to discriminate among G(i/o), Gq-and G(12/13)-mediated activation of phospholipase C (PLC) isozymes in COS-7 cells. Overexpression of the N terminus of GRK2 (amino acids 45-178) or p115 RhoGEF (amino acids 1-240) elicited selective inhibition of Galphaq- or Galpha(12/13)-mediated signaling to PLC activation, respectively. In contrast, RGS2 overexpression was found to inhibit PLC activation by both G(i/o)- and Gq-coupled GPCRs. RGS4 exhibited dramatic receptor selectivity in its inhibitory actions; of the G(i/o)- and Gq-coupled GPCRs tested (LPA1, LPA2, P2Y1, S1P3), only the Gq-coupled lysophosphatidic acid-activated LPA2 receptor was found to be inhibited by RGS4 overexpression.

  20. Role of Estrogens in the Regulation of Liver Lipid Metabolism.

    PubMed

    Palmisano, Brian T; Zhu, Lin; Stafford, John M

    2017-01-01

    Before menopause, women are protected from atherosclerotic heart disease associated with obesity relative to men. Sex hormones have been proposed as a mechanism that differentiates this risk. In this review, we discuss the literature around how the endogenous sex hormones and hormone treatment approaches after menopause regulate fatty acid, triglyceride, and cholesterol metabolism to influence cardiovascular risk.The important regulatory functions of estrogen signaling pathways with regard to lipid metabolism have been in part obscured by clinical trials with hormone treatment of women after menopause, due to different formulations, routes of delivery, and pairings with progestins. Oral hormone treatment with several estrogen preparations increases VLDL triglyceride production. Progestins oppose this effect by stimulating VLDL clearance in both humans and animals. Transdermal estradiol preparations do not increase VLDL production or serum triglycerides.Many aspects of sex differences in atherosclerotic heart disease risk are influenced by the distributed actions of estrogens in the muscle, adipose, and liver. In humans, 17β-estradiol (E2) is the predominant circulating estrogen and signals through estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled estrogen receptor (GPER). Over 1000 human liver genes display a sex bias in their expression, and the top biological pathways are in lipid metabolism and genes related to cardiovascular disease. Many of these genes display variation depending on estrus cycling in the mouse. Future directions will likely rely on targeting estrogens to specific tissues or specific aspects of the signaling pathways in order to recapitulate the protective physiology of premenopause therapeutically after menopause.

  1. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  2. β2-Adrenergic receptors and G-protein-coupled receptor kinase 2 in rabbit pleural mesothelium.

    PubMed

    Sironi, Chiara; Bodega, Francesca; Armilli, Marta; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2010-09-30

    Former studies on net rate of liquid absorption from small Ringer or 1% albumin-Ringer hydrothoraces in rabbits indicated that Na+ transport and solute-coupled liquid absorption by mesothelium is increased by pleural liquid dilution, and stimulation of β2-adrenoreceptors (β2AR). In this research we tried to provide molecular evidence for β2AR in visceral and parietal mesothelium of rabbit pleura. Moreover, because prolonged stimulation of β2AR may lead to desensitization mediated by G-protein-coupled receptor kinase 2 (GRK2), we also checked whether GRK2 is expressed in pleural mesothelium. To this end we performed immunoblot assays on total protein extracts from scraped visceral and parietal mesothelium, and from cultured pleural mesothelial cells of rabbits. All three samples showed β2AR and GRK2 specific bands. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki

    2015-02-20

    Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1more » overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors. - Highlights: • Zebra fish OGR1 and GPR4 homologs (zOGR1, zGPR4) are proton-sensing receptors. • The signaling pathways activated by zOGR1 and zGPR4 are different. • Histidine residues critical for sensing protons are conserved.« less

  4. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    PubMed

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors.

    PubMed

    Wang, Wei; Chen, Zhao-Xia; Guo, Dong-Yu; Tao, Ya-Xiong

    2018-06-15

    Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized. Copyright © 2018. Published by Elsevier Inc.

  6. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    PubMed

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  7. Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors.

    PubMed

    König, Caroline; Cárdenas, Martha I; Giraldo, Jesús; Alquézar, René; Vellido, Alfredo

    2015-09-29

    The characterization of proteins in families and subfamilies, at different levels, entails the definition and use of class labels. When the adscription of a protein to a family is uncertain, or even wrong, this becomes an instance of what has come to be known as a label noise problem. Label noise has a potentially negative effect on any quantitative analysis of proteins that depends on label information. This study investigates class C of G protein-coupled receptors, which are cell membrane proteins of relevance both to biology in general and pharmacology in particular. Their supervised classification into different known subtypes, based on primary sequence data, is hampered by label noise. The latter may stem from a combination of expert knowledge limitations and the lack of a clear correspondence between labels that mostly reflect GPCR functionality and the different representations of the protein primary sequences. In this study, we describe a systematic approach, using Support Vector Machine classifiers, to the analysis of G protein-coupled receptor misclassifications. As a proof of concept, this approach is used to assist the discovery of labeling quality problems in a curated, publicly accessible database of this type of proteins. We also investigate the extent to which physico-chemical transformations of the protein sequences reflect G protein-coupled receptor subtype labeling. The candidate mislabeled cases detected with this approach are externally validated with phylogenetic trees and against further trusted sources such as the National Center for Biotechnology Information, Universal Protein Resource, European Bioinformatics Institute and Ensembl Genome Browser information repositories. In quantitative classification problems, class labels are often by default assumed to be correct. Label noise, though, is bound to be a pervasive problem in bioinformatics, where labels may be obtained indirectly through complex, many-step similarity modelling processes

  8. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.

    PubMed

    Ye, Shixin; Zaitseva, Ekaterina; Caltabiano, Gianluigi; Schertler, Gebhard F X; Sakmar, Thomas P; Deupi, Xavier; Vogel, Reiner

    2010-04-29

    Rhodopsin is a prototypical heptahelical family A G-protein-coupled receptor (GPCR) responsible for dim-light vision. Light isomerizes rhodopsin's retinal chromophore and triggers concerted movements of transmembrane helices, including an outward tilting of helix 6 (H6) and a smaller movement of H5, to create a site for G-protein binding and activation. However, the precise temporal sequence and mechanism underlying these helix rearrangements is unclear. We used site-directed non-natural amino acid mutagenesis to engineer rhodopsin with p-azido-l-phenylalanine residues incorporated at selected sites, and monitored the azido vibrational signatures using infrared spectroscopy as rhodopsin proceeded along its activation pathway. Here we report significant changes in electrostatic environments of the azido probes even in the inactive photoproduct Meta I, well before the active receptor state was formed. These early changes suggest a significant rotation of H6 and movement of the cytoplasmic part of H5 away from H3. Subsequently, a large outward tilt of H6 leads to opening of the cytoplasmic surface to form the active receptor photoproduct Meta II. Thus, our results reveal early conformational changes that precede larger rigid-body helix movements, and provide a basis to interpret recent GPCR crystal structures and to understand conformational sub-states observed during the activation of other GPCRs.

  9. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  10. Rapid effects of estrogens on short-term memory: Possible mechanisms.

    PubMed

    Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena

    2018-06-01

    Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.

    PubMed

    Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao

    2015-01-01

    Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  12. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    PubMed Central

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421

  13. Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

    PubMed

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-04-29

    Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.

  14. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    PubMed

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  15. G Protein-Coupled Receptor-G-Protein βγ-Subunit Signaling Mediates Renal Dysfunction and Fibrosis in Heart Failure.

    PubMed

    Kamal, Fadia A; Travers, Joshua G; Schafer, Allison E; Ma, Qing; Devarajan, Prasad; Blaxall, Burns C

    2017-01-01

    Development of CKD secondary to chronic heart failure (CHF), known as cardiorenal syndrome type 2 (CRS2), clinically associates with organ failure and reduced survival. Heart and kidney damage in CRS2 results predominantly from chronic stimulation of G protein-coupled receptors (GPCRs), including adrenergic and endothelin (ET) receptors, after elevated neurohormonal signaling of the sympathetic nervous system and the downstream ET system, respectively. Although we and others have shown that chronic GPCR stimulation and the consequent upregulated interaction between the G-protein βγ-subunit (Gβγ), GPCR-kinase 2, and β-arrestin are central to various cardiovascular diseases, the role of such alterations in kidney diseases remains largely unknown. We investigated the possible salutary effect of renal GPCR-Gβγ inhibition in CKD developed in a clinically relevant murine model of nonischemic hypertrophic CHF, transverse aortic constriction (TAC). By 12 weeks after TAC, mice developed CKD secondary to CHF associated with elevated renal GPCR-Gβγ signaling and ET system expression. Notably, systemic pharmacologic Gβγ inhibition by gallein, which we previously showed alleviates CHF in this model, attenuated these pathologic renal changes. To investigate a direct effect of gallein on the kidney, we used a bilateral ischemia-reperfusion AKI mouse model, in which gallein attenuated renal dysfunction, tissue damage, fibrosis, inflammation, and ET system activation. Furthermore, in vitro studies showed a key role for ET receptor-Gβγ signaling in pathologic fibroblast activation. Overall, our data support a direct role for GPCR-Gβγ in AKI and suggest GPCR-Gβγ inhibition as a novel therapeutic approach for treating CRS2 and AKI. Copyright © 2016 by the American Society of Nephrology.

  16. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context.

    PubMed

    Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Zhang, Alice; Shinjo, Yuji; Okde, Rakan; Aoki, Junken; Inoue, Asuka; Hébert, Terence E

    2017-03-31

    Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gα q , Gα 11 , Gα 12 , and Gα 13 or β-arrestins, we showed that Gα q and Gα 11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Role of GPR30 in estrogen-induced prostate epithelial apoptosis and benign prostatic hyperplasia.

    PubMed

    Yang, Deng-Liang; Xu, Jia-Wen; Zhu, Jian-Guo; Zhang, Yi-Lin; Xu, Jian-Bang; Sun, Qing; Cao, Xiao-Nian; Zuo, Wu-Lin; Xu, Ruo-Shui; Huang, Jie-Hong; Jiang, Fu-Neng; Zhuo, Yang-Jia; Xiao, Bai-Quan; Liu, Yun-Zhong; Yuan, Dong-Bo; Sun, Zhao-Lin; He, Hui-Chan; Lun, Zhao-Rong; Zhong, Wei-De; Zhou, Wen-Liang

    2017-06-03

    Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17β-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca 2+ release from the endoplasmic reticulum, increased the mitochondrial Ca 2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca 2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP 3 ) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A New Signaling Pathway for HCV Inhibition by Estrogen: GPR30 Activation Leads to Cleavage of Occludin by MMP-9.

    PubMed

    Ulitzky, Laura; Lafer, Manuel M; KuKuruga, Mark A; Silberstein, Erica; Cehan, Nicoleta; Taylor, Deborah R

    2016-01-01

    Poor outcome in response to hepatitis C virus, including higher viral load, hepatocellular carcinoma and cirrhosis, is more associated with men and postmenopausal women than with premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol plays an innate role in preventing viral infection and liver disease. Consequently, most research in the field has concluded that estrogen affects HCV replication through viral interactions with estrogen receptor-α. Previously, estrogen-like antagonists, including Tamoxifen, were shown to reduce HCV RNA production and prevent viral entry, although the authors did not identify host factors involved. Estrogen can act alternatively through the membrane-bound G-protein-coupled estrogen receptor, GPR30. Here, human hepatoma Huh7.5 cells were infected with HCV J6/JFH-1 and treated with estrogen or Tamoxifen, resulting in a marked decrease in detectable virus. The effect was mimicked by G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. While previous studies have demonstrated that estrogen down-regulated occludin in cervical cancer cells, its action on liver cells was unknown. Occludin is a tight junction protein and HCV receptor and here we report that activation and cellular export of MMP-9 led to the cleavage of occludin upon estrogen treatment of liver cells. This is the first report of the cleavage of an HCV receptor in response to estrogen. We also identify the occludin cleavage site in extracellular Domain D; the motif required for HCV entry and spread. This pathway gives new insight into a novel innate antiviral pathway and the suboptimal environment that estrogen provides for the proliferation of the virus. It may also explain the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral enhancement properties for HCV-infected postmenopausal women and

  19. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation.

    PubMed

    Fredette, Natalie C; Meyer, Matthias R; Prossnitz, Eric R

    2018-02-01

    Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and Gper-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. Gper deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2013-01-01

    The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling. PMID:24003153

  1. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. © 2015 American Society for Bone and Mineral Research.

  2. Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression.

    PubMed

    Tian, J-M; Ran, B; Zhang, C-L; Yan, D-M; Li, X-H

    2018-01-23

    Breast cancer is the most common cause of cancer among women in most countries (WHO). Ovarian hormone disorder is thought to be associated with breast tumorigenesis. The present study investigated the effects of estrogen and progesterone administration on cell proliferation and underlying mechanisms in breast cancer MCF-7 cells. It was found that a single administration of estradiol (E2) or progesterone increased MCF-7 cell viability in a dose-dependent manner and promoted cell cycle progression by increasing the percentage of cells in the G2/M phase. A combination of E2 and progesterone led to a stronger effect than single treatment. Moreover, cyclin G1 was up-regulated by E2 and/or progesterone in MCF-7 cells. After knockdown of cyclin G1 in MCF-7 cells using a specific shRNA, estradiol- and progesterone-mediated cell viability and clonogenic ability were significantly limited. Additionally, estradiol- and progesterone-promoted cell accumulation in the G2/M phase was reversed after knockdown of cyclin G1. These data indicated that estrogen and progesterone promoted breast cancer cell proliferation by inducing the expression of cyclin G1. Our data indicated that novel therapeutics against cyclin G1 are promising for the treatment of estrogen- and progesterone-mediated breast cancer progression.

  3. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D).

  4. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  5. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  6. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  7. Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve G alpha(13) and RhoA.

    PubMed

    Shepard, L W; Yang, M; Xie, P; Browning, D D; Voyno-Yasenetskaya, T; Kozasa, T; Ye, R D

    2001-12-07

    The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.

  8. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    PubMed

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  9. Low expression of G protein-coupled oestrogen receptor 1 (GPER) is associated with adverse survival of breast cancer patients

    PubMed Central

    Martin, Stewart G.; Lebot, Marie N.; Sukkarn, Bhudsaban; Ball, Graham; Green, Andrew R.; Rakha, Emad A.; Ellis, Ian O.; Storr, Sarah J.

    2018-01-01

    G protein-coupled oestrogen receptor 1 (GPER), also called G protein-coupled receptor 30 (GPR30), is attracting considerable attention for its potential role in breast cancer development and progression. Activation by oestrogen (17β-oestradiol; E2) initiates short term, non-genomic, signalling events both in vitro and in vivo. Published literature on the prognostic value of GPER protein expression in breast cancer indicates that further assessment is warranted. We show, using immunohistochemistry on a large cohort of primary invasive breast cancer patients (n=1245), that low protein expression of GPER is not only significantly associated with clinicopathological and molecular features of aggressive behaviour but also significantly associated with adverse survival of breast cancer patients. Furthermore, assessment of GPER mRNA levels in the METABRIC cohort (n=1980) demonstrates that low GPER mRNA expression is significantly associated with adverse survival of breast cancer patients. Using artificial neural networks, genes associated with GPER mRNA expression were identified; these included notch-4 and jagged-1. These results support the prognostic value for determination of GPER expression in breast cancer. PMID:29899833

  10. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics.

    PubMed

    Miao, Yinglong; Nichols, Sara E; McCammon, J Andrew

    2014-04-14

    G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).

  11. Regulation of G-protein-coupled signaling pathways in allergic inflammation

    PubMed Central

    2009-01-01

    Abstract Allergic diseases such as asthma are elicited by maladaptive activation of immune cells such as mast cells and lymphocytes by otherwise innocuous allergens. The numerous mediators secreted by such cells promote both acute inflammation and, in many instances, chronic tissue remodeling. Most of these compounds exert their effects on end-organ targets such as epithelial and endothelial cells and airway smooth muscle by activating G-protein-coupled receptors (GPCRs), which are by far the most abundant type of cell surface receptor. Since GPCRs are also the most common target of allergy therapeutics, a better understanding of their intracellular signaling mechanisms is vital to improve the efficacy of such drugs or to develop new targets. In this review, we focus on some of the new regulatory elements that control the duration and amplitude of GPCR signal transduction pathways in immune effector cells and end-organ structural cells affected by allergic inflammation. PMID:18810336

  12. Targeting G protein-coupled receptor kinases (GRKs) in Heart Failure

    PubMed Central

    Brinks, Henriette; Koch, Walter J

    2010-01-01

    In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF. PMID:21218155

  13. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    PubMed

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. R4 RGS Proteins: Regulation of G Protein Signaling and Beyond

    PubMed Central

    Bansal, Geetanjali; Druey, Kirk M.; Xie, Zhihui

    2007-01-01

    The Regulators of G protein Signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCRs) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly-appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways as well as a diverse array of non-GPCR-mediated biological responses. PMID:18006065

  15. Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G-protein coupled receptor (GPCR) super-family presents an interesting target for developing novel tick control methods. However, GPCRs share limited sequence similarity among or...

  16. Estrogen regulates Hippo signaling via GPER in breast cancer

    PubMed Central

    Zhou, Xin; Wang, Shuyang; Wang, Zhen; Feng, Xu; Liu, Peng; Lv, Xian-Bo; Li, Fulong; Yu, Fa-Xing; Sun, Yiping; Yuan, Haixin; Zhu, Hongguang; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2015-01-01

    The G protein–coupled estrogen receptor (GPER) mediates both the genomic and nongenomic effects of estrogen and has been implicated in breast cancer development. Here, we compared GPER expression in cancerous tissue and adjacent normal tissue in patients with invasive ductal carcinoma (IDC) of the breast and determined that GPER is highly upregulated in cancerous cells. Additionally, our studies revealed that GPER stimulation activates yes-associated protein 1 (YAP) and transcriptional coactivator with a PDZ-binding domain (TAZ), 2 homologous transcription coactivators and key effectors of the Hippo tumor suppressor pathway, via the Gαq-11, PLCβ/PKC, and Rho/ROCK signaling pathways. TAZ was required for GPER-induced gene transcription, breast cancer cell proliferation and migration, and tumor growth. Moreover, TAZ expression positively correlated with GPER expression in human IDC specimens. Together, our results suggest that the Hippo/YAP/TAZ pathway is a key downstream signaling branch of GPER and plays a critical role in breast tumorigenesis. PMID:25893606

  17. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  18. Divergent β-Arrestin-dependent Signaling Events Are Dependent upon Sequences within G-protein-coupled Receptor C Termini*

    PubMed Central

    Pal, Kasturi; Mathur, Maneesh; Kumar, Puneet; DeFea, Kathryn

    2013-01-01

    β-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of β-arrestin signaling depends upon the activating receptor. For example, activation of two Gαq-coupled receptors, protease-activated receptor-2 (PAR2) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR2 promotes β-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/β-arrestin interactions in real time, we observe that PAR2 has a higher apparent affinity for both β-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of β-arrestins to PAR2 does not require prior Gαq signaling events, whereas inhibition of Gαq signaling intermediates inhibits recruitment of β-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR2 is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR2, we demonstrate that interactions between β-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of β-arrestin recruitment as well as the ultimate signaling outcome. PMID:23235155

  19. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    PubMed

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  20. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  1. Role of G protein-coupled receptor kinases in the homologous desensitization of the human and mouse melanocortin 1 receptors.

    PubMed

    Sánchez-Más, Jesús; Guillo, Lidia A; Zanna, Paola; Jiménez-Cervantes, Celia; García-Borrón, José C

    2005-04-01

    The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.

  2. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  3. Variable Dependence of Signaling Output on Agonist Occupancy of Ste2p, a G Protein-coupled Receptor in Yeast.

    PubMed

    Sridharan, Rajashri; Connelly, Sara M; Naider, Fred; Dumont, Mark E

    2016-11-11

    We report here on the relationship between ligand binding and signaling responses in the yeast pheromone response pathway, a well characterized G protein-coupled receptor system. Responses to agonist (α-factor) by cells expressing widely varying numbers of receptors depend primarily on fractional occupancy, not the absolute number of agonist-bound receptors. Furthermore, the concentration of competitive antagonist required to inhibit α-factor-dependent signaling is more than 10-fold higher than predicted based on the known ligand affinities. Thus, responses to a particular number of agonist-bound receptors can vary greatly, depending on whether there are unoccupied or antagonist-bound receptors present on the same cell surface. This behavior does not appear to be due to pre-coupling of receptors to G protein or to the Sst2p regulator of G protein signaling. The results are consistent with a signaling response that is determined by the integration of positive signals from agonist-occupied receptors and inhibitory signals from unoccupied receptors, where the inhibitory signals can be diminished by antagonist binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    PubMed Central

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D.; Lahvic, Jamie L.; Ranheim, Erik A.; Zon, Leonard I.; Bresnick, Emery H.

    2016-01-01

    Summary Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  5. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.

    PubMed

    Huang, Jianyun; Sun, Yutong; Zhang, J Jillian; Huang, Xin-Yun

    2015-01-02

    G protein-coupled receptors (GPCRs) relay extracellular signals mainly to heterotrimeric G-proteins (Gαβγ) and they are the most successful drug targets. The mechanisms of G-protein activation by GPCRs are not well understood. Previous studies have revealed a signal relay route from a GPCR via the C-terminal α5-helix of Gα to the guanine nucleotide-binding pocket. Recent structural and biophysical studies uncover a role for the opening or rotating of the α-helical domain of Gα during the activation of Gα by a GPCR. Here we show that β-adrenergic receptors activate eight Gαs mutant proteins (from a screen of 66 Gαs mutants) that are unable to bind Gβγ subunits in cells. Five of these eight mutants are in the αF/Linker 2/β2 hinge region (extended Linker 2) that connects the Ras-like GTPase domain and the α-helical domain of Gαs. This extended Linker 2 is the target site of a natural product inhibitor of Gq. Our data show that the extended Linker 2 is critical for Gα activation by GPCRs. We propose that a GPCR via its intracellular loop 2 directly interacts with the β2/β3 loop of Gα to communicate to Linker 2, resulting in the opening and closing of the α-helical domain and the release of GDP during G-protein activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy

    PubMed Central

    White, James P.; Wrann, Christiane D.; Rao, Rajesh R.; Nair, Sreekumaran K.; Jedrychowski, Mark P.; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P.; Ruas, Jorge L.; Hornberger, Troy A.; Wu, Zhidan; Glass, David J.; Piao, Xianhua; Spiegelman, Bruce M.

    2014-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4–induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise. PMID:25336758

  7. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support

    PubMed Central

    Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  8. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  9. Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors

    PubMed Central

    Naganathan, Saranga; Grunbeck, Amy; Tian, He; Huber, Thomas; Sakmar, Thomas P.

    2013-01-01

    To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes. PMID:24056801

  10. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ritonavir binds to and downregulates estrogen receptors: molecular mechanism of promoting early atherosclerosis.

    PubMed

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli.

    PubMed

    Link, A James; Skretas, Georgios; Strauch, Eva-Maria; Chari, Nandini S; Georgiou, George

    2008-10-01

    G protein-coupled receptors (GPCRs) are notoriously difficult to express, particularly in microbial systems. Using GPCR fusions with the green fluorescent protein (GFP), we conducted studies to identify bacterial host effector genes that result in a general and significant enhancement in the amount of membrane-integrated human GPCRs that can be produced in Escherichia coli. We show that coexpression of the membrane-bound AAA+ protease FtsH greatly enhances the expression yield of four different class I GPCRs, irrespective of the presence of GFP. Using this new expression system, we produced 0.5 and 2 mg/L of detergent-solubilized and purified full-length central cannabinoid receptor (CB1) and bradykinin receptor 2 (BR2) in shake flask cultures, respectively, two proteins that had previously eluded expression in microbial systems.

  13. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booe, Jason M.; Walker, Christopher S.; Barwell, James

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  14. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE PAGES

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; ...

    2015-05-14

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  15. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  16. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.

    PubMed

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A; Gurevich, Vsevolod V; Lambert, Nevin A

    2015-09-01

    G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs. Copyright © 2015 John Wiley & Sons, Inc.

  17. Relaxant Effects of the Selective Estrogen Receptor Modulator, Bazedoxifene, and Estrogen Receptor Agonists in Isolated Rabbit Basilar Artery.

    PubMed

    Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique

    2016-10-01

    We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).

  18. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  19. Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Chun, Eugene; Thompson, Aaron A.; Liu, Wei; Roth, Christopher B.; Griffith, Mark T.; Katritch, Vsevolod; Kunken, Joshua; Xu, Fei; Cherezov, Vadim; Hanson, Michael A.; Stevens, Raymond C.

    2012-01-01

    SUMMARY Structural studies of human G protein-coupled receptors (GPCRs) have recently been accelerated through the use of the T4 lysozyme fusion partner that was inserted into the third intracellular loop. Using chimeras of the human β2-adrenergic and human A2A adenosine receptors, we present the methodology and data for the selection of five new fusion partners for crystallizing GPCRs. In particular, the use of the thermostabilized apocytochrome b562RIL as a fusion partner displays certain advantages over the previously utilized T4 lysozyme, resulting in a significant improvement in stability and structure in GPCR-fusion constructs. PMID:22681902

  20. Estrogens Induce Rapid Cytoskeleton Re-Organization in Human Dermal Fibroblasts via the Non-Classical Receptor GPR30

    PubMed Central

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation. PMID:25781607

  1. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30.

    PubMed

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.

  2. Production of G protein-coupled receptors in an insect-based cell-free system.

    PubMed

    Sonnabend, Andrei; Spahn, Viola; Stech, Marlitt; Zemella, Anne; Stein, Christoph; Kubick, Stefan

    2017-10-01

    The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein-coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell-free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell-free system, performed within a short time and in a cost-effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect-based cell-free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell-free synthesized MOR in comparison to MOR expressed in a human cell line by "one-point" radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328-2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  3. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway.

    PubMed

    Zhou, Xin; Wang, Zhen; Huang, Wei; Lei, Qun-Ying

    2015-01-01

    The Hippo pathway is crucial in organ size control, whereas its dysregulation contributes to organ degeneration or tumorigenesis. The kinase cascade of MST1/2 and LATS1/2 and the coupling transcription co-activators YAP/TAZ represent the core components of the Hippo pathway. Extensive studies have identified a number of upstream regulators of the Hippo pathway, including contact inhibition, mechanic stress, extracellular matrix stiffness, cytoskeletal rearrangement, and some molecules of cell polarity and cell junction. However, how the diffuse extracellular signals regulate the Hippo pathway puzzles the researchers for a long time. Unexpectedly, recent elegant studies demonstrated that stimulation of some G protein-coupled receptors (GPCRs), such as lysophosphatidic acid receptor, sphingosine-1-phosphate receptor, and the protease activated receptor PAR1, causes potent YAP/TAZ dephosphorylation and activation by promoting actin cytoskeleton assemble. In this review, we briefly describe the components of the Hippo pathway and focus on the recent progress with respect to the regulation of the Hippo pathway by GPCRs and G proteins in cancer cells. In addition, we also discuss the potential therapeutic roles targeting the Hippo pathway in human cancers. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  4. Structure Prediction of the Second Extracellular Loop in G-Protein-Coupled Receptors

    PubMed Central

    Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal

    2014-01-01

    G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. PMID:24896119

  5. Structure prediction of the second extracellular loop in G-protein-coupled receptors.

    PubMed

    Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal

    2014-06-03

    G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery.

    PubMed

    Davey, John

    2004-04-01

    IBC's Drug Discovery Technology Series is a group of conferences highlighting technological advances and applications in niche areas of the drug discovery pipeline. This 2-day meeting focused on G-protein-coupled receptors (GPCRs), probably the most important and certainly the most valuable class of targets for drug discovery. The meeting was chaired by J Beesley (Vice President, European Business Development for LifeSpan Biosciences, Seattle, USA) and included 17 presentations on various aspects of GPCR activity, drug screens and therapeutic analyses. Keynote Addresses covered two of the emerging areas in GPCR regulation; receptor dimerisation (G Milligan, Professor of Molecular Pharmacology and Biochemistry, University of Glasgow, UK) and proteins that interact with GPCRs (J Bockaert, Laboratory of Functional Genomics, CNRS Montpellier, France). A third Keynote Address from W Thomsen (Director of GPCR Drug Screening, Arena Pharmaceuticals, USA) discussed Arena's general approach to drug discovery and illustrated this with reference to the development of an agonist with potential efficacy in Type II diabetes.

  7. G protein-coupled receptors as therapeutic targets for multiple sclerosis

    PubMed Central

    Du, Changsheng; Xie, Xin

    2012-01-01

    G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future. PMID:22664908

  8. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes

    PubMed Central

    Dalet, Farfán-García Eunice; Guadalupe, Trujillo-Ferrara José; María del Carmen, Castillo-Hernández; Humberto, Guerra-Araiza Christian; Antonio, Soriano-Ursúa Marvin

    2013-01-01

    In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway. PMID:25206539

  9. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation.

    PubMed

    Yao, Xin-Qiu; Cato, M Claire; Labudde, Emily; Beyett, Tyler S; Tesmer, John J G; Grant, Barry J

    2017-09-29

    G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor.

    PubMed

    Weiss, Dahlia R; Ahn, SeungKirl; Sassano, Maria F; Kleist, Andrew; Zhu, Xiao; Strachan, Ryan; Roth, Bryan L; Lefkowitz, Robert J; Shoichet, Brian K

    2013-05-17

    A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency.

  11. Estrogen Receptors and Chronic Venous Disease.

    PubMed

    Serra, R; Gallelli, L; Perri, P; De Francesco, E M; Rigiracciolo, D C; Mastroroberto, P; Maggiolini, M; de Franciscis, S

    2016-07-01

    Chronic venous disease (CVD) is a common and relevant problem affecting Western people. The role of estrogens and their receptors in the venous wall seems to support the major prevalence of CVD in women. The effects of the estrogens are mediated by three estrogen receptors (ERs): ERα, ERβ, and G protein-coupled ER (GPER). The expression of ERs in the vessel walls of varicose veins is evaluated. In this prospective study, patients of both sexes, with CVD and varicose veins undergoing open venous surgery procedures, were enrolled in order to obtain vein samples. To obtain control samples of healthy veins, patients of both sexes without CVD undergoing coronary artery bypass grafting with autologous saphenous vein were recruited (control group). Samples were processed in order to evaluate gene expression. Forty patients with CVD (10 men [25%], 30 women [75%], mean age 54.3 years [median 52 years, range 33-74 years]) were enrolled. Five patients without CVD (three men, two women [aged 61-73 years]) were enrolled as the control group. A significant increase of tissue expression of ERα, ERβ and GPER in patients with CVD was recorded (p < .01), which was also related to the severity of venous disease. ERs seem to play a role in CVD; in this study, the expression of ERs correlated with the severity of the disease, and their expression was correlated with the clinical stage. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang

    Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials, therefore, human exposure to BPA is ubiquitous. We found that low concentrations of BPA stimulate the spermatogonial GC-1 cells proliferation by G protein-coupled receptor 30 (GPR30)-mediated epidermal growth factor receptor (EGFR)-extracellular regulated kinase (ERK)-c-Fos pathway. However, through the same pathway GPR30 expression has been shown to be induced by EGF, an EGFR ligand. Thus, we want to know if low concentrations of BPA are able to induce the GPR30 expression and the possible mechanism(s) in GC-1 cells. By transient transfection with expression plasmids, 10{sup −9} M BPAmore » significantly transactivates the Gpr30-5′-flanking region through activating the GPR30, cGMP-dependent protein kinase (PKG), estrogen receptor-α (ER-α), and EFGR-ERK pathways. Furthermore, an activator protein-1 (AP-1) site located within this region is found to be responsible for the transactivation of BPA. Expectedly, through the same pathways, BPA significantly induces the gene and protein expression of GPR30. c-Fos is further observed to be strongly recruited to the AP-1 site in a chromatin immunoprecipitation assay and its dysfunction on the AP-1 site markedly suppresses the expression of GPR30, p-ERK1/2, p-Ser118-ER-α and cell proliferation by BPA. Our results demonstrate that a low-concentration BPA induces GPR30 expression through the GPR30-EFGR-ERK-c-Fos, ER-α, and PKG pathways, presumably boosting the cells proliferation via a regulatory loop. The present study provides a novel insight into the potential role of GPR30 in the initiation and progression of male germ cell cancer induced by environmentally relevant BPA. - Highlights: ► Low concentrations of BPA activate the PKG and GPR30-EFGR-ERK-ER-α pathways. ► Low concentrations of BPA activate the AP-1 site of Gpr30-5′-flanking region. ► Low concentrations of BPA induce the expression of GPR30 gene and protein. ► Low

  13. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  14. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2.

    PubMed

    Burczyk, Martina; Burkhalter, Martin D; Blätte, Tamara; Matysik, Sabrina; Caron, Marc G; Barak, Lawrence S; Philipp, Melanie

    2015-01-27

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m(93) (mil(m93)), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling.

  15. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  16. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

    DOE PAGES

    Ye, Libin; Neale, Chris Andrew; Sljoka, Adnan; ...

    2018-04-10

    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A 2A GPCR. While Na + reinforces an inactive ensemble and a partial-agonist stabilized state, Ca 2+ and Mg 2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridgemore » specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. Lastly, an understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.« less

  17. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Libin; Neale, Chris Andrew; Sljoka, Adnan

    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A 2A GPCR. While Na + reinforces an inactive ensemble and a partial-agonist stabilized state, Ca 2+ and Mg 2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridgemore » specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. Lastly, an understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.« less

  18. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    PubMed

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins.

    PubMed

    Chadli, Meriem; Rebaud, Samuel; Maniti, Ofelia; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès

    2017-10-03

    -transmembrane protein belonging to the large superfamily of G-protein-coupled receptors (GPCRs). We succeeded in reinserting CXCR4 in pep-tBLMs formed on P19-4H by the fusion of tethered proteoliposomes. AFM and FRAP characterization allowed us to show that pep-tBLMs inserting CXCR4 remained fluid, homogeneous, and continuous. The value of the diffusion coefficient determined in the presence of reinserted CXCR4 was 2 × 10 -7 cm 2 /s. Ligand binding assays using a synthetic CXCR4 antagonist, T22 ([Tyr5,12, Lys7]-polyphemusin II), revealed that CXCR4 can be reinserted in pep-tBLMs with functional folding and orientation. This new approach represents a method of choice for investigating membrane protein reincorporation and a promising way of creating a new generation of membrane biochips adapted for screening agonists or antagonists of transmembrane proteins.

  20. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    PubMed

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early

  1. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor.

    PubMed

    Filardo, Edward J; Quinn, Jeffrey A; Sabo, Edmond

    2008-10-01

    The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.

  2. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases.

    PubMed

    Komolov, Konstantin E; Bhardwaj, Anshul; Benovic, Jeffrey L

    2015-08-21

    G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly conserved feature that is divided into three segments as follows: the C-lobe tether, the active-site tether (AST), and the N-lobe tether (NLT). This domain is fully resolved in GRK5 and reveals novel interactions with the nucleotide and N-lobe. Similar to other AGC kinases, the GRK5 AST is an integral part of the nucleotide-binding pocket, a feature not observed in other GRKs. The AST also mediates contact between the kinase N- and C-lobes facilitating closure of the kinase domain. The GRK5 NLT is largely displaced from its previously observed position in other GRKs. Moreover, although the autophosphorylation sites in the NLT are >20 Å away from the catalytic cleft, they are capable of rapid cis-autophosphorylation suggesting high mobility of this region. In summary, we provide a snapshot of GRK5 in a partially closed state, where structural elements of the kinase domain C-tail are aligned to form novel interactions to the nucleotide and N-lobe not previously observed in other GRKs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Using bioluminescent resonance energy transfer (BRET) to characterize agonist-induced arrestin recruitment to modified and unmodified G protein-coupled receptors (GPCRs)

    PubMed Central

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A.; Gurevich, Vsevolod V.; Lambert, Nevin A.

    2015-01-01

    G protein-coupled receptors (GPCRs) represent ~25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Functionally selective or biased ligands activate one of these two pathways and may be superior medications for certain diseases states. The identification of these ligands requires robust drug screening assays for both G protein and arrestin activity. Here we describe in detail the technical aspects of two bioluminescence resonance energy (BRET)-based assays that can be used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect recruitment of arrestin to unmodified GPCRs. PMID:26331887

  4. Membrane estrogen receptors - is it an alternative way of estrogen action?

    PubMed

    Soltysik, K; Czekaj, P

    2013-04-01

    The functions of estrogens are relatively well known, however the molecular mechanism of their action is not clear. The classical pathway of estrogen action is dependent on ERα and ERβ which act as transcription factors. The effects of this pathway occur within hours or days. In addition, so-called, non-classical mechanism of steroid action dependent on membrane estrogen receptors (mER) was described. In this mechanism the effects of estrogen action are observed in a much shorter time. Here we review the structure and cellular localization of mER, molecular basis of non-classical mER action, physiological role of mER as well as implications of mER action for cancer biology. Finally, some concerns about the new estrogen receptor - GPER and candidates for estrogen receptors - ER-X and ERx, are briefly discussed. It seems that mER is a complex containing signal proteins (signalosome), as IGF receptor, EGF receptor, Ras protein, adaptor protein Shc, non-receptor kinase c-Src and PI-3K, what rationalizes production of second messengers. Some features of membrane receptors are almost identical if compared to nuclear receptors. Probably, membrane and nuclear estrogen receptors are not separate units, but rather the components of a complex mechanism in which they both cooperate with each other. We conclude that the image of the estrogen receptor as a simple transcription factor is a far-reaching simplification. A better understanding of the mechanisms of estrogen action will help us to design more effective drugs affecting signal pathways depending on both membrane and nuclear receptors.

  5. IMAGING ASSESSMENT OF G-PROTEIN-COUPLED ESTROGEN RECEPTOR ACTIVATION

    EPA Science Inventory

    We expect to provide a targeted imaging assay that links chemical mechanism of toxicity to target organ effects and heart physiology within individual 96-hpf zebrafish. Importantly, with the utilization of selective, non-toxic agonists or antagonists for additional xenobiot...

  6. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  7. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.

    PubMed

    Currie, Kevin P M

    2010-11-01

    Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.

  8. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  9. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  10. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions.

    PubMed

    Bouchard, Caroline; Pagé, Julie; Bédard, Andréanne; Tremblay, Pierrot; Vallières, Luc

    2007-06-01

    G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators.

  11. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily.

    PubMed

    Roth, Bryan L; Kroeze, Wesley K

    2015-08-07

    G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Quantification of Ligand Binding to G-Protein Coupled Receptors on Cell Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Widdowson, Robert; Smith, David P.; Abell, Ben M.

    2012-01-01

    G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins. PMID:23049983

  13. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  14. Estrogen receptors and ischemic neuroprotection: who, what, where, and when?

    PubMed

    Schreihofer, Derek A; Ma, Yulin

    2013-06-13

    Estrogens, particularly 17β-estradiol (E2), are powerful neuroprotective agents in animal models of cerebral ischemia. Loss of endogenous E2 in women at menopause or after surgical oopherectomy leads to an increase risk of stroke, neurodegenerative disease, and cognitive decline. However, several clinical trials found detrimental effects of E2 therapy after menopause, including increased stroke risk and dementia. Recent animal and human studies now support the "critical period" hypothesis for E2 neuroprotection whereby E2 therapy must begin soon after the loss of endogenous E2 production to have a beneficial effect. Although a wide array of mechanisms has been proposed for estradiol (E2)-dependent neuroprotection in cerebral ischemia and neurodegenerative disease, most of these mechanisms involve interactions of E2 with one of its cognate receptors, estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), or the G protein-coupled estrogen receptor (GPER). However, these receptors are not uniformly distributed throughout the brain, across different cell types, and within cellular compartments. Such differences likely play a role in the ability of E2 and ER selective ligands to protect the brain from ischemia. This review examines the changes in ER expression and location that may underlie the loss of E2 neuroprotection seen with aging and long-term estrogen deprivation (LTED). Recent results suggest that the loss of ERα that accompanies aging and LTED plays an important role in the loss of E2-dependent neuroprotection. This article is part of a Special Issue entitled Hormone Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Understanding G Protein-Coupled Receptor Allostery via Molecular Dynamics Simulations: Implications for Drug Discovery.

    PubMed

    Basith, Shaherin; Lee, Yoonji; Choi, Sun

    2018-01-01

    Unraveling the mystery of protein allostery has been one of the greatest challenges in both structural and computational biology. However, recent advances in computational methods, particularly molecular dynamics (MD) simulations, have led to its utility as a powerful and popular tool for the study of protein allostery. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric hot spots and the determination of the mechanistic basis for allostery. These structural and dynamic studies can provide a foundation for a wide range of applications, including rational drug design and protein engineering. In our laboratory, the use of MD simulations and network analysis assisted in the elucidation of the allosteric hotspots and intracellular signal transduction of G protein-coupled receptors (GPCRs), primarily on one of the adenosine receptor subtypes, A 2A adenosine receptor (A 2A AR). In this chapter, we describe a method for calculating the map of allosteric signal flow in different GPCR conformational states and illustrate how these concepts have been utilized in understanding the mechanism of GPCR allostery. These structural studies will provide valuable insights into the allosteric and orthosteric modulations that would be of great help to design novel drugs targeting GPCRs in pathological states.

  16. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    PubMed

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  17. Estrogenic Activity of Hyperforin in MCF-7 Human Breast Cancer Cells Transfected with Estrogen Receptor.

    PubMed

    Kwon, Joseph; Oh, Kyung Seo; Cho, Se-Young; Bang, Mi Ae; Kim, Hwan Seon; Vaidya, Bipin; Kim, Duwoon

    2016-11-01

    Hyperforin, a major active compound of St. John's wort extract, affects estrogenic activity. In this study, the compound evoked estrogen response element-dependent luciferase activity and cell proliferation in MCF-7 cells. Hyperforin-induced cell proliferation was significantly inhibited by the estrogen receptor antagonist ICI 182,780. These results suggested that hyperforin had estrogenic and cell proliferation activities, which were stimulated via the estrogen receptor. Compared to 17 β -estradiol, hyperforin showed significantly lower estrogenic activity and cell proliferation. The mechanism underlying the estrogenic activity of hyperforin was unknown, therefore, in this study, for the first time, the expression and post-translational modification of proteins were determined and compared among control, 17 β -estradiol-treated, and hyperforin-treated cells using proteomic techniques. A total of 453 proteins were identified, of which 282 proteins were significantly modulated in hyperforin-treated cells compared to 17 β -estradiol-treated cells. Ingenuity pathway analysis also demonstrated that hyperforin treatment induced less cell proliferation than 17 β -estradiol by downregulating estrogen receptor 1. Protein network analysis showed that cell proliferation was regulated mainly by cyclin D1 and extracellular signal-regulated kinases. In conclusion, although, hyperforin exhibited lower estrogenic activity than 17 β -estradiol, the compound induced lower levels of cancer cell proliferation in vitro . Georg Thieme Verlag KG Stuttgart · New York.

  18. Hydrophobic cluster analysis of G protein-coupled receptors: a powerful tool to derive structural and functional information from 2D-representation of protein sequences.

    PubMed

    Lentes, K U; Mathieu, E; Bischoff, R; Rasmussen, U B; Pavirani, A

    1993-01-01

    Current methods for comparative analyses of protein sequences are 1D-alignments of amino acid sequences based on the maximization of amino acid identity (homology) and the prediction of secondary structure elements. This method has a major drawback once the amino acid identity drops below 20-25%, since maximization of a homology score does not take into account any structural information. A new technique called Hydrophobic Cluster Analysis (HCA) has been developed by Lemesle-Varloot et al. (Biochimie 72, 555-574), 1990). This consists of comparing several sequences simultaneously and combining homology detection with secondary structure analysis. HCA is primarily based on the detection and comparison of structural segments constituting the hydrophobic core of globular protein domains, with or without transmembrane domains. We have applied HCA to the analysis of different families of G-protein coupled receptors, such as catecholamine receptors as well as peptide hormone receptors. Utilizing HCA the thrombin receptor, a new and as yet unique member of the family of G-protein coupled receptors, can be clearly classified as being closely related to the family of neuropeptide receptors rather than to the catecholamine receptors for which the shape of the hydrophobic clusters and the length of their third cytoplasmic loop are very different. Furthermore, the potential of HCA to predict relationships between new putative and already characterized members of this family of receptors will be presented.

  19. The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element.

    PubMed

    Romine, L E; Wood, J R; Lamia, L A; Prendergast, P; Edwards, D P; Nardulli, A M

    1998-05-01

    We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.

  20. Using random forests for assistance in the curation of G-protein coupled receptor databases.

    PubMed

    Shkurin, Aleksei; Vellido, Alfredo

    2017-08-18

    Biology is experiencing a gradual but fast transformation from a laboratory-centred science towards a data-centred one. As such, it requires robust data engineering and the use of quantitative data analysis methods as part of database curation. This paper focuses on G protein-coupled receptors, a large and heterogeneous super-family of cell membrane proteins of interest to biology in general. One of its families, Class C, is of particular interest to pharmacology and drug design. This family is quite heterogeneous on its own, and the discrimination of its several sub-families is a challenging problem. In the absence of known crystal structure, such discrimination must rely on their primary amino acid sequences. We are interested not as much in achieving maximum sub-family discrimination accuracy using quantitative methods, but in exploring sequence misclassification behavior. Specifically, we are interested in isolating those sequences showing consistent misclassification, that is, sequences that are very often misclassified and almost always to the same wrong sub-family. Random forests are used for this analysis due to their ensemble nature, which makes them naturally suited to gauge the consistency of misclassification. This consistency is here defined through the voting scheme of their base tree classifiers. Detailed consistency results for the random forest ensemble classification were obtained for all receptors and for all data transformations of their unaligned primary sequences. Shortlists of the most consistently misclassified receptors for each subfamily and transformation, as well as an overall shortlist including those cases that were consistently misclassified across transformations, were obtained. The latter should be referred to experts for further investigation as a data curation task. The automatic discrimination of the Class C sub-families of G protein-coupled receptors from their unaligned primary sequences shows clear limits. This study has

  1. G protein βγ11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the α subunit type

    PubMed Central

    Azpiazu, Inaki; Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.

    2008-01-01

    G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling β2 adrenergic receptors causes rapid reversible translocation of the G protein γ11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the β1 subunit suggests that γ11 translocates as a βγ complex. Pertussis toxin ADP ribosylation of the αi subunit type or substitution of the C terminal domain of αo with the corresponding region of αs inhibits γ11 translocation demonstrating that α subunit interaction with a receptor and its activation are requirements for the translocation. The rate of γ11 translocation is sensitive to the rate of activation of the G protein α subunit. α subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of γ11 translocation compared to α subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of γ11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of γ11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and α subunit types in a live cell. PMID:16242307

  2. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Xu, H. Eric

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineeredmore » as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.« less

  3. Antiestrogen Resistant Cell Lines Expressing Estrogen Receptor α Mutations Upregulate the Unfolded Protein Response and are Killed by BHPI

    PubMed Central

    Mao, Chengjian; Livezey, Mara; Kim, Ji Eun; Shapiro, David J.

    2016-01-01

    Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells. PMID:27713477

  4. A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor*

    PubMed Central

    Hurst, Dow P.; Grossfield, Alan; Lynch, Diane L.; Feller, Scott; Romo, Tod D.; Gawrisch, Klaus; Pitman, Michael C.; Reggio, Patricia H.

    2010-01-01

    Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (−)-7′-isothiocyanato-11-hydroxy-1′,1′dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207–1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane α-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. PMID:20220143

  5. GPER-1 and estrogen receptor-β ligands modulate aldosterone synthesis.

    PubMed

    Caroccia, Brasilina; Seccia, Teresa M; Campos, Abril Gonzalez; Gioco, Francesca; Kuppusamy, Maniselvan; Ceolotto, Giulio; Guerzoni, Eugenia; Simonato, Francesca; Mareso, Sara; Lenzini, Livia; Fassina, Ambrogio; Rossi, Gian Paolo

    2014-11-01

    Fertile women have lower blood pressure and cardiovascular risk than age-matched men, which suggests that estrogens exert cardiovascular protective effects. However, whether 17 β-estradiol (E2) blunts aldosterone secretion, and thereby affects the gender dimorphism of blood pressure, is unknown. We therefore sought for the estrogen receptor (ER) subtypes in human adrenocortical tissues ex vivo by performing gene and protein expression studies. We also investigated the effect of E2 on aldosterone synthesis and the involved receptors through in vitro functional experiments in the adrenocortical cells HAC15. We found that in the human adrenal cortex and aldosterone-producing adenoma cells, the most expressed ERs were the ERβ and the G protein-coupled receptor-1 (GPER-1), respectively. After selective ERβ blockade, E2 (10 nmol/L) markedly increased both the expression of aldosterone synthase and the production of aldosterone (+5- to 7-fold vs baseline, P < .001). Under the same condition, the GPER-1 receptor agonist 1-[4-(6-bromo-benzo (1, 3)dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c] quinolin-8-yl]-ethanone (G-1) (10 nmol/L) mimicked this effect, which was abrogated by cotreatment with either the GPER-1 receptor antagonist (3aS*,4R*,9bR*)-4-(6-Bro-mo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G-15), or a selective protein kinase A inhibitor 8-Bromo-2-monobutyryladenosine-3,5-cyclic mono-phosphorothioate, Rp-isomer. Silencing of the ERβ significantly raised aldosterone synthase expression and aldosterone production. Conversely, silencing of the GPER-1 lowered aldosterone synthase gene and protein expression. Moreover, it blunted the stimulatory effect of E2 on aldosterone synthase that was seen during ERβ blockade. These results support the conclusion that in humans, E2 inhibits aldosterone synthesis by acting via ERβ. Pharmacologic disinhibition of ERβ unmasks a potent secretagogue effect of E2 that involves GPER-1 and protein kinase A

  6. Expression of Estrogen Receptors Alpha (ER-α), Beta (ER-β), and G Protein-Coupled Receptor 30 (GPR30) in Testicular Tissue of Men with Klinefelter Syndrome.

    PubMed

    Bernardino, R L; Alves, M G; Silva, J; Barros, A; Ferraz, L; Sousa, M; Sá, R; Oliveira, P F

    2016-06-01

    Men with Klinefelter syndrome (KS) present severe hormonal dysregulation, particularly elevated serum estradiol concentration. Estrogens act through specific receptors and regulate testes development and spermatogenesis. Herein, we evaluated GPR30, ERα, and ERβ mRNA expression in testis of KS men and men with 46XY karyotype by reverse transcriptase and quantitative PCR. ERβ transcripts are the most abundant in testicular tissue of 46XY men. Notably, testicular GPR30 transcription in KS men was approximately 12 times higher. Since GPR30 is essential to mediate estrogen effects over steroidogenesis, our data illustrate that GPR30 may underpin the testicular alterations observed in KS men. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Increased expression of G-protein-coupled receptor kinases 3 and 4 in hyperfunctioning thyroid nodules.

    PubMed

    Voigt, Carsten; Holzapfel, Hans-Peter; Meyer, Silke; Paschke, Ralf

    2004-07-01

    G-protein-coupled receptor kinases (GRKs) are implicated in the pathophysiology of human diseases such as arterial hypertension, heart failure and rheumatoid arthritis. While G-protein-coupled receptor kinases 2 and 5 have been shown to be involved in the desensitization of the rat thyrotropin receptor (TSHR), their role in the pathophysiology of hyperfunctioning thyroid nodules (HTNs) is unknown. Therefore, we analyzed the expression pattern of the known GRKs in human thyroid tissue and investigated their function in the pathology of HTNs. The expression of different GRKs in human thyroid and HTNs was measured by Western blotting. The influence of GRK expression on TSHR function was analyzed by coexpression experiments in HEK 293 cells. We demonstrate that in addition to GRKs 2, 5 and 6, GRKs 3 and 4 are also expressed in the human thyroid. GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. This GRK-induced desensitization is amplified by the additional over-expression of beta-arrestin 1 or 2. We did not find any mutations in the GRKs 2, 3 and 5 from 14 HTNs without TSHR mutations and Gsalpha mutations. The expression of GRKs 3 and 4 was increased in HTNs independently from the existence of TSHR mutations or Gsalpha mutations. In conclusion, the increased expression of GRK 3 in HTNs and the ability of GRK 3 to desensitize the TSHR in vitro, suggest a potential role for GRK 3 as a negative feedback regulator for the constitutively activated cAMP pathway in HTNs.

  8. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina.

    PubMed

    Oh, Kyung-Jin; Lee, Hyun-Suk; Ahn, Kyuyoun; Park, Kwangsung

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230-240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication.

  9. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    PubMed

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  10. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  11. Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin.

    PubMed

    Katragadda, M; Chopra, A; Bennett, M; Alderfer, J L; Yeagle, P L; Albert, A D

    2001-07-01

    An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.

  12. Rapid Actions of Xenoestrogens Disrupt Normal Estrogenic Signaling

    PubMed Central

    Watson, Cheryl S.; Hu, Guangzhen; Paulucci-Holthauzen, Adriana A.

    2014-01-01

    Some chemicals used in consumer products or manufacturing (eg. plastics, surfactants, pesticides, resins) have estrogenic activities; these xenoestrogens (XEs) chemically resemble physiological estrogens and are one of the major categories of synthesized compounds that disrupt endocrine actions. Potent rapid actions of XEs via nongenomic mechanisms contribute significantly to their disruptive effects on functional endpoints (eg. cell proliferation/death, transport, peptide release). Membrane-initiated hormonal signaling in our pituitary cell model is predominantly driven by mERα with mERβ and GPR30 participation. We visualized ERα on plasma membranes using many techniques in the past (impeded ligands, antibodies to ERα ) and now add observations of epitope proximity with other membrane signaling proteins. We have demonstrated a range of rapid signals/protein activations by XEs including: calcium channels, cAMP/PKA, MAPKs, G proteins, caspases, and transcription factors. XEs can cause disruptions of the oscillating temporal patterns of nongenomic signaling elicited by endogenous estrogens. Concentration effects of XEs are nonmonotonic (a trait shared with natural hormones), making it difficult to design efficient (single concentration) toxicology tests to monitor their harmful effects. A plastics monomer, Bisphenol A, modified by waste treatment (chlorination) and other processes causes dephosphorylation of extracellular-regulated kinases, in contrast to having no effects as it does in genomic signaling. Mixtures of XEs, commonly found in contaminated environments, disrupt the signaling actions of physiological estrogens even more severely than do single XEs. Understanding the features of XEs that drive these disruptive mechanisms will allow us to redesign useful chemicals that exclude estrogenic or anti-estrogenic activities. PMID:24269739

  13. Customizing G Protein-coupled receptor models for structure-based virtual screening.

    PubMed

    de Graaf, Chris; Rognan, Didier

    2009-01-01

    This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.

  14. Targeting G protein coupled receptor-related pathways as emerging molecular therapies

    PubMed Central

    Ghanemi, Abdelaziz

    2013-01-01

    G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730

  15. Alteration in G Proteins and Prolactin Levels in Pituitary After Ethanol and Estrogen Treatment

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Background Chronic administration of ethanol increases plasma prolactin levels and enhances estradiol’s mitogenic action on the lactotropes of the pituitary gland. The present study was conducted to determine the changes in the pituitary levels of G proteins during the tumor development following alcohol and ethanol treatments. Methods Using ovariectomized Fischer-344 female rats, we have determined ethanol and estradiol actions at 2 and 4 weeks on pituitary weight and pituitary cell contents of prolactin, Gs. Gq11, Gi1, Gi2, and Gi3 proteins. Western blots were employed to measure protein contents. Results Ethanol increased basal and estradiol-enhanced wet weight and the prolactin content in the pituitary in a time-dependent manner. Chronic exposure of estradiol increased the levels of Gs protein in the pituitary. Unlike estradiol, ethanol exposure did not show significant effect on the basal level of Gs protein, but moderately increased the estradiol-induced levels of this protein. Estradiol exposure enhanced Gq11 protein levels in the pituitary after 2 and 4 weeks, while ethanol treatment failed to alter these protein levels in the pituitary in control-treated or estradioltreated ovariectomized rats. In the case of Gi1, estradiol but not ethanol increased the level of this protein at 4 weeks of treatment. However, estradiol and ethanol alone reduced the levels of both Gi2 and Gi3 proteins at 2 and 4 weeks of treatment. Ethanol also significantly reduced the estradiol-induced Gi2 levels at 4 weeks and Gi3 level at 2 and 4 weeks. Conclusions These results confirm ethanol’s and estradiol’s growth-promoting and prolactin stimulating actions on lactotropes of the pituitary and further provide evidence that ethanol and estradiol may control lactotropic cell functions by altering expression of specific group of G proteins in the pituitary. PMID:18336630

  16. Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and β1-integrin signaling pathway in tumor cells.

    PubMed

    Yuan, Jie; Liu, Manran; Yang, Li; Tu, Gang; Zhu, Qing; Chen, Maoshan; Cheng, Hong; Luo, Haojun; Fu, Weijie; Li, Zhenhua; Yang, Guanglun

    2015-05-21

    Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy. β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin in GPER-mediated tamoxifen resistance in breast cancer. The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified using specific inhibitors and Western blotting analysis. GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK) signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly, the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition

  17. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    PubMed Central

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  18. Activation of novel estrogen receptor GPER results in inhibition of cardiocyte apoptosis and cardioprotection.

    PubMed

    Li, Wan-Li; Xiang, Wei; Ping, Ye

    2015-08-01

    Several studies have recently demonstrated that G protein-coupled estrogen receptor (GPER) 30 directly binds to estrogen and mediates its action. The aim of the present study was to investigate the effects of GPER on cardiocyte apoptosis following ischemia/reperfusion injury (MIRI) in H9C2 myocardial cells. H9C2 cells were treated with a specific GPER agonist (G1), 17β-estradiol (E2) or the vehicle. The cells were subjected to 20 min of myocardial ischemia followed by 120 min of reperfusion. They were then randomly assigned to three experimental groups: Control, G1, E2. B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) levels were measured, Hoechst 33258 staining was performed to assess apoptosis, and superoxide dismutase (SOD), tumor necrosis factor (TNF)-α and adenosine triphosphatase (ATPase) levels were determined. To test the specificity of G1, GPER-knockout cells were treated with G1 and analyzed as stated above. Compared with the vehicle-treated groups, G1 and E2-treated groups exhibited elevated Bcl-2 levels, decreased Bax levels and cell apoptosis, significantly increased SOD and ATP levels and decreased TNF-α levels following ischemia-reperfusion. However, G1 had no evident effects on the GPER-knockout cells. In conclusion, the present study suggested that GPER activation provided a cardioprotective effect following ischemia-reperfusion by inhibiting cardiocyte apoptosis.

  19. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells.

    PubMed

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERalpha and ERbeta expression in both cell lines - and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERalpha in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERbeta. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer.

  20. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells

    PubMed Central

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Introduction Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. Methods We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERα and ERβ expression in both cell lines – and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Results Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERα in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex™ exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERβ. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. Conclusion The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer. PMID:17986353