Sample records for g1 growth arrest

  1. Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation.

    PubMed

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo.

    PubMed

    Zeng, Xingruo; Xu, Zhou; Gu, Jiayan; Huang, Haishan; Gao, Guangxun; Zhang, Xiaoru; Li, Jingxia; Jin, Honglei; Jiang, Guosong; Sun, Hong; Huang, Chuanshu

    2016-03-01

    Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. ©2016 American Association for Cancer Research.

  3. Induction of miR-137 by isorhapontigenin (ISO) direct targeted Sp1 protein translation and mediated its anti-cancer activity both in vitro and in vivo

    PubMed Central

    Zeng, Xingruo; Xu, Zhou; Gu, Jiayan; Huang, Haishan; Gao, Guangxun; Zhang, Xiaoru; Li, Jingxia; Jin, Honglei; Jiang, Guosong; Sun, Hong; Huang, Chuanshu

    2016-01-01

    Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell cycle G0/G1 arrest as well as down-regulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In current studies, the potential ISO inhibition of bladder tumor formation has been explored in xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anti-cancer activities has been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by direct targeting Sp1 mRNA 3′UTR. Similar to ISO treatment, ectopic expression of miR-137 alone led to G0/G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by over-expression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced the inhibition of Sp1/Cyclin D1 expression, and induction of G0/G1 cell growth arrest and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3′UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0/G1 growth arrest and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anti-cancer activity of ISO in the therapy of human bladder cancer. PMID:26832795

  4. Negative regulation of G2-M by ATR (mei-41)/Chk1(Grapes) facilitates tracheoblast growth and tracheal hypertrophy in Drosophila.

    PubMed

    Kizhedathu, Amrutha; Bagul, Archit V; Guha, Arjun

    2018-04-16

    Imaginal progenitors in Drosophila are known to arrest in G2 during larval stages and proliferate thereafter. Here we investigate the mechanism and implications of G2 arrest in progenitors of the adult thoracic tracheal epithelium (tracheoblasts). We report that tracheoblasts pause in G2 for ~48-56 h and grow in size over this period. Surprisingly, tracheoblasts arrested in G2 express drivers of G2-M like Cdc25/String (Stg). We find that mechanisms that prevent G2-M are also in place in this interval. Tracheoblasts activate Checkpoint Kinase 1/Grapes (Chk1/Grp) in an ATR/mei-41-dependent manner. Loss of ATR/Chk1 led to precocious mitotic entry ~24-32 h earlier. These divisions were apparently normal as there was no evidence of increased DNA damage or cell death. However, induction of precocious mitoses impaired growth of tracheoblasts and the tracheae they comprise. We propose that ATR/Chk1 negatively regulate G2-M in developing tracheoblasts and that G2 arrest facilitates cellular and hypertrophic organ growth. © 2018, Kizhedathu et al.

  5. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kanayo; Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp; Tanaka, Satoshi

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDKmore » inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.« less

  6. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest.

    PubMed

    Nguyen, Phong Dang; Gurevich, David Baruch; Sonntag, Carmen; Hersey, Lucy; Alaei, Sara; Nim, Hieu Tri; Siegel, Ashley; Hall, Thomas Edward; Rossello, Fernando Jaime; Boyd, Sarah Elizabeth; Polo, Jose Maria; Currie, Peter David

    2017-07-06

    Organ growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G 2 cell-cycle arrest within muscle stem cells, and disrupting this G 2 arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G 0 /G 1 cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells. Copyright © 2017. Published by Elsevier Inc.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp; Yamauchi, Motohiro; Oka, Yasuyoshi

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% andmore » 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.« less

  8. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  9. Activation of GPR30 inhibits growth of prostate cancer cells via sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G2 cell-cycle arrest

    PubMed Central

    Chan, Queeny K.Y.; Lam, Hung-Ming; Ng, Chi-Fai; Lee, Amy Y.Y.; Chan, Eddie S.Y.; Ng, Ho-Keung; Ho, Shuk-Mei; Lau, Kin-Mang

    2010-01-01

    G protein–coupled receptor 30 (GPR30) exhibits estrogen-binding affinity and mediates nongenomic signaling of estrogen to regulate cell growth. We here demonstrated for the first time, in contrast to the reported promoting action of GPR30 on the growth of breast and ovarian cancer cells, that activation of GPR30 by the receptor-specific, non-estrogenic ligand G-1 inhibited growth of androgen-dependent and -independent prostate cancer (PCa) cells in vitro and PC-3 xenografts in vivo. However, G-1 elicited no growth or histological changes in the prostates of intact mice and did not inhibit growth in quiescent BPH-1, an immortalized benign prostatic epithelial cell line. Treatment of PC-3 cells with G-1-induced cell-cycle arrest at the G2 phase and reduced the expression of G2-checkpoint regulators (cyclin A2, cyclin B1, cdc25c, and cdc2) and the phosphorylation of their common transcriptional regulator NF-YA in PC-3 cells. With the extensive use of siRNA knockdown experiments and the MEK inhibitor PD98059 in the present study, we dissected the mechanism underlying G-1–induced inhibition of PC-3 cell growth, which was mediated through GPR30, followed by a sustained activation of Erk1/2 and a c-jun/c-fos-dependent upregulation of p21, resulting in the arrest of PC-3 growth at the G2 phase. The discovery of this signaling pathway lays the foundation for future development of GPR30-based therapies for PCa. PMID:20203690

  10. The Flavonoid Apigenin Downregulates CDK1 by Directly Targeting Ribosomal Protein S9

    PubMed Central

    Iizumi, Yosuke; Oishi, Masakatsu; Taniguchi, Tomoyuki; Goi, Wakana; Sowa, Yoshihiro; Sakai, Toshiyuki

    2013-01-01

    Flavonoids have been reported to inhibit tumor growth by causing cell cycle arrest. However, little is known about the direct targets of flavonoids in tumor growth inhibition. In the present study, we developed a novel method using magnetic FG beads to purify flavonoid-binding proteins, and identified ribosomal protein S9 (RPS9) as a binding partner of the flavonoid apigenin. Similar to treatment with apigenin, knockdown of RPS9 inhibited the growth of human colon cancer cells at the G2/M phase by downregulating cyclin-dependent kinase 1 (CDK1) expression at the promoter level. Furthermore, knockdown of RPS9 suppressed G2/M arrest caused by apigenin. These results suggest that apigenin induces G2/M arrest at least partially by directly binding and inhibiting RPS9 which enhances CDK1 expression. We therefore raise the possibility that identification of the direct targets of flavonoids may contribute to the discovery of novel molecular mechanisms governing tumor growth. PMID:24009741

  11. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haihe; Yang, Zhanchun; Liu, Chunbo

    2014-11-07

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive.more » RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.« less

  12. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo.

    PubMed

    Wei, W; Chen, Z-J; Zhang, K-S; Yang, X-L; Wu, Y-M; Chen, X-H; Huang, H-B; Liu, H-L; Cai, S-H; Du, J; Wang, H-S

    2014-10-02

    There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER-) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER--breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER--breast cancer cells in vitro. Treatment of ER--breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER- breast cancer treatment.

  13. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells.

    PubMed

    Yim, Dongsool; Singh, Rana P; Agarwal, Chapla; Lee, Sookyeon; Chi, Hyungjoon; Agarwal, Rajesh

    2005-02-01

    We isolated a coumarin compound decursin (C(19)H(20)O(5); molecular weight 328) from Korean angelica (Angelica gigas) root and characterized it by spectroscopy. Here, for the first time, we observed that decursin (25-100 micromol/L) treatment for 24 to 96 hours strongly inhibits growth and induces death in human prostate carcinoma DU145, PC-3, and LNCaP cells. Furthermore, we observed that decursinol [where (CH(3))(2)-C=CH-COO- side chain of decursin is substituted with -OH] has much lower effects compared with decursin, suggesting a possible structure-activity relationship. Decursin-induced growth inhibition was associated with a strong G(1) arrest (P < 0.001) in DU145 and LNCaP cells, and G(1), S as well as G(2)-M arrests depending upon doses and treatment times in PC-3 cells. Comparatively, decursin was nontoxic to human prostate epithelial PWR-1E cells and showed only moderate growth inhibition and G(1) arrest. Consistent with G(1) arrest in DU145 cells, decursin strongly increased protein levels of Cip1/p21 but showed a moderate increase in Kip1/p27 with a decrease in cyclin-dependent kinases (CDK); CDK2, CDK4, CDK6, and cyclin D1, and inhibited CDK2, CDK4, CDK6, cyclin D1, and cyclin E kinase activity, and increased binding of CDK inhibitor (CDKI) with CDK. Decursin-caused cell death was associated with an increase in apoptosis (P < 0.05-0.001) and cleaved caspase-9, caspase-3, and poly(ADP-ribose) polymerase; however, pretreatment with all-caspases inhibitor (z-VAD-fmk) only partially reversed decursin-induced apoptosis, suggesting the involvement of both caspase-dependent and caspase-independent pathways. These findings suggest the novel anticancer efficacy of decursin mediated via induction of cell cycle arrest and apoptosis selectively in human prostate carcinoma cells.

  14. The Cell Cycle Inhibitor p27KIP1: A Key Mediator of G1 Arrest by Androgen Ablation an dby Vitamin D3 Analog

    DTIC Science & Technology

    2000-02-01

    al., 1996; Tyers, 1996). gland . Higher doses of androgen cause growth arrest by p27 increases during differentiation in many cell inducing...innocuous hormones in human prostate cancer patients. These vitamin D3 analogs can inhibit prostate cancer growth and yet they do not cause the negative side...Vitamin D3 and a physiologic does of DHT could cause a synergistic growth arrest in prostate cancer cells (22). The vitamin D3 analogue EB 1089 has the

  15. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells.

    PubMed

    Lee, Min Ho; Cho, Yoonjung; Jung, Byung Chul; Kim, Sung Hoon; Kang, Yeo Wool; Pan, Cheol-Ho; Rhee, Ki-Jong; Kim, Yoon Suk

    2015-08-14

    Parkin is a known tumor suppressor. However, the mechanism by which parkin acts as a tumor suppressor remains to be fully elucidated. Previously, we reported that parkin expression induces caspase-dependent apoptotic cell death in TNF-α-treated HeLa cells. However, at that time, we did not consider the involvement of parkin in cell cycle control. In the current study, we investigated whether parkin is involved in cell cycle regulation and suppression of cancer cell growth. In our cell cycle analyses, parkin expression induced G2/M cell cycle arrest in TNF-α-treated HeLa cells. To elucidate the mechanism(s) by which parkin induces this G2/M arrest, we analyzed cell cycle regulatory molecules involved in the G2/M transition. Parkin expression induced CDC2 phosphorylation which is known to inhibit CDC2 activity and cause G2/M arrest. Cyclin B1, which is degraded during the mitotic transition, accumulated in response to parkin expression, thereby indicating parkin-induced G2/M arrest. Next, we established that Myt1, which is known to phosphorylate and inhibit CDC2, increased following parkin expression. In addition, we found that parkin also induces increased Myt1 expression, G2/M arrest, and reduced cell viability in TNF-α-treated HCT15 cells. Furthermore, knockdown of parkin expression by parkin-specific siRNA decreased Myt1 expression and phosphorylation of CDC2 and resulted in recovered cell viability. These results suggest that parkin acts as a crucial molecule causing cell cycle arrest in G2/M, thereby suppressing tumor cell growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  17. Cyclin D1 Downregulation Contributes to Anti-Cancer Effect of Isorhapontigenin (ISO) on Human Bladder Cancer Cells

    PubMed Central

    Fang, Yong; Cao, Zipeng; Hou, Qi; Ma, Chen; Yao, Chunsuo; Li, Jingxia; Wu, Xue-Ru; Huang, Chuanshu

    2013-01-01

    Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum, and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying ISO anti-cancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that ISO showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G0/G1 arrest as well as downregulation of Cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that ISO down-regulated Cyclin D1 gene transcription via inhibition of SP1 transactivation. Moreover, ectopic expression of GFP-Cyclin D1 rendered UMUC3 cells resistant to induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth by ISO treatment. Together, our studies demonstrate that ISO is an active compound that mediates for Gnetum Cleistostachyum’s induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth through down-regulating SP1/Cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anti-cancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate ISO. PMID:23723126

  18. Cell cycle arrest by prostaglandin A1 at the G1/S phase interface with up-regulation of oncogenes in S-49 cyc- cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    1994-01-01

    Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the -49 lymphoma variant (cyc-) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc- cells. DNA synthesis is inhibited 42% by dmPGA1 (50 microM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the alpha, beta unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc- cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30-50 microns) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc- cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells.

    PubMed

    Kang, You-Jin; Park, Kwang-Kyun; Chung, Won-Yoon; Hwang, Jae-Kwan; Lee, Sang Kook

    2009-11-01

    Xanthorrhizol is a sesquiterpenoid from the rhizome of Curcuma xanthorrhiza. In our previous studies, xanthorrhizol suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, inhibited cancer cell growth, and exerted an anti-metastatic effect in an animal model. However, the exact mechanisms for its inhibitory effects against cancer cell growth have not yet been fully elucidated. In the present study, we investigated the growth inhibitory effect of xanthorrhizol on cancer cells. Xanthorrhizol dose-dependently exerted antiproliferative effects against HCT116 human colon cancer cells. Xanthorrhizol also arrested cell cycle progression in the G0/G1 and G2/M phase and induced the increase of sub-G1 peaks. Cell cycle arrest was highly correlated with the downregulation of cyclin A, cyclin B1, and cyclin D1; cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4; proliferating cell nuclear antigen; and inductions of p21 and p27, cyclin-dependent kinase inhibitors. The apoptosis by xanthorrhizol was markedly evidenced by induction of DNA fragmentation, release of cytochrome c, activation of caspases, and cleavage of poly-(ADP-ribose) polymerase. In addition, xanthorrhizol increased the expression and promoter activity of pro-apoptotic non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1). These findings provide one plausible mechanism for the growth inhibitory activity of xanthorrhizol against cancer cells.

  20. Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis

    PubMed Central

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing

    2014-01-01

    Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576

  1. Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation.

    PubMed

    Feng, Shuyu; Yang, Yue; Lv, Jingyi; Sun, Lichun; Liu, Mingqiu

    2016-07-01

    We investigated the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, and the mechanism of VPA-induced growth inhibition on three cervical cancer cell lines with different molecular and genetic background. We found that VPA induced proliferation suppression, cell apoptosis and cell cycle arrest in all tested cell lines, with an increase of Notch1 active form ICN1 as a tumor suppressor and its target gene HES1. Noteworthy, blocking of Notch signaling with DAPT resulted in growth inhibition in ICN1-overexpressing CaSki and HT-3 cells. Thus, endogenous Notch signaling may be necessary for survival of ICN1-overexpressing cervical cancer cell lines. Furthermore, G1 phase arrest was induced in HeLa and CaSki cells by VPA while G2 phase arrest was induced in HT-3 cells, suggesting different mechanism in this cycle arrest. We also found VPA suppressed oncogene E6 in a Notch-independent manner, and induced significant apoptosis in E6-overexpressing HPV positive CaSki cells. Cell morphological change was also observed in HeLa and HT-3 cell lines after VPA treatment with an upregulation of EMT transcription factor Snail1. Notch signaling inhibitor DAPT partly reversed VPA-induced Snail1 upregulation in HeLa cells. This discovery supports that VPA may induce EMT at least partly via Notch activation.

  2. Molecular cloning of TA16, a transcriptional repressor that may mediate glucocorticoid-induced growth arrest of leiomyosarcoma cells.

    PubMed

    Fan, W; Ma, J X; Cheng, L; Norris, J S

    1997-08-01

    The DDT1 MF2 smooth muscle tumor cell line was derived from an estrogen/androgen-induced leiomyosarcoma that arose in the ductus deferens of a Syrian hamster. The growth of this cell line is arrested at the G0/G1 phase of the cell cycle after treatment with glucocorticoids. To identify the putative gene(s) that are potentially involved in this hormone-induced cell growth arrest, we have used a differential screening technique to clone those genes whose expression is induced or up-regulated by glucocorticoids. A number of glucocorticoid response genes were thereby isolated from the leiomyosarcoma cells. One of these clones, termed TA16, was found to be markedly up-regulated by glucocorticoids in DDT1 MF2 cells, but only marginally changed in GR1 cells, a glucocorticoid-resistant variant that was selected from the wild type DDT1 MF2 cell. Isolation and sequencing of its intact cDNA indicated that the TA16 encodes a protein 485 amino acids long, and its sequence is closely homologous to a novel transcriptional repressor that presumably represses the transcription activity of some zinc finger transcriptional factors through a direct interaction. Transfection assays demonstrated that introduction of an antisense TA16 cDNA expression vector, controlled by an MMTV promoter, into the DDT1 MF2 cell significantly relieved the glucocorticoid-induced cell growth arrest. This finding suggests that TA16 might participate in the mediation of glucocorticoid-induced cell cycle arrest in leiomyosarcoma cells.

  3. Estrogen suppresses breast cancer proliferation through GPER / p38 MAPK axis during hypoxia.

    PubMed

    Sathya, S; Sudhagar, S; Lakshmi, B S

    2015-12-05

    Breast cancer cells frequently experience hypoxia which is associated with resistance to hormonal therapy and poor clinical prognosis, making it important to understand the function of estrogen under hypoxic condition. Here, we demonstrate that estrogen suppresses breast cancer cell growth under hypoxia, through inhibition at G1/S phase of cell cycle, by elevation of p21 expression. The involvement of GPER in estrogen mediated growth arrest was elucidated using specific ligands and siRNA. Although, estrogen was observed to activate both p44/42 and p38 MAPK signaling, pharmacological inhibition and silencing of p38 MAPK abrogated the induction of p21 expression and growth arrest, during hypoxia. The involvement of estrogen induced ROS in the p38 MAPK mediated p21 expression and cell growth arrest was established by observing that scavenging of ROS by NAC abrogated p38 MAPK activation and p21 expression during hypoxia. In conclusion, Estrogen suppresses breast cancer growth by inhibiting G1/S phase transition through GPER/ROS/p38 MAPK/p21 mediated signaling during hypoxic condition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.

    PubMed

    Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2017-05-31

    Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.

  5. Fluoxetine regulates cell growth inhibition of interferon-α.

    PubMed

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  6. Androgen Regulation of p27 in the Normal and Neoplastic Prostate

    DTIC Science & Technology

    1999-09-01

    IL-6 (50) or the flavanoid antioxidant silibinin (5 1) results in increased p27KIP’ expression associated with G1 arrest and neuroendocrine...Commun 257:609-614. 51. Zi X, Agarwal R 1999 Silibinin decreases prostate-specific antigen with cell growth inhibition via GI arrest, leading to

  7. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confersmore » resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Marcia V.; Martin, Katherine J.; Kenny, Paraic A.

    To understand how non-malignant human mammary epithelial cells (HMEC) transit from a disorganized proliferating to an organized growth arrested state, and to relate this process to the changes that occur in breast cancer, we studied gene expression changes in non-malignant HMEC grown in three-dimensional cultures, and in a previously published panel of microarray data for 295 breast cancer samples. We hypothesized that the gene expression pattern of organized and growth arrested mammary acini would share similarities with breast tumors with good prognoses. Using Affymetrix HG-U133A microarrays, we analyzed the expression of 22,283 gene transcripts in two HMEC cell lines, 184more » (finite life span) and HMT3522 S1 (immortal non-malignant), on successive days post-seeding in a laminin-rich extracellular matrix assay. Both HMECs underwent growth arrest in G0/G1 and differentiated into polarized acini between days 5 and 7. We identified gene expression changes with the same temporal pattern in both lines. We show that genes that are significantly lower in the organized, growth arrested HMEC than in their proliferating counterparts can be used to classify breast cancer patients into poor and good prognosis groups with high accuracy. This study represents a novel unsupervised approach to identifying breast cancer markers that may be of use clinically.« less

  9. Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation.

    PubMed

    Lee, Jong-Gyu; Kim, Ji-Hyun; Ahn, Ji-Hye; Lee, Kyung-Tae; Baek, Nam-In; Choi, Jung-Hye

    2013-05-01

    Jaceosidin, a flavonoid derived from Artemisia princeps (Japanese mugwort), has been shown to inhibit the growth of several human cancer cells, However, the exact mechanism for the cytotoxic effect of jaceosidin is not completely understood. In this study, we investigated the molecular mechanism involved in the antiproliferative effect of jaceosidin in human endometrial cancer cells. We demonstrated that jaceosidin is a more potent inhibitor of cell growth than cisplatin in human endometrial cancer cells. In contrast, jaceosidin-induced cytotoxicity in normal endometrial cells was lower than that observed for cisplatin. Jaceosidin induced G2/M phase cell cycle arrest and modulated the levels of cyclin B and p-Cdc2 in Hec1A cells. Knockdown of p21 using specific siRNAs partially abrogated jaceosidin-induced cell growth inhibition. Additional mechanistic studies revealed that jaceosidin treatment resulted in an increase in phosphorylation of Cdc25C and ATM-Chk1/2. Ku55933, an ATM inhibitor, reversed jaceosidin-induced cell growth inhibition, in part. Moreover, jaceosidin treatment resulted in phosphorylation of ERK, and pretreatment with the ERK inhibitor, PD98059, attenuated cell growth inhibition by jaceosidin. These data suggest that jaceosidin, isolated from Japanese mugwort, modulates the ERK/ATM/Chk1/2 pathway, leading to inactivation of the Cdc2-cyclin B1 complex, followed by G2/M cell cycle arrest in endometrial cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Spliceosomal protein E regulates neoplastic cell growth by modulating expression of cyclin E/CDK2 and G2/M checkpoint proteins.

    PubMed

    Li, Z; Pützer, B M

    2008-12-01

    Small nuclear ribonucleoproteins are essential splicing factors. We previously identified the spliceosomal protein E (SmE) as a downstream effector of E2F1 in p53-deficient human carcinoma cells. Here, we investigated the biological relevance of SmE in determining the fate of cancer and non-tumourigenic cells. Adenovirus-mediated expression of SmE selectively reduces growth of cancerous cells due to decreased cell proliferation but not apoptosis. A similar growth inhibitory effect for SmD1 suggests that this is a general function of Sm-family members. Deletion of Sm-motifs reveals the importance of the Sm-1 domain for growth suppression. Consistently, SmE overexpression leads to inhibition of DNA synthesis and G2 arrest as shown by BrdU-incorporation and MPM2-staining. Real-time RT-PCR and immunoblotting showed that growth arrest by SmE directly correlates with the reduction of cyclin E, CDK2, CDC25C and CDC2 expression, and up-regulation of p27Kip. Importantly, SmE activity was not associated with enhanced expression of other spliceosome components such as U1 SnRNP70, suggesting that the growth inhibitory effect of SmE is distinct from its pre-mRNA splicing function. Furthermore, specific inactivation of SmE by shRNA significantly increased the percentage of cells in S phase, whereas the amount of G2/M arrested cells was reduced. Our data provide evidence that Sm proteins function as suppressors of tumour cell growth and may have major implications as cancer therapeutics.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreasesmore » in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.« less

  12. Anti-Colon Cancer Effects of 6-Shogaol Through G2/M Cell Cycle Arrest by p53/p21-cdc2/cdc25A Crosstalk.

    PubMed

    Qi, Lian-Wen; Zhang, Zhiyu; Zhang, Chun-Feng; Anderson, Samantha; Liu, Qun; Yuan, Chun-Su; Wang, Chong-Zhi

    2015-01-01

    Chemopreventive agents can be identified from botanicals. Recently, there has been strong support for the potential of 6-shogaol, a natural compound from dietary ginger (Zingiber officinale), in cancer chemoprevention. However, whether 6-shogaol inhibits the growth of colorectal tumors in vivo remains unknown, and the underlying anticancer mechanisms have not been well characterized. In this work, we observed that 6-shogaol (15 mg/kg) significantly inhibited colorectal tumor growth in a xenograft mouse model. We show that 6-shogaol inhibited HCT-116 and SW-480 cell proliferation with IC50 of 7.5 and 10 μM, respectively. Growth of HCT-116 cells was arrested at the G2/M phase of the cell cycle, primarily mediated by the up-regulation of p53, the CDK inhibitor p21(waf1/cip1) and GADD45α, and by the down-regulation of cdc2 and cdc25A. Using p53(-/-) and p53(+/+) HCT-116 cells, we confirmed that p53/p21 was the main pathway that contributed to the G2/M cell cycle arrest by 6-shogaol. 6-Shogaol induced apoptosis, mainly through the mitochondrial pathway, and the bcl-2 family might act as a key regulator. Our results demonstrated that 6-shogaol induces cancer cell death by inducing G2/M cell cycle arrest and apoptosis. 6-Shogaol could be an active natural product in colon cancer chemoprevention.

  13. 4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling.

    PubMed

    Kim, Sang-Cheol; Kang, Jung-Il; Hyun, Jin-Won; Kang, Ji-Hoon; Koh, Young-Sang; Kim, Young-Heui; Kim, Ki-Ho; Ko, Ji-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2017-07-01

    4- O -methylhonokiol, a neolignan compound from Magnolia Officinalis , has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4- O -methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus examined the effect of 4- O -methylhonokiol on TGF-β-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4- O -methylhonokiol, TGF-β1-induced G1/G0 phase arrest and TGF-β1-induced p21 expression were decreased. Moreover, 4- O -methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-β1-induced canonical pathway. We observed that ERK phosphorylation by TGF-β1 was significantly attenuated by treatment with 4- O -methylhonokiol. 4- O -methylhonokiol inhibited TGF-β1-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-β1-induced noncanonical pathway. These results indicate that 4- O -methylhonokiol could inhibit TGF-β1-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4- O -methylhonokiol might have protective action on TGF-β1-induced cell cycle arrest.

  14. The Chinese Herb Isolate Yuanhuacine (YHL-14) Induces G2/M Arrest in Human Cancer Cells by Up-regulating p21 Protein Expression through an p53 Protein-independent Cascade*

    PubMed Central

    Zhang, Ruowen; Wang, Yulei; Li, Jingxia; Jin, Honglei; Song, Shaojiang; Huang, Chuanshu

    2014-01-01

    Yuanhuacine (YHL-14), the major component of daphnane diterpene ester isolated from the flower buds of Daphne genkwa, has been reported to have activity against cell proliferation in various cancer cell lines. Nevertheless, the potential mechanism has not been explored yet. Here we demonstrate that YHL-14 inhibits bladder and colon cancer cell growth through up-regulation of p21 expression in an Sp1-dependent manner. We found that YHL-14 treatment resulted in up-regulation of p21 expression and a significant G2/M phase arrest in T24T and HCT116 cells without affecting p53 protein expression and activation. Further studies indicate that p21 induction by YHL-14 occurs at the transcriptional level via up-regulation of Sp1 protein expression. Moreover, our results show that p38 is essential for YHL-14-mediated Sp1 protein stabilization, G2/M growth arrest induction, and anchorage-independent growth inhibition of cancer cells. Taken together, our studies demonstrate a novel mechanism of YHL-14 against cancer cell growth in bladder and colon cancer cell lines, which provides valuable information for the design and synthesis of other new conformation-constrained derivatives on the basis of the structure of YHL-14 for cancer therapy. PMID:24451377

  15. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  16. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  17. Enterolactone induces G1-phase cell cycle arrest in non-small cell lung cancer cells by down-regulating cyclins and cyclin-dependent kinases

    PubMed Central

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M.

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG) which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anti-cancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study we investigated the anti-cancer effects of EL for several non-small cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The anti-proliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL- decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1-phase. The results suggest that EL inhibits the growth of NSCLC cell lines by down-regulating G1-phase cyclins and CDKs, and up-regulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy. PMID:28323486

  18. Enterolactone Induces G1-phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases.

    PubMed

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG), which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anticancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study, we investigated the anticancer effects of EL for several nonsmall cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The antiproliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G 1 -phase cell cycle arrest. Molecular studies revealed that EL decreased mRNA or protein expression levels of the G 1 -phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21 WAF1/CIP1 , a negative regulator of the G 1 phase. The results suggest that EL inhibits the growth of NSCLC cell lines by downregulating G 1 -phase cyclins and CDKs, and upregulating p21 WAF1/CIP1 , which leads to G 1 -phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy.

  19. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G/sub 0//G/sub 1/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freytag, S.O.

    1988-04-01

    A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, the authors examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G/sub 0//G/sub 1/, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to loose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell linesmore » expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSV myc mRNA arrested in G/sub 0//G/sub 1/ at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G/sub 0//G/sub 1/. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G/sub 0//G/sub 1/ or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate.« less

  20. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells.

    PubMed

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-08-05

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer.

  1. Tributyltin induces cell cycle arrest at G1 phase in the yeast Saccharomyces cerevisiae.

    PubMed

    Sekito, Takayuki; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Akiyama, Koichi; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi

    2014-04-01

    Tributyltin (TBT) has long been recognized as a major environmental pollutant that can cause significant damage to the cellular functions as well as disruption of endocrine homeostasis. TBT induces apoptosis accompanied by production of reactive oxygen species (ROS) in mammalian and yeast cells. We observed that the budding yeast cells exposed to this compound at low concentrations exhibited cell growth arrest, but not cell death. Flow cytometric analysis of yeast cells without synchronization and morphological assessment of cells synchronized at M phase by nocodazole treatment indicated that TBT-exposed Saccharomyces cerevisiae cells were arrested at G1 phase of the cell cycle. This arrest was recovered by the addition of N-acetylcysteine, suggesting the involvement of ROS production by TBT. This is the first study to evaluate the action of TBT on cell cycle events.

  2. 5-demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis.

    PubMed

    Charoensinphon, Noppawat; Qiu, Peiju; Dong, Ping; Zheng, Jinkai; Ngauv, Pearline; Cao, Yong; Li, Shiming; Ho, Chi-Tang; Xiao, Hang

    2013-12-01

    Tangeretin (TAN) and 5-demethyltangeretin (5DT) are two closely related polymethoxyflavones found in citrus fruits. We investigated growth inhibitory effects on three human nonsmall cell lung cancer (NSCLC) cells. Cell viability assay demonstrated that 5DT inhibited NSCLC cell growth in a time- and dose-dependent manner, and IC50 s of 5DT were 79-fold, 57-fold, and 56-fold lower than those of TAN in A549, H460, and H1299 cells, respectively. Flow cytometry analysis showed that 5DT induced extensive G2/M cell cycle arrest and apoptosis in NSCLC cells, while TAN at tenfold higher concentrations did not. The apoptosis induced by 5DT was further confirmed by activation of caspase-3 and cleavage of PARP. Moreover, 5DT dose-dependently upregulated p53 and p21(Cip1/Waf1), and downregulated Cdc-2 (Cdk-1) and cyclin B1. HPLC analysis revealed that the intracellular levels of 5DT in NSCLC cells were 2.7-4.9 fold higher than those of TAN after the cells were treated with 5DT or TAN at the same concentration. Our results demonstrated that 5DT inhibited NSCLC cell growth by inducing G2/M cell cycle arrest and apoptosis. These effects were much stronger than those produced by TAN, which is partially due to the higher intracellular uptake of 5DT than TAN. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    PubMed

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Sheikh, M Saeed; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic.

  4. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells.

    PubMed

    Park, Hyun Soo; Han, Min Ho; Kim, Gi-Young; Moon, Sung-Kwon; Kim, Wun-Jae; Hwang, Hye Jin; Park, Kun Young; Choi, Yung Hyun

    2014-02-01

    The present study was undertaken to determine whether sulforaphane-derived reactive oxygen species (ROS) might cause growth arrest and apoptosis in human bladder cancer 5637 cells. Our results show that the reduced viability of 5637 cells by sulforaphane is due to mitotic arrest, but not the G2 phase. The sulforaphane-induced mitotic arrest correlated with an induction of cyclin B1 and phosphorylation of Cdk1, as well as a concomitant increased complex between cyclin B1 and Cdk1. Sulforaphane-induced apoptosis was associated with the activation of caspase-8 and -9, the initiators caspases of the extrinsic and intrinsic apoptotic pathways, respectively, and activation of effector caspase-3 and cleavage of poly (ADP-ribose) polymerase. However, blockage of caspase activation inhibited apoptosis and abrogated growth inhibition in sulforaphane-treated 5637 cells. This study further investigated the roles of ROS with respect to mitotic arrest and the apoptotic effect of sulforaphane, and the maximum level of ROS accumulation was observed 3h after sulforaphane treatment. However, a ROS scavenger, N-acetyl-L-cysteine, notably attenuated sulforaphane-mediated apoptosis as well as mitotic arrest. Overall, these results suggest that sulforaphane induces mitotic arrest and apoptosis of 5637 cells via a ROS-dependent pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

    PubMed Central

    Kim, Sang-Cheol; Kang, Jung-Il; Hyun, Jin-Won; Kang, Ji-Hoon; Koh, Young-Sang; Kim, Young-Heui; Kim, Ki-Ho; Ko, Ji-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2017-01-01

    4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-β-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-β1-induced G1/G0 phase arrest and TGF-β1-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-β1-induced canonical pathway. We observed that ERK phosphorylation by TGF-β1 was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-β1-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-β1-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-β1-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-β1-induced cell cycle arrest. PMID:28190316

  6. [Inhibitory effect of exogenous insulin-like growth factor binding protein 7 on proliferation of human breast cancer cell line MDA-MB-453 and its mechanism].

    PubMed

    Yuan, Lei; Fan, Wen-Juan; Yang, Xu-Guang; Rao, Shu-Mei; Song, Jin-Ling; Song, Guo-Hua

    2013-10-25

    The present study was to investigate the effects of exogenous insulin-like growth factor binding protein 7 (IGFBP7) on the proliferation of human breast cancer cell line MDA-MB-453 and its possible mechanism. By means of MTT method in vitro, the results showed exogenous IGFBP7 inhibited the growth of MDA-MB-453 cells (IC50 of IGFBP7 = 8.49 μg/mL) in time- and concentration-dependent manner. SB203580, p38(MAPK) inhibitor, blocked the anti-proliferative effect of exogenous IGFBP7. The flow cytometry assay showed that exogenous IGFBP7 remarkably induced G0/G1 arrest in MDA-MB-453 cells. The Western blot showed that exogenous IGFBP7 promoted phosphorylation of p38(MAPK), up-regulated expression of p21(CIP1/WAF1), and inhibited phosphorylation of Rb. SB203580 restrained exogenous IGFBP7-induced regulation of p21(CIP1/WAF1) and p-Rb in MDA-MB-453 cells. In conclusion, the present study suggests that exogenous IGFBP7 could activate the p38(MAPK) signaling pathway, upregulate p21(CIP1/WAF1) expression, inhibit phosphorylation of Rb, and finally induce G0/G1 arrest in MDA-MB-453 cells.

  7. Androgen Control of Cell Proliferation and Cytoskeletal Reorganization in Human Fibrosarcoma Cells

    PubMed Central

    Chauhan, Sanjay; Kunz, Susan; Davis, Kelli; Roberts, Jordan; Martin, Greg; Demetriou, Manolis C.; Sroka, Thomas C.; Cress, Anne E.; Miesfeld, Roger L.

    2009-01-01

    We recently generated an HT-1080-derived cell line called HT-AR1 that responds to dihydrotestosterone (DHT) treatment by undergoing cell growth arrest in association with cytoskeletal reorganization and induction of neuroendocrine-like cell differentiation. In this report, we show that DHT induces a dose-dependent increase in G0/G1 growth-arrested cells using physiological levels of hormone. The arrested cells increase in cell size and contain a dramatic redistribution of desmoplakin, keratin 5, and chromogranin A proteins. DHT-induced cytoskeletal changes were also apparent from time lapse video microscopy that showed that androgen treatment resulted in the rapid appearance of neuronal-like membrane extensions. Expression profiling analysis using RNA isolated from DHT-treated HT-AR1 cells revealed that androgen receptor activation leads to the coordinate expression of numerous cell signaling genes including RhoB, PTGF-β, caveolin-2, Egr-1, myosin 1B, and EHM2. Because RhoB has been shown to have a role in tumor suppression and neuronal differentiation in other cell types, we investigated RhoB signaling functions in the HT-AR1 steroid response. We found that steroid induction of RhoB was DHT-specific and that newly synthesized RhoB protein was post-translationally modified and localized to endocytic vesicles. Moreover, treatment with a farnesyl transferase inhibitor reduced DHT-dependent growth arrest, suggesting that prenylated RhoB might function to inhibit HT-AR1 cell proliferation. This was directly shown by transfecting HT-AR1 cells with RhoB coding sequences containing activating or dominant negative mutations. PMID:14576147

  8. Picropodophyllin causes mitotic arrest and catastrophe by depolymerizing microtubules via Insulin-like growth factor-1 receptor-independent mechanism

    PubMed Central

    Waraky, Ahmed; Akopyan, Karen; Parrow, Vendela; Strömberg, Thomas; Axelson, Magnus; Abrahmsén, Lars; Lindqvist, Arne; Larsson, Olle; Aleem, Eiman

    2014-01-01

    Picropodophyllin (PPP) is an anticancer drug undergoing clinical development in NSCLC. PPP has been shown to suppress IGF-1R signaling and to induce a G2/M cell cycle phase arrest but the exact mechanisms remain to be elucidated. The present study identified an IGF-1-independent mechanism of PPP leading to pro-metaphase arrest. The mitotic block was induced in human cancer cell lines and in an A549 xenograft mouse but did not occur in normal hepatocytes/mouse tissues. Cell cycle arrest by PPP occurred in vitro and in vivo accompanied by prominent CDK1 activation, and was IGF-1R-independent since it occurred also in IGF-1R-depleted and null cells. The tumor cells were not arrested in G2/M but in mitosis. Centrosome separation was prevented during mitotic entry, resulting in a monopolar mitotic spindle with subsequent prometaphase-arrest, independent of Plk1/Aurora A or Eg5, and leading to cell features of mitotic catastrophe. PPP also increased soluble tubulin and decreased spindle-associated tubulin within minutes, indicating that it interfered with microtubule dynamics. These results provide a novel IGF-1R-independent mechanism of antitumor effects of PPP. PMID:25268741

  9. Effects of cholera toxin and isobutylmethylxanthine on growth of human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinoza, B.; Wharton, W.

    1986-08-01

    Cholera toxin produced a dose-dependent decrease in the restimulation of G0/G1 traverse in density-arrested human fibroblasts but did not inhibit the stimulation of cells arrested in G0 after serum starvation at low density. In addition, cholera toxin did not inhibit the proliferation of sparse logarithmically growing human fibroblasts, even when low concentrations of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) were also present. However, the final density to which sparse cells grew was limited by cholera toxin, when added either alone or together with low concentrations of IBMX. In contrast, high concentrations of the phosphodiesterase inhibitor alone produced a profound inhibition inmore » the growth of sparse human fibrobasts. IBMX produced an inhibition both in the G1 and in the G2 phases of the cell cycle by a mechanism(s) that was not related to the magnitude of the increases in adenosine 3,5-cyclic monophosphate concentrations.« less

  10. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco-Garcia, Estefania; Saceda, Miguel; Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cellmore » lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.« less

  11. Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and involvement of AU-rich elements

    PubMed Central

    Al-Haj, Latifa; Blackshear, Perry J.; Khabar, Khalid S.A.

    2012-01-01

    The p21Cip1/WAF1 plays an important role in cell-cycle arrest. Here, we find that RNase L regulates p21-mediated G1 growth arrest in AU-rich elements-dependent manner. We found a significant loss of p21 mRNA expression in RNASEL−/− MEFs and that the overexpression of RNase L in HeLa cells induces p21 mRNA expression. The p21 mRNA half-life significantly changes as a result of RNase L modulation, indicating a post-transcriptional effect. Indeed, we found that RNase L promotes tristetraprolin (TTP/ZFP36) mRNA decay. This activity was not seen with dimerization- and nuclease-deficient RNase L mutants. Deficiency in TTP led to increases in p21 mRNA and protein. With induced ablation of RNase L, TTP mRNA and protein expressions were higher, while p21 expression became reduced. We further establish that TTP, but not C124R TTP mutant, binds to, and accelerates the decay of p21 mRNA. The p21 mRNA half-life was prolonged in TTP−/− MEFs. The TTP regulation of p21 mRNA decay required functional AU-rich elements. Thus, we demonstrate a novel mechanism of regulating G1 growth arrest by an RNase L-TTP-p21 axis. PMID:22718976

  12. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  13. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushijima, Hironori; Horyozaki, Akiko; Maeda, Masatomo, E-mail: mmaeda@nupals.ac.jp

    Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis undermore » growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown. - Highlights: • Anisomycin induces proteolysis of GATA-6 in DLD-1 cells. • Anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest. • Anisomycin suppresses the growth of spheroids of DLD-1, and enhances the effect of 5-FU.« less

  14. Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Han, Joo-Hui; Kim, Yohan; Jung, Sang-Hyuk; Lee, Jung-Jin; Park, Hyun-Soo; Song, Gyu-Yong; Cuong, Nguyen Manh; Kim, Young Ho

    2015-01-01

    The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [3H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis. PMID:26330754

  15. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    PubMed

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  16. Growth Arrest of Epithelial Cells during Measles Virus Infection Is Caused by Upregulation of Interferon Regulatory Factor 1

    PubMed Central

    Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Fujii, Nobuhiro

    2004-01-01

    Natural infection with measles virus (MeV) is initiated when the virus reaches epithelial cells in the respiratory tract, oropharynx, or conjunctivae. Human epithelial cells infected with MeV frequently show growth suppression. In this study, we investigated the possible mechanisms for this suppression. The bronchiolar epithelial cell A549 showed growth arrest in G0/G1 following MeV infection or treatment with gamma interferon (IFN-γ). IFN regulatory factor-1 (IRF-1) was upregulated during MeV infection, although A549 did not produce IFN-γ. Cells of the cervical squamous cell line SiHa persistently infected with various strains of MeV displayed slower growth than uninfected SiHa cells, although the growth rates varied depending on the MeV strain. Transfection of antisense-oriented IRF-1 cDNA released the MeV-infected SiHa cells from growth suppression. Although these infected cells did not produce IFN-γ and suppressed IFN-α/β-induced Jak1 phosphorylation, Jak1 was constitutively phosphorylated. The growth rates negatively correlated with levels of both IRF-1 expression and constitutively phosphorylated Jak1. These results indicate that MeV upregulates IRF-1 in a manner that is independent of IFN but dependent on the JAK/STAT pathway. This induction of IRF-1 appears to suppress cell growth, although the extent seems to vary among MeV strains. PMID:15078941

  17. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2.

    PubMed

    Cai, Xiaoqing; Guo, Lele; Pei, Fei; Chang, Xiaoyun; Zhang, Rui

    2018-04-15

    Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC 50 of Polyphyllin G ranged from 10 to 65 μM. However the IC 50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC 50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Yuan, Xianwen; Sun, Xitai; Shi, Xiaolei; Jiang, Chunping; Yu, Decai; Zhang, Weiwei; Guan, Wenxian; Zhou, Jianxin; Wu, Yafu; Qiu, Yudong; Ding, Yitao

    2015-08-01

    Ubiquitin specific protease 39 (USP39) plays an important role in mRNA splicing. In the present study, we investigated the role of USP39 in regulating the growth of hepatocellular carcinoma (HCC). We detected USP39 expression in more than 100 HCC clinical samples. The USP39 expression was significantly higher in the tumor tissues compared to the adjacent normal tissues, and was strongly associated with the pathological grade of HCC. USP39 knockdown inhibited cell proliferation and colony formation in vitro in the HepG2 cells, while upregulation of USP39 promoted tumor cell growth. FCM assay showed that USP39 knockdown led to G2/M arrest and induced apoptosis in the HepG2 cells. USP39 knockdown by shRNA inhibited xenograft tumor growth in nude mice. Moreover, USP39 knockdown led to the upregulation of p-Cdc2 and downregulation of p-Cdc25c and p-myt1, while the expression of total Cdc2, Cdc25c and myt1 was not changed in the USP39-knockdown cells. We also found that p-Cdc2 was decreased in the USP39-overexpressing cells and was upregulated in the xenografted tumors derived from the HepG2/KD cells from nude mice. Meanwhile, the expression levels of FoxM1 and its target genes PLK1 and cyclin B1 were decreased in the USP39-knockdown cells. These results suggest that USP39 may contribute to FoxM1 splicing in HCC tumor cells. Our data indicate that USP39 knockdown inhibited the growth of HCC both in vitro and in vivo through G2/M arrest, which was partly achieved via the inhibition of FoxM1 splicing.

  19. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells.

    PubMed

    Jaiswal, Aruna S; Marlow, Benjamin P; Gupta, Nirupama; Narayan, Satya

    2002-12-05

    The development of nontoxic natural agents with chemopreventive activity against colon cancer is the focus of investigation in many laboratories. Curcumin (feruylmethane), a natural plant product, possesses such chemopreventive activity, but the mechanisms by which it prevents cancer growth are not well understood. In the present study, we examined the mechanisms by which curcumin treatment affects the growth of colon cancer cells in vitro. Results showed that curcumin treatment causes p53- and p21-independent G(2)/M phase arrest and apoptosis in HCT-116(p53(+/+)), HCT-116(p53(-/-)) and HCT-116(p21(-/-)) cell lines. We further investigated the association of the beta-catenin-mediated c-Myc expression and the cell-cell adhesion pathways in curcumin-induced G(2)/M arrest and apoptosis in HCT-116 cells. Results described a caspase-3-mediated cleavage of beta-catenin, decreased transactivation of beta-catenin/Tcf-Lef, decreased promoter DNA binding activity of the beta-catenin/Tcf-Lef complex, and decreased levels of c-Myc protein. These activities were linked with decreased Cdc2/cyclin B1 kinase activity, a function of the G(2)/M phase arrest. The decreased transactivation of beta-catenin in curcumin-treated HCT-116 cells was unpreventable by caspase-3 inhibitor Z-DEVD-fmk, even though the curcumin-induced cleavage of beta-catenin was blocked in Z-DEVD-fmk pretreated cells. The curcumin treatment also induced caspase-3-mediated degradation of cell-cell adhesion proteins beta-catenin, E-cadherin and APC, which were linked with apoptosis, and this degradation was prevented with the caspase-3 inhibitor. Our results suggest that curcumin treatment impairs both Wnt signaling and cell-cell adhesion pathways, resulting in G(2)/M phase arrest and apoptosis in HCT-116 cells.

  20. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  1. Efficacy of anti-RON antibody Zt/g4-drug maytansinoid conjugation (Anti-RON ADC) as a novel therapeutics for targeted colorectal cancer therapy.

    PubMed

    Feng, Liang; Yao, Hang-Ping; Wang, Wei; Zhou, Yong-Qing; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2014-12-01

    The receptor tyrosine kinase RON is critical in epithelial tumorigenesis and a drug target for cancer therapy. Here, we report the development and therapeutic efficacy of a novel anti-RON antibody Zt/g4-maytansinoid (DM1) conjugates for targeted colorectal cancer (CRC) therapy. Zt/g4 (IgG1a/κ) was conjugated to DM1 via thioether linkage to form Zt/g4-DM1 with a drug-antibody ratio of 4:1. CRC cell lines expressing different levels of RON were tested in vitro to determine Zt/g4-DM1-induced RON endocytosis, cell-cycle arrest, and cytotoxicity. Efficacy of Zt/g4-DM1 in vivo was evaluated in mouse xenograft CRC tumor model. Zt/g4-DM1 rapidly induced RON endocytosis, arrested cell cycle at G2-M phase, reduced cell viability, and caused massive cell death within 72 hours. In mouse xenograft CRC models, Zt/g4-DM1 at a single dose of 20 mg/kg body weight effectively delayed CRC cell-mediated tumor growth up to 20 days. In a multiple dose-ranging study with a five injection regimen, Zt/g4-DM1 inhibited more than 90% tumor growth at doses of 7, 10, and 15 mg/kg body weight. The minimal dose achieving 50% of tumor inhibition was approximately 5.0 mg/kg. The prepared Zt/g4-DM1 is stable at 37°C for up to 30 days. At 60 mg/kg, Zt/g4-DM1 had a moderate toxicity in vivo with an average of 12% reduction in mouse body weight. Zt/g4-DM1 is highly effective in targeted inhibition of CRC cell-derived tumor growth in mouse xenograft models. This work provides the basis for development of humanized Zt/g4-DM1 for RON-targeted CRC therapy in the future. ©2014 American Association for Cancer Research.

  2. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and increased necrosis in the tumor mass. The disparate molecular mechanisms of celecoxib-induced growth inhibition in human breast cancer cells depends upon the level of COX-2 expression and the invasive potential of the cell lines examined. Data suggest a role for COX-2 not only in the growth of cancer cells but also in activating the angiogenic pathway through regulating levels of vascular endothelial growth factor.

  3. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans

    PubMed Central

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative stress, and further participates in the cell size checkpoint during vegetative growth. PMID:28111572

  4. Eupatilin, a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells.

    PubMed

    Cho, Jung-Hoon; Lee, Jong-Gyu; Yang, Yeong-In; Kim, Ji-Hyun; Ahn, Ji-Hye; Baek, Nam-In; Lee, Kyung-Tae; Choi, Jung-Hye

    2011-08-01

    This study is the first to investigate the antiproliferative effect of eupatilin in human endometrial cancer cells. Eupatilin, a naturally occurring flavonoid isolated from Artemisia princeps, has anti-inflammatory, anti-oxidative, and anti-tumor activities. In the present study, we investigated the potential effect of eupatilin on cell growth and its molecular mechanism of action in human endometrial cancer cells. Eupatilin was more potent than cisplatin in inhibiting cell viability in the human endometrial cancer cell lines Hec1A and KLE. Eupatilin showed relatively low cytotoxicity in normal human endometrial cells HES and HESC cells when compared to cisplatin. Eupatilin induced G2/M phase cell cycle arrest in a time- and dose-dependent manner, as indicated by flow cytometry analysis. In addition, treatment of Hec1A cells with eupatilin resulted in a significant increase in the expression of p21(WAF1/CIP1) and in the phosphorylation of Cdc25C and Cdc2. Knockdown of p21 using specific siRNAs significantly compromised eupatilin-induced cell growth inhibition. Interestingly, levels of mutant p53 in Hec1A cells decreased markedly upon treatment with eupatilin, and p53 siRNA significantly increased p21 expression. Moreover, eupatilin modulated the phosphorylation of protein kinases ERK1/2, Akt, ATM, and Chk2. These results suggest that eupatilin inhibits the growth of human endometrial cancer cells via G2/M phase cell cycle arrest through the up-regulation of p21 by the inhibition of mutant p53 and the activation of the ATM/Chk2/Cdc25C/Cdc2 checkpoint pathway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines.

    PubMed

    Brandi, Giorgio; Paiardini, Mirko; Cervasi, Barbara; Fiorucci, Chiara; Filippone, Paolino; De Marco, Cinzia; Zaffaroni, Nadia; Magnani, Mauro

    2003-07-15

    Indole-3-carbinol (I3C), autolysis product of glucosinolates present in cruciferous vegetables, has been indicated as a promising agent in preventing the development and progression of breast cancer. I3C has been shown to inhibit the growth of human cancer cells in vitro and possesses anticarcinogenic activity in vivo. Because I3C is unstable and may be converted into many polymeric products in the digestive tract, it is not yet clear whether the biological activity observed can be attributed to I3C or some of its polymeric products. In this study we synthesized a stable I3C cyclic tetrameric derivative and investigated its effects on a panel of human breast cancer cell lines. The I3C tetramer suppressed the growth of both estrogen receptor (ER) -positive (MCF-7, 734B, and BT474) and ER-negative (BT20, MDA-MB-231, and BT539) human breast cancer cell lines, and it was found to induce G(1) cell cycle arrest in a dose-dependent manner without evidence of apoptosis, suggesting a growth arrest via a cytostatic mechanism. At the molecular level, the tetramer inhibited cyclin-dependent kinase (CDK) 6 expression and activity, induced an increase in the level of p27(kip1), and reduced the level of retinoblastoma protein expression. Contrarily to CDK6, the level of CDK4, the other kinase involved in the G(1) phase of the cell cycle, remains unchanged. Interestingly, the tetramer resulted about five times more active than I3C in suppressing the growth of human breast cancer cells. On the whole, our data suggest that the I3C tetrameric derivative is a novel lead inhibitor of breast cancer cell growth that may be a considered a new, promising therapeutic agent for both ER+ and ER- breast cancer.

  6. Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma.

    PubMed

    Wang, Xueju; Dasari, Surendra; Nowakowski, Grzegorz S; Lazaridis, Konstantinos N; Wieben, Eric D; Kadin, Marshall E; Feldman, Andrew L; Boddicker, Rebecca L

    2017-04-18

    Peripheral T-cell lymphomas (PTCLs) are aggressive non-Hodgkin lymphomas with generally poor outcomes following standard therapy. Few candidate therapeutic targets have been identified to date. Retinoic acid receptor alpha (RARA) is a transcription factor that modulates cell growth and differentiation in response to retinoids. While retinoids have been used to treat some cutaneous T-cell lymphomas (CTCLs), their mechanism of action and the role of RARA in CTCL and other mature T-cell lymphomas remain poorly understood. After identifying a PTCL with a RARAR394Q mutation, we sought to characterize the role of RARA in T-cell lymphoma cells. Overexpressing wild-type RARA or RARAR394Q significantly increased cell growth in RARAlow cell lines, while RARA knockdown induced G1 arrest and decreased expression of cyclin-dependent kinases CDK2/4/6 in RARAhigh cells. The retinoids, AM80 (tamibarotene) and all-trans retinoic acid, caused dose-dependent growth inhibition, G1 arrest, and CDK2/4/6 down-regulation. Genes down-regulated in transcriptome data were enriched for cell cycle and G1-S transition. Finally, RARA overexpression augmented chemosensitivity to retinoids. In conclusion, RARA drives cyclin-dependent kinase expression, G1-S transition, and cell growth in T-cell lymphoma. Synthetic retinoids inhibit these functions in a dose-dependent fashion and are most effective in cells with high RARA expression, indicating RARA may represent a therapeutic target in some PTCLs.

  7. PKA and Epac synergistically inhibit smooth muscle cell proliferation

    PubMed Central

    Hewer, Richard C.; Sala-Newby, Graciela B.; Wu, Yih-Jer; Newby, Andrew C.; Bond, Mark

    2011-01-01

    Cyclic AMP signalling promotes VSMC quiescence in healthy vessels and during vascular healing following injury. Cyclic AMP inhibits VSMC proliferation via mechanisms that are not fully understood. We investigated the role of PKA and Epac signalling on cAMP-induced inhibition of VSMC proliferation. cAMP-mediated growth arrest was PKA-dependent. However, selective PKA activation with 6-Benzoyl-cAMP did not inhibit VSMC proliferation, indicating a requirement for additional pathways. Epac activation using the selective cAMP analogue 8-CPT-2′-O-Me-cAMP, did not affect levels of hyperphosphorylated Retinoblastoma (Rb) protein, a marker of G1-S phase transition, or BrdU incorporation, despite activation of the Epac-effector Rap1. However, 6-Benzoyl-cAMP and 8-CPT-2′-O-Me-cAMP acted synergistically to inhibit Rb-hyperphosphorylation and BrdU incorporation, indicating that both pathways are required for growth inhibition. Consistent with this, constitutively active Epac increased Rap1 activity and synergised with 6-Benzoyl-cAMP to inhibit VSMC proliferation. PKA and Epac synergised to inhibit phosphorylation of ERK and JNK. Induction of stellate morphology, previously associated with cAMP-mediated growth arrest, was also dependent on activation of both PKA and Epac. Rap1 inhibition with Rap1GAP or siRNA silencing did not negate forskolin-induced inhibition of Rb-hyperphosphorylation, BrdU incorporation or stellate morphology. This data demonstrates for the first time that Epac synergises with PKA via a Rap1-independent mechanism to mediate cAMP-induced growth arrest in VSMC. This work highlights the role of Epac as a major player in cAMP-dependent growth arrest in VSMC. PMID:20971121

  8. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Il; Park, Soo Hyun, E-mail: parksh@chonnam.ac.kr

    Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucosemore » treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.« less

  9. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    PubMed

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  10. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.

    PubMed

    Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu

    2018-03-08

    There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.

  11. Antiproliferative action of Xylopia aethiopica fruit extract on human cervical cancer cells.

    PubMed

    Adaramoye, Oluwatosin A; Sarkar, Jayanta; Singh, Neetu; Meena, Sanjeev; Changkija, Bendangla; Yadav, Prem P; Kanojiya, Sanjeev; Sinha, Sudhir

    2011-10-01

    The anticancer potential of Xylopia aethiopica fruit extract (XAFE), and the mechanism of cell death it elicits, was investigated in various cell lines. Treatment with XAFE led to a dose-dependent growth inhibition in most cell lines, with selective cytotoxicity towards cancer cells and particularly the human cervical cancer cell line C-33A. In this study, apoptosis was confirmed by nuclear fragmentation and sub-G(0)/G(1) phase accumulation. The cell cycle was arrested at the G(2)/M phase with a decreased G(0)/G(1) population. A semi-quantitative gene expression study revealed dose-dependent up-regulation of p53 and p21 genes, and an increase in the Bax/Bcl-2 ratio. These results indicate that XAFE could be a potential therapeutic agent against cancer since it inhibits cell proliferation, and induces apoptosis and cell cycle arrest in C-33A cells. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Profiles of Global Gene Expression in Ionizing-Radiation–Damaged Human Diploid Fibroblasts Reveal Synchronization behind the G1 Checkpoint in a G0-like State of Quiescence

    PubMed Central

    Zhou, Tong; Chou, Jeff W.; Simpson, Dennis A.; Zhou, Yingchun; Mullen, Thomas E.; Medeiros, Margarida; Bushel, Pierre R.; Paules, Richard S.; Yang, Xuebin; Hurban, Patrick; Lobenhofer, Edward K.; Kaufmann, William K.

    2006-01-01

    Cell cycle arrest and stereotypic transcriptional responses to DNA damage induced by ionizing radiation (IR) were quantified in telomerase-expressing human diploid fibroblasts. Analysis of cytotoxicity demonstrated that 1.5 Gy IR inactivated colony formation by 40–45% in three fibroblast lines; this dose was used in all subsequent analyses. Fibroblasts exhibited > 90% arrest of progression from G2 to M at 2 hr post-IR and a similarly severe arrest of progression from G1 to S at 6 and 12 hr post-IR. Normal rates of DNA synthesis and mitosis 6 and 12 hr post-IR caused the S and M compartments to empty by > 70% at 24 hr. Global gene expression was analyzed in IR-treated cells. A microarray analysis algorithm, EPIG, identified nine IR-responsive patterns of gene expression that were common to the three fibroblast lines, including a dominant p53-dependent G1 checkpoint response. Many p53 target genes, such as CDKN1A, GADD45, BTG2, and PLK3, were significantly up-regulated at 2 hr post-IR. Many genes whose expression is regulated by E2F family transcription factors, including CDK2, CCNE1, CDC6, CDC2, MCM2, were significantly down-regulated at 24 hr post-IR. Numerous genes that participate in DNA metabolism were also markedly repressed in arrested fibroblasts apparently as a result of cell synchronization behind the G1 checkpoint. However, cluster and principal component analyses of gene expression revealed a profile 24 hr post-IR with similarity to that of G0 growth quiescence. The results reveal a highly stereotypic pattern of response to IR in human diploid fibroblasts that reflects primarily synchronization behind the G1 checkpoint but with prominent induction of additional markers of G0 quiescence such as GAS1. PMID:16581545

  13. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity.

    PubMed

    Duncan, Robin E; Lau, Dominic; El-Sohemy, Ahmed; Archer, Michael C

    2004-11-01

    3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.

  14. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.

    PubMed

    Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D

    1995-01-01

    Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.

  15. G1 arrest induction represents a critical determinant for cisplatin cytotoxicity in G1 checkpoint-retaining human cancers.

    PubMed

    Un, Frank

    2007-04-01

    Cisplatin has been used effectively to treat various human cancer types; yet, the precise mechanism underlying its cytotoxicity remains unknown. In eukaryotes, progression through G1 is monitored by a checkpoint, which executes G1 arrest in the event of DNA damage to allow time for repair before initiating DNA replication. The retinoblastoma tumor suppressor gene is an integral component of the mammalian G1 checkpoint. The utility of the retinoblastoma gene as a therapeutic for human cancers has been investigated. Intriguingly, the cytotoxicity profile of the retinoblastoma gene therapy closely parallels the clinical targets of cisplatin. It prompted an investigation into the potential role of the checkpoint-induced G1 arrest in cisplatin cytotoxicity. Here, the evidence that G1 arrest induction represents a critical step in cisplatin-induced lytic path is presented. First, cisplatin-treated human cancer cells undergo a prolonged G1 arrest before dying. Second, triggering G1 arrest via infection with a recombinant adenovirus expressing the human retinoblastoma gene is sufficient to potentiate lethality in the absence of cisplatin. Third, the extent of the lethality induced correlates with the G1-arresting potential of the ectopically expressed human retinoblastoma polypeptide. Fourth, human cancer cells resistant to cisplatin do not undergo G1 arrest despite cisplatin treatment. The above mechanism may be exploited to develop therapeutics that preserve the efficacy of cisplatin yet bypass its mutagenicity associated with the formation of secondary tumors.

  16. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone.

    PubMed

    Rao, V Ashutosh; Klein, Sarah R; Bonar, Spencer J; Zielonka, Jacek; Mizuno, Naoko; Dickey, Jennifer S; Keller, Paul W; Joseph, Joy; Kalyanaraman, Balaraman; Shacter, Emily

    2010-11-05

    Mitoquinone (MitoQ) is a synthetically modified, redox-active ubiquinone compound that accumulates predominantly in mitochondria. We found that MitoQ is 30-fold more cytotoxic to breast cancer cells than to healthy mammary cells. MitoQ treatment led to irreversible inhibition of clonogenic growth of breast cancer cells through a combination of autophagy and apoptotic cell death mechanisms. Relatively limited cytotoxicity was seen with the parent ubiquinone coenzyme Q(10.) Inhibition of cancer cell growth by MitoQ was associated with G(1)/S cell cycle arrest and phosphorylation of the checkpoint kinases Chk1 and Chk2. The possible role of oxidative stress in MitoQ activity was investigated by measuring the products of hydroethidine oxidation. Increases in ethidium and dihydroethidium levels, markers of one-electron oxidation of hydroethidine, were observed at cytotoxic concentrations of MitoQ. Keap1, an oxidative stress sensor protein that regulates the antioxidant transcription factor Nrf2, underwent oxidation, degradation, and dissociation from Nrf2 in MitoQ-treated cells. Nrf2 protein levels, nuclear localization, and transcriptional activity also increased following MitoQ treatment. Knockdown of Nrf2 caused a 2-fold increase in autophagy and an increase in G(1) cell cycle arrest in response to MitoQ but had no apparent effect on apoptosis. The Nrf2-regulated enzyme NQO1 is partly responsible for controlling the level of autophagy. Keap1 and Nrf2 act as redox sensors for oxidative perturbations that lead to autophagy. MitoQ and similar compounds should be further evaluated for novel anticancer activity.

  17. Multiple Mechanisms Are Involved in 6-Gingerol-Induced Cell Growth Arrest and Apoptosis in Human Colorectal Cancer Cells

    PubMed Central

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-01-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by β-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G1 cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of β-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCε and glycogen synthase kinase (GSK)-3β pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G1 cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as β-catenin, PKCε, and GSK-3β pathways. PMID:18058799

  18. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and increased necrosis in the tumor mass. Conclusion The disparate molecular mechanisms of celecoxib-induced growth inhibition in human breast cancer cells depends upon the level of COX-2 expression and the invasive potential of the cell lines examined. Data suggest a role for COX-2 not only in the growth of cancer cells but also in activating the angiogenic pathway through regulating levels of vascular endothelial growth factor. PMID:15987447

  19. Role of G-protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes.

    PubMed

    Thomas, Peter

    2017-03-01

    An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E 2 ) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (G s ) on oocyte plasma membranes resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E 2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE 2 ) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH actions cause declines in oocyte cAMP levels resulting in the resumption of meiosis. GPER is also present on murine oocytes but there are no reports of studies investigating its possible involvement in maintaining meiotic arrest in mammals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Reprint of "Role of G protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes".

    PubMed

    Thomas, Peter

    2018-02-01

    An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E 2 ) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (G s ) on oocyte plasma membranes, resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E 2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE 2 ) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH actions cause declines in oocyte cAMP levels resulting in the resumption of meiosis. GPER is also present on murine oocytes but there are no reports of studies investigating its possible involvement in maintaining meiotic arrest in mammals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Regulation of a Rho-associated kinase expression during the corneal epithelial cell cycle.

    PubMed

    Anderson, S C; SundarRaj, N

    2001-04-01

    It has been recognized that an increased expression of the Rho-associated kinase (ROCK-I), a downstream target of Rho (a Ras-related small guanosine triphosphatase [GTPase]), is associated with limbal-to-corneal epithelial transition. The purpose of the present study was to determine whether the expression of ROCK-I is regulated during the cell cycle of corneal epithelial cells. Rabbit corneal epithelial cells in culture were subjected to different culture conditions to enrich them in the G0, G1, and S phases of the cell cycle. Indirect immunofluorescence staining and western blot techniques were used for analyzing the changes in the relative intracellular concentrations of ROCK-I. Northern blot analysis of the isolated cellular RNA was performed to estimate the relative concentrations of ROCK-I mRNA. Serum deprivation did not cause all the corneal epithelial cells in culture to be arrested in the G0 phase of the cell cycle. However, the cells could be arrested in G0 by treating them with culture medium supplemented with transforming growth factor (TGF)-beta1. The relative concentration of ROCK-I in the G0-arrested cells was higher than in the corresponding control untreated cultures. G0-arrested cells were induced to enter G1, followed by the S phase of the cell cycle, by refeeding them with the medium devoid of TGF-beta1. The total intracellular concentration of ROCK-I significantly decreased during the G1 phase of the cell cycle and increased again during the S phase. The decrease in intracellular ROCK-I during the G1 phase was confirmed by arresting the cells in G1 with isoleucine deprivation and thymidine-mimosine treatments. ROCK-I mRNA levels were also found to be decreased during the G1 phase of the cell cycle. The levels of ROCK-I in the corneal epithelial cells were significantly lower in the G1 phase than those in the S and G0 phases of the cell cycle. Therefore, a Rho signaling pathway(s) involving ROCK-I may be regulated during the corneal epithelial cell cycle. The downregulation of ROCK-I during the G1 phase, at least in part, is due to the decreased levels of its mRNA. Based on these findings, ROCK-I may have a role in the progression of the cell cycle in the corneal epithelial cells as they migrate centripetally from the limbal to the corneal surface.

  2. Muscle Contraction Arrests Tumor Growth

    DTIC Science & Technology

    2006-09-01

    AD_________________ Award Number: W81XWH-05-1-0464 TITLE: Muscle Contraction Arrests Tumor Growth...DATE 01-09-2006 2. REPORT TYPE Annual 3. DATES COVERED 1 Sep 2005 – 31 Aug 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Muscle ... Contraction Arrests Tumor Growth 5b. GRANT NUMBER W81XWH-05-1-0464 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kim Westerlind, Ph.D. 5d. PROJECT NUMBER

  3. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  4. p14ARF Post-Transcriptional Regulation of Nuclear Cyclin D1 in MCF-7 Breast Cancer Cells: Discrimination between a Good and Bad Prognosis?

    PubMed Central

    McGowan, Eileen M.; Tran, Nham; Alling, Nikki; Yagoub, Daniel; Sedger, Lisa M.; Martiniello-Wilks, Rosetta

    2012-01-01

    As part of a cell’s inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation), and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late-onset breast cancer in estrogen responsive breast cancers and/or the recurrence of more aggressive breast cancer post-therapy. PMID:22860097

  5. Anti-cancer Activity of Osmanthus matsumuranus Extract by Inducing G2/M Arrest and Apoptosis in Human Hepatocellular Carcinoma Hep G2 Cells

    PubMed Central

    Jin, Soojung; Park, Hyun-Jin; Oh, You Na; Kwon, Hyun Ju; Kim, Jeong-Hwan; Choi, Yung Hyun; Kim, Byung Woo

    2015-01-01

    Background: Osmanthus matsumuranus, a species of Oleaceae, is found in East Asia and Southeast Asia. The bioactivities of O. matsumuranus have not yet been fully understood. Here, we studied on the molecular mechanisms underlying anti-cancer effect of ethanol extract of O. matsumuranus (EEOM). Methods: Inhibitory effect of EEOM on cell growth and proliferation was determined by WST assay in various cancer cells. To investigate the mechanisms of EEOM-mediated cytotoxicity, HepG2 cells were treated with various concentration of EEOM and analyzed the cell cycle arrest and apoptosis induction by flow cytometry, Western blot analysis, 4,6-diamidino-2-phenylindole (DAPI) staining and DNA fragmentation. Results: EEOM showed the cytotoxic activities in a dose-dependent manner in various cancer cell lines but not in normal cells, and HepG2 cells were most susceptible to EEOM-induced cytotoxicity. EEOM induced G2/M arrest in HepG2 cells associated with decreased expression of cyclin-dependent kinase 1 (CDK1), cyclin A and cylcin B, and increased expression of phospho-checkpoint kinase 2, p53 and CDK inhibitor p21. Immunofluorescence staining showed that EEOM-treated HepG2 increased doublet nuclei and condensed actin, resulting in cell rounding. Furthermore, EEOM-mediated apoptosis was determined by Annexin V staining, chromatin condensation and DNA fragmentation. EEOM caused upregulation of FAS and Bax, activation of caspase-3, -8, -9, and fragmentation of poly ADP ribose polymerase. Conclusions: These results suggest that EEOM efficiently inhibits proliferation of HepG2 cells by inducing both G2/M arrest and apoptosis via intrinsic and extrinsic pathways, and EEOM may be used as a cancer chemopreventive agent in the food or nutraceutical industry. PMID:26734586

  6. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro, E-mail: fujii@sapmed.ac.j

    2011-05-25

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression ofmore » C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.« less

  7. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.

    PubMed

    Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don

    2017-09-21

    Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model, comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, Self-Organizing Map with Correlation Coefficient Analysis (SOMCCA) is developed which shows that Growth Factor and G1-S Checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a Checkpoint Efficiency Evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Involvement of Epidermal Growth Factor Receptor Signaling in Estrogen Inhibition of Oocyte Maturation Mediated Through the G Protein-Coupled Estrogen Receptor (Gper) in Zebrafish (Danio rerio)1

    PubMed Central

    Peyton, Candace; Thomas, Peter

    2011-01-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression. PMID:21349822

  9. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis.

    PubMed

    Zhang, Jing; Jiang, Huawei; Shao, Jiaofang; Mao, Ruifang; Liu, Jie; Ma, Yingying; Fang, Xuefeng; Zhao, Na; Zheng, Shu; Lin, Biaoyang

    2014-11-01

    SOX4 is a transcription factor required for tissue development and differentiation in vertebrates. Overexpression of SOX4 has been reported in many cancers including glioblastoma multiforme (GBM), however, the underlying mechanism of actions has not been studied. In this study, we investigated the role of SOX4 in GBM. Kaplan-Meier analysis was performed to assess the association between SOX4 expression levels and survival times in primary GBM samples. Cre/lox P system was used to generate gain or loss of SOX4 in GBM cells, and microarray analysis uncovered the regulation network of SOX4 in GBM cells. High SOX4 expression was significantly associated with good prognosis of primary GBMs. SOX4 inhibited the growth of GBM cell line LN229, A172G and U87MG, partly via the activation of p53-p21 signaling and down-regulation of phosphorylated AKT1. Gene expression profiling and subsequent gene ontology analysis showed that SOX4 influenced several key pathways including the Wnt/ beta-catenin and TGF-beta signaling pathways. Our study found that SOX4 acts as a tumor suppressor in GBM cells by induce cell cycle arrest and inhibiting cell growth.

  10. xCT expression reduces the early cell cycle requirement for calcium signaling

    PubMed Central

    Lastro, Michele; Kourtidis, Antonis; Farley, Kate; Conklin, Douglas S.

    2009-01-01

    Calcium has long been recognized as an important regulator of cell cycle transitions although the mechanisms are largely unknown. A functional genomic screen has identified genes involved in the regulation of early cell cycle progression by calcium. These genes when overexpressed confer the ability to bypass the G1/S arrest induced by Ca2+- channel antagonists in mouse fibroblasts. Overexpression of the cystine-glutamate exchanger, xCT, had the greatest ability to evade calcium antagonist-induced cell cycle arrest. xCT carries out the rate limiting step of glutathione synthesis in many cell types and is responsible for the uptake of cystine in most human cancer cell lines. Functional analysis indicates that the cystine uptake activity of xCT overcomes the G1/S arrest induced by Ca2+- channel antagonists by bypassing the requirement for calcium signaling. Since cells overexpressing xCT were found to have increased levels and activity of the AP-1 transcription factor in G1, redox stimulation of AP-1 activity accounts for the observed growth of these cells in the presence of calcium channel antagonists. These results suggest that reduced calcium signaling impairs AP-1 activation and that xCT expression may directly affect cell proliferation. PMID:18054200

  11. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    PubMed

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  12. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio).

    PubMed

    Peyton, Candace; Thomas, Peter

    2011-07-01

    Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.

  13. The Antioxidant Transcription Factor Nrf2 Negatively Regulates Autophagy and Growth Arrest Induced by the Anticancer Redox Agent Mitoquinone*

    PubMed Central

    Rao, V. Ashutosh; Klein, Sarah R.; Bonar, Spencer J.; Zielonka, Jacek; Mizuno, Naoko; Dickey, Jennifer S.; Keller, Paul W.; Joseph, Joy; Kalyanaraman, Balaraman; Shacter, Emily

    2010-01-01

    Mitoquinone (MitoQ) is a synthetically modified, redox-active ubiquinone compound that accumulates predominantly in mitochondria. We found that MitoQ is 30-fold more cytotoxic to breast cancer cells than to healthy mammary cells. MitoQ treatment led to irreversible inhibition of clonogenic growth of breast cancer cells through a combination of autophagy and apoptotic cell death mechanisms. Relatively limited cytotoxicity was seen with the parent ubiquinone coenzyme Q10. Inhibition of cancer cell growth by MitoQ was associated with G1/S cell cycle arrest and phosphorylation of the checkpoint kinases Chk1 and Chk2. The possible role of oxidative stress in MitoQ activity was investigated by measuring the products of hydroethidine oxidation. Increases in ethidium and dihydroethidium levels, markers of one-electron oxidation of hydroethidine, were observed at cytotoxic concentrations of MitoQ. Keap1, an oxidative stress sensor protein that regulates the antioxidant transcription factor Nrf2, underwent oxidation, degradation, and dissociation from Nrf2 in MitoQ-treated cells. Nrf2 protein levels, nuclear localization, and transcriptional activity also increased following MitoQ treatment. Knockdown of Nrf2 caused a 2-fold increase in autophagy and an increase in G1 cell cycle arrest in response to MitoQ but had no apparent effect on apoptosis. The Nrf2-regulated enzyme NQO1 is partly responsible for controlling the level of autophagy. Keap1 and Nrf2 act as redox sensors for oxidative perturbations that lead to autophagy. MitoQ and similar compounds should be further evaluated for novel anticancer activity. PMID:20805228

  14. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chih-Chuan; Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan; Kuo, Hsing-Chun

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{supmore » 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.« less

  15. Proteomic analysis of the molecular response of Raji cells to maslinic acid treatment.

    PubMed

    Yap, W H; Khoo, K S; Lim, S H; Yeo, C C; Lim, Y M

    2012-01-15

    Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer.

    PubMed

    Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna

    2007-06-08

    LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.

  17. Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells

    PubMed Central

    Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3–5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G2/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G2/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression. PMID:23335992

  18. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3.

    PubMed

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-05-04

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.

  19. Control of G1 arrest after DNA damage.

    PubMed Central

    Kastan, M B; Kuerbitz, S J

    1993-01-01

    The temporal relationship between DNA damage and DNA replication may be critical in determining whether the genetic changes necessary for cellular transformation occur after DNA damage. Recent characterization of the mechanisms responsible for alterations in cell-cycle progression after DNA damage in our laboratory have implicated the p53 (tumor suppressor) protein in the G1 arrest that occurs after certain types of DNA damage. In particular, we found that levels of p53 protein increased rapidly and transiently after nonlethal doses of gamma irradiation (XRT) in hematopoietic cells with wild-type, but not mutant, p53 genes. These changes in p53 protein levels were temporally linked to a transient G1 arrest in these cells. Hematopoietic cells with mutant or absent p53 genes did not exhibit this G1 arrest, through they continued to demonstrate a G2 arrest. We recently extended these observations of a tight correlation between the status of the endogenous p53 genes and this G1 arrest after XRT and this cell-cycle alteration after XRT was then established by transfecting cells lacking endogenous p53 genes with a wild-type gene and observing acquisition of the G1 arrest and by transfecting cells processing endogenous wild-type p53 genes with a mutant p53 gene and observing loss of the G1 arrest after XRT. These observations and their significance for our understanding of the mechanisms of DNA damage-induced cellular transformation are discussed. PMID:8013425

  20. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    PubMed Central

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999

  1. The anti-tumor effect and mechanisms of action of penta-acetyl geniposide.

    PubMed

    Peng, C H; Huang, C N; Wang, C J

    2005-06-01

    Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia Fructus, exhibits the anti-tumor effect. In this review, we discuss the anti-tumor effect and possible mechanisms of a derivative from Gardenia Fructus, penta-acetyl geniposide ((Ac)5GP). It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis induced by aflatoxin B1 (AFB1) by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest. Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. Besides, p53/Bax signaling was suggested to be involved in (Ac)5GP-induced apoptosis, though its downstream cascades needs further clarified. (Ac)5GP has also been shown to inhibit DNA synthesis of tumor cells. It arrested cell cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F. The phosphorylation status of p53 on serine 392 correlated with the process of growth arrest. Evidences from the in vivo experiments showed that (Ac)5GP is not harmful to liver, heart and kidney. In conclusion, (Ac)5GP is highly suggested to be an anti-tumor agent for development in the future.

  2. Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells

    PubMed Central

    Zhang, Yong; Kim, Kwan-Hyun; Zhang, Wei; Guo, Yinglu; Kim, Sung-Hoon; Lü, Junxuan

    2011-01-01

    Androgen receptor (AR) signaling is crucial for the genesis and progression of prostate cancer (PCa). We compared the growth responses of AR(+) LNCaP and LNCaP C4-2 vs. AR(−) DU145 and PC-3 PCa cell lines to galbanic acid (GBA) isolated from the resin of medicinal herb Ferula assafoetida and assessed their connection to AR signaling and cell cycle regulatory pathways. Our results showed that GBA preferentially suppressed AR(+) PCa cell growth than AR(−) PCa cells. GBA induced a caspase-mediated apoptosis that was attenuated by a general caspase inhibitor. Subapoptotic GBA down-regulated AR protein in LNCaP cells primarily through promoting its proteasomal degradation, and inhibited AR-dependent transcription without affecting AR nuclear translocation. Whereas docking simulations predicted binding of GBA to the AR ligand binding domain with similarities and differences with the AR antagonist drug bicalutamide, LNCaP cell culture assays did not detect agonist activity of GBA. GBA and bicalutamide exerted greater than additive inhibitory effect on cell growth when used together. Subapoptotic GBA induced G1 arrest associated with an inhibition of cyclin/CDK4/6 pathway, especially cyclin D1 without the causal involvement of CDK inhibitory proteins P21Cip1 and P27Kip1. In summary, the novelty of GBA as an anti-AR compound resides in the distinction between GBA and bicalutamide with respect to AR protein turnover and a lack of agonist effect. Our observations of anti-AR and cell cycle arrest actions plus the anti-angiogenesis effect reported elsewhere suggest GBA as a multi-targeting drug candidate for the prevention and therapy of PCa. PMID:21328348

  3. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma

    PubMed Central

    Park, Junhee; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Kim, Hyungkeun; Park, Kwang-Kyun; Chung, Won-Yoon

    2017-01-01

    High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer. PMID:28030842

  4. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.

    PubMed

    Park, Junhee; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Kim, Hyungkeun; Park, Kwang-Kyun; Chung, Won-Yoon

    2017-02-07

    High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.

  5. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huiling; Li, Ridong; Li, Li

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{submore » 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.« less

  6. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  7. Atorvastatin Calcium Inhibits PDGF-ββ-Induced Proliferation and Migration of VSMCs Through the G0/G1 Cell Cycle Arrest and Suppression of Activated PDGFRβ-PI3K-Akt Signaling Cascade.

    PubMed

    Chen, Shuang; Dong, Siyuan; Li, Zhao; Guo, Xiaofan; Zhang, Naijin; Yu, Bo; Sun, Yingxian

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of vascular lesions, such as atherosclerosis and restenosis. PDGF-ββ, an isoform of PDGF (platelet-derived growth factor), has been demonstrated to induce proliferation and migration of VSMCs. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, has favorable protective effects on VSMCs. This study examined the effects of atorvastatin calcium on the proliferation and migration of PDGF-ββ-treated VSMCs, as well as its underlying mechanisms. MTT assays, Edu imaging, cell cycle analysis, wound healing assays, transwell migration assays, and western blot analysis were performed. Atorvastatin calcium significantly inhibited cell proliferation, DNA synthesis and cell migration of PDGF-ββ-treated VSMCs. We demonstrated that atorvastatin calcium induced cell cycle arrest in the G0/G1 phase in response to PDGF-ββ stimulation and decreased the expression of G0/G1-specific regulatory proteins, including proliferating cell nuclear antigen (PCNA), CDK2, cyclin D1, cyclin E and CDK4 in PDGF-ββ-treated VSMCs. Moreover, pretreatment with atorvastatin calcium inhibited the PDGF-ββ-treated phosphorylation of PDGFRβ and Akt, whereas atorvastatin calcium did not affect the phosphorylation of PLC-γ1 or (ERK) 1/2. Our data suggested that atorvastatin calcium inhibited abnormal proliferation and migration of VSMCs through G0/G1 cell cycle arrest and suppression of the PDGFRβ-Akt signaling cascade. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway.

    PubMed

    Luo, Hao; Liang, Hairong; Chen, Jiajia; Xu, Yongchun; Chen, Yuting; Xu, Longmei; Yun, Lin; Liu, Jiaxian; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen

    2017-09-01

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP-1 regulatory pathway mediated HQ-induced cell cycle arrest and apoptosis, we assessed the effect of PARP-1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP-1 deficientTK6 cells (TK6-shPARP-1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP-1-deficient TK6 cells (TK6-shPARP-1) compared to those negative control cells (TK6-shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up-regulation of Fas expression, followed by caspase-3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6-shPARP-1 cells than in TK6-shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6-shPARP-1 cells than in TK6-shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up-regulation and p53-mediated apoptosis in TK6-shNC cells. The reduction of PARP-1 expression further intensified up-regulation of p53 in TK6-shPARP-1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6-shPARP-1 cells compared to TK6-shNC cells. © 2017 Wiley Periodicals, Inc.

  9. Sarsaparilla (Smilax Glabra Rhizome) Extract Activates Redox-Dependent ATM/ATR Pathway to Inhibit Cancer Cell Growth by S Phase Arrest, Apoptosis, and Autophagy.

    PubMed

    She, Tiantian; Feng, Junnan; Lian, Shenyi; Li, Ruobing; Zhao, Chuanke; Song, Guoliang; Luo, Jie; Dawuti, Rouxianguli; Cai, Shaoqing; Qu, Like; Shou, Chengchao

    2017-01-01

    Sarsaparilla (Smilax Glabra Rhizome) exerts growth inhibitory effect on multiple cancer cells in vitro and in vivo, and redox-dependent persistent activation of ERK1/2 has been reported to underlie this effect. Here, we report an activation of ATM/ATR-dependent signaling pathway also as a mechanism for the cancer cell growth inhibition induced by the supernatant fraction of the water-soluble extract from sarsaparilla (SW). SW treatment (3.5 μg/μL) promoted the phosphorylations of ATM, ATR, and CHK1 in AGS and HT-29 cells. The ATM kinase inhibitor, KU55933, could reverse SW-induced ERK phosphorylation but not the reduced glutathione/oxidized glutathione (GSH/GSSG) imbalance in AGS cells. However, both the redox inhibitor glutathione (GSH) and ERK inhibitor U0126 antagonized SW-induced phosphorylations of ATM, ATR, and CHK1 in AGS cells. We further found KU55933 significantly antagonized SW-induced S phase arrest, apoptosis, autophagy and the resultant cell growth inhibition. Our results provide another molecular basis for the anticancer action of sarsaparilla.

  10. Visualizing Vpr-Induced G2 Arrest and Apoptosis

    PubMed Central

    Murakami, Tomoyuki; Aida, Yoko

    2014-01-01

    Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1) with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2). The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to characterize the dynamics of the morphological changes that occur during Vpr-induced G2 arrest and apoptosis. PMID:24466265

  11. Sterigmatocystin induces G1 arrest in primary human esophageal epithelial cells but induces G2 arrest in immortalized cells: key mechanistic differences in these two models.

    PubMed

    Wang, Juan; Huang, Shujuan; Xing, Lingxiao; Cui, Jinfeng; Tian, Ziqiang; Shen, Haitao; Jiang, Xiujuan; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2015-11-01

    Sterigmatocystin (ST), a mycotoxin commonly found in food and feed commodities, has been classified as a "possible human carcinogen." Our previous studies suggested that ST exposure might be a risk factor for esophageal cancer and that ST may induce DNA damage and G2 phase arrest in immortalized human esophageal epithelial cells (Het-1A). To further confirm and explore the cellular responses of ST in human esophageal epithelia, we comparatively evaluated DNA damage, cell cycle distribution and the relative mechanisms in primary cultured human esophageal epithelial cells (EPC), which represent a more representative model of the in vivo state, and Het-1A cells. In this study, we found that ST could induce DNA damage in both EPC and Het-1A cells but led to G1 phase arrest in EPC cells and G2 phase arrest in Het-1A cells. Furthermore, our results indicated that the activation of the ATM-Chk2 pathway was involved in ST-induced G1 phase arrest in EPC cells, whereas the p53-p21 pathway activation in ST-induced G2 phase arrest in Het-1A cells. Studies have demonstrated that SV40 large T-antigen (SV40LT) may disturb cell cycle progression by inactivating some of the proteins involved in the G1/S checkpoint. Het-1A is a non-cancerous epithelial cell line immortalized by SV40LT. To evaluate the possible perturbation effect of SV40LT on ST-induced cell cycle disturbance in Het-1A cells, we knocked down SV40LT of Het-1A cells with siRNA and found that under this condition, ST-induced G2 arrest was significantly attenuated, whereas the proportion of cells in the G1 phase was significantly increased. Furthermore, SV40LT-siRNA also inhibited the activation of the p53-p21 signaling pathway induced by ST. In conclusion, our data indicated that ST could induce DNA damage in both primary cultured and immortalized esophageal epithelial cells. In primary human esophageal epithelial cells, ST induced DNA damage and then triggered the ATM-Chk2 pathway, resulting in G1 phase arrest, whereas in SV40LT-immortalized human esophageal epithelial cells, SV40LT-mediated G1 checkpoint inactivation occurred, and ST-DNA damage activated p53-p21 signaling pathway, up-regulating G2/M phase regulatory proteins and finally leading to a G2 phase arrest. Thus, the SV40LT-mediated G1 checkpoint inactivation is responsible for the difference in the cell cycle arrest by ST between immortalized and primary cultured human esophageal epithelial cells.

  12. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    PubMed

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells.

    PubMed

    Li, Tianyu; Zhao, Xinge; Mo, Zengnan; Huang, Weihua; Yan, Haibiao; Ling, Zhian; Ye, Yu

    2014-01-01

    Formononetin is an O-methylated isoflavone isolated from the root of Astragalus membranaceus. It has already been reported that formononetin could inhibit cell proliferation and induce cell apoptosis in several cancers, including prostate cancer. This study aimed to further investigate whether cell cycle arrest is involved in formononetin-mediated antitumor effect in human prostate cancer cells, along with the underlying molecular mechanism. Human prostate cancer cells PC-3 and DU145 were respectively treated with various concentrations of formononetin. The inhibitory effect of formononetin on proliferation of prostate cancer cells was determined using MTT assays and flow cytometry. Next, formononetin-induced alterations in cyclin D1, CDK4 and Akt expression in PC-3 cells were detected by real-time PCR and western blot. Formononetin dose-dependently inhibited prostate cancer cell proliferation via the induction of cell cycle arrest at G0/G1 phase in vitro, which was more evident in PC-3 cells. Meanwhile, concomitant with reduced phosphorylation of Akt in PC-3 cells, formononetin remarkably downregulated expression levels of cyclin D1 and CDK4 in a dose-dependent manner. More interestingly, in the in vivo studies, formononetin showed a noticeable inhibition of tumor growth in recipient mice. Formononetin could exhibit inhibitory activity against human prostate cancer cells in vivo and in vitro, which is associated with G1 cell cycle arrest by inactivation of Akt/cyclin D1/CDK4. Therefore, formononetin may be used as a candidate agent for clinical treatment of prostate cancer in the future.

  14. The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways

    PubMed Central

    Bernardi, Andressa; Frozza, Rudimar L; Hoppe, Juliana B; Salbego, Christianne; Pohlmann, Adriana R; Battastini, Ana Maria O; Guterres, Sílvia S

    2013-01-01

    Despite recent advances in radiotherapy, chemotherapy, and surgical techniques, glioblastoma multiforme (GBM) prognosis remains dismal. There is an urgent need for new therapeutic strategies. Nanoparticles of biodegradable polymers for anticancer drug delivery have attracted intense interest in recent years because they can provide sustained, controlled, and targeted delivery. Here, we investigate the mechanisms involved in the antiproliferative effect of indomethacin-loaded lipid-core nanocapsules (IndOH-LNC) in glioma cells. IndOH-LNC were able to reduce cell viability by inducing apoptotic cell death in C6 and U138-MG glioma cell lines. Interestingly, IndOH-LNC did not affect the viability of primary astrocytes, suggesting that this formulation selectively targeted transformed cells. Mechanistically, IndOH-LNC induced inhibition of cell growth and cell-cycle arrest to be correlated with the inactivation of AKT and β-catenin and the activation of GSK-3β. IndOH-LNC also induced G0/G1 and/or G2/M phase arrest, which was accompanied by a decrease in the levels of cyclin D1, cyclin B1, pRb, and pcdc2 and an increase in the levels of Wee1 CDK inhibitor p21WAF1. Additionally, IndOH-LNC promoted GBM cell differentiation, observed as upregulation of glial fibrillary acidic protein (GFAP) protein and downregulation of nestin and CD133. Taken together, the crosstalk among antiproliferative effects, cell-cycle arrest, apoptosis, and cell differentiation should be considered when tailoring pharmacological interventions aimed at reducing glioma growth by using formulations with multiples targets, such as IndOH-LNC. PMID:23440594

  15. Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in Arabidopsis[C][W

    PubMed Central

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E.; Gassmann, Walter; Schroeder, Julian I.

    2012-01-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor–nucleotide binding–Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid–induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  16. Magnolol inhibits growth of gallbladder cancer cells through the p53 pathway

    PubMed Central

    Li, Maolan; Zhang, Fei; Wang, Xu’an; Wu, Xiangsong; Zhang, Bingtai; Zhang, Ning; Wu, Wenguang; Wang, Zheng; Weng, Hao; Liu, Shibo; Gao, Guofeng; Mu, Jiasheng; Shu, Yijun; Bao, Runfa; Cao, Yang; Lu, Jianhua; Gu, Jun; Zhu, Jian; Liu, Yingbin

    2015-01-01

    Magnolol, the major active compound found in Magnolia officinalis has a wide range of clinical applications due to its anti-inflammation and anti-oxidation effects. This study investigated the effects of magnolol on the growth of human gallbladder carcinoma (GBC) cell lines. The results indicated that magnolol could significantly inhibit the growth of GBC cell lines in a dose- and time-dependent manner. Magnolol also blocked cell cycle progression at G0/G1 phase and induced mitochondrial-related apoptosis by upregulating p53 and p21 protein levels and by downregulating cyclin D1, CDC25A, and Cdk2 protein levels. When cells were pretreated with a p53 inhibitor (pifithrin-a), followed by magnolol treatment, pifithrin-a blocked magnolol-induced apoptosis and G0/G1 arrest. In vivo, magnolol suppressed tumor growth and activated the same mechanisms as were activated in vitro. In conclusion, our study is the first to report that magnolol has an inhibitory effect on the growth of GBC cells and that this compound may have potential as a novel therapeutic agent for the treatment of GBC. PMID:26250568

  17. AMP-activated protein kinase is involved in neural stem cell growth suppression and cell cycle arrest by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D.

    PubMed

    Zang, Yi; Yu, Li-Fang; Nan, Fa-Jun; Feng, Lin-Yin; Li, Jia

    2009-03-06

    The fate of neural stem cells (NSCs), including their proliferation, differentiation, survival, and death, is regulated by multiple intrinsic signals and the extrinsic environment. We had previously reported that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) directly induces astroglial differentiation of NSCs by activation of the Janus kinase (JAK)/Signal transducer and activator of transcription 3 (STAT3) pathway independently of AMP-activated protein kinase (AMPK). Here, we reported the observation that AICAR inhibited NSC proliferation and its underlying mechanism. Analysis of caspase activity and cell cycle showed that AICAR induced G1/G0 cell cycle arrest in NSCs, associated with decreased levels of poly(ADP-ribose) polymerase, phospho-retinoblastoma protein (Rb), and cyclin D but did not cause apoptosis. Iodotubericidin and Compound C, inhibitors of adenosine kinase and AMPK, respectively, or overexpression of a dominant-negative mutant of AMPK, but not JAK inhibitor, were able to reverse the anti-proliferative effect of AICAR. Glucose deprivation also activated the AMPK pathway, induced G0/G1 arrest, and suppressed the proliferation of NSCs, an effect associated with decreased levels of phospho-Rb and cyclin D protein. Furthermore, Compound C and overexpression of dominant-negative AMPK in C17.2 NSCs could block the glucose deprivation-mediated down-regulation of cyclin D and partially reverse the suppression of proliferation. These results suggest that AICAR and glucose deprivation might induce G1/G0 cell cycle arrest and suppress proliferation of NSCs via phospho-Rb and cyclin D down-regulation. AMPK, but not JAK/STAT3, activation is key for this inhibitory effect and may play an important role in the responses of NSCs to metabolic stresses such as glucose deprivation.

  18. Lentiviral Delivery of HIV-1 Vpr Protein Induces Apoptosis in Transformed Cells

    NASA Astrophysics Data System (ADS)

    Stewart, Sheila A.; Poon, Betty; Jowett, Jeremy B. M.; Xie, Yiming; Chen, Irvin S. Y.

    1999-10-01

    Most current anticancer therapies act by inducing tumor cell stasis followed by apoptosis. HIV-1 Vpr effectively induces apoptosis of T cells after arrest of cells at a G2/M checkpoint. Here, we investigated whether this property of Vpr could be exploited for use as a potential anticancer agent. As a potentially safer alternative to transfer of genes encoding Vpr, we developed a method to efficiently introduce Vpr protein directly into cells. Vpr packaged into HIV-1 virions lacking a genome induced efficient cell cycle arrest and apoptosis. Introduction of Vpr into tumor cell lines of various tissue origin, including those bearing predisposing mutations in p53, XPA, and hMLH1, induced cell cycle arrest and apoptosis with high efficiency. Significantly, apoptosis mediated by virion-associated Vpr was more effective on rapidly dividing cells compared with slow-growing cells, thus, in concept, providing a potential differential effect between some types of tumor cells and surrounding normal cells. This model system provides a rationale and proof of concept for the development of potential cancer therapeutic agents based on the growth-arresting and apoptotic properties of Vpr.

  19. 3-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a novel combretastatin A-4 analog, induces G2/M arrest and apoptosis by disrupting tubulin polymerization in human cervical HeLa cells and fibrosarcoma HT-1080 cells.

    PubMed

    Zuo, Daiying; Guo, Dandan; Jiang, Xuewei; Guan, Qi; Qi, Huan; Xu, Jingwen; Li, Zengqiang; Yang, Fushan; Zhang, Weige; Wu, Yingliang

    2015-02-05

    Microtubule is a popular target for anticancer drugs. In this study, we describe the effect 3-(3-hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a newly synthesized analog of combretastatin A-4 (CA-4), showing a strong time- and dose-dependent anti-proliferative effect on human cervical cancer HeLa cells and human fibrosarcoma HT-1080 cells. We demonstrated that the growth inhibitory effects of G-1103 in HeLa and HT-1080 cells were associated with microtubule depolymerization and proved that G-1103 acted as microtubule destabilizing agent. Furthermore, cell cycle analysis revealed that G-1103 treatment resulted in cell cycle arrest at the G2/M phase in a time-dependent manner with subsequent apoptosis induction. Western blot analysis revealed that down-regulation of cdc25c and up-regulation of cyclin B1 was related with G2/M arrest in HeLa and HT-1080 cells treatment with G-1103. In addition, G-1103 induced HeLa cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8 expression, which indicated that G-1103 induced HeLa cell apoptosis was mainly associated with death receptor pathway. However, G-1103 induced HT-1080 cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8, Bax and cleaved caspase-9 expression and down-regulating anti-apoptotic protein Bcl-2 expression, which indicated that G-1103 induced HT-1080 cell apoptosis was associated with both mitochondrial and death receptor pathway. Taken together, all the data demonstrated that G-1103 exhibited its antitumor activity through disrupting the microtubule assembly, causing cell cycle arrest and consequently inducing apoptosis in HeLa and HT-1080 cells. Therefore, the novel compound G-1103 is a promising microtubule inhibitor that has great potentials for therapeutic treatment of various malignancies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Chandramu; Dontula, Ranadheer; Ganji, Purnachandra Nagaraju

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reductionmore » in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the effects of SPARC on medulloblastoma tumor cell proliferation.« less

  1. In vitro growth inhibition of human cancer cells by novel honokiol analogs.

    PubMed

    Lin, Jyh Ming; Prakasha Gowda, A S; Sharma, Arun K; Amin, Shantu

    2012-05-15

    Honokiol possesses many pharmacological activities including anti-cancer properties. Here in, we designed and synthesized honokiol analogs that block major honokiol metabolic pathway which may enhance their effectiveness. We studied their cytotoxicity in human cancer cells and evaluated possible mechanism of cell cycle arrest. Two analogs, namely 2 and 4, showed much higher growth inhibitory activity in A549 human lung cancer cells and significant increase of cell population in the G0-G1 phase. Further elucidation of the inhibition mechanism on cell cycle showed that analogs 2 and 4 inhibit both CDK1 and cyclin B1 protien levels in A549 cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Activated stress response pathways within multicellular aggregates utilize an autocrine component.

    PubMed

    Jack, Graham D; Cabrera, M Carla; Manning, Michael L; Slaughter, Stephen M; Potts, Malcolm; Helm, Richard F

    2007-04-01

    Multicellular aggregates (spheroids) of primary human foreskin fibroblasts (HFF-2) and a glioblastoma cell line (T98G) entered and exited from long term (2 weeks) metabolic arrest utilizing an autocrine response. Cytokine production (specifically IFN-gamma) activated a Gadd45alpha/p38 pathway that led to increased AP-1 (c-jun and ATF3) transcription factor levels, augmenting cytokine production in an autocrine fashion. Whereas HFF-2 aggregates were capable of surviving long term arrest and recovery during NF-kappaB inhibition independent of JNK activation, T98G aggregates were not. Such endogenous processes are not easily observed with adherent monolayer cell culturing systems, strongly suggesting that more emphasis needs to be placed on determining the operational signal transduction cascades within multicellular aggregates. Extracellular inputs such as spheroid formation, arrest, and regrowth as monolayers invoke intracellular signaling responses converging at the AP-1 transcription factor level. Variations in responses are both cell type and transformation state dependent and require an autocrine cytokine component. The data are discussed in relation to the wounding response and avascular tumor growth mechanisms.

  3. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    PubMed

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  4. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest

    PubMed Central

    Gascoyne, Duncan M.; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E.; Croucher, Peter I.; Banham, Alison H.

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology. PMID:26034982

  5. Dehydrozingerone, a structural analogue of curcumin, induces cell-cycle arrest at the G2/M phase and accumulates intracellular ROS in HT-29 human colon cancer cells.

    PubMed

    Yogosawa, Shingo; Yamada, Yasumasa; Yasuda, Shusuke; Sun, Qi; Takizawa, Kaori; Sakai, Toshiyuki

    2012-12-28

    Dehydrozingerone (1) is a pungent constituent present in the rhizomes of ginger (Zingiber officinale) and belongs structurally to the vanillyl ketone class. It is a representative of half the chemical structure of curcumin (2), which is an antioxidative yellow pigment obtained from the rhizomes of turmeric (Curcuma longa). Numerous studies have suggested that 2 is a promising phytochemical for the inhibition of malignant tumors, including colon cancer. On the other hand, there have been few studies on the potential antineoplastic properties of 1, and its mode of action based on a molecular mechanism is little known. Therefore, the antiproliferative effects of 1 were evaluated against HT-29 human colon cancer cells, and it was found that 1 dose-dependently inhibited growth at the G2/M phase with up-regulation of p21. Dehydrozingerone additionally led to the accumulation of intracellular ROS, although most radical scavengers could not clearly repress the cell-cycle arrest at the G2/M phase. Furthermore, two synthetic isomers of 1 (iso-dehydrozingerone, 3, and ortho-dehydrozingerone, 4) were also examined. On comparing of their activities, accumulation of intracellular ROS was found to be interrelated with growth-inhibitory effects. These results suggest that analogues of 1 may be potential chemotherapeutic agents for colon cancer.

  6. Cucurbitacin E Induces G2/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells

    PubMed Central

    Huang, Wen-Wen; Yang, Jai-Sing; Lin, Meng-Wei; Chen, Po-Yuan; Chiou, Shang-Ming; Chueh, Fu-Shin; Lan, Yu-Hsuan; Pai, Shu-Jen; Tsuzuki, Minoru; Ho, Wai-Jane; Chung, Jing-Gung

    2012-01-01

    Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells. PMID:22272214

  7. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression.

    PubMed

    Tseng, Tsui-Hwa; Chien, Ming-Hsien; Lin, Wea-Lung; Wen, Yu-Ching; Chow, Jyh-Ming; Chen, Chi-Kuan; Kuo, Tsang-Chih; Lee, Wei-Jiunn

    2017-02-01

    Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21 WAF1/CIP1 and increased the interaction of p21 WAF1/CIP1 with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21 WAF1/CIP1 promoter region, resulting in the increase of p21 WAF1/CIP1 transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21 WAF1/CIP1 and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 434-444, 2017. © 2016 Wiley Periodicals, Inc.

  8. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E proteinmore » were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.« less

  9. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells.

    PubMed

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Moffett, John R; Namboodiri, Aryan M A; Viapiano, Mariano S; Lawler, Sean E; Jaworski, Diane M

    2013-01-01

    Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.

  10. Acetate Supplementation Induces Growth Arrest of NG2/PDGFRα-Positive Oligodendroglioma-Derived Tumor-Initiating Cells

    PubMed Central

    Long, Patrick M.; Tighe, Scott W.; Driscoll, Heather E.; Moffett, John R.; Namboodiri, Aryan M. A.; Viapiano, Mariano S.; Lawler, Sean E.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation. PMID:24278309

  11. Molecular Mechanism of Action of Genistein and Related Phytoestrogens in Estrogen-Receptor Dependent and Independent Growth of Breast Cancer Cells

    DTIC Science & Technology

    1999-07-01

    quercetin inhibited ER-negative MDA-MB-468 breast cancer cell growth with 1050 values of 8.8 and 18.1 Micronmeter, respectively. The other compounds...were less effective. The mechanism of growth inhibition by genistein and quercetin involved G2/M cell cycle arrest, changes in cyclin B1 levels and...apoptosis. Our results indicate that genistein and quercetin may be useful in the treatment of ER-negative tumors. Results of our studies on MDA-MB-468 cells have been documented and submitted for publication.

  12. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cellmore » cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.« less

  13. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3

    PubMed Central

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3–COP1 pathway. PMID:15861129

  14. mTORC1 activation blocks BrafV600E-induced growth-arrest, but is insufficient for melanoma formation

    PubMed Central

    Damsky, William; Micevic, Goran; Meeth, Katrina; Muthusamy, Viswanathan; Curley, David P.; Santhankrishnan, Manjula; Erdelyi, Ildiko; Platt, James T.; Huang, Laura; Theodosakis, Nicholas; Zaidi, M. Raza; Tighe, Scott; Davies, Michael A.; Dankort, David; McMahon, Martin; Merlino, Glenn; Bardeesy, Nabeel; Bosenberg, Marcus

    2014-01-01

    SUMMARY BrafV600E induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in BrafV600E melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100 which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth-arrest of BrafV600E melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in BrafV600E melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis. PMID:25584893

  15. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.

    PubMed

    Siede, W; Friedberg, A S; Friedberg, E C

    1993-09-01

    Exposure of the yeast Saccharomyces cerevisiae to ultraviolet (UV) light, the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), or gamma radiation after release from G1 arrest induced by alpha factor results in delayed resumption of the cell cycle. As is the case with G2 arrest following ionizing radiation damage [Weinert, T. A. & Hartwell, L. H. (1988) Science 241, 317-322], the normal execution of DNA damage-induced G1 arrest depends on a functional yeast RAD9 gene. We suggest that the RAD9 gene product may interact with cellular components common to the G1/S and G2/M transition points in the cell cycle of this yeast. These observations define a checkpoint in the eukaryotic cell cycle that may facilitate the repair of lesions that are otherwise processed to lethal and/or mutagenic damage during DNA replication. This checkpoint apparently operates after the mating pheromone-induced G1 arrest point but prior to replicative DNA synthesis, S phase-associated maximal induction of histone H2A mRNA, and bud emergence.

  16. Recombinant FIP-gat, a Fungal Immunomodulatory Protein from Ganoderma atrum, Induces Growth Inhibition and Cell Death in Breast Cancer Cells.

    PubMed

    Xu, Hui; Kong, Ying-Yu; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Lu, Yu-Jia; Li, Wei; Zhou, Xuan-Wei

    2016-04-06

    FIP-gat, an immunomodulatory protein isolated from Ganoderma atrum, is a new member of the FIP family. Little is known, however, about its expressional properties and antitumor activities. It was availably expressed in Escherichia coli with a total yield of 29.75 mg/L. The migration of recombinant FIP-gat (rFIP-gat) on SDS-PAGE corresponded to the predicted molecular mass, and the band was correctly detected by a specific antibody. To characterize the direct effects of rFIP-gat on MDA-MB-231 breast cancer cells, MDA-MB-231 cells were treated with different concentrations of rFIP-gat in vitro; the results showed that this protein could reduce cell viability dose-dependently with a median inhibitory concentration (IC50) of 9.96 μg/mL and agglutinate the MDA-MB-231 cells at a concentration as low as 5 μg/mL. Furthermore, FIP-gat at a concentration of 10 μg/mL can induce significant growth inhibition and cell death in MDA-MB-231 cells. Notably, FIP-gat treatment triggers significant cell cycle arrest at the G1/S transition and pronounced increase in apoptotic cell population. Molecular assays based on microarray and real-time PCR further revealed the potential mechanisms encompassing growth arrest, apoptosis, and autophagy underlying the phenotypic effects.

  17. 6-Gingerol Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M Arrest

    PubMed Central

    Lin, Ching-Bin; Lin, Chun-Che; Tsay, Gregory J.

    2012-01-01

    6-Gingerol, a natural component of ginger, has been widely reported to possess antiinflammatory and antitumorigenic activities. Despite its potential efficacy against cancer, the anti-tumor mechanisms of 6-gingerol are complicated and remain sketchy. In the present study, we aimed to investigate the anti-tumor effects of 6-gingerol on colon cancer cells. Our results revealed that 6-gingerol treatment significantly reduced the cell viability of human colon cancer cell, LoVo, in a dose-dependent manner. Further flow cytometric analysis showed that 6-gingerol induced significant G2/M phase arrest and had slight influence on sub-G1 phase in LoVo cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, cyclin B1, and CDK1 were diminished; in contrast, levels of the negative cell cycle regulators p27Kip1 and p21Cip1 were increased in response to 6-gingerol treatment. In addition, 6-gingerol treatment elevated intracellular reactive oxygen species (ROS) and phosphorylation level of p53. These findings indicate that exposure of 6-gingerol may induce intracellular ROS and upregulate p53, p27Kip1, and p21Cip1 levels leading to consequent decrease of CDK1, cyclin A, and cyclin B1 as result of cell cycle arrest in LoVo cells. It would be suggested that 6-gingerol should be beneficial to treatment of colon cancer. PMID:22719783

  18. 6-Gingerol Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M Arrest.

    PubMed

    Lin, Ching-Bin; Lin, Chun-Che; Tsay, Gregory J

    2012-01-01

    6-Gingerol, a natural component of ginger, has been widely reported to possess antiinflammatory and antitumorigenic activities. Despite its potential efficacy against cancer, the anti-tumor mechanisms of 6-gingerol are complicated and remain sketchy. In the present study, we aimed to investigate the anti-tumor effects of 6-gingerol on colon cancer cells. Our results revealed that 6-gingerol treatment significantly reduced the cell viability of human colon cancer cell, LoVo, in a dose-dependent manner. Further flow cytometric analysis showed that 6-gingerol induced significant G2/M phase arrest and had slight influence on sub-G1 phase in LoVo cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, cyclin B1, and CDK1 were diminished; in contrast, levels of the negative cell cycle regulators p27(Kip1) and p21(Cip1) were increased in response to 6-gingerol treatment. In addition, 6-gingerol treatment elevated intracellular reactive oxygen species (ROS) and phosphorylation level of p53. These findings indicate that exposure of 6-gingerol may induce intracellular ROS and upregulate p53, p27(Kip1), and p21(Cip1) levels leading to consequent decrease of CDK1, cyclin A, and cyclin B1 as result of cell cycle arrest in LoVo cells. It would be suggested that 6-gingerol should be beneficial to treatment of colon cancer.

  19. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  20. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis.

    PubMed

    De Luca, Thomas; Morré, Dorothy M; Zhao, Haiyun; Morré, D James

    2005-01-01

    To elucidate possible biochemical links between growth arrest from antiproliferative chemotherapeutic agents and apoptosis, our work has focused on agents (EGCg, capsaicin, cis platinum, adriamycin, anti-tumor sulfonylureas, phenoxodiol) that target tNOX. tNOX is a cancer-specific cell surface NADH oxidase (ECTO-NOX protein), that functions in cancer cells as the terminal oxidase for plasma membrane electron transport. When tNOX is active, coenzyme Q(10) (ubiquinone) of the plasma membrane is oxidized and NADH is oxidized at the cytosolic surface of the plasma membrane. However, when tNOX is inhibited and plasma membrane electron transport is diminished, both reduced coenzyme Q(10) (ubiquinol) and NADH would be expected to accumulate. To relate inhibition of plasma membrane redox to increased ceramide levels and arrest of cell proliferation in G(1) and apoptosis, we show that neutral sphingomyelinase, a major contributor to plasma membrane ceramide, is inhibited by reduced glutathione and ubiquinone. Ubiquinol is without effect or stimulates. In contrast, sphingosine kinase, which generates anti-apoptotic sphingosine-1-phosphate, is stimulated by ubiquinone but inhibited by ubiquinol and NADH. Thus, the quinone and pyridine nucleotide products of plasma membrane redox, ubiquinone and ubiquinol, as well as NAD(+) and NADH, may directly modulate in a reciprocal manner two key plasma membrane enzymes, sphingomyelinase and sphingosine kinase, potentially leading to G(1) arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). As such, the findings provide potential links between coenzyme Q(10)-mediated plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents.

  1. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    PubMed

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  2. 2',4'-dihydroxychalcone, a flavonoid isolated from Herba oxytropis, suppresses PC-3 human prostate cancer cell growth by induction of apoptosis.

    PubMed

    Sheng, Yuqing; Zou, Mingchang; Wang, Yan; Li, Qiheng

    2015-12-01

    Natural products are a promising source for the development of novel cancer therapies, due to their potential effectiveness and low toxicity profiles. As a main component of Herba oxytropis , 2',4'-dihydroxychalcone (TFC) is known to demonstrate anti-tumor activity in vitro . In the present study, TFC was found to potently inhibit proliferation and induce apoptosis in PC-3 human prostate cancer cells in a dose-dependent manner. The results demonstrated that the induction of apoptosis is associated with cell cycle arrest at the G0/G1 phase and activation of caspase-3/-7. Additional mechanistic studies of two biomarkers, phosphatase and tensin homolog (PTEN) and cyclin-dependent kinase inhibitor 1B (p27 Kip1 ), in prostate cancer revealed that TFC treatment significantly upregulated the expression of PTEN and p27 Kip1 . The findings of the present study indicate that TFC-induced apoptosis in PC-3 cells via upregulation of PTEN and p27 Kip1 , which results in cell cycle arrest in G0/G1 phase, activation of caspase-3/-7 and induction of apoptosis. Therefore, TFC may be a potential compound for human prostate cancer therapy.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiaoyong; Cai, Cuizan; Xiao, Fei

    Highlights: • A specific aFGF-binding peptide AP8 was identified from a phage display library. • AP8 could inhibit aFGF-stimulated cell proliferation in a dose-dependent manner. • AP8 arrested the cell cycle at the G0/G1 phase by suppressing Cyclin D1. • AP8 could block the activation of Erk1/2 and Akt kinase. • AP8 counteracted proliferation and cell cycle via influencing PA2G4 and PCNA. - Abstract: It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs havemore » been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.« less

  4. Amygdalin, from Apricot Kernels, Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review.

    PubMed

    Saleem, Mohammad; Asif, Jawaria; Asif, Muhammad; Saleem, Uzma

    2018-01-05

    Amygdalin is a cyanogenic glycoside which is described as a naturally occurring anti-cancer agent. In 1830s, French chemists Robiquet and Boutron-Charlard isolated amygdalin from bitter almonds. Apoptosis is an important mechanism in cancer treatment by amygdalin. Amygdalin can probably stimulate apoptotic process in cancerous cells by increasing activity of Bax (pro-apoptotic protein) and caspase-3 and decreasing expression of Bcl-2 (anti-apoptotic protein). Amygdalin promotes arrest of cell cycle in G0/G1 phase followed by decreasing number of S and G2/M phase cells. So, amygdalin enhances deceleration of cell cycle by blocking cell proliferation and growth. The current review highlights that amygdalin has potential to be used as an anticancer agent in cancer therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest.

    PubMed

    Sun, Mei-Na; Zhao, Xue-Jiao; Zhao, Han-Dong; Zhang, Wei-Guang; Li, Feng-Lan; Chen, Ming-Zi; Li, Hui; Li, Guangchao

    2013-06-01

    The aim of the present study was to investigate the effects of recombinant Escherichia coli (E. coli) Trx-jingzhaotoxin (JZTX)-III on cell growth in the mouse hepatocellular carcinoma (HCC) cell line Hepa1-6. The JZTX-III gene sequence was synthesized and cloned into the pET-32a(+) vector to construct the recombinant fusion protein Trx-JZTX-III, which was subsequently purified. Hepa1-6 cells were treated with 0 to 1,000-µg/ml concentrations of Trx-JZTX-III; this was demonstrated to affect cell viability, as determined by the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The expression of the proliferating cell nuclear antigen (PCNA) protein was investigated using western blot analysis. A colony formation assay was used to determine Hepa1-6 cell proliferation, and the migration ability of cells was determined using a wound‑healing assay. Additionally, flow cytometry was employed to observe changes in the cell cycle. The MTT assay and quantification of PCNA expression indicated that recombinant E. coli Trx-JZTX-III significantly repressed the proliferation of Hepa1-6 cells. Colony formation and the migration of malignant cells was inhibited following treatment with recombinant E. coli Trx-JZTX-III. Flow cytometry showed that recombinant E. coli Trx-JZTX-III induced G0/G1 cell cycle arrest. In conclusion, recombinant E. coli Trx-JZTX-III functions as a tumor suppressor drug in mouse HCC and its underlying mechanism may involve the induction of G0/G1 cell cycle arrest.

  6. Oxoaporphine Metal Complexes (CoII, NiII, ZnII) with High Antitumor Activity by Inducing Mitochondria-Mediated Apoptosis and S-phase Arrest in HepG2

    PubMed Central

    Qin, Jiao-Lan; Shen, Wen-Ying; Chen, Zhen-Feng; Zhao, Li-Fang; Qin, Qi-Pin; Yu, Yan-Cheng; Liang, Hong

    2017-01-01

    Three new oxoaporphine Co(II), Ni(II) and Zn(II) complexes 1–3 have been synthesized and fully characterized. 1–3 have similar mononuclear structures with the metal and ligand ratio of 1:2. 1–3 exhibited higher cytotoxicity than the OD ligand and cisplatin against HepG2, T-24, BEL-7404, MGC80–3 and SK-OV-3/DDP cells, with IC50 value of 0.23−4.31 μM. Interestingly, 0.5 μM 1–3 significantly caused HepG2 arrest at S-phase, which was associated with the up-regulation of p53, p21, p27, Chk1 and Chk2 proteins, and decrease in cyclin A, CDK2, Cdc25A, PCNA proteins. In addition, 1–3 induced HepG2 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by p53 activation, ROS production, Bax up-regulation and Bcl-2 down-regulation, mitochondrial dysfunction, cytochrome c release, caspase activation and PARP cleavage. Furthermore, 3 inhibited tumor growth in HepG2 xenograft model, and displayed more safety profile in vivo than cisplatin. PMID:28436418

  7. Blumeria graminis interactions with barley conditioned by different single R genes demonstrate a temporal and spatial relationship between stomatal dysfunction and cell death.

    PubMed

    Prats, Elena; Gay, Alan P; Roberts, Peter C; Thomas, Barry J; Sanderson, Ruth; Paveley, Neil; Lyngkjaer, Michael F; Carver, Tim L W; Mur, Luis A J

    2010-01-01

    Hypersensitive response (HR) against Blumeria graminis f. sp. hordei infection in barley (Hordeum vulgare) was associated with stomata "lock-up" leading to increased leaf water conductance (g(l)). Unique spatio-temporal patterns of HR formation occurred in barley with Mla1, Mla3, or MlLa R genes challenged with B. graminis f. sp. hordei. With Mla1, a rapid HR, limited to epidermal cells, arrested fungal growth before colonies initiated secondary attacks. With Mla3, mesophyll HR preceded that in epidermal cells whose initial survival supported secondary infections. With MlLa, mesophyll survived and not all attacked epidermal cells died immediately, allowing colony growth and secondary infection until arrested. Isolines with Mla1, Mla3, or MlLa genes inoculated with B. graminis f. sp. hordei ranging from 1 to 100 conidia mm(2) showed abnormally high g(l) during dark periods whose timing and extent correlated with those of each HR. Each isoline showed increased dark g(l) with the nonpathogen B. graminis f. sp. avenae which caused a single epidermal cell HR. Guard cell autofluorescence was seen only after drying of epidermal strips and closure of stomata suggesting that locked open stomata were viable. The data link stomatal lock-up to HR associated cell death and has implications for strategies for selecting disease resistant genotypes.

  8. AZD8055 Exerts Antitumor Effects on Colon Cancer Cells by Inhibiting mTOR and Cell-cycle Progression.

    PubMed

    Chen, Yun; Lee, Cheng-Hung; Tseng, Bor-Yuan; Tsai, Ya-Hui; Tsai, Huang-Wen; Yao, Chao-Ling; Tseng, Sheng-Hong

    2018-03-01

    AZD8055 is an inhibitor of mammalian target of rapamycin (mTOR) that can suppress both mTOR complex 1 (mTORC1) and mTORC2. This study investigated the antitumor effects of AZD8055 on colon cancer. The effects of AZD8055 on proliferation, apoptosis, and cell cycle of colon cancer cells, and tumor growth in a mouse colon cancer model were studied. AZD8055 significantly inhibited proliferation and induced apoptosis of colon cancer cells (p<0.05). The phosphorylation of both AKT and S6 kinase 1 (S6K1) was suppressed by AZD8055. AZD8055 also induced G 0 /G 1 cell-cycle arrest, reduced cyclin D1 and increased p27 expression, and suppressed the levels of phospho-cyclin-dependent kinase 2 and phospho-retinoblastoma. Compared to the control, oral administration of AZD8055 significantly suppressed tumor growth in mice (p<0.05). AZD8055 induces cytotoxicity, apoptosis, and cell-cycle arrest of colon cancer cells, and exerts an antitumor effect in mice. It also inhibits the mTOR signaling pathway and mTOR-dependent cell-cycle progression. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    PubMed

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  10. 7-Hydroxystaurosporine (UCN-01) preferentially sensitizes cells with a disrupted TP53 to gamma radiation in lung cancer cell lines.

    PubMed

    Xiao, Helen H; Makeyev, Yan; Butler, James; Vikram, Bhadrasain; Franklin, William A

    2002-07-01

    Mutations in TP53 occur in more than 50% of the lung cancer patients and are associated with an increased resistance to chemotherapy and radiotherapy. The human lung adenocarcinoma cell lines A549 and LXSN contain a wild-type TP53 and were growth arrested at both the G(1)- and G(2)-phase checkpoints after irradiation. However, a TP53-disrupted cell line, E6, was arrested only at the G(2)-phase checkpoint. UCN-01 (7-hydroxystaurosporine), a CHEK1 inhibitor that abrogates the G(2) block, has been reported to enhance radiation toxicity in human lymphoma and colon cancer cell lines. In this study, UCN-01 preferentially enhanced the radiosensitivity of the TP53-disrupted E6 cells compared to the TP53 wild-type cells. This effect was more pronounced in cells synchronized in early G(1) phase, where the E6 cells showed a higher resistance to radiation in the absence of drug. These results indicate that the combination of UCN-01 and radiation can more specifically target resistant TP53 mutated cancer cells and spare TP53 wild-type normal cells.

  11. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth.

    PubMed

    Toyota, Yuka; Iwama, Hisakazu; Kato, Kiyohito; Tani, Joji; Katsura, Akiko; Miyata, Miwa; Fujiwara, Shintaro; Fujita, Koji; Sakamoto, Teppei; Fujimori, Takayuki; Okura, Ryoichi; Kobayashi, Kiyoyuki; Tadokoro, Tomoko; Mimura, Shima; Nomura, Takako; Miyoshi, Hisaaki; Morishita, Asahiro; Kamada, Hideki; Yoneyama, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-10-01

    Although gemcitabine (2',2'-difluorocytidine monohydrochloride) is a common anticancer agent of cholangiocellular carcinoma (CCC), its growth inhibitory effects and gemcitabine resistance in CCC cells are poorly understood. Our aims were to uncover the mechanism underlying the antitumor effect of gemcitabine and to analyze the mechanism regulating in vitro CCC cell gemcitabine resistance. In addition, we sought to identify miRNAs associated with the antitumor effects of gemcitabine in CCCs. Using a cell proliferation assay and flow cytometry, we examined the ability of gemcitabine to inhibit cell proliferation in three types of human CCC cell lines (HuCCT-1, Huh28, TKKK). We also employed western blotting to investigate the effects of gemcitabine on cell cycle-related molecules in CCC cells. In addition, we used array chips to assess gemcitabine-mediated changes in angiogenic molecules and activated tyrosine kinase receptors in CCC cells. We used miRNA array chips to comprehensively analyze gemcitabine-induced miRNAs and examined clusters of differentially expressed miRNAs in cells with and without gemcitabine treatment. Gemcitabine inhibited cell proliferation in a dose- and time-dependent manner in HuCCT-1 cells, whereas cell proliferation was unchanged in Huh28 and TKKK cells. Gemcitabine inhibited cell cycle progression in HuCCT-1 cells from G0/G1 to S phase, resulting in G1 cell cycle arrest due to the reduction of cyclin D1 expression. In addition, gemcitabine upregulated the angiogenic molecules IL-6, IL-8, ENA-78 and MCP-1. In TKKK cells, by contrast, gemcitabine did not arrest the cell cycle or modify angiogenic molecules. Furthermore, in gemcitabine-sensitive HuCCT-1 cells, gemcitabine markedly altered miRNA expression. The miRNAs and angiogenic molecules altered by gemcitabine contribute to the inhibition of tumor growth in vitro.

  12. Magnolol inhibits growth of gallbladder cancer cells through the p53 pathway.

    PubMed

    Li, Maolan; Zhang, Fei; Wang, Xu'an; Wu, Xiangsong; Zhang, Bingtai; Zhang, Ning; Wu, Wenguang; Wang, Zheng; Weng, Hao; Liu, Shibo; Gao, Guofeng; Mu, Jiasheng; Shu, Yijun; Bao, Runfa; Cao, Yang; Lu, Jianhua; Gu, Jun; Zhu, Jian; Liu, Yingbin

    2015-10-01

    Magnolol, the major active compound found in Magnolia officinalis has a wide range of clinical applications due to its anti-inflammation and anti-oxidation effects. This study investigated the effects of magnolol on the growth of human gallbladder carcinoma (GBC) cell lines. The results indicated that magnolol could significantly inhibit the growth of GBC cell lines in a dose- and time-dependent manner. Magnolol also blocked cell cycle progression at G0 /G1 phase and induced mitochondrial-related apoptosis by upregulating p53 and p21 protein levels and by downregulating cyclin D1, CDC25A, and Cdk2 protein levels. When cells were pretreated with a p53 inhibitor (pifithrin-a), followed by magnolol treatment, pifithrin-a blocked magnolol-induced apoptosis and G0 /G1 arrest. In vivo, magnolol suppressed tumor growth and activated the same mechanisms as were activated in vitro. In conclusion, our study is the first to report that magnolol has an inhibitory effect on the growth of GBC cells and that this compound may have potential as a novel therapeutic agent for the treatment of GBC. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  13. β-sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells

    PubMed Central

    2013-01-01

    Backgrounds It is suggested that dietary phytosterols, such as β-sitosterol (ST), have cancer chemopreventive effects; however, studies are limited to support such claims. Here, we evaluated the efficacy of ST on three different human cancer cell lines including skin epidermoid carcinoma A431 cells, lung epithelial carcinoma A549 cells and breast adenocarcinoma MDA-MB-231. Methods Cell growth assay, cell cycle analysis, FACS, JC-1 staining, annexin V staining and immunoblotting were used to study the efficacy of ST on cancer cells. Results ST (30–90 μM) treatments for 48 h and 72 h did not show any significant effect on cell growth and death in A431 cells. Whereas similar ST treatments moderately inhibited the growth of A549 cells by up to 13% (p ≤ 0.05) in 48 h and 14% (p ≤ 0.05-0.0001) in 72 h. In MDA-MB-231 cells, ST caused a significant dose-dependent cell growth inhibition by 31- 63% (p ≤ 0.0001) in 48 h and 40-50% (p ≤ 0.0001) in 72 h. While exploring the molecular changes associated with strong ST efficacy in breast cancer cells, we observed that ST induced cell cycle arrest as well as cell death. ST caused G0/G1 cell cycle arrest which was accompanied by a decrease in CDK4 and cyclin D1, and an increase in p21/Cip1and p27/Kip1 protein levels. Further, cell death effect of ST was associated with induction of apoptosis. ST also caused the depolarization of mitochondrial membrane potential and increased Bax/Bcl-2 protein ratio. Conclusions These results suggest prominent in vitro anti-proliferative and pro-apoptotic effects of ST in MDA-MB-231 cells. This study provides valuable insight into the chemopreventive efficacy and associated molecular alterations of ST in breast cancer cells whereas it had only moderate efficacy on lung cancer cells and did not show any considerable effect on skin cancer cells. These findings would form the basis for further studies to understand the mechanisms and assess the potential utility of ST as a cancer chemopreventive agent against breast cancer. PMID:24160369

  14. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Shinji; Kato, Kiyoko; Suga, Shin

    2005-05-01

    Previously, we found a significant reduction of progesterone receptor B (PR-B) expression levels in the Ras-mediated NIH3T3 cell transformation, and re-expression of exogenous PR-B eliminated the tumorigenic potential. We hypothesized that this reduction is of biological significance in cell transformation. In the present study, we determined the correlation between PR-B expression and cell cycle progression. In synchronized NIH3T3 cells, we found an increase in PR-B protein and p27 CDK inhibitor levels in the G0/G1 phase and a reduction due to redistribution in the S and G2/M phases. The MEK inhibitor or cAMP stimulation arrested NIH3T3 cells in the G0/G1 phasemore » of the cell cycle. The expression of PR-B and p27 CDK inhibitors was up-regulated by treatment with both the MEK inhibitor and cAMP. Treatment of synchronized cells with a PKA inhibitor in the presence of 1% calf serum resulted in a significant reduction in both PR-B and p27 levels. The decrease in the PR-B levels caused by anti-sense oligomers or siRNA corresponded to the reduction in p27 levels. PR-B overexpression by adenovirus infection induced p27 and suppressed cell growth. Finally, we showed that PR-B modulation involved in the regulation of NIH3T3 cell proliferation was independent of nuclear estrogen receptor (ER) activity but dependent on non-genomic ER activity.« less

  15. Mitotic UV Irradiation Induces a DNA Replication-Licensing Defect that Potentiates G1 Arrest Response

    PubMed Central

    Morino, Masayuki; Nukina, Kohei; Sakaguchi, Hiroki; Maeda, Takeshi; Takahara, Michiyo; Shiomi, Yasushi; Nishitani, Hideo

    2015-01-01

    Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis. PMID:25798850

  16. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1.

    PubMed

    Yamaguchi, Fuminori; Takata, Maki; Kamitori, Kazuyo; Nonaka, Machiko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-02-01

    'Rare sugars' are defined as monosaccharides that exist in nature but are only present in limited quantities. The development of mass production method of rare sugars revealed some interesting physiological effects of these on animal cells, but the mechanisms have not been well studied. We examined the effect of D-allose on the proliferation of cancer cells and the underlying molecular mechanism of the action. The HuH-7 hepatocellular carcinoma cells were treated with various monosaccharides for 48 h and D-allose was shown to inhibit cell growth by 40% in a dose-dependent manner. D-allose induced G1 cell cycle arrest but not apoptosis. The microarray analysis revealed that D-allose significantly up-regulated thioredoxin interacting protein (TXNIP) gene expression, which is often suppressed in tumor cells and western blot analysis confirmed its increase at protein level. The overexpression of TXNIP also induced G1 cell cycle arrest. Analysis of cell cycle regulatory genes showed p27kip1, a key regulator of G1/S cell cycle transition, to be increased at the protein but not the transcriptional level. Protein interaction between TXNIP and jab1, and p27kip1 and jab1, was observed, suggesting stabilization of p27kip1 protein by the competitive inhibition of jab1-mediated nuclear export of p27kip1 by TXNIP. In addition, increased interaction and nuclear localization of TXNIP and p27kip1 were apparent after D-allose treatment. Our findings surprisingly suggest that D-allose, a simple monosaccharide, may act as a novel anticancer agent via unique TXNIP induction and p27kip1 protein stabilization.

  17. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells.

    PubMed

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERalpha and ERbeta expression in both cell lines - and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERalpha in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERbeta. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer.

  18. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurila, Eeva; Vuorinen, Elisa; Fimlab Laboratories, Biokatu 4, 33520 Tampere

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700Tmore » pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.« less

  19. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.

    PubMed

    Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M

    2004-11-01

    Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.

  20. DAT-230, a Novel Microtubule Inhibitor, Induced Aberrant Mitosis and Apoptosis in SGC-7901 Cells.

    PubMed

    Qiao, Foxiao; Zuo, Daiying; Wang, Haifeng; Li, Zengqiang; Qi, Huan; Zhang, Weige; Wu, Yingliang

    2013-01-01

    2-Methoxy-5-(2-(3,4,5-trimethoxyphenyl)thiophen-3-yl) aniline (DAT-230) is a novel synthesized compound of combretastatin-A-4 derivative with more stability. The present study is to investigate its anti-tumor activity and molecular mechanisms in human gastric adenocarcinoma SGC-7901 cells. DAT-230 inhibited SGC-7901 cells growth. The treatment of DAT-230 resulted in microtubule de-polymerization and G2/M phase arrest. Besides the accumulation and translocation of Cyclin B1, reduction of p-14/15-cdc2 and mitosis delay denoted the Cyclin B1-cdc2 complex active and M phase arrest in SGC-7901 cells treated with DAT-230. Mitochondria pathway participated in apoptosis after G2/M arrest in SGC-7901 cells treated with DAT-230, which was characterized by DNA fragmentation, cleavage of poly(ADP-ribose) polymerase (PARP), activation of caspase-3 and caspase-9, changes of Bcl-2 and Bax expression, decrease of mitochondrial membrane potential and release of cytochrome c from mitochondria. In vivo, DAT-230 delayed tumor growth in BALB/c nude mice with human gastric adenocarcinoma xenografts. Besides apoptosis was detected with terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay in tumor tissue. In conclusion, DAT-230 is a promising microtubule inhibitor with great anti-tumor activity to SGC-7901, in vitro and in vivo. Its potential to be a candidate of anti-cancer agent is worth of being further investigated.

  1. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A

    2015-01-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. PMID:25825542

  2. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Luo, Fei; Zhou, Ying

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression ofmore » androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.« less

  3. SD-208, a Novel Protein Kinase D Inhibitor, Blocks Prostate Cancer Cell Proliferation and Tumor Growth In Vivo by Inducing G2/M Cell Cycle Arrest

    PubMed Central

    Tandon, Manuj; Salamoun, Joseph M.; Carder, Evan J.; Farber, Elisa; Xu, Shuping; Deng, Fan; Tang, Hua; Wipf, Peter; Wang, Q. Jane

    2015-01-01

    Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment. PMID:25747583

  4. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells.

    PubMed

    Ando, Shotaro; Kawada, Jun-Ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi

    2016-11-22

    Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma.

  5. Cyclin B Proteolysis and the Cyclin-dependent Kinase Inhibitor rum1p Are Required for Pheromone-induced G1 Arrest in Fission Yeast

    PubMed Central

    Stern, Bodo; Nurse, Paul

    1998-01-01

    The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1 arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1 arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p. PMID:9614176

  6. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells

    PubMed Central

    2013-01-01

    Background Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells. Results In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment. Conclusions The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells PMID:23506616

  7. Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression.

    PubMed

    Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Han, Joo-Hui; Ma, Jin Yeul

    2016-07-28

    Kiom-18 is a novel composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra. Curcuma longa and Glycyrrhiza glabra, which are traditional medicines in Asia, have been reported to demonstrate preventive effects against atherosclerosis; however, they have not yet been developed into functional atherosclerosis treatments. We therefore studied the anti-atherosclerotic effects and possible molecular mechanisms of Kiom-18 using vascular smooth muscle cells (VSMCs). To assess the anti-proliferative effect of Kiom-18 in vitro, we performed thymidine incorporation, cell cycle progression, immunoblotting and immunofluorescence assays in VSMCs stimulated by platelet derived-growth factor (PDGF)-BB. In addition, we used LDLr knockout mice to identify the effects of Kiom-18 as a preliminary result in an atherosclerosis animal model. Kiom-18 inhibited platelet-derived growth factor (PDGF)-BB-stimulated-VSMC proliferation and DNA synthesis. Additionally, Kiom-18 arrested the cell cycle transition of G0/G1 stimulated by PDGF-BB and its cell cycle-related proteins. Correspondingly, the level of p27(kip1) expression was upregulated in the presence of the Kiom-18 extract. Moreover, in an atherosclerosis animal model of LDLr knockout mice, Kiom-18 extract showed a preventive effect for the formation of atherosclerotic plaque and suppressed body weight, fat weight, food treatment efficiency, neutrophil count, and triglyceride level. These results indicate that Kiom-18 exerts anti-atherosclerotic effects by inhibiting VSMC proliferation via G0/G1 arrest, which upregulates p27(Kip1) expression.

  8. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R.

    PubMed

    Li, Ge; Park, Hyeon U; Liang, Dong; Zhao, Richard Y

    2010-07-07

    Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  9. Production of cloned calves using roscovitine-treated adult somatic cells as donors.

    PubMed

    Miyoshi, Kazuchika; Arat, Sezen; Stice, Steven L

    2006-01-01

    The stage of the donor cell cycle is a major factor in the success of cloning. Quiescent cells arrested in the G0/G1 phases of the cell cycle by either serum starvation or growth arrest when cultured cells reach confluence have been used as donors to produce cloned animals. Recently, we have developed a novel and effective method using roscovitine to synchronize adult bovine granulosa cells in the G0/G1 cell cycle stage. The resulting fetal and calf survival after transfer of cloned embryos was enhanced in the roscovitine-treated group compared with serum-starved controls. The methods described in this chapter outline (1) the preparation of donor cells, (2) the preparation of recipient oocytes, and (3) the production of cloned embryos. The first section involves methods for the preparation of donor cell stocks from isolated granulosa cells and the roscovitine treatment of the cells before nuclear transfer. The second section explains procedures of in vitro maturation of recipient oocytes. The last section involves methods for the production of cell-oocyte complexes, the fusion of the complexes, and the activation, in vitro culture, and transfer into recipient females of cloned embryos.

  10. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    PubMed Central

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xenograft tumors in nude mice. Silybin inhibited the kinase activity of mitogen-activated protein kinase kinase (MEK)-1/2 and ribosomal S6 kinase (RSK)-2 in melanoma cells. The direct binding of silybin with MEK1/2 and RSK2 was explored using a computational docking model. Treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2, which are regulated by the upstream kinases MEK1/2. The blockade of MEK1/2-ERK1/2-RSK2 signaling by silybin resulted in a reduced activation of nuclear factor-kappaB, activator protein-1 and signal transducer and activator of transcription-3, which are transcriptional regulators of a variety of proliferative genes in melanomas. Silybin, by blocking the activation of these transcription factors, induced cell cycle arrest at the G1 phase and inhibited melanoma cell growth in vitro and in vivo. Taken together, silybin suppresses melanoma growth by directly targeting MEK- and RSK-mediated signaling pathways. PMID:23447564

  11. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines.

    PubMed

    Park, S H; Sung, J H; Kim, E J; Chung, N

    2015-02-01

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.

  12. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.

    PubMed

    Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi

    2004-10-01

    Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.

  13. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line.

    PubMed

    Tima, Singkome; Ichikawa, Hideki; Ampasavate, Chadarat; Okonogi, Siriporn; Anuchapreeda, Songyot

    2014-04-25

    Leukemia is a hematologic malignancy with a frequent incidence and high mortality rate. Previous studies have shown that the FLT3 gene is overexpressed in leukemic blast cells, especially in acute myeloid leukemia. In this study, a commercially available curcuminoid mixture (1), pure curcumin (2), pure demethoxycurcumin (3), and pure bisdemethoxycurcumin (4) were investigated for their inhibitory effects on cell growth, FLT3 expression, and cell cycle progression in an FLT3-overexpressing EoL-1 leukemic cell line using an MTT assay, Western blotting, and flow cytometry, respectively. The mixture (1) and compounds 2-4 demonstrated cytotoxic effects with IC50 values ranging from 6.5 to 22.5 μM. A significant decrease in FLT3 protein levels was found after curcuminoid treatment with IC20 doses, especially with mixture 1 and compound 2. In addition, mixture 1 and curcumin (2) showed activity on cell cycle arrest at the G0/G1 phase and decreased the FLT3 and STAT5A protein levels in a dose-dependent manner. Compound 2 demonstrated the greatest potential for inhibiting cell growth, cell cycle progression, and FLT3 expression in EoL-1 cells. This investigation has provided new findings regarding the effect of turmeric curcuminoids on FLT3 expression in leukemic cells.

  14. 2′,4′-dihydroxychalcone, a flavonoid isolated from Herba oxytropis, suppresses PC-3 human prostate cancer cell growth by induction of apoptosis

    PubMed Central

    SHENG, YUQING; ZOU, MINGCHANG; WANG, YAN; LI, QIHENG

    2015-01-01

    Natural products are a promising source for the development of novel cancer therapies, due to their potential effectiveness and low toxicity profiles. As a main component of Herba oxytropis, 2′,4′-dihydroxychalcone (TFC) is known to demonstrate anti-tumor activity in vitro. In the present study, TFC was found to potently inhibit proliferation and induce apoptosis in PC-3 human prostate cancer cells in a dose-dependent manner. The results demonstrated that the induction of apoptosis is associated with cell cycle arrest at the G0/G1 phase and activation of caspase-3/-7. Additional mechanistic studies of two biomarkers, phosphatase and tensin homolog (PTEN) and cyclin-dependent kinase inhibitor 1B (p27Kip1), in prostate cancer revealed that TFC treatment significantly upregulated the expression of PTEN and p27Kip1. The findings of the present study indicate that TFC-induced apoptosis in PC-3 cells via upregulation of PTEN and p27Kip1, which results in cell cycle arrest in G0/G1 phase, activation of caspase-3/-7 and induction of apoptosis. Therefore, TFC may be a potential compound for human prostate cancer therapy. PMID:26788200

  15. Apoptosis- and differentiation-inducing activities of jacaric acid, a conjugated linolenic acid isomer, on human eosinophilic leukemia EoL-1 cells.

    PubMed

    Liu, Wai-Nam; Leung, Kwok-Nam

    2014-11-01

    Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.

  16. G1 arrest and differentiation can occur independently of Rb family function

    PubMed Central

    Wirt, Stacey E.; Adler, Adam S.; Gebala, Véronique; Weimann, James M.; Schaffer, Bethany E.; Saddic, Louis A.; Viatour, Patrick; Vogel, Hannes; Chang, Howard Y.; Meissner, Alex

    2010-01-01

    The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway. PMID:21059851

  17. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Hitomi, Misuzu; Yokoyama, Fumi; Kita, Yuko; Nonomura, Takako; Masaki, Tsutomu; Yoshiji, Hitoshi; Inoue, Hideyuki; Kinekawa, Fumihiko; Kurokohchi, Kazutaka; Uchida, Naohito; Watanabe, Seishiro; Kuriyama, Shigeki

    2005-03-01

    A number of studies have shown that various K vitamins, specifically vitamins K2 and K3, possess antitumor activity on various types of rodent- and human-derived neoplastic cell lines. In the present study, we examined the antitumor effects of vitamins K1, K2 and K3 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vitro and in vivo. Furthermore, we examined the mechanisms of antitumor actions of these vitamins in vitro and in vivo. Although vitamin K1 did not inhibit proliferation of PLC/PRF/5 cells at a 90-microM concentration (the highest tested), vitamins K2 and K3 suppressed proliferation of the cells at concentrations of 90 and 9 microM, respectively. By flow cytometric analysis, it was shown that not only vitamin K1, but also vitamin K2 did not induce apoptosis or cell cycle arrest on PLC/PRF/5 cells. In contrast, vitamin K3 induced G1 arrest, but not apoptosis on PLC/PRF/5 cells. Subsequent in vivo study using subcutaneous HCC-bearing athymic nude mice demonstrated that both vitamins K2 and K3 markedly suppressed the growth of HCC tumors to similar extent. Protein expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4), but not p16INK4a Cdk inhibitor in the tumor was significantly reduced by vitamin K2 or K3 treatment, indicating that vitamins K2 and K3 may induce G1 arrest of cell cycle on PLC/PRF/5 cells in vivo. Taken collectively, vitamins K2 and K3 were able to induce potent antitumor effects on HCC in vitro and in vivo, at least in part, by inducing G1 arrest of the cell cycle. The results indicate that vitamins K2 and K3 may be useful agents for the treatment of patients with HCC.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xuemei; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells bymore » JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.« less

  19. Activated Raf-1 causes growth arrest in human small cell lung cancer cells.

    PubMed Central

    Ravi, R K; Weber, E; McMahon, M; Williams, J R; Baylin, S; Mal, A; Harter, M L; Dillehay, L E; Claudio, P P; Giordano, A; Nelkin, B D; Mabry, M

    1998-01-01

    Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors. PMID:9421477

  20. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Seiko; Division of Maxillofacial Surgery, Kyushu Dental University; Okinaga, Toshinori

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viabilitymore » was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.« less

  1. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level.

    PubMed

    Han, Yong Hwan; Park, Woo Hyun

    2010-07-01

    Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC(50) of approximately 20 microM at 24 hours. DNA flow cytometric analysis indicated that 0.5 approximately 30 microM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 microM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Delta psi m). The intracellular ROS levels including O(2) (*-) were strongly increased in 10 or 30 microM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 microM MG132-treated cells. Furthermore, 10 or 30 microM MG132 increased mitochondrial O(2) (*- ) level but 0.1, 0.5 or 1 microM MG132 decreased that. In addition, 10 or 30 microM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.

  2. Berberine Induces Cell Cycle Arrest in Cholangiocarcinoma Cell Lines via Inhibition of NF-κB and STAT3 Pathways.

    PubMed

    Puthdee, Nattapong; Seubwai, Wunchana; Vaeteewoottacharn, Kulthida; Boonmars, Thidarut; Cha'on, Ubon; Phoomak, Chatchai; Wongkham, Sopit

    2017-01-01

    Berberine is a natural compound found in several herbs. Anticancer activity of berberine was reported in several cancers, however, little is known regarding the effects of berberine against cholangiocarcinoma (CCA). In this study, the growth inhibitory effects of berberine on CCA cell lines and its molecular mechanisms were explored. Cell growth and cell cycle distribution were examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. The expression levels of cell cycle regulatory proteins were determined by Western blot analysis. Berberine significantly inhibited growth of CCA cell lines in a dose and time dependent fashion. The inhibition was largely attributed to cell cycle arrest at the G1 phase through the reduction of cyclin D1, and cyclin E. Moreover, berberine could reduce the expression and activation of signal transducers and activator of transcription 3 (STAT3) and probably nuclear factor-kappaB (NF-κB) via suppression of extracellular signal-regulated kinase (ERK) 1/2 action. These results highlight the potential of berberine to be a multi-target agent for CCA treatment.

  3. Antitumor effects with apoptotic death in human promyelocytic leukemia HL-60 cells and suppression of leukemia xenograft tumor growth by irinotecan HCl.

    PubMed

    Chen, Yung-Liang; Chueh, Fu-Shin; Yang, Jai-Sing; Hsueh, Shu-Ching; Lu, Chi-Cheng; Chiang, Jo-Hua; Lee, Ching-Sung; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-07-01

    Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation. © 2014 Wiley Periodicals, Inc.

  4. Oximidine III, a new antitumor antibiotic against transformed cells from Pseudomonas sp. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity.

    PubMed

    Hayakawa, Yoichi; Tomikawa, Taijiro; Shin-ya, Kazuo; Arao, Nakako; Nagai, Koji; Suzuki, Ken-ichi

    2003-11-01

    Our screening for antitumor antibiotics against transformed cells resulted in the isolation of a new active metabolite, oximidine III, from Pseudomonas sp. QN05727. This substance selectively inhibited the growth of rat 3Y1 fibroblasts transformed with various oncogenes. In ras- or src-transformed cells, oximidine III arrested the cell cycle at G1 phase and increased the expression of p21WAF1.

  5. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less

  6. The direct biologic effects of radioactive 125I seeds on pancreatic cancer cells PANC-1, at continuous low-dose rates.

    PubMed

    Wang, Jidong; Wang, Junjie; Liao, Anyan; Zhuang, Hongqing; Zhao, Yong

    2009-08-01

    The relative biologic effectiveness of model 6711 125I seeds (Ningbo Junan Pharmaceutical Technology Company,Ningbo, China) and their effects on growth, cell cycle, and apoptosis in human pancreatic cancer cell line PANC-1 were examined in the present study. PANC-1 cells were exposed to the absorbed doses of 1, 2, 4, 6, 8, and 10 Gyeither with 125I seeds (initial dose rate, 2.59 cGy=h) or with 60Co g-ray irradiation (dose rate, 221 cGy=min),respectively. Significantly greater numbers of apoptotic PANC-1 cells were detected following the continuouslow-dose-rate (CLDR) irradiation of 125I seeds, compared with cells irradiated with identical doses of 60Co g-ray. The D(0) for 60Co g-ray and 125I seed irradiation were 2.30 and 1.66, respectively. The survival fraction after 125Iseed irradiation was significantly lower than that of 60Co g-ray, with a relative biologic effectiveness of 1.39.PANC-1 cells were dose dependently arrested in the S-phase by 60Co g-rays and in the G2=M phase by 125I seeds,24 hour after irradiation. CLDR irradiation by 125I seeds was more effective in inducing cell apoptosis in PANC-1cells than acute high-dose-rate 60Co g irradiation. Interestingly, CLDR irradiation by 125I seeds can cause PANC-1cell-cycle arrest at the G2=M phase and induce apoptosis, which may be an important mechanism underlying 125Iseed-induced PANC-1 cell inhibition.

  7. Evodiamine Induces Cell Growth Arrest, Apoptosis and Suppresses Tumorigenesis in Human Urothelial Cell Carcinoma Cells.

    PubMed

    Shi, Chung-Sheng; Li, Jhy-Ming; Chin, Chih-Chien; Kuo, Yi-Hung; Lee, Ying-Ray; Huang, Yun-Ching

    2017-03-01

    Evodiamine, an indole alkaloid derived from Evodia rutaecarpa, exhibits pharmacological activities including vasodilatation, analgesia, anti-cardiovascular disease, anti-Alzheimer's disease, anti-inflammation, and anti-tumor activity. This study analyzes the anti-tumor effects of evodiamine on cellular growth, tumorigenesis, cell cycle and apoptosis induction of human urothelial cell carcinoma (UCC) cells. The present study showed that evodiamine significantly inhibited the proliferation of UCC cells in a dose- and time-dependent manner. Also, evodiamine suppressed the tumorigenesis of UCC cells in vitro. Moreover, evodiamine caused G 2 /M cell-cycle arrest and induced caspase-dependent apoptosis in UCC cells. Finally, we demonstrated that evodiamine exhibits better cytotoxic than 5-fluorouracil, a clinical chemotherapeutic drug, for UCC cells. Evodiamine induces growth inhibition, tumorigenesis suppression, cell-cycle arrest, and apoptosis induction in human UCC cells. Therefore, this agent displays a therapeutic potential for treating human UCC cells and is worthy for further investigation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. KRC-327, a selective novel inhibitor of c-Met receptor tyrosine kinase with anticancer activity.

    PubMed

    Park, Byung Hee; Jung, Kyung Hee; Yun, Sun-Mi; Hong, Sang-Won; Ryu, Jae Wook; Jung, Heejung; Ha, Jae Du; Lee, Jongkook; Hong, Soon-Sun

    2013-05-01

    c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been reported to be involved in tumorigenesis and metastatic progression. We synthesized a novel triazolopyridazine derivative KRC-327 which selectively targets the c-Met. When we performed receptor tyrosine kinases (RTKs) array with 42 different phosphorylated-RTKs, KRC-327 strongly inhibited expression of activated c-Met in MKN-45 cancer cells. This was confirmed by immunofluorescence staining. Also, KRC-327 decreased the expression of Gab1, Akt, signal transducer and activator of transcription 3 (STAT3) and Erk, down-stream signals of c-Met. KRC-327 strongly suppressed the growth of c-Met over-expressed cancer cells (MKN-45, SNU-638, SNU-5), while not in c-Met absent cancer cell lines (MKN-1, SNU-1). Furthermore, KRC-327 effectively induced cell cycle arrest, especially G0/G1 arrest by increasing expression of p21, p27 and decreasing that of cyclin D1. In the ligand-induced functional studies, KRC-327 inhibited proliferation of HGF-stimulated BxPC-3 cells, the migration of HGF-stimulated AGS cancer cells, and suppressed colony formation in HGF-stimulated U-87MG cells. In xenograft animal models, KRC-327 significantly not only delayed tumor growth but also suppressed phosphorylation of c-Met and its signaling cascades as well as proliferation. Taken together, these results demonstrate that KRC-327 selectively targets c-Met, resulting in inhibition of cell growth and proliferation. Therefore, we suggest that KRC-327 may be a novel drug candidate with the therapeutic potential of targeting c-Met in human cancer. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Effect of caffeine on radiation-induced mitotic delay: delayed expression of G/sub 2/ arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, R.; Zorch, M.; Leeper, D.B.

    1984-01-01

    In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G/sub 2/ cells progressed to mitosis in register and without arrest in G/sub 2/. Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G/sub 2/ arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delaymore » suggests a common basis for delay induction in S and G/sub 2/ phases.« less

  10. GPER-independent inhibition of adrenocortical cancer growth by G-1 involves ROS/Egr-1/BAX pathway.

    PubMed

    Casaburi, Ivan; Avena, Paola; De Luca, Arianna; Sirianni, Rosa; Rago, Vittoria; Chimento, Adele; Trotta, Francesca; Campana, Carmela; Rainey, William E; Pezzi, Vincenzo

    2017-12-29

    We previously demonstrated that treatment of the H295R adrenocortical cancer cell line with the non-steroidal, high-affinity GPER (G protein-coupled estrogen receptor 1) agonist G-1 reduced tumor growth in vitro and in vivo through a GPER independent action. Moreover, we observed that G-1 treatment induces cell-cycle arrest and apoptosis following a sustained ERK1/2 activation. However, the precise mechanisms causing these effects were not clarified. Starting from our preliminary published results, we performed a microarray study that clearly evidenced a strong and significative up-regulation of EGR-1 gene in H295R cells treated for 24h with micromolar concentration of G-1. The microarray findings were confirmed by RT-PCR and Western-blot analysis as well as by immunofluorescence that revealed a strong nuclear staining for EGR-1 after G-1 treatment. EGR-1 is a point of convergence of many intracellular signaling cascades that control tumor cell growth and proliferation as well as others that relate to cell death machinery. Here we found that the increased Egr-1 expression was a consequence of G-1-mediated ROS-dependent ERK activation that were promptly reversed by the presence of the antioxidant n-acetyl-cysteine. Finally, we observed that silencing EGR-1 gene expression reversed the main effects induced by G-1 in ACC cells, including upregulation of the negative regulator of cell cycle, p21 Waf1/Cip1 and the positive regulator of mitochondrial apoptotic pathway, BAX, as well as the cell growth inhibition. The identified ROS/MAPK/Egr-1/BAX pathway as a potential off-target effect of the G-1 could be useful in implementing the pharmacological approach for ACC therapy.

  11. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.

    PubMed

    Park, Heon Joo; Lee, Sang Hwa; Chung, HyunSook; Rhee, Yun Hee; Lim, Byung Uk; Ha, Sung Whan; Griffin, Robert J; Lee, Hyung Sik; Song, Chang Won; Choi, Eun Kyung

    2003-01-01

    We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.

  12. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  13. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  14. Ailanthone Inhibits Huh7 Cancer Cell Growth via Cell Cycle Arrest and Apoptosis In Vitro and In Vivo

    PubMed Central

    Zhuo, Zhenjian; Hu, Jianyang; Yang, Xiaolin; Chen, Minfen; Lei, Xueping; Deng, Lijuan; Yao, Nan; Peng, Qunlong; Chen, Zhesheng; Ye, Wencai; Zhang, Dongmei

    2015-01-01

    While searching for natural anti-hepatocellular carcinoma (HCC) components in Ailanthus altissima, we discovered that ailanthone had potent antineoplastic activity against HCC. However, the molecular mechanisms underlying the antitumor effect of ailanthone on HCC have not been examined. In this study, the antitumor activity and the underlying mechanisms of ailanthone were evaluated in vitro and in vivo. Mechanistic studies showed that ailanthone induced G0/G1-phase cell cycle arrest, as indicated by decreased expression of cyclins and CDKs and increased expression of p21 and p27. Our results demonstrated that ailanthone triggered DNA damage characterized by activation of the ATM/ATR pathway. Moreover, ailanthone-induced cell death was associated with apoptosis, as evidenced by an increased ratio of cells in the subG1 phase and by PARP cleavage and caspase activation. Ailanthone-induced apoptosis was mitochondrion-mediated and involved the PI3K/AKT signaling pathway in Huh7 cells. In vivo studies demonstrated that ailanthone inhibited the growth and angiogenesis of tumor xenografts without significant secondary adverse effects, indicating its safety for treating HCC. In conclusion, our study is the first to report the efficacy of ailanthone against Huh7 cells and to elucidate its underlying molecular mechanisms. These findings suggest that ailanthone is a potential agent for the treatment of liver cancer. PMID:26525771

  15. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells.

    PubMed

    Ahola, Tytti M; Manninen, Tommi; Alkio, Niina; Ylikomi, Timo

    2002-09-01

    The issue of how progesterone affects mammary gland growth is controversial, and the mechanism governing the effects of the hormone remains mostly unknown. We have previously shown that G protein-coupled receptor 30 (GPR30) is a progestin target gene whose expression correlates with progestin-induced growth inhibition in breast cancer cells. In this study, we investigate the role of GPR30 in regulating cell proliferation and mediating progestin-induced growth inhibition. When progestin failed to inhibit the growth of MCF-7 cells and instead stimulated growth, GPR30 was down-regulated. In this way, the inhibitory or stimulatory affects that progestin has on proliferation correlated with the level of expression of GPR30. Transient expression of GPR30 resulted in a marked inhibition of cell proliferation independent of estrogen treatment. GPR30 antisense was used to evaluate the role of GPR30 expression in progestin-induced growth inhibition. A diminished GPR30 mRNA expression by the antisense stimulated growth. Interestingly, GPR30 antisense abrogated the growth inhibitory effect of progestin and progesterone. Indeed, progestin induced 1) a reduction in cell proliferation, 2) G1-phase arrest, and 3) down-regulation of cyclin D1 was diminished. These data suggest that the orphan receptor, GPR30, is important for the inhibitory effect of progestin on growth.

  16. Stromal interaction molecule 1 (STIM1) silencing inhibits tumor growth and promotes cell cycle arrest and apoptosis in hypopharyngeal carcinoma.

    PubMed

    Sun, Yuanhao; Cui, Xiaobo; Wang, Jun; Wu, Shuai; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Fang, Jugao

    2015-05-01

    As an important pathway maintaining the balance of intracellular calcium (Ca(2+)), store-operated Ca(2+) entry (SOCE) is critical for cellular functions. Stromal interaction molecule 1 (STIM1), a key component of SOCE, plays a dual role as an endoplasmic reticulum Ca(2+) receptor and an SOCE exciter. Aberrant expression of STIM1 could be discovered in several human cancer cells. However, the role of STIM1 in regulating human hypopharyngeal carcinoma still remains unclear. Real-time polymerase chain reaction (PCR) was used to detect expression of STIM1 in human hypopharyngeal carcinoma cell line FaDu. STIM1 on FaDu cells was knocked down by lentiviral transduction method. The biological impacts after knocking down of STIM1 on FaDu cells were investigated in vitro and in vivo. The result of real-time PCR showed that STIM1 was expressed in FaDu cells. Lentiviral transduction efficiently downregulated the expression of STIM1 in FaDu cells at both mRNA and protein levels. Significant downregulation of STIM1 on FaDu cells inhibited cell proliferation, induced cell cycle arrest in G0/G1 phase, promoted cell apoptosis, and restrained cell growth rate. The antigrowth effect of STIM1 silencing was also discovered in FaDu hypopharyngeal tumor model. Our findings indicate that STIM1 is likely to become a new therapeutic target for hypopharyngeal carcinoma treatment.

  17. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    PubMed Central

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  18. Butyrate-induced apoptotic cascade in colonic carcinoma cells: modulation of the beta-catenin-Tcf pathway and concordance with effects of sulindac and trichostatin A but not curcumin.

    PubMed

    Bordonaro, M; Mariadason, J M; Aslam, F; Heerdt, B G; Augenlicht, L H

    1999-10-01

    Short-chain fatty acids play a critical role in colonic homeostasis because they stimulate pathways of growth arrest, differentiation, and apoptosis. These effects have been well characterized in colonic cell lines in vitro. We investigated the role of beta-catenin-Tcf signaling in these responses to butyrate and other well-characterized inducers of apoptosis of colonic epithelial cells. Unlike wild-type APC, which down-regulates Tcf activity, butyrate, as well as sulindac and trichostatin A, all inducers of G0-G1 cell cycle arrest and apoptosis in the SW620 colonic carcinoma cell line, up-regulate Tcf activity. In contrast, structural analogues of butyrate that do not induce cell cycle arrest or apoptosis and curcumin, which stimulates G2-M arrest without inducing apoptosis, do not alter Tcf activity. Similar to the cell cycle arrest and apoptotic cascade induced by butyrate, the up-regulation of Tcf activity is dependent upon the presence of a mitochondrial membrane potential, unlike the APC-induced down-regulation, which is insensitive to collapse of the mitochondrial membrane potential. Moreover, the butyrate-induced increase in Tcf activity, which is reflected in an increase in beta-catenin-Tcf complex formation, is independent of the down-regulation caused by expression of wild-type APC. Thus, butyrate and wild-type APC have different and independent effects on beta-catenin-Tcf signaling. These data are consistent with other reports that suggest that the absence of wild-type APC, associated with the up-regulation of this signaling pathway, is linked to the probability of a colonic epithelial cell entering an apoptotic cascade.

  19. Anthocyanins from roselle extract arrest cell cycle G2/M phase transition via ATM/Chk pathway in p53-deficient leukemia HL-60 cells.

    PubMed

    Tsai, Tsung-Chang; Huang, Hui-Pei; Chang, Kai-Ting; Wang, Chau-Jong; Chang, Yun-Ching

    2017-04-01

    Cell cycle regulation is an important issue in cancer therapy. Delphinidin and cyanidin are two major anthocyanins of the roselle plant (Hibiscus sabdariffa). In the present study, we investigated the effect of Hibiscus anthocyanins (HAs) on cell cycle arrest in human leukemia cell line HL-60 and the analyzed the underlying molecular mechanisms. HAs extracted from roselle calyces (purity 90%) markedly induced G2/M arrest evaluated with flow cytometry analysis. Western blot analyses revealed that HAs (0.1-0.7 mg mL -1 ) induced G2/M arrest via increasing Tyr15 phosphorylation of Cdc2, and inducing Cdk inhibitors p27 and p21. HAs also induced phosphorylation of upstream signals related to G2/M arrest such as phosphorylation of Cdc25C tyrosine phosphatase at Ser216, increasing the binding of pCdc25C with 14-3-3 protein. HAs-induced phosphorylation of Cdc25C could be activated by ATM checkpoint kinases, Chk1, and Chk2. We first time confirmed that ATM-Chk1/2-Cdc25C pathway as a critical mechanism for G2/M arrest in HAs-induced leukemia cell cycle arrest, indicating that this compound could be a promising anticancer candidate or chemopreventive agents for further investigation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1290-1304, 2017. © 2016 Wiley Periodicals, Inc.

  20. Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells.

    PubMed

    Caino, M Cecilia; Oliva, Jose L; Jiang, Hao; Penning, Trevor M; Kazanietz, Marcelo G

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens that require metabolic activation inside cells. The proximate carcinogens PAH-diols can be converted to o-quinones by aldo-keto reductases (AKRs) or to diol-epoxides by cytochrome P450 (P450) enzymes. We assessed the effect of benzo[a]pyrene-7,8-dihydrodiol (BPD) on proliferation in p53-null bronchoalveolar carcinoma H358 cells. BPD treatment led to a significant inhibition of proliferation and arrest in G2/M in H358 cells. The relative contribution of the AKR and P450 pathways to cell cycle arrest was assessed. Overexpression of AKR1A1 did not affect cell proliferation or cell cycle progression, and benzo[a]pyrene-7,8-dione did not cause any noticeable effect on cell growth, suggesting that AKR1A1 metabolic products were not involved in the antiproliferative effect of BPD. On the other hand, blockade of P450 induction or inhibition of P450 activity greatly impaired the effect of BPD. Moreover, P450 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin significantly enhanced the antiproliferative effect of BPD. Mechanistic studies revealed that BPD caused a DNA damage response, Chk1 activation, and accumulation of phospho-Cdc2 (Tyr15) in H358 cells, effects that were impaired by an ataxia-telangectasia mutated (ATM)/ATM-related (ATR) inhibitor. Similar results were observed in human bronchoepithelial BEAS-2B cells, arguing for analogous mechanisms in tumorigenic and immortalized nontumorigenic cells lacking functional p53. Our data suggest that a p53-independent pathway operates in lung epithelial cells in response to BPD that involves P450 induction and subsequent activation of the ATR/ATM/Chk1 damage check-point pathway and cell cycle arrest in G2/M.

  1. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest

    PubMed Central

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-01-01

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest. PMID:26512957

  2. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest.

    PubMed

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-10-29

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest.

  3. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation.

    PubMed

    Nasuno, Masanao; Arimura, Yoshiaki; Nagaishi, Kanna; Isshiki, Hiroyuki; Onodera, Kei; Nakagaki, Suguru; Watanabe, Shuhei; Idogawa, Masashi; Yamashita, Kentaro; Naishiro, Yasuyoshi; Adachi, Yasushi; Suzuki, Hiromu; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-04-01

    The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease. © AlphaMed Press.

  4. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2015-03-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis.

    PubMed

    Chong, Dianlong; Ma, Linyan; Liu, Fang; Zhang, Zhirui; Zhao, Surong; Huo, Qiang; Zhang, Pei; Zheng, Hailun; Liu, Hao

    2017-09-01

    3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.

  6. Amarogentin secoiridoid inhibits in vivo cancer cell growth in xenograft mice model and induces apoptosis in human gastric cancer cells (SNU-16) through G2/M cell cycle arrest and PI3K/Akt signalling pathway.

    PubMed

    Zhao, Jian-Guo; Zhang, Ling; Xiang, Xiao-Jun; Yu, Feng; Ye, Wan-Li; Wu, Dong-Ping; Wang, Jian-Fang; Xiong, Jian-Ping

    2016-01-01

    To investigate the in vitro and in vivo antitumor effects of amarogentin in SNU-16 human gastric cancer cells as well as in nude mice xenograft model. The effects of this compound on cell apoptosis, cell cycle phase distribution and PI3K/Akt and m-TOR signalling pathways were also studied in detail. MTT assay was used to study the effect of amarogentin on SNU-16 cell viability while clonogenic assay indicated the effect of the compound on colony formation tendency of these cells. Phase contrast microscopy revealed the effect on cellular morphology while flow cytometry was engaged to study the effects on cell apoptosis and cell cycle arrest. SNU-16 cancer cells were subcutaneously inoculated into nude mice to investigate the in vivo antitumor effects of amarogentin. Amarogentin induced potent, dose-dependent as well as time-dependent cytotoxic effects on the growth of SNU-16 human gastric cancer cells. Amarogentin also inhibited the colony forming capability of these tumor cells and its treatment led to morphological alterations in these cells in which the cells became withered and rounded, detached from one another and adopted irregular shapes while floating freely in the culture medium. In comparison to untreated control cells, the amarogentin treated cells with 10, 50 and 75 μM exhibited 32.5, 45.2 and 57.1 % apoptotic cells, respectively. Amarogentin induced potent and dose-dependent G2/M cell cycle arrest in these cells and led to downregulation of m-TOR, p-PI3K, PI3K, p-Akt and Akt and upregulation of cyclin D1 and cyclin E protein expressions. The tumor tissues obtained from the amarogentin-treated mice were much smaller than the tumor tissues derived from the control group. Amarogentin exerts potent in vitro and in vivo antitumor effects in SNU-16 cell model as well as in nude mice xenograft model. These antitumor effects were found to be mediated through apoptosis induction, G2/M cell cycle arrest and downregulation of PI3K/Akt/m-TOR signalling pathways.

  7. The farnesyltransferase inhibitor, LB42708, inhibits growth and induces apoptosis irreversibly in H-ras and K-ras-transformed rat intestinal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Han-Soo; Kim, Ju Won; Gang, Jingu

    2006-09-15

    LB42708 (LB7) and LB42908 (LB9) are pyrrole-based orally active farnesyltransferase inhibitors (FTIs) that have similar structures. The in vitro potencies of these compounds against FTase and GGTase I are remarkably similar, and yet they display different activity in apoptosis induction and morphological reversion of ras-transformed rat intestinal epithelial (RIE) cells. Both FTIs induced cell death despite K-ras prenylation, implying the participation of Ras-independent mechanism(s). Growth inhibition by these two FTIs was accompanied by G1 and G2/M cell cycle arrests in H-ras and K-ras-transformed RIE cells, respectively. We identified three key markers, p21{sup CIP1/WAF1}, RhoB and EGFR, that can explain themore » differences in the molecular mechanism of action between two FTIs. Only LB7 induced the upregulation of p21{sup CIP1/WAF1} and RhoB above the basal level that led to the cell cycle arrest and to distinct morphological alterations of ras-transformed RIE cells. Both FTIs successfully inhibited the ERK and activated JNK in RIE/K-ras cells. While the addition of conditioned medium from RIE/K-ras reversed the growth inhibition of ras-transformed RIE cells by LB9, it failed to overcome the growth inhibitory effect of LB7 in both H-ras- and K-ras-transformed RIE cells. We found that LB7, but not LB9, decreased the expression of EGFRs that confers the cellular unresponsiveness to EGFR ligands. These results suggest that LB7 causes the induction of p21{sup CIP1/WAF1} and RhoB and downregulation of EGFR that may serve as critical steps in the mechanism by which FTIs trigger irreversible inhibitions on the cell growth and apoptosis in ras-transformed cells.« less

  8. Induction of tumor cell death through targeting tubulin and evoking dysregulation of cell cycle regulatory proteins by multifunctional cinnamaldehydes.

    PubMed

    Nagle, Amrita A; Gan, Fei-Fei; Jones, Gavin; So, Choon-Leng; Wells, Geoffrey; Chew, Eng-Hui

    2012-01-01

    Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2)/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2) phase. G(2) arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2) to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2) phase, resulting in apoptotic cell death characterized by emergence of cleaved forms of caspase 3 and poly (ADP-ribose) polymerase (PARP). Results presented in this study have thus provided further insights into the intricate network of cellular events by which cinnamaldehydes induce tumor cell death.

  9. Exposure cell number during feeder cell growth-arrest by Mitomycin C is a critical pharmacological aspect in stem cell culture system.

    PubMed

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2016-01-01

    Growth-arrested feeder cells following Mitomycin C treatment are instrumental in stem cell culture allowing development of regenerative strategies and alternatives to animal testing in drug discovery. The concentration of Mitomycin C and feeder cell type was described to affect feeder performance but the criticality of feeder cell exposure density was not addressed. We hypothesize that the exposure cell density influences the effectiveness of Mitomycin C in an arithmetic manner. Three different exposure cell densities of Swiss 3T3 fibroblasts were treated with a range of Mitomycin C concentrations for 2h. The cells were replaced and the viable cells counted on 3, 6, 9, 12 and 20days. The cell extinctions were compared with doses per cell which were derived by dividing the product of concentration and volume of Mitomycin C solution with exposure cell number. The periodic post-treatment feeder cell extinctions were not just dependent on Mitomycin C concentration but also on dose per cell. Analysis of linearity between viable cell number and Mitomycin C dose per cell derived from the concentrations of 3 to 10μg/ml revealed four distinct categories of growth-arrest. Confluent cultures exposed to low concentration showed growth-arrest failure. The in vitro cell density titration can facilitate prediction of a compound's operational in vivo dosing. For containing the growth arrest failure, an arithmetic volume derivation strategy is proposed by fixing the exposure density to a safe limit. The feeder extinction characteristics are critical for streamlining the stem cell based pharmacological and toxicological assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Hypoxia-inducible factors promote alveolar development and regeneration.

    PubMed

    Vadivel, Arul; Alphonse, Rajesh S; Etches, Nicholas; van Haaften, Timothy; Collins, Jennifer J P; O'Reilly, Megan; Eaton, Farah; Thébaud, Bernard

    2014-01-01

    Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.

  11. Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells.

    PubMed

    Peng, Z G; Yao, Y B; Yang, J; Tang, Y L; Huang, X

    2015-05-12

    This study aimed to determine the effect of mangiferin on the cell cycle in HL-60 leukemia cells and expression of the cell cycle-regulatory genes Wee1, Chk1 and CDC25C and to further investigate the molecular mechanisms of the antileukemic action of mangiferin. The inhibitory effect of mangiferin on HL-60 leukemia cell proliferation was determined by the MTT assay. The impact of mangiferin on the HL-60 cell cycle was evaluated by flow cytometry. After the cells were treated with different concentrations of mangiferin, the expression levels of Wee1, Chk1 and CDC25C mRNA were determined by RT-PCR, and Western blot was used to evaluate the expression levels of cdc25c, cyclin B1, and Akt proteins. The inhibition of HL-60 cell growth by mangiferin was dose- and time-dependent. After treatment for 24 h, cells in G2/M phase increased, and G2/M phase arrest appeared with increased mRNA expression of Wee1, Chk1 and CDC25C. Mangiferin inhibited Chk1 and cdc25c mRNA expression at high concentrations and induced Wee1 mRNA expression in a dose-dependent manner. It significantly inhibited ATR, Chk1, Wee1, Akt, and ERK1/2 phosphorylation but increased cdc2 and cyclin B1 phosphorylation. Furthermore, mangiferin reduced cdc25c, cyclin B1, and Akt protein levels while inducing Wee1 protein expression. It also antagonized the phosphorylation effect of vanadate on ATR, and the phosphorylation effect of EGF on Wee1. These findings indicated that mangiferin inhibits cell cycle progression through the ATR-Chk1 stress response DNA damage pathway, leading to cell cycle arrest at G2/M phase in leukemia cells.

  12. A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis.

    PubMed

    Kim, Sang Wook; Han, Yong Whan; Lee, Soo Teik; Jeong, Hey Jin; Kim, Seong Hun; Kim, In Hee; Lee, Seung Ok; Kim, Dae Ghon; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2008-02-01

    We investigated the in vitro effects of pyrogallol on cell growth, cell cycle regulation, and apoptosis in HeLa cells. Pyrogallol inhibited the growth of HeLa cells with an IC(50) of approximately 45 microM. Pyrogallol induced arrest during all phases of the cell cycle and also very efficiently resulted in apoptosis in HeLa cells, as evidenced by flow cytometric detection of sub-G1 DNA content, annexin V binding assay, and DAPI staining. This apoptotic process was accompanied by the loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bcl-2 decrease, caspase-3 activation, and PARP cleavage. Pan-caspase inhibitor (Z-VAD) could rescue some HeLa cells from pyrogallol-induced cell death, while caspase-8 and -9 inhibitors unexpectedly enhanced the apoptosis. When we examined the changes of the ROS, H(2)O(2) or O(2)(*-) in pyrogallol-treated cells, H(2)O(2) was slightly increased and O(2)(*-) significantly was increased. In addition, we detected a decreased GSH content in pyrogallol-treated cells. Only pan-caspase inhibitor showing recovery of GSH depletion and reduced intracellular O(2)(*-) level decreased PI staining in pyrogallol-treated HeLa cells, which indicates dead cells. In summary, we have demonstrated that pyrogallol as a generator of ROS, especially O(2) (*-), potently inhibited the growth of HeLa cells through arrests during all phases of the cell cycle and apoptosis. (c) 2007 Wiley-Liss, Inc.

  13. Transforming Growth Factor β-1 Stimulates Profibrotic Epithelial Signaling to Activate Pericyte-Myofibroblast Transition in Obstructive Kidney Fibrosis

    PubMed Central

    Wu, Ching-Fang; Chiang, Wen-Chih; Lai, Chun-Fu; Chang, Fan-Chi; Chen, Yi-Ting; Chou, Yu-Hsiang; Wu, Ting-Hui; Linn, Geoffrey R.; Ling, Hong; Wu, Kwan-Dun; Tsai, Tun-Jun; Chen, Yung-Ming; Duffield, Jeremy S.; Lin, Shuei-Liong

    2014-01-01

    Pericytes have been identified as the major source of precursors of scar-producing myofibroblasts during kidney fibrosis. The underlying mechanisms triggering pericyte-myofibroblast transition are poorly understood. Transforming growth factor β-1 (TGF-β1) is well recognized as a pluripotent cytokine that drives organ fibrosis. We investigated the role of TGF-β1 in inducing profibrotic signaling from epithelial cells to activate pericyte-myofibroblast transition. Increased expression of TGF-β1 was detected predominantly in injured epithelium after unilateral ureteral obstruction, whereas downstream signaling from the TGF-β1 receptor increased in both injured epithelium and pericytes. In mice with ureteral obstruction that were treated with the pan anti–TGF-β antibody (1D11) or TGF-β receptor type I inhibitor (SB431542), kidney pericyte-myofibroblast transition was blunted. The consequence was marked attenuation of fibrosis. In addition, epithelial cell cycle G2/M arrest and production of profibrotic cytokines were both attenuated. Although TGF-β1 alone did not trigger pericyte proliferation in vitro, it robustly induced α smooth muscle actin (α-SMA). In cultured kidney epithelial cells, TGF-β1 stimulated G2/M arrest and production of profibrotic cytokines that had the capacity to stimulate proliferation and transition of pericytes to myofibroblasts. In conclusion, this study identified a novel link between injured epithelium and pericyte-myofibroblast transition through TGF-β1 during kidney fibrosis. PMID:23142380

  14. INDUCTION OF CELL CYCLE ARREST AND APOPTOSIS BY ORMENIS ERIOLEPIS A MORROCAN ENDEMIC PLANT IN VARIOUS HUMAN CANCER CELL LINES.

    PubMed

    Belayachi, Lamiae; Aceves-Luquero, Clara; Merghoub, Nawel; de Mattos, Silvia Fernández; Amzazi, Saaîd; Villalonga, Priam; Bakri, Youssef

    2017-01-01

    Ormenis eriolepis Coss (Asteraceae) is an endemic Moroccan subspecies, traditionally named "Hellala" or "Fergoga". It's usually used for its hypoglycemic effect as well as for the treatment of stomacal pain. As far as we know, there is no scientific exploration of anti tumoral activity of Ormenis eriolepis extracts. In this regard, we performed a screening of organic extracts and fractions in a panel of both hematological and solid cancer cell lines, to evaluate the potential in vitro anti tumoral activity and to elucidate the respective mechanisms that may be responsible for growth arrest and cell death induction. The plant was extracted using organic solvents, and four different extracts were screened on Jurkat, Jeko-1, TK-6, LN229, SW620, U2OS, PC-3 and NIH3T3 cells. Cell viability assays revealed that, the IC50 values were (11,63±5,37μg/ml) for Jurkat, (13,33±1,67μg/ml) for Jeko-1, (41,67±1,98μg/ml) for LN229 and (19,31±4,88μg/ml) for PC-3 cells upon treatment with Oe-DF and Oe-HE respectively. Both the fraction and extract exhibited no effects on TK6 and NIH3T3. Cytometry analysis accompanied by DNA damage signaling protein levels monitoring (p-H2A.X), showed that both the Dichloromethane Fraction and Hexanic extract induce DNA double stranded breaks (DSBs) accompanied by cell cycle arrest in G1 (Jurkat, Jeko -1 and LN22) and G2/M (PC-3) phases which is agreed with the caspase activity observed. Additional experiments with selective inhibitors of stress and survival pathways (JNK, MAPK, Rho, p53, and JAK3) indicated that none of these pathways was significantly involved in apoptosis induction. The bioactive compound analysis by CG/MS indicated that the major compounds in Oe-DF were: Linoleic Acid (15,89%), Podophyllotoxin (17,89%) and Quercetin (22,95%). For Oe-HE the major molecules were: Linoleic Acid (9,76%), α-curcumene (7,07%), α-bisabolol (5,49%), Campesterol (4,41%), Stigmasterol (14,08%) and β-sitosterol (7,49%). Our data suggest that bioactive compounds present in Ormenis eriolepis show significant anti proliferative activity inducing cell cycle arrest and cell death operating through apoptosis pathway.

  15. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    PubMed Central

    2010-01-01

    Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063

  16. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells

    PubMed Central

    Ando, Shotaro; Kawada, Jun-ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi

    2016-01-01

    Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma. PMID:27732937

  17. 1-Benzyl-indole-3-carbinol is a novel indole-3-carbinol derivative with significantly enhanced potency of anti-proliferative and anti-estrogenic properties in human breast cancer cells

    PubMed Central

    Nguyen, Hanh H.; Lavrenov, Sergey N.; Sundar, Shyam N.; Nguyen, David H.H.; Tseng, Min; Marconett, Crystal N.; Kung, Jenny; Staub, Richard E.; Preobrazhenskaya, Maria N.; Bjeldanes, Leonard F.; Firestone, Gary L.

    2012-01-01

    Indole-3-carbinol (I3C), a natural autolysis product of a gluccosinolate present in Brassica vegetables such as broccoli and cabbage, has anti-proliferative and anti-estrogenic activities in human breast cancer cells. A new and significantly more potent I3C analogue, 1-benzyl-I3C was synthesized, and in comparison to I3C, this novel derivative displayed an approximate 1000-fold enhanced potency in suppressing the growth of both estrogen responsive (MCF-7) and estrogen independent (MDA-MB-231) human breast cancer cells (I3C IC50 of 52 μM, and 1-benzyl-I3C IC50 of 0.05 μM). At significantly lower concentrations, 1-benzyl-I3C induced a robust G1 cell cycle arrest and elicited the key I3C-specific effects on expression and activity of G1 acting cell cycle genes including the disruption of endogenous interactions of the Sp1 transcription factor with the CDK6 promoter. Furthermore, in estrogen responsive MCF-7 cells, with enhanced potency 1-benzyl-I3C down regulated production of estrogen receptor-alpha protein, acts with tamoxifen to arrest breast cancer cell growth more effectively than either compound alone, and inhibited the in vivo growth of human breast cancer cell-derived tumor xenografts in athymic mice. Our results implicate 1-benzyl-I3C as a novel, potent inhibitor of human breast cancer proliferation and estrogen responsiveness that could potentially be developed into a promising therapeutic agent for the treatment of indole-sensitive cancers. PMID:20570586

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiao-han; Deng, Suo; Li, Meng

    Highlights: Black-Right-Pointing-Pointer HB-EGF over-expression in A2780/Taxol, A2780/CDDP cells and the matched xenografts. Black-Right-Pointing-Pointer CRM197 induces enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. Black-Right-Pointing-Pointer CRM197 arrests A2780/Taxol and A2780/CDDP cells at G0/G1 phase. Black-Right-Pointing-Pointer CRM197 suppressed the A2780/Taxol and A2780/CDDP growth of xenografts. -- Abstract: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF wasmore » over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p < 0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.« less

  19. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest.

    PubMed

    Yan, Junhao; Fan, Lingling; Zhao, Yueran; You, Li; Wang, Laicheng; Zhao, Han; Li, Yuan; Chen, Zi-Jiang

    2011-12-01

    To find the association between recurrent spontaneous abortion (RSA)/early embryo growth arrest and Y chromosome polymorphism. Peripheral blood samples of the male patients of big Y chromosome, small Y chromosome and other male patients whose partners suffered from unexplained RSA/early embryo growth arrest were collected. PCR and real-time fluorescent quantitative PCR were used to test the deletion and the copy number variation of DYZ1 region in Y chromosome of the patients. A total of 79 big Y chromosome patients (48 of whose partners suffered from RSA or early embryo growth arrest), 7 small Y chromosome patients, 106 other male patients whose partners had suffered from unexplained RSA or early embryo growth arrest, and 100 normal male controls were enrolled. There was no fraction deletion of DYZ1 detected both in big Y patients and in normal men. Of RSA patients, 1 case showed deletion of 266bp from the gene locus 25-290bp, and 2 cases showed deletion of 773bp from 1347 to 2119bp. Of only 7 small Y chromosome patients, 2 cases showed deletion of 266bp from 25 to 290bp, and 4 cases showed deletion of 773bp from 1347 to 2119bp and 275bp from 3128 to 3420bp. The mean of DYZ1 copies was 3900 in normal control men; the mean in big Y patients was 5571, in RSA patients was 2655, and in small Y patients was 1059. All of the others were significantly different (P<0.01) compared with normal control men, which meant that DYZ1 copy number in normal control men was less than that of big Y chromosome patients, and was more than that of unexplained early RSA patients and small Y patients. The integrity and copy number variation of DYZ1 are closely related to the Y chromosome length under microscope. The cause of RSA/early embryo growth arrest in some couples may be the increase (big Y patients) or decrease of DYZ1 copy number in the husbands' Y chromosome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Claire; Hill, Gemma; Pellegrin, Stephanie

    Regeneration of the urothelium is rapid and effective in order to maintain a barrier to urine following tissue injury. Whereas normal human urothelial (NHU) cells are mitotically quiescent and G0 arrested in situ, they rapidly enter the cell cycle upon seeding in primary culture and show reversible growth arrest at confluency. We have used this as a model to investigate the role of EGF receptor signaling in urothelial regeneration and wound-healing. Transcripts for HER-1, HER-2, and HER-3 were expressed by quiescent human urothelium in situ. Expression of HER-1 was upregulated in proliferating cultures, whereas HER-2 and HER-3 were more associatedmore » with a growth-arrested phenotype. NHU cells could be propagated in the absence of exogenous EGF, but autocrine signaling through HER-1 via the MAPK and PI3-kinase pathways was essential for proliferation and migration during urothelial wound repair. HB-EGF was expressed by urothelium in situ and HB-EGF, epiregulin, TGF-{alpha}, and amphiregulin were expressed by proliferating NHU cells. Urothelial wound repair in vitro was attenuated by neutralizing antibodies against HER-1 ligands, particularly amphiregulin. By contrast, the same ligands applied exogenously promoted migration, but inhibited proliferation, implying that HER-1 ligands provoke differential effects in NHU cells depending upon whether they are presented as soluble or juxtacrine ligands. We conclude that proliferation and migration during wound healing in NHU cells are mediated through an EGFR autocrine signalling loop and our results implicate amphiregulin as a key mediator.« less

  1. Activation of G-protein coupled estrogen receptor inhibits the proliferation of cervical cancer cells via sustained activation of ERK1/2.

    PubMed

    Zhang, Qiong; Wu, Yuan-Zhe; Zhang, Yan-Mei; Ji, Xiao-Hong; Hao, Qun

    2015-04-01

    Cervical cancer is one of the most common gynaecological women cancer and suggested to be modulated by estrogenic signals. G protein-coupled receptor (GPER), a seven-transmembrane G protein-coupled receptor, has been reported to regulate the cell proliferation of various cancers. But there is no study investigating the effects of GPER on the progression of cervical cancer. In the present study, we revealed for the first time that GPER was also highly expressed in various human cervical cancer cells. Activation of GPER via its specific agonist G-1 induced G2/M cell cycle arrest and down regulation of cyclin B via a time dependent manner. Furthermore, G-1 treatment induced sustained activation of extracellular-signal-regulated kinases (ERK)1/2 via epidermal growth factor receptor (EGFR) signals. Both inhibitors of ERK1/2 and EGFR significantly abolished G-1-induced suppression of cell proliferation and down regulation of cyclin B. Generally, our study revealed that GPER is highly expressed in human cervical cancer cells and its activation inhibits cell proliferation via EGFR/ERK1/2 signals. It suggested that G-1 can be considered as a potential new pharmacological tool to reduce the growth of cervical cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase.

    PubMed

    Sun, Pei; Wu, Haoyang; Huang, Jiali; Xu, Ying; Yang, Feng; Zhang, Qi; Xu, Xingang

    2018-05-22

    Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Janmejai K.; Department of Urology, University Hospitals of Cleveland, Cleveland, OH 44106; Gupta, Sanjay

    2006-07-28

    One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation inmore » all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.« less

  4. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells.

    PubMed

    Feng, Wan; Cai, Dawei; Zhang, Bin; Lou, Guochun; Zou, Xiaoping

    2015-08-01

    Histone deacetylases (HDAC) are involved in diverse biological processes and therefore emerge as potential targets for pancreatic cancer. Silibinin, an active component of silymarin, is known to inhibit growth of pancreatic cancer in vivo and in vitro. Herein, we examined the cytotoxic effects of TSA in combination with silibinin and investigated the possible mechanism in two pancreatic cancer cell lines (Panc1 and Capan2). Our study found that combination treatment of HDAC inhibitor and silibinin exerted additive growth inhibitory effect on pancreatic cancer cell. Annexin V-FITC/PI staining and flow cytometry analysis demonstrated that combination therapy induced G2/M cell cycle arrest and apoptosis in Panc1and Capan2 cells. The induction of apoptosis was further confirmed by evaluating the activation of caspases. Moreover, treatment with TSA and silibinin resulted in a profound reduction in the expression of cyclinA2, cyclinB1/Cdk1 and survivin. Taken together, our study might indicate that the novel combination of HDAC inhibitor and silibinin could offer therapeutic potential against pancreatic cancer. Copyright © 2015. Published by Elsevier Masson SAS.

  5. Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells

    PubMed Central

    Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan

    2007-01-01

    Introduction Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. Methods We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERα and ERβ expression in both cell lines – and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Results Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERα in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex™ exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERβ. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. Conclusion The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer. PMID:17986353

  6. Regulation of Akt/FoxO3a/Skp2 Axis Is Critically Involved in Berberine-Induced Cell Cycle Arrest in Hepatocellular Carcinoma Cells

    PubMed Central

    Li, Fanni; Dong, Xiwen; Lin, Peng; Jiang, Jianli

    2018-01-01

    The maintenance of ordinal cell cycle phases is a critical biological process in cancer genesis, which is a crucial target for anti-cancer drugs. As an important natural isoquinoline alkaloid from Chinese herbal medicine, Berberine (BBR) has been reported to possess anti-cancer potentiality to induce cell cycle arrest in hepatocellular carcinoma cells (HCC). However, the underlying mechanism remains to be elucidated. In our present study, G0/G1 phase cell cycle arrest was observed in berberine-treated Huh-7 and HepG2 cells. Mechanically, we observed that BBR could deactivate the Akt pathway, which consequently suppressed the S-phase kinase-associated protein 2 (Skp2) expression and enhanced the expression and translocation of Forkhead box O3a (FoxO3a) into nucleus. The translocated FoxO3a on one hand could directly promote the transcription of cyclin-dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1, on the other hand, it could repress Skp2 expression, both of which lead to up-regulation of p21Cip1 and p27Kip1, causing G0/G1 phase cell cycle arrest in HCC. In conclusion, BBR promotes the expression of CDKIs p21Cip1 and p27Kip1 via regulating the Akt/FoxO3a/Skp2 axis and further induces HCC G0/G1 phase cell cycle arrest. This research uncovered a new mechanism of an anti-cancer effect of BBR. PMID:29360760

  7. Genes involved in immortalization of human mammary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings ofmore » this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of enforcing a Raf-induced growth arrest and that this tumor suppressive function is lost at a specific stage in malignant transformation. Further studies to elucidate the ways by which immortal, converted HMEC escape this arrest may provide a more complete model of breast carcinogenesis as well as ways to intervene in that process.« less

  8. Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM–Chk1/2–Cdc25C pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yong-Cheng; Su, Nan; Shi, Xiao-Jing

    2015-01-15

    Jaridonin, a novel diterpenoid from Isodon rubescens, has been shown previously to inhibit proliferation of esophageal squamous cancer cells (ESCC) through G2/M phase cell cycle arrest. However, the involved mechanism is not fully understood. In this study, we found that the cell cycle arrest by Jaridonin was associated with the increased expression of phosphorylation of ATM at Ser1981 and Cdc2 at Tyr15. Jaridonin also resulted in enhanced phosphorylation of Cdc25C via the activation of checkpoint kinases Chk1 and Chk2, as well as in increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM in response to DNA damage. Furthermore,more » Jaridonin-mediated alterations in cell cycle arrest were significantly attenuated in the presence of NAC, implicating the involvement of ROS in Jaridonin's effects. On the other hand, addition of ATM inhibitors reversed Jaridonin-related activation of ATM and Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X and G2/M phase arrest. In conclusion, these findings identified that Jaridonin-induced cell cycle arrest in human esophageal cancer cells is associated with ROS-mediated activation of ATM–Chk1/2–Cdc25C pathway. - Highlights: • Jaridonin induced G2/M phase arrest through induction of redox imbalance. • Jaridonin increased the level of ROS through depleting glutathione in cell. • ATM–Chk1/2–Cdc25C were involved in Jaridonin-induced cell cycle arrest. • Jaridonin selectively inhibited cancer cell viability and cell cycle progression.« less

  9. Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo

    PubMed Central

    HU, TAO; LI, PEI; LUO, ZHONGGUANG; CHEN, XIAOYU; ZHANG, JINGYANG; WANG, CHUNYAO; CHEN, PING; DONG, ZIMING

    2016-01-01

    Recently, chloroquine (CQ) has been widely used to improve the efficacy of different chemotherapy drugs to treat tumors. However, the effects of single treatment of CQ on liver cancer have not been investigated. In the present study, we examined the effects of CQ on the growth and viability of liver cancer cells in vitro and in vivo, and revealed that CQ treatment triggered G0/G1 cell cycle arrest, induced DNA damage and apoptosis in a dose- and time-dependent manner in liver cancer cells. Moreover, administration of CQ to tumor-bearing mice suppressed the tumor growth in an orthotopic xenograft model of liver cancer. These findings extend our understanding and suggest that CQ could be repositioned as a treatment option for liver cancer as a single treatment or in combination. PMID:26530158

  10. Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling pathways

    PubMed Central

    Fu, Dong-Jun; Zhang, Li; Song, Jian; Mao, Ruo-Wang; Zhao, Ruo-Han; Liu, Ying-Chao; Hou, Yu-Hui; Li, Jia-Huan; Yang, Jia-Jia; Jin, Cheng-Yun; Li, Ping; Zi, Xiao-Lin; Liu, Hong-Min; Zhang, Sai-Yang; Zhang, Yan-Bing

    2017-01-01

    A series of novel formononetin-dithiocarbamate derivatives were designed, synthesized and evaluated for antiproliferative activity against three selected cancer cell line (MGC-803, EC-109, PC-3). The first structure-activity relationship (SAR) for this formononetin-dithiocarbamate scaffold is explored in this report with evaluation of 14 variants of the structural class. Among these analogues, tert-butyl 4-(((3-((3-(4-methoxyphenyl)-4-oxo-4H–chromen-7-yl)oxy)propyl)thio)carbonothioyl)piperazine-1-carboxylate (8i) showed the best inhibitory activity against PC-3 cells (IC50 = 1. 97 µM). Cellular mechanism studies elucidated 8i arrests cell cycle at G1 phase and regulates the expression of G1 checkpoint-related proteins in concentration-dependent manners. Furthermore, 8i could inhibit cell growth via MAPK signaling pathway and inhibit migration via Wnt pathway in PC-3 cells. PMID:28038329

  11. Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress

    PubMed Central

    Hoeferlin, L. Alexis; Oleinik, Natalia V.; Krupenko, Natalia I.

    2011-01-01

    The folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), a metabolic regulator of proliferation, activates p53-dependent G1 arrest and apoptosis in A549 cells. In the present study, we have demonstrated that FDH-induced apoptosis is abrogated upon siRNA knockdown of the p53 downstream target PUMA. Conversely, siRNA knockdown of p21 eliminated FDH-dependent G1 arrest and resulted in an early apoptosis onset. The acceleration of FDH-dependent apoptosis was even more profound in another cell line, HCT116, in which the p21 gene was silenced through homologous recombination (p21−/− cells). In contrast to A549 cells, FDH caused G2 instead of G1 arrest in HCT116 p21+/+ cells; such an arrest was not seen in p21-deficient (HCT116 p21−/−) cells. In agreement with the cell cycle regulatory function of p21, its strong accumulation in nuclei was seen upon FDH expression. Interestingly, our study did not reveal DNA damage upon FDH elevation in either cell line, as judged by comet assay and the evaluation of histone H2AX phosphorylation. In both A549 and HCT116 cell lines, FDH induced a strong decrease in the intracellular ATP pool (2-fold and 30-fold, respectively), an indication of a decrease in de novo purine biosynthesis as we previously reported. The underlying mechanism for the drop in ATP was the strong decrease in intracellular 10-formyltetrahydrofolate, a substrate in two reactions of the de novo purine pathway. Overall, we have demonstrated that p21 can activate G1 or G2 arrest in the absence of DNA damage as a response to metabolite deprivation. In the case of FDH-related metabolic alterations, this response delays apoptosis but is not sufficient to prevent cell death. PMID:22593801

  12. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells.

    PubMed

    Pan, Min-Hsiung; Chen, Wei-Jen; Lin-Shiau, Shoei-Yn; Ho, Chi-Tang; Lin, Jen-Kun

    2002-10-01

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is concentrated in the peel of citrus fruits. DNA flow cytometric analysis indicated that tangeretin blocked cell cycle progression at G1 phase in colorectal carcinoma COLO 205 cells. Over a 24 h exposure to tangeretin, the degree of phosphorylation of Rb was decreased after 12 h and G1 arrest developed. The protein expression of cyclins A, D1, and E reduced slightly under the same conditions. Immunocomplex kinase experiments showed that tangeretin inhibited the activities of cyclin-dependent kinases 2 (Cdk2) and 4 (Cdk4) in a dose-dependent manner in the cell-free system. As the cells were exposed to tangeretin (50 microM) over 48 h a gradual loss of both Cdk2 and 4 kinase activities occurred. Tangeretin also increased the content of the Cdk inhibitor p21 protein and this effect correlated with the elevation in p53 levels. In addition, tangeretin also increased the level of the Cdk inhibitor p27 protein within 18 h. These results suggest that tangeretin either exerts its growth-inhibitory effects through modulation of the activities of several key G1 regulatory proteins, such as Cdk2 and Cdk4, or mediates the increase of Cdk inhibitors p21 and p27.

  13. Antitumor Effects of Flavopiridol on Human Uterine Leiomyoma In Vitro and in a Xenograft Model

    PubMed Central

    Lee, Hyun-Gyo; Baek, Jong-Woo; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do; Park, Won-Jin; Chung, Rosa; Choi, Eun-Som; Lee, Gun-Ho

    2014-01-01

    Dysregulated cyclin-dependent kinases (CDKs) are considered a potential target for cancer therapy. Flavopiridol is a potent CDK inhibitor. In this study, the antiproliferative effect of the flavonoid compound flavopiridol and its mechanism in human uterine leiomyoma cells were investigated. The present study focused on the effect of flavopiridol in cell proliferation and cell cycle progression in primary cultured human uterine leiomyoma cells. Cell viability and cell proliferation assays were conducted. Flow cytometry was performed to determine the effect of flavopiridol on cell cycle. The expression of cell cycle regulatory-related proteins was evaluated by Western blotting. Cell viability and proliferation of uterine leiomyoma cells were significantly reduced by flavopiridol treatment in a dose-dependent manner. Flow cytometry results showed that flavopiridol induced G1 phase arrest. Flavopiridol-induced growth inhibition in uterine leiomyoma cells was associated with increased expression of p21cip/wafl and p27kip1 in a dose-dependent manner. Downregulation of CDK2/4 and Cyclin A with a concomitant increase in dephosphorylation of retinoblastoma was observed. This study demonstrates that flavopiridol inhibits cell proliferation by initiating G1 cell cycle arrest in human uterine leiomyoma. We also found that flavopiridol is effective in inhibiting xenografted human uterine leiomyoma growth. These results indicate that flavopiridol could prove to be a promising chemopreventive and therapeutic agent for human uterine leiomyoma. PMID:24572052

  14. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage

    PubMed Central

    Manson, Margaret M.

    2013-01-01

    The chemopreventive agent curcumin has anti-proliferative effects in many tumour types, but characterization of cell cycle arrest, particularly with physiologically relevant concentrations, is still incomplete. Following oral ingestion, the highest concentrations of curcumin are achievable in the gut. Although it has been established that curcumin induces arrest at the G2/M stage of the cell cycle in colorectal cancer lines, it is not clear whether arrest occurs at the G2/M transition or in mitosis. To elucidate the precise stage of arrest, we performed a direct comparison of the levels of curcumin-induced G2/M boundary and mitotic arrest in eight colorectal cancer lines (Caco-2, DLD-1, HCA-7, HCT116p53+/+, HCT116p53–/–, HCT116p21–/–, HT-29 and SW480). Flow cytometry confirmed that these lines underwent G2/M arrest following treatment for 12h with clinically relevant concentrations of curcumin (5–10 μM). In all eight lines, the majority of this arrest occurred at the G2/M transition, with a proportion of cells arresting in mitosis. Examination of the mitotic index using fluorescence microscopy showed that the HCT116 and Caco-2 lines exhibited the highest levels of curcumin-induced mitotic arrest. Image analysis revealed impaired mitotic progression in all lines, exemplified by mitotic spindle abnormalities and defects in chromosomal congression. Pre-treatment with inhibitors of the DNA damage signalling pathway abrogated curcumin-induced mitotic arrest, but had little effect at the G2/M boundary. Moreover, pH2A.X staining seen in mitotic, but not interphase, cells suggests that this aberrant mitosis results in DNA damage. PMID:23125222

  15. Induction of cell cycle arrest and apoptosis with downregulation of Hsp90 client proteins and histone modification by 4β-hydroxywithanolide E isolated from Physalis peruviana.

    PubMed

    Park, Eun-Jung; Sang-Ngern, Mayuramas; Chang, Leng Chee; Pezzuto, John M

    2016-06-01

    Physalis peruviana (Solanaceae) is used for culinary and medicinal purposes. We currently report withanolides, isolated from P. peruviana, inhibit the growth of colon cancer monolayer and spheroid cultures. A detailed mechanistic evaluation was performed with 4β-hydroxywithanolide E (4HWE). Treatment of HT-29 cells with low concentrations of 4HWE inhibited growth while enhancing levels of p21(Waf1/Cip1) and reducing levels of several cell cycle-related proteins. Apoptosis was induced at higher concentrations. In addition, 4HWE treatment downregulated the levels of Hsp90 client proteins. Nuclear sirtuin 1 (SIRT1) was increased and histone H3 acetylated at lysine 9 was decreased. An additional consequence of SIRT1 elevation in the nucleus may be inhibition of c-Jun activity. The expression of 21 genes was altered, including downregulation of PTGS2, and this correlated with reduced protein levels of cyclooxygenase-2 (COX-2). Overall, efficacious induction of G0/G1 cell cycle arrest at low concentrations, and induction of apoptosis at higher concentrations are interesting 4HWE-mediated phenomena that are accompanied by a complex array of molecular events. Considering the worldwide prevalence of colon cancer, and the unique mode of action mediated by 4HWE, it is reasonable to investigate additional mechanistic details and the potential utility of this compound. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Response Surface Methodology study on the role of factors affecting growth and volatile phenol production by Brettanomyces bruxellensis ISA 2211 in wine.

    PubMed

    Chandra, M; Barata, A; Ferreira-Dias, S; Malfeito-Ferreira, M; Loureiro, V

    2014-09-01

    The present study was aimed at determining the effect of glucose, ethanol and sulphur dioxide on the growth and volatile phenol production by Brettanomyces bruxellensis in red wines using a response surface methodology approach. Sulphur dioxide proved to have a significant (p < 0.05) negative linear and quadratic effect on growth and 4-ethylphenol production. Concentrations of sulphur dioxide higher than 20 mg L(-1), at pH 3.50, induced immediate loss of cell culturability under growth permissive levels of ethanol. Under high ethanol concentrations (14% v/v), the lag phase increased from 3 to 10 days, growth being fully arrested at 15% (v/v). Glucose up to 10 g L(-1) was found to be a significant factor (quadratic level) in biomass increase under low ethanol (<12.5% v/v) and low sulphite concentrations. However, when cells were inactivated by sulphur dioxide and ethanol, glucose (up to 10 g L(-1)) did not prevent cell death. Production of more than 50 μg L(-1) day(-1) of 4-ethylphenol was only observed in the presence of high numbers (10(6) CFU mL(-1)) of culturable cells, being stimulated by increasing glucose concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth.

    PubMed

    Jiao, Yang; Ge, Chun-min; Meng, Qing-hui; Cao, Jian-ping; Tong, Jian; Fan, Sai-jun

    2007-07-01

    To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cytotoxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  18. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yiting; State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193; Liu, Lan

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest bymore » reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory capacity of MSCs. • The PI3K/AKT/Rac1 pathway mediates the Wip1-knockout-induced migration of MSCs. • Overexpression of Wip1 reversed premature senescence and migration of Wip1{sup −/−} MSCs.« less

  19. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    PubMed

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP-ribose) polymerase was also found in the ethanolic extract of A. paniculata in the first true leaf stage treatment. This study suggests that A. paniculata could be a promising herbal plant for the alternative treatment of intrahepatic cholangiocarcinoma. Georg Thieme Verlag KG Stuttgart · New York.

  20. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2015-01-05

    Tumor growth and metastasis are closely associated with the M2 macrophage activation of tumor-associated macrophages (TAMs) in the tumor microenvironment as well as the development of tumor cells. In this study, we examined the antiproliferative, antitumor, and antimetastatic effects of three dihydroxycoumarins (esculetin, fraxetin, and daphnetin) against osteosarcoma LM8 cells (in vitro) and a highly metastatic model in LM8-bearing mice (in vivo). Esculetin (20-100μM) inhibited the proliferation of LM8 cells, whereas fraxetin and daphnetin had no effect. Esculetin inhibited the expressions of cyclin D1, cyclin-dependent kinase (CDK) 4 and matrix metalloproteinase (MMP)-2, and production of both transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) in LM8 cells. Esculetin (3 or 10mg/kg) and fraxetin (10mg/kg) inhibited tumor growth and metastasis to the lung or liver, whereas daphnetin did not. These results suggested that the antitumor and antimetastatic actions of esculetin may be partly attributed to G1 arrest by the inhibition of cyclin D1 and CDK4 expression, while its antiangiogenic action may have been due to the inhibition of MMP-2 expression and TGF-β1 and VEGF productions at tumor sites. Esculetin (10-100μM) and fraxetin (50-100μM) inhibited the production of interleukin (IL)-10, monocyte chemoattractant protein (MCP)-1, and TGF-β1 during the differentiation of M2 macrophages by reducing the phosphorylation of Stat 3 without affecting its expression. These results also suggested that the antitumor and antimetastatic actions of esculetin or fraxetin may be due to the regulated activation of TAM by M2 macrophage differentiation in the tumor microenvironment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Low dose combinations of 2-methoxyestradiol and docetaxel block prostate cancer cells in mitosis and increase apoptosis.

    PubMed

    Reiner, Teresita; de las Pozas, Alicia; Gomez, Lourdes A; Perez-Stable, Carlos

    2009-04-08

    Clinical trials have shown that chemotherapy with docetaxel (Doc) combined with prednisone can improve survival of patients with androgen-independent prostate cancer (AI-PC). It is likely that the combination of Doc with other novel agents would also improve the survival of AI-PC patients. We investigated whether the combination of Doc and 2-methoxyestradiol (2ME2), an endogenous metabolite of estradiol promising for cancer therapy, can increase apoptotic cell death in prostate cancer cells. Low concentration 2ME2 (0.5-1 microM)+Doc (0.05-0.1 nM) combinations inhibit cell growth, increase G2/M cell cycle arrest, and increase apoptosis more effectively than the single concentrations in a variety of human AI-PC cells. Effects on apoptosis were associated with an increase in p53 protein and a decrease in cyclin A-dependent kinase activity. We then investigated whether the combination of 2ME2+Doc can increase apoptotic cell death and inhibit the growth of prostate tumors in the FG/Tag transgenic mouse model of AI-PC. Doses of 2ME2 and Doc that increase mitotic cell cycle arrest result in an increase in apoptosis and lower primary prostate tumor weights in FG/Tag mice. High dose 2ME2+Doc combinations did not increase G2/M cell cycle arrest or apoptosis in AI-PC cell lines and in the FG/Tag mice more than the single drugs. Overall, our data indicate that low dose 2ME2+Doc combinations may provide a treatment strategy that can improve therapeutic efficacy against AI-PC while reducing toxicity often seen in patients treated with Doc.

  2. Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

    PubMed

    Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu

    2014-05-15

    The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.

  3. Combination of etoposide and fisetin results in anti-cancer efficiency against osteosarcoma cell models.

    PubMed

    Ferreira de Oliveira, José Miguel P; Pacheco, Ana Rita; Coutinho, Laura; Oliveira, Helena; Pinho, Sónia; Almeida, Luis; Fernandes, Eduarda; Santos, Conceição

    2018-03-01

    Osteosarcoma chemotherapy is often limited by chemoresistance, resulting in poor prognosis. Combined chemotherapy could, therefore, be used to prevent resistance to chemotherapeutics. Here, the effects of fisetin on osteosarcoma cells were investigated, as well as cytostatic potential in combination with the anti-cancer drug etoposide. For this, different osteosarcoma cell lines were treated with fisetin, with etoposide and with respective combinations. Fisetin was associated with decrease in colony formation in Saos-2 and in U2OS cells but not in MG-63 cells. Notwithstanding, upon evaluation of cellular growth by crystal violet assay, MG-63 and Saos-2 cells showed decreased cell proliferation at 40 and 20 µM fisetin, respectively. Depending on the relative concentrations, fisetin:etoposide combinations showed negative-to-positive interactions on the inhibition of cell proliferation. In addition, fisetin treatment up to 50 µM for 48 h resulted in G2-phase cell cycle arrest. Regardless of the combination, fisetin:etoposide increased % cells in G2-phase and decreased % cells in G1-phase. In addition, mixtures with more positive combined effects induced increased % cells in S-phase. Compared to etoposide treatment, these combinations resulted in decreased levels of cyclins B1 and E1, pointing to the role of these regulators in fisetin-induced cell cycle arrest. In conclusion, these results show that the combination of fisetin with etoposide has higher anti-proliferative effects in osteosarcoma associated with cell cycle arrest, allowing the use of lower doses of the chemotherapeutic agent, which has important implications for osteosarcoma treatment.

  4. Glutamate Dehydrogenase Affects Resistance to Cell Wall Antibiotics in Bacillus subtilis

    PubMed Central

    Lee, Yong Heon; Kingston, Anthony W.

    2012-01-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σW regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σW-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σW-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σW regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics. PMID:22178969

  5. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    PubMed

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  6. Down-regulation of NTCP expression by cyclin D1 in hepatitis B virus-related hepatocellular carcinoma has clinical significance

    PubMed Central

    Kang, Jingting; Wang, Jie; Cheng, Jin; Cao, Zhiliang; Chen, Ran; Li, Huiyu; Liu, Shuang; Chen, Xiangmei; Sui, Jianhua; Lu, Fengmin

    2017-01-01

    The sodium-dependent taurocholate cotransporter polypeptide (NTCP) has been identified as a liver specific functional receptor for the hepatitis B virus (HBV). Previous studies indicated that the expression of NTCP may be associated with the proliferation status of hepatocytes. However, the involvement of NTCP in hepatocellular carcinoma (HCC) cells proliferation remains unclear. In this study, we confirmed that NTCP was down-regulated in HCC tumor tissues compared with that in the adjacent non-tumor tissues (P < 0.0001). Clinically, lower expression of NTCP was correlated with poor post-surgery survival rate (P = 0.0009) and larger tumor tissue mass (P = 0.003) of HCC patients. This was supported by the finding that ectopic expression of NTCP in both HepG2 and Huh-7 cells could significantly suppress hepatocytes growth by arresting cells in G0/G1 phase. We also discovered that cyclin D1 could transcriptionally suppress NTCP expression by inhibiting the activity of NTCP promoter, while arresting HCC cells in G0/G1 phase by serum starvation could upregulate NTCP mRNA levels. This is the first study to report that the transcriptional inhibition of NTCP expression during cell cycle progression was mediated by cyclin D1. The down-regulated NTCP expression was associated with poor prognosis and lower HBV cccDNA level in HCC patients. Therefore, NTCP expression levels might serve as a novel prognostic predictive marker for post-surgery survival rate of HCC patients. PMID:28915572

  7. Down-regulation of NTCP expression by cyclin D1 in hepatitis B virus-related hepatocellular carcinoma has clinical significance.

    PubMed

    Kang, Jingting; Wang, Jie; Cheng, Jin; Cao, Zhiliang; Chen, Ran; Li, Huiyu; Liu, Shuang; Chen, Xiangmei; Sui, Jianhua; Lu, Fengmin

    2017-08-22

    The sodium-dependent taurocholate cotransporter polypeptide (NTCP) has been identified as a liver specific functional receptor for the hepatitis B virus (HBV). Previous studies indicated that the expression of NTCP may be associated with the proliferation status of hepatocytes. However, the involvement of NTCP in hepatocellular carcinoma (HCC) cells proliferation remains unclear. In this study, we confirmed that NTCP was down-regulated in HCC tumor tissues compared with that in the adjacent non-tumor tissues ( P < 0.0001). Clinically, lower expression of NTCP was correlated with poor post-surgery survival rate ( P = 0.0009) and larger tumor tissue mass ( P = 0.003) of HCC patients. This was supported by the finding that ectopic expression of NTCP in both HepG2 and Huh-7 cells could significantly suppress hepatocytes growth by arresting cells in G0/G1 phase. We also discovered that cyclin D1 could transcriptionally suppress NTCP expression by inhibiting the activity of NTCP promoter, while arresting HCC cells in G0/G1 phase by serum starvation could upregulate NTCP mRNA levels. This is the first study to report that the transcriptional inhibition of NTCP expression during cell cycle progression was mediated by cyclin D1. The down-regulated NTCP expression was associated with poor prognosis and lower HBV cccDNA level in HCC patients. Therefore, NTCP expression levels might serve as a novel prognostic predictive marker for post-surgery survival rate of HCC patients.

  8. Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F.

    PubMed

    Oliveira, Amanda; Beyer, Georg; Chugh, Rohit; Skube, Steven J; Majumder, Kaustav; Banerjee, Sulagna; Sangwan, Veena; Li, Lihua; Dawra, Rajinder; Subramanian, Subbaya; Saluja, Ashok; Dudeja, Vikas

    2015-06-01

    Despite significant progress in diagnostics and therapeutics, over 50 thousand patients die from colorectal cancer annually. Hence, there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies, colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase release, and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F-dependent genes, E2F1- retinoblastoma protein (Rb) binding, and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically, we demonstrate that at low concentrations triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Therefore, we conclude that Triptolide and Minnelide are effective against colon cancer in multiple pre-clinical models.

  9. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells.

    PubMed

    Morley, Karen L; Ferguson, Peter J; Koropatnick, James

    2007-06-18

    Tangeretin and nobiletin are citrus flavonoids that are among the most effective at inhibiting cancer cell growth in vitro and in vivo. The antiproliferative activity of tangeretin and nobiletin was investigated in human breast cancer cell lines MDA-MB-435 and MCF-7 and human colon cancer line HT-29. Both flavonoids inhibited proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at G1 in all three cell lines. At concentrations that resulted in significant inhibition of proliferation and cell cycle arrest, neither flavonoid induced apoptosis or cell death in any of the tumor cell lines. To test the ability of arrested cells to recover, cells that were incubated with tangeretin and nobiletin for 4 days were then cultured in flavonoid-free medium for an additional 4 days. Cells resumed proliferation similar to untreated control within a day of flavonoid removal. Cell cycle distribution was similar to that of control within 4 days of flavonoid removal. These data indicate that, in these cell lines at concentrations that inhibit proliferation up to 80% over 4 days, tangeretin and nobiletin are cytostatic and significantly suppress proliferation by cell cycle arrest without apoptosis. Such an agent could be expected to spare normal tissues from toxic side effects. Thus, tangeretin and nobiletin could be effective cytostatic anticancer agents. Inhibition of proliferation of human cancers without inducing cell death may be advantageous in treating tumors as it would restrict proliferation in a manner less likely to induce cytotoxicity and death in normal, non-tumor tissues.

  10. Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin.

    PubMed

    Antony, Marie L; Lee, Joomin; Hahm, Eun-Ryeong; Kim, Su-Hyeong; Marcus, Adam I; Kumari, Vandana; Ji, Xinhua; Yang, Zhen; Vowell, Courtney L; Wipf, Peter; Uechi, Guy T; Yates, Nathan A; Romero, Guillermo; Sarkar, Saumendra N; Singh, Shivendra V

    2014-01-17

    Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys(303) of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.

  11. GROWTH REGULATION IN RSV INFECTED CHECKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.C.; Bissell, M.J.

    1980-03-01

    The relationship between growth regulation and cell transformation has been studied in many cultured cell lines transformed by a range of oncogenic agents. The main conclusion derived from these investigations is that the nature of the growth regulatory lesion in transformed cells is a function of the agent used to induce transformation. For example, when 3T3 fibroblasts are rendered stationary by serum deprivation, normal cells accumulate in G{sub 1} but SV40 transformed cells are arrested at all stages of the cell cycle. In contrast, 3T3 cells transformed with Rous sarcoma virus B77, accumulate in G{sub 1} upon serum deprivation. Thismore » is also true when mouse sarcoma virus (MSV) is used as the transforming agent. MSV-transformed cells accumulate in G{sub 1}, just as do normal cells. In this letter we report a detailed study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in the process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. Two principal findings have emerged: (a) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts has two distinct compartments, (for simplicity referred to as G{sub 1} and G{sub 0} states), (b) when rendered stationary at 41.5{sup o} by serum deprivation, normal cells enter a G{sub 0}-like state, but cells infected with the ts-mutant occupy a G{sub 1} state, even though a known src gene product, a kinase, should be inactive at this temperature. The possibility is discussed that viral factors other than the active src protein kinase influence growth control.« less

  12. The radioresistance to killing of A1-5 cells derives from activation of the Chk1 pathway

    NASA Technical Reports Server (NTRS)

    Hu, B.; Zhou, X. Y.; Wang, X.; Zeng, Z. C.; Iliakis, G.; Wang, Y.

    2001-01-01

    Checkpoints respond to DNA damage by arresting the cell cycle to provide time for facilitating repair. In mammalian cells, the G(2) checkpoint prevents the Cdc25C phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. Both Chk1 and Chk2, the checkpoint kinases, can phosphorylate Cdc25C and inactivate its in vitro phosphatase activity. Therefore, both Chk1 and Chk2 are thought to regulate the activation of the G(2) checkpoint. Here we report that A1-5, a transformed rat embryo fibroblast cell line, shows much more radioresistance associated with a much stronger G(2) arrest response when compared with its counterpart, B4, although A1-5 and B4 cells have a similar capacity for nonhomologous end-joining DNA repair. These phenotypes of A1-5 cells are accompanied by a higher Chk1 expression and a higher phosphorylation of Cdc2. On the other hand, Chk2 expression increases slightly following radiation; however, it has no difference between A1-5 and B4 cells. Caffeine or UCN-01 abolishes the extreme radioresistance with the strong G(2) arrest and at the same time reduces the phosphorylation of Cdc2 in A1-5 cells. In addition, Chk1 but not Chk2 antisense oligonucleotide sensitizes A1-5 cells to radiation-induced killing and reduces the G(2) arrest of the cells. Taken together these results suggest that the Chk1/Cdc25C/Cdc2 pathway is the major player for the radioresistance with G(2) arrest in A1-5 cells.

  13. DNA synthesis arrest sites at the right terminus of rat long interspersed repeated (LINE or L1Rn) DNA family members.

    PubMed Central

    d'Ambrosio, E; Furano, A V

    1987-01-01

    An approximately equal to 150-bp GC-rich (approximately equal to 60%) region is at the right end of rat long interspersed repeated DNA (LINE or L1Rn) family members. We report here that one of the DNA strands from this region contains several non-palindromic sites that strongly arrest DNA synthesis in vitro by the prokaryotic Klenow and T4 DNA polymerases, the eukaryotic alpha polymerase, and AMV reverse transcriptase. The strongest arrest sites are G-rich (approximately equal to 70%) homopurine stretches of 18 or more residues. Shorter homopurine stretches (12 residues or fewer) did not arrest DNA synthesis even if the stretch contains 11/12 G residues. Arrest of the prokaryotic polymerases was not affected by their respective single strand binding proteins or polymerase accessory proteins. The region of duplex DNA which contains DNA synthesis arrest sites reacts with bromoacetaldehyde when present in negatively supercoiled molecules. By contrast, homopurine stretches that do not arrest DNA synthesis do not react with bromoacetaldehyde. The presence of bromoacetaldehyde-reactive bases in a G-rich homopurine-containing duplex under torsional stress is thought to be caused by base stacking in the homopurine strand. Therefore, we suggest that base-stacked regions of the template arrest DNA synthesis. Images PMID:2436148

  14. Synergistic effect of allyl isothiocyanate (AITC) on cisplatin efficacy in vitro and in vivo

    PubMed Central

    Ling, Xiang; Westover, David; Cao, Felicia; Cao, Shousong; He, Xiang; Kim, Hak-Ryul; Zhang, Yuesheng; Chan, Daniel CF; Li, Fengzhi

    2015-01-01

    Although in vitro studies have shown that isothiocyanates (ITCs) can synergistically sensitize cancer cells to cisplatin treatment, the underlying mechanisms have not been well defined, and there are no in vivo demonstrations of this synergy. Here, we report the in vitro and in vivo data for the combination of allyl isothiocyanate (AITC), one of the most common naturally occurring ITCs, with cisplatin. Our study revealed that cisplatin and AITC combination synergistically inhibits cancer cell growth and colony formation, and enhances apoptosis in association with the downregulation of antiapoptotic proteins Bcl-2 and survivin. Importantly, the in vivo combination treatment suppresses human tumor growth in animal models without observable increases in toxicity (body weight loss) in comparison with single agent treatment. Furthermore, our data revealed that addition of AITC to cisplatin treatment changes the profile of G2/M arrest (e.g. increase in M phase cell number) and significantly extends the duration of G2/M arrest in comparison with cisplatin treatment alone. To explore the underlying mechanism, we found that AITC treatment rapidly depletes b-tubulin. Combination of AITC and cisplatin inhibits the expression of G2/M checkpoint-relevant proteins including CDC2, cyclin B1 and CDC25. Together, our findings reveal a novel mechanism for AITC enhancing cisplatin efficacy and provides the first in vivo evidence to support ITCs as potential candidates for developing new regimens to overcome platinum resistance. PMID:26396928

  15. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    PubMed

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  16. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  17. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition.

    PubMed

    Mammoto, Akiko; Huang, Sui; Moore, Kimberly; Oh, Philmo; Ingber, Donald E

    2004-06-18

    Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.

  18. Facile construction of fused benzimidazole-isoquinolinones that induce cell-cycle arrest and apoptosis in colorectal cancer cells.

    PubMed

    He, Liu-Jun; Yang, Dong-Lin; Li, Shi-Qiang; Zhang, Ya-Jun; Tang, Yan; Lei, Jie; Frett, Brendan; Lin, Hui-Kuan; Li, Hong-Yu; Chen, Zhong-Zhu; Xu, Zhi-Gang

    2018-06-12

    Colorectal cancer (CRC) is one of the most frequent, malignant gastrointestinal tumors, and strategies and effectiveness of current therapy are limited. A series of benzimidazole-isoquinolinone derivatives (BIDs) was synthesized and screened to identify novel scaffolds for CRC. Of the compounds evaluated, 7g exhibited the most promising anti-cancer properties. Employing two CRC cell lines, SW620 and HT29, 7g was found to suppress growth and proliferation of the cell lines at a concentration of ∼20 µM. Treatment followed an increase in G 2 /M cell cycle arrest, which was attributed to cyclin B1 and cyclin-dependent kinase 1 (CDK1) signaling deficiencies with simultaneous enhancement in p21 and p53 activity. In addition, mitochondrial-mediated apoptosis was induced in CRC cells. Interestingly, 7g decreased phosphorylated AKT, mTOR and 4E-BP1 levels, while promoting the expression/stability of PTEN. Since PTEN controls input into the PI3K/AKT/mTOR pathway, antiproliferative effects can be attributed to PTEN-mediated tumor suppression. Collectively, these results suggest that BIDs exert antitumor activity in CRC by impairing PI3K/AKT/mTOR signaling. Against a small kinase panel, 7g exhibited low affinity at 5 µM suggesting anticancer properties likely stem through a non-kinase mechanism. Because of the novelty of BIDs, the structure can serve as a lead scaffold to design new CRC therapies. Copyright © 2018. Published by Elsevier Ltd.

  19. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    PubMed

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  20. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway

    PubMed Central

    2011-01-01

    Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176

  1. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    PubMed

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression. © 2014 The Author. Bioessays published by WILEY Periodicals, Inc.

  2. Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy.

    PubMed

    Pivovarova, Aleksandra I; MacGregor, Gordon G

    2018-02-01

    This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence

    PubMed Central

    Mages, Christina FS; Wintsche, Axel; Bernhart, Stephan H

    2017-01-01

    The retinoblastoma Rb protein is an important factor controlling the cell cycle. Yet, mammalian cells carrying Rb deletions are still able to arrest under growth-limiting conditions. The Rb-related proteins p107 and p130, which are components of the DREAM complex, had been suggested to be responsible for a continued ability to arrest by inhibiting E2f activity and by recruiting chromatin-modifying enzymes. Here, we show that p130 and p107 are not sufficient for DREAM-dependent repression. We identify the MuvB protein Lin37 as an essential factor for DREAM function. Cells not expressing Lin37 proliferate normally, but DREAM completely loses its ability to repress genes in G0/G1 while all remaining subunits, including p130/p107, still bind to target gene promoters. Furthermore, cells lacking both Rb and Lin37 are incapable of exiting the cell cycle. Thus, Lin37 is an essential component of DREAM that cooperates with Rb to induce quiescence. PMID:28920576

  4. Bevacizumab inhibits proliferation of choroidal endothelial cells by regulation of the cell cycle.

    PubMed

    Rusovici, Raluca; Patel, Chirag J; Chalam, Kakarla V

    2013-01-01

    The purpose of this study was to evaluate cell cycle changes in choroidal endothelial cells treated with varying doses of bevacizumab in the presence of a range of concentrations of vascular endothelial growth factor (VEGF). Bevacizumab, a drug widely used in the treatment of neovascular age-related macular degeneration, choroidal neovascularization, and proliferative diabetic retinopathy, neutralizes all isoforms of VEGF. However, the effect of intravitreal administration of bevacizumab on the choroidal endothelial cell cycle has not been established. Monkey choroidal endothelial (RF/6A) cells were treated with VEGF 50 ng/mL and escalating doses of bevacizumab 0.1-2 mg/mL for 72 hours. Cell cycle changes in response to bevacizumab were analyzed by flow cytometry and propidium iodide staining. Cell proliferation was measured using the WST-1 assay. Morphological changes were recorded by bright field cell microscopy. Bevacizumab inhibited proliferation of choroidal endothelial cells by stabilization of the cell cycle in G0/G1 phase. Cell cycle analysis of VEGF-enriched choroidal endothelial cells revealed a predominant increase in the G2/M population (21.84%, P, 0.01) and a decrease in the G0/G1 phase population (55.08%, P, 0.01). Addition of escalating doses of bevacizumab stabilized VEGF-enriched cells in the G0/G1 phase (55.08%, 54.49%, 56.3%, and 64% [P, 0.01]) and arrested proliferation by inhibiting the G2/M phase (21.84%, 21.46%, 20.59%, 20.94%, and 16.1% [P, 0.01]). The increase in G0/G1 subpopulation in VEGF-enriched and bevacizumab-treated cells compared with VEGF-enriched cells alone was dose-dependent. Bevacizumab arrests proliferation of VEGF-enriched choroidal endothelial cells by stabilizing the cell cycle in the G0/G1 phase and inhibiting the G2/M phase in a dose-dependent fashion.

  5. Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3

    PubMed Central

    Chaudhary, Ritu; Gryder, Berkley; Woods, Wendy S; Subramanian, Murugan; Jones, Matthew F; Li, Xiao Ling; Jenkins, Lisa M; Shabalina, Svetlana A; Mo, Min; Dasso, Mary; Yang, Yuan; Wakefield, Lalage M; Zhu, Yuelin; Frier, Susan M; Moriarity, Branden S; Prasanth, Kannanganattu V; Perez-Pinera, Pablo; Lal, Ashish

    2017-01-01

    Thousands of long noncoding RNAs (lncRNAs) have been discovered, yet the function of the vast majority remains unclear. Here, we show that a p53-regulated lncRNA which we named PINCR (p53-induced noncoding RNA), is induced ~100-fold after DNA damage and exerts a prosurvival function in human colorectal cancer cells (CRC) in vitro and tumor growth in vivo. Targeted deletion of PINCR in CRC cells significantly impaired G1 arrest and induced hypersensitivity to chemotherapeutic drugs. PINCR regulates the induction of a subset of p53 targets involved in G1 arrest and apoptosis, including BTG2, RRM2B and GPX1. Using a novel RNA pulldown approach that utilized endogenous S1-tagged PINCR, we show that PINCR associates with the enhancer region of these genes by binding to RNA-binding protein Matrin 3 that, in turn, associates with p53. Our findings uncover a critical prosurvival function of a p53/PINCR/Matrin 3 axis in response to DNA damage in CRC cells. DOI: http://dx.doi.org/10.7554/eLife.23244.001 PMID:28580901

  6. Antiproliferative mechanism of the methanolic extract of Enterolobium cyclocarpum (Jacq.) Griseb. (Fabaceae).

    PubMed

    Sowemimo, Abimbola; Venables, Luanne; Odedeji, Modeola; Koekemoer, Trevor; van de Venter, Maryna; Hongbing, Liu

    2015-01-15

    Enterolobium cyclocarpum (Jacq.) Griseb. is a tropical tree that has folkloric implications against many ailments and diseases including cancer. To explore the ethnopharmacological claims against cancer, the cytotoxicity of the methanolic extract of the leaves, was investigated using the brine shrimp lethality assay, MTT assay using cervical (HeLa) and breast (MCF7) cancer cell lines, cell cycle analysis and Annexin V-FITC/PI assay. In the brine shrimp lethality assay, the extract showed cytotoxic activity with LC50 value of 31.63 µg/mL. Significant growth inhibition was observed in both cell lines with IC50 values of 2.07 ± 1.30 µg/mL and 11.84 ± 1.18 µg/mL for HeLa and MCF7, respectively. Cell cycle analysis indicated that HeLa cells were arrested in the G2/M phase while MCF7 cells arrested in the G1/G0 phase. The Annexin V-FITC/PI assay revealed phosphatidylserine translocation in both cell lines and thus apoptosis induction upon treatment with the extract. The study demonstrated the potential antiproliferative activity of Enterolobium cyclocarpum thereby supporting the traditional claim and provides basis for further mechanistic studies and isolation of active constituents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells.

    PubMed

    de Souza Grinevicius, Valdelúcia Maria Alves; Kviecinski, Maicon Roberto; Santos Mota, Nádia Sandrini Ramos; Ourique, Fabiana; Porfirio Will Castro, Luiza Sheyla Evenni; Andreguetti, Rafaela Rafognato; Gomes Correia, João Francisco; Filho, Danilo Wilhem; Pich, Claus Tröger; Pedrosa, Rozangela Curi

    2016-08-02

    Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction that induced oxidative stress affecting key proteins involved in cell cycle arrest at G1/S and triggering apoptosis. Finally, the overall data from this study are well in line with the traditional claims for the antitumor effect of Piper nigrum fruits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. INDUCTION OF CELL CYCLE ARREST AND APOPTOSIS BY ORMENIS ERIOLEPIS A MORROCAN ENDEMIC PLANT IN VARIOUS HUMAN CANCER CELL LINES

    PubMed Central

    Belayachi, Lamiae; Aceves-Luquero, Clara; Merghoub, Nawel; de Mattos, Silvia Fernández; Amzazi, Saaîd; Villalonga, Priam; Bakri, Youssef

    2017-01-01

    Background: Ormenis eriolepis Coss (Asteraceae) is an endemic Moroccan subspecies, traditionally named “Hellala” or “Fergoga”. It’s usually used for its hypoglycemic effect as well as for the treatment of stomacal pain. As far as we know, there is no scientific exploration of anti tumoral activity of Ormenis eriolepis extracts. Materials and Methods: In this regard, we performed a screening of organic extracts and fractions in a panel of both hematological and solid cancer cell lines, to evaluate the potential in vitro anti tumoral activity and to elucidate the respective mechanisms that may be responsible for growth arrest and cell death induction. The plant was extracted using organic solvents, and four different extracts were screened on Jurkat, Jeko-1, TK-6, LN229, SW620, U2OS, PC-3 and NIH3T3 cells. Results: Cell viability assays revealed that, the IC50 values were (11,63±5,37μg/ml) for Jurkat, (13,33±1,67μg/ml) for Jeko-1, (41,67±1,98μg/ml) for LN229 and (19,31±4,88μg/ml) for PC-3 cells upon treatment with Oe-DF and Oe-HE respectively. Both the fraction and extract exhibited no effects on TK6 and NIH3T3. Cytometry analysis accompanied by DNA damage signaling protein levels monitoring (p-H2A.X), showed that both the Dichloromethane Fraction and Hexanic extract induce DNA double stranded breaks (DSBs) accompanied by cell cycle arrest in G1 (Jurkat, Jeko -1 and LN22) and G2/M (PC-3) phases which is agreed with the caspase activity observed. Additional experiments with selective inhibitors of stress and survival pathways (JNK, MAPK, Rho, p53, and JAK3) indicated that none of these pathways was significantly involved in apoptosis induction. The bioactive compound analysis by CG/MS indicated that the major compounds in Oe-DF were: Linoleic Acid (15,89%), Podophyllotoxin (17,89%) and Quercetin (22,95%). For Oe-HE the major molecules were: Linoleic Acid (9,76%), α-curcumene (7,07%), α-bisabolol (5,49%), Campesterol (4,41%), Stigmasterol (14,08%) and β-sitosterol (7,49%). Conclusion: Our data suggest that bioactive compounds present in Ormenis eriolepis show significant anti proliferative activity inducing cell cycle arrest and cell death operating through apoptosis pathway. PMID:28573252

  9. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells.

    PubMed

    Eom, Dae-Woon; Lee, Ji Hwan; Kim, Young-Joo; Hwang, Gwi Seo; Kim, Su-Nam; Kwak, Jin Ho; Cheon, Gab Jin; Kim, Ki Hyun; Jang, Hyuk-Jai; Ham, Jungyeob; Kang, Ki Sung; Yamabe, Noriko

    2015-08-01

    Epigallocatechin gallate (EGCG) and curcumin are well known to naturally-occurring anticancer agents. The aim of this study was to verify the combined beneficial anticancer effects of curcumin and EGCG on PC3 prostate cancer cells, which are resistant to chemotherapy drugs and apoptosis inducers. EGCG showed weaker inhibitory effect on PC3 cell proliferation than two other prostate cancer cell lines, LNCaP and DU145. Co-treatment of curcumin improved antiproliferative effect of EGCG on PC3 cells. The protein expressions of p21 were significantly increased by the co-treatment of EGCG and curcumin, whereas it was not changed by the treatment with each individual compound. Moreover, treatments of EGCG and curcumin arrested both S and G2/M phases of PC3 cells. These results suggest that the enhanced inhibitory effect of EGCG on PC3 cell proliferation by curcumin was mediated by the synergic up-regulation of p21-induced growth arrest and followed cell growth arrest.

  10. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.; Katzenellenbogen, Rachel A., E-mail: rkatzen@uw.edu

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, butmore » in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.« less

  11. New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Da Pozzo, Eleonora; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2015-08-13

    We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.

  12. New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Pozzo, Eleonora Da; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2015-01-01

    We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethox-yphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4–7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20–50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer. PMID:26132075

  13. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells

    PubMed Central

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-01-01

    Background p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. Results p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Conclusion Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype. PMID:16351709

  14. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells.

    PubMed

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-12-13

    p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype.

  15. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo.

    PubMed

    Chen, J; Zeng, J; Xin, M; Huang, W; Chen, X

    2011-09-01

    Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study further investigated that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. MCF-7 cells were treated with different concentrations of formononetin. The proliferation of the cells treated with formononetin was tested by MTT assay. The cell cycle in the treated cells was examined by flow cytometry. The levels of p-IGF-1 R, p-Akt, and cyclin D1 protein expression and cyclin D1 mRNA expression in the treated cells were determined by Western blot and RT-PCR, respectively. In addition, the antitumor activity of formononetin was evaluated in nude mice bearing orthotopic tumor implants. Compared with the control, formononetin inhibited the proliferation of MCF-7 cells and effectively induced cell cycle arrest. The levels of p-IGF-1 R, p-Akt, cyclin D1 protein expression, and cyclin D1 mRNA expression were also downregulated. On the other hand, formononetin also prevented the tumor growth of human breast cancer cells in nude mouse xenografts. These results show that formononetin causes cell cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1 mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis. Georg Thieme Verlag KG Stuttgart · New York.

  16. Preparation of Rhodium(III) complexes with 2(1H)-quinolinone derivatives and evaluation of their in vitro and in vivo antitumor activity.

    PubMed

    Lu, Xing; Wu, Yi-Ming; Yang, Jing-Mei; Ma, Feng-E; Li, Liang-Ping; Chen, Sheng; Zhang, Ye; Ni, Qing-Ling; Pan, Ying-Ming; Hong, Xue; Peng, Yan

    2018-05-10

    A series of 2(1H)-quinolinone derivatives and their rhodium (III) complexes were designed and synthesized. All the rhodium (III) complexes exhibited higher in vitro cytotoxicity for Hep G2, HeLa 229, MGC80-3, and NCI-H460 human tumor cell lines than their ligands and cisplatin, and among them complex 9 was found to be selectively cytotoxic to tumor cells. Further investigation revealed that complex 9 caused cell cycle arrest at the G2/M phase and induced apoptosis, and inhibited the proliferation of Hep G2 cells by impeding the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream enzymes. Complex 9 also up-regulated the proapoptotic proteins Bak, Bax, and Bim, which altogether activated caspase-3/9 to initiate cell apoptosis. Notably, complex 9 effectively inhibited tumor growth in the NCI-H460 xenograft mouse model with less adverse effect than cisplatin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from kashmiri saffron in a human pancreatic cancer cell line.

    PubMed

    Bakshi, Hamid; Sam, Smitha; Rozati, Roya; Sultan, Phalisteen; Islam, Tajamul; Rathore, Babita; Lone, Zahoor; Sharma, Manik; Triphati, Jagrati; Saxena, Ramesh Chand

    2010-01-01

    Apoptosis, a widely important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus in different cancer types. The present study was designed to elucidate apoptosis induction by crocin, a main component of Crocus sativus in a human pancreatic cancer cell line (BxPC-3). Cell viability was measured by MTT assay, Hoechest33258 staining was used to detect the chromatin condensation characteristic of apoptosis, and DNA fragmentation was assessed by gel electrophoresis and cell cycle analysis by flow cytometry. Crocin induced apoptosis and G1-phase cell cycle arrest of BxPC-3 cells, while decreasing cell viability in a dose dependent and time dependent manner. Cells treated with 10μg/L crocin exhibited apoptotic morphology (brightly blue-fluorescent condensed nuclei on Hoechst 33258 staining) and reduction of volume. DNA analysis revealed typical ladders as early as 12 hours after treatment indicative of apoptosis. Our preclinical study demonstrated a pancreatic cancer cell line to be highly sensitive to crocin-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of crocin action are not yet clearly understood, it appears to have potential as a therapeutic agent.

  18. Modulation of Medium pH by Caulobacter crescentus Facilitates Recovery from Uranium-Induced Growth Arrest

    PubMed Central

    Park, Dan M.

    2014-01-01

    The oxidized form of uranium [U(VI)] predominates in oxic environments and poses a major threat to ecosystems. Due to its ability to mineralize U(VI), the oligotroph Caulobacter crescentus is an attractive candidate for U(VI) bioremediation. However, the physiological basis for U(VI) tolerance is unclear. Here we demonstrated that U(VI) caused a temporary growth arrest in C. crescentus and three other bacterial species, although the duration of growth arrest was significantly shorter for C. crescentus. During the majority of the growth arrest period, cell morphology was unaltered and DNA replication initiation was inhibited. However, during the transition from growth arrest to exponential phase, cells with shorter stalks were observed, suggesting a decoupling between stalk development and the cell cycle. Upon recovery from growth arrest, C. crescentus proliferated with a growth rate comparable to that of a control without U(VI), although a fraction of these cells appeared filamentous with multiple replication start sites. Normal cell morphology was restored by the end of exponential phase. Cells did not accumulate U(VI) resistance mutations during the prolonged growth arrest, but rather, a reduction in U(VI) toxicity occurred concomitantly with an increase in medium pH. Together, these data suggest that C. crescentus recovers from U(VI)-induced growth arrest by reducing U(VI) toxicity through pH modulation. Our finding represents a unique U(VI) detoxification strategy and provides insight into how microbes cope with U(VI) under nongrowing conditions, a metabolic state that is prevalent in natural environments. PMID:25002429

  19. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage.

    PubMed

    Weinert, T A; Hartwell, L H

    1990-12-01

    In eucaryotic cells, incompletely replicated or damaged chromosomes induce cell cycle arrest in G2 before mitosis, and in the yeast Saccharomyces cerevisiae the RAD9 gene is essential for the cell cycle arrest (T.A. Weinert and L. H. Hartwell, Science 241:317-322, 1988). In this report, we extend the analysis of RAD9-dependent cell cycle control. We found that both induction of RAD9-dependent arrest in G2 and recovery from arrest could occur in the presence of the protein synthesis inhibitor cycloheximide, showing that the mechanism of RAD9-dependent control involves a posttranslational mechanism(s). We have isolated and determined the DNA sequence of the RAD9 gene, confirming the DNA sequence reported previously (R. H. Schiestl, P. Reynolds, S. Prakash, and L. Prakash, Mol. Cell. Biol. 9:1882-1886, 1989). The predicted protein sequence for the Rad9 protein bears no similarity to sequences of known proteins. We also found that synthesis of the RAD9 transcript in the cell cycle was constitutive and not induced by X-irradiation. We constructed yeast cells containing a complete deletion of the RAD9 gene; the rad9 null mutants were viable, sensitive to X- and UV irradiation, and defective for cell cycle arrest after DNA damage. Although Rad+ and rad9 delta cells had similar growth rates and cell cycle kinetics in unirradiated cells, the spontaneous rate of chromosome loss (in unirradiated cells) was elevated 7- to 21-fold in rad9 delta cells. These studies show that in the presence of induced or endogenous DNA damage, RAD9 is a negative regulator that inhibits progression from G2 in order to preserve cell viability and to maintain the fidelity of chromosome transmission.

  20. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    PubMed Central

    Parajuli, Keshab R.; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-01-01

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer. PMID:26006246

  1. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    PubMed

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-05-22

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  2. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp; Tatewaki, Naoto; Nishida, Hiroshi

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1more » (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.« less

  3. An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents.

    PubMed

    Matzno, Sumio; Yamaguchi, Yuka; Akiyoshi, Takeshi; Nakabayashi, Toshikatsu; Matsuyama, Kenji

    2008-06-01

    The possibility of vitamin K3 (VK3) as an anticancer agent was assessed. VK3 dose-dependently diminished the cell viability (measured as esterase activity) with IC50 of 13.7 microM and Hill coefficient of 3.1 in Hep G2 cells. It also decreased the population of S phase and arrested cell cycle in the G2/M phase in a dose-dependent manner. G2/M arrest was regulated by the increment of cyclin A/cdk1 and cyclin A/cdk2 complex, and contrasting cyclin B/cdk1 complex decrease. Finally, combined application demonstrated that VK3 significantly enhanced the cytotoxicity of etoposide, a G2 phase-dependent anticancer agent, whereas it reduced the cytotoxic activity of irinotecan, a S phase-dependent agent. These findings suggest that VK3 induces G2/M arrest by inhibition of cyclin B/cdk1 complex formation, and is thus useful as an enhancer of G2 phase-dependent drugs in hepatic cancer chemotherapy.

  4. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression.

    PubMed

    Bao, Tianhao; Ke, Yang; Wang, Yifan; Wang, Weiwei; Li, Yuehua; Wang, Yan; Kui, Xiang; Zhou, Qixin; Zhou, Han; Zhang, Cheng; Zhou, Dongming; Wang, Lin; Xiao, Chunjie

    2018-07-01

    Taraxasterol has potent anti-inflammatory and anti-tumor activity. However, the effect and potential mechanisms of Taraxasterol on the growth of human liver cancer have not been clarified. Histidine triad nucleotide-binding protein 1 (Hint1) is a tumor suppressor and its downregulated expression is associated with the development of cancer. Here, we report that Taraxasterol treatment significantly suppressed cell proliferation and induced cell cycle arrest at G0/G1 phase and apoptosis in liver cancer cells, but not in non-tumor hepatocytes. Furthermore, Taraxasterol upregulated Hint1 and Bax, but downregulated Bcl2 and cyclin D1 expression, accompanied by promoting the demethylation in the Hint1 promoter region in liver cancer cells. The effects of Taraxasterol were abrogated by Hint1 silencing and partially mitigated by Bax silencing, Bcl2 or cyclin D1 over-expression in HepG2 cells. Moreover, oral administration with Taraxasterol did not affect body weight, urinary protein levels, and the heart, liver, and kidney morphology in BALB/c mice but effectively inhibited the growth of implanted SK-Hep1 tumor in vivo. Collectively, we demonstrate that Taraxasterol inhibits the growth of liver cancer at least partially by enhancing Hint1 expression to regulate Bax, Bcl2, and cyclin D1 expression. Taraxasterol may be a drug candidate for the treatment of human liver cancer. Taraxasterol inhibits growth and induces apoptosis in human liver cancer cells. Taraxasterol enhances Hint1 expression by promoting demethylation in Hint1 promoter. Taraxasterol increases Hint1 levels to regulate Bax, Bcl2, and cyclinD1 expression. The effects of Taraxasterol are abrogated by Hint1 silencing in liver cancer cells. Taraxasterol inhibits the growth of subcutaneously implanted liver cancers in mice.

  5. Wee-1 Kinase Inhibition Overcomes Cisplatin Resistance Associated with High-Risk TP53 Mutations in Head and Neck Cancer through Mitotic Arrest Followed by Senescence

    PubMed Central

    Osman, Abdullah A.; Monroe, Marcus M.; Ortega Alves, Marcus V.; Patel, Ameeta A.; Katsonis, Panagiotis; Fitzgerald, Alison L.; Neskey, David M.; Frederick, Mitchell J.; Woo, Sang Hyeok; Caulin, Carlos; Hsu, Teng-Kuei; McDonald, Thomas O.; Kimmel, Marek; Meyn, Raymond E.; Lichtarge, Olivier; Myers, Jeffrey N.

    2015-01-01

    Although cisplatin has played a role in “standard-of-care” multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC. PMID:25504633

  6. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yiting; Tu, Qunfei; Yan, Wei

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-inducedmore » HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.« less

  7. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  8. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  9. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.

    PubMed

    Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G

    2018-04-01

    Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Renal denervation prevents long-term sequelae of ischemic renal injury

    PubMed Central

    Kim, Jinu; Padanilam, Babu J.

    2014-01-01

    Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury. PMID:25207878

  11. Role of Pgrmc1 in estrogen maintenance of meiotic arrest in zebrafish oocytes through Gper/Egfr.

    PubMed

    Aizen, Joseph; Thomas, Peter

    2015-04-01

    The regulation of receptor trafficking to the cell surface and its effect on responses of target cells to growth factors and hormones remain poorly understood. Initial evidence has been recently obtained using cancer cells that surface expression of the epidermal growth factor receptor (EGFR) is dependent on its association with progesterone receptor membrane component 1 (PGRMC1). Estrogen inhibition of oocyte maturation (OM) in zebrafish is mediated through G-protein-coupled estrogen membrane receptor 1 (Gper1) and involves activation of Egfr. Therefore, in this study, the potential roles of Pgrmc1 in the cell surface expression and functions of Egfr in normal cells were investigated in this in vitro OM model of Egfr action using an inhibitor of PGMRC1 signaling, AG205. A single ∼60 kDa protein band, which corresponds to the size of the Pgrmc1 dimer, was detected on plasma membranes of fully grown oocytes by western blotting. Co-treatment with the PGRMC1 inhibitor AG205 (20 μM) blocked the inhibitory effects of 100 nM estradiol-17β and the GPER agonist, G-1, on spontaneous maturation of denuded zebrafish oocytes. Moreover, reversal of these estrogen effects on OM by the EGFR inhibitors AG1478 and AG825 (50 μM) was prevented by co-incubation with the PGRMC1 inhibitor. Inhibition of Pgrmc1 signaling with AG205 also caused a decrease in Egfr-dependent signaling and Egfr expression on oocyte cell membranes. These results indicate that maintenance of Pgrmc1 signaling is required for Egfr expression on zebrafish oocyte cell membranes and for conserving the functions of Egfr in maintaining meiotic arrest through estrogen activation of Gper. © 2015 Society for Endocrinology.

  12. A novel class of pyranocoumarin anti-androgen receptor signaling compounds.

    PubMed

    Guo, Junming; Jiang, Cheng; Wang, Zhe; Lee, Hyo-Jeong; Hu, Hongbo; Malewicz, Barbara; Lee, Hyo-Jung; Lee, Jae-Ho; Baek, Nam-In; Jeong, Jin-Hyun; Kim, Dae-Keun; Kang, Kyung-Sun; Kim, Sung-Hoon; Lu, Junxuan

    2007-03-01

    Androgen and the androgen receptor (AR)-mediated signaling are crucial for prostate cancer development. Novel agents that can inhibit AR signaling in ligand-dependent and ligand-independent manners are desirable for the chemoprevention of prostate carcinogenesis and for the treatment of advanced prostate cancer. We have shown recently that the pyranocoumarin compound decursin from the herb Angelica gigas possesses potent anti-AR activities distinct from the anti-androgen bicalutamide. Here, we compared the anti-AR activities and the cell cycle arrest and apoptotic effects of decursin and two natural analogues in the androgen-dependent LNCaP human prostate cancer cell culture model to identify structure-activity relationships and mechanisms. Decursin and its isomer decursinol angelate decreased prostate-specific antigen expression with IC(50) of approximately 1 mumol/L. Both inhibited the androgen-stimulated AR nuclear translocation and transactivation, decreased AR protein abundance through proteasomal degradation, and induced G(0/1) arrest and morphologic differentiation. They also induced caspase-mediated apoptosis and reactive oxygen species at higher concentrations. Furthermore, they lacked the agonist activity of bicalutamide in the absence of androgen and were more potent than bicalutamide for suppressing androgen-stimulated cell growth. Decursinol, which does not contain a side chain, lacked the reactive oxygen species induction and apoptotic activities and exerted paradoxically an inhibitory and a stimulatory effect on AR signaling and cell growth. In conclusion, decursin and decursinol angelate are members of a novel class of nonsteroidal compounds that exert a long-lasting inhibition of both ligand-dependent and ligand-independent AR signaling. The side chain is critical for sustaining the anti-AR activities and the growth arrest and apoptotic effects.

  13. NF-κB and JNK mediated apoptosis and G0/G1 arrest of HeLa cells induced by rubiarbonol G, an arborinane-type triterpenoid from Rubia yunnanensis.

    PubMed

    Zeng, Guang-Zhi; Wang, Zhe; Zhao, Li-Mei; Fan, Jun-Ting; Tan, Ning-Hua

    2018-06-28

    Rubia yunnanensis is a medicinal plant mainly grown in Yunnan province in Southwest China, and its root named "Xiaohongshen" has been used as a herb in Yunnan for the treatment of cancers. Three major types of chemical components, Rubiaceae-type cyclopeptides, quinones, and triterpenoids, were identified from R. yunnanensis, in which some of compounds including rubiarbonol G (RG), a unique arboriane-type triterpenoid, showed cytotoxicity on cancer cells. But the cytotoxic mechanism of RG has not been reported. To investigate the cytotoxic mechanism of RG on cancer cells. RG was evaluated its cytotoxicity on 7 cancer cell lines by the SRB assay, and detected the effect on apoptosis and cell cycle arrest by Annexin V-FITC/PI apoptosis assay and DNA contents analysis. The expression and activity of apoptosis and cell cycle related proteins were also investigated by western blot and caspase activity assay. Furthermore, the effect of RG on NF-κB signaling was also tested by luciferase assay, western blot, and immunofluorescence staining. RG showed potent cytotoxicity on 7 human cancer cell lines, whose activity was attributed to apoptosis induction and G 0 /G 1 arrest in HeLa cells. Results from the mechanism study showed that RG promoted the activation of ERK1/2 and JNK pathway in MAPK family, which in turn increased the expression of p53, thereby triggering the G 0 /G 1 arrest through p53/p21/cyclin D1 signaling. Moreover, RG-mediated JNK activation down-regulated the expression of the anti-apoptotic protein Bcl-2, which caused the release of cytochrome c to the cytosol and activated the cleavage of caspase cascade and poly(ADP-ribose) polymerase, thereby inducing apoptosis in HeLa cells. In addition, RG was also found to inhibit the activation of NF-κB signaling by down-regulating the expression and attenuating the translocation to nucleus of NF-κB p65, by which the down-stream p53, cyclin D1, Bcl-2, and caspases were regulated, thereby triggering apoptosis and G 0 /G 1 arrest in HeLa cells. These results indicated that RG induces mitochondria-mediated apoptosis and G 0 /G 1 cell cycle arrest by activation of JNK signaling as well as inactivation of NF-κB pathway in HeLa cells, which suggests that RG is one of the key active ingredients accounting for the anti-tumor effect of R. yunnanensis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Small Molecule DFPM Derivative-Activated Plant Resistance Protein Signaling in Roots Is Unaffected by EDS1 Subcellular Targeting Signal and Chemical Genetic Isolation of victr R-Protein Mutants

    PubMed Central

    Mevers, Emily; García, Ana V.; Highhouse, Samantha; Gerwick, William H.; Parker, Jane E.; Schroeder, Julian I.

    2016-01-01

    The small molecule DFPM ([5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione) was recently shown to trigger signal transduction via early effector-triggered immunity signaling genes including EDS1 and PAD4 in Arabidopsis thaliana accession Col-0. Chemical genetic analyses of A. thaliana natural variants identified the plant Resistance protein-like Toll/Interleukin1 Receptor (TIR)-Nucleotide Binding (NB)-Leucine-Rich Repeat (LRR) protein VICTR as required for DFPM-mediated root growth arrest. Here a chemical genetic screen for mutants which disrupt DFPM-mediated root growth arrest in the Col-0 accession identified new mutant alleles of the TIR-NB-LRR gene VICTR. One allele, victr-6, carries a Gly216-to-Asp mutation in the Walker A domain supporting an important function of the VICTR nucleotide binding domain in DFPM responses consistent with VICTR acting as a canonical Resistance protein. The essential nucleo-cytoplasmic regulator of TIR-NB-LRR-mediated effector-triggered immunity, EDS1, was reported to have both nuclear and cytoplasmic actions in pathogen resistance. DFPM was used to investigate the requirements for subcellular EDS1 localization in DFPM-mediated root growth arrest. EDS1-YFP fusions engineered to localize mainly in the cytoplasm or the nucleus by tagging with a nuclear export signal (NES) or a nuclear localization signal (NLS), respectively, were tested. We found that wild-type EDS1-YFP and both the NES and NLS-tagged EDS1 variants were induced by DFPM treatments and fully complemented eds1 mutant plants in root responses to DFPM, suggesting that enrichment of EDS1 in either compartment could confer DFPM-mediated root growth arrest. We further found that a light and O2-dependent modification of DFPM is necessary to mediate DFPM signaling in roots. Chemical analyses including Liquid Chromatography-Mass Spectrometry and High-Resolution Atmospheric Pressure Chemical Ionization Mass Spectrometry identified a DFPM modification product that is likely responsible for bioactivity mediating root growth arrest. We propose a chemical structure of this product and a possible reaction mechanism for DFPM modification. PMID:27219122

  15. Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qiang; Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou; Zhou, Yangliang

    2014-06-20

    Highlights: • Selenadiazole derivatives could be used as an effective and low toxic sensitizer for radiotherapy. • Selenadiazole derivatives enhances radiation-induced growth inhibition on A375 cells through induction of G2/M arrest. • ROS-mediated signaling pathways play important roles in radiosensitization of selenadiazole derivatives. - Abstract: X-ray-based radiotherapy represents one of the most effective ways in treating human cancers. However, radioresistance and side effect remain as the most challenging issue. This study describes the design and application of novel selenadiazole derivatives as radiotherapy sensitizers to enhance X-ray-induced inhibitory effects on A375 human melanoma and Hela human cervical carcinoma cells. The resultsmore » showed that, pretreatment of the cells with selenadiazole derivatives dramatically enhance X-ray-induced growth inhibition and colony formation. Flow cytometry analysis indicates that the sensitization by selenadiazole derivatives was mainly caused by induction of G2/M cell cycle arrest. Results of Western blotting demonstrated that the combined treatment-induced A375 cells growth inhibition was achieved by triggering reactive oxygen species-mediated DNA damage involving inactivation of AKT and MAPKs. Further investigation revealed that selenadiazole derivative in combination with X-ray could synergistically inhibit the activity of thioredoxin reductase-1 in A375 cells. Taken together, these results suggest that selenadiazole derivatives can act as novel radiosensitizer with potential application in combating human cancers.« less

  16. Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling pathways.

    PubMed

    Fu, Dong-Jun; Zhang, Li; Song, Jian; Mao, Ruo-Wang; Zhao, Ruo-Han; Liu, Ying-Chao; Hou, Yu-Hui; Li, Jia-Huan; Yang, Jia-Jia; Jin, Cheng-Yun; Li, Ping; Zi, Xiao-Lin; Liu, Hong-Min; Zhang, Sai-Yang; Zhang, Yan-Bing

    2017-02-15

    A series of novel formononetin-dithiocarbamate derivatives were designed, synthesized and evaluated for antiproliferative activity against three selected cancer cell line (MGC-803, EC-109, PC-3). The first structure-activity relationship (SAR) for this formononetin-dithiocarbamate scaffold is explored in this report with evaluation of 14 variants of the structural class. Among these analogues, tert-butyl 4-(((3-((3-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)propyl)thio)carbonothioyl)piperazine-1-carboxylate (8i) showed the best inhibitory activity against PC-3 cells (IC 50  = 1.97 μM). Cellular mechanism studies elucidated 8i arrests cell cycle at G1 phase and regulates the expression of G1 checkpoint-related proteins in concentration-dependent manners. Furthermore, 8i could inhibit cell growth via MAPK signaling pathway and inhibit migration via Wnt pathway in PC-3 cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Inhibition of l-type amino acid transporter 1 activity as a new therapeutic target for cholangiocarcinoma treatment.

    PubMed

    Yothaisong, Supak; Dokduang, Hasaya; Anzai, Naohiko; Hayashi, Keitaro; Namwat, Nisana; Yongvanit, Puangrat; Sangkhamanon, Sakkarn; Jutabha, Promsuk; Endou, Hitoshi; Loilome, Watcharin

    2017-03-01

    Unlike normal cells, cancer cells undergo unlimited growth and multiplication, causing them to require massive amounts of amino acid to support their continuous metabolism. Among the amino acid transporters expressed on the plasma membrane, l-type amino acid transporter-1, a Na + -independent neutral amino acid transporter, is highly expressed in many types of human cancer including cholangiocarcinoma. Our previous study reported that l-type amino acid transporter-1 and its co-functional protein CD98 were highly expressed and implicated in cholangiocarcinoma progression and carcinogenesis. Therefore, this study determined the effect of JPH203, a selective inhibitor of l-type amino acid transporter-1 activity, on cholangiocarcinoma cell inhibition both in vitro and in vivo. JPH203 dramatically suppressed [ 14 C]l-leucine uptake as well as cell growth in cholangiocarcinoma cell lines along with altering the expression of l-type amino acid transporter-1 and CD98 in response to amino acid depletion. We also demonstrated that JPH203 induced both G2/M and G0/G1 cell cycle arrest, as well as reduced the S phase accompanied by altered expression of the proteins in cell cycle progression: cyclin D1, CDK4, and CDK6. There was also cell cycle arrest of the related proteins, P21 and P27, in KKU-055 and KKU-213 cholangiocarcinoma cells. Apoptosis induction, detected by an increase in trypan blue-stained cells along with a cleaved caspase-3/caspase-3 ratio, occurred in JPH203-treated cholangiocarcinoma cells at the highest concentration tested (100 µM). As expected, daily intravenous administration of JPH203 (12.5 and 25 mg/kg) significantly inhibited tumor growth in KKU-213 cholangiocarcinoma cell xenografts in the nude mice model in a dose-dependent manner with no statistically significant change in the animal's body weight and with no differences in the histology and appearance of the internal organs compared with the control group. Our study demonstrates that suppression of l-type amino acid transporter-1 activity using JPH203 might be used as a new therapeutic strategy for cholangiocarcinoma treatment.

  18. [The mechanisms of p21WAF1/Cip-1 expression in MOLT-4 cell line induced by TSA].

    PubMed

    Song, Yi; Liu, Mei-Ju; Zhao, Guo-Wei; Qian, Jun-Jie; Dong, Yan; Liu, Hua; Sun, Guo-Jing; Mei, Zhu-Zhong; Liu, Bin; Tian, Bao-Lei; Sun, Zhi-Xian

    2005-04-01

    To investigate the function and molecular mechanism of p21(WAF1/Cip-1) expression in MOLT-4 cells induced by HDAC inhibitor TSA, the expression pattern of p21(WAF1/Cip-1) and the distribution of cell cycle in TSA treated cells were analyzed. The results showed that TSA could effectively induce G(2)/M arrest and apoptosis of MOLT-4 cells. Kinetic experiments demonstrated that p21(WAF1/Cip-1) were upregulated quickly before cell arrested in G(2)/M and began decreasing at the early stage of apoptosis. Meanwhile, the proteasome inhibitor MG-132 could inhibit the decrease of p21(WAF1/Cip-1) at the early stage of apoptosis, which showed that proteasome pathway involved in p21(WAF1/Cip-1) degradation during the TSA induced G(2)/M arrest and apoptosis responses. This study also identified that the protein level of p21(WAF1/Cip-1) was highly associated with the cell cycle change induced by TSA. Compared to cells treated by TSA only, exposure MOLT-4 cells to TSA meanwhile treatment with MG-132 increased the protein level of p21(WAF1/Cip-1) and increased the numbers of cell in G(2)/M-phase, whereas the cell apoptosis were delayed. It is concluded that p21(WAF1/Cip-1) plays a significant role in G(2)/M arrest and apoptosis signaling induced by TSA in MOLT-4 cells.

  19. 5-(Furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one oxime (6f), a new synthetic compound, causes human fibrosarcoma HT-1080 cell apoptosis by disrupting tubulin polymerisation and inducing G2/M arrest.

    PubMed

    Zuo, Daiying; Pang, Lili; Shen, Jiwei; Guan, Qi; Bai, Zhaoshi; Zhang, Huijuan; Li, Yao; Lu, Guodong; Zhang, Weige; Wu, Yingliang

    2017-06-01

    In the current study, we synthesized a series of new compounds targeting tubulin and tested their anti-proliferative activities. Among these new synthetic com-pounds, 5-(furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one oxime (6f) exhibited significant anti-proliferative activity against different human cancer cell lines including human gastric adenocarcinoma SGC-7901, human non-small cell lung cancer A549, and human fibrosarcoma HT-1080. As a result, 6f was selected to further test the sensitivity to different cancer cell lines including human cervical cancer cell line HeLa, human breast cancer cell line MCF-7, non-small cell lung cancer cell line A549, human liver carcinoma cell line HepG-2, human oral squamous cell carcinoma cell lines KB, SGC-7901 and HT-1080. Among these cell lines, HT-1080 and HeLa are the most sensitive. Therefore, HT-1080 was selected to further explore the properties of anti-proliferative activity and the underlying mechanisms. Our data proved that 6f exhibited strong anti-proliferative effects against HT-1080 cells in a time- and dose-dependent manner. We showed that the growth inhibitory effect of 6f in HT-1080 cells was related with microtubule depolymerisation. Molecular docking studies revealed that 6f interacted and bound efficiently with the colchicine-binding site of tubulin. In addition, 6f treatment induced G2/M cell cycle arrest dose-dependently and subsequently induced cell apoptosis. Western blot study indicated that upregulation of cyclin B1 and p-cdc2 was related with G2/M arrest. 6f-induced cell apoptosis was associated with both mitochondrial and death receptor pathway. In conclusion, our data showed that 6f, among the newly synthetic compounds, exhibited highest anti-proliferative activity by disrupting the microtubule polymerisation, causing G2/M arrest and subsequently inducing cell apoptosis in HT-1080 cells. Hence, 6f is a promising microtubule depolymerising agent for the treatment of various cancers especially human fibrosarcoma.

  20. Human immunodeficiency virus type 1 Vpr induces cell cycle G2 arrest through Srk1/MK2-mediated phosphorylation of Cdc25.

    PubMed

    Huard, Sylvain; Elder, Robert T; Liang, Dong; Li, Ge; Zhao, Richard Y

    2008-03-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G(2) arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G(2) arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G(2)/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G(2) arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G(2) delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G(2)/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G(2) arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G(2) arrest at least in part through a Srk1/MK2-mediated mechanism.

  1. Neem Seed Oil Induces Apoptosis in MCF-7 and MDA MB-231 Human Breast Cancer Cells

    PubMed

    Sharma, Ramesh; Kaushik, Shweta; Shyam, Hari; Agarwal, Satish; Balapure, Anil Kumar

    2017-08-27

    Background: In traditional Indian medicine, azadirachta indica (neem) is known for its wide range of medicinal properties. Various parts of neem tree including its fruit, seed, bark, leaves, and root have been shown to possess antiseptic, antiviral, antipyretic, anti-inflammatory, antiulcer, antimalarial, antifungal and anticancer activity. Materials and Methods: MCF-7 and MDA MB-231 cells were exposed to various concentrations of 2% ethanolic solution of NSO (1-30 μl/ml) and further processed for cell viability, cell cycle and apoptosis analysis. In addition, cells were analyzed for alteration in Mitochondrial Membrane Potential (MMP) and generation of Reactive Oxygen Species (ROS) using JC-1 and DCFDA staining respectively. Results: NSO give 50% inhibition at 10 μl/ml and 20 μl/ml concentration in MCF-7 and MDA MB-231 cells respectively and, arrests cells at G0/G1 phase in both the cell types. There was a significant alteration in mitochondrial membrane potential that leads to the generation of ROS and induction of apoptosis in NSO treated MCF-7 and MDA MB-231 cells. Conclusion: The results showed that NSO inhibits the growth of human breast cancer cells via induction of apoptosis and G1 phase arrest. Collectively these results suggest that NSO could potentially be used in the management of breast cancer. Creative Commons Attribution License

  2. Neem Seed Oil Induces Apoptosis in MCF-7 and MDA MB-231 Human Breast Cancer Cells

    PubMed Central

    Sharma, Ramesh; Kaushik, Shweta; Shyam, Hari; Agarwal, Satish; Balapure, Anil Kumar

    2017-01-01

    Background: In traditional Indian medicine, azadirachta indica (neem) is known for its wide range of medicinal properties. Various parts of neem tree including its fruit, seed, bark, leaves, and root have been shown to possess antiseptic, antiviral, antipyretic, anti-inflammatory, antiulcer, antimalarial, antifungal and anticancer activity. Materials and Methods: MCF-7 and MDA MB-231 cells were exposed to various concentrations of 2% ethanolic solution of NSO (1-30 µl/ml) and further processed for cell viability, cell cycle and apoptosis analysis. In addition, cells were analyzed for alteration in Mitochondrial Membrane Potential (MMP) and generation of Reactive Oxygen Species (ROS) using JC-1 and DCFDA staining respectively. Results: NSO give 50% inhibition at 10 µl/ml and 20 µl/ml concentration in MCF-7 and MDA MB-231 cells respectively and, arrests cells at G0/G1 phase in both the cell types. There was a significant alteration in mitochondrial membrane potential that leads to the generation of ROS and induction of apoptosis in NSO treated MCF-7 and MDA MB-231 cells. Conclusion: The results showed that NSO inhibits the growth of human breast cancer cells via induction of apoptosis and G1 phase arrest. Collectively these results suggest that NSO could potentially be used in the management of breast cancer. PMID:28843234

  3. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  4. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging.

    PubMed

    Blagosklonny, Mikhail V

    2012-03-01

    Cell cycle arrest is not yet senescence. When the cell cycle is arrested, an inappropriate growth-promotion converts an arrest into senescence (geroconversion). By inhibiting the growth-promoting mTOR pathway, rapamycin decelerates geroconversion of the arrested cells. And as a striking example, while causing arrest, p53 may decelerate or suppress geroconversion (in some conditions). Here I discuss the meaning of geroconversion and also the terms gerogenes, gerossuppressors, gerosuppressants, gerogenic pathways, gero-promoters, hyperfunction and feedback resistance, regenerative potential, hypertrophy and secondary atrophy, pro-gerogenic and gerogenic cells.

  5. UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response

    PubMed Central

    Wang, Mei; Shi, Guangwei; Bian, Chunxiang; Nisar, Muhammad Farrukh; Guo, Yingying; Wu, Yan; Li, Wei; Huang, Xiao; Jiang, Xuemei; Bartsch, Jörg W.

    2018-01-01

    Brusatol (BR) is a potent inhibitor of Nrf2, a transcription factor that is highly expressed in cancer tissues and confers chemoresistance. UVA-generated reactive oxygen species (ROS) can damage both normal and cancer cells and may be of potential use in phototherapy. In order to provide an alternative method to treat the aggressive melanoma, we sought to investigate whether low-dose UVA with BR is more effective in eliminating melanoma cells than the respective single treatments. We found that BR combined with UVA led to inhibition of A375 melanoma cell proliferation by cell cycle arrest in the G1 phase and triggers cell apoptosis. Furthermore, inhibition of Nrf2 expression attenuated colony formation and tumor development from A375 cells in heterotopic mouse models. In addition, cotreatment of UVA and BR partially suppressed Nrf2 and its downstream target genes such as HO-1 along with the PI3K/AKT pathway. We propose that cotreatment increased ROS-induced cell cycle arrest and cellular apoptosis and inhibits melanoma growth by regulating the AKT-Nrf2 pathway in A375 cells which offers a possible therapeutic intervention strategy for the treatment of human melanoma. PMID:29670684

  6. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  7. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    PubMed

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due to proteasome-mediated degradation of Cdc25C and Cdk1, and ectopic expression of Bcl-2 fails to confer resistance to PEITC-induced apoptosis. Furthermore, the results of the present study point toward involvement of both caspase-8- and caspase-9-mediated pathways in apoptosis induction by PEITC.

  8. Flavagline analog FL3 induces cell cycle arrest in urothelial carcinoma cell of the bladder by inhibiting the Akt/PHB interaction to activate the GADD45α pathway.

    PubMed

    Yuan, Gangjun; Chen, Xin; Liu, Zhuowei; Wei, Wensu; Shu, Qinghai; Abou-Hamdan, Hussein; Jiang, Lijuan; Li, Xiangdong; Chen, Rixin; Désaubry, Laurent; Zhou, Fangjian; Xie, Dan

    2018-02-07

    Prohibitin 1 (PHB) is a potential target for the treatment of urothelial carcinoma of the bladder (UCB). FL3 is a newly synthesized agent that inhibits cancer cell proliferation by targeting the PHB protein; however, the effect of FL3 in UCB cells remains unexplored. FL3 was identified to be a potent inhibitor of UCB cell viability using CCK-8 (cell counting kit-8) assay. Then a series of in vitro and in vivo experiments were conducted to further demonstrate the inhibitory effect of FL3 on UCB cell proliferation and to determine the underlying mechanisms. FL3 inhibited UCB cell proliferation and growth both in vitro and in vivo. By targeting the PHB protein, FL3 inhibited the interaction of Akt and PHB as well as Akt-mediated PHB phosphorylation, which consequently decreases the localization of PHB in the mitochondria. In addition, FL3 treatment resulted in cell cycle arrest in the G2/M phase, and this inhibitory effect of FL3 could be mimicked by knockdown of PHB. Through the microarray analysis of mRNA expression after FL3 treatment and knockdown of PHB, we found that the mRNA expression of the growth arrest and DNA damage-inducible alpha (GADD45α) gene were significantly upregulated. When knocked down the expression of GADD45α, the inhibitory effect of FL3 on cell cycle was rescued, suggesting that FL3-induced cell cycle inhibition is GADD45α dependent. Our data provide that FL3 inhibits the interaction of Akt and PHB, which in turn activates the GADD45α-dependent cell cycle inhibition in the G2/M phase.

  9. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.

    PubMed

    Vialard, J E; Gilbert, C S; Green, C M; Lowndes, N F

    1998-10-01

    The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.

  10. The two novel DLL4-targeting antibody-drug conjugates MvM03 and MGD03 show potent anti-tumour activity in breast cancer xenograft models.

    PubMed

    Wang, Shijing; Zhou, Rihong; Sun, Fumou; Li, Renjie; Wang, Min; Wu, Min

    2017-11-28

    The anti-human Delta-like 4 (DLL4) monoclonal antibody MMGZ01 has a high affinity to hrDLL4 and arrests the DLL4-mediated human umbilical vein endothelial cell (HUVEC) phenotype, promotes immature vessels, and effectively reduces breast cancer cell growth in vivo. To develop a much more effective therapy, we conjugated MMGZ01 with two small-molecule cytotoxic agents, i.e., monomethyl auristatin E (MMAE) and doxorubicin (DOX), with different linkers to generate antibody-drug conjugates (ADCs), i.e., MMGZ01-vc-MMAE (named MvM03) and MMGZ01-GMBS-DOX (named MGD03), that are more potent therapeutic agents than naked antibody therapeutic agents. The produced anti-DLL4 ADCs can be effectively directed against DLL4 and internalized. Then, the release of MMAE or DOX into the cytosol can induce G2/M or G0/G1 phase growth arrest and cell death through the induction of apoptosis. In vitro, MvM03 was highly potent and selective against DLL4 cell lines. The anti-DLL4 ADCs, particularly MvM03, showed more potent anti-tumour activity than Docetaxel, which is an inhibitor of the depolymerisation of microtubules, in two xenograft breast cancer tumour models. Our findings indicate that anti-DLL4 ADCs have promising potential as an effective therapy for breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Epigenetic down regulation of G protein-coupled estrogen receptor (GPER) functions as a tumor suppressor in colorectal cancer.

    PubMed

    Liu, Qiao; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Yang, Xiangling; Huang, Hongbin; Liu, Huanliang; Du, Jun; Wang, Hongsheng

    2017-05-05

    Estrogenic signals are suggested to have protection roles in the development of colorectal cancer (CRC). The G protein-coupled estrogen receptor (GPER) has been reported to mediate non-genomic effects of estrogen in hormone related cancers except CRC. Its expression and functions in CRC were investigated. The expression of GPER and its associations with clinicopathological features were examined. The mechanisms were further investigated using cells, mouse xenograft models, and clinical human samples. GPER was significantly (p < 0.01) down regulated in CRC tissues compared with their matched adjacent normal tissues in our two cohorts and three independent investigations from Oncomine database. Patients whose tumors expressing less (n = 36) GPER showed significant (p < 0.01) poorer survival rate as compared with those with greater levels of GPER (n = 54). Promoter methylation and histone H3 deacetylation were involved in the down regulation of GPER in CRC cell lines and clinical tissues. Activation of GPER by its specific agonist G-1 inhibited proliferation, induced cell cycle arrest, mitochondrial-related apoptosis and endoplasmic reticulum (ER) stress of CRC cells. The upregulation of reactive oxygen species (ROS) induced sustained ERK1/2 activation participated in G-1 induced cell growth arrest. Further, G-1 can inhibit the phosphorylation, nuclear localization, and transcriptional activities of NF-κB via both canonical IKKα/ IκBα pathways and phosphorylation of GSK-3β. Xenograft model based on HCT-116 cells confirmed that G-1 can suppress the in vivo progression of CRC. Epigenetic down regulation of GPER acts as a tumor suppressor in colorectal cancer and its specific activation might be a potential approach for CRC treatment.

  12. Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway.

    PubMed

    Zhong, Wen-Bin; Hsu, Sung-Po; Ho, Pei-Yin; Liang, Yu-Chih; Chang, Tien-Chun; Lee, Wen-Sen

    2011-12-01

    Previously, we demonstrated that lovastatin, a HMG-CoA reductase inhibitor, induced apoptosis, differentiation, and inhibition of invasiveness of human anaplastic thyroid carcinoma cells (ATCs). Here, we further examined the effect of lovastatin on the growth of ARO cells. Lovastatin (0-20μM) concentration-dependently decreased cell number in cultured ATC and arrested the cell at the G0/G1 phase of the cell cycle. Western blot analysis revealed that lovastatin caused an increase of the protein level of p27 and cyclin-dependent kinase (CDK)4 and a decrease of the protein level of cyclin A2, cyclin D3, and phosphorylated Rb (pRb), but did not significantly change the protein levels of p21, cyclins D1 and E, and CDK2, in ARO cells. The formation of the CDK2-p27 complex was increased and the CDK2 activity was decreased in the lovastatin-treated ARO cells. Pretreatment of ARO cells with a p27, but not p21, antisense oligonucleotide prevented the lovastatin-induced G0/G1 arrest in ARO cells. The lovastatin-induced growth inhibition and translocation of RhoA and Rac1 in ARO cells were completely prevented by mevalonate and partially by geranylgeranyl pyrophosphate. Treatment of ARO cells with Y27632, an inhibitor of Rho-associated kinase, abolished the GGPP-mediated prevention of lovastatin-induced anti-proliferation and up-regulation and prolonged degradation of p27. Taken together, these data suggest that lovastatin treatment caused a reduction of Rho geranylgeranylation, which in turn increased the expression and stability of p27, and then inhibited ARO cell proliferation. These data suggest that lovastatin merits further investigation as multipotent therapy for treatment ATC. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication.

    PubMed

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-12-20

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.

  14. A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    PubMed Central

    Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio

    2014-01-01

    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836

  15. A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    PubMed Central

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J. Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-01-01

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation. PMID:21187932

  16. The ethanol extract from Artemisia princeps Pampanini induces p53-mediated G1 phase arrest in A172 human neuroblastoma cells.

    PubMed

    Park, Eun Young; Lee, Kyung-Won; Lee, Heon-Woo; Cho, Young-Wuk; Baek, Nam-In; Chung, Hae-Gon; Jeong, Tae-Sook; Choi, Myung-Sook; Lee, Kyung-Tae

    2008-06-01

    In the present study, the antiproliferative effects of the ethanol extract of Artemisia princeps Pampanini (EAPP) and the mechanism involved were investigated. Of the various cancer cells examined, human neuroblastoma A172 cells were most sensitive to EAPP, and their proliferation was dose- and time-dependently inhibited by EAPP. DNA flow cytometry analysis indicated that EAPP notably induced the G(1) phase arrest in A172 cells. Of the G(1) phase cycle-related proteins examined, the expressions of cyclin-dependent kinase (CDK) 2, CDK4, and CDK6 and of cyclin D(1), D(2), and D(3) were found to be markedly reduced by EAPP, whereas cyclin E was unaffected. Moreover, the protein and mRNA levels of the CDK inhibitors p16(INK4a), p21(CIP1/WAF1), and p27(KIP1) were increased, and the activities of CDK2, CDK4, and CDK6 were reduced. Furthermore, the expressions of E2F-1 and of phosphorylated pRb were also decreased, and the protein levels of p53 and pp53 (Ser15) were increased. Up-regulation of p21(CIP1/WAF1) was found to be mediated by a p53-dependent pathway in EAPP-induced G(1)-arrested A172 cells. When these data are taken together, the EAPP was found to potently inhibit the proliferation of human neuroblastoma A172 cells via G(1) phase cell cycle arrest.

  17. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: in vitro and in vivo studies

    PubMed Central

    Kuo, Chun-Ting; Chang, Chieh; Lee, Wen-Sen

    2015-01-01

    To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis. PMID:26056802

  19. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined themore » impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.« less

  20. Peptidyl-prolyl cis/trans isomerase Pin1 regulates withaferin A-mediated cell cycle arrest in human breast cancer cells.

    PubMed

    Samanta, Suman K; Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V

    2018-07-01

    We have reported previously that withaferin A (WA) prevents breast cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice, but the mechanism is not fully understood. Unbiased proteomics of the mammary tumors from control- and WA-treated MMTV-neu mice revealed downregulation of peptidyl-prolyl cis/trans isomerase (Pin1) protein by WA administration. The present study extends these findings to elucidate the role of Pin1 in cancer chemopreventive mechanisms of WA. The mammary tumor level of Pin1 protein was lower by about 55% in WA-treated rats exposed to N-methyl-N-nitrosourea, compared to control. Exposure of MCF-7 and SK-BR-3 human breast cancer cells to WA resulted in downregulation of Pin1 protein. Ectopic expression of Pin1 attenuated G 2 and/or mitotic arrest resulting from WA treatment in both MCF-7 and SK-BR-3 cells. WA-induced apoptosis was increased by Pin1 overexpression in MCF-7 cells but not in the SK-BR-3 cell line. In addition, molecular docking followed by mass spectrometry indicated covalent interaction of WA with cysteine 113 of Pin1. Overexpression of Pin1 C113A mutant failed to attenuate WA-induced mitotic arrest or apoptosis in the MCF-7 cells. Furthermore, antibody array revealed upregulation of proapoptotic insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, IGFBP-4, IGFBP-5, and IGFBP-6, in Pin1 overexpressing MCF-7 cells following WA treatment when compared to empty vector transfected control cells. These data support a crucial role of the Pin1 for mitotic arrest and apoptosis signaling by WA at least in the MCF-7 cells. © 2018 Wiley Periodicals, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, R.K.; Otte, C.A.

    Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by ..cap alpha.. factor pheromone. When sst1 mutants were mixed with normal SST/sup +/ cells, the entire population recovered together from ..cap alpha.. factor arrest, suggesting that SST/sup +/ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a ''barrier'' to the diffusion of ..cap alpha.. factor, were lesions in the same genes. These findings suggest that sst1 mutants are defective in recoverymore » from ..cap alpha.. factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST/sup +/ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to ..cap alpha.. factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of ..cap alpha.. factor for a much longer time than SST/sup +/ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of ..cap alpha.. factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective (''sterile'').« less

  2. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest.

    PubMed

    Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang

    2010-02-18

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  3. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest.

    PubMed

    Yoo, Su-Hyang; Lim, Yong; Kim, Seung-Jung; Yoo, Kyu-Dong; Yoo, Hwan-Soo; Hong, Jin-Tae; Lee, Mi-Yea; Yun, Yeo-Pyo

    2013-01-01

    Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis. © 2013.

  4. Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers

    PubMed Central

    Zhuang, Jianguo; Zhao, Lei; Zang, Na

    2015-01-01

    Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia. PMID:25747962

  5. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when compared to sham treated cells. CHO cells undergoing mitosis after exposure also exhibit improper separation of chromatids which could indicate loss of function of the mitotic spindle checkpoint. Activation and loss of function of checkpoints in CHO but not Jurkat cells after nsPEF exposure suggests that activation of cell cycle checkpoints could be important in defining the character of cell line specific recovery after nsPEF exposure. Moreover, the increased sensitivity in G2/M phase exhibited by both cell lines indicates that cell cycle phase is an important consideration during nsPEF exposure, particularly when aiming to induce apoptosis.

  6. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): Potential role of cyclin D1

    PubMed Central

    Pervin, Shehla; Singh, Rajan; Chaudhuri, Gautam

    2001-01-01

    DETA-NONOate, a nitric oxide (NO) donor, induced cytostasis in the human breast cancer cells MDA-MB-231, and the cells were arrested in the G1 phase of the cell cycle. This cytostatic effect of the NO donor was associated with the down-regulation of cyclin D1 and hypophosphorylation of the retinoblastoma protein. No changes in the levels of cyclin E or the catalytic partners of these cyclins, CDK2, CDK4, or CDK6, were observed. This NO-induced cytostasis and decrease in cyclin D1 was reversible for up to 48 h of DETA-NONOate (1 mM) treatment. DETA-NONOate (1 mM) produced a steady-state concentration of 0.5 μM of NO over a 24-h period. Synchronized population of the cells exposed to DETA-NONOate remained arrested at the G1 phase of the cell cycle whereas untreated control cells progressed through the cell cycle after serum stimulation. The cells arrested at the G1 phase after exposure to the NO donor had low cyclin D1 levels compared with the control cells. The levels of cyclin E and CDK4, however, were similar to the control cells. The decline in cyclin D1 protein preceded the decrease of its mRNA. This decline of cyclin D1 was due to a decrease in its synthesis induced by the NO donor and not due to an increase in its degradation. We conclude that down-regulation of cyclin D1 protein by DETA-NONOate played an important role in the cytostasis and arrest of these tumor cells in the G1 phase of the cell cycle. PMID:11248121

  7. Exposure of xenopus laevis tadpoles to cadmium reveals concentration-dependent bimodal effects on growth and monotonic effects on development and thyroid gland activity

    USGS Publications Warehouse

    Sharma, Bibek; Patino, R.

    2008-01-01

    Xenopus laevis were exposed to 0-855 ??g cadmium (Cd)/l (measured concentrations) in FETAX medium from fertilization to 47 days postfertilization. Measurements included embryonic survival and, at 47 days, tadpole survival, snout-vent length, tail length, total length, hindlimb length, weight, Nieuwkoop-Faber (NF) stage of development, initiation of metamorphic climax (??? NF 58), and thyroid follicle cell height. Embryonic and larval survival were unaffected by Cd. Relative to control tadpoles, reduced tail and total length were observed at 0.1- 8 and at 855 ??g Cd/l; and reduced snout-vent length, hindlimb length, and weight were observed at 0.1-1 and at 855 ??g Cd/l. Mean stage of development and rate of initiation of climax were unaffected by Cd at 0-84 ??g/l; however, none of the tadpoles exposed to 855 ??g Cd/l progressed beyond mid-premetamorphosis (NF 51). Thyroid glands with fully formed follicles were observed in all tadpoles ??? NF 49 examined. Follicle cell height was unaffected by Cd at 0-84 ??g/l but it was reduced at 855 ??g/l; in the latter, cell height was reduced even when compared with NF 49-51 tadpoles pooled from the 0 to 84 ??g Cd/l groups. In conclusion, (1) Cd affected tadpole growth in a bimodal pattern with the first and second inhibitory modes at concentrations below and above 84 ??g Cd/l, respectively; (2) exposure to high Cd concentrations (855 ??g/l) reduced thyroid activity and arrested tadpole development at mid-premetamorphosis; and (3) unlike its effect on growth, Cd inhibited tadpole development and thyroid function in a seemingly monotonic pattern.

  8. The Protective Role of Selenium in AFB1-Induced Tissue Damage and Cell Cycle Arrest in Chicken's Bursa of Fabricius.

    PubMed

    Hu, Ping; Zuo, Zhicai; Wang, Fengyuan; Peng, Xi; Guan, Ke; Li, Hang; Fang, Jing; Cui, Hengmin; Su, Gang; Ouyang, Ping; Zhou, Yi

    2018-03-06

    Aflatoxin B 1 (AFB 1 ) is a naturally occurring secondary metabolites of Aspergillus flavus and Aspergillus parasiticus, and is the most toxic form of aflatoxins. Selenium (Se) with antioxidant and detoxification functions is one of the essential trace elements for human beings and animals. This study aims to evaluate the protective effects of Se on AFB 1 -induced tissue damage and cell cycle arrest in bursa of Fabricius (BF) of chickens. The results showed that a dietary supplement of 0.4 mg·kg -1 Se alleviated the histological lesions induced by AFB 1 , as demonstrated by decreasing vacuoles and nuclear debris, and relieving oxidative stress. Furthermore, flow cytometry studies showed that a Se supplement protected AFB 1 -induced G 2 M phase arrest at 7 days and G 0 G 1 phase arrest at 14 and 21 days. Moreover, the mRNA expression results of ATM, Chk2, p53, p21, cdc25, PCNA, cyclin D 1 , cyclin E 1 , cyclin B 3 , CDK6, CDK2, and cdc2 indicated that Se supplement could restore these parameters to be close to those in the control group. It is concluded that a dietary supplement of 0.4 mg kg -1 Se could diminish AFB 1 -induced immune toxicity in chicken's BF by alleviating oxidative damage and cell cycle arrest through an ATM-Chk2-cdc25 route and the ATM-Chk2-p21 pathway.

  9. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology.

    PubMed

    Köhler, Meike; Marín-Moratalla, Nekane; Jordana, Xavier; Aanes, Ronny

    2012-07-19

    Cyclical growth leaves marks in bone tissue that are in the forefront of discussions about physiologies of extinct vertebrates. Ectotherms show pronounced annual cycles of growth arrest that correlate with a decrease in body temperature and metabolic rate; endotherms are assumed to grow continuously until they attain maturity because of their constant high body temperature and sustained metabolic rate. This apparent dichotomy has driven the argument that zonal bone denotes ectotherm-like physiologies, thus fuelling the controversy on dinosaur thermophysiology and the evolution of endothermy in birds and mammal-like reptiles. Here we show, from a comprehensive global study of wild ruminants from tropical to polar environments, that cyclical growth is a universal trait of homoeothermic endotherms. Growth is arrested during the unfavourable season concurrently with decreases in body temperature, metabolic rate and bone-growth-mediating plasma insulin-like growth factor-1 levels, forming part of a plesiomorphic thermometabolic strategy for energy conservation. Conversely, bouts of intense tissue growth coincide with peak metabolic rates and correlated hormonal changes at the beginning of the favourable season, indicating an increased efficiency in acquiring and using seasonal resources. Our study supplies the strongest evidence so far that homeothermic endotherms arrest growth seasonally, which precludes the use of lines of arrested growth as an argument in support of ectothermy. However, high growth rates are a distinctive trait of mammals, suggesting the capacity for endogenous heat generation. The ruminant annual cycle provides an extant model on which to base inferences regarding the thermophysiology of dinosaurs and other extinct taxa.

  10. The novel thymidylate synthase inhibitor trifluorothymidine (TFT) and TRAIL synergistically eradicate non-small cell lung cancer cells.

    PubMed

    Azijli, Kaamar; van Roosmalen, Ingrid A M; Smit, Jorn; Pillai, Saravanan; Fukushima, Masakazu; de Jong, Steven; Peters, Godefridus J; Bijnsdorp, Irene V; Kruyt, Frank A E

    2014-06-01

    TRAIL, a tumor selective anticancer agent, may be used for the treatment of non-small cell lung cancer (NSCLC). However, TRAIL resistance is frequently encountered. Here, the combined use of TRAIL with trifluorothymidine (TFT), a thymidylate synthase inhibitor, was examined for sensitizing NSCLC cells to TRAIL. Interactions between TRAIL and TFT were studied in NSCLC cells using growth inhibition and apoptosis assays. Western blotting and flow cytometry were used to investigate underlying mechanisms. The combined treatment of TFT and TRAIL showed synergistic cytotoxicity in A549, H292, H322 and H460 cells. For synergistic activity, the sequence of administration was important; TFT treatment followed by TRAIL exposure did not show sensitization. Combined TFT and TRAIL treatment for 24 h followed by 48 h of TFT alone was synergistic in all cell lines, with combination index values below 0.9. The treatments affected cell cycle progression, with TRAIL inducing a G1 arrest and TFT, a G2/M arrest. TFT activated Chk2 and reduced Cdc25c levels known to cause G2/M arrest. TRAIL-induced caspase-dependent apoptosis was enhanced by TFT, whereas TFT alone mainly induced caspase-independent death. TFT increased the expression of p53 and p21/WAF1, and p53 was involved in the increase of TRAIL-R2 surface expression. TFT also caused downregulation of cFLIP and XIAP and increased Bax expression. TFT enhances TRAIL-induced apoptosis in NSCLC cells by sensitizing the apoptotic machinery at different levels in the TRAIL pathway. Our findings suggest a possible therapeutic benefit of the combined use of TFT and TRAIL in NSCLC.

  11. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Meng; He, Hong-wei; Sun, Huan-xing

    2009-09-18

    Hepatocellular carcinoma (HCC) is a major challenge because of its resistance to conventional cytotoxic chemotherapy and radiotherapy. Multi-targeted therapy might be a new option for HCC treatment. Our previous study showed that N-ras gene was activated in HCC and was inhibited by RNA interference. In the present study, we investigated the alternation of gene expression by microarray in N-Ras-siRNA-treated HepG2 cells. The results revealed that the EREG gene, encoding epiregulin, was dramatically up-regulated in response to silence of N-ras. We speculated that the up-regulation of epiregulin was involved in the compensatory mechanism of N-ras knockdown for cell growth. Therefore, wemore » evaluated whether dual silence of N-ras and epiregulin display a greater suppression of cell growth. The results confirmed that dual knockdown of N-ras and epiregulin synergistically inhibited cell growth. Our results also showed that dual knockdown of N-ras and epiregulin significantly induced cell arrest at G0/G1 phase. Furthermore, Western blot assay showed that dual knockdown of N-ras and epiregulin markedly reduced the phosphorylations of ERK1/2, Akt and Rb, and inhibited the expression of cyclin D1. Our findings imply that multi-targeted silence of oncogenes might be an effective treatment for HCC.« less

  12. Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogrammed primary prostate cancer cells.

    PubMed

    Pollock, Claire B; McDonough, Sara; Wang, Victor S; Lee, Hyojung; Ringer, Lymor; Li, Xin; Prandi, Cristina; Lee, Richard J; Feldman, Adam S; Koltai, Hinanit; Kapulnik, Yoram; Rodriguez, Olga C; Schlegel, Richard; Albanese, Christopher; Yarden, Ronit I

    2014-03-30

    Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected. Treatment of cancer cells with strigolactone analogues was hallmarked by activation of the stress-related MAPKs: p38 and JNK and induction of stress-related genes; cell cycle arrest and apoptosis evident by increased percentages of cells in the sub-G1 fraction and Annexin V staining. In addition, we tested the response of patient-matched conditionally reprogrammed primary prostate normal and cancer cells. The tumor cells exhibited significantly higher sensitivity to the two most potent SL analogues with increased apoptosis confirmed by PARP1 cleavage compared to their normal counterpart cells. Thus, Strigolactone analogues are promising candidates for anticancer therapy by their ability to specifically induce cell cycle arrest, cellular stress and apoptosis in tumor cells with minimal effects on growth and survival of normal cells.

  13. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade

    PubMed Central

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995

  14. MiR-506 suppresses cell proliferation and tumor growth by targeting Rho-associated protein kinase 1 in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Quanjun, E-mail: quanjun_d@126.com; Xie, Liqun; Li, Hua

    2015-11-27

    Recent studies have shown that miR-506 plays important roles in human cancer progression. However, little is known about the function of miR-506 in hepatocellular carcinoma (HCC). In this study, we found that miR-506 significantly inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. Moreover, miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. Rho-associated protein kinase 1(ROCK1) was identified as a novel target of miR-506; overexpression of ROCK1 reversed the suppressive effects of miR-506 in HCC cells. Additionally, ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues. Therefore, our findings collectively suggest that miR-506 acts asmore » a tumor suppressor via regulation of ROCK1 expression and may thus be a promising therapeutic target for HCC. - Highlights: • miR-506 inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. • ROCK1 was identified as a novel target of miR-506. • ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract:more » Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.« less

  16. Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3‑E1 cells.

    PubMed

    Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Gao, Qile; Wang, Yuxiang; Guo, Chaofeng

    2017-12-01

    Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to determine the precise mechanism through which Ihh regulates osteoblast differentiation. In the present study, Ihh was knocked down in osteoblast MC3T3‑E1 cells using short hairpin RNA, to investigate the function of Ihh in osteoblast proliferation and differentiation and to examine the potential mechanism through which Ihh induces osteoblast apoptosis and cell cycle arrest. It was observed that the knockdown of Ihh induced a marked inhibition of cell growth and increased the apoptosis rate compared with the negative control osteoblasts. Downregulation of Ihh resulted in a cell cycle arrest at the G1 to S phase boundary in osteoblasts. In addition, the knockdown of Ihh decreased the alkaline phosphatase activity and mineral deposition of osteoblasts. The inhibitory roles of Ihh downregulation in osteoblast growth and differentiation may be associated with the transforming growth factor‑β/mothers against decapentaplegic homolog and tumor necrosis factor receptor superfamily member 11B/tumor necrosis factor ligand superfamily member 11 signaling pathways. Manipulating either Ihh expression or its signaling components may be of benefit for the treatment of skeletal diseases.

  17. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuesong; Gong, Xuhai; Chen, Jing

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defectmore » in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.« less

  18. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel.

    PubMed

    Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong

    2016-08-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.

  19. Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1.

    PubMed

    Maharjan, Sony; Park, Byoung Kwon; Lee, Su In; Lim, Yoonho; Lee, Keunwook; Kwon, Hyung-Joo

    2018-05-01

    A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

  20. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less

  1. Apigenin inhibits renal cell carcinoma cell proliferation.

    PubMed

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-03-21

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.

  2. Pirfenidone Induces G1 Arrest in Human Tenon's Fibroblasts In Vitro Involving AKT and MAPK Signaling Pathways.

    PubMed

    Guo, Xiujuan; Yang, Yangfan; Liu, Liling; Liu, Xiaoan; Xu, Jiangang; Wu, Kaili; Yu, Minbin

    2017-06-01

    To investigate the underlying mechanism by which pirfenidone blocks the transition from the G1 to S phase in primary human Tenon's fibroblasts. Primary human Tenon's fibroblasts were characterized by immunocytofluorescence staining with vimentin, fibroblast surface protein, and cytokeratin. After treating Tenon's fibroblasts with pirfenidone under proliferation conditions (10% fetal bovine serum), cell proliferation was measured using a WST-1 assay. Progression through the cell cycle was analyzed by flow cytometry. The expression of CDK2, CDK6, cyclinD1, cyclinD3, and cyclinE and the phosphorylation of AKT, ERK1/2/MAPK, JNK/MAPK, and p38 MAPK were estimated using western blot analysis. Under proliferative conditions, pirfenidone inhibited Tenon's fibroblasts proliferation and arrested the cell cycle at the G1 phase; decreased the phosphorylation of AKT, GSK3β, ERK1/2/MAPK, and JNK/MAPK; increased the phosphorylation of p38 MAPK; and inhibited CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E in a dose-dependent manner. Inhibitors of AKT (LY294002), ERK1/2 (U0126), and JNK (SP600125) arrested the G1/S transition, similar to the effect of pirfenidone. The p38 inhibitor (SB202190) decreased the G1-blocking effect of pirfenidone. The expression of CDK2, CDK6, cyclin D1, and cyclin D3 were inhibited by LY294002, U0126, and SP600125. SB202190 attenuated the pirfenidone-induced reduction of CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E. Pirfenidone inhibited HTFs proliferation and induced G1 arrest by downregulating CDKs and cyclins involving the AKT/GSK3β and MAPK signaling pathways.

  3. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR

    PubMed Central

    Fang, Yuanzhang; Vaughn, Amanda; Cai, Xiaopan; Xu, Leqin; Wan, Wei; Li, Zhenxi; Chen, Shijie; Yang, Xinghai; Wu, Song; Xiao, Jianru

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a therapeutic target (oncotarget) in NSCLC. Using in vitro EGFR kinase activity system, we identified a novel small molecule, WB-308, as an inhibitor of EGFR. WB-308 decreased NSCLC cell proliferation and colony formation, by causing G2/M arrest and apoptosis. Furthermore, WB-308 inhibited the engraft tumor growths in two animal models in vivo (lung orthotopic transplantation model and patient-derived engraft mouse model). WB-308 impaired the phosphorylation of EGFR, AKT, and ERK1/2 protein. WB-308 was less cytotoxic than Gefitinib. Our study suggests that WB-308 is a novel EGFR-TKI and may be considered to substitute for Gefitinib in clinical therapy for NSCLC. PMID:25730907

  4. Growth arrest despite growth hormone replacement, post-craniopharyngioma surgery.

    PubMed Central

    DeVile, C J; Hayward, R D; Neville, B G; Grant, D B; Stanhope, R

    1995-01-01

    Children with growth failure, whether secondary to an endocrinopathy such as growth hormone deficiency or secondary to neurological handicap with poor nutrient intake, grow at a subnormal rate but it is most unusual for a child to have complete growth arrest. PMID:7745571

  5. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. PMID:26067441

  6. Glycyrrhetinic acid induces G1-phase cell cycle arrest in human non-small cell lung cancer cells through endoplasmic reticulum stress pathway

    PubMed Central

    ZHU, JIE; CHEN, MEIJUAN; CHEN, NING; MA, AIZHEN; ZHU, CHUNYAN; ZHAO, RUOLIN; JIANG, MIAO; ZHOU, JING; YE, LIHONG; FU, HAIAN; ZHANG, XU

    2015-01-01

    Glycyrrhetinic acid (GA) is a natural compound extracted from liquorice, which is often used in traditional Chinese medicine. The purpose of the present study was to investigate the antitumor effect of GA in human non-small cell lung cancer (NSCLC), and its underlying mechanisms in vitro. We have shown that GA suppressed the proliferation of A549 and NCI-H460 cells. Flow cytometric analysis showed that GA arrested cell cycle in G0/G1 phase without inducing apoptosis. Western blot analysis indicated that GA mediated G1-phase cell cycle arrest by upregulation of cyclin-dependent kinase inhibitors (CKIs) (p18, p16, p27 and p21) and inhibition of cyclins (cyclin-D1, -D3 and -E) and cyclin-dependent kinases (CDKs) (CDK4, 6 and 2). GA also maintained pRb phosphorylation status, and inhibited E2F transcription factor 1 (E2F-1) in both cell lines. GA upregulated the unfolded proteins, Bip, PERK and ERP72. Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggered the unfolded protein response (UPR), which could be the mechanism by which GA inhibited cell proliferation in NSCLC cells. GA then coordinated the induction of ER chaperones, which decreased protein synthesis and induced cell cycle arrest in the G1 phase. This study provides experimental evidence to support the development of GA as a chemotherapeutic agent for NSCLC. PMID:25573651

  7. EGFR inhibition by pentacyclic triterpenes exhibit cell cycle and growth arrest in breast cancer cells.

    PubMed

    Sathya, Shanmugaraj; Sudhagar, Selvaraj; Sarathkumar, Baskaran; Lakshmi, Baddireddi Subhadra

    2014-01-24

    Pentacyclic triterpenes are a group of molecules with promising anticancer potential, although their precise molecular target remains elusive. The current work aims to investigate the antiproliferative and associated mechanisms of triterpenes in breast cancer cells in vitro. Effect of triterpenes on cell cycle distribution, ROS and key regulatory proteins were analyzed in three breast cancer cells in vitro. Growth inhibition, new DNA synthesis, colony formation assays and Western blot analysis were performed to assess the EGFR inhibitory effect of triterpenes. Molecular docking was performed to study the interaction between EGFR and triterpenes. We have demonstrated the ability of dimethyl melaleucate (DMM), a pentacyclic triterpene to exhibit cell cycle arrest at G0/G1 phase by down-regulation of cyclin D1 through PI3K/AKT inhibition. Further, to identify the upstream target of DMM, potential EGFR inhibitory activity of DMM and three structurally related pentacyclic triterpenes, ursolic acid, 18α-glycyrrhetinic acid and carbenoxolone was investigated. Interestingly, pentacyclic triterpenes limit EGF mediated breast cancer proliferation through sustained inhibition of EGFR and its downstream effectors STAT3 and cyclin D1 in breast cancer lines. We also show pentacyclic triterpenes to bind at the ATP binding pocket of tyrosine kinase domain of EGFR leading to the hypothesis that pentacyclic triterpenes could be a novel class of EGFR inhibitors. In conclusion, pentacyclic triterpenes inhibit EGFR activation through binding with tyrosine kinase domain thereby suppressing breast cancer proliferation. Pentacyclic triterpenes may serve as a potential platform for development of novel drugs against breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Re-evaluation of the Mutagenic Response to Phosphorothioate Nucleotides in Human Lymphoblastoid TK6 Cells

    PubMed Central

    Saleh, Amer F.; Priestley, Catherine C.; Gooderham, Nigel J.; Fellows, Mick D.

    2015-01-01

    The degradation of phosphorothioate oligonucleotides (PS-ONDs) and the release of potentially genotoxic modified mononucleotides raise a safety concern for OND-based therapeutics. Deoxyadenosine monophosphorothioate (dAMPαS), a PS nucleotide analog, has been reported to be a potent in vitro mutagen at the thymidine kinase (TK) locus in human TK6 lymphoblastoid cells. This led us to explore the mechanism behind the apparent positive response induced by dAMPαS in the TK gene-mutation assay in TK6 cells. In this work, treatment of TK6 cells with dAMPαS produced a dose-dependent increase in cytotoxicity and mutant frequency at the TK locus. Surprisingly, when the colonies from dAMPαS were re-challenged with the selective agent trifluorothymidine (TFT), the TFT-resistant phenotype was lost. Moreover, dAMPαS-induced colonies displayed distinct growth kinetics and required longer incubation time than 4-nitroquinoline-1-oxide-induced colonies to start growing. Treatment of TK6 cells with dAMPαS induced cell cycle arrest at the G1 phase, enabling cells to grow, and form a colony after the efficacy of TFT in the culture medium was lost. Our findings suggest that a fraction of parental “nonmutant” TK6 cells escaped the toxicity of TFT, possibly via G1 arrest, and resumed growth after the degradation of TFT. We conclude that dAMPαS did not induce real TFT-resistant mutants and caution should be taken with interpretation of mutation data from TK gene-mutation assay in TK6 cells when assessing modified nucleotides. PMID:25711235

  9. Increased expression of cyclin B1 mRNA coincides with diminished G{sub 2}-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.

    1994-12-01

    The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLamore » cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.« less

  10. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells.

    PubMed

    Ling, Feng; Shibata, Takehiko

    2004-01-01

    Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.

  11. Global gene expression analysis combined with a genomics approach for the identification of signal transduction networks involved in postnatal mouse myocardial proliferation and development.

    PubMed

    Wang, Ruoxin; Su, Chao; Wang, Xinting; Fu, Qiang; Gao, Xingjie; Zhang, Chunyan; Yang, Jie; Yang, Xi; Wei, Minxin

    2018-01-01

    Mammalian cardiomyocytes may permanently lose their ability to proliferate after birth. Therefore, studying the proliferation and growth arrest of cardiomyocytes during the postnatal period may enhance the current understanding regarding this molecular mechanism. The present study identified the differentially expressed genes in hearts obtained from 24 h‑old mice, which contain proliferative cardiomyocytes; 7‑day‑old mice, in which the cardiomyocytes are undergoing a proliferative burst; and 10‑week‑old mice, which contain growth‑arrested cardiomyocytes, using global gene expression analysis. Furthermore, myocardial proliferation and growth arrest were analyzed from numerous perspectives, including Gene Ontology annotation, cluster analysis, pathway enrichment and network construction. The results of a Gene Ontology analysis indicated that, with increasing age, enriched gene function was not only associated with cell cycle, cell division and mitosis, but was also associated with metabolic processes and protein synthesis. In the pathway analysis, 'cell cycle', proliferation pathways, such as the 'PI3K‑AKT signaling pathway', and 'metabolic pathways' were well represented. Notably, the cluster analysis revealed that bone morphogenetic protein (BMP)1, BMP10, cyclin E2, E2F transcription factor 1 and insulin like growth factor 1 exhibited increased expression in hearts obtained from 7‑day‑old mice. In addition, the signal transduction pathway associated with the cell cycle was identified. The present study primarily focused on genes with altered expression, including downregulated anaphase promoting complex subunit 1, cell division cycle (CDC20), cyclin dependent kinase 1, MYC proto-oncogene, bHLH transcription factor and CDC25C, and upregulated growth arrest and DNA damage inducible α in 10-week group, which may serve important roles in postnatal myocardial cell cycle arrest. In conclusion, these data may provide important information regarding myocardial proliferation and development.

  12. Differential effects of retinoic acid (RA) and N-(4-hydroxyphenyl) retinamide (4-HPR) on cell growth, induction of differentiation, and changes in p34cdc2, Bcl-2, and actin expression in the human promyelocytic HL-60 leukemic cells.

    PubMed

    Dipietrantonio, A; Hsieh, T C; Wu, J M

    1996-07-25

    Incubation of the HL-60 cells with 3 microM of RA and 4-HPR resulted in suppression of cell growth and decrease in cell viability. A significant percentage of the RA-treated cells also displayed differentiation towards neutrophils, as assayed by changes in nitroblue tetrazolium reduction (NBT) and alpha-naphthyl-acetate esterase (ANAE) activities, whereas the 4-HPR treated cells remained essentially undifferentiated. Flow cytometric analysis showed 4-HPR to cause partial cell arrest in the G2/M phase after a 3-day treatment and an additional G1 phase arrest after a 7-day treatment. With RA-treated cells, a reduction in the percentage of cells in the G1 phase was observed after 7 days of treatment. In 4-HPR-treated cells an extra peak, characteristic of cells undergoing apoptosis, was found in the cell cycle phase distribution analysis. Determination of specific protein expression changes by Western blot analysis showed that the p34cdc2 was down-regulated by both chemicals. Furthermore, RA induced bcl-2 but prevented the processing of actin, whereas 4-HPR had little effect on bcl-2 but increased the specific processing of actin. These results suggest that RA promotes neutrophil differentiation and the establishment of a semi apoptosis-resistant state, possibly through the overexpression of the bcl-2 gene. By contrast, 4-HPR may trigger apoptosis by inducing overall cyto-architectural changes and specific DNA fragmentation subsequent to increased turnover of the protein actin.

  13. Material-induced Senescence (MIS): Fluidity Induces Senescent Type Cell Death of Lung Cancer Cells via Insulin-Like Growth Factor Binding Protein 5.

    PubMed

    Mano, Sharmy Saimon; Uto, Koichiro; Ebara, Mitsuhiro

    2017-01-01

    Objective: We propose here material-induced senescence (MIS) as a new therapeutic concept that limits cancer progression by stable cell cycle arrest. This study examined for the first time the effect of material fluidity on cellular senescence in lung carcinoma using poly(ε-caprolactone- co -D, L-lactide) (P(CL- co -DLLA)) with tunable elasticity and fluidity. Methods: The fluidity was varied by chemically crosslinking the polymer networks: the crosslinked P(CL- co -DLLA) shows solid-like properties with a stiffness of 260 kPa, while the non-crosslinked polymer exists in a quasi-liquid state with loss and storage moduli of 33 kPa and 11 kPa, respectively. Results: We found that cancer cells growing on the non-crosslinked, fluidic substrate undergo a non-apoptotic form of cell death and the cell cycle was accumulated in a G0/G1 phase. Next, we investigated the expression of biomarkers that are associated with cancer pathways. The cancer cells on the fluidic substrate expressed several biomarkers associated with senescence such as insulin-like growth factor binding protein 5 (IGFBP5). This result indicates that when cancer cells sense fluidity in their surroundings, the cells express IGFBP5, which in turn triggers the expression of tumor suppressor protein 53 and initiates cell cycle arrest at the G1 phase followed by cellular senescence. Furthermore, the cancer cells on the fluidic substrate maintained their epithelial phenotype, suggesting that the cancer cells do not undergo epithelial to mesenchymal transition. Conclusion: By considering these results as the fundamental information for MIS, our system could be applied to induce senescence in treatment-resistant cancers such as metastatic cancer or cancer stem cells.

  14. Effects on g2/m phase cell cycle distribution and aneuploidy formation of exposure to a 60 Hz electromagnetic field in combination with ionizing radiation or hydrogen peroxide in l132 nontumorigenic human lung epithelial cells.

    PubMed

    Jin, Hee; Yoon, Hye Eun; Lee, Jae-Seon; Kim, Jae-Kyung; Myung, Sung Ho; Lee, Yun-Sil

    2015-03-01

    The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

  15. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  16. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro

    PubMed Central

    Yang, Jing-bo; Khan, Muhammad; He, Yang-yang; Yao, Min; Li, Yong-ming; Gao, Hong-wen; Ma, Tong-hui

    2016-01-01

    Aim: Tubeimoside-1 (TBMS1), a triterpenoid saponin extracted from the Chinese herbal medicine Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), has shown anticancer activities in various cancer cell lines. The aim of this study was to investigate the anticancer activity and molecular targets of TBMS1 in human prostate cancer cells in vitro. Methods: DU145 and P3 human prostate cancer cells were treated with TBMS1. Cell viability and apoptosis were detected. ROS generation, mitochondrial membrane potential and cell cycle profile were examined. Western blotting was used to measure the expression of relevant proteins in the cells. Results: TBMS1 (5–100 μmol/L) significantly suppressed the viability of DU145 and P3 cells with IC50 values of approximately 10 and 20 μmol/L, respectively. Furthermore, TBMS1 dose-dependently induced apoptosis and cell cycle arrest at G0/G1 phase in DU145 and P3 cells. In DU145 cells, TBMS1 induced mitochondrial apoptosis, evidenced by ROS generation, mitochondrial dysfunction, endoplasmic reticulum stress, modulated Bcl-2 family protein and cleaved caspase-3, and activated ASK-1 and its downstream targets p38 and JNK. The G0/G1 phase arrest was linked to increased expression of p53 and p21 and decreased expression of cyclin E and cdk2. Co-treatment with Z-VAD-FMK (pan-caspase inhibitor) could attenuate TBMS1-induced apoptosis but did not prevent G0/G1 arrest. Moreover, co-treatment with NAC (ROS scavenger), SB203580 (p38 inhibitor), SP600125 (JNK inhibitor) or salubrinal (ER stress inhibitor) significantly attenuated TBMS1-induced apoptosis. Conclusion: TBMS1 induces oxidative stress-mediated apoptosis in DU145 human prostate cancer cells in vitro via the mitochondrial pathway. PMID:27292614

  17. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  18. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway.

    PubMed

    Zhang, Dong; Ma, Qingyong; Wang, Zheng; Zhang, Min; Guo, Kun; Wang, Fengfei; Wu, Erxi

    2011-11-26

    Smoking and stress, pancreatic cancer (PanCa) risk factors, stimulate nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  19. Recovery from DNA damage-induced G2 arrest requires actin-binding protein filamin-A/actin-binding protein 280.

    PubMed

    Meng, Xiangbing; Yuan, Yuan; Maestas, Adrian; Shen, Zhiyuan

    2004-02-13

    Filamin-A (filamin-1) is an actin-binding protein involved in the organization of actin networks. Our previous study shows that filamin-A interacts with BRCA2, and lack of filamin-A expression results in increased cellular sensitivity to several DNA damaging agents in melanoma cells (Yuan, Y., and Shen, Z. (2001) J. Biol. Chem. 276, 48318-48324), suggesting a role of filamin-A in DNA damage response. In this report, we demonstrated that deficiency of filamin-A results in an 8-h delay in the recovery from G2 arrest in response to ionizing radiation. However, filamin-A deficiency does not affect the initial activation of the G2/M checkpoint. We also found that filamin-A deficiency results in sustained activation of Chk1 and Chk2 after irradiation. This in turn causes a delay in the dephosphorylation of phospho-Cdc2, which is inhibitory to the G2/M transition. In addition, filamin-A-deficient M2 cells undergo mitotic catastrophe-related nuclear fragmentation after they are released from the G2 arrest. Together, these data suggest a functional role of filamin-A in the recovery from G2 arrest and subsequent mitotic cell death after DNA damage.

  20. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed Central

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-01-01

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558

  1. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-02-15

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.

  2. Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway.

    PubMed

    Li, Weicong; Zheng, Zaosong; Chen, Haicheng; Cai, Yuhong; Xie, Wenlian

    2018-05-01

    Previous years have witnessed the importance of long non-coding RNAs (lncRNAs) in cancer research. The lncRNA Pvt1 oncogene (non-protein coding) (PVT1) was revealed to be upregulated in various cancer types. The aim of the present study was to investigate the function of PVT1 in clear cell renal cell carcinoma (ccRCC). The expression of PVT1 in ccRCC was analyzed using reverse transcription-quantitative polymerase chain reaction, and it was revealed that PVT1 expression was upregulated in ccRCC tissues compared with that in normal adjacent tissues. Next, PVT1 expression from The Cancer Genome Atlas datasets was validated, and it was also revealed that the high expression of PVT1 was associated with advanced disease stage and a poor prognosis. Furthermore, the knockdown of PVT1 induced apoptosis by increasing the expression of poly ADP ribose polymerase and Bcl-2-associated X protein, and promoted cell cycle arrest at the G1 phase by decreasing the expression of cyclin D1. Study of the mechanism involved indicated that PVT1 promoted the progression of ccRCC partly through activation of the epidermal growth factor receptor pathway. Altogether, the results of the present study suggested that PVT1 serves oncogenic functions and may be a biomarker and therapeutic target in ccRCC.

  3. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.

    PubMed

    Schipani, E; Ryan, H E; Didrickson, S; Kobayashi, T; Knight, M; Johnson, R S

    2001-11-01

    Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.

  4. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effectsmore » of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H{sub 2}O{sub 2} antagonizes the cytostatic function of TGF-β1.« less

  5. ABT-263 induces G1/G0-phase arrest, apoptosis and autophagy in human esophageal cancer cells in vitro.

    PubMed

    Lin, Qing-Huan; Que, Fu-Chang; Gu, Chun-Ping; Zhong, De-Sheng; Zhou, Dan; Kong, Yi; Yu, Le; Liu, Shu-Wen

    2017-12-01

    Both the anti- and pro-apoptotic members of the Bcl-2 family are regulated by a conserved Bcl-2 homology (BH3) domain. ABT-263 (Navitoclax), a novel BH3 mimetic and orally bioavailable Bcl-2 family inhibitor with high affinity for Bcl-xL, Bcl-2 and Bcl-w has entered clinical trials for cancer treatment. But the anticancer mechanisms of ABT-263 have not been fully elucidated. In this study we investigated the effects of ABT-263 on human esophageal cancer cells in vitro and to explore its anticancer mechanisms. Treatment with ABT-263 dose-dependently suppressed the viability of 3 human esophageal cancer cells with IC 50 values of 10.7±1.4, 7.1±1.5 and 8.2±1.6 μmol/L, in EC109, HKESC-2 and CaES-17 cells, respectively. ABT-263 (5-20 μmol/L) dose-dependently induced G 1 /G 0 -phase arrest in the 3 cancer cell lines and induced apoptosis evidenced by increased the Annexin V-positive cell population and elevated levels of cleaved caspase 3, cleaved caspase 9 and PARP. We further demonstrated that ABT-263 treatment markedly increased the expression of p21 Waf1/Cip1 and decreased the expression of cyclin D1 and phospho-Rb (retinoblastoma tumor suppressor protein) (Ser780) proteins that contributed to the G 1 /G 0 -phase arrest. Knockdown of p21 Waf1/Cip1 attenuated ABT-263-induced G 1 /G 0 -phase arrest. Moreover, ABT-263 treatment enhanced pro-survival autophagy, shown as the increased LC3-II levels and decreased p62 levels, which counteracted its anticancer activity. Our results suggest that ABT-263 exerts cytostatic and cytotoxic effects on human esophageal cancer cells in vitro and enhances pro-survival autophagy, which counteracts its anticancer activity.

  6. Tangeretin derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo.

    PubMed

    Li, Yi Rong; Li, Shiming; Ho, Chi-Tang; Chang, Ya-Han; Tan, Kok-Tong; Chung, Ting-Wen; Wang, Bing-Yen; Chen, Yu-Kuo; Lin, Chi-Chen

    2016-01-01

    Tangeretin, a major phytochemicals in tangerine peels--an important Chinese herb, has been found to have anti-carcinogenic properties. To improve bioavailability and increase potency of tangeretin, its derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF), has been synthesized and shown potent inhibition of proliferation activity against human breast and leukemia cancer cell lines. In this study, we have further investigated the anticancer effects of 5-AcTMF on CL1-5 non-small cell lung cancer cells (NSCLC) both in vitro and in vivo and demonstrated that 5-AcTMF effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with cdc2 and CDC25c and increased in the apoptotic cells associated with caspase activation, down regulation of Bcl-2, XIAP and Survivn, inducing release of cytochrome c into the cytosol and disruption of mitochondrial membrane potential. We also found that 5-AcTMF treatment of CL1-5 activated autophagy, indicated by triggered autophagosome formation and increased LC3-II levels and formation of LC3 puncta. Moreover, we also found that 5-AcTMF lowered phophoatidylinositol 3-kinase/AKT/mTOR signaling pathway. Over-expression of AKT by AKT cDNA transfection decreased 5-AcTMF mediated apoptosis and autophagy, supporting the induction of apoptosis and autophagy by inhibition of AKT pathway. In an animal study, 5-AcTMF effectively delayed tumor growth in a nude mouse model of CL1-5 xenografts without observed adverse effect. Immunohistochemistry Analysis indicated that 5-AcTMF induced CL1-5 cell apoptosis and autophagy in vivo. Taken together, these data demonstrate that 5-AcTMF is a novel small molecule agent that can inhibit NSCLC cell proliferation, and induce G(2)/M phase arrest and via the mitochondrial apoptotic pathway and autophagy.

  7. The Role of GADD34 (Growth Arrest and DNA Damage-Inducible Protein) in Regulating Apoptosis, Proliferation, and Protein Synthesis in Human Breast Cancer Cells

    DTIC Science & Technology

    2005-07-01

    23. Connor, J . H., Quan, H. N., Raniaswamy, N. T., Zhang, L., Barik , S., Zbeng, J ., 44. Wu, X., and Tatchell, K, (2001) Biochemistry 40, 7410-7420...McGraw, E. Kevin Heist, J . Luis Guerrero, Anna A. DePaoli-Roach, Roger J . Hajjar and Evangelia G. Kranias. "Enhancement of Cardiac Function and...by this fellowship allowed me to present a poster at the ASCB meeting and successfully defend my thesis in Dec 2004. References: 1. Secombe, J

  8. CD271 regulates the proliferation and motility of hypopharyngeal cancer cells.

    PubMed

    Mochizuki, Mai; Tamai, Keiichi; Imai, Takayuki; Sugawara, Sayuri; Ogama, Naoko; Nakamura, Mao; Matsuura, Kazuto; Yamaguchi, Kazunori; Satoh, Kennichi; Sato, Ikuro; Motohashi, Hozumi; Sugamura, Kazuo; Tanaka, Nobuyuki

    2016-07-29

    CD271 (p75 neurotrophin receptor) plays both positive and negative roles in cancer development, depending on the cell type. We previously reported that CD271 is a marker for tumor initiation and is correlated with a poor prognosis in human hypopharyngeal cancer (HPC). To clarify the role of CD271 in HPC, we established HPC cell lines and knocked down the CD271 expression using siRNA. We found that CD271-knockdown completely suppressed the cells' tumor-forming capability both in vivo and in vitro. CD271-knockdown also induced cell-cycle arrest in G0 and suppressed ERK phosphorylation. While treatment with an ERK inhibitor only partially inhibited cell growth, CDKN1C, which is required for maintenance of quiescence, was strongly upregulated in CD271-depleted HPC cells, and the double knockdown of CD271 and CDKN1C partially rescued the cells from G0 arrest. In addition, either CD271 depletion or the inhibition of CD271-RhoA signaling by TAT-Pep5 diminished the in vitro migration capability of the HPC cells. Collectively, CD271 initiates tumor formation by increasing the cell proliferation capacity through CDKN1C suppression and ERK-signaling activation, and by accelerating the migration signaling pathway in HPC.

  9. CD271 regulates the proliferation and motility of hypopharyngeal cancer cells

    PubMed Central

    Mochizuki, Mai; Tamai, Keiichi; Imai, Takayuki; Sugawara, Sayuri; Ogama, Naoko; Nakamura, Mao; Matsuura, Kazuto; Yamaguchi, Kazunori; Satoh, Kennichi; Sato, Ikuro; Motohashi, Hozumi; Sugamura, Kazuo; Tanaka, Nobuyuki

    2016-01-01

    CD271 (p75 neurotrophin receptor) plays both positive and negative roles in cancer development, depending on the cell type. We previously reported that CD271 is a marker for tumor initiation and is correlated with a poor prognosis in human hypopharyngeal cancer (HPC). To clarify the role of CD271 in HPC, we established HPC cell lines and knocked down the CD271 expression using siRNA. We found that CD271-knockdown completely suppressed the cells’ tumor-forming capability both in vivo and in vitro. CD271-knockdown also induced cell-cycle arrest in G0 and suppressed ERK phosphorylation. While treatment with an ERK inhibitor only partially inhibited cell growth, CDKN1C, which is required for maintenance of quiescence, was strongly upregulated in CD271-depleted HPC cells, and the double knockdown of CD271 and CDKN1C partially rescued the cells from G0 arrest. In addition, either CD271 depletion or the inhibition of CD271-RhoA signaling by TAT-Pep5 diminished the in vitro migration capability of the HPC cells. Collectively, CD271 initiates tumor formation by increasing the cell proliferation capacity through CDKN1C suppression and ERK-signaling activation, and by accelerating the migration signaling pathway in HPC. PMID:27469492

  10. Molecular response to phototoxic stress of UVB-irradiated ketoprofen through arresting cell cycle in G2/M phase and inducing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shicheng; Mizu, Hideo; Yamauchi, Hitoshi

    The phototoxicity of ketoprofen (KP), a non-steroidal anti-inflammatory drug, has recently attracted considerable attention, because it is photolabile and undergoes degradation when irradiated by sunlight to induce various skin diseases. The present study shows that combination of UVB irradiation with KP induced the cytotoxicity and suppressed DNA synthesis in HaCaT cells in a concentration-dependent manner. UVB-irradiated KP inhibited the cell growth and induced G2/M cell cycle arrest by modulating the levels of cdc2, cyclin B1, Chk1, Tyr15-phosphorylated cdc2 and p21. It also provoked a striking accumulation of cyclin B1-cdc2-p21 complexes, concomitantly with an increase in the levels of Tyr15-phosphorylated cdc2more » and p21 protein. The presence of KP accentuated the apoptotic response to UVB radiation in HaCaT cells as evidenced by DAPI staining. The apoptotic process was associated with activation of caspase-9, caspase-3 and cleavage of PARP, and this activation could be prevented by a specific caspase-3 inhibitor. Taken together, our results suggest that KP-photoinduced apoptosis may be a useful approach to reduce or prevent skin carcinogenesis.« less

  11. Exploring a Link Between NF-KB and G2/M Cell Cycle Arrest in Breast Cancer Cells

    DTIC Science & Technology

    2005-04-01

    studies with esophageal squamous cell carcinom a lines have shown that IR induced p21waf1/ ciP ’ and a G2 cell cycle arrest that could als o be...i AD Award Number : DAMD17-02-1-062 3 TITLE : Exploring a Link Between NF-KB and G 2 /M Cell Cycle Arres t in Breast Cancer Cell s PRINCIPAL...Mar 2005 ) 4 . TITLE AND SUBTITL E Exploring a Link Between NF-kB and G 2 /M Cell Cycle Arres t in Breast Cancer Cells 5. FUND/NG NUMBERS DAMD17-02-1

  12. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less

  13. Incorporation of nitric oxide donor into 1,3-dioxyxanthones leads to synergistic anticancer activity.

    PubMed

    Liu, Jie; Zhang, Cao; Wang, Huailing; Zhang, Lei; Jiang, Zhenlei; Zhang, Jianrun; Liu, Zhijun; Chen, Heru

    2018-05-10

    Fifty 1,3-dioxyxanthone nitrates (4a ∼ i-n, n = 1-6) were designed and synthesized based on molecular similarity strategy. Incorporation of nitrate into 1,3-dioxyxanthones with electron-donating groups at 6-8 position brought about synergistic anticancer effect. Among them, compound 4g-4 was confirmed the most active agent against HepG-2 cells growth with an IC 50 of 0.33 ± 0.06 μM. It dose-dependently increased intramolecular NO levels. This activity was attenuated by either NO scavenger PTIO or mitochondrial aldehyde dehydrogenase (mtADH) inhibitor PCDA. Apoptosis analysis indicated different contributions of early/late apoptosis and necrosis to cell death for different dose of 4g-4. 4g-4 arrested more cells on S phase. Results from Western Blot implied that 4g-4 regulated p53/MDM2 to promote cancer cell apoptosis. All the evidences support that 4g-4 is a promising anti-cancer agent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Induction of Mitotic Cell Death by Overriding G2/M Checkpoint in Endometrial Cancer Cells with Non-functional p53

    PubMed Central

    Meng, Xiangbing; Laidler, Laura L.; Kosmacek, Elizabeth A.; Yang, Shujie; Xiong, Zhi; Zhu, Danlin; Wang, Xinjun; Dai, Donghai; Zhang, Yuping; Wang, Xiaofang; Brachova, Pavla; Albitar, Lina; Liu, Dawei; Ianzini, Fiorenza; Mackey, Michael A.; Leslie, Kimberly K.

    2012-01-01

    Objective Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles’ heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. Methods We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. Results In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14 nM as a single agent to 1.3 nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5 nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. Conclusions These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53. PMID:23146687

  15. Effects on growth of human osteoblast-like cells of three nonsteroidal anti-inflammatory drugs: metamizole, dexketoprofen, and ketorolac.

    PubMed

    De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2015-01-01

    Some nonsteroidal anti-inflammatory drugs (NSAIDs) have adverse effects on bone tissue. The objective of this study was to determine the effect of different doses of dexketoprofen, ketorolac, and metamizole on growth of the osteoblast MG63 cell line. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide spectrophotometry results showed that MG63 cell growth was significantly inhibited after 24 hr of culture with doses of 10, 20, 100, or 1,000 µM of each NSAID and with doses of 0.1, 1, or 5 µM of dexketoprofen and ketorolac but not metamizole. Cell-cycle studies revealed that dexketoprofen and ketorolac treatments significantly arrested the cell cycle in phase G0/G1, increasing the percentage of cells in this phase. Apoptosis/necrosis studies showed significant changes versus control cells, with an increased percentage of cells in apoptosis after treatment with 10, 100, or 1,000 µM of metamizole and after treatment with 1, 10, 100, or 1,000 µM of dexketoprofen or ketorolac. In conclusion, treatment of osteoblast-like cells with high doses of the NSAIDs tested increased not only the percentage of cells in apoptosis but also the percentage of necrotic cells. © The Author(s) 2014.

  16. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemiere, Sylvie; University Bordeaux1, Talence, F-33405; Azar, Rania

    2008-12-10

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at themore » G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation.« less

  17. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome.more » The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.« less

  18. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells.

    PubMed

    Xu, Weili; Mi, Yaqing; He, Pan; He, Shenghua; Niu, Lingling

    2017-08-04

    γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC 50 ) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  19. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells.

    PubMed

    Choi, Hyun Ju; Lim, Do Young; Park, Jung Han Yoon

    2009-05-29

    3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 - 30 micromol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. HT-29 cells were cultured with various concentrations of DIM (0 - 30 micromol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted. The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  20. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression.

    PubMed

    Dai, Yumin; Hogan, Shelly; Schmelz, Eva M; Ju, Young H; Canning, Corene; Zhou, Kequan

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.

  1. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests

    PubMed Central

    Kriegs, Malte; Kasten-Pisula, Ulla; Riepen, Britta; Hoffer, Konstantin; Struve, Nina; Myllynen, Laura; Braig, Friederike; Binder, Mascha; Rieckmann, Thorsten; Grénman, Reidar; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai

    2016-01-01

    The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells. PMID:27281611

  2. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  3. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells.

    PubMed

    Hesbacher, Sonja; Pfitzer, Lisa; Wiedorfer, Katharina; Angermeyer, Sabrina; Borst, Andreas; Haferkamp, Sebastian; Scholz, Claus-Jürgen; Wobser, Marion; Schrama, David; Houben, Roland

    2016-05-31

    The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.

  4. Growth Inhibitory Effect of Palatine Tonsil-derived Mesenchymal Stem Cells on Head and Neck Squamous Cell Carcinoma Cells

    PubMed Central

    Lim, Yun-Sung; Lee, Jin-Choon; Lee, Yoon Se; Wang, Soo-Geun

    2012-01-01

    Objectives Mesenchymal stem cells (MSCs) play an important role in the development and growth of tumor cells. However, the effect of human MSCs on the growth of human tumors is not well understood. The purpose of this study is to confirm the growth effect of palatine tonsil-derived MSCs (TD-MSCs) on head and neck squamous cell carcinoma (HNSCC) cell lines and to elucidate the mechanism of their action. Methods TD-MSCs were isolated from patient with chronic tonsillitis and tonsillar hypertrophy. Two human HNSCC cell lines (PNUH-12 and SNU-899) were studied and cocultured with isolated palatine tonsil-derived MSC. The growth inhibitory effect of MSCs on HNSCC cell lines was tested through methylthiazolyldiphenyl-tetrazolium (MTT) assay. The apoptosis induction effect of MSCs on cell lines was assessed with flow cytometry and reverse transcriptase (RT)-PCR. Results Palatine tonsil-derived MSCs exhibited a growth inhibitory effect on both cell lines. Cell cycle analysis showed an accumulation of tumor cells predominantly in G0/G1 phase with an increase in concentration of TD-MSCs, which was confirmed by increased mRNA expression of cell cycle negative regulator p21. Apoptosis of tumor cells increased significantly as concentration of cocultured TD-MSCs increased. Additionally, mRNA expression of caspase 3 was upregulated with increased concentration of TD-MSCs. Conclusion TD-MSCs have a potential growth inhibitory effect on HNSCC cell lines in vitro by inducing apoptotic cell death and G1 phase arrest of cell lines. PMID:22737289

  5. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells.

    PubMed

    Liu, Linna; Zhang, Hongmei; Shi, Lei; Zhang, Wenjuan; Yuan, Juanli; Chen, Xiang; Liu, Juanjuan; Zhang, Yan; Wang, Zhipeng

    2014-10-01

    Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.

  6. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia

    PubMed Central

    Díaz-Chico, Juan Carlos; McNaughton-Smith, Grant; Jiménez-Alonso, Sandra; Hueso-Falcón, Idaira; Montero, Juan Carlos; Blanco, Raquel; León, Javier; Rodríguez-González, Germán; Estévez-Braun, Ana; Pandiella, Atanasio; Díaz-Chico, Bonifacio Nicolás; Fernández-Pérez, Leandro

    2017-01-01

    Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies. PMID:27557509

  7. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia.

    PubMed

    Guerra, Borja; Martín-Rodríguez, Patricia; Díaz-Chico, Juan Carlos; McNaughton-Smith, Grant; Jiménez-Alonso, Sandra; Hueso-Falcón, Idaira; Montero, Juan Carlos; Blanco, Raquel; León, Javier; Rodríguez-González, Germán; Estévez-Braun, Ana; Pandiella, Atanasio; Díaz-Chico, Bonifacio Nicolás; Fernández-Pérez, Leandro

    2017-05-02

    Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies.

  8. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Anti-proliferative actions of 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jung-Jin; Institute of Drug Research and Development, Chungnam National University, Daejeon 305-764; Zhang, Wei-Yun

    2011-07-22

    Highlights: {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced VSMC proliferation in a dose-dependent manner with no apparent cytotoxicity. {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced phosphorylation of Erk1/2 and PLC{gamma}1. {yields} 2-Decylamino-DMNQ arrested a G{sub 0}/G{sub 1} cell cycle progression in association with pRb phosphorylation and PCNA expression. {yields} Both U0126, an Erk inhibitor, and U73122, a PLC{gamma} inhibitor, arrested a G{sub 0}/G{sub 1} phase of the cell cycle. -- Abstract: Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferationmore » and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-R{beta} or Akt, it did inhibit the phosphorylation of Erk1/2 and PLC{gamma}1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G{sub 0}/G{sub 1} phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLC{gamma} inhibitor, increased the proportion of cells in the G{sub 0}/G{sub 1} phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G{sub 0}/G{sub 1} phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.« less

  10. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    PubMed

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  11. Equilibrium between cell division and apoptosis in immortal cells as an alternative to the G1 restriction mechanism in mammalian cells.

    PubMed

    Dedov, Vadim N; Dedova, Irina V; Nicholson, Garth A

    2004-04-01

    Starvation arrests cultured mammalian cells in the G(1) restriction point of the cell cycle, whereas cancer cells generally lose the regulatory control of the cell cycle. Human lymphocytes, infected with Epstein-Barr virus (EBV), also lose their cell cycle control and produce immortal lymphoblastoid cell lines. We show that during starvation, EBV-lymphoblasts override the cell cycle arrest in the G(1) restriction point and continue cell division. Simultaneously, starvation activates apoptosis in an approximately half of the daughter cells in each cell generation. Continuos cell division and partial removal of cells by apoptosis results in stabilization of viable cell numbers, where a majority of viable cells are in the G(1) phase of the cell cycle. In contrast to starvation, anticancer drug etoposide activates apoptosis indiscriminately in all EBV-lymphoblasts and convertes all the viable cells into apoptotic. We conclude that the removal of surplus cells by apoptosis may represent a survival mechanism of transformed (i.e., cancer) cell population in nutrient restricted conditions, whereas nontransformed mammalian cells are arrested in the G(1) restriction point of the cell cycle.

  12. MART-10 represses cholangiocarcinoma cell growth and high vitamin D receptor expression indicates better prognosis for cholangiocarcinoma

    PubMed Central

    Chiang, Kun-Chun; Yeh, Ta-Sen; Huang, Cheng-Cheng; Chang, Yu-Chan; Juang, Horng-Heng; Cheng, Chi-Tung; Pang, Jong-Hwei S.; Hsu, Jun-Te; Takano, Masashi; Chen, Tai C.; Kittaka, Atsushi; Hsiao, Michael; Yeh, Chun-Nan

    2017-01-01

    Cholangiocarcinoma (CCA) is a devastating disease due to no effective treatments available. Since the non-mineral functions of vitamin D emerges, 1α,25(OH)2D3, the active form of vitamin D, has been applied in anti-cancer researches. In this study, we demonstrated that both the 1α,25(OH)2D3 analog, MART-10, and 1α,25(OH)2D3 possessed anti-growth effect on human CCA cells with MART-10 much more potent than 1α,25(OH)2D3. The growth inhibition of both drugs were mediated by induction of G0/G1 cell cycle arrest through upregulation of p27 and downregulation of CDK4, CDK6, and cyclin D3. Human neutrophil gelatinase associated lipocalin (NGAL) was found to be involved in 1α,25(OH)2D3 and MART-10 meditated growth inhibition for CCA as knockdown of NGAL decreased Ki-67 expression in SNU308 cells and rendered SNU308 cells less responsive to 1α,25(OH)2D3 and MART-10 treatment. Vitamin D receptor (VDR) knockdown partly abolished MART-10-induced inhibition of NGAL and cell growth in SNU308 cells. The xenograft animal study demonstrated MART-10 could effectively repressed CCA growth in vivo without inducing obvious side effects. The IHC examination of human CCA specimen for VDR revealed that higher VDR expression was linked with better prognosis. Collectively, our results suggest that MART-10 could be a promising regimen for CCA treatment. PMID:28256614

  13. Less Efficient G2-M Checkpoint Is Associated with an Increased Risk of Lung Cancer in African Americans

    PubMed Central

    Zheng, Yun-Ling; Loffredo, Christopher A.; Alberg, Anthony J.; Yu, Zhipeng; Jones, Raymond T.; Perlmutter, Donna; Enewold, Lindsey; Krasna, Mark J.; Yung, Rex; Shields, Peter G.; Harris, Curtis C.

    2006-01-01

    Cell cycle checkpoints play critical roles in the maintenance of genomic integrity. The inactivation of checkpoint genes by genetic and epigenetic mechanisms is frequent in all cancer types, as a less-efficient cell cycle control can lead to genetic instability and tumorigenesis. In an on-going case-control study consisting of 216 patients with non–small cell lung cancer, 226 population-based controls, and 114 hospital-based controls, we investigated the relationship of γ-radiation-induced G2-M arrest and lung cancer risk. Peripheral blood lymphocytes were cultured for 90 hours, exposed to 1.0 Gy γ-radiation, and harvested at 3 hours after γ-radiation treatment. γ-Radiation-induced G2-M arrest was measured as the percentage of mitotic cells in untreated cultures minus the percentage of mitotic cells in γ-radiation-treated cultures from the same subject. The mean percentage of γ-radiation-induced G2-M arrest was significantly lower in cases than in population controls (1.18 versus 1.44, P < 0.01) and hospital controls (1.18 versus 1.40, P = 0.01). When dichotomized at the 50th percentile value in combined controls (population and hospital controls), a lower level of γ-radiation-induced G2-M arrest was associated with an increased risk of lung cancer among African Americans after adjusting for baseline mitotic index, age, gender, and pack-years of smoking [adjusted odd ratio (OR), 2.25; 95% confidence interval (95% CI), 0.97–5.20]. A significant trend of an increased risk of lung cancer with a decreased level of G2-M arrest was observed (Ptrend = 0.02) among African Americans, with a lowest-versus-highest quartile adjusted OR of 3.74 (95% CI, 0.98–14.3). This trend was most apparent among African American females (Ptrend < 0.01), with a lowest-versus-highest quartile adjusted OR of 11.75 (95% CI, 1.47–94.04). The results suggest that a less-efficient DNA damage–induced G2-M checkpoint is associated with an increased risk of lung cancer among African Americans. Interestingly, we observed a stronger association of DNA damage–induced G2-M arrest and lung cancer among African Americans when compared with Caucasians. If replicated, these results may provide clues to the exceedingly high lung cancer incidence experienced by African Americans. PMID:16230422

  14. Isorhynchophylline protects against pulmonary arterial hypertension and suppresses PASMCs proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haipeng; Zhang, Xin; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan 250012

    Highlights: • We focus on PASMCs proliferation in the pathogenesis of PAH. • Isorhynchophylline inhibited PASMCs proliferation and alleviated PAH. • IRN blocked PDGF-Rβ phosphorylation and its downstream signal transduction. • IRN regulated cyclins and CDKs to arrest cell cycle in the G0/G1 phase. • We reported IRN has the potential to be a candidate for PAH treatment. - Abstract: Increased pulmonary arterial smooth muscle cells (PASMCs) proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Isorhynchophylline (IRN) is a tetracyclic oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla. It has longmore » been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether IRN can influence the development of PAH. Here we examined the effect of IRN on monocrotaline (MCT) induced PAH in rats. Our data demonstrated that IRN prevented MCT induced PAH in rats, as assessed by right ventricular (RV) pressure, the weight ratio of RV to (left ventricular + septum) and RV hypertrophy. IRN significantly attenuated the percentage of fully muscularized small arterioles, the medial wall thickness, and the expression of smooth muscle α-actin (α-SMA) and proliferating cell nuclear antigen (PCNA). In vitro studies, IRN concentration-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of PASMCs. Fluorescence-activated cell-sorting analysis showed that IRN caused G0/G1 phase cell cycle arrest. IRN-induced growth inhibition was associated with downregulation of Cyclin D1 and CDK6 as well as an increase in p27Kip1 levels in PDGF-BB-stimulated PASMCs. Moreover, IRN negatively modulated PDGF-BB-induced phosphorylation of PDGF-Rβ, ERK1/2, Akt/GSK3β, and signal transducers and activators of transcription 3 (STAT3). These results demonstrate that IRN could inhibit PASMCs proliferation and attenuate pulmonary vascular remodeling after MCT induction. These beneficial effects were at least through the inhibition of PDGF-Rβ phosphorylation and its downstream signaling pathways. Therefore, IRN might be a potential candidate for the treatment of PAH.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu; Department of Biological Sciences, Alabama State University, Montgomery, AL 36104; Kala, Rishabh

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29more » colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are effectively down-regulated by the treatment.« less

  16. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  17. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  18. A Novel Polysaccharide Conjugate from Bullacta exarata Induces G1-Phase Arrest and Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Liao, Ningbo; Sun, Liang; Chen, Jiang; Zhong, Jianjun; Zhang, Yanjun; Zhang, Ronghua

    2017-03-01

    Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their biological activities have been carried out. However, little is known regarding the antitumor properties of polysaccharides from B. exarata , hence the polysaccharides from B. exarata have been investigated here. One polysaccharide conjugate BEPS-IA was isolated and purified from B. exarata . It mainly consisted of mannose and glucose in a molar ratio of 1:2, with an average molecular weight of 127 kDa. Thirteen general amino acids were identified to be components of the protein-bound polysaccharide. Methylation and NMR studies revealed that BEPS-IA is a heteropolysaccharide consisting of 1,4-linked-α-d-Glc, 1,6-linked-α-d-Man, 1,3,6-linked-α-d-Man, and 1-linked-α-d-Man residue, in a molar ratio of 6:1:1:1. In order to test the antitumor activity of BEPS-IA, we investigated its effect against the growth of human hepatocellular carcinoma cells HepG2 in vitro. The result showed that BEPS-IA dose-dependently exhibited an effective HepG2 cells growth inhibition with an IC 50 of 112.4 μg/mL. Flow cytometry analysis showed that BEPS-IA increased the populations of both apoptotic sub-G1 and G1 phase. The result obtained from TUNEL assay corroborated apoptosis which was shown in flow cytometry. Western blot analysis suggested that BEPS-IA induced apoptosis and growth inhibition were associated with up-regulation of p53, p21 and Bax, down-regulation of Bcl-2. These findings suggest that BEPS-IA may serve as a potential novel dietary agent for hepatocellular carcinoma.

  19. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status

    PubMed Central

    Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L

    2000-01-01

    p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365

  20. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562more » cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.« less

  1. Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway

    PubMed Central

    Huang, Chao-Ying; Chang, Cheng-Wei; Chen, Chaang-Ray; Chuang, Chun-Yu; Chiang, Chi-Shiun; Shu, Wun-Yi; Fan, Tai-Ching; Hsu, Ian C.

    2014-01-01

    In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure. PMID:25111195

  2. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells.

    PubMed

    Yen, Andrew; Varvayanis, Susi; Smith, James L; Lamkin, Thomas J

    2006-02-01

    Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.

  3. Solena amplexicaulis induces cell cycle arrest, apoptosis and inhibits angiogenesis in hepatocarcinoma cells and HUVECs.

    PubMed

    Ren, Jie; Xu, Yuan Yuan; Jiang, He Fei; Yang, Meng; Huang, Qian Hui; Yang, Jie; Hu, Kun; Wei, Kun

    2014-01-01

    Solena amplexicaulis (Lam.) Gandhi (SA) has been used as a traditional medicine for the treatment of dysentery, multiple abscess, gastralgia, urethritis, and eczema in the minority area of China. This study was aimed to examine the cell proliferation inhibitory activity of the SA extract (SACE) and its mechanism of action in human hepatoma cell line (HepG2) and evaluate its anti-angiogenesis activity in human umbilical vein endothelial cell line (HUVEC). SACE could inhibit the growth of HepG2 cells in a dose- and time-dependent manner. FCM analysis showed that SACE could induce G2/M phase arrest, cell apoptosis, the mitochondrial membrane potential loss (ΔΨm) and increase the production of intracellular ROS of HepG2 cells. After treatment with SACE, topical morphological changes of apoptotic body formation, obvious increase of apoptosis-related protein expressions, such as Bax, cytochrome c, caspase-3, PARP-1, and decrease of Bcl-2, procaspase-9 protein expressions were observed at the same time. Moreover, SACE caused the significant inhibition of endothelial cell migration and tube formation in HUVEC cells. The results suggested that SACE could act as an angiogenesis inhibitor and induce cell apoptosis via a caspase-dependent mitochondrial pathway. Therefore, SACE could be a potent candidate for the prevention and treatment of liver cancer.

  4. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    PubMed

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  5. Novel phosphorylation states of the yeast spindle pole body.

    PubMed

    Fong, Kimberly K; Zelter, Alex; Graczyk, Beth; Hoyt, Jill M; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Davis, Trisha N

    2018-06-14

    Phosphorylation regulates yeast spindle pole body (SPB) duplication and separation and likely regulates microtubule nucleation. We report a phosphoproteomic analysis using tandem mass spectrometry of enriched Saccharomyces cerevisiae SPBs for two cell cycle arrests, G1/S and the mitotic checkpoint, expanding on previously reported phosphoproteomic data sets. We present a novel phosphoproteomic state of SPBs arrested in G1/S by a cdc4-1 temperature sensitive mutation, with particular focus on phosphorylation events on the γ-tubulin small complex (γ-TuSC). The cdc4-1 arrest is the earliest arrest at which microtubule nucleation has occurred at the newly duplicated SPB. Several novel phosphorylation sites were identified in G1/S and during mitosis on the microtubule nucleating γ-TuSC. These sites were analyzed in vivo by fluorescence microscopy and were shown to be required for proper regulation of spindle length. Additionally, in vivo analysis of two mitotic sites in Spc97 found that phosphorylation of at least one of these sites is required for progression through the cell cycle. This phosphoproteomic data set not only broadens the scope of the phosphoproteome of SPBs, it also identifies several γ-TuSC phosphorylation sites that influence microtubule formation. © 2018. Published by The Company of Biologists Ltd.

  6. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells.

    PubMed

    Yue, Meng; Li, Shiquan; Yan, Guoqiang; Li, Chenyao; Kang, Zhenhua

    2018-01-01

    Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.

  7. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis.

    PubMed

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhang, Ting; Yin, Yongxiang; Xu, Fei

    2016-11-22

    Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae , on the TNBC cell line MDA-MB-231. The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21 WAF1 , elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  8. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway.

    PubMed

    Lin, Yu-Tsai; Wang, Hung-Chen; Hsu, Yi-Chiang; Cho, Chung-Lung; Yang, Ming-Yu; Chien, Chih-Yen

    2017-06-23

    Capsaicin is a potential chemotherapeutic agent for different human cancers. In Southeast China, nasopharyngeal carcinoma (NPC) has the highest incidence of all cancers, but final treatment outcomes are unsatisfactory. However, there is a lack of information regarding the anticancer activity of capsaicin in NPC cells, and its effects on the signaling transduction pathways related to apoptosis and autophagy remain unclear. In the present study, the precise mechanisms by which capsaicin exerts anti-proliferative effects, cell cycle arrest, autophagy and apoptosis were investigated in NPC-TW01 cells. Exposure to capsaicin inhibited cancer cell growth and increased G1 phase cell cycle arrest. Western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to measure capsaicin-induced autophagy via involvement of the class III PI3K/Beclin-1/Bcl-2 signaling pathway. Capsaicin induced autophagy by increasing levels of the autophagy markers LC3-II and Atg5, enhancing p62 and Fap-1 degradation and increasing caspase-3 activity to induce apoptosis, suggesting a correlation of blocking the PI3K/Akt/mTOR pathway with the above-mentioned anticancer activities. Taken together, these data confirm that capsaicin inhibited the growth of human NPC cells and induced autophagy, supporting its potential as a therapeutic agent for cancer.

  9. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.

    PubMed

    Wang, Jun; Kang, Min; Wen, Qin; Qin, Yu-Tao; Wei, Zhu-Xin; Xiao, Jing-Jian; Wang, Ren-Sheng

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.

  10. Enhancement of the p27Kip1-mediated antiproliferative effect of trastuzumab (Herceptin) on HER2-overexpressing tumor cells.

    PubMed

    Marches, Radu; Uhr, Jonathan W

    2004-11-10

    The oncogenic activity of the overexpressed HER2 tyrosine kinase receptor requires its localization in the plasma membrane. The antitumor effect of anti-HER2 antibodies (Abs) is mainly dependent on receptor downregulation and comprises p27Kip1-mediated G1 cell cycle arrest. However, one major limitation of anti-HER2 therapy is the reversibility of tumor growth inhibition after discontinuation of treatment caused by the mitogenic signaling associated with cell surface receptor re-expression. We found that the level of p27Kip1 upregulation, inhibition of Cdk2 activity and magnitude of G1 arrest induced by the humanized Ab trastuzumab (Herceptin, HCT) on BT474 and SKBr3 HER2-overexpressing breast cancer cells correlates with the level of cell surface receptor. Thus, continuous exposure of cells to HCT for 72 hr results in downregulation of the cell surface receptor and a concurrent increase in the level of p27Kip1 protein. Discontinuation of Ab exposure after the first 8 hr results in failure to upregulate p27Kip1 and arrest of cell cycle progression. We show that the lysosomotropic amine chloroquine (CQ) augments receptor internalization in HER2-overexpressing cells either pretreated or continuously treated with HCT and leads to an increased and sustained inhibitory effect. The enhanced CQ-dependent loss of functional HER2 from the cell surface resulted in sustained inactivation of the serine/threonine kinase Akt, upregulation of p27Kip1 protein and inhibition of cyclin E/Cdk2 activity. Potentiation of the inhibitory effect of HCT by CQ was directly related to loss of HER2 from the plasma membrane since prevention of Ab-mediated receptor endocytosis by engagement of the receptor with immobilized HCT abrogated the effect of CQ.

  11. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.

  12. YC-1 induces G0/G1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells.

    PubMed

    Lee, Miau-Rong; Lin, Chingju; Lu, Chi-Cheng; Kuo, Sheng-Chu; Tsao, Je-Wei; Juan, Yu-Ning; Chiu, Hong-Yi; Lee, Fang-Yu; Yang, Jai-Sing; Tsai, Fuu-Jen

    2017-06-01

    Oral cancer is a serious and fatal disease. Cisplatin is the first line of chemotherapeutic agent for oral cancer therapy. However, the development of drug resistance and severe side effects cause tremendous problems clinically. In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant human oral cancer cell line, CAR. Our results indicated that YC-1 induced a concentration-dependent and time-dependent decrease in viability of CAR cells analyzed by MTT assay. Real-time image analysis of CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell proliferation and reduced cell confluence in a time-dependent manner. Results from flow cytometric analysis revealed that YC-1 promoted G 0 /G 1 phase arrest and provoked apoptosis in CAR cells. The effects of cell cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, E and CDK2 protein levels. TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage feature of apoptosis. In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the mitochondrial membrane potential (AYm) and stimulated ROS production in CAR cells. The protein levels of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated CAR cells. In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting cell proliferation, arresting cell cycle at G 0 /G 1 phase and triggering mitochondria-mediated apoptosis. Our results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug resistant oral cancer in the future. © Author(s) 2017. This article is published with open access by China Medical University.

  13. Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors.

    PubMed

    Badie, B; Kramar, M H; Lau, R; Boothman, D A; Economou, J S; Black, K L

    1998-05-01

    Patients with malignant gliomas continue to have very poor prognosis even after surgical resection, radiation and chemotherapy. Because these tumors often have alterations in the p53 tumor suppressor gene, which plays a key role in the cellular response to DNA damaging agents, we investigated the role of p53 gene therapy in conjunction with ionizing radiation in a rat brain tumor model. Exposure of cultured rat 9L gliosarcoma cells, which contain a mutant p53 gene, to a recombinant adenovirus-vector bearing the wild-type p53 gene (Adp53), induced apoptosis within 24 hours. Although ionizing radiation had no additional effect on apoptosis within this time frame, it caused G1 arrest in non-apoptotic cells after Adp53 therapy. In contrast, wild-type 9L cells demonstrated little G1 arrest after X-irradiation. When animals bearing brain tumors were irradiated after intratumoral Adp53 injections, more than 85% reduction in tumor size was noted. Moreover, the group of rats receiving both radiation and Adp53 therapy had a significant increase in survival as compared to animals receiving either therapy alone. These results support the use of p53 gene therapy as an adjunct to radiation in treatment of malignant brain tumors.

  14. lH-Pyrazolo[3,4-b]quinolin-3-amine derivatives inhibit growth of colon cancer cells via apoptosis and sub G1 cell cycle arrest.

    PubMed

    Karthikeyan, Chandrabose; Amawi, Haneen; Viana, Arabela Guedes; Sanglard, Leticia; Hussein, Noor; Saddler, Maria; Ashby, Charles R; Moorthy, N S Hari Narayana; Trivedi, Piyush; Tiwari, Amit K

    2018-07-15

    A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC 50 values ranging from 2.3 to 10.2 µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Critical Role of AMPK/FoxO3A Axis in Globular Adiponectin-Induced Cell Cycle Arrest and Apoptosis in Cancer Cells.

    PubMed

    Shrestha, Anup; Nepal, Saroj; Kim, Mi Jin; Chang, Jae Hoon; Kim, Sang-Hyun; Jeong, Gil-Saeng; Jeong, Chul-Ho; Park, Gyu Hwan; Jung, Sunghee; Lim, Jaecheong; Cho, Eunha; Lee, Soyoung; Park, Pil-Hoon

    2016-02-01

    Adiponectin predominantly secreted from adipose tissue has exhibited potent anti-proliferative properties in cancer cells via modulating cell cycle and apoptosis. FoxO3A, a Forkhead box O member of the transcription factor, plays a critical role in modulating expression of genes involved in cell death and/or survival. In this study, we investigated the role of FoxO3A signaling in anti-cancer activities of adiponectin. Herein, we have shown that treatment with globular adiponectin (gAcrp) increases p27 but decreases cyclinD1 expression in human hepatoma (HepG2) and breast (MCF-7) cancer cells. Gene ablation of FoxO3A prevented gAcrp-induced increase in p27 and decreased in cyclin D1 expression, and further ameliorated cell cycle arrest by gAcrp, indicating a critical role of FoxO3A in gAcrp-induced cell cycle arrest of cancer cells. Moreover, treatment with gAcrp also induced caspase-3/7 activation and increased Fas ligand (FasL) expression in both HepG2 and MCF-7 cells. Transfection with FoxO3A siRNA inhibited gAcrp-induced caspase-3/7 activation and FasL expression, suggesting that FoxO3A signaling also plays an important role in gAcrp-induced apoptosis of cancer cells. We also found that gene silencing of AMPK prevented gAcrp-induced nuclear translocation of FoxO3A in HepG2 and MCF-7 cells. In addition, suppression of AMPK also blocked gAcrp-induced cell cycle arrest and further attenuated gAcrp-induced caspase-3/7 activation, indicating that AMPK signaling plays a pivotal role in both gAcrp-induced cell cycle arrest and apoptosis via acting as an upstream signaling of FoxO3A. Taken together, our findings demonstrated that AMPK/FoxO3A axis plays a cardinal role in anti-proliferative effect of adiponectin in cancer cells. © 2015 Wiley Periodicals, Inc.

  16. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition.

    PubMed

    Tong, W; Kiyokawa, H; Soos, T J; Park, M S; Soares, V C; Manova, K; Pollard, J W; Koff, A

    1998-09-01

    The involvement of cyclin-dependent kinase inhibitors in differentiation remains unclear: are the roles of cyclin-dependent kinase inhibitors restricted to cell cycle arrest; or also required for completion of the differentiation program; or both? Here, we report that differentiation of luteal cells can be uncoupled from growth arrest in p27-deficient mice. In these mice, female-specific infertility correlates with a failure of embryos to implant at embryonic day 4.5. We show by ovarian transplant and hormone reconstitution experiments that failure to regulate luteal cell estradiol is one physiological mechanism for infertility in these mice. This failure is not due to a failure of p27-deficient granulosa cells to differentiate after hormonal stimulation; P450scc, a marker for luteal progesterone biosynthesis, is expressed and granulosa cell-specific cyclin D2 expression is reduced. However, unlike their wild-type counterparts, p27-deficient luteal cells continue to proliferate for up to 3.5 days after hormonal stimulation. By day 5.5, however, these cells withdraw from the cell cycle, suggesting that p27 plays a role in the early events regulating withdrawal of cells from the cell cycle. We have further shown that in the absence of this timely withdrawal, estradiol regulation is perturbed, explaining in part how fertility is compromised at the level of implantation. These data support the interpretation of our previous observations on oligodendrocyte differentiation about a role for p27 in establishing the nonproliferative state, which in some cases (oligodendrocytes) is required for differentiation, whereas in other cases it is required for the proper functioning of a differentiated cell (luteal cell).

  17. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Shuai

    Licorice (Glycyrrhiza uralensis Fisch.) possesses significant anti-cancer activities, but the active ingredients and underlying mechanisms have not been revealed. By screening the cytotoxic activities of 122 licorice compounds against SW480 human colorectal adenocarcinoma cells, we found that licoricidin (LCD) inhibited SW480 cell viability with an IC{sub 50} value of 7.2 μM. Further studies indicated that LCD significantly induced G1/S cell cycle arrest and apoptosis in SW480 cells, accompanied by inhibition of cyclins/CDK1 expression and activation of caspase-dependent pro-apoptotic signaling. Meanwhile, LCD promoted autophagy in SW480 cells, and activated AMPK signaling and inhibited Akt/mTOR pathway. Overexpression of a dominant-negative AMPKα2 abolishedmore » LCD-induced inhibition of Akt/mTOR, autophagic and pro-apoptotic signaling pathways, and significantly reversed loss of cell viability, suggesting activation of AMPK is essential for the anti-cancer activity of LCD. In vivo anti-tumor experiments indicated that LCD (20 mg/kg, i.p.) significantly inhibited the growth of SW480 xenografts in nude mice with an inhibitory rate of 43.5%. In addition, we obtained the glycosylated product LCDG by microbial transformation, and found that glycosylation slightly enhanced the in vivo anti-cancer activities of LCD. This study indicates that LCD could inhibit SW480 cells by inducing cycle arrest, apoptosis and autophagy, and is a potential chemopreventive or chemotherapeutic agent against colorectal cancer. - Highlights: • Molecular mechanisms for cytotoxic activity of licoricidin (LCD) were investigated. • LCD promoted autophagy of SW480 cells through AMPK and Akt/mTOR signaling pathways. • Both LCD and its glucoside showed in vivo anti-colorectal cancer activities.« less

  18. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in BXPC-3 and PANC-1 human pancreatic cancer cells.

    PubMed

    Wang, Lin; Zhu, Zhi-Xia; Zhang, Wen-Ying; Zhang, Wei-Min

    2011-09-01

    Previous studies have shown that both pemetrexed, a cytotoxic drug, and erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), inhibit the cell growth of pancreatic cancer cells. However, whether they exert a synergistic antitumor effect on pancreatic cancer cells remains unknown. The present study aimed to assess the synergistic effect of erlotinib in combination with pemetrexed using different sequential administration schedules on the proliferation of human pancreatic cancer BXPC-3 and PANC-1 cells and to probe its cellular mechanism. The EGFR and K-ras gene mutation status was examined by quantitative PCR high-resolution melting (qPCR-HRM) analysis. BXPC-3 and PANC-1 cells were incubated with pemetrexed and erlotinib using different administration schedules. MTT assay was used to determine cytotoxicity, and cell cycle distribution was determined by flow cytometry. The expression and phosphorylation of EGFR, HER3, AKT and MET were determined using Western blotting. Both pemetrexed and erlotinib inhibited the proliferation of BXPC-3 and PANC-1 cells in a dose- and time-dependent manner in vitro. Synergistic effects on cell proliferation were observed when pemetrexed was used in combination with erlotinib. The degree of the synergistic effects depended on the administration sequence, which was most obvious when erlotinib was sequentially administered at 24-h interval following pemetrexed. Cell cycle studies revealed that pemetrexed induced S arrest and erlotinib induced G(0)/G(1) arrest. The sequential administration of erlotinib following pemetrexed induced S arrest. Western blot analyses showed that pemetrexed increased and erlotinib decreased the phosphorylation of EGFR, HER3 and AKT, respectively. However, both pemetrexed and erlotinib exerted no significant effects on the phosphorylation of c-MET. The phosphorylation of EGFR, HER3 and AKT was significantly suppressed by scheduled incubation with pemetrexed followed by erlotinib, but not by concomitant or sequential incubation with erlotinib followed by pemetrexed. In summary, our results demonstrated that the combined use of erlotinib and pemetrexed exhibited a strong synergism in BXPC-3 and PANC-1 cells. The inhibitory effects were strongest after sequential administration of pemetrexed followed by erlotinib. The synergistic effects may be related to activation of the EGFR/HER3/AKT pathway induced by pemetrexed.

  19. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells.

    PubMed

    Ren, Daoyuan; Wang, Ning; Guo, Jianjun; Yuan, Li; Yang, Xingbin

    2016-03-15

    This study was designed to investigate the chemical characterization and antitumor effects of Pleurotus eryngii polysaccharides (PEP). The crude PEP was fractionated into two fractions, namely PEP-1 and PEP-2. HPLC analysis showed that PEP-1 and PEP-2 were heteropolysaccharides mainly composed of glucose with the average molecular weights of 2.54×10(4)Da (PEP-1) and 4.63×10(5)Da (PEP-2), respectively. High molecular mass PEP-2 was shown to exhibit stronger growth inhibition against human hepatoblastoma HepG-2 cells in comparison with PEP-1. Flow cytometric analysis showed that PEP-2 exerted a stimulatory effect on apoptosis of HepG-2 cells, and induced the cell-cycle arrest at the S-phase, with the observation of intracellular ROS production. These findings suggest that the polysaccharides, especially PEP-2, are very important nutritional ingredients responsible for the anticancer health benefits of P. eryngii. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bisphenol A and its methylated congeners inhibit growth and interfere with microtubules in human fibroblasts in vitro.

    PubMed

    Lehmann, Leane; Metzler, Manfred

    2004-04-15

    Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxy resins, has previously been reported to induce micronuclei containing whole chromosomes in Chinese hamster V79 cells. In the present study, the aneuploidogenic potential of BPA was investigated in cultured human AG01522C fibroblasts. In contrast to the known aneugens diethylstilbestrol (DES) and 17beta-estradiol, which caused mitotic arrest and the induction of kinetochore-positive micronuclei, BPA did not induce micronuclei and inhibited the proliferation of AG01522C cells in G2 phase and probably also in G1 phase. Fluorescence microscopy of the BPA-treated cells after immunofluorescent staining of microtubules revealed structural abnormalities of the cytoplasmic microtubule complex (CMTC): densely stained rings and loops of tubulin were observed, which increased in number with increasing BPA concentration and were more stable against low temperature than normal microtubules. The mechanisms of the growth inhibition and the interference with microtubules elicited by BPA in AG01522C cells are presently unknown. The formation of rings and loops in the CMTC of AG01522C cells was also observed with two congeners of BPA carrying one and two, respectively, additional methyl groups in ortho-position to the phenolic hydroxyl group at each aromatic ring. However, in contrast to BPA itself, these congeners of BPA behaved "DES-like" by inducing mitotic arrest and kinetochore-positive micronuclei in AG01522C cells.

  1. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto

    2011-08-01

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrestmore » and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G{sub 0}/G{sub 1} phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research Highlights: > Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. > Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. > Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. > Proteomics identified increased p53 and BAX in response to Scutellaria extracts.« less

  2. G2 phase-specific proteins of HeLa cells.

    PubMed Central

    Al-Bader, A A; Orengo, A; Rao, P N

    1978-01-01

    The objective of this study was to determine if HeLa cells irreversibly arrested in G2 phase of the cell cycle by a brief exposure to a nitrosourea compound were deficient in certain proteins when compared with G2-synchronized cells. Total cellular proteins of G2-synchronized, G2-arrested, and S phase-synchronized cells were compared by two-dimensional polyacrylamide gel electrophoresis. The S phase cells differed from the G2-synchronized and G2-arrested cells by the absence of about 35 and 25 protein spots, respectively, of a total of nearly 150. At least nine protein spots in the molecular weight range of 4--5 X 10(4) that were present in the G2-synchronized cells were absent in both the G2-arrested and the S phase cells. Thus, these studies suggest that the missing proteins are probably necessary for the transition of cells from G2 phase to mitosis. Supplying the missing proteins to the G2-arrested cells by fusion with G2-synchronized cells facilitated the entry of the former into mitosis. Images PMID:282623

  3. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    PubMed

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  4. An inhibitor of polyamine synthesis arrests cells at an earlier stage of G1 than does calcium deprivation.

    PubMed Central

    Cheetham, B F

    1983-01-01

    Methylglyoxal bis(guanylhydrazone) completely inhibits the induction of thymidine kinase after serum stimulation of quiescent fibroblasts only if added within 3 h after serum, whereas calcium deprivation blocks this induction up to 12 h after serum stimulation. Experiments in which one of these blocks was imposed as the other was released confirmed that cells blocked by methylglyoxal bis(guanylhydrazone) are arrested at an earlier stage in G1 than cells blocked by calcium deprivation. PMID:6843551

  5. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway

    PubMed Central

    Liao, Tian; Wei, Wen-Jun; Wen, Duo; Hu, Jia-Qian; Wang, Yu; Ma, Ben; Cao, Yi-Min; Xiang, Jun; Guan, Qing; Chen, Jia-Ying; Sun, Guo-Hua; Zhu, Yong-Xue; Li, Duan-Shu; Ji, Qing-Hai

    2018-01-01

    Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC. PMID:29721041

  6. p21 induction plays a dual role in anti-cancer activity of ursolic acid

    PubMed Central

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong

    2015-01-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  7. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growthmore » and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M phase arrest, followed by apoptosis.« less

  8. Apigenin inhibits renal cell carcinoma cell proliferation

    PubMed Central

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-01-01

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC. PMID:28423637

  9. Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1.

    PubMed

    Park, Hyeon Ung; Jeong, Jae-Hoon; Chung, Jay H; Brady, John N

    2004-06-24

    Checkpoint kinase 1 (Chk1) mediates diverse cellular responses to genotoxic stress, regulating the network of genome-surveillance pathways that coordinate cell cycle progression with DNA repair. Chk1 is essential for mammalian development and viability, and has been shown to be important for both S and G(2) checkpoints. We now present evidence that the HTLV-1 Tax protein interacts directly with Chk1 and impairs its kinase activities in vitro and in vivo. The direct and physical interaction of Chk1 and Tax was observed in HTLV-1-infected T cells (C81, HuT 102 and MT-2) and transfected fibroblasts (293 T) by coimmunoprecipitation and by in vitro GST pull-down assays. Interestingly, Tax inhibited the kinase activity of Chk1 protein in in vitro and in vivo kinase assays. Consistent with these results, Tax inhibited the phosphorylation-dependent degradation of Cdc25A and G(2) arrest in response to gamma-irradiation (IR) in a dose-dependent manner in vivo. The G(2) arrest did not require Chk2 or p53. These studies provide the first example of a viral transforming protein targeting Chk1 and provide important insights into checkpoint pathway regulation.

  10. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    PubMed

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  11. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells

    NASA Technical Reports Server (NTRS)

    Wang, Xiang; Khadpe, Jay; Hu, Baocheng; Iliakis, George; Wang, Ya

    2003-01-01

    Induction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response. The mechanism for this ataxia telangiectasia (AT)-independent G2-checkpoint response remains unknown. We report here that the G2 checkpoint in irradiated human AT cells derives from an overactivation of the ATR/CHK1 pathway. Chk1 small interfering RNA abolishes the IR-induced prolonged G2 checkpoint and radiosensitizes AT cells to killing. These results link the activation of ATR/CHK1 with the prolonged G2 arrest in AT cells and show that activation of this G2 checkpoint contributes to the survival of AT cells.

  12. BRCA1 and its phosphorylation involved in caffeine-inhibitable event upstream of G2 checkpoint

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhang, Hong; Wang, Yanling; Hao, Jifang

    2010-07-01

    Caffeine, which specifically inhibits ATM/ATR kinases, efficiently abrogates the ionizing radiation (IR)-induced G2 arrest and increases the sensitivity of various tumor cells to IR. Mechanisms for the effect of caffeine remain to be elucidated. As a target of ATM/ATR kinases, BRCA1 becomes activated and phosphorylated in response to IR. Thus, in this work, we investigated the possible role of BRCA1 in the effect of caffeine on G2 checkpoint and observed how BRCA1 phosphorylation was regulated in this process. For these purposes, the BRCA1 protein level and the phosphorylation states were analyzed by Western blotting by using an antibody against BRCA1 and phospho-specific antibodies against Ser-1423 and Ser-1524 residues in cells exposed to a combination of IR and caffeine. The results showed that caffeine down-regulated IR-induced BRCA1 expression and specifically abolished BRCA1 phosphorylation of Ser-1524, which was followed by an override of G2 arrest by caffeine. In addition, the ability of BRCA1 to transactivate p21 may be required for MCF-7 but not necessary for Hela response to caffeine. These data suggest that BRCA1 may be a potential target of caffeine. BRCA1 and its phosphorylation are most likely to be involved in the caffeine-inhibitable event upstream of G2 arrest.

  13. Impaired tissue growth is mediated by checkpoint kinase 1 (CHK1) in the integrated stress response

    PubMed Central

    Malzer, Elke; Daly, Marie-Louise; Moloney, Aileen; Sendall, Timothy J.; Thomas, Sally E.; Ryder, Edward; Ryoo, Hyung Don; Crowther, Damian C.; Lomas, David A.; Marciniak, Stefan J.

    2010-01-01

    The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2α phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest. PMID:20682638

  14. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  15. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seung Hee; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cellmore » proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.« less

  16. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    NASA Technical Reports Server (NTRS)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  17. Melanocytic nevi and melanoma: unraveling a complex relationship

    PubMed Central

    Damsky, WE; Bosenberg, M

    2018-01-01

    Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma. PMID:28604751

  18. The ethyl acetate extract of Phellinus linteus grown on germinated brown rice induces G0/G1 cell cycle arrest and apoptosis in human colon carcinoma HT29 cells.

    PubMed

    Park, Hye-Jin; Choi, Se Young; Hong, Se Mi; Hwang, Sung Gu; Park, Dong Ki

    2010-07-01

    It is well known that Phellinus linteus has a variety of biological functions, such as antitumor and immunomodulating activities. In our previous studies, we developed a P. linteus grown on germinated brown rice (PBR) and found that organic solvent extracts of PBR possessed immunomodulating activity to regulate a balance of cytokine network in mice. The components of PBR are ergosterol peroxide, gamma-aminobutyric acid (GABA) and Beta-glucan. In this study, we demonstrate that an organic solvent extract of P. linteus grown on PBR induced apoptotic cell death through the induction of G(0)/G(1) arrest of cell cycle and the apoptosis via DNA fragmentation in human colon carcinoma HT-29 cells. Cell death induced by the extract of P. linteus grown on PBR was shown to be associated with the upregulation of p21(CIP1/WAF1), the downregulation of cyclin D1, anti-apoptotic protein, Bcl-2, the release of cytochrome c, and the activation of caspase-9, caspase-3 and caspase-8. This study suggests that the ethyl acetate extract of P. linteus grown on PBR induces apoptosis accompanied by cell cycle arrest at G(0)/G(1) phase and regulates apoptosis-regulatory proteins, which may be applicable to anticancer therapy.

  19. Tributyltin induces a G2/M cell cycle arrest in human amniotic cells via PP2A inhibition-mediated inactivation of the ERK1/2 cascades.

    PubMed

    Zhang, Yali; Guo, Zonglou; Xu, Lihong

    2014-03-01

    The molecular mechanisms underlying the cell cycle alterations induced by tributyltin (TBT), a highly toxic environmental contaminant, remain elusive. In this study, cell cycle progression and some key regulators in G2/M phase were investigated in human amniotic cells treated with TBT. Furthermore, protein phosphatase (PP) 2A and the ERK cascades were examined. The results showed that TBT caused a G2/M cell cycle arrest that was accompanied by a decrease in the total cdc25C protein level and an increase in the p-cdc2 level in the nucleus. TBT caused a decrease in PP2A activity and inhibited the ERK cascade by inactivating Raf-1, resulting in the dephosphorylation of MEK1/2, ERK1/2, and c-Myc. Taken together, TBT leads to a G2/M cell cycle arrest in FL cells, an increase in p-cdc2 and a decrease in the levels of total cdc25C protein, which may be caused by the PP2A inhibition-mediated inactivation of the ERK1/2 cascades. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Interplay between cell cycle and autophagy induced by boswellic acid analog

    PubMed Central

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  1. Effects and possible mechanisms of simulated-microgravity on zebrafish embryonic cell

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Wang, Ruonan

    2016-07-01

    Cellular level studies are helpful for revealing the underlying mechanisms of microgravity effects on living organisms. Many cell types, ranging from bacteria to mammalian cells, are sensitive to the microgravity environment. In this study, zebrafish embryonic cells (ZF4) were exposed to simulated-microgravity (SMG) for different times to investigate the effects and possible mechanisms of microgravity on fibroblasts. A significant arrest in G2/M phase was detected in ZF4 cells after 24 or 48 hour of SMG exposure, respectively. The mRNA levels of G2/M phase regulators cyclinB1 and cdc2 were significantly decreased, while wee1 was significantly increased. Additionally, CEP135, a core centrosome protein throughout the cell cycle, seems to play a key role in modulating this effect. Quantitative analysis showed that cep135 expression was significantly increased, while CEP135 protein expression level was significantly decreased two times after SMG. Further investigation demonstrated the transfection of dre-miR-22a, a miRNA for targeting cep135, also induced G2/M arrest in ZF4 cells. These results suggest that SMG induced G2/M arrest in ZF4 cells may due to the regulation of dre-miR-22a and its target cep135. Key Words: Simulated-microgravity; zebrafish embryonic cell; G2/M arrest; molecular mechanism

  2. Essential Roles of Raf/Extracellular Signal-regulated Kinase/Mitogen-activated Protein Kinase Pathway, YY1, and Ca2+ Influx in Growth Arrest of Human Vascular Smooth Muscle Cells by Bilirubin*

    PubMed Central

    Stoeckius, Marlon; Erat, Anna; Fujikawa, Tatsuya; Hiromura, Makoto; Koulova, Anna; Otterbein, Leo; Bianchi, Cesario; Tobiasch, Edda; Dagon, Yossi; Sellke, Frank W.; Usheva, Anny

    2012-01-01

    The biological effects of bilirubin, still poorly understood, are concentration-dependent ranging from cell protection to toxicity. Here we present data that at high nontoxic physiological concentrations, bilirubin inhibits growth of proliferating human coronary artery smooth muscle cells by three events. It impairs the activation of Raf/ERK/MAPK pathway and the cellular Raf and cyclin D1 content that results in retinoblastoma protein hypophosphorylation on amino acids S608 and S780. These events impede the release of YY1 to the nuclei and its availability to regulate the expression of genes and to support cellular proliferation. Moreover, altered calcium influx and calpain II protease activation leads to proteolytical degradation of transcription factor YY1. We conclude that in the serum-stimulated human vascular smooth muscle primary cell cultures, bilirubin favors growth arrest, and we propose that this activity is regulated by its interaction with the Raf/ERK/MAPK pathway, effect on cyclin D1 and Raf content, altered retinoblastoma protein profile of hypophosphorylation, calcium influx, and YY1 proteolysis. We propose that these activities together culminate in diminished 5 S and 45 S ribosomal RNA synthesis and cell growth arrest. The observations provide important mechanistic insight into the molecular mechanisms underlying the transition of human vascular smooth muscle cells from proliferative to contractile phenotype and the role of bilirubin in this transition. PMID:22262839

  3. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe

    PubMed Central

    Lindsay, Howard D.; Griffiths, Dominic J.F.; Edwards, Rhian J.; Christensen, Per U.; Murray, Johanne M.; Osman, Fekret; Walworth, Nancy; Carr, Antony M.

    1998-01-01

    Checkpoints that respond to DNA structure changes were originally defined by the inability of yeast mutants to prevent mitosis following DNA damage or S-phase arrest. Genetic analysis has subsequently identified subpathways of the DNA structure checkpoints, including the reversible arrest of DNA synthesis. Here, we show that the Cds1 kinase is required to slow S phase in the presence of DNA-damaging agents. Cds1 is phosphorylated and activated by S-phase arrest and activated by DNA damage during S phase, but not during G1 or G2. Activation of Cds1 during S phase is dependent on all six checkpoint Rad proteins, and Cds1 interacts both genetically and physically with Rad26. Unlike its Saccharomyces cerevisiae counterpart Rad53, Cds1 is not required for the mitotic arrest checkpoints and, thus, defines an S-phase specific subpathway of the checkpoint response. We propose a model for the DNA structure checkpoints that offers a new perspective on the function of the DNA structure checkpoint proteins. This model suggests that an intrinsic mechanism linking S phase and mitosis may function independently of the known checkpoint proteins. PMID:9450932

  4. Hybrids from Farnesylthiosalicylic Acid and Hydroxamic Acid as Dual Ras-Related Signaling and Histone Deacetylase (HDAC) Inhibitors: Design, Synthesis and Biological Evaluation.

    PubMed

    Ling, Yong; Wang, Xuemin; Wang, Chenniu; Xu, Chenjun; Zhang, Wei; Zhang, Yihua; Zhang, Yanan

    2015-06-01

    A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11-trimethyldodeca-2,6,10-trien-1-yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N-(4-(hydroxyamino)-4-oxobutyl)-2-(((2E,6E)-3,7,11-trimethyldodeca-2,6, 10-trien-1-yl)thio)benzamide (8 d) was the most potent, with IC50 values of 4.9-7.6 μM; these activities are eight- to sixteen-fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α-tubulin, and blocked Ras-related signaling pathways in a dose-dependent manner. The improved tumor growth inhibition and cell-cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras-related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ubiquitin Ligase Cbl-b Is Involved in Icotinib (BPI-2009H)-Induced Apoptosis and G1 Phase Arrest of EGFR Mutation-Positive Non-Small-Cell Lung Cancer

    PubMed Central

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μM, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells. PMID:23586056

  6. Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer.

    PubMed

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μ M, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  7. Cigarette smoke-induced cell cycle arrest in spermatocytes [GC-2spd(ts)] is mediated through crosstalk between Ahr-Nrf2 pathway and MAPK signaling.

    PubMed

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Moley, Kelle H

    2015-02-01

    Our earlier studies have demonstrated that the cigarette smoke in the form of cigarette smoke condensate (CSC) causes growth arrest of a mouse spermatocyte cell line [GC-2spd(ts)] through activation of the AHR-NRF2 pathway. The present study demonstrates the CSC-activated p38 and ERK MAPK signaling in GC-2spd(ts) via arylhydrocarbon receptor (AHR). Pharmacological inhibition by using AHR-antagonist, or p38 MAPK and ERK (MEK1) inhibitors significantly abrogates CSC-induced growth arrest by AHR and MAPK inactivation. QRT-PCR, western blot, and immunofluorescence of Ahr-target of Nrf2, and stress-inducible growth suppressive Atf3 and E2f4 following treatments indicate a crosstalk among these pathways. Regulation of Atf3 by Nrf2 and Ahr through RNA interference suggests the existence of a cross-regulatory loop between the targets. CSC induction of E2f4 via Atf3 and its regulation by pharmacological inhibitors reveal a possible regulatory mechanism of growth inhibitory CSC. SiRNA silencing of Ahr, Nrf2, Atf3, and E2f4 genes and downregulation of cyclins by CSC corroborate the growth inhibitory effect of cigarette smoke. Thus, the data obtained suggest that the CSC-mediated MAPKs and AHR-NRF2 crosstalks lay the molecular basis for the growth arrest and cell death of spermatocytes. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  8. Effects of sodium phenylbutyrate on differentiation and induction of the P21WAF1/CIP1 anti-oncogene in human liver carcinoma cell lines.

    PubMed

    Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren

    2005-01-01

    To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).

  9. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  10. Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells.

    PubMed

    Tao, Yan-Fang; Wang, Na-Na; Xu, Li-Xiao; Li, Zhi-Heng; Li, Xiao-Lu; Xu, Yun-Yun; Fang, Fang; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Wu, Yi; Ren, Jun-Li; Du, Wei-Wei; Lu, Jun; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Pan, Jian

    2017-01-01

    Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16 INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G 1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16 INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G 1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

  11. Overexpression of Hiwi Inhibits the Cell Growth of Chronic Myeloid Leukemia K562 Cells and Enhances Their Chemosensitivity to Daunomycin.

    PubMed

    Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.

  12. Pib2 and the EGO complex are both required for activation of TORC1.

    PubMed

    Varlakhanova, Natalia V; Mihalevic, Michael J; Bernstein, Kara A; Ford, Marijn G J

    2017-11-15

    The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity. © 2017. Published by The Company of Biologists Ltd.

  13. In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells.

    PubMed

    Nambiar, Dhanya; Prajapati, Vandana; Agarwal, Rajesh; Singh, Rana P

    2013-06-28

    Silibinin suppresses the growth of many cancers; however, its efficacy against pancreatic cancer has not been evaluated in established preclinical models. Here, we investigated in vitro and in vivo effects of silibinin against lower and advanced stages of human pancreatic carcinoma cells. Silibinin (25-100μM) treatment for 24-72h caused a dose- and time-dependent cell growth inhibition of 27-77% (P<0.05-0.001) in BxPC-3 cells, and 22-45% (P<0.01-0.001) in PANC-1 cells. Silibinin showed a strong dose-dependent G1 arrest in BxPC-3 cells (upto 72% versus 45% in control; P<0.001), but a moderate response in advanced PANC-1 cells. Cell death observed in cell growth assay, was accompanied by up to 3-fold increase (P<0.001) in apoptosis in BxPC-3 cells, and showed only slight effect on PANC-1 cells. Dietary feeding of silibinin (0.5%, w/w in AIN-93M diet for 7weeks) inhibited BxPC-3 and PANC-1 tumor xenografts growth in nude mice without any apparent change in body weight gain and diet consumption. Tumor volume and weight were decreased by 47% and 34% (P⩽0.001) in BxPC-3 xenograft, respectively. PANC-1 xenograft showed slower growth kinetics and silibinin decreased tumor volume by 34% (P<0.001) by 7weeks. Another 4weeks of silibinin treatment to PANC-1 xenograft showed 28% and 33% decrease in tumor volume and weight, respectively. Silibinin-fed group of BxPC-3 tumors showed decreased cell proliferation and angiogenesis and an increased apoptosis, however, considerable inhibitory effect was observed only for angiogenesis in PANC-1 tumors. Overall, these findings show both in vitro as well as in vivo anticancer efficacy of silibinin against pancreatic cancer that could involve inhibition of cell proliferation, cell cycle arrest, apoptosis induction and/or decrease in tumor angiogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Growth Arrest by Trehalose-6-Phosphate: An Astonishing Case of Primary Metabolite Control over Growth by Way of the SnRK1 Signaling Pathway1[C][W][OA

    PubMed Central

    Delatte, Thierry L.; Sedijani, Prapti; Kondou, Youichi; Matsui, Minami; de Jong, Gerhardus J.; Somsen, Govert W.; Wiese-Klinkenberg, Anika; Primavesi, Lucia F.; Paul, Matthew J.; Schluepmann, Henriette

    2011-01-01

    The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11. PMID:21753116

  15. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    PubMed Central

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  16. B-cell translocation gene 3 overexpression inhibits proliferation and invasion of colorectal cancer SW480 cells via Wnt/β-catenin signaling pathway.

    PubMed

    Mao, D; Qiao, L; Lu, H; Feng, Y

    2016-01-01

    Increasing evidences have shown that B-cell translocation gene 3 (BTG3) inhibits metastasis of multiple cancer cells. However, the role of BTG3 in colorectal cancer (CRC) and its possible mechanism have not yet been reported. In our study, we evaluated BTG3 expression in several CRC cell lines. Then, pcDNA3.1-BTG3 was transfected into SW480 cells. We found that BTG3 was upregulated in SW480 cells after overexpression plasmid transfection. BTG3 overexpression significantly inhibited cell growth and decreased PCNA (proliferating cell nuclear antigen) and Ki67 levels. BTG3 overexpression markedly downregulated Cyclin D1 and Cyclin E1 levels, whereas elevated p27. Overexpression of BTG3 arrested the cell cycle at G1 phase, which was abrogated by p27 silencing. Furthermore, migration, invasion and EMT of SW480 cells were significantly suppressed by BTG3 overexpression. Further investigations showed the inhibition of Wnt/β-catenin signaling pathway. We then used GSK3β specific inhibitor SB-216763 to activate the Wnt/β-catenin signaling pathway. We found that Wnt/β-catenin signaling pathway activation reversed the effect of BTG3 overexpression on cell proliferation, cell cycle progression, invasion and EMT. In conclusion, BTG3 overexpression inhibited cell growth, induced cell cycle arrest and suppressed the metastasis of SW480 cells via the Wnt/β-catenin signaling pathway. BTG3 may be considered as a therapeutic target in CRC treatment.

  17. Aspirin-induced chemoprevention and response kinetics are enhanced by PIK3CA mutations in colorectal cancer cells

    PubMed Central

    Zumwalt, Timothy J; Wodarz, Dominik; Komarova, Natalia L; Toden, Shusuke; Turner, Jacob; Cardenas, Jacob; Burn, John; Chan, Andrew T; Boland, C Richard; Goel, Ajay

    2017-01-01

    This study was designed to determine how aspirin influences the growth kinetics and characteristics of cultured colorectal cancer (CRC) cells that harbor a variety of different mutational backgrounds, including PIK3CA and KRAS activating mutations and the presence or absence of microsatellite instability. CRC cell lines (HCT116, HCT116+Chr3/5, RKO, SW480, HCT15, CACO2, HT29, and SW48) were treated with pharmacologically relevant doses of aspirin (0.5–10 mM) and evaluated for proliferation and cell cycle distribution. These parameters were fitted to a mathematical model to quantify the effects and understand the mechanism(s) by which aspirin modifies growth in CRC cells. We also evaluated the effects of aspirin on key G0/G1 cell cycle genes that are regulated by PI3K-Akt pathway. Aspirin decelerated growth rates and disrupted cell cycle dynamics more profoundly in faster growing CRC cell lines, which tended to be PIK3CA-mutants. Additionally, microarray analysis of 151 CRC cell lines identified important cell cycle regulatory genes downstream targets of PIK3, which were dysregulated by aspirin treatment cycle genes (PCNA and RB1, p<0.01). Our study demonstrated what clinical trials have only speculated, that PIK3CA-mutant CRCs are more sensitive to aspirin. Aspirin inhibited cell growth in all CRC cell lines regardless of mutational background, but the effects were exacerbated in cells with PIK3CA mutations. Mathematical modeling combined with bench science revealed that cells with PIK3CA mutations experience significant G0/G1 arrest and explains why patients with PIK3CA-mutant CRCs may benefit from aspirin use after diagnosis. PMID:28154202

  18. Magnetic nanoparticles trigger cell proliferation arrest of neuro-2a cells and ROS-mediated endoplasmic reticulum stress response

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Zeng, Kun; Pan, Weidong; Song, Tao

    2014-11-01

    Magnetic nanoparticles (MNPs) have been increasingly applied in various areas, such as the biomedical and electronic industries. The unique properties of MNPs are beneficial to their applications, but concerns about their safety to human health along with the growing applications and production also arise. In this study, the cytotoxicity of superparamagnetic MNPs, with an average diameter of 10 nm and typical diameter range between 5 and 30 nm, was investigated using neuro-2a cells. The MNPs internalized into the cytoplasm of neuro-2a cells and inhibited the cell viability in a dose-dependent manner at concentrations ranging from 100 to 500 μg/mL. The cell growth inhibition would be partly attributed to the MNP-induced cell cycle arrest in the G0/G1 phase. MNPs triggered the endoplasmic reticulum (ER) stress response, as indicated by the up-regulated expression of the classical ER stress genes, binding immunoglobulin protein, activating transcription factor 6, and CCAAT-enhancer-binding protein homologous protein (CHOP). The induced production of cellular reactive oxygen species (ROS) and increased expression of heme oxygenase 1 and nuclear factor erythroid two-related factor two genes demonstrated that oxidative stress was also induced. Furthermore, the clearance of ROS by free radical scavenger N-acetylcysteine reduced the up-regulation of MNP-induced CHOP mRNA expressions, thereby suggesting that ROS was involved in the process of ER stress response induced by MNPs.

  19. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  20. Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells.

    PubMed

    Nepal, Saroj; Shrestha, Anup; Park, Pil-Hoon

    2015-09-05

    Adiponectin and leptin, both produced from adipose tissue, cause cell cycle arrest and progression, respectively in cancer cells. Ubiquitin specific protease-2 (USP-2), a deubiquitinating enzyme, is known to impair proteasome-induced degradation of cyclin D1, a critical cell cycle regulator. Herein, we investigated the effects of these adipokines on USP-2 expression and its potential role in the modulation of cell cycle. Treatment with globular adiponectin (gAcrp) decreased, whereas leptin increased USP-2 expression both in human hepatoma and breast cancer cells. In addition, overexpression or gene silencing of USP-2 affected cyclin D1 expression and cell cycle progression/arrest by adipokines. Adiponectin and leptin also modulated in vitro proteasomal activity, which was partially dependent on USP-2 expression. Taken together, our results reveal that modulation of USP-2 expression plays a crucial role in cell cycle regulation by adipokines. Thus, USP-2 would be a promising therapeutic target for the modulation of cancer cell growth by adipokines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. The Role of p21 in Apoptosis, Proliferation, Cell Cycle Arrest, and Antioxidant Activity in UVB-Irradiated Human HaCaT Keratinocytes

    PubMed Central

    Chen, Aijun; Huang, Xin; Xue, Zhenan; Cao, Di; Huang, Kun; Chen, Jin; Pan, Yun; Gao, Yongliang

    2015-01-01

    Background Skin cancer is the most common cancer in the United States, and ultraviolet B (UVB) radiation-induced DNA damage is the major environmental factor underlying skin cancer development. p21, a p53-inducible protein, plays a key role in the cellular response to UVB-induced DNA damage. Material/Methods Through p21 silencing and overexpression, we investigated the role of p21 in apoptosis, proliferation, cell cycle arrest, and oxidative stress in UVB-irradiated HaCaT keratinocytes. Results We found that UVB exposure induced significant p21 downregulation (p<0.05) and was associated with significantly increased apoptosis, significantly decreased proliferation, and significantly increased G2 phase arrest (p<0.05) in UVB-irradiated HaCaT keratinocytes. p21 silencing significantly promoted apoptosis, significantly inhibited G2 phase arrest, and significantly inhibited proliferation (p<0.05), but after UVB irradiation, p21 silencing demonstrated a less significant pro-apoptotic effect and a more significant inhibition of G2 phase arrest (p<0.05), which was reflected in significantly higher proliferative activity (p<0.05). p21 overexpression acted in an anti-apoptotic manner in the absence of UVB-induced DNA damage but acted in a pro-apoptotic manner in the presence of UVB-induced DNA damage, displaying an “antagonistic duality” similar to other growth-promoting oncoproteins. p53 expression mirrored p21 expression, suggesting a regulatory feedback mechanism between p21 and p53 expression. p21 overexpression significantly downregulated glutathione peroxidase and superoxide dismutase antioxidant activity (p<0.05) while significantly upregulating hydrogen peroxide and malondialdehyde content (p<0.05), suggesting a role in decreasing antioxidant defense capabilities in UVB-irradiated HaCaT keratinocytes. Conclusions These findings reveal that p21 may play a key role in HaCaT keratinocytes’ response to UVB exposure. PMID:25925725

  2. Physalis angulata induced G2/M phase arrest in human breast cancer cells.

    PubMed

    Hsieh, Wen-Tsong; Huang, Kuan-Yuh; Lin, Hui-Yi; Chung, Jing-Gung

    2006-07-01

    Physalis angulata (PA) is employed in herbal medicine around the world. It is used to treat diabetes, hepatitis, asthma and malaria in Taiwan. We have evaluated PA as a cancer chemopreventive agent in vitro by studying the role of PA in regulation of proliferation, cell cycle and apoptosis in human breast cancer cell lines. PA inhibited cell proliferation and induced G2/M arrest and apoptosis in human breast cancer MAD-MB 231 and MCF-7 cell lines. In this study, under treatment with various concentrations of PA in MDA-MB 231 cell line, we checked mRNA levels for cyclin A and cyclin B1 and the protein levels of cyclin A and cyclin B1, Cdc2 (cyclin-dependent kinases), p21(waf1/cip1) and P27(Kip1) (cyclin-dependent kinase inhibitors), Cdc25C, Chk2 and Wee1 kinase (cyclin-dependent kinase relative factors) in cell cycle G2/M phase. From those results, we determined that PA arrests MDA-MB 231 cells at the G2/M phase by (i) inhibiting synthesis or stability of mRNA and their downstream protein levels of cyclin A and cyclin B1, (ii) increasing p21(waf1/cip1) and P27(kip1) levels, (iii) increasing Chk2, thus causing an increase in Cdc25C phosphorylation/inactivation and inducing a decrease in Cdc2 levels and an increase in Wee1 level. According to the results obtained, PA appears to possess anticarcinogenic properties; these results suggest that the effect of PA on the levels of phosphorylated/inactivated Cdc25C are mediated by Chk2 activation, at least in part, via p21(waf1/cip1) and P27(kip1) cyclin-dependent kinase inhibitors pathway to arrest cells at G2/M phase in breast cancer carcinoma cells.

  3. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes.

    PubMed

    Das, Eashita; Bhattacharyya, Nitai Pada

    2014-05-02

    MicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly. Among the altered miRNAs, human brain expressed miR-432 induced neurite projections, arrested cells in G0-G1, reduced cell proliferation and could significantly repress NESTIN/NES, RCOR1/COREST and MECP2. Our results reveal that miR-432 regulate neuronal differentiation of human neuroblastoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. A biosensor for cadmium based on bioconvective patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.

    1990-01-01

    An 'in vitro' method for monitoring cadmium, one of the most lethal bivalent heavy metals, can detect biologically active levels. The effects of cadmium tend to concentrate in protozoa far above natural levels and therein begin transferring through freshwater food chains to animals and humans. In a small sample volume (approximately 5 ml) the method uses the toxic response to the protozoa, Tetrahymena pyriformis, to cadmium. The assay relies on macroscopic bioconvective patterns to measure the toxic response, giving a sensitivity better than 1 micro-g/1 and a toxicity threshold to 7 micro-g/1 for Cd(2+). Cadmium hinders pattern formation in a dose-dependent manner. Arrested organism growth arises from slowed division and mutation to non-dividing classes. Unlike previous efforts, this method can be performed in a shallow flow device and does not require electronic or chemical analyses to monitor toxicity.

  5. Down-regulation of cancer/testis antigen OY-TES-1 attenuates malignant behaviors of hepatocellular carcinoma cells in vitro.

    PubMed

    Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun

    2015-01-01

    Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells.

  6. Down-regulation of cancer/testis antigen OY-TES-1 attenuates malignant behaviors of hepatocellular carcinoma cells in vitro

    PubMed Central

    Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun

    2015-01-01

    Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells. PMID:26339343

  7. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cellmore » proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.« less

  8. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. MT-4 suppresses resistant ovarian cancer growth through targeting tubulin and HSP27.

    PubMed

    Pai, Hui Chen; Kumar, Sunil; Shen, Chien-Chang; Liou, Jing Ping; Pan, Shiow Lin; Teng, Che Ming

    2015-01-01

    In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines. To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay. MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo. These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer.

  10. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis.

    PubMed

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-10-18

    BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.

  11. Vinpocetine inhibits breast cancer cells growth in vitro and in vivo.

    PubMed

    Huang, Er-Wen; Xue, Sheng-Jiang; Zhang, Zheng; Zhou, Jia-Guo; Guan, Yong-Yuan; Tang, Yong-Bo

    2012-10-01

    Vinpocetine is a clinically used drug for cerebrovascular disorders as well as age-related memory impairment. Of note, vinpocetine has been recently identified as a novel anti-inflammatory agent; however, its effects on cancer cells remain to be investigated. In the present study, we found that vinpocetine potently inhibited proliferation of multiple types of human breast cancer cells by arresting cell cycle at G(0)/G(1) phase. It was also revealed that vinpocetine induced cell apoptosis via mitochondria-dependent pathway. Moreover, vinpocetine impaired the migration of the strongly metastatic cell MDA-MB-231. In xenograft model of human breast cancer in nude mice, both systemic and local administration of vinpocetine significantly suppressed the tumor growth without observed toxicity. Interestingly, vinpocetine markedly attenuated the activation of Akt and signal transducer and activator of transcription factor 3 (STAT3), but had no effects on MAP kinases pathways. Collectively, the data suggest that vinpocetine possesses significant yet previously unknown antitumor properties that may be utilized for the treatment of breast cancer.

  12. Association of Ambient Fine Particles With Out-of-Hospital Cardiac Arrests in New York City

    PubMed Central

    Silverman, Robert A.; Ito, Kazuhiko; Freese, John; Kaufman, Brad J.; De Claro, Danilynn; Braun, James; Prezant, David J.

    2010-01-01

    Cardiovascular morbidity has been associated with particulate matter (PM) air pollution, although the relation between pollutants and sudden death from cardiac arrest has not been established. This study examined associations between out-of-hospital cardiac arrests and fine PM (of aerodynamic diameter ≤2.5 μm, or PM2.5), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide in New York City. The authors analyzed 8,216 out-of-hospital cardiac arrests of primary cardiac etiology during the years 2002–2006. Time-series and case-crossover analyses were conducted, controlling for season, day-of-week, same-day, and delayed/apparent temperature. An increased risk of cardiac arrest in time-series (relative risk (RR) = 1.06, 95% confidence interval (CI): 1.02, 1.10) and case-crossover (RR = 1.04, 95% CI: 0.99, 1.08) analysis for a PM2.5 increase of 10 μg/m3 in the average of 0- and 1-day lags was found. The association was significant in the warm season (RR = 1.09, 95% CI: 1.03, 1.15) but not the cold season (RR = 1.01, 95% CI: 0.95, 1.07). Associations of cardiac arrest with other pollutants were weaker. These findings, consistent with studies implicating acute cardiovascular effects of PM, support a link between PM2.5 and out-of-hospital cardiac arrests. Since few individuals survive an arrest, air pollution control may help prevent future cardiovascular mortality. PMID:20729350

  13. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells.

    PubMed

    Cao, Ai-Li; Tang, Qing-Feng; Zhou, Wen-Chao; Qiu, Yan-Yan; Hu, Song-Jiao; Yin, Pei-Hao

    2015-01-01

    Curcumin, the biologically active compound from the rhizome of Curcuma longa, could inhibit cell growth and induce apoptosis in gastric carcinoma. However, the underlying mechanism of curcumin on gastric carcinoma cells still needs further investigation. In this study, morphological observation indicated that curcumin inhibited the proliferation of AGS cells in a dose-dependent manner. According to the flow cytometric analysis, curcumin treatment resulted in G2/M arrest in AGS cells, accompanied with an increased expression of cyclin B1 and a decreased expression of cyclin D1. In addition, DNA ladders were observed by gel electrophoresis. Meanwhile, the activities of caspase-3, -8, and -9 were also enhanced in curcumin-treated AGS cells. Nevertheless, the increased activities could be inhibited by benzyloxycarbonyl-Val-Ala-Asp (OME)-fluoromethylketone (z-VAD-fmk), which suggested that the apoptosis was caspase-dependent. Furthermore, downregulation of rat sarcoma (Ras) and upregulation of extracellular-signal-regulated kinase (ERK) were also observed in AGS cells treated with curcumin by Western blot. U0126, an ERK inhibitor, blocked curcumin-induced apoptosis. The results suggested that curcumin inhibited the growth of the AGS cells and induced apoptosis through the activation of Ras/ERK signaling pathway and downstream caspase cascade, and curcumin might be a potential target for the treatment of gastric carcinoma.

  14. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Rathod, V; Karuppayil, S Mohan

    2011-07-01

    Fluconazole (FLC) susceptibility of isolates of Candida spp., (n = 42) and efficacy as well as mechanism of anti-Candida activity of three constituents of geranium oil is evaluated in this study. No fluconazole resistance was observed among the clinical isolates tested, however 22% were susceptible-dose-dependent (S-DD) [minimal inhibitory concentration (MIC) ≥ 16 μg ml(-1)] and a standard strain of C. albicans ATCC 10231 was resistant (≥ 64 μg ml(-1)). Geraniol and geranyl acetate were equally effective, fungicidal at 0.064% v/v concentrations i.e. MICs (561 μg ml(-1) and 584 μg ml(-1) respectively) and killed 99.9% inoculum within 15 and 30 min of exposures respectively. Citronellol was least effective and fungistatic. C. albicans dimorphism (Y → H) was highly sensitive to geranium oil constituents tested (IC50 approximately 0.008% v/v). Geraniol, geranyl acetate and citronellol brought down MICs of FLC by 16-, 32- and 64-fold respectively in a FLC-resistant strain. Citronellol and geraniol arrested cells in G1 phase while geranyl acetate in G2-M phase of cell cycle at MIC(50). In vitro cytotoxicity study revealed that geraniol, geranyl acetate and citronellol were non-toxic to HeLa cells at MICs of the C. albicans growth. Our results indicate that two of the three geranium oil constituents tested exhibit excellent anti-Candida activity and significant synergistic activity with fluconazole. © 2010 Blackwell Verlag GmbH.

  15. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  16. Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression.

    PubMed

    Feng, Feiyue; Qiu, Bin; Zang, Ruochuan; Song, Peng; Gao, Shugeng

    2017-04-25

    Natural antisense transcripts (NATs) as one of the most diverse classes of long noncoding RNAs (lncRNAs), have been demonstrated involved in fundamental biological processes in human. Here, we reported that human prohibitin gene pseudogene 1 (PHBP1) was upregulated in ESCC, and increased PHBP1 expression in ESCC was associated with clinical advanced stage. Functional experiments showed that PHBP1 knockdown inhibited ESCC cells proliferation, colony formation and xenograft tumor growth in vitro and in vivo by causing cell-cycle arrest at the G1-G0 phase. Mechanisms analysis revealed that PHBP1 transcript as an antisense transcript of PHB is partially complementary to PHB mRNA and formed an RNA-RNA hybrid with PHB, consequently inducing an increase of PHB expression at both the mRNA and protein levels. Furthermore, PHBP1 expression is strongly correlated with PHB expression in ESCC tissues. Collectively, this study elucidates an important role of PHBP1 in promoting ESCC partly via increasing PHB expression.

  17. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1?

    PubMed

    Velappan, Yazhini; Signorelli, Santiago; Considine, Michael J

    2017-10-17

    Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin accessibility, by Polycomb group-type histone modifications of particular dormancy genes. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana.

    PubMed

    Yuan, Chengfu; Wang, Changdong; Wang, Junjie; Kumar, Vikas; Anwar, Firoz; Xiao, Fangxiang; Mushtaq, Gohar; Liu, Yufei; Kamal, Mohammad Amjad; Yuan, Ding

    2016-11-01

    Breast cancer is the second cause of cancer-related death among Women. Current therapies for breast cancer have adverse side-effects. Selenium (Se)-containing polysaccharides have multiple health benefits to humans. Pyracantha fortuneana (P. fortuneana) contains rich Se polysaccharides. We hypothesized that Se-containing polysaccharides from P. fortuneana possess anticancer activity on breast cancer via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of Se-containing polysaccharides from P. fortuneana and the underlying mechanisms. Se-containing polysaccharides were purified. Their properties and monosaccharide compositions were analyzed. Their effects on cell growth, expression of cycle proteins, apoptosis and apoptosis-related protein, and tumor growth in mouse xenograft model were examined. This extract contained 93.7% (w/w) of carbohydrate, 2.1% (w/w) of uronic acid and 3.7μg/g of Se, and was considered as Se-conjugated polysaccharides (Se-PFPs). In vitro studies showed that treatment of triple negative breast cancer (TNBC) MDA-MB-231 cells with Se-PFPs (1) inhibited cell growth dose-dependently by arresting cells at G2 phase via inhibiting CDC25C-CyclinB1/CDC2 pathway; (2) caused apoptosis associated with increased p53, Bax, Puma and Noxa, decreased Bcl2, increased Bax/Bcl2 ratio and increased activities of caspases 3/9, suggesting its effect on p53-mediated cytochrome c-caspase pathway. Treatment of nude mice bearing MDA-MB-231-derived xenograft tumors with Se-PFPs significantly reduced tumor growth without altering body weight, confirming its antitumor activity without toxic side effects. Se-PFPs enhanced doxorubicin cytotoxic effects. It is concluded that Se-containing polysaccharides from P. fortuneana potently inhibit the growth and induce apoptosis of TNBC cells and can be potential anticancer agent for TNBC. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The production of monokaryotic hyphae by Cryptococcus neoformans can be induced by high temperature arrest of the cell cycle and is independent of same-sex mating.

    PubMed

    Fu, Jianmin; Morris, Ian R; Wickes, Brian L

    2013-01-01

    Cryptococcus neoformans is a heterothallic fungal pathogen of humans and animals. Although the fungus grows primarily as a yeast, hyphae are produced during the sexual phase and during a process called monokaryotic fruiting, which is also believed to involve sexual reproduction, but between cells of the same mating type. Here we report a novel monokaryotic fruiting mechanism that is dependent on the cell cycle and occurs in haploid cells in the absence of sexual reproduction. Cells grown at 37°C were found to rapidly produce hyphae (∼4 hrs) and at high frequency (∼40% of the population) after inoculation onto hyphae-inducing agar. Microscopic examination of the 37°C seed culture revealed a mixture of normal-sized and enlarged cells. Micromanipulation of single cells demonstrated that only enlarged cells were able to produce hyphae and genetic analysis confirmed that hyphae did not arise from α-α mating or endoduplication. Cell cycle analysis revealed that cells grown at 37°C had an increased population of cells in G2 arrest, with the proportion correlated with the frequency of monokaryotic fruiting. Cell sorting experiments demonstrated that enlarged cells were only found in the G2-arrested population and only this population contained cells able to produce hyphae. Treatment of cells at low temperature with the G2 cell cycle arrest agent, nocodazole, induced hyphal growth, confirming the role of the cell cycle in this process. Taken together, these results reveal a mating-independent mechanism for monokaryotic fruiting, which is dependent on the cell cycle for induction of hyphal competency.

  20. Resveratrol Differentially Regulates NAMPT and SIRT1 in Hepatocarcinoma Cells and Primary Human Hepatocytes

    PubMed Central

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2014-01-01

    Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648

  1. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    PubMed

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  2. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation.

    PubMed

    Chen, Wei-Qiang; Xu, Bin; Mao, Jian-Wen; Wei, Feng-Xiang; Li, Ming; Liu, Tao; Jin, Xiao-Bao; Zhang, Li-Rong

    2014-01-01

    Pine needle oil from crude extract of pine needles has anti-tumor effects, but the effective component is not known. In the present study, compounds from a steam distillation extract of pine needles were isolated and characterized. Alpha-pinene was identified as an active anti-proliferative compound on hepatoma carcinoma BEL-7402 cells using the MTT assay. Further experiments showed that α-pinene inhibited BEL-7402 cells by arresting cell growth in the G2/M phase of the cell cycle, downregulating Cdc25C mRNA and protein expression, and reducing cycle dependence on kinase 1(CDK1) activity. Taken together, these findings indicate that α-pinene may be useful as a potential anti-tumor drug.

  3. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells

    PubMed Central

    Florean, Cristina; Schnekenburger, Michael; Lee, Jin-Young; Kim, Kyung Rok; Mazumder, Aloran; Song, Sungmi; Kim, Jae-Myun; Grandjenette, Cindy; Kim, Jeoung-Gyun; Yoon, Ah-Young; Dicato, Mario; Kim, Kyu-Won; Christov, Christo; Han, Byung-Woo; Proksch, Peter; Diederich, Marc

    2016-01-01

    We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development. PMID:27006469

  4. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells.

    PubMed

    Florean, Cristina; Schnekenburger, Michael; Lee, Jin-Young; Kim, Kyung Rok; Mazumder, Aloran; Song, Sungmi; Kim, Jae-Myun; Grandjenette, Cindy; Kim, Jeoung-Gyun; Yoon, Ah-Young; Dicato, Mario; Kim, Kyu-Won; Christov, Christo; Han, Byung-Woo; Proksch, Peter; Diederich, Marc

    2016-04-26

    We characterized the brominated alkaloid Isofistularin-3 (Iso-3), from the marine sponge Aplysina aerophoba, as a new DNA methyltransferase (DNMT)1 inhibitor. Docking analysis confirmed our in vitro DNMT inhibition data and revealed binding of Iso-3 within the DNA binding site of DNMT1. Subsequent increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) could be correlated to decreased methylation of CpG sites within the essential Sp1 regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/G1 concomitant with increased p21 and p27 expression and reduced cyclin E1, PCNA and c-myc levels. Reduced proliferation was accompanied by morphological changes typical of autophagy revealed by fluorescent and transmission electron microscopy and validated by LC3I-II conversion. Furthermore, Iso-3 strongly synergized with tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U-937 cells (CI = 0.21) and increased TRAIL-induced apoptosis via a mechanism involving reduction of survivin expression but not of Bcl-2 family proteins nor X-linked inhibitor of apoptosis protein (XIAP). Iso-3 treatment decreased FLIPL expression and triggered activation of endoplasmatic reticulum (ER) stress with increased GRP78 expression, eventually inducing TRAIL receptor death receptor (DR)5 surface expression. Importantly, as a potential candidate for further anticancer drug development, Iso-3 reduced the viability, colony and in vivo tumor forming potential without affecting the viability of PBMCs from healthy donors or zebrafish development.

  5. Apoptosis Induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line.

    PubMed

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1-F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.

  6. Apoptosis Induction by Polygonum minus Is Related to Antioxidant Capacity, Alterations in Expression of Apoptotic-Related Genes, and S-Phase Cell Cycle Arrest in HepG2 Cell Line

    PubMed Central

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects. PMID:24955361

  7. L'effet de p53 sur la radiosensibilité des cellules humaines normales et cancéreuses

    NASA Astrophysics Data System (ADS)

    Little, J. B.; Li, C. Y.; Nagasawa, H.; Huang, H.

    1998-04-01

    The radiosensitivity of normal human fibroblasts in p53 dependent and associated with the loss of cells from the cycling population as the result of an irreversible G1 arrest; cells lacking normal p53 function show no arrest and are more radioresistant. Under conditions in which the repair potentially lethal radiation damage is facilitated, the fraction of cells arrested in G1 is reduced and survival is enhanced. The response of human tumor cells differs significantly. The radiation-induced G1 arrest is minimal or absent in p53+ tumor cells, and loss of normal p53 function has no consistent effect on their radiosensitivity. These results suggest that p53 status may not be a useful predictive marker for the response of human solid tumors to radiation therapy. La radiosensibilité des fibroblastes diploïdes humains est liée à l'expression de p53, et à la perte de cellules en cycle résultant d'un arrêt irréversible en phase G1 ; dans les cellules n'ayant pas une fonction p53 normale, on ne constate aucun arrêt, et elles sont plus radio-résistantes. Dans des conditions favorables à la réparation de lésions potentiellement léthales dues à l'irradiation, la proportion de cellules bloquées en phase G1 baisse, et les chances de survie sont accrues. Bien différente est la réaction des cellules cancéreuses humaines. Le blocage par irradiation en phase G1 est minime ou inexistant dans les cellules cancéreuses p53^+, et la perte de la fonction normale p53 n'a pas d'effet constant sur leur radiosensibilité. Ces résultats laissent penser que l'expression de p53 n'est pas un indice fiable permettant de prévoir la réaction des tumeurs solides à la radiothérapie.

  8. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma.

    PubMed

    Ding, Xia; He, Zhuohao; Zhou, Kechun; Cheng, Ju; Yao, Hailan; Lu, Dongliang; Cai, Rong; Jin, Yening; Dong, Bin; Xu, Yinghui; Wang, Yizheng

    2010-07-21

    Patients with glioblastoma multiforme, the most aggressive form of glioma, have a median survival of approximately 12 months. Calcium (Ca(2+)) signaling plays an important role in cell proliferation, and some members of the Ca(2+)-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of many types of cancer cells. In this study, we investigated the role of TRPC6 in cell cycle progression and in the development of human glioma. TRPC6 protein and mRNA expression were assessed in glioma (n = 33) and normal (n = 17) brain tissues from patients and in human glioma cell lines U251, U87, and T98G. Activation of TRPC6 channels was tested by platelet-derived growth factor-induced Ca(2+) imaging. The effect of inhibiting TRPC6 activity or expression using the dominant-negative mutant TRPC6 (DNC6) or RNA interference, respectively, was tested on cell growth, cell cycle progression, radiosensitization of glioma cells, and development of xenografted human gliomas in a mouse model. The green fluorescent protein (GFP) and wild-type TRPC6 (WTC6) were used as controls. Survival of mice bearing xenografted tumors in the GFP, DNC6, and WTC6 groups (n = 13, 15, and 13, respectively) was compared using Kaplan-Meier analysis. All statistical tests were two-sided. Functional TRPC6 was overexpressed in human glioma cells. Inhibition of TRPC6 activity or expression attenuated the increase in intracellular Ca(2+) by platelet-derived growth factor, suppressed cell growth and clonogenic ability, induced cell cycle arrest at the G2/M phase, and enhanced the antiproliferative effect of ionizing radiation. Cyclin-dependent kinase 1 activation and cell division cycle 25 homolog C expression regulated the cell cycle arrest. Inhibition of TRPC6 activity also reduced tumor volume in a subcutaneous mouse model of xenografted human tumors (P = .014 vs GFP; P < .001 vs WTC6) and increased mean survival in mice in an intracranial model (P < .001 vs GFP or WTC6). In this preclinical model, TRPC6 channels were essential for glioma development via regulation of G2/M phase transition. This study suggests that TRPC6 might be a new target for therapeutic intervention of human glioma.

  9. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line

    PubMed Central

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-01-01

    The Ganoderma lucidum (G. lucidum) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum. GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G0/G1 phase cells and sub-G1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis. PMID:29541200

  10. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line.

    PubMed

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-04-01

    The Ganoderma lucidum ( G. lucidum ) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum . GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G 0 /G 1 phase cells and sub-G 1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis.

  11. A novel flavonoid isolated from Sophora flavescens exhibited anti-angiogenesis activity, decreased VEGF expression and caused G0/G1 cell cycle arrest in vitro.

    PubMed

    Zhang, Xiu-Li; Cao, Mei-Ai; Pu, Li-Ping; Huang, Shuang-Sheng; Gao, Qing-Xiang; Yuan, Cheng-Shan; Wang, Chun-Ming

    2013-05-01

    Kushen, the dried root of Sophora flavescens Ait, is a traditional Chinese herbal medicine. Kushen alkaloids have been developed in China as anticancer drugs, and more potent antitumor activities have been identified in kushen flavonoids than in kushen alkaloids. In this study, the anti-angiogenic properties of (2S)-7,2',4'-triihydroxy-5-methoxy-8-dimethylallyl flavanone (Compound 1, a novel flavonoid isolated from Kushen), were examined using the human umbilical vein endothelial cell line (ECV304) in vitro. The results indicated that compound 1 shows anti-angiogenesis activity via inhibitory effects on cell proliferation, cell migration, cell adhesion, and tube formation. Further studies indicated that compound 1 blocks cell cycles in the G0/G1 phase without inducing apoptosis, and down regulates vascular endothelial growth factor (VEGF) expression. The free radical scavenging activity of compound 1 was found through 2',7'-dichlorofluorescin diacetate (DCFH-DA) incubation assay in cells. The anti-angiogenic properties of compound 1 and its antiproliferative effect on endothelial cells without causing apoptosis make it a good candidate for development as a agent against development of tumors.

  12. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.

    PubMed

    Karki, Rajendra; Ho, Oak-Min; Kim, Dong-Wook

    2013-03-01

    Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.

  13. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    PubMed

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.

    PubMed

    Stuart, David T

    2017-01-01

    Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.

  15. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity.

    PubMed

    Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J

    2005-12-08

    TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.

  16. The association between hemoglobin concentration and neurologic outcome after cardiac arrest☆

    PubMed Central

    Johnson, Nicholas J.; Rosselot, Babette; Perman, Sarah M.; Dodampahala, Kalani; Goyal, Munish; Gaieski, David F.; Grossestreuer, Anne V.

    2018-01-01

    Purpose The purpose of the study is to determine the association between hemoglobin concentration (Hgb) and neurologic outcome in postarrest patients. Methods We conducted a retrospective cohort study using the Penn Alliance for Therapeutic Hypothermia (PATH) cardiac arrest registry. Inclusion criteria were resuscitated cardiac arrest (inhospital or out of hospital) and an Hgb value recorded within 24 hours of return of spontaneous circulation. The primary outcome was favorable neurologic status at hospital discharge. Survival to hospital discharge was a secondary outcome. Results There were 598 eligible patients from 21 hospitals. Patients with favorable neurologic outcome had significantly higher median Hgb in the first 2 hours (12.7 vs 10.5 g/dL; P < .001) and 6 hours (12.6 vs 10.6 g/dL; P < .001) postarrest. Controlling for age, pulseless rhythm, etiology, location of arrest, receipt of targeted temperature management, hematologic or metastatic malignancy, or preexisting renal insufficiency, there was a significant relationship between Hgb and neurologic outcome within the first 6 hours after arrest (odds ratio, 1.23; 95% confidence interval, 1.09–1.38) and survival to hospital discharge (odds ratio, 1.20; 95% confidence interval, 1.08–1.34). Conclusion Higher Hgb after cardiac arrest is associated with favorable neurologic outcome, particularly within the first 6 hours. It is unclear if this effect is due to impaired oxygen delivery or if Hgb is a marker for more severe illness. PMID:27546775

  17. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest.

    PubMed

    Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N; Barny, Marie-Anne

    2014-06-27

    Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  20. Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Chao, Xu; Zhou, Xiaojun; Zheng, Gang; Dong, Changhu; Zhang, Wei; Song, Xiaomei; Jin, Tianbo

    2014-05-01

    Osthole [7-methoxy-8-(3-methyl-2-butenyl) coumarin] isolated from the fruit of Cnidium monnieri (L.) Cuss, one of the commonly used Chinese medicines listed in the Shennong's Classic of Materia Medica in the Han Dynasty, had remarkable antiproliferative activity against human hepatocellular carcinoma HepG2 cells in culture. This study evaluated the effects of osthole on cell growth, nuclear morphology, cell cycle distribution, and expression of apoptosis-related proteins in HepG2 cells. Cytotoxic activity of osthole was determined by the MTT assay at various concentrations ranging from 0.004 to 1.0 µmol/ml in HepG2 cells. Cell morphology was assessed by Hoechst staining and fluorescence microscopy. Apoptosis and cell-cycle distribution was determined by annexin V staining and flow cytometry. Apoptotic protein levels were assessed by Western blot. Osthole exhibited significant inhibition of the survival of HepG2 cells and the half inhibitory concentration (IC₅₀) values were 0.186, 0.158 and 0.123 µmol/ml at 24, 48 and 72 h, respectively. Cells treated with osthole at concentrations of 0, 0.004, 0.02, 0.1 and 0.5 μmol/ml showed a statistically significant increase in the G2/M fraction accompanied by a decrease in the G0/G1 fraction. The increase of apoptosis induced by osthole was correlated with down-regulation expression of anti-apoptotic Bcl-2 protein and up-regulation expression of pro-apoptotic Bax and p53 proteins. Osthole had significant growth inhibitory activity and the pro-apoptotic effect of osthole is mediated through the activation of caspases and mitochondria in HepG2 cells. Results suggest that osthole has promising therapeutic potential against hepatocellular carcinoma.

Top