Sample records for g4 pamam dendrimers

  1. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.

    PubMed

    Oddone, Natalia; Lecot, Nicole; Fernández, Marcelo; Rodriguez-Haralambides, Alejandra; Cabral, Pablo; Cerecetto, Hugo; Benech, Juan Claudio

    2016-06-13

    Breast cancer is the second leading cause of cancer death worldwide. Nanotechnology approaches can overcome the side effects of chemotherapy as well as improve the efficacy of drugs. Dendrimers are nanometric size polymers which are suitable as drug delivery systems. To the best of our knowledge, studies on the application of PAMAM G4.5 (polyamidoamine half generation 4) dendrimers as potential drug delivery systems in breast cancer have not been reported. In this work we developed a PAMAM G4.5 dendrimer containing FITC (fluorescein isothiocyanate) dye to study their uptake by murine breast cancer cells and BALB/c mice breast tumors. We performed a reaction between FITC and PAMAM G4.5 dendrimers which were previously derivatized with piperazine (linker molecule), characterized them by (1)H NMR (proton nuclear magnetic resonance) spectroscopy and MALDI-TOF (matrix-assisted laser desorption/ionization- time-of-flight) mass spectrometry. The experimental data indicated that 2 FITC molecules could be bound covalently at the PAMAM G4.5 dendrimer surface, with 17 FITC molecules probably occluded in PAMAM dendrimers cavity. PAMAM-FITC dendrimer (PAMAM G4.5-piperazinyl-FITC dendrimer) size distribution was evaluated by DLS (dynamic light scattering) and TEM (transmission electron microscopy). The nanoparticle hydrodynamic size was 96.3 ± 1.4 nm with a PdI (polydispersion index) of 0.0296 ± 0.0171, and the size distribution measured by TEM was 44.2 ± 9.2 nm. PAMAM-FITC dendrimers were neither cytotoxic in 4T1 cells nor hemolytic up to 24 h of incubation. In addition, they were uptaken in vitro by 4T1 cells and in vivo by BALB/c mice breast tumors. PAMAM G4.5-piperazinyl-FITC dendrimer intracellular distribution was observed through histologic analysis of the tumor by laser confocal microscopy. These results indicate that PAMAM G4.5 dendrimers enter tumor tissue cells, being good candidates to be used as antitumor drug delivery systems for breast cancer treatment

  2. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers.

    PubMed

    Iacobazzi, Rosa Maria; Porcelli, Letizia; Lopedota, Angela Assunta; Laquintana, Valentino; Lopalco, Antonio; Cutrignelli, Annalisa; Altamura, Emiliano; Di Fonte, Roberta; Azzariti, Amalia; Franco, Massimo; Denora, Nunzio

    2017-08-07

    Reported here is the synthesis and biological evaluation of the asialoglycoprotein receptor (ASGP-R) targeted fourth generation poliamidoamine dendrimer (G(4)-PAMAM) loaded with sorafenib. The ASGP-R targeted dendrimer was obtained by conjugation of Lactobionic acid (La) to the G(4)-PAMAM dendrimer, followed by acetylation (Ac) of the free amino groups in order to reduce the non-specific interactions with the cell membrane. Moreover, by additionally grafting fluorescein (FITC), it was easy to characterize the internalization pathway and the intracellular fate of the targeted dendrimer Ac-La-G(4)-PAMAM-FITC. In vitro experiments performed on HepG-2 and HLE cell lines, allowed to study the ability of the dendrimers to affect the cell vitality. Confocal microscopy and cytofluorimetric analysis confirmed higher binding and uptake ability of the Ac-La-G(4)-PAMAM-FITC dendrimer in well differentiated and ASGP-R expressing human liver cancer cell line HepG-2 compared non-expressing HLE cells. Ac-La-G(4)-PAMAM-FITC dendrimer loaded with sorafenib was stable and showed sustained sorafenib release. As evidenced by the cytotoxicity studies, sorafenib included in the dendrimer maintained its effectiveness, and was able to produce a longer lasting effect over the time compared to molar equivalent doses of free sorafenib. This new targeted dendrimer appears to be a suitable carrier for the delivery of sorafenib to liver cancer cells expressing ASGP-R. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Selective cytotoxicity of PAMAM G5 core–PAMAM G2.5 shell tecto-dendrimers on melanoma cells

    PubMed Central

    Schilrreff, Priscila; Mundiña-Weilenmann, Cecilia; Romero, Eder Lilia; Morilla, Maria Jose

    2012-01-01

    Background The controlled introduction of covalent linkages between dendrimer building blocks leads to polymers of higher architectural order known as tecto-dendrimers. Because of the few simple steps involved in their synthesis, tecto-dendrimers could expand the portfolio of structures beyond commercial dendrimers, due to the absence of synthetic drawbacks (large number of reaction steps, excessive monomer loading, and lengthy chromatographic separations) and structural constraints of high-generation dendrimers (reduction of good monodispersity and ideal dendritic construction due to de Gennes dense-packing phenomenon). However, the biomedical uses of tecto-dendrimers remain unexplored. In this work, after synthesizing saturated shell core–shell tecto-dendrimers using amine-terminated polyamidoamine (PAMAM) generation 5 (G5) as core and carboxyl-terminated PAMAM G2.5 as shell (G5G2.5 tecto-dendrimers), we surveyed for the first time the main features of their interaction with epithelial cells. Methods Structural characterization of G5G2.5 was performed by polyacrylamide gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry, and microscopic techniques; their hydrodynamic size and Z-potential was also determined. Cellular uptake by human epidermal keratinocytes, colon adenocarcinoma, and epidermal melanoma (SK-Mel-28) cells was determined by flow cytometry. Cytotoxicity was determined by mitochondrial activity, lactate dehydrogenase release, glutathione depletion, and apoptosis/necrosis measurement. Results The resultant 60%–67% saturated shell, 87,000-dalton G5G2.5 (mean molecular weight) interacted with cells in a significantly different fashion in comparison to their building blocks and to its closest counterpart, PAMAM G6.5. After being actively taken up by epithelial cells, G5G2.5 caused cytotoxicity only on SK-Mel-28 cells, including depletion of intracellular glutathione and fast necrosis that was manifested above 5 μM G5

  4. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery.

    PubMed

    Souza, Joel G; Dias, Karina; Silva, Silas A M; de Rezende, Lucas C D; Rocha, Eduardo M; Emery, Flavio S; Lopez, Renata F V

    2015-02-28

    Iontophoresis of nanocarriers in the eye has been proposed to sustain drug delivery and maintain therapeutic concentrations. Fourth generation polyamidoamine (PAMAM) dendrimers are semi-rigid nanoparticles with surface groups that are easily modified. These dendrimers are known to modulate tight junctions, increase paracellular transport of small molecules and be translocated across epithelial barriers, exhibiting high uptake by different cell lines. The first aim of this study was to investigate the effect of iontophoresis on PAMAM penetration and distribution into the cornea. The second aim was to evaluate, ex vivo and in vivo, the effect of these dendrimers in dexamethasone (Dex) transcorneal iontophoresis. Anionic (PAMAM G3.5) and cationic (PAMAM G4) dendrimers were labeled with fluorescein isothiocyanate (FITC), and their distribution in the cornea was investigated using confocal microscopy after ex vivo anodal and cathodal iontophoresis for various application times. The particle size distribution and zeta potential of the dendrimers in an isosmotic solution were determined using dynamic light scattering and Nanoparticle Tracking Analysis (NTA), where the movement of small particles and the formation of large aggregates, from 5 to 100 nm, could be observed. Transcorneal iontophoresis increased the intensity and depth of PAMAM-FITC fluorescence in the cornea, suggesting improved transport of the dendrimers across the epithelium toward the stroma. PAMAM complexes with Dex were characterized by (13)C-NMR, (1)H-NMR and DOSY. PAMAM G3.5 and PAMAM G4 increased the aqueous solubility of Dex by 10.3 and 3.9-fold, respectively; however, the particle size distribution and zeta potential remained unchanged. PAMAM G3.5 decreased the Dex diffusion coefficient 48-fold compared with PAMAM G4. The ex vivo studies showed that iontophoresis increased the amount of Dex that penetrated into the cornea by 2.9, 5.6 and 3.0-fold for Dex, Dex-PAMAM G4 and Dex-PAMAM G3

  5. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  6. Cationic PAMAM dendrimers disrupt key platelet functions

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Franks, Zechariah; Gibson, Christopher C.; Thiagarajan, Giridhar; Vieira-de-Abreu, Adriana; Sukavaneshvar, Sivaprasad; Mohammad, S. Fazal; Li, Dean Y.; Ghandehari, Hamidreza; Weyrich, Andrew S.; Brooks, Benjamin D.; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood. PMID:22497592

  7. Fluorescent quantum dot hydrophilization with PAMAM dendrimer

    NASA Astrophysics Data System (ADS)

    Potapkin, Dmitry V.; Geißler, Daniel; Resch-Genger, Ute; Goryacheva, Irina Yu.

    2016-05-01

    Polyamidoamine (PAMAM) dendrimers were used to produce CdSe core/multi-shell fluorescent quantum dots (QDs) which are colloidally stable in aqueous solutions. The size, charge, and optical properties of QDs functionalized with the 4th (G4) and 5th (G5) generation of PAMAM were compared with amphiphilic polymer-covered QDs and used as criteria for the evaluation of the suitability of both water solubilization methods. As revealed by dynamic and electrophoretic light scattering (DLS and ELS), the hydrodynamic sizes of the QDs varied from 30 to 65 nm depending on QD type and dendrimer generation, with all QDs displaying highly positive surface charges, i.e., zeta potentials of around +50 mV in water. PAMAM functionalization yielded stable core/multi-shell QDs with photoluminescence quantum yields ( Φ) of up to 45 %. These dendrimer-covered QDs showed a smaller decrease in their Φ upon phase transfer compared with QDs made water soluble via encapsulation with amphiphilic brush polymer bearing polyoxyethylene/polyoxypropylene chains.

  8. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    PubMed

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  9. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish

    PubMed Central

    Pryor, Joseph B; Harper, Bryan J; Harper, Stacey L

    2014-01-01

    Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity. However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ≥50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers. To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers. PMID:24790436

  10. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.

    PubMed

    Ciolkowski, Michal; Rozanek, Monika; Bryszewska, Maria; Klajnert, Barbara

    2013-10-01

    In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure. © 2013.

  11. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers.

    PubMed

    Wang, Bing; Navath, Raghavendra S; Menjoge, Anupa R; Balakrishnan, Bindu; Bellair, Robert; Dai, Hui; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M

    2010-08-16

    Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in vitro, in vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 microg of generation-4 neutral dendrimer (G(4)-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis. Amniotic fluid collected from different gestational sacs of infected guinea pigs posttreatment showed absence of E. coli growth in the cultures plated with it. The cytokine level [tumor necrosis factor (TNFalpha) and interleukin (IL-6 and IL-1beta)] in placenta of the G(4)-PAMAM-OH treated animals were comparable to those in healthy animals while these were notably high in infected animals. Since, antibacterial activity of amine-terminated PAMAM dendrimers is known, the activity of hydroxyl and carboxylic acid terminated PAMAM dendrimers was compared with it. Though the G(4)-PAMAM-NH(2) shows superior antibacterial activity, it was found to be cytotoxic to human cervical epithelial cell line above 10 microg/mL, while the G(4)-PAMAM-OH was non-cytotoxic up to 1mg/mL concentration. Cell integrity, outer (OM) and inner (IM) membrane permeabilization assays showed that G(4)-PAMAM-OH dendrimer efficiently changed the OM permeability, while G(4)-PAMAM-NH(2) and G(3.5)-PAMAM-COOH damaged both OM and IM causing the bacterial lysis. The possible antibacterial mechanism are G(4)-PAMAM-NH(2) acts as polycation binding to the polyanionic lipopolysaccharide in E. coli, the G(4)-PAMAM-OH forms hydrogen bonds with the hydrophilic O-antigens in E. coli membrane and the G(3.5)-PAMAM-COOH acts as a polyanion, chelating the divalent ions in outer cell membrane of E. coli. This is the first study which shows that G(4)-PAMAM-OH dendrimer acts as an antibacterial agent. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    PubMed

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  13. Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Buczkowski, Adam; Urbaniak, Pawel; Piekarski, Henryk; Palecz, Bartlomiej

    2017-01-01

    The results of spectroscopic measurements (an increase in solubility, equilibrium dialysis, 1H NMR titration) and calorimetric measurements (isothermal titration ITC) indicate spontaneous (ΔG < 0) binding of 5-fluorouracil molecules by PAMAM G4-OH dendrimer with terminal hydroxyl groups in an aqueous solution. PAMAM G4-OH dendrimer bonds about n = 8 ± 1 molecules of the drug with an equilibrium constant of K = 70 ± 10. The process of saturating the dendrimer active sites by the drug molecules is exothermal (ΔH < 0) and is accompanied by an advantageous change in entropy (ΔS > 0). The parameters of binding 5-fluorouracil by PAMAM G4-OH dendrimer were compared with those of binding this drug by the macromolecules of PAMAM G3-OH and G5-OH.

  14. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats.

    PubMed

    Karolczak, Kamil; Rozalska, Sylwia; Wieczorek, Marek; Labieniec-Watala, Magdalena; Watala, Cezary

    2012-10-15

    We hypothesized that BBB is impaired in rat model of streptozotocin-induced diabetes and can be sealed by poly(amido)amine dendrimers G4.0 (PAMAM G4), which reveal anti-glycation activity. The BBB permeabilization was monitored in rats with the 60-day streptozotocin-diabetes and non-diabetic animals, using three fluorescent dyes (given intraperitoneally) differing in molecular weight: fluorescein, fluorescein isothiocyanate (FITC)-dextran and Evans blue. All animals were administered for 2 months with either PAMAM G4 dendrimer or placebo. The fluorescence intensities of the injected fluorescent markers were recorded in the homogenates of selected brain regions. The highest accumulations of the used fluorescent dyes were observed for fluorescein, predominantly in thalamus, hippocampus, frontal cortex, striatum and cerebellum. FITC-dextran leaked to much smaller extent, however, higher permeabilization for FITC-dextran was revealed in pons-medulla oblongata, frontal and parietal cortex of diabetic compared to control animals. Evans blue leaked very slowly into striatum and pons-medulla oblongata in diabetic rats. The treatment of diabetic animals with PAMAM G4 significantly reduced blood glucose concentration and hallmarks of late diabetic complications, compared to non-treated diabetic animals. PAMAM G4 significantly reduced diabetes-induced permeabilization of BBB, which remained in line with the reduced blood glucose and the amelioration of the biochemical hallmarks of severe hyperglycaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers

    PubMed Central

    2015-01-01

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [14C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery. PMID:24992090

  16. Transepithelial transport of PAMAM dendrimers across isolated rat jejunal mucosae in ussing chambers.

    PubMed

    Hubbard, Dallin; Ghandehari, Hamidreza; Brayden, David J

    2014-08-11

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [(14)C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery.

  17. Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-12-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively studied as delivery vectors in biomedical applications. A limited number of molecular dynamics (MD) simulation studies have investigated the effect of surface chemistry on therapeutic molecules loading, with the aim of providing insights for biocompatibility improvement and increase in drug loading capacity of PAMAM dendrimers. In this work, fully atomistic MD simulations were employed to study the association of 5-Fluorouracil (5-FU) with amine (NH2)- and hydroxyl (OH)-terminated PAMAM dendrimers of generations 3 and 4 (G3 and G4). MD results show a 1:12, 1:1, 1:27, and 1:4 stoichiometry, respectively, for G3NH2-FU, G3OH-FU, G4NH2-FU, and G4OH-FU complexes, which is in good agreement with the isothermal titration calorimetry results. The results obtained showed that NH2-terminated dendrimers assume segmented open structures with large cavities and more drug molecules can encapsulate inside the dendritic cavities of amine terminated dendrimers. However, OH-terminated have a densely packed structure and therefore, 5-FU drug molecules are more stable to locate close to the surface of the dendrimers. Intermolecular hydrogen bonding analysis showed that 5-FU drug molecules have more tendency to form hydrogen bonds with terminal monomers of OH-terminated dendrimers, while in NH2-terminated these occur both in the inner region and the surface. Furthermore, MM-PBSA analysis revealed that van der Waals and electrostatic energies are both important to stabilize the complexes. We found that drug molecules are distributed uniformly inside the amine and hydroxyl terminated dendrimers and therefore, both dendrimers are promising candidates as drug delivery systems for 5-FU drug molecules.

  18. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Brooks, Amanda E.; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S.; Brooks, Benjamin D.; Ghandehari, Hamidreza; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated through electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos (ZFE) were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regards to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity. PMID:23062017

  19. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity.

    PubMed

    Goldberg, Deborah S; Vijayalakshmi, Nirmalkumar; Swaan, Peter W; Ghandehari, Hamidreza

    2011-03-30

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC₅₀ values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 h, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. G3.5 PAMAM Dendrimers Enhance Transepithelial Transport of SN38 while minimizing Gastrointestinal Toxicity

    PubMed Central

    Goldberg, Deborah S.; Vijayalakshmi, Nirmalkumar; Swaan, Peter W.; Ghandehari, Hamidreza

    2011-01-01

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC50 values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 hours, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. PMID:21115079

  1. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer.

    PubMed

    Bellini, Reinaldo G; Guimarães, Ana P; Pacheco, Marco A C; Dias, Douglas M; Furtado, Vanessa R; de Alencastro, Ricardo B; Horta, Bruno A C

    2015-07-01

    The association of the anti-tuberculosis drug rifampicin (RIF) with a 4th-generation poly(amidoamine) (G4-PAMAM) dendrimer was investigated by means of molecular dynamics simulations. The RIF load capacity was estimated to be around 20 RIF per G4-PAMAM at neutral pH. The complex formed by 20 RIF molecules and the dendrimer (RIF20-PAMAM) was subjected to 100 ns molecular dynamics (MD) simulations at two different pH conditions (neutral and acidic). The complex was found to be significantly more stable in the simulation at neutral pH compared to the simulation at low pH in which the RIF molecules were rapidly and almost simultaneously expelled to the solvent bulk. The high stability of the RIF-PAMAM complex under physiological pH and the rapid release of RIF molecules under acidic medium provide an interesting switch for drug targeting since the Mycobacterium resides within acidic domains of the macrophage. Altogether, these results suggest that, at least in terms of stability and pH-dependent release, PAMAM-like dendrimers may be considered suitable drug delivery systems for RIF and derivatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization.

    PubMed

    Saovapakhiran, Angkana; D'Emanuele, Antony; Attwood, David; Penny, Jeffrey

    2009-04-01

    The aim of this study was to investigate the influence of dendrimer surface properties on cellular internalization and intracellular trafficking in the human colon adenocarcinoma HT-29 cell line. Third-generation (G3) polyamidoamine (PAMAM) dendrimers were modified to contain either two lauroyl chains (G3L2), two propranolol molecules (G3P2), or two lauroyl and two propranolol molecules (G3L2P2) at the dendrimer surface. Surface-modified and unmodified dendrimers were labeled with fluorescein isothiocyanate (FITC) at an average molar ratio of 1:1. The mechanisms of cellular internalization and intracellular trafficking of dendrimers were analyzed by confocal laser scanning microscopy and flow cytometry. The internalization of G3 and G3P2 dendrimers involved both caveolae-dependent endocytosis and macropinocytosis pathways; internalization of G3L2P2 dendrimer appeared to involve caveolae-dependent, and possibly clathrin-dependent, endocytosis pathways; and internalization of G3L2 dendrimer occurred via caveolae-dependent, clathrin-dependent, and macropinocytosis pathways. Subcellular colocalization data indicated that unmodified and all surface-modified G3 PAMAM dendrimers were internalized and trafficked to endosomes and lysosomes. It is therefore apparent that the initial mode of dendrimer internalization into HT-29 cells is influenced by the surface properties of G3 PAMAM dendrimer.

  3. Transport of surface engineered polyamidoamine (PAMAM) dendrimers across IPEC-J2 cell monolayers.

    PubMed

    Pisal, Dipak S; Yellepeddi, Venkata K; Kumar, Ajay; Palakurthi, Srinath

    2008-11-01

    The aim of our study was to prepare arginine-and ornithine-conjugated Polyamidoamine (PAMAM) dendrimers and study their permeability across IPEC-J2 cell monolayers, a new intestinal cell line model for drug absorption studies. Arginine and ornithine were conjugated to the amine terminals of the PAMAM(G4) dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (P(app)) for the PAMAM dendrimers increased by conjugating the dendrimers with both of these polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. Correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of these surface-modified dendrimers was evaluated in IPEC-J2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were insignificantly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer-polyamine conjugates as the carriers for antigen/drug delivery through the oral mucosa.

  4. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodewein, Lambert

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96 h and human cancer cell lines for 24 h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, withmore » EC50 values ranging from 0.16 to just below 1.7 μM at 24 and 48 hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values ≥ 402 μM (PAMAMs) and ≤ 240 μM (PPIs) for HepG2 and ≤ 13.24 μM (PAMAMs) and ≤ 12.84 μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. - Highlights: • Zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time. • Zebrafish embryo toxicity of cationic dendrimers did not increase with generation. • Cationic dendrimers induced apoptosis in zebrafish embryos. • Toxicity of cationic dendrimers was lower in HepG2 and DU145 than zebrafish

  5. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation. Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [(14)C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability. Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers. The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.

  6. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  7. On the ability of PAMAM dendrimers and dendrimer/DNA aggregates to penetrate POPC model biomembranes.

    PubMed

    Ainalem, Marie-Louise; Campbell, Richard A; Khalid, Syma; Gillams, Richard J; Rennie, Adrian R; Nylander, Tommy

    2010-06-03

    Poly(amido amine) (PAMAM) dendrimers have previously been shown, as cationic condensing agents of DNA, to have high potential for nonviral gene delivery. This study addresses two key issues for gene delivery: the interaction of the biomembrane with (i) the condensing agent (the cationic PAMAM dendrimer) and (ii) the corresponding dendrimer/DNA aggregate. Using in situ null ellipsometry and neutron reflection, parallel experiments were carried out involving dendrimers of generations 2 (G2), 4 (G4), and 6 (G6). The study demonstrates that free dendrimers of all three generations were able to traverse supported palmitoyloleoylphosphatidylcholine (POPC) bilayers deposited on silica surfaces. The model biomembranes were elevated from the solid surfaces upon dendrimer penetration, which offers a promising new way to generate more realistic model biomembranes where the contact with the supporting surface is reduced and where aqueous cavities are present beneath the bilayer. The largest dendrimer (G6) induced partial bilayer destruction directly upon penetration, whereas the smaller dendrimers (G2 and G4) leave the bilayer intact, so we propose that lower generation dendrimers have greater potential as transfection mediators. In addition to the experimental observations, coarse-grained simulations on the interaction between generation 3 (G3) dendrimers and POPC bilayers were performed in the absence and presence of a bilayer-supporting negatively charged surface that emulates the support. The simulations demonstrate that G3 is transported across free-standing POPC bilayers by direct penetration and not by endocytosis. The penetrability was, however, reduced in the presence of a surface, indicating that the membrane transport observed experimentally was not driven solely by the surface. The experimental reflection techniques were also applied to dendrimer/DNA aggregates of charge ratio = 0.5, and while G2/DNA and G4/DNA aggregates interact with POPC bilayers, G6/DNA

  8. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naha, Pratap C., E-mail: pratap.naha@dit.i; NanoLab, Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8; Davoren, Maria

    2010-07-15

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H{sub 2}DCFDA to DCFmore » both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at {approx} 4 h), TNF-{alpha} and IL-6 secretion (maximum at {approx} 24 h), MIP-2 levels and cell death ({approx} 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.« less

  9. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines.

    PubMed

    Bodewein, Lambert; Schmelter, Frank; Di Fiore, Stefano; Hollert, Henner; Fischer, Rainer; Fenske, Martina

    2016-08-15

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96h and human cancer cell lines for 24h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7μM at 24 and 48hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values≥402μM (PAMAMs) and ≤240μM (PPIs) for HepG2 and ≤13.24μM (PAMAMs) and ≤12.84μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study.

    PubMed

    Kavyani, Sajjad; Amjad-Iranagh, Sepideh; Modarress, Hamid

    2014-03-27

    Poly(amidoamine) (PAMAM) dendrimers play an important role in drug delivery systems, because the dendrimers are susceptible to gain unique features with modification of their structure such as changing their terminals or improving their interior core. To investigate the core improvement and the effect of core nature on PAMAM dendrimers, we studied two generations G3 and G4 PAMAM dendrimers with the interior cores of commonly used ethylendiamine (EDA), 1,5-diaminohexane (DAH), and bis(3-aminopropyl) ether (BAPE) solvated in water, as an aqueous dendrimer system, by using molecular dynamics simulation and applying a coarse-grained (CG) dendrimer force field. To consider the electrostatic interactions, the simulations were performed at two protonation states, pHs 5 and 7. The results indicated that the core improvement of PAMAM dendrimers with DAH produces the largest size for G3 and G4 dendrimers at both pHs 5 and 7. The increase in the size was also observed for BAPE core but it was not so significant as that for DAH core. By considering the internal structure of dendrimers, it was found that PAMAM dendrimer shell with DAH core had more cavities than with BAPE core at both pHs 5 and 7. Also the moment of inertia calculations showed that the generation G3 is more open-shaped and has higher structural asymmetry than the generation G4. Possessing these properties by G3, specially due to its structural asymmetry, make penetration of water beads into the dendrimer feasible. But for higher generation G4 with its relatively structural symmetry, the encapsulation efficiency for water molecules can be enhanced by changing its core to DAH or BAPE. It is also observed that for the higher generation G4 the effect of core modification is more profound than G3 because the core modification promotes the structural asymmetry development of G4 more significantly. Comparing the number of water beads that penetrate into the PAMAM dendrimers for EDA, DAH, and BAPE cores indicates a

  11. PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy.

    PubMed

    Li, Xiaojie; Takashima, Munenobu; Yuba, Eiji; Harada, Atsushi; Kono, Kenji

    2014-08-01

    We prepared pH-sensitive drug-dendrimer conjugate-hybridized gold nanorod as a promising platform for combined cancer photothermal-chemotherapy under in vitro and in vivo conditions. Poly(ethylene glycol)-attached PAMAM G4 dendrimers (PEG-PAMAM) were first covalently linked on the surface of mercaptohexadecanoic acid-functionalized gold nanorod (MHA-AuNR), with subsequent conjugation of anti-cancer drug doxorubicin (DOX) to dendrimer layer using an acid-labile-hydrazone linkage to afford PEG-DOX-PAMAM-AuNR particles. The particles with a high PEG-PAMAM dendrimer coverage density (0.28 per nm(2) AuNR) showed uniform sizes and excellent colloidal stability. In vitro drug release studies demonstrated that DOX released from PEG-DOX-PAMAM-AuNR was negligible under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. The efficient intracellular acid-triggered DOX release inside of lysosomes was confirmed using confocal laser scanning microscopy analysis. Furthermore, the combined photothermal-chemo treatment of cancer cells using PEG-DOX-PAMAM-AuNR for synergistic hyperthermia ablation and chemotherapy was demonstrated both in vitro and in vivo to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of PEG-DOX-PAMAM-AuNR particles for cancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex.

    PubMed

    Narmani, Asghar; Yavari, Kamal; Mohammadnejad, Javad

    2017-11-01

    Overexpression of folic acid receptor in various human tumors cells makes it as good candidate for targeting delivery of chemotherapeutic and radiopharmaceutical agents. In this research, FA used for functionalization of PEG modified PAMAM G4 dendrimer as a smart delivery of 5-FU and 99m Tc for the breast carcinoma in order to chemotherapeutic and imaging goals. One aim of this research was assess the FA-mediated cell viability assay of PEG-PAMAM G4-FA-5FU- 99m Tc and in vitro uptake of PEG-PAMAM G4-FA- 99m Tc as the novel nano-complex determined on C2Cl2 (normal cell) and MCF-7 (breast cancer cell) cell lines. Other main goals were studied. Morover, an investigation in to in vivo imaging and biodistribution was carried out via a novel radio tracer by which tumor accumulation and site were obviously detected. The targeted tumor images taken by tail intravenous injection demonstrated that nano-complex can be smartly used in imaging study of the clinical practices. Also, the biodistribution of this nano-complex was investigated and the organ predestination of 99m Tc labeled nano-complex (%ID/g) was ascertained. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-01

    We report the loading efficacy of folic acid (FA) by polyamidoamine (PAMAM-G3 and PAMAM-G4) nanoparticles in aqueous solution at physiological pH. Thermodynamic parameters ΔH = -47.57 (kJ Mol -1 ), ΔS = -122.78 (J Mol -1 , K -1 ) and ΔG = -10.96 (kJ Mol -1 ) showed FA-PAMAM bindings occur via H-bonding and van der Waals contacts. The stability of acid-PAMAM conjugate increased as polymer size increased. The acid loading efficacy was 40 to 50%. TEM images exhibited major polymer morphological changes upon acid encapsulation. PAMAM dendrimers are capable of FA delivery in vitro.

  14. DNA assisted self-assembly of PAMAM dendrimers.

    PubMed

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  15. TRANSEPITHELIAL TRANSPORT AND TOXICITY OF PAMAM DENDRIMERS: IMPLICATIONS FOR ORAL DRUG DELIVERY

    PubMed Central

    Sadekar, S.; Ghandehari, H.

    2011-01-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer – drug conjugates, as a function of physicochemical properties will further need to be assessed. PMID:21983078

  16. Development of Topical Treatment for Pseudomonas aeruginosa Wound Infections by Quorum-Sensing Inhibitors Mediated by Poly(amidoamine) (PAMAM) Dendrimers

    DTIC Science & Technology

    2013-01-01

    baicalein, baicalin ) and PAMAM dendrimers (G5-NH2, G4-NH2, G3- NH2, G5-COOH, G5-OH) from commercial sources. To synthesize QSI-PAMAM complexes by...of QSI and PAMAM in the complex was listed in Table 1. 4 Conjugation of baicalin was carried according the proposed synthesis scheme. In this...performance period, we synthesized baicalin complex with G5-Ac50 by conjugation. To generate covalently conjugated QSI-PAMAM complexes, the PAMAM

  17. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.

    PubMed

    Sadekar, S; Ghandehari, H

    2012-05-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer-drug conjugates, as a function of physicochemical properties will further need to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  19. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    PubMed

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  20. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    PubMed

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  1. pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.

    PubMed

    Gosika, Mounika; Maiti, Prabal K

    2018-03-07

    The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.

  2. Low Concentrations of Cationic PAMAM Dendrimers Affect Lymphocyte Respiration in In vitro Studies.

    PubMed

    Labieniec-Watala, Magdalena; Szwed, Marzena; Hertel, Joanna; Wisnik, Ewelina

    2017-01-01

    In this study, the effect of low concentrations of poly(amido)amine dendrimers (G2-G4) on human lymphocytes was studied. Some works revealed that PAMAMs can adversely affect the morphology of blood components and mitochondria functions. In this context, the present report aimed to investigate the in vitro cationic dendrimers' effect on mitochondrial respiration and cell morphology in lymphocytes isolated from human blood. To monitor the mitochondrial changes, the high-resolution respirometer was used, whereas the cell morphology was analyzed using a flow cytometer and fluorescence microscopy. The concentration-dependent dendrimers' influence on lymphocytes morphology was shown. Changes in mitochondrial respiration revealed the concentration- and generation-dependent differences between dendrimer activity. There were no alterations in the routine respiration and in the state of the inner mitochondrial membrane (L/E), but decreased ADP- and FCCP-stimulated respirations were detected after treatment with G3 and G4 dendrimers. The markers of mitochondrial membrane integrity (RCR) and OXPHOS efficiency (P/E) significantly decreased regardless of the dendrimer generation used. Based on these in vitro evaluations, we state that cationic PAMAM dendrimers can impair both the morphology and the bioenergetics of human lymphocytes, even when used at low concentrations and in a short time (up to 1 h). However, these results do not imply that similar findings could be possible for in vivo observations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors

    PubMed Central

    2015-01-01

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629

  4. Photoinduced Electron Transfer of PAMAM Dendrimer-Zinc(II) Porphyrin Associates at Polarized Liquid|Liquid Interfaces.

    PubMed

    Nagatani, Hirohisa; Sakae, Hiroki; Torikai, Taishi; Sagara, Takamasa; Imura, Hisanori

    2015-06-09

    The heterogeneous photoinduced electron-transfer reaction of the ion associates between NH2-terminated polyamidoamine (PAMAM) dendrimers and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato zinc(II) (ZnTPPS(4-)) was studied at the polarized water|1,2-dichloroethane (DCE) interface. The positive photocurrent arising from the photoreduction of ZnTPPS(4-) by a lipophilic quencher, decamethylferrocene, in the interfacial region was significantly enhanced by the ion association with the PAMAM dendrimers. The photocurrent response of the dendrimer-ZnTPPS(4-) associates was dependent on the pH condition and on the generation of dendrimer. A few cationic additives such as polyallylamine and n-octyltrimethyammonium were also examined as alternatives to the PAMAM dendrimer, but the magnitude of the photocurrent enhancement was rather small. The high photoreactivity of the dendrimer-ZnTPPS(4-) associates was interpreted mainly as a result of the high interfacial concentration of photoreactive porphyrin units associated stably with the dendrimer which was preferably adsorbed at the polarized water|DCE interface. The photochemical data observed in the second and fourth generation PAMAM dendrimer systems demonstrated that the higher generation dendrimer which can incorporate a porphyrin molecule more completely in the interior is less efficient for the photocurrent enhancement at the interface. These results indicated that the photoreactivity of ionic reactant at a polarized liquid|liquid interface can readily be modified via ion association with the charged dendrimer.

  5. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane.

    PubMed

    Lombardo, Domenico; Calandra, Pietro; Bellocco, Ersilia; Laganà, Giuseppina; Barreca, Davide; Magazù, Salvatore; Wanderlingh, Ulderico; Kiselev, Mikhail A

    2016-11-01

    In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO - Na + ) dendrimers or positively charged (generation G=3.0) amino terminated (-NH 2 ) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Molecular Dynamics Study of the Structure, Flexibility, and Hydrophilicity of PETIM Dendrimers: A Comparison with PAMAM Dendrimers.

    PubMed

    Kanchi, Subbarao; Suresh, Gorle; Priyakumar, U Deva; Ayappa, K G; Maiti, Prabal K

    2015-10-15

    A new class of dendrimers, the poly(propyl ether imine) (PETIM) dendrimer, has been shown to be a novel hyperbranched polymer having potential applications as a drug delivery vehicle. Structure and dynamics of the amine terminated PETIM dendrimer and their changes with respect to the dendrimer generation are poorly understood. Since most drugs are hydrophobic in nature, the extent of hydrophobicity of the dendrimer core is related to its drug encapsulation and retention efficacy. In this study, we carry out fully atomistic molecular dynamics (MD) simulations to characterize the structure of PETIM (G2-G6) dendrimers in salt solution as a function of dendrimer generation at different protonation levels. Structural properties such as radius of gyration (Rg), radial density distribution, aspect ratio, and asphericity are calculated. In order to assess the hydrophilicity of the dendrimer, we compute the number of bound water molecules in the interior of dendrimer as well as the number of dendrimer-water hydrogen bonds. We conclude that PETIM dendrimers have relatively greater hydrophobicity and flexibility when compared with their extensively investigated PAMAM counterparts. Hence PETIM dendrimers are expected to have stronger interactions with lipid membranes as well as improved drug encapsulation and retention properties when compared with PAMAM dendrimers. We compute the root-mean-square fluctuation of dendrimers as well as their entropy to quantify the flexibility of the dendrimer. Finally we note that structural and solvation properties computed using force field parameters derived based on the CHARMM general purpose force field were in good quantitative agreement with those obtained using the generalized Amber force field (GAFF).

  7. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer.

    PubMed

    Gholami, Mitra; Mohammadi, Rashin; Arzanlou, Mohsen; Akbari Dourbash, Fakhraddin; Kouhsari, Ebrahim; Majidi, Gharib; Mohseni, Seyed Mohsen; Nazari, Shahram

    2017-06-05

    Nano-scale dendrimers are synthetic macromolecules that frequently used in medical and health field. Traditional anibiotics are induce bacterial resistence so there is an urgent need for novel antibacterial drug invention. In the present study seventh generation poly (amidoamine) (PAMAM-G7) dendrimer was synthesized and its antibacterial activities were evaluated against representative Gram- negative and Gram-positive bacteria. PAMAM-G7 was synthesized with divergent growth method. The structural and surface of PAMAM-G7 were investigated by transmission electron microscopy, scanning electron microscope and fourier transform infrared. Pseudomonas. aeruginosa (n = 15), E. coli (n = 15), Acinetobacter baumanni (n = 15), Shigella dysenteriae (n = 15), Klebsiella pneumoniae (n = 10), Proteus mirabilis (n = 15), Staphylococcus aureus (n = 15) and Bacillus subtilis (n = 10) have been used for antibacterial activity assay. Additionally, representative standard strains for each bacterium were included. Minimum Inhibitory Concentration (MIC) was determined using microdilution method. Subsequently, Minimum Bactericidal Concentration (MBC) was determined by sub-culturing each of the no growth wells onto Mueller Hinton agar medium. The cytotoxicity of PAMAM-G7 dendrimer were evaluated in HCT116 and NIH 3 T3 cells by MTT assay. The average size of each particle was approximately 20 nm. PAMAM-G7 was potentially to inhibit both Gram positive and gram negative growth. The MIC50 and MIC90 values were determined to be 2-4 μg/ml and 4-8 μg/ml, respectively. The MBC50 and MBC90 values were found to be 64-256 μg/ml and 128-256 μg/ml, respectively. The cytotoxity effect of dendrimer on HCT116 and NIH 3 T3 cells is dependent upon exposure time to and concentration of dendrimers. The most reduction (44.63 and 43%) in cell viability for HCT116 and NIH 3 T3 cells was observed at the highest concentration, 0.85 μM after 72 h treatmentm, respectively. This study

  8. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    PubMed

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  9. PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water.

    PubMed

    DeFever, Ryan S; Geitner, Nicholas K; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the remediation of naphthalene by polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these emerging nanomaterials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that GrO outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and GrO. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of GrO in removing polyaromatic contaminants from water.

  10. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery.

    PubMed

    Luong, Duy; Kesharwani, Prashant; Deshmukh, Rahul; Mohd Amin, Mohd Cairul Iqbal; Gupta, Umesh; Greish, Khaled; Iyer, Arun K

    2016-10-01

    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers. It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFever, Ryan S.; Geitner, Nicholas K.; Bhattacharya, Priyanka

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the association of naphthalene with polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these materials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that graphene oxide outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules playmore » a significant role in enhancing their association to the dendrimers and graphene oxide. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of graphene oxide in removing naphthalene from water.« less

  12. Probing the binding of cationic lipids with dendrimers.

    PubMed

    Mandeville, J S; Bourassa, P; Tajmir-Riahi, H A

    2013-01-14

    Polycationic polymers are used extensively in biology to disrupt cell membranes and thus enhance the transport of materials into the cell. We report the bindings of several lipids cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane(DOTAP), dioctadecyldimethylammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) to dendrimers of different compositions such as mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) under physiological conditions. FTIR, UV-visible spectroscopic, methods and molecular modeling were used to analyze the lipid binding mode, the binding constant, and the effects of lipid complexation on the dendrimer structure. The structural analysis showed that lipids bind dendrimers through both hydrophilic and hydrophobic contacts with overall binding constants of K(chol-mPEG-G3) = 1.7 × 10(3) M(-1), K(chol-mPEG-PAMAM-G4) = 2.7 × 10(3) M(-1), K(chol-PAMAM-G4) = 1.0 × 10(3) M(-1), K(DOPE-mPEG-G3) = 1.5 × 10(3) M(-1), K(DOPE-mPEG-PAMAM-G4) = 1.6 × 10(3) M(-1), K(DOPE-PAMAM-G4) = 5.3 × 10(2) M(-1), K(DDAB-mPEG-G3) = 1.5 × 10(3) M(-1), K(DDAB-mPEG-PAMAM-G4) = 1.9 × 10(2) M(-1), K(DDAB-PAMAM-G4) = 7.0 × 10(2) M(-1), K(DOTAP-mPEG-G3) = 1.9 × 10(3) M(-1), K(DOTAP-mPEG-PAMAM-G4) = 1.5 × 10(3) M(-1), and K(DOTAP-PAMAM-G4) = 5.7 × 10(2) M(-1). Weaker interaction was observed as dendrimer cationic charges increased. The free binding energies from docking were -5.15 (cholesterol), -5.79 (DDAB), and -5.36 kcal/mol (DOTAP) with the order of stability DDAB-PAMAM-G-4 > DOTAP-PAMAM-G4 > cholesterol-PAMAM-G4, consistent with the spectroscopic results. Dendrimers might act as carriers to transport lipids in vitro.

  13. Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers.

    PubMed

    Çevik, Emre; Bahar, Özlem; Şenel, Mehmet; Abasıyanık, M Fatih

    2016-12-15

    In this study, an immunosensor was designed to utilize for the detection of prostate specific antigen (PSA) based on three different generations (G1, G2 and G3) of ferrocene (Fc) cored polyamidiamine dendrimers (Fc-PAMAM) gold (Au) electrode. The self-assembled monolayer principle (SAM) was used to fabricate the sensitive, selective and disposable immunosensor electrodes. In electrode fabrication cysteamine (Cys) was the first agent covalently linked on the Au electrode surface. Immobilized redox center (ferrocene) cored PAMAM dendrimers served as a layer for the further binding of biological components. The monoclonal antibody of PSA (anti-PSA) was covalently immobilized on dendrimers which were attached onto the modified Au surface (Au/Cys/Fc-PAMAMs/anti-PSA). PSA levels were quantitatively analyzed by using electrochemical differential pulse voltammetry (DPV) whose lowest detection limit was calculated as 0.001ngmL(-1). The Au/Cys/FcPAMAM/anti-PSA immunosensor showed excellent performance for PSA at the pulse amplitude; 50mV and the scan rate; 10mV/s in a wide linear concentration range of 0.01ng-100ngmL(-1). Analytical performance and specificity assays were carried out using human serum and different proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy.

    PubMed

    Li, Jun; Liang, Huamin; Liu, Jing; Wang, Ziyuan

    2018-07-30

    Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues.

    PubMed

    Kumar, Ajay; Yellepeddi, Venkata K; Vangara, Kiran K; Strychar, Kevin B; Palakurthi, Srinath

    2011-11-01

    The aim of this study was to prepare and investigate the mechanism of uptake of the dendriplexes prepared with ornithine-conjugated polyamidoamine (PAMAM) G4 dendrimers. Ornithine-conjugated PAMAMG4 dendrimers were prepared by Fmoc synthesis. A comparative transfection study in NCI H157G cells and polyamine transport-deficient cell line NCI H157R was performed to confirm the role of the polyamine transporter system (PAT) in the dendriplex uptake. Transfection efficiency significantly increased with increase in generation number and extent of ornithine conjugation. Transfection efficiency of the PAMAMG4-ORN60 dendrimers significantly decreased in presence of excess of ornithine (P < 0.05) and paraquat (P < 0.01) but not of PAMAMG4 dendrimers. Transfection efficiency of PAMAMG4-ORN60 was significantly low in NCI H157R (31.66 ± 3.95%, RFU: 17.87 ± 1.34) as compared to NCI H157G cell line (63.07 ± 6.8%, relative fluorescence units (RFU): 23.28 ± 0.66). Results indicate the role of PAT in addition to charge-mediated endocytosis in the internalization of ornithine-conjugated PAMAMG4 dendrimers. Cytotoxicity analysis (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay) in human embryonic kidney cell line (HEK) 293T cells showed that the dendriplexes were non-toxic at N/P 10.

  16. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity

    PubMed Central

    Shao, Naimin; Su, Yunzhang; Hu, Jingjing; Zhang, Jiahai; Zhang, Hongfeng; Cheng, Yiyun

    2011-01-01

    Background Polyamidoamine (PAMAM) and polypropylenimine (PPI) dendrimers are the commercially available and most widely used dendrimers in pharmaceutical sciences and biomedical engineering. In the present study, the loading and release behaviors of generation 3 PAMAM and generation 4 PPI dendrimers with the same amount of surface amine groups (32 per dendrimer) were compared using phenylbutazone as a model drug. Methods The dendrimer-phenylbutazone complexes were characterized by 1H nuclear magnetic resonance and nuclear Overhauser effect techniques, and the cytotoxicity of each dendrimer was evaluated. Results Aqueous solubility results suggest that the generation 3 PAMAM dendrimer has a much higher loading ability towards phenylbutazone in comparison with the generation 4 PPI dendrimer at high phenylbutazone-dendrimer feeding ratios. Drug release was much slower from the generation 3 PAMAM matrix than from the generation 4 PPI dendrimer. In addition, the generation 3 PAMAM dendrimer is at least 50-fold less toxic than generation 4 PPI dendrimer on MCF-7 and A549 cell lines. Conclusion Although the nuclear Overhauser effect nuclear magnetic resonance results reveal that the generation 4 PPI dendrimer with a more hydrophobic interior encapsulates more phenylbutazone, the PPI dendrimer-phenylbutazone inclusion is not stable in aqueous solution, which poses a great challenge during drug development. PMID:22267921

  17. Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers.

    PubMed

    Kojima, Chie; Regino, Celeste; Umeda, Yasuhito; Kobayashi, Hisataka; Kono, Kenji

    2010-01-04

    Dendrimers are a potential drug carrier. Because modification with polyethylene glycol (PEG) is known to improve the blood retention, PEGylated dendrimers have been studied as a useful drug carrier. In this study, three types of PEGylated L-lysine-bearing polyamidoamine dendrimers (PEG2k-Lys-PAMAM (G4), PEG5k-Lys-PAMAM (G4), PEG2k-Lys-PAMAM (G5)) were synthesized, which are composed of a dendrimer of different generations (generations 4 and 5) and PEG chains with different molecular weights (2k and 5k). An acetylated L-lysine-bearing dendrimer was also synthesized as a non-PEGylated dendrimer. Bifunctional diethylenetriaminepentaacetic acid (pSCN-benzyl-DTPA) was bound to the epsilon -amino group of lysine in a dendrimer, to be labeled with radioactive indium-111. These PEGylayed dendrimers showed longer blood retention and lower accumulation in other normal organs such as the kidneys than the non-PEGylated dendrimer. The PEGylated dendrimers with the higher generation and the longer PEG led the greater blood retention.

  18. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design, synthesis, characterization and drug release kinetics of PAMAM dendrimer based drug formulations

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Yunus Emre

    The drug release characteristics of G4-polyamidoamine (PAMAM) dendrimer-ibuprofen conjugates with ester, amide, and peptide linkers were investigated, in addition to a linear PEG-ibuprofen conjugate to understand the effect of architecture and linker on drug release. Ibuprofen was directly conjugated to NH2 -terminated dendrimer by an amide bond and OH-terminated dendrimer by an ester bond. A tetra-peptide linked dendrimer conjugate and a linear mPEG-ibuprofen conjugate were also studied for comparison to direct linked dendrimer conjugates. It is demonstrated that the 3-D nanoscale architecture of PAMAM dendrimer-drug conjugates, along with linking chemistry govern the drug release mechanisms as well as kinetics. Understanding these structural effects on their drug release characteristics is crucial for design of dendrimer conjugates with high efficacy such as poly(amidoamine) dendrimer-N-Acetylcysteine conjugates with disulfide linkages. N-Acetylcysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. A poly(amidoamine) dendrimer-NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), Cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. FITC-labeled conjugates showed that they enter cells rapidly and localize in the cytoplasm of lipopolysaccharide (LPS)-activated microglial cells. The efficacy of the dendrimer-NAC conjugate was measured in activated microglial cells using reactive oxygen species (ROS) assays. The conjugates showed an order of magnitude increase in anti-oxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy.

  20. Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation.

    PubMed

    Santiago-Morales, Javier; Rosal, Roberto; Hernando, María D; Ulaszewska, Maria M; García-Calvo, Eloy; Fernández-Alba, Amadeo R

    2014-02-15

    This article deals with the degradation of a third-generation (G3) poly(amidoamine) (PAMAM) dendrimer under ozonation and irradiation. The identification and quantification of G3 PAMAM dendrimer and its transformation products has been performed by liquid chromatography-electrospray ionization-hybrid quadrupole time-of-flight-mass spectrometry. The dendrimer was completely depleted by ozone in less than 1 min. The effect of ultraviolet irradiation was attributed to hydroxyl-mediated oxidation. The transformation products were attributed to the oxidation of amines, which resulted in highly oxidized structures with abundance of carboxylic acids, which started from the formation of amine oxide and the scission of the CN bond of the amide group. We studied the toxicity of treated mixtures for six different organisms: the acute toxicity for the bacterium Vibrio fischeri and the microcrustacean Daphnia magna, the multigenerational growth inhibition of the alga Pseudokirchneriella subcapitata, and the seed germination phytotoxicity of Licopersicon esculentum, Lactuca sativa and Lolium perenne. Ozonation and irradiation originated transformation products are more toxic than the parent dendrimer. The toxicity of the dendrimer for the green alga was linked to a strong increase of intracellular reactive oxygen species with intense lipid peroxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. G5 PAMAM dendrimer versus liposome: a comparison study on the in vitro transepithelial transport and in vivo oral absorption of simvastatin.

    PubMed

    Qi, Rong; Zhang, Heran; Xu, Lu; Shen, Wenwen; Chen, Cong; Wang, Chao; Cao, Yini; Wang, Yunan; van Dongen, Mallory A; He, Bing; Wang, Siling; Liu, George; Banaszak Holl, Mark M; Zhang, Qiang

    2015-07-01

    This study compared formulation effects of a dendrimer and a liposome preparation on the water solubility, transepithelial transport, and oral bioavailability of simvastatin (SMV). Amine-terminated G5 PAMAM dendrimer (G5-NH2) was chosen to form SMV/G5-NH2 molecular complexes, and SMV-liposomes were prepared by using a thin film dispersion method. The effects of these preparations on the transepithelial transport were investigated in vitro using Caco-2 cell monolayers. Results indicated that the solubility and transepithelial transport of SMV were significantly improved by both formulations. Pharmacokinetic studies in rats also revealed that both the SMV/G5-NH2 molecular complexes and the SMV-liposomes significantly improved the oral bioavailability of SMV with the liposomes being more effective than the G5-NH2. The overall better oral absorption of SMV-liposomes as compared to SMV/G5-NH2 molecular complexes appeared to arise from better liposomal solubilization and encapsulation of SMV and more efficient intracellular SMV delivery. Various carrier systems have been designed to enhance drug delivery via the oral route. In this study, the authors compared G5 PAMAM dendrimers to liposome preparations in terms of solubility, transepithelial transport, and oral bioavailability of this poorly water-soluble drug. This understanding has improved our knowledge in the further development of drug carrier systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers

    NASA Astrophysics Data System (ADS)

    Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2018-04-01

    Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.

  3. Preferential and Increased Uptake of Hydroxyl-Terminated PAMAM Dendrimers by Activated Microglia in Rabbit Brain Mixed Glial Culture.

    PubMed

    Alnasser, Yossef; Kambhampati, Siva P; Nance, Elizabeth; Rajbhandari, Labchan; Shrestha, Shiva; Venkatesan, Arun; Kannan, Rangaramanujam M; Kannan, Sujatha

    2018-04-27

    Polyamidoamine (PAMAM) dendrimers are multifunctional nanoparticles with tunable physicochemical features, making them promising candidates for targeted drug delivery in the central nervous system (CNS). Systemically administered dendrimers have been shown to localize in activated glial cells, which mediate neuroinflammation in the CNS. These dendrimers delivered drugs specifically to activated microglia, producing significant neurological improvements in multiple brain injury models, including in a neonatal rabbit model of cerebral palsy. To gain further insight into the mechanism of dendrimer cell uptake, we utilized an in vitro model of primary glial cells isolated from newborn rabbits to assess the differences in hydroxyl-terminated generation 4 PAMAM dendrimer (D4-OH) uptake by activated and non-activated glial cells. We used fluorescently-labelled D4-OH (D-Cy5) as a tool for investigating the mechanism of dendrimer uptake. D4-OH PAMAM dendrimer uptake was determined by fluorescence quantification using confocal microscopy and flow cytometry. Our results indicate that although microglial cells in the mixed cell population demonstrate early uptake of dendrimers in this in vitro system, activated microglia take up more dendrimer compared to resting microglia. Astrocytes showed delayed and limited uptake. We also illustrated the differences in mechanism of uptake between resting and activated microglia using different pathway inhibitors. Both resting and activated microglia primarily employed endocytotic pathways, which are enhanced in activated microglial cells. Additionally, we demonstrated that hydroxyl terminated dendrimers are taken up by primary microglia using other mechanisms including pinocytosis, caveolae, and aquaporin channels for dendrimer uptake.

  4. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy.

    PubMed

    Menjoge, Anupa R; Rinderknecht, Amber L; Navath, Raghavendra S; Faridnia, Masoud; Kim, Chong J; Romero, Roberto; Miller, Richard K; Kannan, Rangaramanujam M

    2011-03-30

    Dendrimers offer significant potential as nanocarriers for targeted delivery of drugs and imaging agents. The objectives of this study were to evaluate the transplacental transport, kinetics and biodistribution of PAMAM dendrimers ex-vivo across the human placenta in comparison with antipyrine, a freely diffusible molecule, using dually perfused re-circulating term human placental lobules. The purpose of this study is to determine if dendrimers as drug carriers can be used to design drug delivery systems directed at selectively treating either the mother or the fetus. The transplacental transfers of fluorescently (Alexa 488) tagged PAMAM dendrimer (16 kDa) and antipyrine (188 Da) from maternal to fetal circulation were measured using HPLC/dual UV and fluorescent detector (sensitivity of 10 ng/mL for dendrimer and 100 ng/mL for antipyrine respectively). C(max) for the dendrimer-Alexa (DA) in maternal perfusate (T(max)=15 min) was 18 times higher than in the fetal perfusate and never equilibrated with the maternal perfusate during 5.5 h of perfusion (n=4). DA exhibited a measurable but low transplacental transport of 2.26±0.12 μg/mL during 5.5h, where the mean transplacental transfer was 0.84±0.11% of the total maternal concentration and the feto-maternal ratio as percent was 0.073%±0.02. The biochemical and physiological analysis of the placentae perfused with DA demonstrated normal function throughout the perfusion. The immunofluorescence histochemistry confirmed that the biodistribution of DA in perfused placenta was sparsely dispersed, and when noted was principally seen in the inter-villous spaces and outer rim of the villous branches. In a few cases, DA was found internalized and localized in nuclei and cytoplasm of syncytiotrophoblast and inside the villous core; however, DA was mostly absent from the villous capillaries. In conclusion, the PAMAM dendrimers exhibited a low rate of transfer from maternal to the fetal side across the perfused human placenta

  5. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms.

    PubMed

    Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C

    2011-05-24

    The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).

  6. The interaction of the excited states of safranine-O with low generation carboxyl terminated PAMAM dendrimers in an aqueous medium.

    PubMed

    Militello, M Paula; Altamirano, Marcela S; Bertolotti, Sonia G; Previtali, Carlos M

    2018-05-16

    The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.5: G 1.5) were employed. The UV-vis absorption spectrum of the dye presents only a very small red shift in the presence of dendrimers. Fluorescence quenching was detected and it was interpreted by a static mechanism in terms of the association of the dye with the dendrimer. Laser flash photolysis experiments were carried out and transient absorption spectra of the triplet and radicals were obtained. The triplet state is quenched by the dendrimers with rate constants well below the diffusional limit. The quenching process was characterized as an electron transfer process and the quantum yield of radicals was estimated. It was found that radicals are formed with a high efficiency in the triplet quenching reaction.

  7. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    , at neutral condition, the exterior residues folding back into interior would necessarily lead to higher entropy and equivalently lower free energy and thereby is energetically favored. As one decreases the pH condition of PAMAM dendrimers, the constituent residues would carry positive charges. The resultant inter-residue Coulomb repulsion would naturally result in conformational evolution. We found from CVSANS analysis that when dendrimers are charged by different acids, this conformational evolution is not the same. For dendrimers charged by DCl, the mass is seen to relocate from molecular interior to periphery. Nevertheless, those acidified by D 2SO4 exhibit surprisingly minor structural change under variation of molecular charge. To explain the above observation, we performed MD simulations and calculated the excess free energy of Cl- and SO 42- counterions. The binding between sulfate ions and charged amines of PAMAM dendrimers are found to be much stronger than the case for chlorides. This more energetic binding would serve as better screening effect among charged residues. Consequently, electrostatic repulsion triggered outstretching tendency is effectively diminished. In order to make direct comparison between MD simulations and neutron scattering experiments, we proposed and implemented a rigorous method, which incorporates the contribution from those invasive water molecules, to calculate scattering functions of a single PAMAM dendrimer using equilibrium MD trajectories. The bridge between neutron scattering experiments and MD simulation is successfully established. Aside from structural comparisons between MD simulations and experiments, we utilized MD simulation to decipher the previously reported QENS experimental observation that the segmental dynamics of PAMAM dendrimer would enhance with increasing molecular charge. We pursued the mechanism from the perspective of hydrocarbon component of dendrimer and solvent (water) interaction as a form similar to

  8. Transepithelial and endothelial transport of poly (amidoamine) dendrimers.

    PubMed

    Kitchens, Kelly M; El-Sayed, Mohamed E H; Ghandehari, Hamidreza

    2005-12-14

    This article summarizes our efforts to evaluate the potential of poly (amidoamine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the permeability of a series of cationic PAMAM-NH2 (G0-G4) dendrimers across Caco-2 cell monolayers was evaluated as a function of dendrimer generation, concentration, and incubation time. The influence of dendrimer surface charge on the integrity, paracellular permeability, and viability of Caco-2 cell monolayers was monitored by measuring the transepithelial electrical resistance (TEER), 14C-mannitol permeability, and leakage of lactate dehydrogenase (LDH) enzyme, respectively. Microvascular extravasation of PAMAM-NH2 dendrimers in relation to their size, molecular weight, and molecular geometry is also discussed. Results of these studies show that transepithelial transport and microvascular extravasation of PAMAM dendrimers are dependent on their structural features including molecular size, molecular geometry, and surface chemistry. These results suggest that by optimizing the size and surface charge of PAMAM dendrimers, it is possible to develop oral delivery systems based on these carriers for targeted drug delivery.

  9. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.

    PubMed

    Sadekar, S; Thiagarajan, G; Bartlett, K; Hubbard, D; Ray, A; McGill, L D; Ghandehari, H

    2013-11-01

    Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2-3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Fluorescent hydroxylamine derived from the fragmentation of PAMAM dendrimers for intracellular hypochlorite recognition.

    PubMed

    Wu, Te-Haw; Liu, Ching-Ping; Chien, Chih-Te; Lin, Shu-Yi

    2013-08-26

    Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl(-)) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl(-), one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn-off. The fluorescent hydroxylamine was selectively oxidised by OCl(-) to form a labile oxoammonium cation that underwent further degradation. Without using any troublesomely synthetic steps, the novel sensing platform based on the fragmentation of PAMAM dendrimers, can be applied to detect OCl(-) in macrophage cells. The results suggest that the sensing approach may be useful for the detection of intracellular OCl(-) with minimal interference from biological matrixes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems.

    PubMed

    Otto, Daniel P; de Villiers, Melgardt M

    2018-06-13

    Improvement of problematic dissolution and solubility properties of a model drug, furosemide, was investigated for poly(amidoamine) (PAMAM) dendrimer complexes of the drug. Full and half generation dendrimers with amino and ester terminals respectively, were studied. In vitro release performance of these complexes was investigated at drug loads ranging 5-60% using simulated gastric fluids. Full generation dendrimers accommodated higher drug loads, outperformed half-generation complexes, and free drug. Pharmacokinetic studies in rats indicated that the dendrimer complexes markedly improved in the bioavailability of the drug compared to the unformulated drug. The G3.0-PAMAM dendrimer complex showed a two-fold increase in C max and a 1.75-fold increase in AUC over the free drug. Additionally, T max was shortened from approximately 25 to 20 min. One of the first all-atomistic molecular dynamics (AA-MD) simulation studies was performed to evaluate low-generation dendrimer-drug complexes as well as its pharmacokinetic performance. AA-MD provided insight into the intermolecular interactions that take place between the dendrimer and drug. It is suggested that the dendrimer not only encapsulates the drug, but can also orientate the drug in stabilized dispersion to prevent drug clustering which could impact release and bioavailability negatively. AA-MD can be a useful tool to develop dendrimer-based drug delivery systems. Copyright © 2018. Published by Elsevier B.V.

  12. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.

    PubMed

    Jevprasesphant, Rachaneekorn; Penny, Jeffrey; Attwood, David; McKeown, Neil B; D'Emanuele, Antony

    2003-10-01

    To evaluate the cytotoxicity, permeation, and transport mechanisms of PAMAM dendrimers and surface-modified cationic PAMAM dendrimers using monolayers of the human colon adenocarcinoma cell line, Caco-2. Cytotoxicity was determined using the MTT assay. The effect of dendrimers on monolayer integrity was determined from measurements of transepithelial electrical resistance (TEER) and [14C]mannitol apparent permeability coefficient (Papp). The Papp of dendrimers through monolayers was measured in both the apical (A)-to-basolateral (B) and B --> A directions at 4 degrees C and 37 degrees C and also in the presence and absence of ethylenediamine tetraacetic acid (EDTA) and colchicine. The cytotoxicity and permeation of dendrimers increased with both concentration and generation. The cytotoxicity of cationic dendrimers (G2, G3, G4) was greater than that of anionic dendrimers (G2.5, G3.5) but was reduced by conjugation with lauroyl chloride: the least cytotoxic conjugates were those with six attached lauroyl chains. At 37 degrees C the Papp of cationic dendrimers was higher than that of anionic dendrimers and, in general, increased with the number of attached lipid chains. Cationic dendrimers decreased TEER and significantly increased the Papp of mannitol. Modified dendrimers also reduced TEER and caused a more marked increase in the Papp of mannitol. The Papp values of dendrimers and modified dendrimers were higher in the presence of EDTA, lower in the presence of colchicine, and lower at 4 degrees C than at 37 degrees C. The properties of dendrimers may be significantly modified by surface engineering. Conjugation of cationic PAMAM dendrimers with lauroyl chloride decreased their cytotoxicity and increased their permeation through Caco-2 cell monolayers. Both PAMAM dendrimers and lauroyl-PAMAM dendrimer conjugates can cross epithelial monolayers by paracellular and transcellular pathways.

  13. Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ristić, Sanja; Mijović, Jovan

    2008-08-01

    Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.

  14. PAMAM Dendrimers Cross the Blood-Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice.

    PubMed

    Srinageshwar, Bhairavi; Peruzzaro, Sarah; Andrews, Melissa; Johnson, Kayla; Hietpas, Allison; Clark, Brittany; McGuire, Crystal; Petersen, Eric; Kippe, Jordyn; Stewart, Andrew; Lossia, Olivia; Al-Gharaibeh, Abeer; Antcliff, Aaron; Culver, Rebecca; Swanson, Douglas; Dunbar, Gary; Sharma, Ajit; Rossignol, Julien

    2017-03-14

    Drug delivery into the central nervous system (CNS) is challenging due to the blood-brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH₂ and G4-NH₂) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders.

  15. PAMAM Dendrimers Cross the Blood–Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice

    PubMed Central

    Srinageshwar, Bhairavi; Peruzzaro, Sarah; Andrews, Melissa; Johnson, Kayla; Hietpas, Allison; Clark, Brittany; McGuire, Crystal; Petersen, Eric; Kippe, Jordyn; Stewart, Andrew; Lossia, Olivia; Al-Gharaibeh, Abeer; Antcliff, Aaron; Culver, Rebecca; Swanson, Douglas; Dunbar, Gary; Sharma, Ajit; Rossignol, Julien

    2017-01-01

    Drug delivery into the central nervous system (CNS) is challenging due to the blood–brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH2 and G4-NH2) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders PMID:28335421

  16. In Vitro/In Vivo Evaluation of Dexamethasone--PAMAM Dendrimer Complexes for Retinal Drug Delivery.

    PubMed

    Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Vural, İmran; Ünlü, Nurşen

    2015-11-01

    Current treatment options for diabetic retinopathy (DR) have side effects because of invasive application and topical application does not generally result in therapeutic levels in the target tissue. Therefore, improving the drug delivery to retina, following topical administration, might be a solution to DR treatment problems. The purpose of this study was to investigate the complexation effects of poly(amidoamine) (PAMAM) dendrimers on ocular absorption of dexamethasone (DEX). Using different PAMAM generations, complex formulations were prepared and characterized. Formulations were evaluated in terms of cytotoxicity and cell permeability, as well as ex vivo transport across ocular tissues. The ocular pharmacokinetic properties of DEX formulations were studied in Sprague-Dawley rats following topical and subconjunctival applications, to evaluate the effect of PAMAM on retinal delivery of DEX. Methyl-thiazol-tetrazolium (MTT) assay indicated that all groups resulted in cell viability comparable to DEX solution (87.5%), with the cell viability being the lowest for G3 complex at 73.5%. Transport study results showed that dendrimer complexation increases DEX transport across both cornea and sclera tissues. The results of in vivo studies were also indicated that especially anionic DEX-PAMAM complex formulations have reached higher DEX concentrations in ocular tissues compared with plain DEX suspension. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. PAMAM-Based Dendrimers with Different Alkyl Chains Self-Assemble on Silica Surfaces: Controllable Layer Structure and Molecular Aggregation.

    PubMed

    Zhang, Minghui; Yang, Hui; Wang, Shujuan; Zhang, Wei; Hou, Qingfeng; Guo, Donghong; Liu, Fanghui; Chen, Ting; Wu, Xu; Wang, Jinben

    2018-06-20

    Amphiphilic poly(amidoamine) (PAMAM) dendrimers are a well-known dendritic family due to their remarkable ability to self-assemble on solid surface. However, the relationship between molecular conformation (or adsorption kinetics) of a self-assembled layer and molecular amphiphilicity of such kind of dendrimer is still lacking, which limits the development of modulating self-assembling structures and surface functionality. With this in mind, we synthesized a series of amphiphilic PAMAM-based dendrimers, denoted as G 1 C n , with different alkyl chains ( n = 8, 12, and 16), and investigated the molecular aggregation on silica surfaces by means of quartz crystal microbalance with dissipation, atomic force microscopy, and contact angle. After rinsing, remaining adsorption amounts of G 1 C 12 were higher than those of G 1 C 8 at high concentrations, suggesting that G 1 C 12 adlayers were more stable due to the stronger intermolecular hydrophobic interactions, whereas it preferred to adopt the intramolecular hydrophobic interactions for G 1 C 16 , with low adsorption amounts and unstable adlayers. Bilayer-like structures were inferred in G 1 C 8 and G 1 C 12 adlayers with loose conformation, whereas monolayer structures were likely to exist in the sparse adsorption film of G 1 C 16 . Our results provided more detailed understanding of the effect of molecular structure on the self-assembled structures of amphiphilic dendrimers on solid surfaces, shedding light on the controlled microstructure and wettability of functional surface by modulating the length of hydrophobic chains of dendrimers and a potential application of dendrimer-substrate combinations.

  18. A Comparative Study on the Photophysics and Photochemistry of Xanthene Dyes in the Presence of Polyamidoamine (PAMAM) Dendrimers.

    PubMed

    Arbeloa, Ernesto Maximiliano; Previtali, Carlos Mario; Bertolotti, Sonia Graciela

    2018-04-17

    The photophysical and photochemical properties of the xanthene dyes Eosin Y, Erythrosin B, and Rose Bengal are evaluated in the presence of amino-terminated polyamidoamine (PAMAM) dendrimers of relatively high generation (G3-G5) in alkaline aqueous solution. UV/Vis absorption and fluorescence spectra of the dyes show bathochromic shifts, which correlate with the size of the dendrimer. Binding constants (K bind ) are calculated from absorption data. The resulting high K bind values indicate strong interactions between both molecules. Triplet-triplet absorption spectra of the dyes are recorded by laser flash photolysis, and a decrease in the triplet lifetimes is observed in the presence of dendrimers. At the same time, an increase in the absorption of the semireduced form of the dyes is observed. Rate constants for triplet quenching ( 3 k q ) and radical quantum yields (Φ R ) are obtained. The results are explained by a very efficient electron-transfer process from PAMAM to xanthene dyes for all of the dye/dendrimer couples that are evaluated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations.

    PubMed

    Jain, Vaibhav; Maiti, Prabal K; Bharatam, Prasad V

    2016-09-28

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH 2 ) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH 2 ) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH 2 ) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  20. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  1. HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein.

    PubMed

    Shi, Xiangyang; Bi, Xiangdong; Ganser, T Rose; Hong, Seungpyo; Myc, Lukasz A; Desai, Ankur; Holl, Mark M Banaszak; Baker, James R

    2006-07-01

    Poly(amidoamine) (PAMAM) dendrimers of different generations with carboxyl, acetyl, and hydroxyl terminal groups and a folic acid (FA)-dendrimer conjugate were separated and analyzed using reverse-phase high performance liquid chromatography (HPLC). Analysis of both the individual PAMAM derivatives and the separation of mixed generations can be achieved using a linear gradient 0-50% acetonitrile (ACN) (balance water) within 40 min. We also show that PAMAMs with defined acetylation and carboxylation degrees can be analyzed using HPLC. Furthermore, a generation 5 dendrimer-FA conjugate (G5.75Ac-FA4; Ac denotes acetyl) was analyzed and its specific binding with a bovine folic acid binding protein (FBP) was monitored. The HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicate the formation of three complexes after the binding of G5.75Ac-FA4 with FBP. Dendrimers with FA moieties show much higher specific binding capability with FBP than those without FA moieties. Findings from this study indicate that HPLC is an effective technique not only for characterization and separation of functionalized PAMAM dendrimers and conjugates but also for investigation of the interaction between dendrimers and biomolecules.

  2. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    PubMed

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  3. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route.

    PubMed

    Jevprasesphant, Rachaneekorn; Penny, Jeffrey; Attwood, David; D'Emanuele, Antony

    2004-06-18

    The mechanism of transport of G3 PAMAM and surface-modified (with lauroyl chains) G3 PAMAM dendrimer nanocarriers across Caco-2 cell monolayers has been investigated. Flow-cytometry studies following quenching of extracellular fluorescence demonstrated the cellular internalisation of dendrimers. Optical sectioning of cells incubated with fluorescein isothiocyanate (FITC)-conjugated dendrimer and lauroyl-dendrimer using confocal laser scanning microscopy revealed colocalisation of a marker for cell nuclei (4',6-diamidino-2-phenylindole, DAPI) and FITC fluorescence, also suggesting cellular internalisation of dendrimers. Transmission electron microscopic analyses of cells incubated with gold-labelled G3 PAMAM dendrimers confirmed endocytosis-mediated cellular internalisation when dendrimers were applied to the apical domain of Caco-2 cells. These findings are in agreement with our previous studies using Caco-2 cell monolayers that showed a significant decrease of dendrimer uptake in the presence of colchicine (endocytosis inhibitor) and when temperature was reduced from 37 to 4 degrees C. Copyright 2004 Elsevier B.V.

  4. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  5. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Electrostatic theory of the assembly of PAMAM dendrimers and DNA.

    PubMed

    Perico, Angelo

    2016-05-01

    The electrostatic interactions mediated by counterions between a cationic PAMAM dendrimer, modelized as a sphere of radius and cationic surface charge highly increasing with generation, and a DNA, modelized as an anionic elastic line, are analytically calculated in the framework of condensation theory. Under these interactions the DNA is wrapped around the sphere. For excess phosphates relative to dendrimer primary amines, the free energy of the DNA-dendrimer complex displays an absolute minimum when the complex is weakly negatively overcharged. This overcharging opposes gene delivery. For a highly positive dendrimer and a DNA fixed by experimental conditions to a number of phosphates less than the number of dendrimer primary amines, excess amine charges, the dendrimer may at the same time bind stably DNA and interact with negative cell membranes to activate cell transfection in fair agreement with molecular simulations and experiments. © 2016 Wiley Periodicals, Inc.

  7. Role of PAMAM-OH dendrimers against the fibrillation pathway of biomolecules.

    PubMed

    Sekar, Gajalakshmi; Florance, Ida; Sivakumar, A; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-12-01

    The binding behavior of nanoparticle with proteins determines its biocompatibility. This study reports the interaction of ten different biomolecules (proteins-BSA, HSA, haemoglobin, gamma globulin, transferrin and enzymes-hog and bacillus amylase, lysozyme from chicken and human and laccases from Tramates versicolor) with a surface group hydroxylated Poly AMido AMide dendrimer (PAMAM) of generation 5. The study has utilized various spectroscopic methods like UV-vis spectroscopy, Fluorescence emission, Synchronous, 3-D spectroscopy and Circular Dichroism to detect the binding induced structural changes in biomolecules that occur upon interaction with mounting concentration of the dendrimers. Aggregation of proteins results in the formation of amyloid fibrils causing several human diseases. In this study, fibrillar samples of all ten biomolecules formed in the absence and the presence of dendrimers were investigated with Congo Red absorbance and ThT Assay to detect fibril formation, Trp Emission and 3-D scan to evaluate the effect of fibrillation on aromatic environment of biomolecules, and CD spectroscopy to measure the conformational changes in a quantitative manner. These assays have generated useful information on the role of dendrimers in amyloid fibril formation of biomolecules. The outcomes of the study remain valuable in evaluating the biological safety of PAMAM-OH dendrimers for their biomedical application in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers.

    PubMed

    Lee, Hwankyu; Larson, Ronald G

    2009-10-08

    We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.

  9. DFT investigation of the interaction of gold nanoclusters with poly(amidoamine) PAMAM G0 dendrimer

    NASA Astrophysics Data System (ADS)

    Camarada, M. B.

    2016-06-01

    The interaction between PAMAM G0 and gold nanoclusters Aun (n = 2, 4, 6, and 8) was studied theoretically at DFT level. Different coordination sites were explored, including internal and superficial coordination. All stable complexes exhibited external interaction with the amine or carbonyl site, while the core site coordination was not favored. The more stable binding of Aun was registered with the terminal amine group, while the binding at the amide site was relatively weaker. The vertical first ionization potential, electron affinity, Fermi level, and the HOMO-LUMO gap of PAMAM and Aun-PAMAM G0 complexes were also analyzed.

  10. Physico-chemical studies on the interaction of dendrimers with lipid bilayers. 1. Effect of dendrimer generation and liposome surface charge.

    PubMed

    Roy, Biplab; Panda, Amiya Kumar; Parimi, Srinivas; Ametov, Igor; Barnes, Timothy; Prestidge, Clive A

    2014-01-01

    Studies on the interaction of different generation poly (amido amine) (PAMAM) dendrimers (2G, 4G and 6G) and liposomes of different compositions were carried out by a combined turbidity, dynamic light scattering and atomic force microscopic measurements. Liposomes comprising soy lecithin (SLC, negative surface charge), 1, 2-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC, mildly positive surface charge), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, negatively charged) and a biologically simulated mixture of DPPC + DPPG (7:3, M/M, negatively charged) were used as model bilayers. 30 wt% cholesterol was used in each combination as it is known to control the fluidity of membrane bilayers. Silica was used as a negatively charged hard sphere model with an aim to compare the results. Both the turbidity and hydrodynamic diameter values of all the liposomes, except DPPC, passed through maxima upon the progressive addition of PAMAM; the effect was insignificant in case of DPPC. Formation of dendriosome, a complex formed between dendrimer and liposome, resulted in the charge reversal of the negatively charged liposomes. Interaction between PAMAM and liposome was found to be governed by electrostatic as well as hydrogen bonding. Generation dependent PAMAM activity followed the order: 6G >4G>2G in terms of overall dendrimer concentration. However, interestingly, the order was reverse when PAMAM activity was considered in terms of total end group concentrations. AFM studies reveal the rupture of bilayer structure upon addition of dendrimer.

  11. The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice.

    PubMed

    Márquez-Miranda, Valeria; Abrigo, Johanna; Rivera, Juan Carlos; Araya-Durán, Ingrid; Aravena, Javier; Simon, Felipe; Pacheco, Nicolás; González-Nilo, Fernando Danilo; Cabello-Verrugio, Claudio

    2017-01-01

    Angiotensin (1-7) (Ang-(1-7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues - among them, skeletal muscle - by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1-7) carrier. Bioinformatics analysis showed that the Ang-(1-7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1-7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1-7)/PAMAM-OH complex, but not Ang-(1-7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1-7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1-7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1-7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1-7)/PAMAM-OH complex is an efficient delivery method for Ang-(1-7), since it improves the anti-atrophic activity of this peptide in skeletal muscle.

  12. para-Sulfonatocalix[4]arene and polyamidoamine dendrimer nanocomplexes as delivery vehicles for a novel platinum anticancer agent.

    PubMed

    Pang, Chi Ting; Ammit, Alaina J; Ong, Yu Qing Elysia; Wheate, Nial J

    2017-11-01

    Novel para-sulfonatocalix[4]arene (sCX[4]) and polyamidoamine (PAMAM) dendrimer nanocomplexes were evaluated as delivery vehicles for the platinum anticancer agent [(1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(II)] chloride (PHENSS). Different ratios of sCX[4] to PHENSS were tested for their compatibility, with a ratio of 6:1 sCX[4]:PHENSS having the best solubility. The loading of sCX[4], and sCX[4]-bound PHENSS, onto three different generations of PAMAM dendrimers (G3.0-5.0) was examined using UV-visible spectrophotometry. The quantity of sCX[4] bound was found to increase exponentially with dendrimer size: G3, 15 sCX[4] molecules per dendrimer; G4, 37; and G5, 78. Similarly, the loading of sCX[4]-bound PHENSS also increased with increasing dendrimer size: G3, 7 PHENSS molecules per dendrimer; G4, 14; and G5, 28.5. The loading of sCX[4]-bound PHENSS molecules is significantly lower when compared with that of sCX[4], which indicates that less than half of the binding sites were occupied (45, 44, and 44%, respectively). By 1 H NMR and UV-vis analysis, the nanocomplex was found to be stable in NaCl solutions at concentrations up to 150mM. While PHENSS is more active in vitro than cisplatin against the human breast cancer cell line, MCF-7, delivery of PHENSS using the sCX[4]-dendrimer nanocomplexes, regardless of dendrimer generation, had little effect on PHENSS cytotoxicity. The results of this study may have application in the delivery of a variety of small molecule metal-based drugs for which chemical conjugation to a nanoparticle is undesired or not feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.

    PubMed

    Hong, Seungpyo; Bielinska, Anna U; Mecke, Almut; Keszler, Balazs; Beals, James L; Shi, Xiangyang; Balogh, Lajos; Orr, Bradford G; Baker, James R; Banaszak Holl, Mark M

    2004-01-01

    We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent

  14. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: implications for oral drug delivery.

    PubMed

    Sweet, Deborah M; Kolhatkar, Rohit B; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-08-19

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired.

  15. Transepithelial Transport of PEGylated Anionic Poly(amidoamine) Dendrimers: Implications for Oral Drug Delivery

    PubMed Central

    Sweet, Deborah M.; Kolhatkar, Rohit B.; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-01-01

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired. PMID:19393702

  16. Effects of Polyamidoamine Dendrimers on a 3-D Neurosphere System Using Human Neural Progenitor Cells.

    PubMed

    Zeng, Yang; Kurokawa, Yoshika; Zeng, Qin; Win-Shwe, Tin-Tin; Nansai, Hiroko; Zhang, Zhenya; Sone, Hideko

    2016-07-01

    The practical application of engineered nanomaterials or nanoparticles like polyamidoamine (PAMAM) dendrimers has been promoted in medical devices or industrial uses. The safety of PAMAM dendrimers needs to be assessed when used as a drug carrier to treat brain disease. However, the effects of PAMAM on the human nervous system remain unknown. In this study, human neural progenitor cells cultured as a 3D neurosphere model were used to study the effects of PAMAM dendrimers on the nervous system. Neurospheres were exposed to different G4-PAMAM dendrimers for 72 h at concentrations of 0.3, 1, 3, and 10 μg/ml. The biodistribution was investigated using fluorescence-labeled PAMAM dendrimers, and gene expression was evaluated using microarray analysis followed by pathway and network analysis. Results showed that PAMAM dendrimer nanoparticles can penetrate into neurospheres via superficial cells on them. PAMAM-NH2 but not PAMAM-SC can inhibit neurosphere growth. A reduced number of MAP2-positive cells in flare regions were inhibited after 10 days of differentiation, indicating an inhibitory effect of PAMAM-NH2 on cell proliferation and neuronal migration. A microarray assay showed 32 dendrimer toxicity-related genes, with network analysis showing 3 independent networks of the selected gene targets. Inducible immediate early gene early growth response gene 1 (Egr1), insulin-like growth factor-binding protein 3 (IGFBP3), tissue factor pathway inhibitor (TFPI2), and adrenomedullin (ADM) were the key genes in each network, and the expression of these genes was significantly down regulated. These findings suggest that exposure of neurospheres to PAMAM-NH2 dendrimers affects cell proliferation and migration through pathways regulated by Egr1, IGFBP3, TFPI2, and ADM. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation.

    PubMed

    Jiang, Li-Yang; Lv, Bing; Luo, Ying

    2013-04-01

    By presenting biomolecular ligands on the surface in high density, ligand-decorated dendrimers are capable of binding to membrane receptors and cells with specificity and avidity. Despite the various uses, fundamental investigations on ligand-dendrimer conjugates have mainly focused on their binding behavior with cells, whereas their potential bioactivity and applications in multicellular systems, especially in three-dimensional (3D) culture systems, remains untapped. In this study, a typical adhesive peptide ligand - RGD - was modified to generation 4 polyamidoamine (PAMAM), and the bioactivity of suspended RGD-PAMAM conjugates was investigated on cells cultured as multicellular spheroids. Our results demonstrate that the RGD-PAMAM conjugates, after being incorporated into the 3D spheroids, were able to promote cellular proliferation and aggregation, and affect the mRNA expression of extracellular factors by NIH 3T3 cells. These bioactive functions were multivalency-dependent, as none of similar effects was observed for monovalent RGD ligand. Our study suggests that multivalent ligand-dendrimer conjugates may act as a unique type of artificial factors to mediate the cellular microenvironment in 3D culture, a property attributable to the spatial organization of the ligands and possible "cell-gluing" function of multivalent conjugates. This new finding opens the door for further exploring multivalent ligand-dendrimer conjugates for applications in 3D cell culture and tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    PubMed

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement.

    PubMed

    Shadrack, Daniel M; Mubofu, Egid B; Nyandoro, Stephen S

    2015-11-04

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.

  20. The complex of PAMAM-OH dendrimer with Angiotensin (1–7) prevented the disuse-induced skeletal muscle atrophy in mice

    PubMed Central

    Márquez-Miranda, Valeria; Abrigo, Johanna; Rivera, Juan Carlos; Araya-Durán, Ingrid; Aravena, Javier; Simon, Felipe; Pacheco, Nicolás; González-Nilo, Fernando Danilo; Cabello-Verrugio, Claudio

    2017-01-01

    Angiotensin (1–7) (Ang-(1–7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues – among them, skeletal muscle – by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1–7) carrier. Bioinformatics analysis showed that the Ang-(1–7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1–7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1–7)/PAMAM-OH complex, but not Ang-(1–7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1–7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1–7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1–7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1–7)/PAMAM-OH complex is an efficient delivery method for Ang-(1–7), since it improves the anti-atrophic activity of this peptide in skeletal muscle. PMID:28331320

  1. Effect of Size, Surface Charge, and Hydrophobicity of Poly(amidoamine) Dendrimers on Their Skin Penetration

    PubMed Central

    Yang, Yang; Sunoqrot, Suhair; Stowell, Chelsea; Ji, Jingli; Lee, Chan-Woo; Kim, Jin Woong; Khan, Seema A.; Hong, Seungpyo

    2012-01-01

    The barrier functions of the stratum corneum (SC) and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this paper, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid (OA) to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector. PMID:22621160

  2. Ligand Accessibility and Bioactivity of a Hormone-Dendrimer Conjugate Depend on pH and pH History

    PubMed Central

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; Carlson, Kathryn E.; Mayne, Christopher G.; Granick, Steve; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.

    2016-01-01

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the non-genomic actions of estrogens in target cells. In response to pH changes, however, these estrogen-dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine, TMR) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR-PAMAM reveal high ligand shielding above pH 7 and low shielding below pH 7. Furthermore, when pH was cycled from 8.5 (conditions of ligand-PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol and diphenolic acid PAMAM conjugates experience a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicate that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen-dendrimer conjugates appears to be metastable. This pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers. PMID:26186415

  3. The evaluation of the biomedical effectiveness of poly(amido)amine dendrimers generation 4.0 as a drug and as drug carriers: a systematic review and meta-analysis.

    PubMed

    Jędrych, Marian; Borowska, Katarzyna; Galus, Ryszard; Jodłowska-Jędrych, Barbara

    2014-02-28

    The purpose of this study was to investigate the evaluation of the biomedical effectiveness of poly(amido)amine dendrimers generation 4.0 (PAMAM G4) as a drug and as drug carriers by a systematic review of literature and meta-analysis. The results obtained from meta-analysis concluded that drug therapy reduces the change of parameters in relation to the control. The impact of the drug administered to change the test parameters are dependent on the type of tissue. PAMAM G4 may be effective in vitro and in vivo as a drug and drug carriers and may have appropriate applications in various fields of medicine. PAMAM G4 dendrimers hold promises for nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Li, Yubin; Wang, Shaofei; Wang, Ziyu; Qian, Xiaolu; Fan, Jiajun; Zeng, Xian; Sun, Yun; Song, Ping; Feng, Meiqing; Ju, Dianwen

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers are proposed as one of the most promising nanomaterials for biomedical applications because of their unique tree-like structure, monodispersity and tunable properties. In this study, we found that PAMAM dendrimers could induce the formation of autophagosomes and the conversion of microtubule-associated protein 1 light chain 3 (LC3) in hepatocellular carcinoma HepG2 cells, while the inhibition of the Akt/mTOR and activation of the Erk 1/2 signaling pathways were involved in autophagy-induced by PAMAM dendrimers. We also investigated the suppression of autophagy with the obviously enhanced cytotoxicity of PAMAM dendrimers. Moreover, the blockage of a reactive oxygen species (ROS) could enhance the growth inhibition and apoptosis of hepatocellular carcinoma cells, induced by PAMAM dendrimers through reducing autophagic effects. Taken together, these findings explored the role and mechanism of autophagy induced by PAMAM dendrimers in HepG2 cells, provided new insight into the effect of autophagy on drug delivery nanomaterials and tumor cells and contributed to the use of a drug delivery vehicle for hepatocellular carcinoma treatment.

  5. PAMAM dendrimer hydrogel film—biocompatible material to an efficient dermal delivery of drugs

    NASA Astrophysics Data System (ADS)

    Magalhães, Thamiris Machado; Guerra, Rodrigo Cinti; San Gil, Rosane Aguiar da Silva; Valente, Ana Paula; Simão, Renata Antoun; Soares, Bluma Guenther; Mendes, Thamara de Carvalho; Pyrrho, Alexandre dos Santos; Sousa, Valeria Pereira de; Rodrigues-Furtado, Vanessa Lúcia

    2017-08-01

    We report the preparation, characterization, and drug release kinetics of a pH-responsive hydrogel film from a dendrimer megamer. The megamer (GP32) is a three-dimensional reticulated structure with a mean diameter of 71.16 nm (PDI 0.150) and was prepared by the reaction between Poly(amidoamine) generation4 (PAMAM G4) dendrimer and glutaraldehyde (G:P molar ratio 32). The crosslinking units in the megamer are provided mainly by the bicyclic dimer 2-hydroxy-3,4,4a,7,8,8a-hexahydro-2 H-chromene-6-carbaldehyde as determined by high-resolution (800 MHz) 1H NMR and FTIR. The hydrogel film (F[GP32]) is formed upon evaporation of a methanolic solution of the megamer and has a high degree of organization and homogeneity. Further crosslinking with glutaraldehyde (CLF[GP32]) enhanced the mechanical properties of the hydrogel film. The chemical constitution and unique megamer architecture enable the hydrogel film to carry both lipophilic and hydrophilic substances. The film did not cause any dermal irritation or clinical signs of toxicity in tests on rabbits, allowed for a sustained release of ketoprofen and played an important role in the process of drug delivery into the receptor medium. This performance taken together with the absence of toxicity makes this hydrogel film a good choice for dermal sustained drug release. [Figure not available: see fulltext.

  6. Nanoscale Investigation of Generation 1 PAMAM Dendrimers Interaction with a Protein Nanopore.

    PubMed

    Asandei, Alina; Ciuca, Andrei; Apetrei, Aurelia; Schiopu, Irina; Mereuta, Loredana; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2017-07-21

    Herein, we describe at uni-molecular level the interactions between poly(amidoamine) (PAMAM) dendrimers of generation 1 and the α-hemolysin protein nanopore, at acidic and neutral pH, and ionic strengths of 0.5 M and 1 M KCl, via single-molecule electrical recordings. The results indicate that kinetics of dendrimer-α-hemolysin reversible interactions is faster at neutral as compared to acidic pH, and we propose as a putative explanation the fine interplay among conformational and rigidity changes on the dendrimer structure, and the ionization state of the dendrimer and the α-hemolysin. From the analysis of the dendrimer's residence time inside the nanopore, we posit that the pH- and salt-dependent, long-range electrostatic interactions experienced by the dendrimer inside the ion-selective α-hemolysin, induce a non-Stokesian diffusive behavior of the analyte inside the nanopore. We also show that the ability of dendrimer molecules to adapt their structure to nanoscopic spaces, and control the flow of matter through the α-hemolysin nanopore, depends non-trivially on the pH- and salt-induced conformational changes of the dendrimer.

  7. Transport and Biodistribution of Dendrimers Across Human Fetal Membranes: Implications for Intravaginal Administration of Dendrimers

    PubMed Central

    Menjoge, Anupa R.; Navath, Raghavendra S.; Asad, Abbas; Kannan, Sujatha; Kim, Chong Jai; Romero, Roberto; Kannan, Rangaramanujam M.

    2010-01-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly(amidoamine)) dendrimers, across human fetal membrane (using a side-by-side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size~ 400 Da) and fluorophore-tagged G4-PAMAM dendrimers (~ 16 kDa). The fluorophore-tagged G4-PAMAM dendrimers were synthesized and characterized using 1H NMR, MALDI TOF-MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a five hour period, the dendrimer transport across all the three membranes was less than < 3 %, whereas the transport of FITC was relatively fast with as much as 49% transport across the amnion. The permeability of FITC (7.9 × 10-7 cm2/s) through the chorioamnion was 7-fold higher than that of the dendrimer (5.8 × 10-8 cm2/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5 to 4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of drugs conjugated to

  8. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  9. Ligand accessibility and bioactivity of a hormone–dendrimer conjugate depend on pH and pH history

    DOE PAGES

    Kim, Sung Hoon; Madak-Erdogan, Zeynep; Bae, Sung Chul; ...

    2015-07-17

    Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells in this paper. In response to pH changes, however, these estrogen–dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR–PAMAM revealed high ligand shielding abovemore » pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand–PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol– and diphenolic acid–PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen–dendrimer conjugates appears to be metastable. Finally, this pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.« less

  10. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-01-01

    The aim of this study was to synthesize folate-dendrimer conjugates as suitable vehicle for site specific delivery of anti-arthritic drug (indomethacin) to inflammatory regions and to determine its targeting efficiency, biodistribution in adjuvant induced arthritic rats. Folic acid was coupled to the surface amino groups of G4-PAMAM dendrimer (G4D) via a carbodiimide reaction and loaded with indomethacin. The conjugates were characterized by (1)H-NMR and IR spectroscopy. The drug content and percent encapsulation efficiency increased with increasing folate content for the dendrimer conjugates. The in vitro release rate was decreased for the folate conjugates when compared with unconjugated dendrimer (DNI). The plasma concentration profile showed a biphasic curve indicating rapid distribution followed by slow elimination. The AUC(0-infinity), half-life and residence time of indomethacin in inflamed paw was higher for folate-dendrimer conjugates. The time-averaged relative drug exposure (r(e)) of the drug in paw and overall drug targeting efficiency (T(e)) were higher for folate conjugate with 21 folate moieties (4.1 and 2.78, respectively) when compared with DNI (1.91 and 1.88, respectively). This study demonstrated the superiority of active targeting over dendrimer mediated passive targeting and also for the first time, folate-mediated targeting of an anti-arthritic drug to the inflammatory tissues.

  11. Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers

    PubMed Central

    Kim, Hye Ji; Oh, Seaung Youl

    2018-01-01

    The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4–fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis. PMID:29310428

  12. Mixed Matrix PVDF Membranes With in Situ Synthesized PAMAM Dendrimer-Like Particles: A New Class of Sorbents for Cu(II) Recovery from Aqueous Solutions by Ultrafiltration.

    PubMed

    Kotte, Madhusudhana Rao; Kuvarega, Alex T; Cho, Manki; Mamba, Bhekie B; Diallo, Mamadou S

    2015-08-18

    Advances in industrial ecology, desalination, and resource recovery have established that industrial wastewater, seawater, and brines are important and largely untapped sources of critical metals and elements. A Grand Challenge in metal recovery from industrial wastewater is to design and synthesize high capacity, recyclable and robust chelating ligands with tunable metal ion selectivity that can be efficiently processed into low-energy separation materials and modules. In our efforts to develop high capacity chelating membranes for metal recovery from impaired water, we report a one-pot method for the preparation of a new family of mixed matrix polyvinylidene fluoride (PVDF) membranes with in situ synthesized poly(amidoamine) [PAMAM] particles. The key feature of our new membrane preparation method is the in situ synthesis of PAMAM dendrimer-like particles in the dope solutions prior to membrane casting using low-generation dendrimers (G0 and G1-NH2) with terminal primary amine groups as precursors and epichlorohydrin (ECH) as cross-linker. By using a combined thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) casting process, we successfully prepared a new family of asymmetric PVDF ultrafiltration membranes with (i) neutral and hydrophilic surface layers of average pore diameters of 22-45 nm, (ii) high loadings (∼48 wt %) of dendrimer-like PAMAM particles with average diameters of ∼1.3-2.4 μm, and (iii) matrices with sponge-like microstructures characteristics of membranes with strong mechanical integrity. Preliminary experiments show that these new mixed matrix PVDF membranes can serve as high capacity sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration.

  13. Stopped-flow kinetic studies of poly(amidoamine) dendrimer-calf thymus DNA to form dendriplexes.

    PubMed

    Dey, Debabrata; Kumar, Santosh; Maiti, Souvik; Dhara, Dibakar

    2013-11-07

    Poly(amidoamine) (PAMAM) dendrimers are known to be highly efficient nonviral carriers in gene delivery. Dendrimer-mediated transfection is known to be a function of the dendrimer to DNA charge ratio as well as the size of the dendrimer. In the present study, the binding kinetics of four PAMAM dendrimers (G1, G2, G3, and G4) with calf thymus DNA (CT-DNA) has been studied using stopped-flow fluorescence spectroscopy. The effect of dendrimer-to-DNA charge ratio and dendrimer generation on the binding kinetics was investigated. In most cases, the results of dendrimer-CT-DNA binding can be explained by a two-step reaction mechanism: a rapid electrostatic binding between the dendrimer and DNA, followed by a conformational change of the dendrimer-DNA complex that ultimately leads to DNA condensation. It was observed that the charge ratio on the dendrimer and the DNA phosphate groups, as well as the dendrimer generation (size), has a marked effect on the kinetics of binding between the DNA and the dendrimers. The rate constant (k'1) of the first step was much higher compared to that of the second step (k'2), and both were found to increase with an increase in dendrimer concentration. Among the four generations of dendrimers, G4 exhibited significantly faster binding kinetics compared to the three smaller generation dendrimers.

  14. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations.

    PubMed

    Chaudhary, Sonam; Gothwal, Avinash; Khan, Iliyas; Srivastava, Shubham; Malik, Ruchi; Gupta, Umesh

    2017-03-01

    Bortezomib (BTZ) is the first proteasome inhibitor approved by the US-FDA is majorly used for the treatment of newly diagnosed and relapsed multiple myeloma including mantle cell lymphoma. BTZ is hydrophobic in nature and is a major cause for its minimal presence as marketed formulations. The present study reports the design, development and characterization of dendrimer based formulation for the improved solubility and effectivity of bortezomib. The study also equally focuses on the mechanistic elucidation of solubilization by two types of dendrimers i.e. fourth generation of poly (amidoamine) dendrimers (G4-PAMAM-NH 2 ) and fifth generation of poly (propylene) imine dendrimers (G5-PPI-NH 2 ). It was observed that aqueous solubility of BTZ was concentration and pH dependent. At 2mM G5-PPI-NH 2 concentration, the fold increase in bortezomib solubility was 1152.63 times in water, while approximately 3426.69 folds increase in solubility was observed at pH10.0, respectively (p<0.05). The solubility of the drug was increased to a greater extent with G5-PPI-NH 2 dendrimers because it has more hydrophobic interior than G4-PAMAM-NH 2 dendrimers. The release of BTZ from G5-PPI-NH 2 complex was comparatively slower than G4-PAMAM-NH 2 . The thermodynamic treatment of data proved that dendrimer drug complexes were stable at all pH with values of ΔG always negative. The experimental findings were also proven by molecular simulation studies and by calculating RMSD and intermolecular hydrogen bonding through Schrodinger software. It was concluded that PPI dendrimers were able to solubilize the drug more effectively than PAMAM dendrimers through electrostatic interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    EPA Science Inventory

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  16. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  17. Design, Synthesis, and Biological Evaluations of Asymmetric Bow-Tie PAMAM Dendrimer-Based Conjugates for Tumor-Targeted Drug Delivery.

    PubMed

    Wang, Tao; Zhang, Yaozhong; Wei, Longfei; Teng, Yuhan G; Honda, Tadashi; Ojima, Iwao

    2018-04-30

    A unique asymmetric bow-tie poly(amidoamine) (PAMAM) dendrimer (ABTD) scaffold was designed and developed as a well-defined macromolecular carrier for tumor-targeted drug delivery. The ABTD scaffold in this study consists of a G3-half-dendron (G3-HD) unit and a G1-half-dendron (G1-HD) unit, bearing thiol moiety in each unit and a bis(maleimide) linker unit, which undergo sequential thiol-maleimide coupling to assemble the scaffold. This assembly methodology is applicable to all other combinations of different generations of PAMAM dendrimers. In the prototype ABTD in this study, 16 biotin moieties were tethered to the G3-HD unit and 4 payloads (new-generation taxoid) to the G1-HD via a self-immolative linker to form an ABTD-tumor-targeting conjugate (ABTD-TTC-1). Two other ABTD-TTCs were synthesized, wherein the G1-HD unit was tethered to a fluorescence-labeled taxoid or to a fluorescent probe. These three ABTD-TTCs were constructed by using a common key ABTD 6 bearing a terminal acetylene group in the G1-HD unit, which was fully characterized as a single molecule by high-resolution mass spectrometry and NMR despite its high molecular weight ( M w : 12 876). Then, the click reaction was employed to couple ABTD 6 with a small-molecule payload or fluorescence probe unit bearing a terminal azide moiety. ABTD-TTC-3, as a surrogate of ABTD-TTC-2, showed substantially enhanced internalization into two cancer cell lines via receptor-mediated endocytosis, attributed to multibinding effect. ABTD-TTC-1 exhibited a remarkable selectivity to cancer cells (1400-7500 times) compared to human normal cells, which demonstrates the salient feature and bright prospect of the ABTD-based tumor-targeted drug-delivery system.

  18. Structure-skin permeability relationship of dendrimers.

    PubMed

    Venuganti, Venkata Vamsi; Sahdev, Preety; Hildreth, Michael; Guan, Xiangming; Perumal, Omathanu

    2011-09-01

    To investigate skin penetration of poly (amidoamine) (PAMAM) dendrimers as a function of surface charge and molecular weight in presence and absence of iontophoresis. Dendrimers were labeled with fluoroisothiocynate (FITC); skin penetration of dendrimers was studied using excised porcine skin in-vitro. Skin penetration of FITC-labeled dendrimers was quantified using confocal laser scanning microscope (CLSM). G2-G6 NH(2), G3.5-COOH and G4-OH dendrimers were used. Cationic dendrimers showed higher skin penetration than neutral and anionic dendrimers. Skin penetration of cationic dendrimer increased linearly with increase in treatment time. Iontophoresis enhanced skin penetration of cationic and neutral dendrimers. Increase in current strength and current duration increased skin transport of dendrimers. Passive and iontophoretic skin penetration of cationic dendrimers was inversely related to their molecular weight. Dendrimer penetrated the skin through intercellular lipids and hair follicles. With iontophoresis, dendrimer was also found in localized skin regions. The study demonstrates that the physicochemical properties of dendrimers influence their skin transport. Findings can be used to design dendrimer-based nanocarriers for drug delivery to skin.

  19. Which Dendrimer to Attain the Desired Properties? Focus on Phosphorhydrazone Dendrimers.

    PubMed

    Caminade, Anne-Marie; Majoral, Jean-Pierre

    2018-03-09

    Among the six Critical Nanoscale Design Parameters (CNDPs) proposed by Prof. Donald A. Tomalia, this review illustrates the influence of the sixth one, which concerns the elemental composition, on the properties of dendrimers. After a large introduction that summarizes different types of dendrimers that have been compared with PolyAMidoAMine (PAMAM) dendrimers, this review will focus on the properties of positively and negatively charged phosphorhydrazone (PPH) dendrimers, especially in the field of biology, compared with other types of dendrimers, in particular PAMAM dendrimers, as well as polypropyleneimine (PPI), carbosilane, and p-Lysine dendrimers.

  20. Antibacterial activity of amino- and amido- terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains.

    PubMed

    Rastegar, Ayoob; Nazari, Shahram; Allahabadi, Ahmad; Falanji, Farahnaz; Akbari Dourbash, Fakhreddin Akbari Dourbash; Rezai, Zahra; Alizadeh Matboo, Soudabeh; Hekmat-Shoar, Reza; Mohseni, Seyed Mohsen; Majidi, Gharib

    2017-01-01

    Background: Nanoscale poly (amidoamine) dendrimers have been investigated for their biological demands, but their antibacterial activity has not been widely discovered. Thus, the sixth generation of poly (amidoamine) dendrimer (PAMAM-G6) was synthesized and its antibacterial activities were evaluated on Gram-negative bacteria; P. aeruginosa, E. coli, A. baumannii, S. typhimurium, S. dysenteriae, K. pneumoniae, P. mirabilis , and Gram-positive bacteria, and S.aureus and B. subtilis , which were isolated from different clinical specimens and standard strains of these bacteria. Methods: In this study, 980 specimens including urine (47%), blood (27%), sputum (13%), wounds (8%), and burns (5%) were collected from clinical specimens of 16 hospitals and clinics in city of Sabzevar, Iran. Then, the target bacteria were isolated and identified using standard methods. Minimum inhibitory concentration and minimum bactericidal concentrations against Gram-positive and Gram-negative bacteria were determined according to guidelines described by clinical and laboratory standards institute (CLSI). Standard discs were prepared using 0.025, 0.25, 2.5, and 25 μg/mL concentrations of PAMAM-G6 on Mueller-Hinton agar plates to determinate the zone of inhibition. The cytotoxicity of PAMAM-G6 dendrimer was evaluated in HCT116 cells by MTT assay. Results: The most important isolated bacteria were E. coli (23.65%), S. aureus (24.7%), P. aeruginosa (10.49%), B. subtilis (7.7%), S. typhimurium (8.87%), A. baumannii (7.02%), K. pneumoniae (7.1%), P. mirabilis (6.46%), and S. dysenteriae (3.6%). Moreover, it was found that poly (amidoamine)-G6 exhibited more antibacterial efficacy on standard strains than isolated bacteria from clinical samples (p<0.05). The cytotoxicity of PAMAM-G6 to the cells showed that cytotoxicity depended on the concentration level and exposure time. Conclusion: The PAMAM-G6 dendrimer showed a positive impact on the removal of dominant bacterial isolated from clinical

  1. Antibacterial activity of amino- and amido- terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains

    PubMed Central

    Rastegar, Ayoob; Nazari, Shahram; Allahabadi, Ahmad; Falanji, Farahnaz; Akbari Dourbash, Fakhreddin Akbari Dourbash; Rezai, Zahra; Alizadeh Matboo, Soudabeh; Hekmat-Shoar, Reza; Mohseni, Seyed Mohsen; Majidi, Gharib

    2017-01-01

    Background: Nanoscale poly (amidoamine) dendrimers have been investigated for their biological demands, but their antibacterial activity has not been widely discovered. Thus, the sixth generation of poly (amidoamine) dendrimer (PAMAM-G6) was synthesized and its antibacterial activities were evaluated on Gram-negative bacteria; P. aeruginosa, E. coli, A. baumannii, S. typhimurium, S. dysenteriae, K. pneumoniae, P. mirabilis, and Gram-positive bacteria, and S.aureus and B. subtilis, which were isolated from different clinical specimens and standard strains of these bacteria. Methods: In this study, 980 specimens including urine (47%), blood (27%), sputum (13%), wounds (8%), and burns (5%) were collected from clinical specimens of 16 hospitals and clinics in city of Sabzevar, Iran. Then, the target bacteria were isolated and identified using standard methods. Minimum inhibitory concentration and minimum bactericidal concentrations against Gram-positive and Gram-negative bacteria were determined according to guidelines described by clinical and laboratory standards institute (CLSI). Standard discs were prepared using 0.025, 0.25, 2.5, and 25 μg/mL concentrations of PAMAM-G6 on Mueller-Hinton agar plates to determinate the zone of inhibition. The cytotoxicity of PAMAM-G6 dendrimer was evaluated in HCT116 cells by MTT assay. Results: The most important isolated bacteria were E. coli (23.65%), S. aureus (24.7%), P. aeruginosa (10.49%), B. subtilis (7.7%), S. typhimurium (8.87%), A. baumannii (7.02%), K. pneumoniae (7.1%), P. mirabilis (6.46%), and S. dysenteriae (3.6%). Moreover, it was found that poly (amidoamine)–G6 exhibited more antibacterial efficacy on standard strains than isolated bacteria from clinical samples (p<0.05). The cytotoxicity of PAMAM-G6 to the cells showed that cytotoxicity depended on the concentration level and exposure time. Conclusion: The PAMAM-G6 dendrimer showed a positive impact on the removal of dominant bacterial isolated from clinical

  2. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates.

    PubMed

    Menjoge, Anupa R; Navath, Raghavendra S; Asad, Abbas; Kannan, Sujatha; Kim, Chong J; Romero, Roberto; Kannan, Rangaramanujam M

    2010-06-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly (amidoamine)) dendrimers, across human fetal membrane (using a side by side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size approximately 400 Da) and fluorophore-tagged G(4)-PAMAM dendrimers (approximately 16 kDa). The fluorophore-tagged G(4)-PAMAM dendrimers were synthesized and characterized using (1)H NMR, MALDI TOF MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a 5 h period, the dendrimer transport across all the three membranes was less than <3%, whereas the transport of FITC was relatively fast with as much as 49% transport across the amnion. The permeability of FITC (7.9 x 10(-7) cm(2)/s) through the chorioamnion was 7-fold higher than that of the dendrimer (5.8 x 10(-8) cm(2)/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5-4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of

  3. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-21

    It has been shown that encapsulation of dietary polyphenols leads to increased solubility and bioavailability of these micronutrients. The encapsulation of dietary polyphenols resveratrol, genistein, and curcumin by folic acid-PAMAM-G3 and folic acid-PAMAM-G4 nanoparticles was studied in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As folic acid-PAMAM nanoparticle size increased, the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol encapsulation induced major alterations of dendrimer morphology. Folic acid-PAMAM nanoconjugates are capable of delivery of polyphenols in vitro.

  4. Electrogenerated chemiluminescence reactions between the [Ru(bpy)3](2+) complex and PAMAM GX.0 dendrimers in an aqueous medium.

    PubMed

    Jimenez-Ruiz, A; Grueso, E; Perez-Tejeda, P

    2015-10-01

    Electrogenerated chemiluminescence, ECL, reactions between tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)3](2+), and PAMAM GX.0 (X=1 and 2) dendrimers in an aqueous medium were carried out at pH10 (fully deprotonated dendrimer surface). ECL was detected in the presence of GX.0 dendrimers without addition of any known coreactant. Atomic force microscopy, AFM, measurements for GX.0 dendrimers in the presence of the [Ru(bpy)3](2+) complex were also done. AFM images showed the existence of aggregates (pillars) of globular shape, as well as interdendrimer networks forming fibers in the x-y direction for dendrimer aqueous solutions. ECL and AFM results in cooperation suggest that the coreactant effect of the end amine groups is improved by both the dendritic branched shells and the globular z-type aggregates. The ECL efficiency trends as a function of [GX.0] (whole range) can be interpreted taking into account the coreactant effect modulated by the presence of the z and x-y type aggregates. Importantly, ECL efficiency values can be taken as a measure of the change induced on the dendrimer aggregation in aqueous solutions when their concentrations rise. Redox potentials of the [Ru(bpy)3](3+/2+) couple in the presence of the G1.0 and G2.0 dendrimers were also determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dendrimers for Drug Delivery.

    PubMed

    Chauhan, Abhay Singh

    2018-04-18

    Dendrimers have come a long way in the last 25 years since their inception. Originally created as a wonder molecule of chemistry, dendrimer is now in the fourth class of polymers. Dr. Donald Tomalia first published his seminal work on Poly(amidoamine) (PAMAM) dendrimers in 1985. Application of dendrimers as a drug delivery system started in late 1990s. Dendrimers for drug delivery are employed using two approaches: (i) formulation and (ii) nanoconstruct. In the formulation approach, drugs are physically entrapped in a dendrimer using non-covalent interactions, whereas drugs are covalently coupled on dendrimers in the nanoconstruct approach. We have demonstrated the utility of PAMAM dendrimers for enhancing solubility, stability and oral bioavailability of various drugs. Drug entrapment and drug release from dendrimers can be controlled by modifying dendrimer surfaces and generations. PAMAM dendrimers are also shown to increase transdermal permeation and specific drug targeting. Dendrimer platforms can be engineered to attach targeting ligands and imaging molecules to create a nanodevice. Dendrimer nanotechnology, due to its multifunctional ability, has the potential to create next generation nanodevices.

  6. Interfacial Interaction between Transmembrane Ocular Mucins and Adhesive Polymers and Dendrimers Analyzed by Surface Plasmon Resonance

    PubMed Central

    Noiray, M.; Briand, E.; Woodward, A. M.; Argüeso, P.; Molina Martínez, I. T.; Herrero-Vanrell, R.; Ponchel, G.

    2013-01-01

    Purpose Development of the first in vitro method based on biosensor chip technology designed for probing the interfacial interaction phenomena between transmembrane ocular mucins and adhesive polymers and dendrimers intended for ophthalmic administration. Methods The surface plasmon resonance (SPR) technique was used. A transmembrane ocular mucin surface was prepared on the chip surface and characterized by QCM-D (Quartz Crystal Microbalance with Dissipation) and XPS (X-ray photoelectron spectroscopy). The mucoadhesive molecules tested were: hyaluronic acid (HA), carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC), chitosan (Ch) and polyamidoamine dendrimers (PAMAM). Results While Ch originated interfacial interaction with ocular transmembrane mucins, for HA, CMC and HPMC, chain interdiffusion seemed to be mandatory for bioadherence at the concentrations used in ophthalmic clinical practise. Interestingly, PAMAM dendrimers developed permanent interfacial interactions with transmembrane ocular mucins whatever their surface chemical groups, showing a relevant importance of co-operative effect of these multivalent systems. Polymers developed interfacial interactions with ocular membrane-associated mucins in the following order: Ch(1 %) > G4PAMAM-NH2(2 %) = G4PAMAM-OH(2 %) > G3.5PAMAM-COOH(2 %)≫ CMC(0.5 %) = HA(0.2 %) = HPMC(0.3 %). Conclusions The method proposed is useful to discern between the mucin-polymer chemical interactions at molecular scale. Results reinforce the usefulness of chitosan and den-drimers as polymers able to increase the retention time of drugs on the ocular surface and hence their bioavailability. PMID:22565639

  7. Mathematical Description of Dendrimer Structure

    NASA Technical Reports Server (NTRS)

    Majoros, Istvan J.; Mehta, Chandan B.; Baker, James R., Jr.

    2004-01-01

    Characteristics of starburst dendrimers can be easily attributed to the multiplicity of the monomers used to synthesize them. The molecular weight, degree of polymerization, number of terminal groups and branch points for each generation of a dendrimer can be calculated using mathematical formulas incorporating these variables. Mathematical models for the calculation of degree of polymerization, molecular weight, and number of terminal groups and branching groups previously published were revised and elaborated on for poly(amidoamine) (PAMAM) dendrimers, and introduced for poly(propyleneimine) (POPAM) dendrimers and the novel POPAM-PAMAM hybrid, which we call the POMAM dendrimer. Experimental verification of the relationship between theoretical and actual structure for the PAMAM dendrimer was also established.

  8. Poly(amido amine) dendrimers in oral delivery.

    PubMed

    Yellepeddi, Venkata K; Ghandehari, Hamidreza

    2016-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed.

  9. Poly(amido amine) dendrimers in oral delivery

    PubMed Central

    Yellepeddi, Venkata K.; Ghandehari, Hamidreza

    2016-01-01

    ABSTRACT Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed. PMID:27358755

  10. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.

    PubMed

    Alibolandi, Mona; Taghdisi, Seyed Mohammad; Ramezani, Pouria; Hosseini Shamili, Fazileh; Farzad, Sara Amel; Abnous, Khalil; Ramezani, Mohammad

    2017-03-15

    In the current study camptothecin-loaded pegylated PAMAM dendrimer were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against colorectal cancer cells which over expresses nucleolin receptors. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using transmission electron microscope (TEM) and DLS. The drug-loading content and encapsulation efficiency were obtained 8.1% and 93.67% respectively. The in vitro release of camptothecin from the formulation was provided the sustained release of encapsulated camptothecin during 4days. Comparative in vitro cytotoxicity experiments demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher antiproliferation activity, towards nucleolin-positive HT29 and C26 colorectal cancer cells than nucleolin-negative CHO cell line. Fluorscence microscopy and flow cytometry also confirmed the enhanced cellular uptake of AS1411 targeted pegylated-dendrimer. In vivo study in C26 tumor-bearing BALB/C mice revealed that the AS1411-functionalized camptothecin loaded pegylated dendrimers improved antitumor activity and survival rate of the encapsulated camptothecin. Conjugation of AS1411 aptamer to the camptothecin loaded-pegylated dendrimer surface provides site-specific delivery of camptothecin, inhibit C26 tumor growth in vivo and significantly decrease systemic toxicity. These results suggested that the new nucleolin-targeted pegylated PAMAM dendrimer as a delivery system for camptothecin have the potential for the treatment of nucleolin-overexpressed colorectal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of basic amino acids-conjugated PAMAM dendrimers as gene carriers for human adipose-derived mesenchymal stem cells.

    PubMed

    Bae, Yoonhee; Lee, Sunray; Green, Eric S; Park, Jung Hyun; Ko, Kyung Soo; Han, Jin; Choi, Joon Sig

    2016-03-30

    Since mesenchymal stem cells (MSCs) can self-renew and differentiate into multiple cell types, the delivery of genes to this type of cell can be an important tool in the emerging field of tissue regeneration and engineering. However, development of more efficient and safe nonviral vectors for gene delivery to stem cells in particular still remains a great challenge. In this study, we describe a group of nonviral gene delivery vectors, conjugated PAMAM derivatives (PAMAM-H-R, PAMAM-H-K, and PAMAM-H-O), displaying affinity toward human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency using pDNA encoding for luciferase (Luc) and enhanced green fluorescent protein (EGFP), and cytotoxicity assays were performed in human AD-MSCs. The results show that transfection efficiencies of conjugated PAMAM derivatives are improved significantly compared to native PAMAM dendrimer, and that among PAMAM derivatives, cytotoxicity of PAMAM-H-K and PAMAM-H-O were very low. Also, treatment of human AD-MSCs to polyplex formation in conjugated PAMAM derivatives, their cellular uptake and localization were analyzed by flow cytometry and confocal microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

    NASA Astrophysics Data System (ADS)

    Pojo, M.; Cerqueira, S. R.; Mota, T.; Xavier-Magalhães, A.; Ribeiro-Samy, S.; Mano, J. F.; Oliveira, J. M.; Reis, R. L.; Sousa, N.; Costa, B. M.; Salgado, A. J.

    2013-05-01

    Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 μg/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 μg/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present 100 % of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ( 20 % of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

  13. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection.

    PubMed

    Ganda, Ingrid S; Zhong, Qian; Hali, Mirabela; Albuquerque, Ricardo L C; Padilha, Francine F; da Rocha, Sandro R P; Whittum-Hudson, Judith A

    2017-07-15

    Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance. Copyright © 2017 Elsevier B.V. All

  14. In vitro evaluation of dendrimer prodrugs for oral drug delivery.

    PubMed

    Najlah, Mohammad; Freeman, Sally; Attwood, David; D'Emanuele, Antony

    2007-05-04

    Dendrimer-based prodrugs were used to enhance the transepithelial permeability of naproxen, a low solubility model drug. The stability of the dendrimer-naproxen link was assessed. Naproxen was conjugated to G0 polyamidoamine (PAMAM) dendrimers either by an amide bond or an ester bond. The stability of G0 prodrugs was evaluated in 80% human plasma and 50% rat liver homogenate. The cytotoxicity of conjugates towards Caco-2 cells was determined and the transport of the conjugates across Caco-2 monolayers (37 degrees C) was reported. In addition, one lauroyl chain (L) was attached to the surface group of G0 PAMAM dendrimer of the diethylene glycol ester conjugate (G0-deg-NAP) to enhance permeability. The lactic ester conjugate, G0-lact-NAP, hydrolyzed slowly in 80% human plasma and in 50% rat liver homogenate (t(1/2)=180 min). G0-deg-NAP was hydrolyzed more rapidly in 80% human plasma (t(1/2)=51 min) and was rapidly cleaved in 50% liver homogenate (t(1/2)=4.7 min). The conjugates were non-toxic when exposed to Caco-2 cells for 3h. Permeability studies showed a significant enhancement in the transport of naproxen when conjugated to dendrimers; L-G0-deg-NAP yielding the highest permeability. Dendrimer-based prodrugs with appropriate linkers have potential as carriers for the oral delivery of low solubility drugs such as naproxen.

  15. Understanding AuNP interaction with low-generation PAMAM dendrimers: a CIELab and deconvolution study

    NASA Astrophysics Data System (ADS)

    Jimenez-Ruiz, A.; Carnerero, J. M.; Castillo, P. M.; Prado-Gotor, R.

    2017-01-01

    Low-generation polyamidoamine (PAMAM) dendrimers are known to adsorb on the surface of gold nanoparticles (AuNPs) causing aggregation and color changes. In this paper, a thorough study of this affinity using absorption spectroscopy, colorimetric, and emission methods has been carried out. Results show that, for citrate-capped gold nanoparticles, interaction with the dendrimer is not only of an electrostatic character but instead occurs, at least in part, through the dendrimer's uncharged internal amino groups. The possibilities of the CIELab chromaticity system parameters' evolution have also been explored in order to quantify dendrimer interaction with the red-colored nanoparticles. By measuring and quantifying 17 nm citrate-capped AuNP color changes, which are strongly dependant on their aggregation state, binding free energies are obtained for the first time for these systems. Results are confirmed via an alternate fitting method which makes use of deconvolution parameters from absorbance spectra. Binding free energies obtained through the use of both means are in good agreement with each other.

  16. A combinatorial approach of inclusion complexation and dendrimer synthesization for effective targeting EGFR-TK.

    PubMed

    Shende, Pravin; Patil, Sampada; Gaud, R S

    2017-07-01

    The aim of the present study was to use a combinatorial approach of inclusion complexation and dendrimer synthesization of gefitinib using solvent-free technique for targeting EGFR-TK to treat Non-Small-Cell Lung Cancer (NSCLC). The inclusion complex of gefitinib with β-cyclodextrin was prepared by trituration method. This complex encapsulated G4 PAMAM dendrimers were synthesized by Michael addition and amidation reactions using green chemistry and then PEGylated by conjugation reaction. FTIR and DSC confirmed the formation of inclusion complex of gefitinib and β-cyclodextrin and PEGylation of G4 PAMAM dendrimers. Gefitinib showed higher solubility, encapsulation efficiency and controlled release profile from PEGylated dendrimers compared to inclusion complex. The PEGylated dendrimers of inclusion complex of gefitinib were found to reduce hemolytic toxicity and lesser GI 50 value on Human lung cancer cell line A-549 by effective targeting EGFR-TK. A combinatorial approach of inclusion complexation and dendrimer synthesization is one of the alternative advanced approaches to treat NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization.

    PubMed

    Igartúa, Daniela E; Martinez, Carolina S; Temprana, C Facundo; Alonso, Silvia Del V; Prieto, M Jimena

    2018-06-10

    Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes.

    PubMed

    Tiriveedhi, Venkataswarup; Kitchens, Kelly M; Nevels, Kerrick J; Ghandehari, Hamidreza; Butko, Peter

    2011-01-01

    We used fluorescence spectroscopy and surface tensiometry to study the interaction between low-generation (G1 and G4) poly(amidoamine) (PAMAM) dendrimers, potential vehicles for intracellular drug delivery, and model lipid bilayers. Membrane association of fluorescently labeled dendrimers, measured by fluorescence anisotropy, increased with increasing size of the dendrimer and with increasing negative charge density in the membrane, indicating the electrostatic nature of the interaction. When the membrane was doped with pyrene-labeled phosphatidyl glycerol (pyrene-PG), pyrene excimer fluorescence demonstrated a dendrimer-induced selective aggregation of negatively charged lipids when the membrane was in the liquid crystalline state. A nonlinear Stern-Volmer quenching of dendrimer fluorescence with cobalt bromide suggested a dendrimer-induced aggregation of lipid vesicles, which increased with the dendrimer's generation number. Surface tensiometry measurements showed that dendrimers penetrated into the lipid monolayer only at subphysiologic surface pressures (<30mN/m). We conclude that the low-generation PAMAM dendrimers associate with lipid membranes predominantly electrostatically, without significantly compromising the bilayer integrity. They bind stronger to membranes with higher fluidity and lower surface pressure, which are characteristic of rapidly dividing cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions

    PubMed Central

    Wang, Fei; Shao, Naimin; Cheng, Yiyun

    2013-01-01

    In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

  20. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia.

    PubMed

    Murta, Veronica; Schilrreff, Priscila; Rosciszewski, Gerardo; Morilla, Maria Jose; Ramos, Alberto Javier

    2018-03-01

    Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia. © 2017 International Society for Neurochemistry.

  1. Fetal uptake of intra-amniotically delivered dendrimers in a mouse model of intrauterine inflammation and preterm birth.

    PubMed

    Burd, Irina; Zhang, Fan; Dada, Tahani; Mishra, Manoj K; Borbiev, Talaibek; Lesniak, Wojciech G; Baghlaf, Haitham; Kannan, Sujatha; Kannan, Rangaramanujam M

    2014-08-01

    Intrauterine inflammation is associated with preterm birth and can lead to fetal neuroinflammation and neurobehavioral disorders in newborns. Dendrimers can intrinsically target and deliver drugs for the treatment of neuroinflammation. We explore whether hydroxyl polyamidoamine (PAMAM) dendrimer (G4-OH)-based nanomedicines can be delivered to the fetus by intra-amniotic administration, in a mouse model of intrauterine inflammation. The time-dependent accumulation of G4-OH-fluorophore conjugate was quantified by fluorescence. These studies suggest that, after intra-amniotic administration, there is significant accumulation of dendrimer in the fetus gut and brain. In addition, there is some fetal-maternal transport of the dendrimer. Confocal microscopy confirmed the presence of G4-OH in the fetal brain, with a large accumulation in the brain blood vessels and the brain parenchyma, and some microglial uptake. We believe that intra-amniotic administration of G4-OH-drug nanomedicines may enable the treatment of diseases related to intrauterine inflammation and fetal neuroinflammation. Using a mouse model of intrauterin inflammation leading to neuroinflammation in the fetus, these investigators demonstrate that intra-amniotic delivery of hydroxyl polyamidoamine (PAMAM) dendrimer (G4-OH)-based nanomedicines may provide an effective method in preventing this complication. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A coarse grained molecular dynamics simulation study on the structural properties of carbon nanotube-dendrimer composites.

    PubMed

    Kavyani, Sajjad; Dadvar, Mitra; Modarress, Hamid; Amjad-Iranagh, Sepideh

    2018-04-25

    By employing coarse grained (CG) molecular dynamics (MD) simulation, the effect of the size and hydrophilic/hydrophobic properties of the interior/exterior structures of the dendrimers in carbon nanotube (CNT)-dendrimer composites has been studied, to find a stable composite with high solubility in water and the capability to be used in drug delivery applications. For this purpose, composites consisting of core-shell dendrimer complexes including: [PPI{core}-PAMAM{shell}], [PAMAM{core}-polyethyleneglycol (PEG){shell}] and [PAMAM{core}-fattyacid (FTA){shell}] were constructed. A new CG model for the fatty acid (FTA) molecules as functionalized to the dendrimer was developed, which, unlike the previous models, could generate the structural conformations of the FTA properly. The obtained results indicated that the dendrimer complexes with short FTA chains can form stable composites with the CNT. Also, it was found that the pristine PAMAM and PPI-PAMAM with small PPI, and PAMAM-PEG dendrimers with short PEG chains, can distribute their chains into the water medium and interact with the CNT efficiently, to form a stable water-soluble CNT-dendrimer composite. The results demonstrated that the structural difference between the interior and exterior of a core-shell dendrimer complex can prevent the core and the interior layers of the dendrimer complex from interacting with the CNT. An overall analysis of the results manifested that the CNT-PAMAM:4-PEG:4 is the most stable composite, due to strong binding of the dendrimer with the CNT while also having high solubility in water, and its core retains its structure properly and unchanged, suitable for encapsulating drugs in the targeted delivery applications.

  3. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    PubMed

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  4. pH controlled gating of toxic protein pores by dendrimers

    NASA Astrophysics Data System (ADS)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  5. A Sensitive Electrochemical Immunosensor Based on PAMAM Dendrimer-Encapsulated Au for Detection of Norfloxacin in Animal-Derived Foods.

    PubMed

    Liu, Bing; Li, Min; Zhao, Yaoshuai; Pan, Mingfei; Gu, Ying; Sheng, Wei; Fang, Guozhen; Wang, Shuo

    2018-06-15

    In this work, a sensitive electrochemical immunosensor has been reported for the determination of norfloxacin in animal-derived foods. The poly (amidoamine) dendrimer encapsulated gold nanoparticles (PAMAM-Au) played dual roles in the proposed sensing platform which not only accelerated the electron transfer process of sensing, but also increased the efficiency of the immobilized antibody. The HRP-labeled antigen, as the signal labels in the immunosensor, was introduced to catalyze the following reaction of the substrate hydroquinone with the aid of H₂O₂ in the competitive reaction. On the basis of the signal amplification of PAMAM-Au, the signal intensity was linearly related to the concentration of norfloxacin in the range of 1 μg·L −1 ⁻10 mg·L −1 . All the results showed that the proposed strategy with low LOD (0.3837 μg·L −1 ) and favorable recovery (91.6⁻106.1%) in the practical sample, and it could provide a suitable protocol for norfloxacin detection in animal-derived foods with high sensitivity, good accuracy, and stability.

  6. Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery.

    PubMed

    Wang, Mingming; Cheng, Yiyun

    2016-12-01

    Fluorinated dendrimers have shown great promise in gene delivery due to their high transfection efficacy and low cytotoxicity, however, the structure-activity relationships of these polymers still remain unknown. Herein, we synthesized a library of fluorinated dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results show that fluorination significantly improves the transfection efficacy of G4-G7 polyamidoamine dendrimers in DNA and siRNA delivery. Fluorination on generation 5 dendrimer yields the most efficient polymers in gene delivery, and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. All the fluorinated dendrimers cause minimal toxicity on the transfected cells at their optimal transfection conditions. This study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. The structure-activity relationships of fluorinated dendrimers in gene delivery is still unknown and the behavior of fluorinated dendrimers in siRNA delivery has not yet been investigated. Herein, we synthesized a library of fluorinated PAMAM dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results clearly indicate that fluorination significantly improves the transfection efficacy of dendrimers in both DNA and siRNA delivery without causing additional toxicity. G5 PAMAM dendrimer is best scaffold to synthesize fluorinated dendrimers and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. This systematic study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages.

    PubMed

    He, XiaoCong; Qu, ZhiGuo; Xu, Feng; Lin, Min; Wang, JiuLing; Shi, XingHua; Lu, TianJian

    2014-01-07

    Studying dendrimer-biomembrane interactions is important for understanding drug and gene delivery. In this study, coarse-grained molecular dynamics simulations were performed to investigate the behaviors of polyamidoamine (PAMAM) dendrimers (G4 and G5) as they interacted with asymmetric membranes from different sides of the bilayer, thus mimicking different dendrimer transport stages. The G4 dendrimer could insert into the membrane during an equilibrated state, and the G5 dendrimer could induce pore formation in the membrane when the dendrimers interacted with the outer side (outer interactions) of an asymmetric membrane [with 10% dipalmitoyl phosphatidylserine (DPPS) in the inner leaflet of the membrane]. During the interaction with the inner side of the asymmetric membrane (inner interactions), the G4 and G5 dendrimers only adsorbed onto the membrane. As the membrane asymmetry increased (e.g., increased DPPS percentage in the inner leaflet of the membrane), the G4 and G5 dendrimers penetrated deeper into the membrane during the outer interactions and the G4 and G5 dendrimers were adsorbed more tightly onto the membrane for the inner interactions. When the DPPS content reached 50%, the G4 dendrimer could completely penetrate through the membrane from the outer side to the inner side. Our study provides molecular understanding and reference information about different dendrimer transport stages during drug and gene delivery.

  8. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-06

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dendrimer ligands-capped CH3NH3PbBr3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water.

    PubMed

    Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei

    2018-06-08

    CH 3 NH 3 PbBr 3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH 3 NH 3 PbBr 3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH 3 NH 3 PbBr 3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).

  10. Dendrimer ligands-capped CH3NH3PbBr3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water

    NASA Astrophysics Data System (ADS)

    Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei

    2018-06-01

    CH3NH3PbBr3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH3NH3PbBr3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH3NH3PbBr3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).

  11. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  12. Dendrimer internalization and intracellular trafficking in living cells.

    PubMed

    Albertazzi, Lorenzo; Serresi, Michela; Albanese, Alberto; Beltram, Fabio

    2010-06-07

    The ability of dendrimers to cross cell membranes is of much interest for their application in drug and gene delivery. Recent studies demonstrate that dendrimers are capable to enter cells by endocytosis, but the intracellular pathway following their internalization remains controversial. In this study we use confocal fluorescence microscopy to elucidate the intracellular trafficking properties of PAMAM dendrimers with high spatial and temporal resolution in living HeLa cells. Macromolecules of different chemical functionality (neutral, cationic and lipidated), size (from G2 up to G6) and surface charge are investigated and their internalization properties correlated with the molecular structure. Toxicity and internalization data are discussed that allow the identification of dendrimers maximizing intracellular uptake with the minimum effect on cell viability. Time-lapse imaging and colocalization assays with fluorescent biomarkers for endocytic vesicles demonstrate that dendrimers are internalized by both clathrin-dependent endocytosis and macropinocytosis and are eventually delivered to the lysosomal compartment. Moreover we analyzed the uptake of dendrimers in additional cell lines of practical interest for therapeutic purposes. These measurements together with a direct comparison with TAT peptides demonstrate that PAMAM dendrimers possess similar properties to these widely used cell-penetrating peptides and thanks to their chemical tunability may represent a valid alternative for drug and gene delivery.

  13. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    PubMed Central

    Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim

    2010-01-01

    To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was dependent upon the generation and charge ratio of the PAMAM dendrimer, and the antisense concentration had no significant effect on the cytotoxicity. PMID:20517481

  14. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model.

    PubMed

    Sharma, Anjali; Porterfield, Joshua E; Smith, Elizabeth; Sharma, Rishi; Kannan, Sujatha; Kannan, Rangaramanujam M

    2018-06-05

    Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer

  15. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery.

    PubMed

    Gu, Zhuojun; Wang, Meng; Fang, Qiongyan; Zheng, Huaiyu; Wu, Feiyue; Lin, Dai; Xu, Ying; Jin, Yi

    2015-05-01

    Polyamidoamine (PAMAM) dendrimers have attracted lots of interest as drug carriers. And little study about whether pluronic-attached PAMAM dendrimers could be potential drug delivery systems has been carried on. Pluronic F127 (PF127) attached PAMAM dendrimers were designed as novel drug carriers. Two conjugation ratios of PF127-attached PAMAM dendrimers were synthesized. (1)H nuclear magnetic resonance ((1)H-NMR), Fourier transform infrared spectrum (FTIR), element analysis and ninhydrin assay were used to characterize the conjugates. Size, zeta potential and critical micelle concentrations (CMC) were also detected. And DOX was incorporated into the hydrophobic interior of the conjugates. Studies on their drug loading and drug release were carried on. Furthermore, hemolysis and cytotoxicity assay were used to evaluate the toxicity of the conjugates. PF127 was successfully conjugated to the fifth generation PAMAM dendrimer at two molar ratios of 19% and 57% (PF127 to surface amine per PAMAM dendrimer molecular). The conjugates showed an increased size and a reduced zeta potential. And higher CMC values were obtained than pure PF127. Compared with unconjugated PAMAM dendrimer, PF127 conjugation significantly reduced the hemolytic toxicity and cytotoxicity of PAMAM dendrimer in vitro. The encapsulation results showed that the ability to encapsulate DOX by the conjugate of 19% conjugation ratio was better than that of 57% conjugation ratio. And the maximum is ∼12.87 DOX molecules per conjugate molecule. Moreover, the complexes showed a sustained release behavior compared to pure DOX. Findings from the in vitro study show that the PF127-attached PAMAM dendrimers may be potential carriers for drug delivery.

  16. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    PubMed

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  17. PAMAM-RGD Conjugates Enhance siRNA Delivery Through a Multicellular Spheroid Model of Malignant Glioma

    PubMed Central

    Waite, Carolyn L.; Roth, Charles M.

    2011-01-01

    Generation 5 poly(amidoamine) (PAMAM) dendrimers were modified by the addition of cyclic RGD targeting peptides and were evaluated for their ability to associate with siRNA and mediate siRNA delivery to U87 malignant glioma cells. PAMAM-RGD conjugates were able to complex with siRNA to form complexes of approximately 200 nm in size. Modest siRNA delivery was observed in U87 cells using either PAMAM or PAMAM-RGD conjugates. PAMAM-RGD conjugates prevented the adhesion of U87 cells to fibrinogen coated plates, in a manner that depends on the number of RGD ligands per dendrimer. The delivery of siRNA through three-dimensional multicellular spheroids of U87 cells was enhanced using PAMAM-RGD conjugates compared to the native PAMAM dendrimers, presumably by interfering with integrin-ECM contacts present in a three-dimensional tumor model. PMID:19775120

  18. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels.

    PubMed

    An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen

    2012-02-15

    A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells.

    PubMed

    Kitchens, Kelly M; Foraker, Amy B; Kolhatkar, Rohit B; Swaan, Peter W; Ghandehari, Hamidreza

    2007-11-01

    To investigate the internalization and subcellular trafficking of fluorescently labeled poly (amidoamine) (PAMAM) dendrimers in intestinal cell monolayers. PAMAM dendrimers with positive or negative surface charge were conjugated to fluorescein isothiocyanate (FITC) and visualized for colocalization with endocytosis markers using confocal microscopy. Effect of concentration, generation and charge on the morphology of microvilli was observed using transmission electron microscopy. Both cationic and anionic PAMAM dendrimers internalized within 20 min, and differentially colocalized with endocytosis markers clathrin, EEA-1, and LAMP-1. Transmission electron microscopy analysis showed a concentration-, generation- and surface charge-dependent effect on microvilli morphology. These studies provide visual evidence that endocytic mechanism(s) contribute to the internalization and subcellular trafficking of PAMAM dendrimers across the intestinal cells, and that appropriate selection of PAMAM dendrimers based on surface charge, concentration and generation number allows the application of these polymers for oral drug delivery.

  20. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models.

    PubMed

    Perreault, François; Melegari, Silvia Pedroso; Fuzinatto, Cristiane Funghetto; Bogdan, Nicoleta; Morin, Mario; Popovic, Radovan; Matias, William Gerson

    2014-03-01

    Polyamidoamine (PAMAM) dendrimers are used for many pharmaceutical and biomedical applications. However, the toxicological risks of several PAMAM-based compounds are still not fully evaluated, despite evidences of PAMAM deleterious effects on biological membranes, leading to toxicity. In this report, we investigated the toxicity of generation 0 PAMAM-coated gold nanoparticles (AuG0 NPs) in four different models to determine how different cellular systems are affected by PAMAM-coated NPs. Toxicity was evaluated in two mammalian cell lines, Neuro 2A and Vero, in the green alga Chlamydomonas reinhardtii and the bacteria Vibrio fischeri. AuG0 NP treatments reduced cell metabolic activity in algal and bacterial cells, measured by esterase enzymatic activity (C. reinhardtii) and luminescence emission (V. fischeri). EC50 value after 30 min of treatment was similar in both organisms, with 0.114 and 0.167 mg mL(-1) for C. reinhardtii and V. fischeri, respectively. On the other hand, AuG0 NPs induced no change of mitochondrial activity in mammalian cells after 24 h of treatment to up to 0.4 mg mL(-1) AuG0 NPs. Change in the absorption spectra of AuG0 NP in the mammalian cell culture media may indicate an alteration of NP properties that contributed to the low toxicity of AuG0 NPs in mammalian cells. For a safe development of PAMAM-based nanomaterials, the difference of sensitivity between mammalian and microbial cells, as well as the modulation of NPs toxicity by medium properties, should be taken into account when designing PAMAM NPs for applications that may lead to their introduction in the environment. Copyright © 2012 Wiley Periodicals, Inc.

  1. Interactive Design Strategy for a Multi-Functional PAMAM Dendrimer-Based Nano-Therapeutic Using Computational Models and Experimental Analysis

    PubMed Central

    Lee, Inhan; Williams, Christopher R.; Athey, Brian D.; Baker, James R.

    2010-01-01

    Molecular dynamics simulations of nano-therapeutics as a final product and of all intermediates in the process of generating a multi-functional nano-therapeutic based on a poly(amidoamine) (PAMAM) dendrimer were performed along with chemical analyses of each of them. The actual structures of the dendrimers were predicted, based on potentiometric titration, gel permeation chromatography, and NMR. The chemical analyses determined the numbers of functional molecules, based on the actual structure of the dendrimer. Molecular dynamics simulations calculated the configurations of the intermediates and the radial distributions of functional molecules, based on their numbers. This interactive process between the simulation results and the chemical analyses provided a further strategy to design the next reaction steps and to gain insight into the products at each chemical reaction step. PMID:20700476

  2. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection.

    PubMed

    Campos, Bruno B; Oliva, María Moreno; Contreras-Cáceres, Rafael; Rodriguez-Castellón, Enrique; Jiménez-Jiménez, José; da Silva, Joaquim C G Esteves; Algarra, Manuel

    2016-03-01

    Carbon quantum dots (CQDs) coated with poly(amidoamine) (PAMAM-NH2) dendrimer are prepared from folic acid and phosphoric acid under a hydrothermal procedure. The obtained nanoparticles are successfully used as fluorescent sensor for Pt(IV) (in the form of chloroplatinate ion). CQDs possess many attractive features including uniform dispersion with average size about 13nm for unmodified particles and, ∼30nm when they are coated with PAMAM-NH2 dendrimer. The synthesized nanoparticles have been characterized by elemental analysis, attenuated total reflectance (ATR), X-ray photoelectron (XPS) and Raman spectroscopies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and steady-state and life-time fluorescence. CQDs are used as fluorescent sensor of Pt(IV) ion in aqueous media showing linear quenching effect of their fluorescence. The results obtained demonstrated a limit of detection of 657nM with an accuracy of the method of 0.13% (as RSD, n=10) and sensitivity of 78nM. Moreover, with the presence of other interference species, good results are obtained when applied in real samples from platinum nanoparticles synthesis. The dissolved platinum ions can be quantified in the range 6-96μM with an accuracy of 2.5%. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation.

    PubMed

    Kulhari, Hitesh; Pooja, Deep; Singh, Mayank K; Chauhan, Abhay S

    2015-02-01

    Abstract Cisplatin is mainly used in the treatment of ovarian, head and neck and testicular cancer. Poor solubility and non-specific interactions causes hurdles in the development of successful cisplatin formulation. There were few reports on poly(amidoamine) (PAMAM) dendrimer-cisplatin complexes for anticancer treatment. But the earlier research was mainly focused on therapeutic effect of PAMAM dendrimer-cisplatin complex, with less attention paid on the formulation development of these complexes. Objective of the present study is to optimize and validate the carboxylate-terminated, EDA core PAMAM dendrimer-based cisplatin formulation with respect to various variables such as dendrimer core, generation, drug entrapment, purification, yield, reproducibility, stability, storage and in-vitro release. Dendrimer-cisplatin complex was prepared by an efficient method which significantly increases the % platinum (Pt) content along with the product yield. Dendrimers showed reproducible (∼27%) platinum loading by weight. Variation in core and generations does not produce significant change in the % Pt content. Percentage Pt content of dendrimeric formulation increases with increase in drug/dendrimer mole ratio. Formulation with low drug/dendrimer mole ratio showed delayed release compared to the higher drug/dendrimer mole ratio; these dendrimer formulations are stable in room temperature. In vitro release profiles of the stored dendrimer-cisplatin samples showed comparatively slow release of cisplatin, which may be due to formation of strong bond between cisplatin and dendrimer. This study will contribute to create a fine print for the formulation development of PAMAM dendrimer-cisplatin complexes.

  4. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    PubMed

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  5. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Quyen Tran, Ngoc; Khoa Nguyen, Cuu; Phuong Nguyen, Thi

    2013-12-01

    Dendrimer, a new class of hyper-branched polymer with predetermined molecular weight and well-controlled size, has received much attention in nanobiomedical applications such as drug carrier, gene therapy, disease diagnosis, etc. In this study, pegylated polyamidoamine (PAMAM) dendrimer at generation 3.0 (G 3.0) and carboxylated PAMAM dendrimer G 2.5 were prepared for loading anticancer drugs. For loading cisplatin, carboxylated dendrimer could carry 26.64 wt/wt% of cisplatin. The nanocomplexes have size ranging from 10 to 30 nm in diameter. The drug nanocarrier showed activity against NCI-H460 lung cancer cell line with half maximal inhibitory (IC50) of 23.11 ± 2.08 μg ml-1. Pegylated PAMAM dendrimers (G 3.0) were synthesized below 40 nm in diameter for carrying 5-fluorouracil (5-FU). For 5-FU encapsulation, pegylated dendrimer showed a high drug-loading efficiency of the drug and a slow release profile of 5-FU. The drug nanocarrier system exhibited an antiproliferative activity against MCF-7 cells (breast cancer cell) with a half maximal inhibitory (IC50) of 9.92 ± 0.19 μg ml-1. In vivo tumor xenograft study showed that the 5-FU encapsulated pegylation of dendrimer exhibited a significant decrement in volume of tumor which was generated by MCF-7 cancer cells. These positive results from our studies could pave the ways for further research of drugs dendrimer nanocarriers toward cancer chemotherapy.

  6. Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs.

    PubMed

    Nguyen, Thi Tram Chau; Nguyen, Cuu Khoa; Nguyen, Thi Hiep; Tran, Ngoc Quyen

    2017-01-01

    In the study, four kinds of pluronics (P123, F68, F127 and F108) with varying hydrophilic-lipophilic balance (HLB) values were modified and conjugated on 4th generation of polyamidoamine dendrimer (PAMAM). The obtained results from FT-IR, 1 H NMR and GPC showed that the pluronics effectively conjugated on the dendrimer. The molecular weight of four PAMAM G4.0-Pluronics and its morphologies are in range of 200.15-377.14kDa and around 60-180nm in diameter by TEM, respectively. Loading efficiency and release of hydrophobic fluorouracil (5-FU) anticancer drug were evaluated by HPLC; Interesting that the dendrimer nanocarrier was conjugated with the highly lipophilic pluronic P123 (G4.0-P123) exhibiting a higher drug loading efficiency (up to 76.25%) in comparison with another pluronics. Live/dead fibroblast cell staining assay mentioned that all conjugated nanocarriers are highly biocompatible. The drug-loaded nanocarriers also indicated a highly anti-proliferative activity against MCF-7 breast cancer cell. The obtained results demonstrated a great potential of the highly lipophilic pluronics-conjugated nanocarriers in hydrophobic drugs delivery for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Host-guest chemistry of dendrimer-drug complexes: 7. Formation of stable inclusions between acetylated dendrimers and drugs bearing multiple charges.

    PubMed

    Fang, Min; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun

    2012-03-15

    Drug molecules bearing multiple charges usually form precipitates with cationic dendrimers, which presents a challenge during the preparation of dendrimer inclusions for these drugs. In the present study, fully acetylated polyamidoamine (PAMAM) dendrimers were proposed as stable vehicles for drug molecules bearing two negative charges such as Congo red and indocyanine green. NMR techniques including (1)H NMR and (1)H-(1)H NOESY were used to characterize the host-guest chemistry of acetylated dendrimer and these guest molecules. The cationic PAMAM dendrimer was found to form a precipitate with Congo red and indocyanine green, but the acetylated one avoided the formation of cross-linking structures in aqueous solutions. NOESY studies revealed the encapsulation of Congo red and indocyanine green within the interior cavities of PAMAM dendrimers at mild acidic conditions and acetylated dendrimers show much stronger ability to encapsulate the guest molecules than cationic ones. Also, UV-vis-NIR studies suggest that acetylated dendrimers significantly improve the photostability of indocyanine green and prevent the formation of indocyanine green J-aggregates in aqueous solutions. The present study provides a new insight into dendrimer-based host-guest systems, especially for those guest molecules bearing multiple charges. © 2012 American Chemical Society

  8. Electron injection from graphene quantum dots to poly(amido amine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T. N.; Inciong, M. R.; Santiago, S. R.

    2016-04-18

    The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.

  9. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo

    PubMed Central

    Akhtar, Saghir; Al-Zaid, Bashayer; El-Hashim, Ahmed Z.; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H. M.; Benter, Ibrahim F.

    2015-01-01

    Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling—an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM

  10. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.

    PubMed

    Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M

    2012-01-01

    Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination.

    PubMed

    Kelly, Christopher V; Leroueil, Pascale R; Orr, Bradford G; Banaszak Holl, Mark M; Andricioaei, Ioan

    2008-08-07

    The molecular structures and enthalpy release of poly(amidoamine) (PAMAM) dendrimers binding to 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers were explored through atomistic molecular dynamics. Three PAMAM dendrimer terminations were examined: protonated primary amine, neutral acetamide, and deprotonated carboxylic acid. Fluid and gel lipid phases were examined to extract the effects of lipid tail mobility on the binding of generation-3 dendrimers, which are directly relevant to the nanoparticle interactions involving lipid rafts, endocytosis, lipid removal, and/or membrane pores. Upon binding to gel phase lipids, dendrimers remained spherical, had a constant radius of gyration, and approximately one-quarter of the terminal groups were in close proximity to the lipids. In contrast, upon binding to fluid phase bilayers, dendrimers flattened out with a large increase in their asphericity and radii of gyration. Although over twice as many dendrimer-lipid contacts were formed on fluid versus gel phase lipids, the dendrimer-lipid interaction energy was only 20% stronger. The greatest enthalpy release upon binding was between the charged dendrimers and the lipid bilayer. However, the stronger binding to fluid versus gel phase lipids was driven by the hydrophobic interactions between the inner dendrimer and lipid tails.

  12. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy.

    PubMed

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.

  13. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    PubMed Central

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS. PMID:26604753

  14. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers.

    PubMed

    Medina, Scott H; Tekumalla, Venkatesh; Chevliakov, Maxim V; Shewach, Donna S; Ensminger, William D; El-Sayed, Mohamed E H

    2011-06-01

    There is an urgent need for novel polymeric carriers that can selectively deliver a large dose of chemotherapeutic agents into hepatic cancer cells to achieve high therapeutic activity with minimal systemic side effects. PAMAM dendrimers are characterized by a unique branching architecture and a large number of chemical surface groups suitable for coupling of chemotherapeutic agents. In this article, we report the coupling of N-acetylgalactosamine (NAcGal) to generation 5 (G5) of poly(amidoamine) (PAMAM-NH₂) dendrimers via peptide and thiourea linkages to prepare NAcGal-targeted carriers used for targeted delivery of chemotherapeutic agents into hepatic cancer cells. We describe the uptake of NAcGal-targeted and non-targeted G5 dendrimers into hepatic cancer cells (HepG2) as a function of G5 concentration and incubation time. We examine the contribution of the asialoglycoprotein receptor (ASGPR) to the internalization of NAcGal-targeted dendrimers into hepatic cancer cells through a competitive inhibition assay. Our results show that uptake of NAcGal-targeted G5 dendrimers into hepatic cancer cells occurs via ASGPR-mediated endocytosis. Internalization of these targeted carriers increased with the increase in G5 concentration and incubation time following Michaelis-Menten kinetics characteristic of receptor-mediated endocytosis. These results collectively indicate that G5-NAcGal conjugates function as targeted carriers for selective delivery of chemotherapeutic agents into hepatic cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer

    NASA Astrophysics Data System (ADS)

    Maiti, Prabal K.; Bagchi, Biman

    2009-12-01

    In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.

  16. Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies.

    PubMed

    Cheng, Yiyun; Li, Mingzhong; Xu, Tongwen

    2008-08-01

    Camptothecin (CPT), a plant alkaloid isolated from Camptotheca acuminata, has an extremely low solubility in aqueous medium, which presents a major challenge during drug formulation in clinical trails. In the present study we investigated the potential of poly(amidoamine) (PAMAM) dendrimers as drug carriers of CPT through aqueous solubility studies. Results showed that the aqueous solubility of CPT was significantly increased by PAMAM dendrimers. The effect of PAMAM generation on CPT solubility was also evaluated. These studies indicated that PAMAM dendrimers might be considered as biocompatible carriers of CPT.

  17. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    NASA Astrophysics Data System (ADS)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad

    2016-05-01

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  18. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.

    PubMed

    Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E

    2006-07-28

    A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.

  19. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  20. Wetting and layering transitions in a nano-dendrimer PAMAM structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Aouini, S.; Ziti, S.; Labrim, H.; Bahmad, L.

    2016-10-01

    This study is based on a nano-model of the dendrimer polyamidoamine (PAMAM). The idea is to examine the magnetic properties of such models in the context of wetting and the layering transitions. The studied system consists of spins σ ={1/2} Ising ferromagnetic in real nanostructure found in different scientific domains. To study this system, we perform Monte Carlo simulations leading to interesting results recapitulated in two classes. The former is the ground state phase diagrams study. The latter is the magnetic properties at non null temperatures. Also, we analyzed the effect of the terms present in the Hamiltonian governing our system such as the external magnetic field and the exchange couplings interactions.

  1. Polyamidoamine dendrimer as a spacer for the immobilization of glucose oxidase in capillary enzyme microreactor.

    PubMed

    Wang, Siming; Su, Ping; Hongjun, E; Yang, Yi

    2010-10-15

    Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups. In this study, different generations of PAMAM (G0-G4) were introduced onto the inner wall of fused-silica capillaries by microwave irradiation and a new type of glucose oxidase (GOx) capillary enzyme microreactor was developed based on enzyme immobilization in the prepared PAMAM-grafted fused-silica capillaries. The optimal enzymolysis conditions for beta-d-glucose in the microreactor were evaluated by capillary zone electrophoresis. In addition, the enzymolysis efficiencies of different generations of PAMAM-GOx capillary enzyme microreactor were compared. The results indicate that enzymolysis efficiency increased with increasing generations of PAMAM. The experimental results provide the possibility for the development and application of an online immobilized capillary enzyme microreactor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  2. Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction.

    PubMed

    Wang, Juan; Yang, Hu

    2018-05-08

    Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michael addition reaction at a subzero temperature (-20 °C), namely cryo-aza-Michael addition, to form a macroporous superelastic network, i.e., dendrimer cryogel. Dendrimer cryogels exhibit biologically relevant Young's modulus, high compression elasticity and super resilience at ambient temperature. Furthermore, the dendrimer cryogels exhibit excellent rebound performance and do not show significant stress relaxation under cyclic deformation over a wide temperature range (-80 to 100 °C). The obtained dendrimer cryogels are stable at acidic pH but degrade quickly at physiological pH through self-triggered degradation. Taken together, dendrimer cryogels represent a new class of scaffolds with properties suitable for biomedical applications.

  3. A selective glucose sensor: the cooperative effect of monoboronic acid-modified poly(amidoamine) dendrimers.

    PubMed

    Tsai, Ching-Hua; Tang, Yi-Hsuan; Chen, Hui-Ting; Yao, Yi-Wen; Chien, Tun-Cheng; Kao, Chai-Lin

    2018-05-01

    Selective glucose binding was identified through five generations of monoboronic acid-functionalized PAMAM dendrimers. The best selectivity obtained when using G3 dendrimers (1b) generated 71.1, 94.9, and 1309 times stronger binding than when using galactose, fructose, and lactose, respectively. Further experiments using dendrimer analogues and glucose derivatives suggested that two nearby monoboronic acids cooperatively bound one glucose.

  4. Glassy carbon electrodes sequentially modified by cysteamine-capped gold nanoparticles and poly(amidoamine) dendrimers generation 4.5 for detecting uric acid in human serum without ascorbic acid interference.

    PubMed

    Ramírez-Segovia, A S; Banda-Alemán, J A; Gutiérrez-Granados, S; Rodríguez, A; Rodríguez, F J; Godínez, Luis A; Bustos, E; Manríquez, J

    2014-02-17

    Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7×10(-4) and 5.8×10(-4) mg dL(-1), respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study.

    PubMed

    Yamini, Goli; Kalu, Nnanya; Nestorovich, Ekaterina M

    2016-11-15

    Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA 63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA 63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC 50 values of the G2-OH/PA 63 and G2-NH₂/PA 63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis

  6. Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study

    PubMed Central

    Yamini, Goli; Kalu, Nnanya; Nestorovich, Ekaterina M.

    2016-01-01

    Nearly all the cationic molecules tested so far have been shown to reversibly block K+ current through the cation-selective PA63 channels of anthrax toxin in a wide nM–mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH2, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH2/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in kon and a decrease of only about ten times in tres with G2-OH compared to G2-NH2. At the same time for both blockers, kon and tres increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH2. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH2, increasing with the cis-negative voltage increase

  7. Bendamustine-PAMAM Conjugates for Improved Apoptosis, Efficacy, and in Vivo Pharmacokinetics: A Sustainable Delivery Tactic.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Kumar, Pramod; Raza, Kaisar; Kaul, Ankur; Mishra, Anil Kumar; Gupta, Umesh

    2018-06-04

    Successful delivery of a chemotherapeutic agent like bendamustine still remains a challenge in clinical conditions like chronic lymphatic leukemia (CLL), non-Hodgkin lymphoma (NHL), and multiple myeloma. We have conjugated bendamustine to polyamidoamine (PAMAM) dendrimers after conjugating with N-(hydroxyethyl)maleimide (spacer) via an ester bond. The particle size of PAMAM-bendamustine conjugate was 49.8 ± 2.5 nm. In vitro drug release resulted in sustained release with improved solution stability of drug up to 72 h. In a 24 h cytotoxicity study by MTT assay against human monoblastic leukemia cells (THP-1), the IC50 value for PAMAM-bendamustine was 32.1 ± 4.8 μM compared to 50.42 ± 3.4 μM and 2303 ± 106.5 μM for bendamustine and PAMAM dendrimer, respectively. Significantly higher cell uptake and apoptosis were observed in THP-1 cells by PAMAM-bendamustine conjugate which was confirmed by flow cytometry and confocal laser scanning microscopy. Preliminary in vivo studies undertaken included pharmacokinetics studies, organ distribution studies, and tumor inhibition studies. In healthy Wistar rat model (1CBM IV push model), the pharmacokinetic studies revealed that bioavailability and t 1/2 increased significantly, i.e., almost 8.5-fold (193.8 ± 1.116 vs 22.8 ± 0.158 μg mL -1 /h) and 5.1-fold (0.75 ± 0.005 vs 3.85 ± 0.015 h), respectively, for PAMAM-bendamustine conjugate compared to pure bendamustine ( p < 0.05), however, clearance and volume of distribution were found to be decreased compared to those of free drug. The study suggests that PAMAM-bendamustine conjugate was not only stable for the longer period but also least toxic and highly taken up by THP-1 cells to exert an anticancer effect at the reduced dose. Tumor inhibition and biodistribution studies in tumor-bearing BALB/c mice revealed that PAMAM-bendamustine conjugate was more effective than the pure drug and showed higher accumulation in the tumor.

  8. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM).

    PubMed

    Miodek, Anna; Mejri, Nawel; Gomgnimbou, Michel; Sola, Christophe; Korri-Youssoufi, Hafsa

    2015-09-15

    Two-step electrochemical patterning methods have been employed to elaborate composite nanomaterials formed with multiwalled carbon nanotubes (MWCNTs) coated with polypyrrole (PPy) and redox PAMAM dendrimers. The nanomaterial has been demonstrated as a molecular transducer for electrochemical DNA detection. The nanocomposite MWCNTs-PPy has been formed by wrapping the PPy film on MWCNTs during electrochemical polymerization of pyrrole on the gold electrode. The MWCNTs-PPy layer was modified with PAMAM dendrimers of fourth generation (PAMAM G4) with covalent bonding by electro-oxidation method. Ferrocenyl groups were then attached to the surface as a redox marker. The electrochemical properties of the nanomaterial (MWCNTs-PPy-PAMAM-Fc) were studied using both square wave voltammetry and cyclic voltammetry to demonstrate efficient electron transfer. The nanomaterial shows high performance in the electrochemical detection of DNA hybridization leading to a variation in the electrochemical signal of ferrocene with a detection limit of 0.3 fM. Furthermore, the biosensor demonstrates ability for sensing DNA of rpoB gene of Mycobacterium tuberculosis in real PCR samples. Developed biosensor was suitable for detection of sequences with a single nucleotide polymorphism (SNP) T (TCG/TTG), responsible for resistance of M. tuberculosis to rifampicin drug, and discriminating them from wild-type samples without such mutation. This shows potential of such systems for further application in pathogens diagnostic and therapeutic purpose.

  9. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics.

    PubMed

    Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali

    2016-04-01

    In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Polyamidoamine Dendrimers for Enhanced Solubility of Small Molecules and Other Desirable Properties for Site Specific Delivery: Insights from Experimental and Computational Studies.

    PubMed

    Shadrack, Daniel M; Swai, Hulda S; Munissi, Joan J E; Mubofu, Egid B; Nyandoro, Stephen S

    2018-06-12

    Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.

  11. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide.

    PubMed

    Vandamme, Th F; Brobeck, L

    2005-01-20

    The purpose of this study was to determine the influence of a controlled incremental increase in size, molecular weight and number of amine, carboxylate and hydroxyl surface groups in several series of poly(amidoamine) (PAMAM) dendrimers for controlled ocular drug delivery. The duration of residence time was evaluated after solubilization of several series of PAMAM dendrimers (generations 1.5 and 2-3.5 and 4) in buffered phosphate solutions containing 2 per thousand (w/v) of fluorescein. The New Zealand albino rabbit was used as an in vivo model for qualitative and quantitative assessment of ocular tolerance and retention time after a single application of 25 microl of dendrimer solution to the eye. The same model was also used to determine the prolonged miotic or mydriatic activities of dendrimer solutions, some containing pilocarpine nitrate and some tropicamide, respectively. Residence time was longer for the solutions containing dendrimers with carboxylic and hydroxyl surface groups. No prolongation of remanence time was observed when dendrimer concentration (0.25-2%) increased. The remanence time of PAMAM dendrimer solutions on the cornea showed size and molecular weight dependency. This study allowed novel macromolecular carriers to be designed with prolonged drug residence time for the ophthalmic route.

  12. DNA compaction by poly (amido amine) dendrimers of ammonia cored and ethylene diamine cored

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Al-Shawwa, J.

    2017-06-01

    The complexes build-up of DNA and soft particles poly amidoamine (PAMAM) dendrimers of ammonia cored of generations (G1-G6) and ethylenediamine cored of generations (G1-G10) have been studied, using a new theoretical model developed by Qamhieh and coworkers. The model describes the interaction between linear polyelectrolyte (LPE) chain and ion-penetrable spheres. Many factors affecting LPE/dendrimer complex have been investigated such as dendrimer generation, the Bjerrum length, salt concentration, and rigidity of the LPE chain represented by the persistence length. It is found that the wrapping chain length around dendrimer increases by increasing dendrimer`s generation, Bjerrum length, and salt concentration, while decreases by increasing the persistence length of the LPE chain. Also we can conclude that the wrapping length of LPE chain around ethylenediamine cored dendrimers is larger than its length around ammonia cored dendrimers.

  13. Poly(amidoamine) dendrimer-enabled simultaneous stabilization and functionalization of electrospun poly(γ-glutamic acid) nanofibers.

    PubMed

    Wang, Shige; Zhu, Jingyi; Shen, Mingwu; Zhu, Meifang; Shi, Xiangyang

    2014-02-12

    We report a facile and general approach to using generation 2 (G2) poly(amidoamine) (PAMAM) dendrimers for simultaneous stabilization and functionalization of electrospun poly(γ-glutamic acid) nanofibers (γ-PGA NFs). In this study, uniform γ-PGA NFs with a smooth morphology were generated using electrospinning technology. In order to endow the NFs with good water stability, amine-terminated G2.NH2 PAMAM dendrimers were utilized to crosslink the γ-PGA NFs via 1-ethyl-3-(3-dimethylami-nopropyl) carbodiimide coupling chemistry. Under the optimized crosslinking conditions, G2.NH2 dendrimers partially modified with fluorescein isothiocyanate (FI) or folic acid (FA) were used to crosslink γ-PGA NFs. Our results reveal that G2.NH2-FI is able to simultaneously render the NFs with good water stability and fluorescence property, while G2.NH2-FA is able to simultaneously endow the NFs with water stability and the ability to capture FA receptor-overexpressing cancer cells in vitro via ligand-receptor interaction. With the tunable dendrimer surface chemistry, multifunctional water-stable γ-PGA-based NFs may be generated via a dendrimer crosslinking approach, thereby providing diverse applications in the areas of biosensing, tissue engineering, drug delivery, and environmental sciences.

  14. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers.

    PubMed

    Márquez-Miranda, Valeria; Camarada, María Belén; Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers.

  15. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers

    PubMed Central

    Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers. PMID:26382062

  16. Cellular entry of G3.5 poly (amido amine) dendrimers by clathrin- and dynamin-dependent endocytosis promotes tight junctional opening in intestinal epithelia.

    PubMed

    Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W

    2010-08-01

    This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.

  17. Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.

    PubMed

    Nyitrai, Gabriella; Keszthelyi, Tamás; Bóta, Attila; Simon, Agnes; Tőke, Orsolya; Horváth, Gergő; Pál, Ildikó; Kardos, Julianna; Héja, László

    2013-08-01

    Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection.

    PubMed

    Wu, H M; Pan, S R; Chen, M W; Wu, Y; Wang, C; Wen, Y T; Zeng, X; Wu, C B

    2011-02-01

    A serum tolerant polycation gene vector, G(2) PAMAM-PGlu-G(1) PAMAMs (ALA), was designed, synthesized, characterized and evaluated. A honeycomb-like molecular structure model for mechanistic explanation of ALA was postulated and discussed. Designed as a star-shaped polyamidoamine (PAMAM)-based polypeptide dendrimer through peptide bond linkages, ALA was with non-toxic low generation G(2) PAMAM (G(2)) as its central core, polyglutamate (PGlu)s as its star-shaped backbone branches and G(1) PAMAM (G(1))s as its branch grafts and peripheral terminals. IR, (1)H NMR demonstrated its successful combination. As a gene carrier, ALA exhibited good DNA binding and condensation capacity with particle size (approximately 87 nm for N/P 40, approximately 170 nm for N/P 30) and ζ-potential (approximately 16 mV for N/P 30-40), negligible cytotoxicity, exciting serum tolerant capacity and significant serum-promoted (serum-containing 56.6%>serum-free 32.7%), cell line dependent (Hek 293 > Bel 7402 > Hela), incubation period dependent (38 h > 18 h > 12 h > 9 h > 4 h > 2 h > 1 h) and sustained (peak transfection appeared at 30 h incubation) transfection efficiency. The presence of serum had not only no inhibition on, but also prominent promotion to, the transfection activity of ALA. All above features differentiated ALA clearly from most other serum-inhibitive nonviral gene carriers, and proved ALA the promising and challenging potential efficient gene vector for practical clinical application. 2010 Elsevier Ltd. All rights reserved.

  19. Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity.

    PubMed

    Wängler, C; Moldenhauer, G; Eisenhut, M; Haberkorn, U; Mier, W

    2008-04-01

    Radioimmunotherapy using antibodies with favorable tumor targeting properties and high binding affinity is increasingly applied in cancer therapy. The potential of this valuable cancer treatment modality could be further improved by increasing the specific activity of the labeled proteins. This can be done either by coupling a large number of chelators which leads to a decreased immunoreactivity or by conjugating a small number of multimeric chelators. In order to systematically investigate the influence of conjugations on immunoreactivity with respect to size and number of the conjugates, the anti-EGFR antibody hMAb425 was reacted with PAMAM dendrimers of different size containing up to 128 chelating agents per conjugation site. An improved dendrimer synthesis protocol was established to obtain compounds of high homogeneity suitable for the formation of defined protein conjugates. The quantitative derivatization of the PAMAM dendrimers with DOTA moieties and the characterization of the products by isotopic dilution titration using (111)In/(nat)In are shown. The DOTA-containing dendrimers were conjugated with high efficiency to hMAb425 by applying Sulfo-SMCC as cross-linking agent and a 10- to 25-fold excess of the thiol-containing dendrimers. The determination of the immunoreactivities of the antibody-dendrimer conjugates by FACS analysis revealed a median retained immunoreactivity of 62.3% for 1.7 derivatization sites per antibody molecule, 55.4% for 2.8, 27.9% for 5.3, and 17.1% for 10.0 derivatization sites per antibody but no significant differences in immunoreactivity for different dendrimer sizes. These results show that the dendrimer size does not influence the immunoreactivity of the derivatized antibody significantly over a wide molecular weight range, whereas the number of derivatization sites has a crucial effect.

  20. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer.

    PubMed

    Nigam, Saumya; Bahadur, Dhirendra

    2017-07-01

    In recent years, functional nanomaterials have found an appreciable place in the understanding and treatment of cancer. This work demonstrates the fabrication and characterization of a new class of cationic, biocompatible, peptide dendrimers, which were then used for stabilizing and functionalizing magnetite nanoparticles for combinatorial therapy of cancer. The synthesized peptide dendrimers have an edge over the widely used PAMAM dendrimers due to better biocompatibility and negligible cytotoxicity of their degradation products. The surface engineering efficacy of the peptide dendrimers and their potential use as drug carriers were compared with their PAMAM counterparts. The peptide dendrimer was found to be as efficient as PAMAM dendrimers in its drug-carrying capacity, while its drug release profiles substantially exceeded those of PAMAM's. A dose-dependent study was carried out to assess their half maximal inhibitory concentration (IC 50 ) in vitro with various cancer cell lines. A cervical cancer cell line that was incubated with these dendritic nanoparticles was exposed to alternating current magnetic field (ACMF) to investigate the effect of elevated temperatures on the live cell population. The DOX-loaded formulations, in combination with the ACMF, were also assessed for their synergistic effects on the cancer cells for combinatorial therapy. The results established the peptide dendrimer as an efficient alternative to PAMAM, which can be used successfully in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Poly-(amidoamine) dendrimers with a precisely core positioned sulforhodamine B molecule for comparative biological tracing and profiling.

    PubMed

    Wu, Lin-Ping; Ficker, Mario; Mejlsøe, Søren L; Hall, Arnaldur; Paolucci, Valentina; Christensen, Jørn B; Trohopoulos, Panagiotis N; Moghimi, Seyed M

    2017-01-28

    We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluorophore was not affected by pH and temperature. Since the stoichiometry of the fluorophore to the dendrimer is 1:1, we were able to directly compare uptake kinetics, the mode of uptake, trafficking and safety of dendrimers of different end-terminal functionality (carboxylated vs. pyrrolidonated) by two phenotypically different human endothelial cell types (the human brain capillary endothelial cell line hCMEC/D3 and human umbilical vein endothelial cells), and without interference of the fluorophore in uptake processes. The results demonstrate comparable uptake kinetics and a predominantly clathrin-mediated endocytotic mechanism, irrespective of dendrimer end-terminal functionality, where the majority of dendrimers are directed to the endo-lysosomal compartments in both cell types. A minor fraction of dendrimers, however, localize to endoplasmic reticulum and the Golgi apparatus, presumably through the recycling endosomes. In contrast to amino-terminated PAMAM dendrimers, we confirm safety of carboxylic acid- and pyrrolidone-terminated PAMAM dendrimers through determination of cell membrane integrity and comprehensive respiratory profiling (measurements of mitochondrial oxidative phosphorylation and determination of its coupling efficiency). Our dendrimer core-labelling approach could provide a new conceptual basis for improved understanding of dendrimer performance within biological settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Application of poly(amidoamine) dendrimers for use in bionanomotor systems.

    PubMed

    Kolli, Madhukar B; Day, B Scott; Takatsuki, Hideyo; Nalabotu, Siva K; Rice, Kevin M; Kohama, Kazuhiro; Gadde, Murali K; Kakarla, Sunil K; Katta, Anjaiah; Blough, Eric R

    2010-05-04

    The study and utilization of bionanomotors represents a rapid and progressing field of nanobiotechnology. Here, we demonstrate that poly(amidoamine) (PAMAM) dendrimers are capable of supporting heavy meromyosin dependent actin motility of similar quality to that observed using nitrocellulose, and that microcontact printing of PAMAM dendrimers can be exploited to produce tracks of active myosin motors leading to the restricted motion of actin filaments across a patterned surface. These data suggest that the use of dendrimer surfaces will increase the applicability of using protein biomolecular motors for nanotechnological applications.

  3. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  4. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.

    PubMed

    Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W

    2010-08-15

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.

  5. DNA condensation by partially acetylated poly(amido amine) dendrimers: effects of dendrimer charge density on complex formation.

    PubMed

    Yu, Shi; Li, Ming-Hsin; Choi, Seok Ki; Baker, James R; Larson, Ronald G

    2013-09-03

    The ability of poly(amido amine) (or PAMAM) dendrimers to condense semiflexible dsDNA and penetrate cell membranes gives them great potential in gene therapy and drug delivery but their high positive surface charge makes them cytotoxic. Here, we describe the effects of partial neutralization by acetylation on DNA condensation using light scattering, circular dichroism, and single molecule imaging of dendrimer-DNA complexes combed onto surfaces and tethered to those surfaces under flow. We find that DNA can be condensed by generation-five (G5) dendrimers even when the surface charges are more than 65% neutralized, but that such dendrimers bind negligibly when an end-tethered DNA is stretched in flow. We also find that when fully charged dendrimers are introduced by flow to end-tethered DNA, all DNA molecules become equally highly coated with dendrimers at a rate that becomes very fast at high dendrimer concentration, and that dendrimers remain bound during subsequent flow of dendrimer-free buffer. These results suggest that the presence of dendrimer-free DNA coexisting with dendrimer-bound DNA after bulk mixing of the two in solution may result from diffusion-limited irreversible dendrimer-DNA binding, rather than, or in addition to, the previously proposed cooperative binding mechanism of dendrimers to DNA.

  6. Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-Based Guest–Host Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Ying; Chen, Hsin-Lung; Do, Changwoo

    2016-08-09

    Using the electrostatic complex of G4 poly(amidoamine) (PAMAM) dendrimer with an amphiphilic surfactant as a model system, contrast variation small angle neutron scattering (SANS) is implemented to resolve the key structural characteristics of dendrimer-based guest–host system. Quantifications of the radial distributions of the scattering length density and the hydration level within the complex molecule reveal that the surfactant is embedded in the peripheral region of dendrimer and the steric crowding in this region increases the backfolding of the dendritic segments, thereby reducing the hydration level throughout the complex molecule. Here, the insights into the spatial location of the guest moleculesmore » as well as the perturbations of dendrimer conformation and hydration level deduced here are crucial for the delicate design of dendrimer-based guest–host system for biomedical applications.« less

  7. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.

    PubMed

    Xu, Leyuan; Yeudall, W Andrew; Yang, Hu

    2017-07-15

    The utility of folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) as a vector was investigated for local delivery of siRNA. In a xenograft HN12 (or HN12-YFP) tumor mouse model of head and neck squamous cell carcinomas (HNSCC), intratumorally (i.t.) injected G4-FA exhibited high tumor uptake and sustained highly localized retention in the tumors according to near infrared (NIR) imaging assessment. siRNA against vascular endothelial growth factor A (siVEGFA) was chosen as a therapeutic modality. Compared to the nontherapeutic treatment groups (PBS solution or dendrimer complexed with nontherapeutic siRNA against green fluorescent protein (siGFP)), G4-FA/siVEGFA showed tumor inhibition effects in single-dose and two-dose regimen studies. In particular, two doses of G4-FA/siVEGFA i.t. administered eight days apart resulted in a more profound inhibition of tumor growth, accompanied with significant reduction in angiogenesis, as judged by CD31 staining and microvessel counts. Tumor size reduction in the two-dose regimen study was ascertained semi-quantitatively by live fluorescence imaging of YFP tumors and independently supported antitumor effects of G4-FA/siVEGFA. Taken together, G4-FA shows high tumor uptake and sustained retention properties, making it a suitable platform for local delivery of siRNAs to treat cancers that are readily accessible such as HNSCC. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is difficult to transfect for gene therapy. We developed folate receptor (FR)-targeted polyamidoamine (PAMAM) dendrimer for enhanced delivery of genes to HNSCC and gained in-depth understanding of how gene delivery and transfection in head and neck squamous cancer cells can be enhanced via FR-targeted PAMAM dendrimers. The results we report here are encouraging and present latest advances in using dendrimers for cancer therapies, in particular for HNSCC. Our work has demonstrated that localized delivery of FR

  8. Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells.

    PubMed

    Tassano, Marcos; Oddone, Natalia; Fernández, Marcelo; Porcal, Williams; García, María Fernanda; Martínez-López, Wilner; Benech, Juan Claudio; Cabral, Pablo

    2018-06-19

    To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with 188 ReO 4 - . Biodistribution was performed administrating 188 Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of 188 Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of 188 Re-dendrimer for 24 h. 188 Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.

  9. Dendrimer Nanovectors for SiRNA Delivery.

    PubMed

    Liu, Xiaoxuan; Peng, Ling

    2016-01-01

    Small interfering RNA (SiRNA) delivery remains a major challenge in RNAi-based therapy. Dendrimers are emerging as appealing nonviral vectors for SiRNA delivery thanks to their well-defined architecture and their unique cooperativity and multivalency confined within a nanostructure. We have recently demonstrated that structurally flexible poly(amidoamine) (PAMAM) dendrimers are safe and effective nanovectors for SiRNA delivery in various disease models in vitro and in vivo. The present chapter showcases these dendrimers can package different SiRNA molecules into stable and nanosized particles, which protect SiRNA from degradation and promote cellular uptake of SiRNA, resulting in potent gene silencing at both mRNA and protein level in the prostate cancer cell model. Our results demonstrate this set of flexible PAMAM dendrimers are indeed safe and effective nonviral vectors for SiRNA delivery and hold great promise for further applications in functional genomics and RNAi-based therapies.

  10. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas.

    PubMed

    Li, Yan; He, Hai; Jia, Xinru; Lu, Wan-Liang; Lou, Jinning; Wei, Yen

    2012-05-01

    A pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-Tf-TAM) was synthesized with transferrin (Tf) conjugated on the exterior and Tamoxifen (TAM) in the interior of the fourth generation PAMAM dendrimers for enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. It was found that, on average, 7 doxorubicine (DOX) molecules, over 30 PEG(1000) and PEG(2000) chains and one Tf group were bonded on the periphery of each G4 PAMAM dendrimer, while 29 TAM molecules were encapsulated into the interior of per dendrimer. The pH-triggered DOX release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively fast drug release at weak acidic condition and stable state of the carrier at physiological environment. The in vitro assay of the drug transport across the BBB model showed that G4-DOX-PEG-Tf-TAM exhibited higher BBB transportation ability with the transporting ratio of 6.06% in 3 h. The carrier was internalized into C6 glioma cells upon crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect of TAM to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation.

    PubMed

    Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K

    2018-06-13

    The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for

  12. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model.

    PubMed

    Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman

    2017-01-01

    This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.

  14. Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing

    PubMed Central

    2011-01-01

    A novel triblock poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) nanocarrier was designed, synthesized, and evaluated for the delivery of siRNA. The design of the nanocarrier is unique and provides a solution to most of the common problems associated with the delivery and therapeutic applications of siRNA. Every component in the triblock nanocarrier plays a significant role and performs multiple functions: (1) tertiary amine groups in the PAMAM dendrimer work as a proton sponge and play a vital role in the endosomal escape and cytoplasmic delivery of siRNA; (2) PEG, a linker connecting PLL and PAMAM dendrimers renders nuclease stability and protects siRNA in human plasma; (3) PLL provides primary amines to form polyplexes with siRNA through electrostatic interaction and also acts as penetration enhancer; and (4) conjugation to PEG and PAMAM reduced toxicity of PLL and the entire triblock nanocarrier PAMAM-PEG-PLL. The data obtained show that the polyplexes resulted from the conjugation of siRNA, and the proposed nanocarriers were effectively taken up by cancer cells and induced the knock down of the target BCL2 gene. In addition, triblock nanocarrier/siRNA polyplexes showed excellent stability in human plasma. PMID:21322531

  15. Isolation and Characterization of Precise Dye/Dendrimer Ratios

    PubMed Central

    Dougherty, Casey A.; Furgal, Joseph C.; van Dongen, Mallory A.; Goodson, Theodore; Banaszak Holl, Mark M.; Manono, Janet; DiMaggio, Stassi

    2014-01-01

    Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne `click' ligand, separation into sample containing precisely defined `click' ligand/particle ratios using reverse-phase high performance liquid chromatography (rp-HPLC), followed by reaction with excess azide-functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using rp-HPLC. These materials were characterized using 1H and 19F NMR, rp-HPLC, UV-Vis and fluorescence spectroscopy, lifetime measurements, and MALDI. PMID:24604830

  16. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates

    PubMed Central

    Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.

    2010-01-01

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676

  17. Poly(amidoamine) Dendrimers Modified with 1,2-Epoxyhexane or 1,2-Epoxydodecane for Enhanced Gene Delivery Applications.

    PubMed

    Xiao, Tongyu; Cao, Xueyan; Hou, Wenxiu; Peng, Chen; Qiu, Jieru; Shi, Xiangyang

    2015-12-01

    We report a new non-viral gene delivery system based on hydrophobically modified poly(amidoamine) (PAMAM) dendrimers. In this study, the periphery of amine-terminated generation 5 (G5) PAMAM dendrimers was partially reacted with 1,2-epoxyhexane and 1,2-epoxydodecane, respectively. The formed hydrophobically modified G5 dendrimers (denoted as G5.NH2-C6 or G5.NH2-C12) were used to complex two different plasmid DNAs (pDNAs) encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The polyplexes formed between vectors and pDNA were characterized by gel retardation assay, dynamic light scattering, and zeta potential measurements. We show that the G5.NH2-C6 and G5.NH2-C12 vectors are able to effectively compact the pDNA, allowing for highly efficient gene transfection into a model cell line (HeLa cells) as demonstrated by both Luc assay and confocal microscopic imaging of the EGFP expression. Under the studied N/P ratios (the molar ratio of primary amines of the dendrimers to phosphates in the pDNA backbone) at 2.5 or 5, the transfection efficiency of the dendrimer-based vectors followed the order of G5.NH2-C12 > G5.NH2-C6 > G5.NH2. This enhanced gene transfection capacity is believed to be associated with the enhanced hydrophobic interaction between the vector/pDNA complexes and the relatively hydrophobic cell membranes. The developed hydrophobically modified dendrimers may be used as a promising non-viral vector for enhanced gene delivery applications.

  18. Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for DNA, shRNA and siRNA

    PubMed Central

    Arima, Hidetoshi; Motoyama, Keiichi; Higashi, Taishi

    2012-01-01

    Gene, short hairpin RNA (shRNA) and small interfering RNA (siRNA) delivery can be particularly used for the treatment of diseases by the entry of genetic materials mammalian cells either to express new proteins or to suppress the expression of proteins, respectively. Polyamidoamine (PAMAM) StarburstTM dendrimers are used as non-viral vectors (carriers) for gene, shRNA and siRNA delivery. Recently, multifunctional PAMAM dendrimers can be used for the wide range of biomedical applications including intracellular delivery of genes and nucleic acid drugs. In this context, this review paper provides the recent findings on PAMAM dendrimer conjugates with cyclodextrins (CyDs) for gene, shRNA and siRNA delivery. PMID:24300184

  19. Complexes formed between DNA and poly(amido amine) dendrimers of different generations--modelling DNA wrapping and penetration.

    PubMed

    Qamhieh, Khawla; Nylander, Tommy; Black, Camilla F; Attard, George S; Dias, Rita S; Ainalem, Marie-Louise

    2014-07-14

    This study deals with the build-up of biomaterials consisting of biopolymers, namely DNA, and soft particles, poly(amido amine) (PAMAM) dendrimers, and how to model their interactions. We adopted and applied an analytical model to provide further insight into the complexation between DNA (4331 bp) and positively charged PAMAM dendrimers of generations 1, 2, 4, 6 and 8, previously studied experimentally. The theoretical models applied describe the DNA as a semiflexible polyelectrolyte that interacts with dendrimers considered as either hard (impenetrable) spheres or as penetrable and soft spheres. We found that the number of DNA turns around one dendrimer, thus forming a complex, increases with the dendrimer size or generation. The DNA penetration required for the complex to become charge neutral depends on dendrimer generation, where lower generation dendrimers require little penetration to give charge neutral complexes. High generation dendrimers display charge inversion for all considered dendrimer sizes and degrees of penetration. Consistent with the morphologies observed experimentally for dendrimer/DNA aggregates, where highly ordered rods and toroids are found for low generation dendrimers, the DNA wraps less than one turn around the dendrimer. Disordered globular structures appear for high generation dendrimers, where the DNA wraps several turns around the dendrimer. Particularly noteworthy is that the dendrimer generation 4 complexes, where the DNA wraps about one turn around the dendrimers, are borderline cases and can form all types of morphologies. The net-charges of the aggregate have been estimated using zeta potential measurements and are discussed within the theoretical framework.

  20. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    PubMed

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  1. Qualitative and quantitative analysis of poly(amidoamine) dendrimers in an aqueous matrix by liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS).

    PubMed

    Uclés, A; Ulaszewska, M M; Hernando, M D; Ramos, M J; Herrera, S; García, E; Fernández-Alba, A R

    2013-07-01

    This work introduces a liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes (12)C and (13)C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4%), and reproducibility (RSD < 10.9%) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers. Fig Liquid chromatography-electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix.

  2. Radiolabeling optimization and characterization of (68)Ga labeled DOTA-polyamido-amine dendrimer conjugate - Animal biodistribution and PET imaging results.

    PubMed

    Ghai, Aanchal; Singh, Baljinder; Panwar Hazari, Puja; Schultz, Michael K; Parmar, Ambika; Kumar, Pardeep; Sharma, Sarika; Dhawan, Devinder; Kumar Mishra, Anil

    2015-11-01

    The present study describes the optimization of (68)Ga radiolabeling with PAMAM dendrimer-DOTA conjugate. A conjugate (PAMAM-DOTA) concentration of 11.69µM, provided best radiolabeling efficiency of more than 93.0% at pH 4.0, incubation time of 30.0min and reaction temperature ranging between 90 and 100°C. The decay corrected radiochemical yield was found to be 79.4±0.01%. The radiolabeled preparation ([(68)Ga]-DOTA-PAMAM-D) remained stable (radiolabeling efficiency of 96.0%) at room temperature and in serum for up to 4-h. The plasma protein binding was observed to be 21.0%. After intravenous administration, 50.0% of the tracer cleared from the blood circulation by 30-min and less than 1.0% of the injected activity remained in blood by 1.0h. The animal biodistribution studies demonstrated that the tracer excretes through the kidneys and about 0.33% of the %ID/g accumulated in the tumor at 1h post injection. The animal organ's biodistribution data was supported by animal PET imaging showing good 'non-specific' tracer uptake in tumor and excretion is primarily through kidneys. Additionally, DOTA-PAMAM-D conjugation with αVβ3 receptors targeting peptides and drug loading on the dendrimers may improve the specificity of the (68)Ga labeled product for imaging and treating angiogenesis respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qichi; Laskin, Julia

    2014-02-06

    The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32more » terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.« less

  4. Synthesis and evaluation of a glutamic acid-modified hPAMAM complex as a promising versatile gene carrier.

    PubMed

    Hemmati, Mohammad; Kazemi, Bahram; Najafi, Farhood; Zarebkohan, Amir; Shirkoohi, Reza

    2016-01-01

    Hyperbranched poly(amidoamine) (HPAMAM), structurally analogous to polyamidoamine dendrimer (PAMAM) dendrimers, has been suggested to be an effective carrier for gene delivery. In the present study, glutamic acid-modified hPAMAM was developed as a novel non-viral gene carrier for the first time. The hPAMAM was synthesized by using a modified one-pot method. DNA was found to be bound to hPAMAM at different weight ratios (WhPAMAM/WDNA). The resulting HPAMAM-Glu20 was able to efficiently protect the encapsulated-DNA against degradation for over 2 h. In addition to low cytotoxicity, the transfection efficiency of hPAMAM-Glu20 represented much higher (p < 0.05) than that of Lipofectamine 2000 in both MCF7 and MDA-MB231 cells. Cellular uptake of the hPAMAM-Glu20 in MDA-MB231 cells, 173.56 ± 1.37%, was significantly higher than that of MCF7 cells, 65.00 ± 1.73% (p < 0.05). The results indicated that hPAMAM-Glu20-mediated gene delivery to breast cancer cells is a feasible and effective strategy that may provide a new therapeutic avenue as a non-viral gene delivery carrier. In addition, it was found that hPAMAM-glutamic amino acid (Glu)-based gene delivery is an economical, effective and biocompatible method.

  5. Dendrimer-based Nanoparticle for Dye Sensitized Solar Cells with Improved Efficiency.

    PubMed

    Ghann, William; Kang, Hyeonggon; Uddin, Jamal; Gonawala, Sunalee J; Mahatabuddin, Sheikh; Ali, Meser M

    2018-01-01

    Dye sensitized solar cells were fabricated with DyLight680 (DL680) dye and its corresponding europium conjugated dendrimer, DL680-Eu-G5PAMAM, to study the effect of europium on the current and voltage characteristics of the DL680 dye sensitized solar cell. The dye samples were characterized by using Absorption Spectroscopy, Emission Spectroscopy, Fluorescence lifetime and Fourier Transform Infrared measurements. Transmission electron microscopy imaging was carried out on the DL680-Eu-G5PAMAM dye and DL680-Eu-G5PAMAM dye sensitized titanium dioxide nanoparticles to analyze the size of the dye molecules and examine the interaction of the dye with titanium dioxide nanoparticles. The DL680-Eu-G5PAMAM dye sensitized solar cells demonstrated an enhanced solar-to-electric energy conversion of 0.32% under full light illumination (100 mWcm -2 , AM 1.5 Global) in comparison with that of DL680 dye sensitized cells which recorded an average solar-to-electric energy conversion of only 0.19%. The improvement of the efficiency could be due to the presence of the europium that enhances the propensity of dye to absorb sunlight.

  6. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    NASA Astrophysics Data System (ADS)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-10-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.

  7. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics.

    PubMed

    Gupta, Lokesh; Sharma, Ashok Kumar; Gothwal, Avinash; Khan, Mohammed Shahid; Khinchi, Mahaveer Prasad; Qayum, Arem; Singh, Shashank Kumar; Gupta, Umesh

    2017-08-07

    Berberine (BBR) is a nitrogenous cyclic natural alkaloid with potential anticancer activity. However it has been less explored due to its poor pharmacokinetic profile. Dendrimers (e.g. PAMAM) have promising potential to deliver anticancer drugs/bio-actives because of their well-defined architecture, monodispersity and tailor-made surface functionality. In the present study it was attempted to deliver berberine through G4 PAMAM dendrimers by conjugation (BPC) as well as encapsulation (BPE) approach. The developed encapsulated and conjugated berberine formulations were found to have size in the approximate range of 100-200nm while zeta potential was almost same as PAMAM G4 dendrimer. The entrapment efficiency in BPE was found to be 29.9%, whereas, the percentage conjugation in BPC was found to be 37.49% indicating high drug payload in conjugation. The developed nano-formulations were characterized through 1 H NMR, FT-IR as well as electron microscopy (SEM and TEM). The in vitro release study in different media (water and PBS 7.4) showed sustained release pattern of BBR. Almost 72% and 98% drug was released within 24h respectively; whereas in PBS almost 80% and 98% release was observed within 24h, respectively. The formulations followed Higuchi release and first order release as best fit release kinetic model. MTT assay results showed significantly higher anticancer activity for the PAMAM-BBR (BPC) (p<0.01) against MCF-7 and MDA-MB-468 breast cancer cells. The time dependent ex vivo hemolytic toxicity of the BPC and BPE was significantly less (<5%) even after 24h, which indicated that the formulations can be regarded as significantly safe and biocompatible. Similarly, the in vivo hematological parameters were analyzed through auto-analyzer and the formulations were found to be safer and biocompatible with very least but insignificant (p>0.05) effects. The in vivo pharmacokinetic parameters were found to be impressively improved in albino rat model. The pharmacokinetic

  8. Polyamidoamine (PAMAM) dendrimers as potential release modulators and oral bioavailability enhancers of vardenafil hydrochloride.

    PubMed

    Tawfik, Mai Ahmed; Tadros, Mina Ibrahim; Mohamed, Magdy Ibrahim

    2018-05-21

    Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q 2h ) and 24 h (Q 24h ). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra ® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q 2 h (41.45%) and Q 24 h (74.05%). Compared to Levitra ® tablets, the significantly (p < 0.01) delayed T max , prolonged MRT (0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.

  9. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  10. PAMAM (generation 4) incorporated gelatin 3D matrix as an improved dermal substitute for skin tissue engineering.

    PubMed

    Maji, Somnath; Agarwal, Tarun; Maiti, Tapas Kumar

    2017-07-01

    The study explored the prospects of PAMAM (generation 4) applicability in gelatin based scaffolds for skin tissue engineering. The effect of PAMAM on physico-chemical and biological characteristics of gelatin scaffolds was evaluated. Gelatin scaffolds (with/without PAMAM) were prepared by lyophilization, chemically crosslinked by glutaraldehyde and characterized for their morphology (pore size), chemical features (bond nature), water adsorption, biodegradation and biological compatibility. The study demonstrated that addition of PAMAM did not significantly alter the pore size distribution or porosity of the scaffolds. However, water adsorption potential and collagenase mediated degradation significantly enhanced over period of the study. Both the scaffolds (with/without PAMAM) were highly biocompatible and hemocompatible. PAMAM (G4) blended scaffolds showed relatively higher cellular adhesion and proliferation of both keratinocytes and fibroblasts with an improved gene expression profile of native collagen type I of fibroblasts. Moreover, expression of angiogenesis inducing genes, HIF1α and VEGF were also higher in PAMAM blended gelatin matrix. Also, PAMAM incorporated gelatin matrix showed a slower rate of drug release which confirms its suitability for therapeutic delivery during wound healing. These results clearly suggest that blending PAMAM (G4) into the matrix could provide an additional support to scaffold assisted wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biofunctionalization of PAMAM-montmorillonite decorated poly (Ɛ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing.

    PubMed

    Kirbay, Fatma Ozturk; Yalcinkaya, Esra Evrim; Atik, Gozde; Evren, Gizem; Unal, Betul; Demirkol, Dilek Odaci; Timur, Suna

    2018-06-30

    The construction and biofunctionalization of the poly (Ɛ-caprolactone) (PCL)-chitosan (CHIT) nanofibrous mats, which included Polyamidoamine (PAMAM) dendrimer modified montmorillonite (Mt), for the cell adhesion and electrochemical cytosensing were accomplished in this report. After the intercalation of the PAMAM generation zero dendrimer into the Mt, PAMAM-Mt decorated PCL-CHIT electrospun nanofibers were formed. The addition of PAMAM caused the decrease of contact angle of PCL-CHIT nanofibers. The covalent immobilization of a tripeptide namely Arginylglycylaspartate (RGD) on both the PCL-CHIT/Mt and PCL-CHIT/PAMAM-Mt surface was carried out. U87-MG and HaCaT (negative control) cell lines were incubated on the PCL-CHIT/Mt/RGD and PCL-CHIT/PAMAM-Mt/RGD. The proliferation studies and imaging of the cells were carried out on these fibers. Finally, electrochemical measurements were performed after each modification step by differential pulse/cyclic voltammetry and electrochemical impedance spectroscopy. U87-MG cells were grown better than HaCaT cells on the PCL-CHIT/PAMAM-Mt/RGD surfaces. To the best of our knowledge, there is no study that developed electrochemical cytosensor using electrospun nanofibers as a cell adhesion platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Next-generation sequencing reveals low-dose effects of cationic dendrimers in primary human bronchial epithelial cells.

    PubMed

    Feliu, Neus; Kohonen, Pekka; Ji, Jie; Zhang, Yuning; Karlsson, Hanna L; Palmberg, Lena; Nyström, Andreas; Fadeel, Bengt

    2015-01-27

    Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.

  13. The Debye light scattering equation's scaling relation reveals the purity of synthetic dendrimers

    NASA Astrophysics Data System (ADS)

    Tseng, Hui-Yu; Chen, Hsiao-Ping; Tang, Yi-Hsuan; Chen, Hui-Ting; Kao, Chai-Lin; Wang, Shau-Chun

    2016-03-01

    Spherical dendrimer structures cannot be structurally modeled using conventional polymer models of random coil or rod-like configurations during the calibration of the static light scattering (LS) detectors used to determine the molecular weight (M.W.) of a dendrimer or directly assess the purity of a synthetic compound. In this paper, we used the Debye equation-based scaling relation, which predicts that the static LS intensity per unit concentration is linearly proportional to the M.W. of a synthetic dendrimer in a dilute solution, as a tool to examine the purity of high-generational compounds and to monitor the progress of dendrimer preparations. Without using expensive equipment, such as nuclear magnetic resonance or mass spectrometry, this method only required an affordable flow injection set-up with an LS detector. Solutions of the purified dendrimers, including the poly(amidoamine) (PAMAM) dendrimer and its fourth to seventh generation pyridine derivatives with size range of 5-9 nm, were used to establish the scaling relation with high linearity. The use of artificially impure mixtures of six or seven generations revealed significant deviations from linearity. The raw synthesized products of the pyridine-modified PAMAM dendrimer, which included incompletely reacted dendrimers, were also examined to gauge the reaction progress. As a reaction toward a particular generational derivative of the PAMAM dendrimers proceeded over time, deviations from the linear scaling relation decreased. The difference between the polydispersity index of the incompletely converted products and that of the pure compounds was only about 0.01. The use of the Debye equation-based scaling relation, therefore, is much more useful than the polydispersity index for monitoring conversion processes toward an indicated functionality number in a given preparation.

  14. A New Approach in the Preparation of Dendrimer-Based Bifunctional Diethylenetriaminepentaacetic Acid MR Contrast Agent Derivatives

    PubMed Central

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S.; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J.; Brechbiel, Martin W.

    2009-01-01

    In this paper we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves pre-forming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex® G-25 column and characterized by elemental analysis. The analysis and SEHPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the post-metal incorporation method (r1 = 26.9 vs. 13.9 mM-1s-1 at 3T and 22°C). This is hypothesized to be due to the higher hydrophobicity of this conjugate, and the lack of available charged carboxylate groups from non-complexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the post-metal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t1/2 = 24 min) suggesting a viable agent for use in clinical application. PMID:19555072

  15. A new approach in the preparation of dendrimer-based bifunctional diethylenetriaminepentaacetic acid MR contrast agent derivatives.

    PubMed

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J; Brechbiel, Martin W

    2009-07-01

    In this paper, we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves preforming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex G-25 column and characterized by elemental analysis. The analysis and SE-HPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the postmetal incorporation method (r(1) = 26.9 vs 13.9 mM(-1) s(-1) at 3 T and 22 degrees C). This is hypothesized to be due to the higher hydrophobicity of this conjugate and the lack of available charged carboxylate groups from noncomplexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the postmetal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t(1/2) = 24 min) suggesting a viable agent for use in clinical application.

  16. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier.

    PubMed

    Teow, Huey Minn; Zhou, Zhengyuan; Najlah, Mohammad; Yusof, Siti R; Abbott, N Joan; D'Emanuele, Antony

    2013-01-30

    The aim of this study was to investigate the ability of a third-generation (G3) polyamidoamine (PAMAM) dendrimer-based carrier to enhance the permeability of paclitaxel (pac) and to overcome cellular barriers. G3 dendrimers were surface modified with lauryl chains (L) and conjugated with paclitaxel (pac) via a glutaric anhydride (glu) linker, followed by labeling with FITC. Biological evaluation of the dendrimer and conjugates was conducted using the human colon adenocarcinoma cell line (Caco-2) and primary cultured porcine brain endothelial cells (PBECs). LDH assay was used to evaluate the cytotoxicity of the dendrimer and conjugates. Cytotoxicity studies showed that the conjugation of lauryl chains and paclitaxel on G3 dendrimer significantly (p<0.05) increased the cytotoxicity against both cell types. Permeability studies of dendrimer-drug conjugates demonstrated an increase in the apparent permeability coefficient (P(app)) in both apical to basolateral A→B and basolateral to apical B→A directions across both cell monolayers compared to unmodified G3 and free drug. The B→A P(app) of paclitaxel was significantly (p<0.05) higher than the A→B P(app), indicating active function of P-gp efflux transporter system in both cell models. L6-G3-glu-pac conjugate had approximately 12-fold greater permeability across both cell monolayers than that of paclitaxel alone. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.

    PubMed

    Stevens, Corey A; Drori, Ran; Zalis, Shiran; Braslavsky, Ido; Davies, Peter L

    2015-09-16

    By binding to ice, antifreeze proteins (AFPs) depress the freezing point of a solution and inhibit ice recrystallization if freezing does occur. Previous work showed that the activity of an AFP was incrementally increased by fusing it to another protein. Even larger increases in activity were achieved by doubling the number of ice-binding sites by dimerization. Here, we have combined the two strategies by linking multiple outward-facing AFPs to a dendrimer to significantly increase both the size of the molecule and the number of ice-binding sites. Using a heterobifunctional cross-linker, we attached between 6 and 11 type III AFPs to a second-generation polyamidoamine (G2-PAMAM) dendrimer with 16 reactive termini. This heterogeneous sample of dendrimer-linked type III constructs showed a greater than 4-fold increase in freezing point depression over that of monomeric type III AFP. This multimerized AFP was particularly effective at ice recrystallization inhibition activity, likely because it can simultaneously bind multiple ice surfaces. Additionally, attachment to the dendrimer has afforded the AFP superior recovery from heat denaturation. Linking AFPs together via polymers can generate novel reagents for controlling ice growth and recrystallization.

  18. PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment.

    PubMed

    Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya

    2012-09-04

    The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.

  19. An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna

    2018-06-01

    Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.

  20. Interactions and encapsulation of vitamins C, B3, and B6 with dendrimers in water.

    PubMed

    Boisselier, Elodie; Liang, Liyuan; Dalko-Csiba, Maria; Ruiz, Jaime; Astruc, Didier

    2010-05-25

    Titrations of commercial diaminobutane (DAB) and polyamidoamine (PAMAM) dendrimers by vitamins C (ascorbic acid, AA), B(3) (nicotinic acid), and B(6) (pyridoxine) were monitored by (1)H NMR spectroscopy using the chemical shifts of both dendrimer and vitamin protons and analyzed by comparison with the titration of propylamine. Quaternarizations of the terminal primary amino groups and intradendritic tertiary amino groups, which are nearly quantitative with vitamin C, were characterized by more or less sharp variations (Deltadelta) of the (1)H chemical shift (delta) at the equivalence points. The peripheral primary amino groups of the DAB dendrimers were quaternarized first, but not selectively, whereas a sharp chemical-shift variation was recorded for the inner methylene protons near the tertiary amines, thereby indicating encapsulation, when all the dendritic amines were quaternarized. With DAB-G5-64-NH(2), some excess acid is required to protonate the inner amino groups, presumably because of basicity decrease due to excess charge repulsion. On the other hand, this selectivity was not observed with PAMAM dendrimers. The special case of the titration of the dendrimers by vitamin B(6) indicates only dominant supramolecular hydrogen-bonding interactions and no quaternarization, with core amino groups being privileged, which indicates the strong tendency to encapsulate vitamins. With vitamin B(3), a carboxylic acid, titration of DAB-G3-16-NH(2) shows that only six peripheral amino groups are protonated on average, even with excess vitamin B(3), because protonation is all the more difficult due to increased charge repulsion, as positive charges accumulate around the dendrimer. Inner amino groups interact with this vitamin, however, thus indicating encapsulation presumably with supramolecular hydrogen bonding without much charge transfer.

  1. Investigation of Dendrimer-Membrane Interactions

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hessler, Jessica; Lee, Inhan; Banaszak Holl, Mark; Orr, Bradford; Patri, Anil K.; Baker, J. R.

    2003-03-01

    Modified Polyamidoamine (PAMAM) dendrimers show great promise as targeted drug transport agents. Current research efforts point to the possibility of dramatic improvements to conventional chemotherapy by selectively delivering a therapeutic to antigen bearing tumor cells. In order to better understand the uptake mechanism of such devices into cells we are investigating dendrimer-surface adsorption and dendrimer-membrane interactions using atomic force microscopy, light scattering and computer simulations. Model systems consisting of supported DMPC lipid bilayers have shown interesting results suggesting the shape and architecture of nano-devices play an important role for their biologic activity. We are also investigating the effect of targeted drug vehicles on cells in vitro.

  2. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  3. Molecular dynamics simulations of polyamidoamine dendrimers and their complexes with linear poly(ethylene oxide) at different pH conditions: static properties and hydrogen bonding.

    PubMed

    Tanis, I; Karatasos, K

    2009-11-21

    Models consisting of an amine-terminated poly(amidoamine) (PAMAM) dendrimer with and without the presence of a linear poly(ethylene oxide) (PEO) chain were studied in aqueous solutions by means of fully atomistic molecular dynamics simulations. Dendrimers of two generations, 3rd and 4th and at different pH conditions were examined, in order to address issues associated with characteristics pertinent to the shape of the dendrimers in the presence or absence of PEO as well as to the volume fraction of the penetrating solvent molecules and counterions as compared to recent experimental studies. In addition, hydrogen-bonding characteristics such as the intensity and the longevity of intra- and intermolecular hydrogen-bonded pairs are examined for the first time in these systems. It was found that the volume fraction of the penetrating solvent molecules increased upon decrease of pH, but no dependence on the size of the molecules was observed. The density of the solvent within the dendritic interior did not exceed that of the bulk, while the corresponding number of counterions entering the dendrimer boundaries exhibited a marked increase between the 3rd and the 4th generation of the dendrimers. Intramolecular hydrogen bonding was favored at high pH conditions, while intermolecular hydrogen bonding between PAMAM and the solvent or the PEO was significantly enhanced upon protonation of the dendrimer's amines. The presence of PEO imparted appreciable changes in the dendrimer's shape particularly in the physiological pH conditions. In addition, it incurred a decrease in intramolecular hydrogen bonding and acted antagonistically to the formation of water/dendrimer hydrogen bonds. The higher degree of hydrogen bonding between PAMAM and PEO was observed at low pH levels, indicating that under these conditions the formed complexes are expected to be more stable. The findings of the present study were found to be in good agreement with the relevant experimental findings where

  4. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.

    PubMed

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M

    2017-11-15

    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  5. Partially Glycosylated Dendrimers Block MD-2 and Prevent TLR4-MD-2-LPS Complex Mediated Cytokine Responses

    PubMed Central

    Barata, Teresa S.; Teo, Ian; Brocchini, Steve; Zloh, Mire; Shaunak, Sunil

    2011-01-01

    The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4′phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design

  6. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy.

    PubMed

    Cao, Jun; Wang, Chenhong; Guo, Leijia; Xiao, Zhiyong; Liu, Keliang; Yan, Husheng

    2018-06-01

    Despite extensive investigations, the clinical translation of nanocarrier-based drug delivery systems (NDDS) for cancer therapy is hindered by inefficient delivery and poor tumor penetration. Conventional chemotherapy by administration of free small molecule anticancer drugs remains the standard of care for many cancers. Herein, other than for carrying and releasing drugs, small nanoparticles were used as a potentiator of conventional chemotherapy by co-administration with free chemotherapeutic agents. This strategy avoided the problems associated with drug loading and controlled release encountered in NDDS, and was also much simpler than NDDS. Negatively charged poly(amido amine)-2,3-dimethylmaleic monoamide (PAMAM-DMA) dendrimers were prepared, which possessed low toxicity and can be converted to positively charged PAMAM dendrimers responsive to tumor acidic pH. The in situ formed PAMAM in tumor tissue promoted cellular uptake of co-administered doxorubicin by increasing the cell membrane permeability, and subsequently enhanced the cytotoxicity of doxorubicin. The small size of the dendrimers was favorable for deep penetration in tumor. Co-injection of PAMAM-DMA with doxorubicin into nude mice bearing human tumors almost completely inhibited tumor growth, with a mean tumor weight reducing by 55.9% after the treatment compared with the treatment with doxorubicin alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells.

    PubMed

    Yesil-Celiktas, Ozlem; Pala, Cansu; Cetin-Uyanikgil, E Oyku; Sevimli-Gur, Canan

    2017-02-15

    Mesoporous silica carriers are emerging as therapeutic drug delivery systems. The objective of this study was to develop a formulation for synthesizing silica-PAMAM dendrimer hybrid nanoparticles with sol-gel technique. Subsequently, black carrot anthocyanins were encapsulated and investigated for their capability in terms of inhibiting the proliferative effects of neuroblastoma (Neuro 2A). In this context, particle size distributions were ascertained followed by thermal analysis (DSC), scanning electron microscopy and encapsulation efficiency. Subsequently, in vitro release kinetics was determined along with cytotoxicity of empty and anthocyanin doped hybrid nanoparticles. The lowest particle size was 134.8 nm with a zeta potential of +19.78 mV which enhanced electrostatic interaction with the cell membrane in the cytotoxicity analyses. As the anthocyanin content was totally released at the end of 6 days, the cytotoxicity was observed for 134 h, reaching an inhibition of 87.9%. On the other hand, Neuro 2A cells incubated with empty nanoparticles exhibited a high proliferation indicating that hybrid nanoparticles were not toxic to the cells and the inhibitory effect was associated with the anthocyanins. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Involvement of functional groups on the surface of carboxyl group-terminated polyamidoamine dendrimers bearing arbutin in inhibition of Na⁺/glucose cotransporter 1 (SGLT1)-mediated D-glucose uptake.

    PubMed

    Sakuma, Shinji; Kanamitsu, Shun; Teraoka, Yumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Shirasaka, Yoshiyuki; Tamai, Ikumi; Muraoka, Masahiro; Nakatsuji, Yohji; Kida, Toshiyuki; Akashi, Mitsuru

    2012-04-02

    A carboxyl group-terminated polyamidoamine dendrimer (generation: 3.0) bearing arbutin, which is a substrate of Na⁺/glucose cotransporter 1 (SGLT1), via a nonbiodegradable ω-amino triethylene glycol linker (PAMAM-ARB), inhibits SGLT1-mediated D-glucose uptake, as does phloridzin, which is a typical SGLT1 inhibitor. Here, since our previous research revealed that the activity of arbutin was dramatically improved through conjugation with the dendrimer, we examined the involvement of functional groups on the dendrimer surface in inhibition of SGLT1-mediated D-glucose uptake. PAMAM-ARB, with a 6.25% arbutin content, inhibited in vitro D-glucose uptake most strongly; the inhibitory effect decreased as the arbutin content increased. In vitro experiments using arbutin-free original dendrimers indicated that dendrimer-derived carboxyl groups actively participated in SGLT1 inhibition. However, the inhibitory effect was much less than that of PAMAM-ARB and was equal to that of glucose moiety-free PAMAM-ARB. Data supported that the glucose moiety of arbutin was essential for the high activity of PAMAM-ARB in SGLT1 inhibition. Analysis of the balance of each domain further suggested that carboxyl groups anchored PAMAM-ARB to SGLT1, and the subsequent binding of arbutin-derived glucose moieties to the target sites on SGLT1 resulted in strong inhibition of SGLT1-mediated D-glucose uptake.

  9. Dendrimer-paclitaxel complexes for efficient treatment in ovarian cancer: study on OVCAR-3 and HEK293T cells.

    PubMed

    Yao, Hua; Ma, Jinqi

    2018-01-01

    The present paper investigates the enhancement of the therapeutic effect of Paclitaxel (a potent anticancer drug) by increasing its cellular uptake in the cancerous cells with subsequent reduction in its cytotoxic effects. To fulfill these goals the Paclitaxel (PTX)-Biotinylated PAMAM dendrimer complexes were prepared using biotinylation method. The primary parameter of Biotinylated PAMAM with a terminal HN 2 group - the degree of biotinylation - was evaluated using HABA assay. The basic integrity of the complex was studied using DSC. The Drug Loading (DL) and Drug Release (DR) parameters of Biotinylated PAMAM dendrimer-PTX complexes were also examined. Cellular uptake study was performed in OVCAR-3 and HEK293T cells using fluorescence technique. The statistical analysis was also performed to support the experimental data. The results obtained from HABA assay showed the complete biotinylation of PAMAM dendrimer. DSC study confirmed the integrity of the complex as compared with pure drug, biotinylated complex and their physical mixture. Batch 9 showed the highest DL (12.09%) and DR (70%) for 72 h as compared to different concentrations of drug and biotinylated complex. The OVCAR-3 (cancerous) cells were characterized by more intensive cellular uptake of the complexes than HEK293T (normal) cells. The obtained experimental results were supported by the statistical data. The results obtained from both experimental and statistical evaluation confirmed that the biotinylated PAMAM NH 2 dendrimer-PTX complex not only displays increased cellular uptake but has also enhanced release up to 72 h with the reduction in cytotoxicity.

  10. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer.

    PubMed

    Han, Shunping; Zheng, Hongyue; Lu, Yanping; Sun, Yue; Huang, Anhao; Fei, Weidong; Shi, Xiaowei; Xu, Xiuling; Li, Jingjing; Li, Fanzhu

    2018-01-01

    Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.

  11. Polymeric nanocarriers for transport modulation across the pulmonary epithelium: dendrimers, polymeric nanoparticles, and their nanoblends.

    PubMed

    Bharatwaj, Balaji; Dimovski, Radovan; Conti, Denise S; da Rocha, Sandro R P

    2014-05-01

    The purpose of this study was to (a) Determine the cellular transport and uptake of amine-terminated generation 3 (G3) poly(amido amine) (PAMAM) dendrimers across an in vitro model of the pulmonary epithelium, and the ability to modulate their transport by forming nanoblends of the dendrimers with biodegradable solid polymeric nanoparticles (NPs) and (b) to formulate dendrimer nanocarriers in portable oral inhalation devices and evaluate their aerosol characteristics. To that end, fluorescein isothiocyanate (FITC)-labeled G3 PAMAM dendrimer nanocarriers (DNCs) were synthesized, and also encapsulated within poly lactide-co-glycolide nanoparticles (NPs). Transport and uptake of both DNCs encapsulated within NPs (nanoblends) and unencapsulated DNCs were tracked across polarized monolayers of airway epithelial cells, Calu-3. DNCs were also formulated as core-shell microparticles in pressurized metered-dose inhalers (pMDIs) and their aerodynamic properties evaluated by Andersen cascade impaction. The apparent permeability of DNCs across the airway epithelial model was similar to that of a paracellular marker of comparable molar mass--order of 10(-7) cm s(-1). The transport and cellular internalization of the DNCs can be modulated by formulating them as nanoblends. The transport of the DNCs across the lung epithelium was completely suppressed within the time of the experiment (5 h) when formulated as blends. The encapsulation also prevents saturation of the cellular internalization profile. Nanoblending may be a potential strategy to modulate the rate of transport and cellular uptake of DNCs, and thus be used as a design strategy to achieve enhanced local or systemic drug delivery.

  12. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures.

    PubMed

    Ten Hove, J B; Wang, J; van Leeuwen, F W B; Velders, A H

    2017-12-07

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by combining positively charged PAMAM dendrimers with a negative-neutral block copolymer. The number of particles per dendrimicelle can be controlled by mixing DENs with empty PAMAM dendrimers. The dendrimicelles are stable in solution for months and provide improved resistance for the nanoparticles against degradation. The dendrimicelle strategy provides a flexible platform with a plethora of options for variation in the type of nanoparticles, dendrimers and block copolymers used, and hence is tunable for applications ranging from nanomedicine to catalysis.

  13. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.

    PubMed

    Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki

    2015-12-02

    Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations.

    PubMed

    Bielski, Elizabeth; Zhong, Qian; Mirza, Hamad; Brown, Matthew; Molla, Ashura; Carvajal, Teresa; da Rocha, Sandro R P

    2017-07-15

    The regulation of genes utilizing the RNA interference (RNAi) mechanism via the delivery of synthetic siRNA has great potential in the treatment of a variety of lung diseases. However, the delivery of siRNA to the lungs is challenging due to the poor bioavailability of siRNA when delivered intraveneously, and difficulty in formulating and maintaining the activity of free siRNA when delivered directly to the lungs using inhalation devices. The use of non-viral vectors such as cationic dendrimers can help enhance the stability of siRNA and its delivery to the cell cytosol. Therefore, in this work, we investigate the ability of a triphenylphosphonium (TPP) modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH 2 -TPP) to enhance the in vitro transfection efficiency of siRNA in a model of the pulmonary epithelium and their aerosol formulations in pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). Complexes of siRNA and G4NH 2 -TPP were prepared with varying TPP densities and increasing N/P ratios. The complexation efficiency was modulated by the presence of the TPP on the dendrimer surface, allowing for a looser complexation compared to unmodified dendrimer as determined by gel electrophoresis and polyanion competition assay. An increase in TPP density and N/P ratio led to an increase in the in vitro gene knockdown of stably green fluorescent protein (eGFP) expressing lung alveolar epithelial (A549) cells. G4NH 2 -12TPP dendriplexes (G4NH 2 PAMAM dendrimers containing 12 TPP molecules on the surface complexed with siRNA) at N/P ratio 30 showed the highest in vitro gene knockdown efficiency. To assess the potential of TPP-dendriplexes for pulmonary use, we also developed micron particle technologies for both pMDIs and DPIs and determined their aerosol characteristics utilizing an Andersen Cascade Impactor (ACI). Mannitol microparticles encapsulating 12TPP-dendriplexes were shown to be effective in producing aerosols suitable for deep lung

  15. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    PubMed

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  16. Development of (177)Lu-DOTA-Dendrimer and Determination of Its Effect on Metal and Ion Levels in Tumor Tissue.

    PubMed

    Kovacs, Luciana; Tassano, Marcos; Cabrera, Mirel; Zamboni, Cibele B; Fernández, Marcelo; Anjos, Roberto M; Cabral, Pablo

    2015-12-01

    Dendrimers are synthetic nanomolecules with well-defined chemical structures. Different strategies have been used for radiolabeling dendrimers with different radioisotopes. In this study, the aim was to conjugate dendrimers with (177)Lu, to observe the in vivo behavior of the labeled compound and to measure the elementary changes in tumor tissue that could be caused by ionizing radiation. PAMAM G4 dendrimers conjugated with DOTA were labeled with (177)Lu. The radiolabeled compound was characterized and its stability was evaluated by reverse phase high performance liquid chromatography. Radiolabeling yield was >98% and stable for 24 hours. Biodistribution studies of (177)Lu-DOTA-dendrimers in C57BL/6 melanoma-bearing mice showed blood clearance with hepatic and renal depuration and tumor uptake. The concentrations of Br, Ca, Cl, Fe, K, Mg, Na, Rb, S, and Zn were determined in tumor tissues of C57BL/6 mice treated with (177)Lu-DOTA-dendrimers and in untreated mice. The results showed decreased concentrations of Br (62%), Ca (24%), Cl (51%), K (12%) and Na (60%) and increased concentrations of Fe (8%), Mg (28%), Rb (100%), S (6%) and Zn (4%) in tumor tissues of mice treated with (177)Lu-DOTA-dendrimers. These data may be useful to evaluate changes in tumor tissues as indicators of damage that could be caused by ionizing radiation.

  17. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  18. New nanotechnology approaches using dendrimers modified with natural polymers for controlling stem cells behaviour in tissue engineering strategies

    NASA Astrophysics Data System (ADS)

    Oliveira, Joaquim Miguel Antunes de

    In the recent years, great progress has been done in the emerging field of tissue engineering. Despite the important advances the performance of cells-scaffold constructs, one of the several tissue engineering approaches, remains limited in part due to the need for optimize cell culture techniques and culture media. Nanocarrier systems have generated a significant amount of interest in the ex vivo cell maintenance, and control of the cellular fate in vivo mainly due to their internalization efficiency, drug loading capacity, and to favorably modulate the solubility and pharmacokinetics of drugs. Dendrimers are synthetic, monodispersive, spherical and highly branched macromolecules that present unique advantages and fulfills most requirements as carriers for drug delivery; however, it has been found that high generation dendrimers are often cytotoxic. Thus, in this thesis we focused our attention in this fundamental problem and explore the development of novel nanobiomaterials based on the grafting of carboxymethylchitosan (CMCht) onto low generation poly(amidoamine) (PAMAM) dendrimers, the socalled CMCht/PAMAM dendrimer nanoparticles. These macromolecular vehicles were developed to explore a new concept consisting on the intracellular and controlled delivery of bioactive molecules aimed at control stem cells functions in a more effective manner ex vivo, and maintain the cellular phenotype in vivo upon re-implantation. Thus, by combining nanotechnology-based systems and traditional tissue engineering strategies, we expect to develop a novel therapeutic solution for the efficient treatment of damage/diseased cells and tissues. To validate this new concept, there is the need to evaluate the performance of the developed nanocarriers, in vitro and in vivo. Firstly, the uptake efficiency and internalization mechanism of fluorescent-labeled CMCht/PAMAM dendrimer nanoparticles was investigated using different cell types. Fluorescence microscopy studies revealed that the

  19. Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction

    PubMed Central

    Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Camarada, María Belén; Comer, Jeffrey; Valencia-Gallegos, Jesús A.; González-Nilo, Fernando Danilo

    2016-01-01

    An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA. PMID:27377641

  20. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  1. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials.

    PubMed

    Dehshahri, Ali; Sadeghpour, Hossein

    2015-08-01

    In recent years, the discovery of novel nucleic acid-based drug candidates (e.g., siRNA and miRNA) and the groundbreaking studies for somatic cell reprogramming into a state of pluripotency have led to reconsideration for the use of human gene therapy as a new paradigm with great therapeutic potential. However, the success of gene therapy is dependent on overcoming intra- and extracellular barriers hampering the efficient delivery of nucleic acid therapeutics into the target cells or tissues. Despite relatively low transfection efficiency, great attention has been directed to cationic polymers and dendrimers due to their ability to condense DNA and RNA molecules into nano-sized particles which is a necessary prerequisite for efficient transfer of nucleic acids into cells. These gene carriers show remarkable adaptability and significant capacity to transfer larger sizes of nucleic acid materials. Polyamidoamine (PAMAM) dendrimer has been employed as non-viral gene carrier due to its globular shape and well-defined structure containing abundant amino surface groups which provide possibility for surface decoration of the dendrimer via the conjugation of various moieties. In this review, we have brought out the various functionalization strategies of the PAMAM surface amines using different pendant moieties such as amino acids, proteins, cyclodextrins, and hydrophobic units in order to overcome intra- and extracellular barriers. These surface-decorated dendrimers possessing favorable properties provide substantial information and insight for redesigning existing dendrimers and polymers. By understanding the role played by the conjugated moieties, more efficient and novel designs of gene vehicles may be possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers.

    PubMed

    Zhang, Fan; Nance, Elizabeth; Zhang, Zhi; Jasty, Venkatasai; Kambhampati, Siva P; Mishra, Manoj K; Burd, Irina; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M

    2016-09-10

    Cerebral Palsy (CP) is a chronic childhood disorder with limited therapeutic options. Maternal intrauterine inflammation/infection is a major risk factor in the pathogenesis of CP. In pre-clinical models, dendrimer-based therapies are viable in postnatal period, attenuating inflammation and improving motor function in vivo. However, treatment to the mother, in the prenatal period, may provide the possibility of preventing/resolving inflammation at early stages. Towards this goal, we used a maternal intrauterine inflammation-induced rabbit model of CP to study fetal-maternal transport and neuroinflammation targeting of intra-amniotically administrated dendrimers with neutral/anionic surface functionality. Our study suggested both hydroxyl-terminated 'neutral' (D-OH) and carboxyl-terminated 'anionic' (D-COOH) Polyamidoamine (PAMAM) dendrimers were absorbed by fetuses and demonstrated bi-directional transport between fetuses and mother. D-OH was more effective in crossing the fetal blood-brain barrier, and targeting activated microglia. The cell-specific targeting was associated with the extent of microglia activation. This study demonstrated intra-amniotically administered hydroxyl PAMAM dendrimers could be an effective drug delivery vehicle for targeting fetal inflammation and preventing subsequent neurologic injury associated with chorioamnionitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polyamidoamine dendrimers as sweeping agent and stationary phase for rapid and sensitive open-tubular capillary electrophoretic determination of heavy metal ions.

    PubMed

    Ge, Ying; Guo, Yujun; Qin, Weidong

    2014-04-01

    Polyamidoamine (PAMAM) dendrimer generation 2.5 was synthesized and evaluated as sweeping agent for in-column enrichment and as stationary phase for capillary electrochromatographic separation of heavy metal ions, viz., Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), in a running buffer containing 4-(2-pyridylazo)resorcinol (PAR) as a chromogenic reagent. During experiment, a plug of aqueous PAMAM generation 2.5 solution was first introduced to the capillary, followed by electrokinetic injection of the heavy metal ions under a positive voltage. In this step, PAMAM acted as a sweeping agent, stacking the metal ions on the analyte/PAMAM boundary by forming metal ion-PAMAM complexes. The second preconcentration process occurred when PAR, a stronger ligand, moving toward the injection end under the electric field, reached and re-swept the metal ion-PAMAM zone, forming metal ion-PAR complexes. During separation, the neutral PAMAM moved toward the detector with the electroosmotic flow, dynamically coating the capillary wall, forming stationary phases that affected the separation of the metal ions. Due to the function of PAMAM, the detection sensitivity and resolution of the heavy metal ions improved significantly. Under the optimum conditions, the detection limits were 0.299, 0.184, 0.774, 0.182 and 0.047 μg/L for Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), respectively. The method was successfully applied to the determination of heavy metals in snow, tap and rain water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-07-01

    Folate receptor is overexpressed on the activated (but not quiescent) macrophages in both animal models and human patients with naturally occurring rheumatoid arthritis. The aim of this study was to prepare folate targeted poly(ethylene glycol) (PEG) conjugates of anionic dendrimer (G3.5 PAMAM) as targeted drug delivery systems to inflammation and to investigate its biodistribution pattern in arthritic rats. Folate-PEG-PAMAM conjugates, with different degrees of substitution were synthesized by a two-step reaction through a carbodiimide-mediated coupling reaction and loaded with indomethacin. Folate-PEG conjugation increased the drug loading efficiency by 10- to 20-fold and the in vitro release profile indicated controlled release of drug. The plasma pharmacokinetic parameters indicated an increased AUC, circulatory half-life and mean residence time for the folate-PEG conjugates. The tissue distribution studies revealed significantly lesser uptake by stomach for the folate-PEG conjugates, thereby limiting gastric-related side effect. The time-averaged relative drug exposure (r(e)) of the drug in paw for the folate-PEG conjugates ranged from 1.81 to 2.37. The overall drug targeting efficiency (T(e)) was highest for folate-PEG conjugate (3.44) when compared to native dendrimer (1.72). The folate-PEG-PAMAM conjugates are the ideal choice for targeted delivery of antiarthritic drugs to inflammation with reduced side-effects and higher targeting efficiency. Copyright 2007 Wiley Periodicals, Inc.

  6. Poly (N-isopropylacrylamide)-functionalized dendrimer as a thermosensitive nanoplatform for delivering malloapelta B against HepG2 cancer cell proliferation

    NASA Astrophysics Data System (ADS)

    Ngan Le, Phung; Chuong Pham, Dinh; Hai Nguyen, Dai; Quyen Tran, Ngoc; Dimitrov, Vladimir; Ivanov, Petko; Nguyen Xuan, Cuong; Nguyen, Hoai Nam; Khoa Nguyen, Cuu

    2017-06-01

    In recent years, nanocarriers have emerged as effective platforms for delivering several kinds of herbal medicine and naturally bioactive compounds. In this study we developed an outstanding thermosensitive dendritic nanocarrier to efficiently deliver malloapelta B (Mall B), which is a water insoluble bioactive compound isolated from leaves of Mallotus apelta—Vietnamese medicinal plant. The thermosensitive poly(N-isopropylacrylamide) (PNIPAM) polymer-conjugated polyamidoamine (PAMAM) dendrimer copolymer was prepared via Michael reaction. The copolymer structures were confirmed by proton nuclear magnectic resonance (1H NMR). Morphology of the nanocarrier was observered around 70-120 nm by transmission electron microscopy (TEM). Size distributions were measured by dynamic light scattering (DLS) of the nanocarrier and its Mall B-loaded performed at 146.8 nm and 194.5 nm, respectively. The PNIPAM-g-PAMAM-based nanocarrier exhibited higher Mall B loading efficiency (DL  =  59.93  ±  0.19%) and entrapment efficiency (EE  =  89.98  ±  2.06%) as compared to PNIPAM (DL  =  52.54  ±  0.45% and EE  =  66.45  ±  2.78%). In vitro release indicated that approximately 30% amount of the loaded Mall B released at pH 5.5 after 54 h tracking. At the same time, 12.5% amount of the molecules released at pH 7.4.Cytotoxicity assay results showed that the Mall B-loaded nanocarrier significantly inhibited HepG2 cancer cell proliferation. These obtained results indicated that the nanocarrier could solve hydrophobic property of Mall B for further medicine applications.

  7. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    PubMed

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  8. Boronic Acid vs. Folic Acid: A Comparison of the bio-recognition performances by Impedimetric Cytosensors based on Ferrocene cored dendrimer.

    PubMed

    Dervisevic, Muamer; Şenel, Mehmet; Sagir, Tugba; Isik, Sevim

    2017-05-15

    A comparative study is reported where folic acid (FA) and boronic acid (BA) based cytosensors and their analytical performances in cancer cell detection were analyzed by using electrochemical impedance spectroscopy (EIS) method. Cytosensors were fabricated using self-assembled monolayer principle by modifying Au electrode with cysteamine (Cys) and immobilization of ferrocene cored polyamidiamine dendrimers second generation (Fc-PAMAM (G2)), after which electrodes were modified with FA and BA. Au/Fc-PAMAM(G2)/FA and Au/Fc-PAMAM(G2)/BA based cytosensors showed extremely good analytical performances in cancer cell detection with linear range of 1×10 2 to 1×10 6 cellsml -1 , detection limit of 20cellsml -1 with incubation time of 20min for FA based electrode, and for BA based electrode detection limit was 28cellsml -1 with incubation time of 10min. Next to excellent analytical performances, cytosensors showed high selectivity towards cancer cells which was demonstrated in selectivity study using human embryonic kidney 293 cells (HEK 293) as normal cells and Au/Fc-PAMAM(G2)/FA electrode showed two times better selectivity than BA modified electrode. These cytosensors are promising for future applications in cancer cell diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures.

    PubMed

    Hill, Elliott; Shukla, Rameshwer; Park, Steve S; Baker, James R

    2007-01-01

    Screening techniques now allow for the identification of small peptides that bind specifically to molecules like cells. However, despite the enthusiasm for this approach, single peptides often lack the binding affinity to target in vivo and regulate cell function. We took peptides containing the Arg-Gly Asp(RGD) motif that bind to the alpha Vbeta 3 integrin and have shown potential as therapeutics. To improve their binding affinity, we synthesized polyamidoamine (PAMAM) dendrimer-RGD conjugates that that contain 12-13 copies of the peptide. When cultured with human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), or odontoblast-like MDPC-23 cells, the PAMAM dendrimer conjugate targets this receptor in a manner that is both time- and dose-dependent. Finally, this conjugate selectively targets RGD binding sites in the predentin of human tooth organ cultures. Taken together, these studies provide proof of principle that synthetic PAMAM-RGD conjugates could prove useful as carriers for the tissue-specific delivery of integrin-targeted therapeutics or imaging agents and could be used to engineer tissue regeneration.

  10. Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer

    NASA Astrophysics Data System (ADS)

    Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.

    2002-03-01

    The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.

  11. Cellular internalization and transport of biodegradable polyester dendrimers on a model of the pulmonary epithelium and their formulation in pressurized metered-dose inhalers.

    PubMed

    Heyder, Rodrigo S; Zhong, Qian; Bazito, Reinaldo C; da Rocha, Sandro R P

    2017-03-30

    The purpose of this study was to evaluate the effect of generation and surface PEGylation of degradable polyester-based dendrimers nanocarriers on their interactions with an in vitro model of the pulmonary epithelium as well as to assess the ability to formulate such carriers in propellant-based, portable oral-inhalation devices to determine their potential for local and systemic delivery of drugs to and through the lungs. Hydroxyl (-OH) terminated polyester dendrimers of generation 3 and 4 (G3, and G4) were synthesized using a divergent approach. G4 was surface-modified with PEG (1,000Da). All dendrimers and their building blocks were determined to be highly compatible with the model pulmonary epithelium, with toxicity profiles much more favorable than non-degradable polyamidoamine dendrimers (PAMAM). The transport of the species from the apical to basolateral side across polarized Calu-3 monolayers showed to be generation and surface-chemistry (PEGylation) dependent. The extent of the transport is modulated by their interaction with the polarized epithelium and their transient opening of the tight junctions. G3 was the one most efficiently internalized by the epithelium, and had a small impact on the integrity of the monolayer. On the other hand, the PEGylated G4 was the one least internalized by the polarized epithelium, and at the same time had a more pronounced transient impact on the cellular junctions, resulting in more efficient transport across the cell monolayer. PEGylation of the dendrimer surface played other roles as well. PEGylation modulated the degradation profile of the dendrimer, slowing the process in a step-wise fashion - first the PEG layer is shed and then the dendrimer starts degrading. PEGylation also helped increase the solvation of the nanocarriers by the hydrofluoroalkane propellant used in pressurized metered-dose inhalers, resulting in formulations with excellent dispersibility and aerosol quality (deep lung deposition of 88

  12. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies.

    PubMed

    Sonawane, Sandeep J; Kalhapure, Rahul S; Rambharose, Sanjeev; Mocktar, Chunderika; Vepuri, Suresh B; Soliman, Mahmoud; Govender, Thirumala

    2016-05-17

    The purpose of this study was to explore the preparation of a new lipid-dendrimer hybrid nanoparticle (LDHN) system to effectively deliver vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) infections. Spherical LDHNs with particle size, polydispersity index and zeta potential of 52.21±0.22 nm, 0.105±0.01, and -14.2±1.49 mV respectively were prepared by hot stirring and ultrasonication using Compritol 888 ATO, G4 PAMAM- succinamic acid dendrimer, and Kolliphor RH-40. Vancomycin encapsulation efficiency (%) in LDHNs was almost 4.5-fold greater than in lipid-polymer hybrid nanoparticles formulated using Eudragit RS 100. Differential scanning calorimetry and Fourier transform-infrared studies confirmed the formation of LDHNs. The interactions between the drug-dendrimer complex and lipid molecules using in silico modeling revealed the molecular mechanism behind the enhanced encapsulation and stability. Vancomycin was released from LDHNs over the period of 72 h with zero order kinetics and super case II transport mechanism. The minimum inhibitory concentration (MIC) against S. aureus and MRSA were 15.62 μg/ml and 7.81 μg/ml respectively. Formulation showed sustained activity with MIC of 62.5 μg/ml against S. aureus and 500 μg/ml against MRSA at the end of 72 and 54 h period respectively. The results suggest that the LDHN system can be an effective strategy to combat resistant infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Polyamidoamine dendrimer-functionalized carbon nanotubes-mediated GFP gene transfection for HeLa cells: effects of different types of carbon nanotubes.

    PubMed

    Yang, Keqin; Qin, Weiling; Tang, Hao; Tan, Liang; Xie, Qingji; Ma, Ming; Zhang, Youyu; Yao, Shouzhuo

    2011-11-01

    Three types of functionalized carbon nanotubes (f-CNTs), polyamidoamine (PAMAM) dendrimer-functionalized single and multi-walled CNTs (MWCNT-PAMAM-1, MWCNT-PAMAM-2, and SWCNT-PAMAM-3), were prepared by covalent linkage approach. The micro-morphologies of the three f-CNTs and the interaction of MWCNT-PAMAM-2 with HeLa cells were characterized by transmission electron microscopy (TEM). The free amine groups on the surface of the three types of CNTs-PAMAM hybrids were quantitatively analyzed. Their cytotoxicity and transfection efficiency of plasmid DNA of enhanced green fluorescent protein (pEGFP-N1) to HeLa cells were investigated in detail. The results suggest that although all three types of CNTs-PAMAM hybrids can deliver pEGFP-N1 into HeLa cells and the exogenous GFP gene has been successfully expressed, MWCNT-PAMAM-2 with shorter length and larger amount of free amine groups on its surface possesses higher transfection efficiency (6.79%), being about 3.0 and 1.7 times as large as those of MWCNT-PAMAM-1 (2.24%) and SWCNT-PAMAM-3 (4.08%), respectively; their cytotoxicity to HeLa cells decrease following the sequence of SWCNT-PAMAM-3 > MWCNT-PAMAM-2 > MWCNT-PAMAM-1. These results may be useful for understanding the effects of the chemical/physical properties of f-CNTs on their gene transfection efficiency and cytotoxicity, allowing for construction of promising CNT-based intracellular delivery vectors for gene therapy. Copyright © 2011 Wiley Periodicals, Inc.

  14. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG 5 -SDB was estimated to be about 682 and 544.2mgg -1 respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin.

    PubMed

    Chen, Mei; Yang, Jiaojiao; Li, Jiyao; Liang, Kunneng; He, Libang; Lin, Zaifu; Chen, Xingyu; Ren, Xiaokang; Li, Jianshu

    2014-10-01

    In the bioinspired repair process of tooth enamel, it is important to simultaneously mimic the organic-matrix-induced biomineralization and increase the binding strength at the remineralization interface. In this work, a fourth-generation polyamidoamine dendrimer (PAMAM) is modified by dimethyl phosphate to obtain phosphate-terminated dendrimer (PAMAM-PO3H2) since it has a similar dimensional scale and peripheral functionalities to that of amelogenin, which plays important role in the natural development process of enamel. Its phosphate group has stronger affinity for calcium ion than carboxyl group and can simultaneously provide strong hydroxyapatite (HA)-binding capability. The MTT assay demonstrates the low cytotoxicity of PAMAM-PO3H2. Adsorption tests indicate that PAMAM-PO3H2 can be tightly adsorbed on the human tooth enamel. Scanning electron microscopy and X-ray diffraction are used to analyze the remineralization process. After being incubated in artificial saliva for 3weeks, there is a newly generated HA layer of 11.23μm thickness on the acid-etched tooth enamel treated by PAMAM-PO3H2, while the thickness for the carboxyl-terminated one (PAMAM-COOH) is only 6.02μm. PAMAM-PO3H2 can regulate the remineralization process to form ordered new crystals oriented along the Z-axis and produce an enamel prism-like structure that is similar to that of natural tooth enamel. The animal experiment also demonstrates that PAMAM-PO3H2 can induce significant HA regeneration in the oral cavity of rats. Thus PAMAM-PO3H2 shows great potential as a biomimetic restorative material for human tooth enamel. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide.

    PubMed

    Singh, Mayank Kumar; Pooja, Deep; Kulhari, Hitesh; Jain, Sanjay Kumar; Sistla, Ramakrishna; Chauhan, Abhay Singh

    2017-01-01

    We present a dendrimer-based hybrid formulation strategy to explore the potential of poly (amidoamine) PAMAM dendrimers to be used as drug carriers for combination therapy of an anti-hypertensive drug ramipril (RAPL) and a diuretic hydrochlorothiazide (HCTZ). The drug-dendrimer complexes were prepared by phase-equilibration method. The results showed that the solubility of RAPL and HCTZ was dependent on dendrimer concentration and pH of dendrimer solution. The solubility profile of both RAPL and HCTZ dendrimer complexes illustrated a non-linear relationship with dendrimer concentration. At 0.8% (w/v) dendrimer concentration, solubility of RAPL was increased 4.91 folds with amine-terminated while for HCTZ, solubility enhancement was highest (3.72 folds) with carboxy-terminated. The complexes were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance analysis and high performance liquid chromatography. In-vitro drug dissolution performance of pure drugs, individual drug loaded dendrimer formulations and hybrid formulations was studied in USP dissolution medium (pH7.0) and in simulated gastric fluid (pH1.2). Dendrimer mediated formulations showed faster and complete dissolution compared to pure RAPL or HCTZ. Surprisingly, similar pattern of dissolution profile was established with hybrid formulations as compared to individual drug loaded dendrimers. The dendrimer-based hybrid formulations were found to be stable at dark and refrigerated conditions up to 5weeks. Conclusively, the proposed formulation strategy establishes a novel multitasking platform using dendrimer for simultaneous loading and delivery of multiple drugs for pharmaceutical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Host-guest chemistry of dendrimer-drug complexes. 4. An in-depth look into the binding/encapsulation of guanosine monophosphate by dendrimers.

    PubMed

    Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2010-06-03

    In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.

  18. pH-activatable nanoparticles for tumor-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Karen C.

    To address the need for a tumor-specific drug delivery system that can achieve both prolonged circulation and cellular retention at the tumor site, nanocomplexes of Zwitterionic Chitosan (ZWC) and Polyamidoamine (PAMAM) generation 5 were designed. Polyamidoamine (PAMAM) dendrimers have been widely explored as carriers of therapeutics and imaging agents, however, amine-terminated PAMAM dendrimers are rarely utilized in systemic applications due to its cytotoxicity and risk of opsonization, caused by its cationic charge. Such undesirable effects may be mitigated by shielding the PAMAM dendrimer surface with polymers that reduce the charges. However, this shielding may also interfere with PAMAM dendrimers' ability to interact with target cells, thus reducing cellular uptake and overall efficacy of the delivery system. ZWC, a new chitosan derivative, has a unique pH-sensitive charge profile and can shield the cationic surface of PAMAM dendrimers and block adsorption of serum proteins to allow for prolonged circulation. The hypothesis of this approach is that ZWC is anionic and able to coat PAMAM in neutral pH but becomes positive in the acidic tumor microenvironment, revealing the polycationic drug carrier. We expect that ZWC will provide (i) stealth coating for PAMAM drug carrier during circulation (pH 7.4) and (ii) be removed from the PAMAM drug carrier at acidic pH (pH ~6.3), allowing for cellular interaction. The cationic charge of PAMAM has been demonstrated to facilitate uptake and drug delivery to tumor cells via interactions with the negatively charged cell surface. Stable electrostatic complexes of ZWC and PAMAM dendrimers were formed at pH 7.4, as demonstrated by fluorescence spectroscopy and transmission electron microscopy. The presence of ZWC coating protected red blood cells and fibroblast cells from hemolytic and cytotoxic activities of PAMAM dendrimers, respectively. Confocal microscopy showed that the protective effect of ZWC disappeared at low pH as

  19. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer.

    PubMed

    Kesharwani, Prashant; Tekade, Rakesh K; Jain, Narendra K

    2014-07-01

    Dendrimer-mediated delivery of bioactive is a successful and widely explored concept. This paper desribes comparative data pertaining to generation dependent cancer targeting propensity of Poly(propyleneimine) (PPI) dendrimers. This debut report reportsthe drug targeting and antciancer potential of different dendrimer generations. PPI dendrimers of different generations (3.0G, 4.0G and 5.0G) were synthesized and loaded with Melphalan. Results from loading, hemolysis, hematologic, cytotoxicty and flow cytometry assay depicted that as the generation of dendrimer increased from fourth to fifth, the only parameter i.e. toxicty is increased exponentionally. However, others parameters, i.e. loading, sustained release behavior, and targeting efficacy increased negligibly. Kaplan-Meier survival curves clearly depicted comparable therapeutic potential of PPI4M with PPI5M. In vivo investigations in Balb/c mice again favored 4.0G PPI dendrimer to be preferable nanocarrier for anticancer drug delivery owing to analogous anticancer potential. The outcomes of the investigation evidently projects 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer in respect of its drug delivery benefit as well as superior biocompatibility. Thus, much against the common belief, 4.0G PPI dendrimers may be considered to be optimum in respect of drug delivery precluding the use of much more toxic 5.0G PPI dendrimer, which offers no benefit over 4.0G. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dendrimers as versatile platform in drug delivery applications.

    PubMed

    Svenson, Sonke

    2009-03-01

    About forty percent of newly developed drugs are rejected by the pharmaceutical industry and will never benefit a patient because of poor bioavailability due to low water solubility and/or cell membrane permeability. New delivery technologies could help to overcome this challenge. Nanostructures with uniform and well-defined particle size and shape are of eminent interest in biomedical applications because of their ability to cross cell membranes and to reduce the risk of premature clearance from the body. The high level of control over the dendritic architecture (size, branching density, surface functionality) makes dendrimers ideal carriers in these applications. Many commercial small molecule drugs with anticancer, anti-inflammatory, and antimicrobial activity have been successfully associated with dendrimers such as poly(amidoamine) (PAMAM), poly(propylene imine) (PPI or DAB) and poly(etherhydroxylamine) (PEHAM) dendrimers, either via physical interactions or through chemical bonding ('prodrug approach'). Targeted delivery is possible via targeting ligands conjugated to the dendrimer surface or via the enhanced permeability and retention (EPR) effect. The biocompatibility of dendrimers follows patterns known from other small particles. Cationic surfaces show cytotoxicity; however, derivatization with fatty acid or PEG chains, reducing the overall charge density and minimizing contact between cell surfaces and dendrimers, can reduce toxic effects.

  1. Dendrimer Nanocarriers for Transport Modulation Across Models of the Pulmonary Epithelium

    PubMed Central

    2015-01-01

    The purpose of this study was to determine the effect of PEGylation on the interaction of poly(amidoamine) (PAMAM) dendrimer nanocarriers (DNCs) with in vitro and in vivo models of the pulmonary epithelium. Generation-3 PAMAM dendrimers with varying surface densities of PEG 1000 Da were synthesized and characterized. The results revealed that the apical to basolateral transport of DNCs across polarized Calu-3 monolayers increases with an increase in PEG surface density. DNC having the greatest number of PEG groups (n = 25) on their surface traversed at a rate 10-fold greater than its non-PEGylated counterpart, in spite of their larger size. This behavior was attributed to a significant reduction in charge density upon PEGylation. We also observed that PEGylation can be used to modulate cellular internalization. The total uptake of PEG-free DNC into polarized Calu-3 monolayers was 12% (w/w) vs 2% (w/w) for that with 25 PEGs. Polarization is also shown to be of great relevance in studying this in vitro model of the lung epithelium. The rate of absorption of DNCs administered to mice lungs increased dramatically when conjugated with 25 PEG groups, thus supporting the in vitro results. The exposure obtained for the DNC with 25PEG was determined to be very high, with peak plasma concentrations reaching 5 μg·mL–1 within 3 h. The combined in vitro and in vivo results shown here demonstrate that PEGylation can be potentially used to modulate the internalization and transport of DNCs across the pulmonary epithelium. Modified dendrimers thereby may serve as a valuable platform that can be tailored to target the lung tissue for treating local diseases, or the circulation, using the lung as pathway to the bloodstream, for systemic delivery. PMID:25455560

  2. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium.

    PubMed

    Bharatwaj, Balaji; Mohammad, Abdul Khader; Dimovski, Radovan; Cassio, Fernando L; Bazito, Reinaldo C; Conti, Denise; Fu, Qiang; Reineke, Joshua; da Rocha, Sandro R P

    2015-03-02

    The purpose of this study was to determine the effect of PEGylation on the interaction of poly(amidoamine) (PAMAM) dendrimer nanocarriers (DNCs) with in vitro and in vivo models of the pulmonary epithelium. Generation-3 PAMAM dendrimers with varying surface densities of PEG 1000 Da were synthesized and characterized. The results revealed that the apical to basolateral transport of DNCs across polarized Calu-3 monolayers increases with an increase in PEG surface density. DNC having the greatest number of PEG groups (n = 25) on their surface traversed at a rate 10-fold greater than its non-PEGylated counterpart, in spite of their larger size. This behavior was attributed to a significant reduction in charge density upon PEGylation. We also observed that PEGylation can be used to modulate cellular internalization. The total uptake of PEG-free DNC into polarized Calu-3 monolayers was 12% (w/w) vs 2% (w/w) for that with 25 PEGs. Polarization is also shown to be of great relevance in studying this in vitro model of the lung epithelium. The rate of absorption of DNCs administered to mice lungs increased dramatically when conjugated with 25 PEG groups, thus supporting the in vitro results. The exposure obtained for the DNC with 25PEG was determined to be very high, with peak plasma concentrations reaching 5 μg·mL(-1) within 3 h. The combined in vitro and in vivo results shown here demonstrate that PEGylation can be potentially used to modulate the internalization and transport of DNCs across the pulmonary epithelium. Modified dendrimers thereby may serve as a valuable platform that can be tailored to target the lung tissue for treating local diseases, or the circulation, using the lung as pathway to the bloodstream, for systemic delivery.

  3. Enhanced Optical Breakdown in KB Cells Labeled with Folate-Targeted Silver/Dendrimer Composite Nanodevices

    PubMed Central

    Tse, Christine; Zohdy, Marwa J.; Ye, Jing Yong; O'Donnell, Matthew; Lesniak, Wojciech; Balogh, Lajos

    2010-01-01

    Enhanced optical breakdown of KB cells (a human oral epidermoid cancer cell known to overexpress folate receptors) targeted with silver/dendrimer composite nanodevices (CNDs) is described. CNDs {(Ag0}25-PAMAM_E5.(NH2)42(NGly)74(NFA)2.7} were fabricated by reactive encapsulation, using a biocompatible template of dendrimer-folic acid (FA) conjugates. Preferential uptake of the folate-targeted CNDs (of various treatment concentrations and surface functionality) by KB cells was visualized with confocal microscopy and transmission electron microscopy (TEM). Intracellular laser-induced optical breakdown (LIOB) threshold and dynamics were detected and characterized by high-frequency ultrasonic monitoring of resulting transient bubble events. When irradiated with a near-infrared (NIR), femtosecond laser, the CND-targeted KB cells acted as well-confined activators of laser energy, enhancing nonlinear energy absorption, exhibiting a significant reduction in breakdown threshold, and thus selectively promoting intracellular LIOB. PMID:20883823

  4. Antibacterial action mode of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core-shell nanoparticles against Escherichia coli correlated with molecular chain conformation.

    PubMed

    Wen, Yan; Yao, Fanglian; Sun, Fang; Tan, Zhilei; Tian, Liang; Xie, Lei; Song, Qingchao

    2015-03-01

    The action mode of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core-shell nanoparticles (CM-HTCC/PAMAM) against Escherichia coli (E. coli) was investigated via a combination of approaches including measurements of cell membrane integrity, outer membrane (OM) and inner membrane (IM) permeability, and scanning electron microscopy (SEM). CM-HTCC/PAMAM dendrimer nanoparticles likely acted in a sequent event-driven mechanism, beginning with the binding of positively charged groups from nanoparticle surface with negative cell surface, thereby causing the disorganization of cell membrane, and subsequent leakage of intracellular components which might ultimately lead to cell death. Moreover, the chain conformation of polymers was taken into account for a better understanding of the antibacterial action mode by means of viscosity and GPC measurements. High utilization ratio of positive charge and large specific surface area generated from a compacted conformation of CM-HTCC/PAMAM, significantly different from the extended conformation of HTCC, were proposed to be involved in the antibacterial action. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation.

    PubMed

    Yandrapu, Sarath K; Kanujia, Parijat; Chalasani, Kishore B; Mangamoori, Lakshminarasu; Kolapalli, Ramanamurthy V; Chauhan, Abhay

    2013-05-01

    In the present study we report the development of novel thiolated dendrimers for mucoadhesive drug delivery. The thiolated dendrimers were synthesized by conjugating PAMAM dendrimer (G3.5)with cysteamine at two different molar ratios, i.e. 1:30 (DCys1) and 1:60 (DCys2). The thiolated dendrimers were further encapsulated with acyclovir (DCys1Ac and DCys2Ac) and the conjugates were characterized for thiol content, drug loading, drug release, and mucoadhesive behavior. The thiolated dendrimer conjugates showed thiol content of 10.56 ± 0.34 and 68.21 ± 1.84 μM/mg of the conjugate for DCys1 and DCys2, respectively. The acyclovir loading was observed to be highest in dendrimer drug conjugate (DAc) compared to other DCys1Ac and DCys2Ac conjugates. The thiolated dendrimers showed sustained release of acyclovir and showed higher mucoadhesion. The in vitro mucoadhesive activity of DCys2Ac was 1.53 and 2.89 fold higher mucoadhesion compared to DCys1Ac and DAc, respectively. These results demonstrated the usefulness of thiolated dendrimers as a mucoadhesive carrier and represent a novel platform for drug delivery. This study demonstrates the utility of thiolated dendrimers as mucoadhesive carriers as reported in an acyclovir delivery model system. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    PubMed

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  7. Anionic Carbosilane Dendrimers Destabilize the GP120-CD4 Complex Blocking HIV-1 Entry and Cell to Cell Fusion.

    PubMed

    Guerrero-Beltran, Carlos; Rodriguez-Izquierdo, Ignacio; Serramia, Ma Jesus; Araya-Durán, Ingrid; Márquez-Miranda, Valeria; Gomez, Rafael; de la Mata, Francisco Javier; Leal, Manuel; González-Nilo, Fernando; Muñoz-Fernández, M Angeles

    2018-05-16

    Cell-to-cell transmission is the most effective pathway for the spread of human immunodeficiency virus (HIV-1). Infected cells expose virus-encoded fusion proteins on their surface as a consequence of HIV-1 replicative cycle that interacts with noninfected cells through CD4 receptor and CXCR4 coreceptor leading to the formation of giant multinucleated cells known as syncytia. Our group previously described the potent activity of dendrimers against CCR5-tropic viruses. Nevertheless, the study of G1-S4, G2-S16, and G3-S16 dendrimers in the context of X4-HIV-1 tropic cell-cell fusion referred to syncytium formation remains still unknown. These dendrimers showed a suitable biocompatibility in all cell lines studied and our results demonstrated that anionic carbosilane dendrimers G1-S4, G2-S16, and G3-S16 significantly inhibit the X4-HIV-1 infection, as well as syncytia formation, in a dose dependent manner. We also demonstrated that G2-S16 and G1-S4 significantly reduced syncytia formation in HIV-1 Env-mediated cell-to-cell fusion model. Molecular modeling and in silico models showed that G2-S16 dendrimer interfered with gp120-CD4 complex and demonstrated its potential use for a treatment.

  8. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Tajmir-Riahi, H A

    2017-08-01

    In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug-polymer were examined. Structural analysis showed that drug-polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30-55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.

  9. Adsorption of mixtures of poly(amidoamine) dendrimers and sodium dodecyl sulfate at the air-water interface.

    PubMed

    Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy

    2014-05-27

    We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.

  10. Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Bahrami, Aidin; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-09-01

    This study explains some electronic and structural parameters of niacin (NA) encapsulation into PAMAM-G1 dendrimer using DFT calculations. Optimized structural geometries, interaction energies, NMR, NBO, and AIM analyses, in accordance with experiment, revealed that the stability of G1@NA complex can be attributed to the five intermolecular hydrogen bonds formed between the functional groups of G1 and NA. Because of nearing to the experimental results, all the calculations repeated again using a self-consistent reaction field (SCRF) and the polarizable continuum model (PCM) to address the implicit solvent effects and the obtained results were in line with the calculations in gas phase.

  11. Electrostatically assembled dendrimer complex with a high-affinity protein binder for targeted gene delivery.

    PubMed

    Kim, Jong-Won; Lee, Joong-Jae; Choi, Joon Sig; Kim, Hak-Sung

    2018-06-10

    Although a variety of non-viral gene delivery systems have been developed, they still suffer from low efficiency and specificity. Herein, we present the assembly of a dendrimer complex comprising a DNA cargo and a targeting moiety as a new format for targeted gene delivery. A PAMAM dendrimer modified with histidine and arginine (HR-dendrimer) was used to enhance the endosomal escape and transfection efficiency. An EGFR-specific repebody, composed of leucine-rich repeat (LRR) modules, was employed as a targeting moiety. A polyanionic peptide was genetically fused to the repebody, followed by incubation with an HR-dendrimer and a DNA cargo to assemble the dendrimer complex through an electrostatic interaction. The resulting dendrimer complex was shown to deliver a DNA cargo with high efficiency in a receptor-specific manner. An analysis using a confocal microscope confirmed the internalization of the dendrimer complex and subsequent dissociation of a DNA cargo from the complex. The present approach can be broadly used in a targeted gene delivery in many areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide.

    PubMed

    Sepúlveda-Crespo, Daniel; Lorente, Raquel; Leal, Manuel; Gómez, Rafael; De la Mata, Francisco J; Jiménez, José Luis; Muñoz-Fernández, M Ángeles

    2014-04-01

    Polyanionic carbosilane dendrimers represent opportunities to develop new anti-HIV microbicides. Dendrimers and antiretrovirals (ARVs) acting at different stages of HIV replication have been proposed as compounds to decrease new HIV infections. Thus, we determined the potential use of our G2-STE16 carbosilane dendrimer in combination with other carbosilane dendrimers and ARVs for the use as topical microbicide against HIV-1. We showed that these combinations obtained 100% inhibition and displayed a synergistic profile against different HIV-1 isolates in our model of TZM.bl cells. Our results also showed their potent activity in the presence of an acidic vaginal or seminal fluid environment and did not activate an inflammatory response. This study is the first step toward exploring the use of different anionic carbosilane dendrimers in combination and toward making a safe microbicide. Therefore, our results support further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicide. This paper describes the first steps toward the use of anionic carbosilane dendrimers in combination with antivirals to address HIV-1, paving the way to further studies on dendrimer/dendrimer or dendrimer/ARV combinations as topical anti-HIV-1 microbicides. © 2014.

  13. Force spectroscopy of multivalent binding of riboflavin-conjugated dendrimers to riboflavin binding protein.

    PubMed

    Leistra, Abigail N; Han, Jong Hyun; Tang, Shengzhuang; Orr, Bradford G; Banaszak Holl, Mark M; Choi, Seok Ki; Sinniah, Kumar

    2015-05-07

    Putative riboflavin receptors are considered as biomarkers due to their overexpression in breast and prostate cancers. Hence, these receptors can be potentially exploited for use in targeted drug delivery systems where dendrimer nanoparticles with multivalent ligand attachments can lead to greater specificity in cellular interactions. In this study, the single molecule force spectroscopy technique was used to assess the physical strength of multivalent interactions by employing a riboflavin (RF)-conjugated generation 5 PAMAM dendrimer G5(RF)n nanoparticle. By varying the average RF ligand valency (n = 0, 3, 5), the rupture force was measured between G5(RF)n and the riboflavin binding protein (RFBP). The rupture force increased when the valency of RF increased. We observed at the higher valency (n = 5) three binding events that increased in rupture force with increasing loading rate. Assuming a single energy barrier, the Bell-Evans model was used to determine the kinetic off-rate and barrier width for all binding interactions. The analysis of our results appears to indicate that multivalent interactions are resulting in changes to rupture force and kinetic off-rates.

  14. Direct synthesis and morphological characterization of gold-dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.

    PubMed

    Vasile, E; Serafim, A; Petre, D; Giol, D; Dubruel, P; Iovu, H; Stancu, I C

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated.

  15. Direct Synthesis and Morphological Characterization of Gold-Dendrimer Nanocomposites Prepared Using PAMAM Succinamic Acid Dendrimers: Preliminary Study of the Calcification Potential

    PubMed Central

    Vasile, E.; Serafim, A.; Petre, D.; Giol, D.; Dubruel, P.; Iovu, H.; Stancu, I. C.

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated. PMID:24600316

  16. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases.

    PubMed

    Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2017-09-28

    In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers.

    PubMed

    Mejri-Omrani, Nawel; Miodek, Anna; Zribi, Becem; Marrakchi, Mouna; Hamdi, Moktar; Marty, Jean-Louis; Korri-Youssoufi, Hafsa

    2016-05-12

    Ochratoxin A (OTA) is a carcinogenic mycotoxin that contaminates food such as cereals, wine and beer; therefore it represents a risk for human health. Consequently, the allowed concentration of OTA in food is regulated by governmental organizations and its detection is of major agronomical interest. In the current study we report the development of an electrochemical aptasensor able to directly detect trace OTA without any amplification procedure. This aptasensor was constructed by coating the surface of a gold electrode with a film layer of modified polypyrrole (PPy), which was thereafter covalently bound to polyamidoamine dendrimers of the fourth generation (PAMAM G4). Finally, DNA aptamers that specifically binds OTA were covalently bound to the PAMAM G4 providing the aptasensor, which was characterized by using both Atomic Force Microscopy (AFM) and Surface Plasmon Resonance (SPR) techniques. The study of OTA detection by the constructed electrochemical aptasensor was performed using Electrochemical Impedance Spectroscopy (EIS) and revealed that the presence of OTA led to the modification of the electrical properties of the PPy layer. These modifications could be assigned to conformational changes in the folding of the aptamers upon specific binding of OTA. The aptasensor had a dynamic range of up to 5 μg L(-1) of OTA and a detection limit of 2 ng L(-1) of OTA, which is below the OTA concentration allowed in food by the European regulations. The efficient detection of OTA by this electrochemical aptasensor provides an unforeseen platform that could be used for the detection of various small molecules through specific aptamer association. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.

    2016-12-01

    We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.

  19. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.

    PubMed

    Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M

    2015-02-18

    G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.

  20. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology.

    PubMed

    Pentek, Tyler; Newenhouse, Eric; O'Brien, Brennin; Chauhan, Abhay Singh

    2017-01-14

    Resveratrol (RSV) is well known for its anti-oxidant and anti-aging properties. However, resveratrol is insoluble in water and has stability issues. Recently, efforts were placed to prepare a resveratrol-based advanced anti-aging topical product but it contains harsh organic solvents and oils that could be harmful to the human body and the environment. Hence, we propose the use of a multifunctional dendrimer to solve the solubility and stability issues of resveratrol. A dendrimer-resveratrol complex was prepared, optimized and tested for solubility enhancement, stability in solution and cream dosage forms. We have also developed a high performance liquid chromatography method to measure the resveratrol within the final product. PAMAM dendrimers increased the solubility and stability of resveratrol in water and semisolid dosage forms. Therefore, this product would be water based 'green' formulation devoid of harsh organic solvents and oils and can be safely applied to the skin. Additionally, we have shown that the dendrimer helped to increase overall RSV loading and skin penetration of resveratrol. The dendrimer-RSV formulation was successfully scaled up towards commercialization. Dendrimer with RSV has led to an innovation in anti-aging cream and solutions that could be commercially marketed. Dendrimer-RSV complex could also be added to other product forms for additional purposes and applications.

  1. Effect of addition of Proline, ionic liquid [Choline][Pro] on CO2 separation properties of poly(amidoamine) dendrimer / poly(ethylene glycol) hybrid membranes

    NASA Astrophysics Data System (ADS)

    Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.

    2018-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.

  2. Electrospun Blends of Gelatin and Gelatin-dendrimer Conjugates as a Wound Dressing and Drug Delivery Platform

    PubMed Central

    Dongargaonkar, Alpana A.; Bowlin, Gary L.; Yang, Hu

    2013-01-01

    In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn=575 gmol-1) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silvercontaining sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens—Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but provides tremendous flexibility for developing multifunctional electrospun dressing materials. PMID:24127747

  3. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: Characterisation by in vitro percutaneous absorption studies and Time-of-Flight Secondary Ion Mass Spectrometry.

    PubMed

    Holmes, Amy M; Scurr, David J; Heylings, Jon R; Wan, Ka-Wai; Moss, Gary P

    2017-06-15

    Skin penetration and localisation of chlorhexidine digluconate (CHG) within the skin have been investigated in order to better understand and optimise the delivery using a nano polymeric delivery system of this topically-applied antimicrobial drug. Franz-type diffusion cell studies using in vitro porcine skin and tape stripping procedures were coupled with Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise the skin during various treatments with CHG and polyamidoamine dendrimers (PAMAM). Pre-treatment of the skin with PAMAM dendrimers significantly increased the amount and depth of permeation of CHG into the skin in vitro. The effect observed was not concentration dependant in the range 0.5-10mM PAMAM. This could be important in terms of the efficiency of treatment of bacterial infection in the skin. It appears that the mechanism of enhancement is due to the PAMAM dendrimer disrupting skin barrier lipid conformation or by occluding the skin surface. Franz-type diffusion cell experiments are complimented by the detailed visualisation offered by the semi-quantitative ToF-SIMS method which provides excellent benefits in terms of sensitivity and fragment ion specificity. This allows a more accurate depth profile of chlorhexidine permeation within the skin to be obtained and potentially affords the opportunity to map the co-localisation of permeants with skin structures, thus providing a greater ability to characterise skin absorption and to understand the mechanism of permeation, providing opportunities for new and more effective therapies. Copyright © 2017. Published by Elsevier B.V.

  4. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications.

    PubMed

    Peng, Chen; Li, Kangan; Cao, Xueyan; Xiao, Tingting; Hou, Wenxiu; Zheng, Linfeng; Guo, Rui; Shen, Mingwu; Zhang, Guixiang; Shi, Xiangyang

    2012-11-07

    We report a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of amine-terminated fifth-generation poly(amidoamine) (PAMAM) dendrimers modified by diatrizoic acid (G5.NH(2)-DTA) as stabilizers for enhanced computed tomography (CT) imaging applications. In this study, by simply mixing G5.NH(2)-DTA dendrimers with gold salt in aqueous solution at room temperature, dendrimer-entrapped gold nanoparticles (Au DENPs) with a mean core size of 2.5 nm were able to be spontaneously formed. Followed by an acetylation reaction to neutralize the dendrimer remaining terminal amines, Au DSNPs with a mean size of 6 nm were formed. The formed DTA-containing [(Au(0))(50)-G5.NHAc-DTA] DSNPs were characterized via different techniques. We show that the Au DSNPs are colloid stable in aqueous solution under different pH and temperature conditions. In vitro hemolytic assay, cytotoxicity assay, flow cytometry analysis, and cell morphology observation reveal that the formed Au DSNPs have good hemocompatibility and are non-cytotoxic at a concentration up to 3.0 μM. X-ray absorption coefficient measurements show that the DTA-containing Au DSNPs have enhanced attenuation intensity, much higher than that of [(Au(0))(50)-G5.NHAc] DENPs without DTA or Omnipaque at the same molar concentration of the active element (Au or iodine). The formed DTA-containing Au DSNPs can be used for CT imaging of cancer cells in vitro as well as for blood pool CT imaging of mice in vivo with significantly improved signal enhancement. With the two radiodense elements of Au and iodine incorporated within one particle, the formed DTA-containing Au DSNPs may be applicable for CT imaging of various biological systems with enhanced X-ray attenuation property and detection sensitivity.

  5. Solid surface fluorescence immunosensor for ultrasensitive detection of hepatitis B virus surface antigen using PAMAM/CdTe@CdS QDs nanoclusters.

    PubMed

    Babamiri, Bahareh; Hallaj, Rahman; Salimi, Abdollah

    2018-06-20

    In the present study, we constructed an ultrasensitive solid surface fluorescence-immunosensor based on highly luminescent CdTe@CdS-PAMAM structures as nanoprobe for determination of HBsAg by monitoring fluorescence intensity. This strategy was achieved by using PAMAM as a signal amplifier; the PAMAM dendrimer with the many functional amine groups can amplify the fluorescence signal of QDs by covalent attachment of CdTe@CdS on PAMAM and hence, improve the sensitivity of the proposed method significantly. A sandwich type immunosensor was formed after the addition of HBsAg and the PAMAM-QD-Ab 2 , respectively. Under optimal conditions, the designed immunosensor demonstrates a good analytical performance for the HBsAg detection in an excellent linear range from 5 fg ml -1 to 0.15 ng ml -1 with the detection limit (LOD) of 0.6 fg ml -1 at a S/N ratio of 3. In addition, the analysis of human serum samples shows that the fluorescent immunoassay has the great potential for early diagnosis of hepatitis B and can be used for the detection of other tumor markers in clinical applications.

  6. The Synthesis of N-Acetyllactosamine Functionalized Dendrimers, and the Functionalization of Silica Surfaces Using Tunable Dendrons and beta-Cyclodextrins

    NASA Astrophysics Data System (ADS)

    Ennist, Jessica Helen

    Galectin-3 is beta-galactoside binding protein which is found in many healthy cells. In cancer, the galectin-3/tumor-associated Thomsen-Friedenreich antigen (TF antigen) interaction has been implicated in heterotypic and homotypic cellular adhesion and apoptotic signaling pathways. However, a stronger mechanistic understanding of the role of galectin-3 in these processes is needed. N-acetyllactosamine (LacNAc) is a non-native ligand for galectin-3 which binds with comparable affinity to the TF antigen and therefore an important ligand to study galectin-3 mediated processes. To study galectin-3 mediated homotypic cellular aggregation, four generations of polyamidoamine (PAMAM) dendrimers were functionalized with N-acetyllactosamine using a four-step chemoenzymatic route. The enzymatic step controlled the regiochemistry of the galactose addition to N-acetylglucosamine functionalized dendrimers using a recombinant beta-1,4-Galactosyltransferase-/UDP-4'-Gal Epimerase Fusion Protein (lgtB-galE). Homotypic cellular aggregation, which is promoted by the presence of galectin-3 as it binds to glycosides at the cell surface, was studied using HT-1080 fibrosarcoma, A549 lung, and DU-145 prostate cancer cell lines. In the presence of small LacNAc functionalized PAMAM dendrimers, galectin-3 induced cancer cellular aggregation was inhibited. However, the larger glycodendrimers induced homotypic cellular aggregation. Additionally, novel poly(aryl ether) dendronized silica surfaces designed for reversible adsorbtion of targeted analytes were synthesized, and characterization using X-ray Photoelectron Spectroscopy (XPS) was performed. Using a Cu(I) mediated cycloaddition "click" reaction, beta-cyclodextrin was appended to dendronized surfaces via triazole formation and also to a non-dendronized surface for comparison purposes. First generation G(1) dendrons have more than 6 times greater capacity to adsorb targeted analytes than slides functionalized with monomeric beta

  7. The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels

    NASA Astrophysics Data System (ADS)

    Malý, J.; Lampová, H.; Semerádtová, A.; Štofik, M.; Kováčik, L.

    2009-09-01

    This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH4 silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.

  8. Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor.

    PubMed

    Gao, Qi; Han, Jingman; Ma, Zhanfang

    2013-11-15

    In this work, polyamidoamine dendrimers capped-carbon dots (PAMAM-CDs) were fabricated by one-step microwave assisted pyrolysis of citric acid (CA) and PAMAM, where the formation of CDs and the surface passivation were accomplished simultaneously. The obtained graphitic PAMAM-CDs, with abundant amine groups, were employed as reducing and capping agents for the formation of PAMAM-CDs/Au nanocrystal nanocomposites. The resulting nanocomposites exhibited excellent conductivity, stability and biocompatibility on the surface of electrode and were designed as an immobilized matrix for sensitive immunosensing of alpha-fetoprotein (AFP). The proposed immunosensor showed a wide linear detection range from 100 fg mL(-1) to 100 ng mL(-1). The detection limit for AFP was 0.025 pg mL(-1). Importantly, the immunosensor was evaluated for the analysis of clinical serum samples, obtaining a good correlation with enzyme-linked immunosorbent assay (ELISA). The results indicated that the immunosensor provided a possible application for the detection of AFP in clinical diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery.

    PubMed

    Zhao, Jingjing; Zhang, Bo; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Pang, Zhiqing

    2015-07-15

    Glioblastoma multiforme (GBM) is the most aggressive central nervous system (CNS) tumor because of its fast development, poor prognosis, difficult control and terrible mortality. Poor penetration and retention in the glioblastoma parenchyma were crucial challenges in GBM nanomedicine therapy. Nanoparticle diameter can significantly influence the delivery efficiency in tumor tissue. Decreasing nanoparticle size can improve the nanoparticle penetration in tumor tissue but decrease the nanoparticle retention effect. Therefore, small nanoparticles with high retention effect in tumor are urgently needed for effective GBM drug delivery. In present study, a small nanoparticle drug delivery system was developed by conjugating fibrin-binding peptide CREKA to Polyamidoamine (PAMAM) dendrimer, where PEGylated PAMAM is used as drug carrier due to its small size and good penetration in tumor and CREKA is used to target the abundant fibrin in GBM for enhanced retention in tumor. In vitro binding ability tests demonstrated that CREKA can significantly enhanced nanoparticle binding with fibrin. In vivo fluorescence imaging of GBM bearing nude mice, ex vivo brain imaging and frozen slices fluorescence imaging further revealed that the CREKA-modified PAMAM achieved higher accumulation and deeper penetration in GBM tissue than unmodified one. These results indicated that the CREKA-modified PAMAM could penetrate the GBM tissue deeply and enhance the retention effect, which was a promising strategy for brain tumor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics.

    PubMed

    Liu, Xiaoxuan; Liu, Cheng; Catapano, Carlo V; Peng, Ling; Zhou, Jiehua; Rocchi, Palma

    2014-01-01

    RNAi-based nucleic acid molecules have attracted considerable attention as compelling therapeutics providing safe and competent delivery systems are available. Dendrimers are emerging as appealing nanocarriers for nucleic acid delivery thanks to their unique well-defined architecture and the resulting cooperativity and multivalency confined within a nanostructure. The present review offers a brief overview of the structurally flexible triethanolamine-core poly(amidoamine) (PAMAM) dendrimers developed in our group as nanovectors for the delivery of RNAi therapeutics. Their excellent activity for delivering different RNAi therapeutics in various disease models in vitro and in vivo will be highlighted here. © 2013.

  11. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest.

    PubMed

    Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G; Kambhampati, Siva P; Zhang, Fan; Wilson, Mary A; Blue, Mary E; Troncoso, Juan C; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M

    2014-03-25

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.

  12. Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite

    PubMed Central

    Rafi, Mohammad; Samiey, Babak; Cheng, Chil-Hung

    2018-01-01

    Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine. PMID:29587463

  13. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution.

    PubMed

    Zhong, Qian; Merkel, Olivia M; Reineke, Joshua J; da Rocha, Sandro R P

    2016-06-06

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs -3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer

  14. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution

    PubMed Central

    Zhong, Qian; Merkel, Olivia M.; Reineke, Joshua J.; da Rocha, Sandro R. P.

    2017-01-01

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs −3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer

  15. Dendrimer enriched single-use aptasensor for impedimetric detection of activated protein C.

    PubMed

    Erdem, Arzum; Congur, Gulsah

    2014-05-01

    A novel impedimetric aptasensor for detection of human activated protein C (APC) was introduced for the first time in the present study. An enhanced sensor response was obtained using poly(amidoamine) (PAMAM) dendrimer having 16 succinamic acid surface groups (generation 2, G2-PS), that was modified onto the surface of screen printed graphite electrode (G2-PS/SPE). An amino modified DNA aptamer was then immobilized onto the surface of G2-PS modified SPE. The selective interaction of APT with its cognate protein, APC was investigated using different electrochemical techniques; differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The microscopic characterization was consecutively performed before/after each modification/interaction step using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The selectivity of aptasensor was tested in the presence of numerous proteins; protein C, thrombin, bovine serum albumin, factor Va and chromogenic substrate in different buffer mediums. The APC detection in the artificial serum; fetal bovine serum (FBS) was also performed impedimetrically. This dendrimer modified aptasensor technology brings several advantages: being single-use, fast screening with low-cost per measurement and resulting in sensitive detection of APC with the detection limits of 0.74 μg/mL (0.46 pmol in 35 μL sample) in buffer medium, and 2.03 μg/mL (1.27 pmol in 35 μL sample) in serum. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A

    2016-09-01

    Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer.

    PubMed

    Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K

    2015-09-08

    Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.

  18. Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest

    PubMed Central

    2015-01-01

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315

  19. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure.

    PubMed

    Efeoglu, Esen; Casey, Alan; Byrne, Hugh J

    2017-10-09

    Although consumer exposure to nanomaterials is ever increasing, with potential increased applications in areas such as drug and/or gene delivery, contrast agents and diagnosis, the determination of the cyto- and geno-toxic effects of nanomaterials on human health and the environment still remains challenging. Although many techniques have been established and adapted to determine the cytotoxicity and genotoxicity of nano-sized materials, these techniques remain limited by the number of assays required, total cost, and use of labels and they struggle to explain the underlying interaction mechanisms. In this study, Raman microspectroscopy is employed as an in vitro label-free, high content screening technique to observe toxicological changes within the cell in a multi-parametric fashion. The evolution of spectral markers as a function of time and applied dose has been used to elucidate the mechanism of action of polyamidoamine (PAMAM) dendrimers associated with cytotoxicity and their impact on nuclear biochemistry. PAMAM dendrimers are chosen as a model nanomaterial due to their widely studied cytotoxic and genotoxic properties and commercial availability. Point spectra were acquired from the cytoplasm to monitor the cascade of toxic events occurring in the cytoplasm upon nanoparticle exposure, whereas the spectra acquired from the nucleus and the nucleolus were used to explore PAMAM-nuclear material interaction as well as genotoxic responses.

  20. Synthesis of a novel polyamidoamine dendrimer conjugating with alkali blue as a lymphatic tracer and study on the lymphatic targeting in vivo.

    PubMed

    Yang, Rui; Xia, Suxia; Ye, Tiantian; Yao, Jianhua; Zhang, Ruizhi; Wang, Shujun; Wang, Siling

    2016-09-01

    In this study, a novel lymphatic tracer polyamidoamin-alkali blue (PAMAM-AB) was synthesized in order to evaluate the intra-lymphatic targeting ability and lymphatic tropism of PAMAM-AB after subcutaneous administration. UV-Vis, FT-IR, NMR and HPLC characterization were performed to prove the successful synthesis of PAMAM-AB. The calculated AB payload of PAMAM-AB conjugate was seven per dendrimer molecule (27.16% by weight). Hydrolysis stability of PAMAM-AB in vitro was evaluated, which was stable in PBS and human plasma. Lymphatic tracing were studied to determine the blue-stained intensity of PAMAM-AB in right popliteral lymph nodes (PLNs), iliac lymph nodes (ILNs) and para-aortic lymph nodes (PALNs) after subcutaneous administration. The pharmacokinetics and biodistribution of PAMAM-AB in mice were investigated. PLNs, ILNs and PALNs could be obviously blue-stained within 10 min after PAMAM-AB administration, and displayed a more rapid lymphatic absorption, a higher AUC value in lymph nodes and a longer lymph nodes residence time compared with methylene blue solution (MB-S), MB water-in-oil microemulsion (MB-ME), MB multiple microemulsion (MB-MME). Enhanced lymphatic drainage from the injection site and uptake into lymph of PAMAM-AB indicated that PAMAM-AB possesses the double function of lymphatic tracing and lymphatic targeting, and suggested the potential for the development of lymphatic targeting vectors or as a lymphatic tracer in its own right.

  1. Cell-surface glycosaminoglycans inhibit intranuclear uptake but promote post-nuclear processes of polyamidoamine dendrimer-pDNA transfection.

    PubMed

    Ziraksaz, Zarrintaj; Nomani, Alireza; Ruponen, Marika; Soleimani, Masoud; Tabbakhian, Majid; Haririan, Ismaeil

    2013-01-23

    Interaction of cell-surface glycosaminoglycans (GAGs) with non-viral vectors seems to be an important factor which modifies the intracellular destination of the gene complexes. Intracellular kinetics of polyamidoamine (PAMAM) dendrimer as a non-viral vector in cellular uptake, intranuclear delivery and transgene expression of plasmid DNA with regard to the cell-surface GAGs has not been investigated until now. The physicochemical properties of the PAMAM-pDNA complexes were characterized by photon correlation spectroscopy, atomic force microscopy, zeta measurement and agarose gel electrophoresis. The transfection efficiency and toxicity of the complexes at different nitrogen to phosphate (N:P) ratios were determined using various in vitro cell models such as human embryonic kidney cells, chinese hamster ovary cells and its mutants lacking cell-surface GAGs or heparan sulphate proteoglycans (HSPGs). Cellular uptake, nuclear uptake and transfection efficiency of the complexes were determined using flow cytometry and optimized cell-nuclei isolation with quantitative real-time PCR and luciferase assay. Physicochemical studies showed that PAMAM dendrimer binds pDNA efficiently, forms small complexes with high positive zeta potential and transfects cells properly at N:P ratios around 5 and higher. The cytotoxicity could be a problem at N:Ps higher than 10. GAGs elimination caused nearly one order of magnitude higher pDNA nuclear uptake and more than 2.6-fold higher transfection efficiency than CHO parent cells. However, neither AUC of nuclear uptake, nor AUC of transfection affected significantly by only cell-surface HSPGs elimination and interesting data related to the effect of GAGs on intranuclear pDNA using PAMAM as delivery vector have been reported in this study. Presented data shows that the rate-limiting step of PAMAM-pDNA complexes transfection is located after delivery to the cell nucleus and GAGs are regarded as an inhibitor of the intranuclear delivery step

  2. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells

    PubMed Central

    Zhou, Yanfang; Li, Jiemei; Lu, Fang; Deng, Junjie; Zhang, Jiahua; Fang, Peijie; Peng, Xinsheng; Zhou, Shu-Feng

    2015-01-01

    Dendrimers are hyperbranched macromolecules with well-defined topological structures and multivalent functionalization sites, but they may cause cytotoxicity due to the presence of cationic charge. Recently, we have introduced alkyne-terminated poly(amidoamine) (PAMAM) dendrons of different generations (G=2,3) into chitosan to obtain dendronized chitosan derivatives [Cs-g-PAMAM (G=2,3)], which exhibited a better water solubility and enhanced plasmid DNA transfection efficiency. In this study, we attempted to examine the impact of Cs-g-PAMAM (G=2,3) at different concentrations (25 μg/mL, 50 μg/mL, and 100 μg/mL) on the morphology, surface structure, and viability of rat red blood cells (RBCs). The results showed that treatment of RBCs with Cs-g-PAMAM (G=2,3) at 50 μg/mL and 100 μg/mL induced a slightly higher hemolysis than Cs, and Cs-g-PAMAM (G=3) caused a slightly higher hemolysis than Cs-g-PAMAM (G=2), but all values were <5.0%. Optical microscopic and atomic force microscopic examinations indicated that Cs-g-PAMAM (G=2,3) caused slight RBC aggregation and lysis. Treatment of RBCs with 100 μg/mL Cs-g-PAMAM (G=3) induced echinocytic transformation, and RBCs displayed characteristic irregular contour due to the folding of the periphery. Drephanocyte-like RBCs were observed when treated with 100 μg/mL Cs-g-PAMAM (G=3). Erythrocytes underwent similar shape transition upon treatment with Cs-g-PAMAM (G=2) or Cs. The roughness values (Rms) of RBCs incubated with Cs-g-PAMAM (G=2,3) were significantly larger than those for RBCs incubated with physiological saline (P<0.01), but the Rms showed no difference for Cs and Cs-g-PAMAM (G=2,3) (P>0.05). Furthermore, Cs-g-PAMAM (G=2,3) exhibited a lower cytotoxicity in human kidney 293T cells. These results indicate that Cs-g-PAMAM (G=2,3) are hemocompatible but may disturb membrane and lipid structures at higher concentrations. Further safety and biocompatibility evaluations are warranted for Cs-g-PAMAM. Our findings prove

  3. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  4. Oligodeoxynucleotide nanostructure formation in the presence of polypropyleneimine dendrimers and their uptake in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Chen, Alex M.; Santhakumaran, Latha M.; Nair, Sandhya K.; Amenta, Peter S.; Thomas, Thresia; He, Huixin; Thomas, T. J.

    2006-11-01

    We studied the efficacy of five generations of polypropyleneimine (PPI) dendrimer to provoke nanostructure formation from a 21-nucleotide antisense oligodeoxynucleotide (ODN). Nanostructure formation was observed with all generations of dendrimer by light scattering and microscopic techniques. The efficacy of the dendrimers increased with generation number. Atomic force microscopy (AFM) was used to study the morphology of the structures at different condensation stages. Based on the observed nanostructures, we propose a zipping condensation mechanism, which is very different from the condensation pathways of high molecular weight DNA polymers. Electron microscopy showed the presence of toroidal nanoparticles. Confocal microscopic analysis showed that the nanostructures formed with G-4 and G-5 dendrimers could undergo facile cellular uptake in a breast cancer cell line, MDA-MB-231, whereas nanostructures formed with G-1 to G-3 dendrimers lacked this ability. Nanoparticles formed with G-1 to G-3 dendrimers showed significantly lower zeta potential (5.2-6.5 mV) than those (12-18 mV) of particles formed with G-4 and G-5 dendrimers. These results show that the structure and charge density of the dendrimers are important in ODN nanoparticle formation and cellular transport and that G-4 and G-5 dendrimers are useful in cellular delivery of antisense ODN.

  5. Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.

    PubMed

    Zhu, Zhiling; Yu, Fei; Chen, Haoqing; Wang, Jun; Lopez, Analette I; Chen, Quan; Li, Siheng; Long, Yuyu; Darouiche, Rabih O; Hull, Richard A; Zhang, Lijuan; Cai, Chengzhi

    2017-12-01

    Bacterial interference using non-pathogenic Escherichia coli 83972 is a novel strategy for preventing catheter-associated urinary tract infection (CAUTI). Crucial to the success of this strategy is to establish a high coverage and stable biofilm of the non-pathogenic bacteria on the catheter surface. However, this non-pathogenic strain is sluggish to form biofilms on silicone as the most widely used material for urinary catheters. We have addressed this issue by modifying the silicone catheter surfaces with mannosides that promote the biofilm formation, but the stability of the non-pathogenic biofilms challenged by uropathogens over long-term remains a concern. Herein, we report our study on the stability of the non-pathogenic biofilms grown on propynylphenyl mannoside-modified silicone. The result shows that 94% non-pathogenic bacteria were retained on the modified silicone under >0.5 Pa shear stress. After being challenged by three multidrug-resistant uropathogenic isolates in artificial urine for 11 days, large amounts (>4 × 10 6  CFU cm -2 ) of the non-pathogenic bacteria remained on the surfaces. These non-pathogenic biofilms reduced the colonization of the uropathogens by >3.2-log. In bacterial interference, the non-pathogenic Escherichia coli strains are sluggish to form biofilms on the catheter surfaces, due to rapid removal by urine flow. We have demonstrated a solution to this bottleneck by pre-functionalization of mannosides on the silicone surfaces to promote E. coli biofilm formation. A pre-conjugated high affinity propynylphenyl mannoside ligand tethered to the nanometric amino-terminated poly(amido amine) (PAMAM) dendrimer is used for binding to a major E. coli adhesin FimH. It greatly improves the efficiency for the catheter modification, the non-pathogenic biofilm coverage, as well as the (long-term) stability for prevention of uropathogen infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging.

    PubMed

    Ma, Wenhui; Fu, Fanfan; Zhu, Jingyi; Huang, Rui; Zhu, Yizhou; Liu, Zhenwei; Wang, Jing; Conti, Peter S; Shi, Xiangyang; Chen, Kai

    2018-03-29

    We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.

  7. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group.

    PubMed

    Niki, Yuichiro; Ogawa, Mikako; Makiura, Rie; Magata, Yasuhiro; Kojima, Chie

    2015-11-01

    The detection of the sentinel lymph node (SLN), the first lymph node draining tumor cells, is important in cancer diagnosis and therapy. Dendrimers are synthetic macromolecules with highly controllable structures, and are potent multifunctional imaging agents. In this study, 12 types of dendrimer of different generations (G2, G4, G6, and G8) and different terminal groups (amino, carboxyl, and acetyl) were prepared to determine the optimal dendrimer structure for SLN imaging. Radiolabeled dendrimers were intradermally administrated to the right footpads of rats. All G2 dendrimers were predominantly accumulated in the kidney. Amino-terminal, acetyl-terminal, and carboxyl-terminal dendrimers of greater than G4 were mostly located at the injection site, in the blood, and in the SLN, respectively. The carboxyl-terminal dendrimers were largely unrecognized by macrophages and T-cells in the SLN. Finally, SLN detection was successfully performed by single photon emission computed tomography imaging using carboxyl-terminal dendrimers of greater than G4. The early detection of tumor cells in the sentinel draining lymph nodes (SLN) is of utmost importance in terms of determining cancer prognosis and devising treatment. In this article, the authors investigated various formulations of dendrimers to determine the optimal one for tumor detection. The data generated from this study would help clinicians to fight the cancer battle in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dual stimuli-sensitive dendrimers: Photothermogenic gold nanoparticle-loaded thermo-responsive elastin-mimetic dendrimers.

    PubMed

    Fukushima, Daichi; Sk, Ugir Hossain; Sakamoto, Yasuhiro; Nakase, Ikuhiko; Kojima, Chie

    2015-08-01

    Dendrimers are synthetic macromolecules with unique structures that can work as nanoplatforms for both photothermogenic gold nanoparticles (AuNPs) and thermosensitive elastin-like peptides (ELPs) with valine-proline-glycine-valine-glycine (VPGVG) repeats. In this study, photothermogenic AuNPs were loaded into thermo-responsive elastin-mimetic dendrimers (dendrimers conjugating ELPs at their periphery) to produce dual stimuli-sensitive nanoparticles. Polyamidoamine G4 dendrimers were modified with acetylated VPGVG and (VPGVG)2, and the resulting materials were named ELP1-den and ELP2-den, respectively. The AuNPs were prepared by the reduction of Au ions using a dendrimer-nanotemplated method. The AuNP-loaded elastin-mimetic dendrimers exhibited photothermal properties. ELP1-den and ELP2-den showed similar temperature-dependent changes in their conformations. Phase transitions were observed at around 55°C and 35°C for the AuNP-loaded ELP1-den and AuNP-loaded ELP2-den, respectively, but not for the corresponding PEGylated dendrimer. In contrast to the AuNP-loaded PEGylated dendrimer, AuNP-loaded ELP2-den readily associated with cells and induced efficient photocytotoxicity at 37°C. The cell association and the photocytotoxicity properties of AuNP-loaded ELP2-den could be controlled by temperature. These results therefore suggest that dual stimuli-sensitive dendrimer nanoparticles of this type could be used for photothermal therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor.

    PubMed

    Wu, Nan; Wang, Siming; Yang, Ye; Song, Jiayi; Su, Ping; Yang, Yi

    2018-07-01

    A novel type of trypsin capillary microreactor was developed based on a DNA-directed immobilization (DDI) technique applied to a fused-silica capillary modified with polyamidoamine (PAMAM) dendrimers. Trypsin binding to the inner wall of the capillary was confirmed by confocal laser scanning microscopy. The properties of the trypsin-DNA conjugated, PAMAM-modified capillary microreactor were investigated by monitoring hydrolysis of Nα-benzoyl- L -arginine ethyl ester. Through the hybridization and dehybridization of the DNA, the inner wall of the capillary functionalized with trypsin can be regenerated, thus indicating the renewability of this enzyme microreactor. In addition, these results demonstrated that introduction of PAMAM enabled higher amounts of trypsin to be immobilized, markedly improving the enzymolysis efficiency, compared with traditional modified capillaries. The digestion performance of the trypsin capillary microreactor was further evaluated by digesting cytochrome C, and a peptide numbers of 8, and a sequence coverage of 59% were obtained. This renewable and efficient immobilized trypsin capillary microreactor combines advantages of both DDI technology and PAMAM, and is potentially adaptable to high-throughput enzyme assays in biochemical and clinical research. Copyright © 2018. Published by Elsevier B.V.

  10. Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples.

    PubMed

    Parham, Negin; Panahi, Homayon Ahmad; Feizbakhsh, Alireza; Moniri, Elham

    2018-04-13

    In this present study, poly (N-isopropylacrylamide) as a thermo-sensitive agent was grafted onto magnetic nanoparticles, then ethylenediamine and methylmethacrylate were used to synthesize the first generation of poly amidoamine (PAMAM) dendrimers successively and the process continued alternatively until the ten generations of dendrimers. The synthesized nanocomposite was investigated using Fourier transform infrared spectrometry, thermalgravimetry analysis, X-ray diffractometry, elemental analysis and vibrating-sample magnetometer. The particle size and morphology were characterized using dynamic light scattering, field emission scanning electron microscopy and transmission electron microscopy. Batch experiments were conducted to investigate the parameters affecting adsorption and desorption of rivaroxaban by synthesized nanocomposite. The maximum sorption of rivaroxaban by the synthesized nanocomposite was obtained at pH of 8. The resulting grafted magnetic nanoparticle dendrimers were applied for extraction of rivaroxaban from biologic human liquids and medicinal samples. The specifications of rivaroxaban sorbed by a magnetic nanoparticle dendrimer showed good accessibility and high capacity of the active sites within the dendrimers. Urine and drug matrix extraction recoveries of more than 92.5 and 99.8 were obtained, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Elucidation of the Interaction Mechanism with Liposomes of gH625-Peptide Functionalized Dendrimers

    PubMed Central

    Falanga, Annarita; Tarallo, Rossella; Carberry, Thomas; Galdiero, Massimiliano; Weck, Marcus; Galdiero, Stefania

    2014-01-01

    We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery. PMID:25423477

  12. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  13. Toxicity of silver nanoparticles, multiwalled carbon nanotubes, and dendrimers assessed with multicellular organism Caenorhabditis elegans.

    PubMed

    Walczynska, Marta; Jakubowski, Witold; Wasiak, Tomasz; Kadziola, Kinga; Bartoszek, Nina; Kotarba, Sylwia; Siatkowska, Malgorzata; Komorowski, Piotr; Walkowiak, Bogdan

    2018-07-01

    Nematode Caenorhabditis elegans (C. elegans) was used to investigate the impact of silver nanoparticles (SNP), multiwalled carbon nanotubes (MWCNT), and polyamidoamine dendrimers (PAMAM) used in concentration of 10 10 particle/mL. Population-based observations and gene expression analysis were employed in this study. SNP and PAMAM caused decrease in the number of live nematodes and their body length, but MWCNT did not affect the population of nematodes. Gene expression analysis revealed significant changes caused by the presence of all studied nanomaterials, and the results strongly suggest a specific metabolic response of the nematode organism to exposure to various nanomaterials. It was shown that C. elegans is a very sensitive organism capable to respond specifically to the exposure to some nanomaterials and therefore could be considered as a possible biosensor for early warning of presence of some nanoparticles.

  14. Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells.

    PubMed

    Shi, Xiangyang; Wang, Su He; Lee, Inhan; Shen, Mingwu; Baker, James R

    2009-11-01

    Dendrimer-based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc-FI-FA), and dendrimer-entrapped gold nanoparticles with similar modifications ([(Au(0))(51.2)-G5.NHAc-FI-FA]) in terms of their specific internalization to FA receptor (FAR)-overexpressing cancer cells. Confocal microscopic studies show that both G5.NHAc-FI-FA and [(Au(0))(51.2-)G5.NHAc-FI-FA] exhibit similar internalization kinetics regardless of the existence of Au nanoparticles (NPs). Molecular dynamics simulation of the two different nanostructures reveals that the surface area and the FA moiety distribution from the center of the geometry are slightly different. This slight difference may not be recognized by the FARs on the cell membrane, consequently leading to similar internalization kinetics. This study underlines the fact that metal or inorganic NPs entrapped within dendrimers interact with cells in a similar way to that of dendrimers lacking host NPs. 2009 Wiley Periodicals, Inc.

  15. Protein quantification on dendrimer-activated surfaces by using time-of-flight secondary ion mass spectrometry and principal component regression

    NASA Astrophysics Data System (ADS)

    Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol

    2008-12-01

    Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.

  16. Molecular Transport Studies Through Unsupported Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  17. Effect of N-acetylgalactosamine ligand valency on targeting dendrimers to hepatic cancer cells.

    PubMed

    Kuruvilla, Sibu P; Tiruchinapally, Gopinath; Kaushal, Neha; ElSayed, Mohamed E H

    2018-04-16

    The display of N-acetylgalactosamine (NAcGal) ligands has shown great potential in improving the targeting of various therapeutic molecules to hepatocellular carcinoma (HCC), a severe disease whose clinical treatment is severely hindered by limitations in delivery of therapeutic cargo. We previously used the display of NAcGal on generation 5 (G5) polyamidoamine (PAMAM) dendrimers connected through a poly(ethylene glycol) (PEG) brush (i.e. G5-cPEG-NAcGal; monoGal) to effectively target hepatic cancer cells and deliver a loaded therapeutic cargo. In this study, we were interested to see if tri-valent NAcGal ligands (i.e. NAcGal 3 ) displayed on G5 dendrimers (i.e. G5-cPEG-NAcGal 3 ; triGal) could improve their ability to target hepatic cancer cells compared to their monoGal counterparts. We therefore synthesized a library of triGal particles, with either 2, 4, 6, 8, 11, or 14 targeting branches (i.e. cPEG-NAcGal 3 ) attached. Conventional flow cytometry studies showed that all particle formulations can label hepatic cancer cells in a concentration-dependent manner, reaching 90-100% of cells labeled at either 285 or 570 nM G5, but interestingly, monoGal labeled more cells at lower concentrations. To elucidate the difference in internalization of monoGal versus triGal conjugates, we turned to multi-spectral imaging flow cytometry and quantified the amount of internalized (I) versus surface-bound (I 0 ) conjugates to determine the ratio of internalization (I/I 0 ) in all treatment groups. Results show that regardless of NAcGal valency, or the density of targeting branches, all particles achieve full internalization and diffuse localization throughout the cell (I/I 0  ∼ 3.0 for all particle compositions). This indicates that while tri-valent NAcGal is a promising technique for targeting nanoparticles to hepatic cancer cells, mono-valent NAcGal is more efficient, contrary to what is observed with small molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.

    PubMed

    Siqueira, José R; Abouzar, Maryam H; Poghossian, Arshak; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J

    2009-10-15

    Silicon-based sensors incorporating biomolecules are advantageous for processing and possible biological recognition in a small, reliable and rugged manufactured device. In this study, we report on the functionalization of field-effect (bio-)chemical sensors with layer-by-layer (LbL) films containing single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. A capacitive electrolyte-insulator-semiconductor (EIS) structure modified with carbon nanotubes (EIS-NT) was built, which could be used as a penicillin biosensor. From atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) images, the LbL films were shown to be highly porous due to interpenetration of SWNTs into the dendrimer layers. Capacitance-voltage (C/V) measurements pointed to a high pH sensitivity of ca. 55 mV/pH for the EIS-NT structures. The biosensing ability towards penicillin of an EIS-NT-penicillinase biosensor was also observed as the flat-band voltage shifted to lower potentials at different penicillin concentrations. A dynamic response of penicillin concentrations, ranging from 5.0 microM to 25 mM, was evaluated for an EIS-NT with the penicillinase enzyme immobilized onto the surfaces, via constant-capacitance (ConCap) measurements, achieving a sensitivity of ca. 116 mV/decade. The presence of the nanostructured PAMAM/SWNT LbL film led to sensors with higher sensitivity and better performance.

  19. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers

    NASA Astrophysics Data System (ADS)

    Soni, Namrata; Jain, Keerti; Gupta, Umesh; Jain, N. K.

    2015-11-01

    The aim of the present investigation was to deliver Gemcitabine Hydrochloride (GmcH), an anticancer bioactive, specifically to lung tumor cells using mannosylated 4.0G poly(propyleneimine) dendrimers (M-PPI). 4.0G poly(propyleneimine) (PPI) dendrimers was synthesized using ethylenediamine as core and conjugated with mannose by ring opening reactions, followed by Schiff's reaction in the presence of sodium acetate buffer (pH 4.0). Synthesized PPI dendrimers and mannose-conjugated dendrimers were characterized using IR, NMR spectroscopy, and scanning electron microscopy. GmcH was loaded into PPI and M-PPI dendrimers using equilibrium dialysis method to develop the formulations, GmcH-PPI and GmcH-M-PPI, respectively. The developed formulations were evaluated for drug loading, in vitro release kinetics, in vitro stability, hemolytic toxicity, cytotoxicity, pharmacokinetic, and biodistribution studies. The dendrimeric formulation of GmcH showed pH-sensitive release with faster release at acidic pH, i.e., pH 4.0 in comparison with physiological pH 7.4. M-PPI conjugate showed significant reduction in hemolytic toxicity as compared to plain 4.0G PPI dendrimers towards human erythrocytes. In the cytotoxicity studies with A-549 lung adenocarcinoma cell line, the GmcH-M-PPI formulation showed the lowest IC50 value. Further, the pharmacokinetic and tissue distribution studies of free drug GmcH, GmcH-PPI, and GmcH-M-PPI in albino rats of Sprague-Dawley strain suggested the mean residence time of GmcH-M-PPI conjugate to be significantly higher (24.85 h) than free GmcH and GmcH-PPI. Deposition of drug (396.1 ± 4.7 after 2 h) in lung was found to be significantly higher with GmcH-M-PPI formulation in comparison with Gmch and GmcH-PPI.

  20. Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA-PtNPs dendrimer as a synergetic signal amplification label.

    PubMed

    Zhang, Juan; Yuan, Yali; biXie, Shun; Chai, Yaqin; Yuan, Ruo

    2014-10-15

    In this work, we present a new strategy to construct an electrochemical aptasensor for sensitive detection of platelet-derived growth factor BB (PDGF-BB) based on the synergetic amplification of a three-dimensional (3D) nanoscale catalase (CAT) enzyme-functional DNA-platinum nanoparticles (PtNPs) dendrimer through autonomous layer-by-layer assembly. Firstly, polyamidoaminedendrimer (PAMAM) with a hyper-branched and three-dimensional structure was served as nanocarriers to coimmobilize a large number of PDGF-BB binding aptamer (PBA II) and ssDNA 1 (S1) to form PBA II-PAMAM-S1 bioconjugate. In the presence of PDGF-BB, the bioconjugate was self-assembled on the electrode by sandwich assay. Following that, the carried S1 propagated a chain reaction of hybridization events between CAT-PtNPs-S1 and CAT-PtNPs-ssDNA 2 (S2) to form a 3D nanoscale CAT-functional PtNPs-DNA dendrimer, which successfully immobilized substantial CAT enzyme and PtNPs with superior catalysis activity. In this process, the formed negatively charged double-helix DNA could cause the intercalation of hexaammineruthenium(III) chloride (RuHex) into the groove via electrostatic interactions. Thus, numerous RuHex redox probes and CAT were decorated inside/outside of the dendrimer. In the presence of H2O2 in electrolytic cell, the synergistic reaction of CAT and PtNPs towards electrocatalysis could further amplify electrochemical signal. Under optimal condition, the CAT-PtNPs-DNA dendrimer-based sensing system presented a linear dependence between the reduction peak currents and logarithm of PDGF-BB concentrations in the range of 0.00005-35 nM with a relatively low detection limit of 0.02 pM. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  2. Potential use of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate (G2) as a DNA carrier in vitro and in vivo.

    PubMed

    Anno, Takayuki; Higashi, Taishi; Motoyama, Keiichi; Hirayama, Fumitoshi; Uekama, Kaneto; Arima, Hidetoshi

    2012-04-01

    In this study, we evaluated the polyamidoamine starburst dendrimer (dendrimer, generation 2: G2) conjugate with 6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-cyclodextrin (GUG-β-CDE (G2)) as a gene transfer carrier. The in vitro gene transfer activity of GUG-β-CDE (G2, degree of substitution (DS) of cyclodextrin (CyD) 1.8) was remarkably higher than that of dendrimer (G2) conjugate with α-CyD (α-CDE (G2, DS 1.2)) and that with β-CyD(β-CDE (G2, DS 1.3)) in A549 and RAW264.7 cells. The particle size, ζ-potential, DNase I-catalyzed degradation, and cellular association of plasmid DNA (pDNA) complex with GUG-β-CDE (G2, DS 1.8) were almost the same as those of the other CDEs. Fluorescent-labeled GUG-β-CDE (G2, DS 1.8) localized in the nucleus 6 h after transfection of its pDNA complex in A549 cells, suggesting that nuclear localization of pDNA complex with GUG-β-CDE (G2, DS 1.8), at least in part, contributes to its high gene transfer activity. GUG-β-CDE (G2, DS 1.8) provided higher gene transfer activity than α-CDE (G2, DS 1.2) and β-CDE (G2, DS 1.3) in kidney with negligible changes in blood chemistry values 12 h after intravenous injection of pDNA complexes with GUG-β-CDE (G2, DS 1.8) in mice. In conclusion, the present findings suggest that GUG-β-CDE (G2, DS 1.8) has the potential for a novel polymeric pDNA carrier in vitro and in vivo.

  3. Novel Targeting Approach for Breast Cancer Gene Therapy

    DTIC Science & Technology

    2010-09-01

    haloperidol and ibogaine)- conjugated polyamidoamine (PAMAM) dendrimers Poly(amidoamine) (PAMAM) dendrimers of 3.5 generation with carboxylate surface...Mukherjee A, Prasad TK, Rao NM, Banerjee R. Haloperidol associated stealth liposomes. A potent carrier for delivering genes to human breast cancer cells

  4. 64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque

    PubMed Central

    2015-01-01

    The ability to detect and quantify macrophage accumulation can provide important diagnostic and prognostic information for atherosclerotic plaque. We have previously shown that LyP-1, a cyclic 9-amino acid peptide, binds to p32 proteins on activated macrophages, facilitating the visualization of atherosclerotic plaque with PET. Yet, the in vivo plaque accumulation of monomeric [18F]FBA-LyP-1 was low (0.31 ± 0.05%ID/g). To increase the avidity of LyP-1 constructs to p32, we synthesized a dendritic form of LyP-1 on solid phase using lysine as the core structural element. Imaging probes (FAM or 6-BAT) were conjugated to a lysine or cysteine on the dendrimer for optical and PET studies. The N-terminus of the dendrimer was further modified with an aminooxy group in order to conjugate LyP-1 and ARAL peptides bearing a ketone. Oxime ligation of peptides to both dendrimers resulted in (LyP-1)4- and (ARAL)4-dendrimers with optical (FAM) and PET probes (6-BAT). For PET-CT studies, (LyP-1)4- and (ARAL)4-dendrimer-6-BAT were labeled with 64Cu (t1/2 = 12.7 h) and intravenously injected into the atherosclerotic (ApoE–/–) mice. After two hours of circulation, PET-CT coregistered images demonstrated greater uptake of the (LyP-1)4-dendrimer-64Cu than the (ARAL)4-dendrimer-64Cu in the aortic root and descending aorta. Ex vivo images and the biodistribution acquired at three hours after injection also demonstrated a significantly higher uptake of the (LyP-1)4-dendrimer-64Cu (1.1 ± 0.26%ID/g) than the (ARAL)4-dendrimer-64Cu (0.22 ± 0.05%ID/g) in the aorta. Similarly, subcutaneous injection of the LyP-1-dendrimeric carriers resulted in preferential accumulation in plaque-containing regions over 24 h. In the same model system, ex vivo fluorescence images within aortic plaque depict an increased accumulation and penetration of the (LyP-1)4-dendrimer-FAM as compared to the (ARAL)4-dendrimer-FAM. Taken together, the results suggest that the (LyP-1)4-dendrimer can be applied for in

  5. Large PAMAM Dendron Induces Formation of Unusual P4332 Mesophase in Monoolein/Water system.

    PubMed

    Kumar, Manoj; Patil, Naganath G; Ambade, Ashootosh V; Kumaraswamy, Guruswamy

    2018-05-18

    Compact macromolecular dendrons have been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome C. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3d and discontinuous micellar mesophases. In this unusual phase, every third rod junction of the Ia3d mesophase is replaced with a spherical micelle. We present a detailed investigation of the phase behaviour of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the L to Ia3d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. Thus, incorporation of G5 yields a qualitatively different phase diagram when compared with incorporation of lower generation PAMAM dendrons (G2 - G4) in monoolein/water, where the reverse micellar Fd3m phase forms. PAMAM dendrons of all generations, G2 - G5, bear terminal amine groups that interact with the monoolein head group. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2 - G4, this results in the formation of the Fd3m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3d and discontinuous micellar phase, the P4332 mesophase forms instead.

  6. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dendrimers

    NASA Astrophysics Data System (ADS)

    Bryant, L. Henry; Bulte, Jeff W. M.

    Dendrimers have received an enormous amount of attention in the last ten years and several recent review articles have appeared in the literature that address their potential applications [1-3]. Stoddart et al [1] have stated that: "We are now approaching a time when the study of dendriniers bec omes inextricably linked with many other fields, leaving the comprehensive reviewer of the subject a near-impossible task to fulfil". On that note, this review provides a brief introduction to the chemical principles of dendrimers by highlighting main synthetic strategies and methods for characterisation. p]Dendrimers containing heteroatoms will not be reviewed per se since these have recently been reviewed [4]. The major thrust of this review is the potential applications of dendrimers in such areas as boron neutron capture therapy, as contrast agents in magnetic resonance imaging, as vaccines, as cellular transfection agents and as bioconjugate dendrimers, i.e., in-vitro immunoassays for antigens. The outline used in this review proved to be effective in classifying most published papers about dendrimers, but it must be kept in mind that some articles not only transcended two different classifications, such as synthesis and characterisation, but several classifications such as synthesis, characterisation and at least one potential application covered in this review.

  8. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  9. Charge transport properties of carbazole dendrimers in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mutkins, Karyn; Chen, Simon S. Y.; Aljada, Muhsen; Powell, Ben J.; Olsen, Seth; Burn, Paul L.; Meredith, Paul

    2011-10-01

    We report three generations of p-type dendrimer semiconductors comprised of spirobifluorene cores, carbazole branching units and fluorene surface groups for use in organic field-effect transistors (OFETs). The group of dendrimers are defined by their generation and noted as SBF-(Gx)2, where x is the generation. Top contact-bottom gate OFETs were fabricated by spin-coating the dendrimers onto an n-octyltrichlorosilane (OTS) passivated silicon dioxide surface. The dendrimer films were found to be amorphous. The highest mobility was measured for the first generation dendrimer (SBF-(G1)2), which had an average mobility of (6.6 +/- 0.2) × 10-5 cm2/V s and an ON/OFF ratio of 3.0 × 104. As the generation of the dendrimer was increased there was only a slight decrease in the measured mobility in spite of the significantly different molecular sizes of the dendrimers. The mobility of SBF-(G3)2, which had a hydrodynamic radius almost twice of SBF-(G1)2, still had an average mobility of (4.7 +/- 0.6) × 10-5 cm2/V s and an ON/OFF ratio of 2.7 × 103. Density functional theory calculations showed that the highest occupied molecular orbital was distributed over the core and carbazole units meaning that both intra- and intermolecular charge transfer could occur enabling the hole mobility to remain essentially constant even though the dendrimers would pack differently in the solid-state.

  10. Preparation and characterization of conjugated polyamidoamine-MPEG-methotrexate for potential drug delivery system

    NASA Astrophysics Data System (ADS)

    Mohd Sabri, Siti Noorzidah bt; Abu, Norhidayah; Mastor, Azreena; Hisham, Siti Farhana; Noorsal, Kartini

    2012-07-01

    Star polymers have unique characteristics due to their well-defined size and tailor ability which makes these polymers attractive candidates as carriers in drug delivery system applications. This work focuses on attaching a drug to the star polymer (polyamidoamine). The conjugation of polyamidoamine (PAMAM, generation 4) with methotrexate (MTX) (model drug) was studied in which monomethyl polyethylene glycol (MPEG) was used as a linker to reduce the toxicity of dendrimer. Conjugation starts with attaching the drug to the linker and followed by further conjugation with the polyamidoamine (PAMAM) dendrimer. The conjugation of PAMAM-PEG-MTX was confirmed through UV-Vis, FTIR, 1H NMR and DSC. The loading capacities and release profile of this conjugate were determined using 1H NMR and UV spectrometer.

  11. Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages.

    PubMed

    Calienni, Maria Natalia; Feas, Daniela Agustina; Igartúa, Daniela Edith; Chiaramoni, Nadia Silvia; Alonso, Silvia Del Valle; Prieto, Maria Jimena

    2017-12-15

    This article reports novel results about nanotoxicological and teratogenic effects of the PAMAM dendrimers DG4 and DG4.5 in zebrafish (Danio rerio). Zebrafish embryos and larvae were used as a rapid, high-throughput, cost-effective whole-animal model. The objective was to provide a more comprehensive and predictive developmental toxicity screening of DG4 and DG4.5 and test the influence of their surface charge. Nanotoxicological and teratogenic effects were assessed at developmental, morphological, cardiac, neurological and hepatic level. The effect of surface charge was determined in both larvae and embryos. DG4 with positive surface charge was more toxic than DG4.5 with negative surface charge. DG4 and DG4.5 induced teratogenic effects in larvae, whereas DG4 also induced lethal effects in both zebrafish embryos and larvae. However, larvae were less sensitive than embryos to the lethal effects of DG4. The platform of assays proposed and data obtained may contribute to the characterization of hazards and differential effects of these nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite.

    PubMed

    Liang, Kunneng; Weir, Michael D; Xie, Xianju; Wang, Lin; Reynolds, Mark A; Li, Jiyao; Xu, Hockin H K

    2016-11-01

    The objective of this study was to investigate the effects of poly (amido amine) (PAMAM), composite with nanoparticles of amorphous calcium phosphate (NACP), and the combined PAMAM+NACP nanocomposite treatment, on remineralization of demineralized dentin in a cyclic artificial saliva/lactic acid environment for the first time. Dentin specimens were prepared and demineralized with 37% phosphoric acid for 15s. Four groups were prepared: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP composite, (4) dentin with PAMAM+NACP. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21days. Acid neutralization and calcium (Ca) and phosphate (P) ion concentrations were measured. The remineralized dentin specimens were examined by scanning electron microscopy (SEM) and hardness testing. NACP nanocomposite had mechanical properties similar to commercial control composites (p>0.1). NACP composite had acid-neutralization and Ca and P ion release capability. PAMAM or NACP composite each alone achieved remineralization and increased the hardness of demineralized dentin (p<0.05). PAMAM+NACP nanocomposite achieved the greatest mineral regeneration in demineralized dentin and the greatest hardness increase in demineralized dentin, which approached the hardness of healthy dentin (p>0.1). The superior remineralization efficacy of PAMAM+NACP was demonstrated for the first time. PAMAM+NACP induced remineralization in demineralized dentin in an acid challenge environment, when conventional remineralization methods such as PAMAM did not work well. The novel PAMAM+NACP composite approach is promising for a wide range of dental applications to inhibit caries and protect tooth structures. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization

    PubMed Central

    Xiao, Shimeng; Liang, Kunneng; Weir, Michael D.; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H. K.

    2017-01-01

    Objectives. The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods. Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results. Mechanical properties of BMC were similar to commercial control composites (p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin (p = 0.521). Significance. The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures. PMID:28772450

  14. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization.

    PubMed

    Xiao, Shimeng; Liang, Kunneng; Weir, Michael D; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H K

    2017-01-22

    Objectives . The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods . Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results . Mechanical properties of BMC were similar to commercial control composites ( p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin ( p = 0.521). Significance . The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures.

  15. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates

    NASA Astrophysics Data System (ADS)

    Chen, Kuizhi; Pan, Sujuan; Zhuang, Xuemei; Lv, Hafei; Que, Shoulin; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-07-01

    1-2 generation poly(benzyl aryl ether) dendrimer silicon phthalocyanines with axially disubstituted cyano terminal functionalities (G n -DSiPc(CN)4 n , (G n = n-generation dendrimer, n = 1-2)) were synthesized. Their structures were characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Polymeric nanoparticles (G n -DSiPc(CN)4 n /m) were formed through encapsulating G n -DSiPc(CN)4 n into three monomethoxyl poly(ethylene glycol)-poly(ɛ-caprolactone) diblock copolymers (MPEG-PCL) with different hydrophilic/hydrophobic proportion, respectively. The effect of dendritic generation and the hydrophilic/hydrophobic proportion of diblock copolymers on the UV/Vis and fluorescence spectra of G n -DSiPc(CN)4 n and G n -DSiPc(CN)4 n /m were studied. The photophysical properties of polymeric nanoparticles exhibited dendritic generation and hydrophilic/hydrophobic proportion dependence. The fluorescence intensities and lifetimes of G n -DSiPc(CN)4 n /m were lower than the corresponding free dendrimer phthalocyanines. G n -DSiPc(CN)4 n encapsulated into MPEG-PCL with hydrophilic/hydrophobic molecular weight ratio 2000:4000 exhibited excellent photophysical property. The mean diameter of MPEG2000-PCL2000 micelles was about 70 nm, which decreased when loaded with G n -DSiPc(CN)4 n .

  16. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1

    PubMed Central

    Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, Mª Ángeles

    2016-01-01

    Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798

  17. Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells.

    PubMed

    Li, Yi-Fan; Zhang, Hou-Ting; Xin, Lin

    2018-06-01

    Gastric cancer (GC) is the second most common leading cause of cancer-related death. Cancer stem cell (CSC) with the mark of CD44 played an important role in GC. rMETase was wildly exploited as chemotherapeutic option for GC. Polymers synthetic nanoparticle drug delivery systems have been commonly used for cancer therapy. With the decorating of Hyaluronic acid (HA), a receptor of CD44, nanoparticles exhibit with good biocompatibility and aqueous solubility. The characteristic of nanoparticles (NPs) was analyzed by TEM and DLS. The viability and proliferation of GC cells were examined by MTT assays. The levels of CD44, Cyt C, and c-caspase 3 were examined by Western blot. The level of ROS was measured by DCFH-DA assays. The morphology of tissues was detected using hematoxylin-eosin (H&E) stain. Nude mice xenograft models were used to evaluate the effect of HA-PAMAM-Au-METase on GC. The transfection of rMETase carried by HA-G5 PAMAM-Au visibly inhibited the proliferation and tumorsphere formation of GC cells through obviously enhancing METase activity. Elevation of METase activity suppressed the proliferation of CD44(+) GC cells through down-regulating MET in cellular supernatant that resulted in the increase of Cyc C and ROS levels. The number of CD44(+) GC cells in nude mice injected with G5 PAMAM-Au-METase decorated by HA was markly declined resulting in the inhibition of tumor growth. HA-G5 PAMAM-Au-METase significantly suppressed tumor growth of GC by targeted damaging the mitochondrial function of CD44(+) gastric CSCs.

  18. Use of carbosilane dendrimer to switch macrophage polarization for the acquisition of antitumor functions

    NASA Astrophysics Data System (ADS)

    Perisé-Barrios, Ana J.; Gómez, Rafael; Corbí, Angel L.; de La Mata, Javier; Domínguez-Soto, Angeles; Muñoz-Fernandez, María A.

    2015-02-01

    Tumor microenvironment favors the escape from immunosurveillance by promoting immunosuppression and blunting pro-inflammatory responses. Since most tumor-associated macrophages (TAM) exhibit an M2-like tumor cell growth promoting polarization, we have studied the role of 2G-03NN24 carbosilane dendrimer in M2 macrophage polarization to evaluate the potential application of dendrimers in tumor immunotherapy. We found that the 2G-03NN24 dendrimer decreases LPS-induced IL-10 production from in vitro generated monocyte-derived M2 macrophages, and also switches their gene expression profile towards the acquisition of M1 polarization markers (INHBA, SERPINE1, FLT1, EGLN3 and ALDH1A2) and the loss of M2 polarization-associated markers (EMR1, IGF1, FOLR2 and SLC40A1). Furthermore, 2G-03NN24 dendrimer decreases STAT3 activation. Our results indicate that the 2G-03NN24 dendrimer can be a useful tool for antitumor therapy by virtue of its potential ability to limit the M2-like polarization of TAM.Tumor microenvironment favors the escape from immunosurveillance by promoting immunosuppression and blunting pro-inflammatory responses. Since most tumor-associated macrophages (TAM) exhibit an M2-like tumor cell growth promoting polarization, we have studied the role of 2G-03NN24 carbosilane dendrimer in M2 macrophage polarization to evaluate the potential application of dendrimers in tumor immunotherapy. We found that the 2G-03NN24 dendrimer decreases LPS-induced IL-10 production from in vitro generated monocyte-derived M2 macrophages, and also switches their gene expression profile towards the acquisition of M1 polarization markers (INHBA, SERPINE1, FLT1, EGLN3 and ALDH1A2) and the loss of M2 polarization-associated markers (EMR1, IGF1, FOLR2 and SLC40A1). Furthermore, 2G-03NN24 dendrimer decreases STAT3 activation. Our results indicate that the 2G-03NN24 dendrimer can be a useful tool for antitumor therapy by virtue of its potential ability to limit the M2-like polarization of TAM

  19. Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode.

    PubMed

    Akin, Mehriban; Yuksel, Merve; Geyik, Caner; Odaci, Dilek; Bluma, Arne; Höpfner, Tim; Beutel, Sascha; Scheper, Thomas; Timur, Suna

    2010-01-01

    A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine-modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at -0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4 degrees C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation. Copyright 2010 American Institute of Chemical Engineers

  20. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    PubMed

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phosphorus-Based Dendrimer ABP Treats Neuroinflammation by Promoting IL-10-Producing CD4(+) T Cells.

    PubMed

    Hayder, Myriam; Varilh, Marjorie; Turrin, Cédric-Olivier; Saoudi, Abdelhadi; Caminade, Anne-Marie; Poupot, Rémy; Liblau, Roland S

    2015-11-09

    Dendrimers are polyfunctional nano-objects of perfectly defined structure that can provide innovative alternatives for the treatment of chronic inflammatory diseases, including multiple sclerosis (MS). To investigate the efficiency of a recently described amino-bis(methylene phosphonate)-capped ABP dendrimer as a potential drug candidate for MS, we used the classical mouse model of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). Our study provides evidence that the ABP dendrimer prevents the development of EAE and inhibits the progression of established disease with a comparable therapeutic benefit as the approved treatment Fingolimod. We also show that the ABP dendrimer redirects the pathogenic myelin-specific CD4(+) T cell response toward IL-10 production.

  2. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  3. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells.

    PubMed

    Somani, Sukrut; Laskar, Partha; Altwaijry, Najla; Kewcharoenvong, Paphitchaya; Irving, Craig; Robb, Gillian; Pickard, Benjamin S; Dufès, Christine

    2018-06-20

    Diaminobutyric polypropylenimine (DAB) dendrimers have been shown to be highly efficient non-viral gene delivery systems for cancer therapy. However, their cytotoxicity currently limits their applications. To overcome this issue, PEGylation of DAB dendrimer, using various PEG molecular weights and dendrimer generations, has been attempted to decrease the cytotoxicity and enhance the DNA condensation, size and zeta potential, cellular uptake and transfection efficacy of these dendriplexes. Among all the PEGylated dendrimers synthesized, generation 3- and generation 4-DAB conjugated to low molecular weight PEG (2 kDa) at a dendrimer: DNA ratio of 20:1 and 10:1 resulted in an increase in gene expression on almost all tested cancer cells lines (by up to 3.2-fold compared to unmodified dendrimer in A431 cells). The highest level of β-galactosidase gene expression (10.07 × 10 -3  ± 0.09 × 10 -3  U/mL) was obtained following treatment of B16F10-Luc cells with G4-dendrimer PEGylated with PEG2K at a dendrimer: DNA ratio of 20:1. These delivery systems significantly decreased cytotoxicity on B16F10-Luc cells, by more than 3.4-fold compared to unmodified dendrimer. PEGylated generations 3- and 4-DAB dendrimers are therefore promising gene delivery systems for cancer therapy, combining low cytotoxicity and high transfection efficacy.

  4. Synthesis of PEGylated polyglutamic acid peptide dendrimer and its application in dissolving thrombus.

    PubMed

    Zhang, Shao-Fei; Gao, Chunmei; Lü, Shaoyu; He, Jiujun; Liu, Mingzhu; Wu, Can; Liu, Yijing; Zhang, Xinyu; Liu, Zhen

    2017-11-01

    Nattokinase (NK) has been used as a new generation thrombolytic drug, due to its high safety, low cost and low side effects. However, it is sensitive to external environment and may lose the enzyme activity easily. Peptide dendrimer possesses functional groups on its surface, adjustable sizes, biodegradability, biocompatibility, and low toxicity, which could be used as ideal carrier for drug protection and delivery. Demonstrated for the first time in this paper, a PEGylated dendrimer (G n -PEG-G n ) composed of polyglutamic acid is designed and synthesized as delivery platform of NK for thrombus treatment. A panel of PEGylated dendrimers with three different generations of 2, 3, 4 was prepared to investigate the effect of dendrimer architecture on the properties and therapeutic efficacy of the resultant NK-loaded delivery systems in terms of the morphology, dimension and enzyme activity. The results demonstrated that the NK-loaded G 3 -PEG-G 3 (G 3 -PEG-G 3 /NK ratio of 6/1), of all the formulations, displayed the optimal enzyme activity for dissolving thrombus in vitro, thus offering great potential for the treatment of thrombus. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    PubMed

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  6. Magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs from environmental water samples using polyamidoamine dendrimer functionalized with magnetite nanoparticles as a sorbent.

    PubMed

    Alinezhad, Heshmatollah; Amiri, Amirhassan; Tarahomi, Mehrasa; Maleki, Behrooz

    2018-06-01

    A novel polyamidoamine dendrimer functionalized with Fe 3 O 4 nanoparticles (Fe 3 O 4 @PAMAM) had been fabricated and used as magnetic solid-phase extraction (MSPE) adsorbent. The Fe 3 O 4 @PAMAM nanocomposites were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron spectroscopy, elemental analytical, and thermal gravimetric analysis. The MSPE method coupled with high-performance liquid chromatography with an ultraviolet detection system was applied for the separation/analysis of non-steroidal anti-inflammatory drugs (NSAIDs). Major parameters affecting the extraction efficiency of the selected drugs were optimized. Under optimal conditions, the enrichment factors for the proposed method were 701835. The linear range, limit of detection, correlation coefficient (r), and relative standard deviation (RSD) were found to be 0.15-500 ng mL -1 , 0.050.08 ng mL -1 , 0.99320.9967, and 4.5-7.0% (n = 5, 0.2, 10 and 300 ng mL -1 ), respectively. The method was successfully applied to the determination of NSAIDs in the real water samples. The recoveries of spiked water samples were in the range of 93.6-98.9% with RSDs varying from 6.1% to 9.0%, showing the good accuracy of the method. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Labeling Cells with Silver/Dendrimer Nanocomposites

    DTIC Science & Technology

    2005-01-01

    used in further studies without additional purification. Potentiometric titrations were performed manually, under nitrogen atmosphere, at room...transmits light between 465 and 485 nm. Results and Discussion Figure IA presents potentiometric titration curves of Ag+-PAMAM_E5.NH 2 systems mixed at 15:1... Potentiometric titration curves of PAMAM_E5.NH 2 (circles) Ag+-PAMAME5.NH 2 30:1 (squares) and Ag+-PAMAME5.NH2 45:1 systems (triangles). B - UV-vis spectra of UV

  8. Octa-arginine modified poly(amidoamine) dendrimers for improved delivery and cytotoxic effect of paclitaxel in cancer.

    PubMed

    Rompicharla, Sri Vishnu Kiran; Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2018-05-23

    Cell penetrating peptides (CPP) have the ability to penetrate the cell membrane and have been associated with various cargos for their facile intracellular translocation. The current study involves the synthesis of a CPP, octa-arginine (R8)-modified poly(amidoamine) dendrimer of generation 4 (G4), which has additionally been PEGylated and conjugated to the poorly soluble anticancer drug, paclitaxel (PTX). The synthesized dendrimer conjugates were characterized by proton nuclear magnetic resonance (1H-NMR) Spectroscopy and zeta potential measurements and evaluated in vitro in cell monolayers and 3D spheroids. Cellular uptake study in human cervical cancer cell line (HeLa) revealed that R8 modification significantly improved the cell association of conjugates. G4-PTX- polyethylene glycol (PEG)-R8 conjugate demonstrated enhanced cytotoxic potential and higher induction of apoptosis compared to free PTX and G4-PTX-PEG. Further, the penetrability of fluorescently labeled F-G4-PTX-PEG-R8 was evaluated in 3D spheroids of HeLa at various depths by using confocal microscopy. G4-PTX-PEG-R8 induced cell death and inhibited the growth in 3D spheroids as competently as in monolayers. The enhanced intracellular translocation of R8-modified dendrimers resulted in improved anticancer efficacy of PTX. Therefore, the newly developed dendrimer system is efficient for the intracellular delivery of PTX in cancer cells and has a strong potential to be utilized as an effective chemotherapeutic agent for cancer.

  9. A Dendrimer-based Immunosensor for Improved Capture and Detection of Tumor Necrosis Factor-α Cytokine

    PubMed Central

    Bosnjakovic, Admira; Mishra, Manoj K.; Han, Hye Jung; Romero, Roberto; Kannan, Rangaramanujam M.

    2012-01-01

    A dendrimer-based sandwich type enzyme-linked immunosorbent assay (ELISA) was developed for the improved detection of recombinant human tumor necrosis factor-alpha (TNF-α) for early diagnosis of perinatal diseases. Hydroxyl-terminated generation four poly(amidoamine) dendrimer (G4-OH) was used for the development of a solid phase bio-sensing platform. The surface of the ELISA plate was modified with polyethylene-glycol (PEG) and thiol-functionalized G4-OH was immobilized on the PEG-functionalized plate. A capture antibody was oxidized and covalently immobilized onto the dendrimer-modified ELISA plate, which provides favorable orientation for the antigen binding sites towards the analyte. The dendrimer-modified plate showed enhanced sensitivity, and the detection limit for TNF-α was found to be 0.48 pg mL−1, which is significantly better than the commercially available ELISA kit. The selectivity of the dendrimer-modified ELISA plate was further evaluated with a mixture of cytokines, which showed results for similar to that of TNF-α alone. The modified plate provides a greater opportunity for the detection of a wide range of cytokines and biomarkers. PMID:22365129

  10. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.

    PubMed

    Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi

    2017-06-01

    We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vibrational spectroscopic study of cationic phosphorus dendrimers with aminoethylpiperidine terminal groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-04-01

    Two generations of phosphoric dendrimers with piperidine functional groups were synthesized for use in biology and medicine. Neutral samples are soluble in organic solvents but after protonation these dendrimers become water soluble and can be used for biological experiments. The FTIR and FT Raman spectra of two generations of dendrimers Gi constructed from the cyclotriphosphazene core, repeating units sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)< and aminoethylpiperidine end groups sbnd NHsbnd (CH2)2sbnd C5NH11 were recorded. The study of the IR spectra shows that the NH groups form hydrogen bonds. The calculation of the molecular structure and vibrational spectra of the first generation dendrimer was performed by the method of DFT. This molecule has flat, repeating units and a plane of symmetry passing through the core. The calculation of the distribution of potential energy made it possible to classify the bands in the experimental spectra of dendrimers. Amine groups are manifested in the form of a band of NH stretching vibrations at 3389 cm-1 in the IR spectrum of G1. NH+ stretching bands located at 2646 and 2540 cm-1 in the IR spectrum of G2. The stretching vibrations of NH+ groups are noticeably shifted to low frequencies due to the formation of a hydrogen bond with the chlorine atom. The line at 1575 cm-1 in the Raman spectrum of G1 is characteristic for repeating units.

  12. Hyperbranched-dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly(propyleneimine) dendrimers: synthesis, characterization, and evaluation of transfection efficiency

    NASA Astrophysics Data System (ADS)

    Alavi, Seyyed Jamal; Gholami, Leila; Askarian, Saeedeh; Darroudi, Majid; Massoudi, Abdolhossein; Rezaee, Mehdi; Kazemi Oskuee, Reza

    2017-02-01

    The applications of dendrimer-based vectors seem to be promising in non-viral gene delivery because of their potential for addressing the problems with viral vectors. In this study, generation 3 poly(propyleneimine) (G3-PPI) dendrimers with 1, 4-diaminobutane as a core initiator was synthesized using a divergent growth approach. To increase the hydrophobicity and reduce toxicity, 10% of primary amines of G3-PPI dendrimers were replaced with bromoalkylcarboxylates with different chain lengths (6-bromohexanoic and 10-bromodecanoic). Then, to retain the overall buffering capacity and enhance transfection, the alkylcarboxylate-PPIs were conjugated to 10 kDa branched polyethylenimine (PEI). The results showed that the modified PPI was able to form complexes with the diameter of less than 60 nm with net-positive surface charge around 20 mV. No significant toxicity was observed in modified PPIs; however, the hexanoate conjugated PPI-PEI (PPI-HEX-10% PEI) and the decanoate conjugated PPI-PEI (PPI-DEC-10%-PEI) showed the best transfection efficiency in murine neuroblastoma (Neuro-2a) cell line, even PPI-HEX-10%-PEI showed transfection efficiency equal to standard PEI 25 kDa with reduced toxicity. This study suggested a new series of hyperbranched (PEI)-dendrimer (PPI) architectural copolymers as non-viral gene delivery vectors with high transfection efficiency and low toxicity.

  13. Integration of capillary electrophoresis with gold nanoparticle-based colorimetry.

    PubMed

    Li, Tong; Wu, Zhenglong; Qin, Weidong

    2017-12-01

    A method integrating capillary electrophoresis (CE) and gold nanoparticle aggregation-based colorimetry (AuNP-ABC) was described. By using a dual-sheath interface, the running buffer was isolated from the colorimetric reaction solution so that CE and AuNP-ABC would not interfere with each other. The proof-of-concept was validated by assay of polyamidoamine (PAMAM) dendrimers that were fortified in human urine samples. The factors influencing the CE-AuNP-ABC performances were investigated and optimized. Under the optimal conditions, the dendrimers were separated within 8 min, with detection limits of 0.5, 1.2 and 2.6 μg mL -1 for PAMAM G1.0, G2.0 and G3.0, respectively. The sensitivity of CE-AuNP-ABC was comparable to or even better than those of liquid chromatography-fluorimetry and liquid chromatography-mass spectrometry. The results suggested that the proposed strategy can be applied to facile and quick determination of analytes of similar properties in complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spectroscopic and molecular structure investigation of the phosphorus-containing G‧2 dendrimer with terminal aldehyde groups using DFT method

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2015-02-01

    The FTIR and FT Raman spectra of the second generation dendrimer G‧2 built from thiophosphoryl core with terminal aldehyde groups have been recorded. The structural optimization and normal mode analysis were performed for model compound C, consisting of thiophosphoryl core, one branch with three repeated units, and four 4-oxybenzaldehyde terminal groups on the basis of the density functional theory (DFT) at the PBE/TZ2P level. The vibrational frequencies, infrared and Raman intensities for the t,g,g- and t,-g,g-conformers of the terminal groups were calculated. The t,g,g-conformer is 2.0 kcal/mol less stable compared to t,-g,g-conformer. A reliable assignment of the fundamental bands observed in the experimental IR and Raman spectra of dendrimer was achieved. For the low generations (G‧1 to G‧3) the disk form of studied dendrimer molecules is the most probable. For higher generations, the shape of dendrimer molecules will be that of a cauliflower.

  15. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    PubMed Central

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids. PMID:28579780

  16. Optimizing Antimicrobial Peptide Dendrimers in Chemical Space.

    PubMed

    Siriwardena, Thissa; Capecchi, Alice; Gan, Bee-Ha; Jin, Xian; He, Runze; Wei, Dengwen; Ma, Lan; Köhler, Thilo; van Delden, Christian; Javor, Sacha; Reymond, Jean-Louis

    2018-05-16

    Here we used nearest neighbor searches in chemical space to improve the activity of antimicrobial peptide dendrimer (AMPD) G3KL and identified dendrimer T7 with an expanded activity range against Gram-negative pathogenic bacteria including Klebsiellae pneumoniae, increased serum stability and promising activity in an in vivo infection model against a multidrug resistant strain of Acinetobacter baumannii. Imaging, spectroscopic studies and a structural model from molecular dynamics simulations suggest that T7 acts by membrane disruption. These experiments provide the first example of using virtual screening in the field of dendrimers and show that dendrimer size does not limit the activity of AMPDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.

    PubMed

    Dabrzalska, Monika; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2015-08-15

    Dendrimers due to their unique architecture may play an important role in drug delivery systems including chemotherapy, gene therapy and recently, photodynamic therapy as well. We investigated two dendrimer-photosensitizer systems in context of potential use of these systems in photodynamic therapy. The mixtures of an anionic phosphorus dendrimer of the second generation and methylene blue were studied by UV-vis spectroscopy while that of a cationic phosphorus dendrimer (third generation) and rose bengal were investigated by spectrofluorimetric methods. Spectroscopic analysis of these two systems revealed the formation of dendrimer-photosensitizer complexes via electrostatic interactions as well as π stacking. The stoichiometry of the rose bengal-cationic dendrimer complex was estimated to be 7:1 and 9:1 for the methylene blue-anionic dendrimer complex. The results suggest that these polyanionic or polycationic phosphorus dendrimers can be promising candidates as carriers in photodynamic therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jian; Liu, Ransheng; Zhang, Aixu; Yuan, Zhiyong

    2016-09-01

    Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors.

  19. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.

    PubMed

    Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-06-01

    In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Peptide dendrimer/lipid hybrid systems are efficient DNA transfection reagents: structure--activity relationships highlight the role of charge distribution across dendrimer generations.

    PubMed

    Kwok, Albert; Eggimann, Gabriela A; Reymond, Jean-Louis; Darbre, Tamis; Hollfelder, Florian

    2013-05-28

    Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure-activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6-10-fold over commercial reagents under their respective optimal conditions. Emerging structure-activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity.

  1. Peptide Dendrimer/Lipid Hybrid Systems Are Efficient DNA Transfection Reagents: Structure–Activity Relationships Highlight the Role of Charge Distribution Across Dendrimer Generations

    PubMed Central

    2013-01-01

    Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure–activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6–10-fold over commercial reagents under their respective optimal conditions. Emerging structure–activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity. PMID:23682947

  2. Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons.

    PubMed

    Zhao, Min; Helms, Brett; Slonkina, Elena; Friedle, Simone; Lee, Dongwhan; Dubois, Jennifer; Hedman, Britt; Hodgson, Keith O; Fréchet, Jean M J; Lippard, Stephen J

    2008-04-02

    The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.

  3. Iron Complexes of Dendrimer-Appended Carboxylates for Activating Dioxygen and Oxidizing Hydrocarbons

    PubMed Central

    Zhao, Min; Helms, Brett; Slonkina, Elena; Friedle, Simone; Lee, Dongwhan; DuBois, Jennifer; Hedman, Britt; Hodgson, Keith O.; Fréchet, Jean M. J.; Lippard, Stephen J.

    2008-01-01

    The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO− is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO−) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2−([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates. PMID:18331028

  4. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.

    PubMed

    Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry

    2017-05-26

    A multivalent phosphorus dendrimer 1G 3 and its corresponding Cu-complex, 1G 3 -Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G 3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Integrated Sensing Using DNA Nanoarchitectures

    DTIC Science & Technology

    2014-05-20

    Norton. Thiolated Dendrimers as Multi-Point Binding Headgroups for DNA Immobilization on Gold, Langmuir, (10 2011): 0. doi: 10.1021/la202444s...Figure 6, uses dendrimers to provide multipoint adhesion of a single stranded DNA component on a surface. Figure 6 Process for immobilizing... dendrimer (shown as a round species). These dendrimer species are Generation 3 PAMAM dendrimers with ~ 30 thiol groups to bind the dendrimer /DNA construct

  6. Interaction of Dendritic Polymers with Synthetic Lipid and Cell Membranes

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hong, Seungpyo; Bielinska, Anna U.; Banaszak Holl, Mark M.; Orr, Bradford G.; Baker, James R., Jr.

    2004-03-01

    Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of nanoscale therapeutic transport agents. Here we present studies on dendrimer-membrane interactions leading to a better understanding of possible uptake mechanisms into cells. Using synthetic lipid and natural cell membranes as model systems it is shown that the effect of PAMAM dendrimers on a membrane strongly depends on the dendrimer generation, architecture and chemical properties of the branch end groups. Atomic force microscopy data indicates that generation 7 dendrimers have the ability to form small ( 10-100 nm) holes in a lipid bilayer. When dendrimers with otherwise identical chemical properties are arranged in a covalently linked cluster, no hole formation occurs. Dendrimer-lipid micelle formation is proposed and investigated as a possible mechanism for this behavior. Smaller dendrimers (generation 5) have a greatly reduced ability to remove lipid molecules from a bilayer. In addition to the size of the dendrimer, the charge of the branch end groups plays a significant role for dendrimer-membrane interactions. These results agree well with biological studies using cultured cells and point to a new mechanism of specific targeting and uptake into cells.

  7. Simple color tuning of phosphorescent dendrimer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Frampton, Michael J.; Lo, Shih-Chun; Burn, Paul L.

    2005-04-01

    A simple way of tuning the emission color in solution processed phosphorescent organic light emitting diodes is demonstrated. For each color a single emissive spin-coated layer consisting of a blend of three materials, a fac-tris(2-phenylpyridyl)iridium (III) cored dendrimer (Ir-G1) as the green emitter, a heteroleptic [bis(2-phenylpyridyl)-2-(2'-benzo[4,5-α]thienyl)pyridyl]iridium (III) cored dendrimer [Ir(ppy)2btp] as the red emitter, and 4,4'-bis(N-carbazolyl) biphenyl (CBP) as the host was employed. By adjusting the relative amount of green and red dendrimers in the blends, the color of the light emission was tuned from green to red. High efficiency two layer devices were achieved by evaporating a layer of electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBI) on top of the spin-coated emissive layer. A brightness of 100cd/m2 was achieved at drive voltages in the range 5.3-7.3 V. The peak external efficiencies at this brightness ranged from 31cd/A(18lm/W) to 7cd/A(4lm/W).

  8. Magnetic properties of dendrimer structures with different coordination numbers: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2016-11-01

    We investigate the magnetic properties of Cayley trees of large molecules with dendrimer structure using Monte Carlo simulations. The thermal magnetization and magnetic susceptibility of a dendrimer structure are given with different coordination numbers, Z=3, 4, 5 and different generations g=3 and 2. The variation of magnetizations with the exchange interactions and crystal fields have been given of this system. The magnetic hysteresis cycles have been established.

  9. The neighbourhood polynomial of some families of dendrimers

    NASA Astrophysics Data System (ADS)

    Nazri Husin, Mohamad; Hasni, Roslan

    2018-04-01

    The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.

  10. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy.

    PubMed

    Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole

    2017-09-01

    In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    PubMed

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a

  12. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    NASA Astrophysics Data System (ADS)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  13. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization - a mass spectrometry, ion mobility and molecular modeling study.

    PubMed

    Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence

    2014-01-15

    Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Label-Free Fluorescent DNA Dendrimers for microRNA Detection Based On Nonlinear Hybridization Chain Reaction-Mediated Multiple G-Quadruplex with Low Background Signal.

    PubMed

    Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng

    2018-04-18

    Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative

  15. Biphasic interactions between a cationic dendrimer and actin.

    PubMed

    Ruenraroengsak, Pakatip; Florence, Alexander T

    2010-12-01

    Gene delivery systems face the problem not only of the route toward the cell and tissues in question, but also of the molecularly crowded environment of both the cytoplasm and the nucleus itself. One of the physical barriers in the cytoplasm for diffusing nanoparticles is an actin network. Here, we describe the finding that a self-fluorescent sixth generation cationic dendrimer (6 nm in diameter) interacts reversibly and possibly electrostatically with actin filaments in vitro. Not only does this interaction slow the diffusion of the dendrimer but it also affects actin polymerization in a biphasic manner. At low concentrations the dendrimer behaves like a G-binding actin protein, retarding actin polymerization, whereas at high concentrations the dendrimer acts as a nucleating protein accelerating the polymerization. Thus in vivo the diffusion of a dendrimer carrier such as this has both physical and chemical elements: by decreasing polymerization it might accelerate its own transport, and by enhancing actin polymerization retard it. This finding suggests that such a dendrimer may have a role as an anticancer agent through its inhibitory effect on actin polymerization.

  16. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells.

    PubMed

    García-Vallejo, Juan J; Ambrosini, Martino; Overbeek, Annemieke; van Riel, Wilhelmina E; Bloem, Karien; Unger, Wendy W J; Chiodo, Fabrizio; Bolscher, Jan G; Nazmi, Kamran; Kalay, Hakan; van Kooyk, Yvette

    2013-04-01

    Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of generation 4.0 polyamidoamine dendrimer on the mineralization of demineralized dentinal tubules in vitro.

    PubMed

    Jia, Ru; Lu, Yi; Yang, Chang-Wei; Luo, Xiao; Han, Ying

    2014-10-01

    Dentine hypersensitivity is a type of clinical oral disease, which is highly prevalent worldwide. Although there are many materials to treat dentine hypersensitivity, their long-term therapeutic effects are not satisfactory. Therefore, the aim of this research was to observe and identify the biological mineralization of the generation 4.0 polyamidoamine dendrimer on the demineralized dentinal tubules at different time points. 2mm-thick slices were obtained from the cemento-enamel junction of 36 third molar teeth that simulated the condition of sensitivity with acid etching. Slices were treated with generation 4.0 polyamidoamine dendrimer and peptide bond condensing agent, while no treatment was applied on the slices of the control group. Following immersion in artificial saliva for 2, 4, 6, and 8 weeks respectively, the mineralization condition of dentine slices was observed using the scanning electron microscope (SEM). In addition, the differences in the samples of dental slices between the 2 groups were also detected using the microhardness test. SEM results showed that the average diameter and density of the dentinal tubules in the experimental group were significantly lower than those in the control group (P<0.001). The microhardness test exhibited a similar result, which suggested that the microhardness of the experimental group was significantly higher than the control group (P<0.001). Generation 4.0 polyamidoamine dendrimer promotes the biomineralization of demineralized dentinal tubules. Moreover, this result also suggests that the 4.0th generation polyamidoamine dendrimer has the potential value for dentine hypersensitivity treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    PubMed

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  19. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less

  20. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Conformations of dendrimers in dilute solution

    NASA Astrophysics Data System (ADS)

    Timoshenko, Edward G.; Kuznetsov, Yuri A.; Connolly, Ronan

    2002-11-01

    Conformations of isolated homo-dendrimers of G=1-7 generations with D=1-6 spacers have been studied in the good and poor solvents, as well as across the coil-to-globule transition, by means of a version of the Gaussian self-consistent method and Monte Carlo simulation in continuous space based on the same coarse-grained model. The latter includes harmonic springs between connected monomers and the pair-wise Lennard-Jones potential with a hard core repulsion. The scaling law for the dendrimer size, the degrees of bond stretching and steric congestion, as well as the radial density, static structure factor, and asphericity have been analyzed. It is also confirmed that while smaller dendrimers have a dense core, larger ones develop a hollow domain at some separation from the center.

  2. SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution.

    PubMed

    Kaltenbach, Miriam; Stein, Viktor; Hollfelder, Florian

    2011-09-19

    Display systems connect a protein with the DNA encoding it. Such systems (e.g., phage or ribosome display) have found widespread application in the directed evolution of protein binders and constitute a key element of the biotechnological toolkit. In this proof-of-concept study we describe the construction of a system that allows the display of multiple copies of a protein of interest in order to take advantage of avidity effects during affinity panning. To this end, dendrimer-like DNA is used as a scaffold with docking points that can join the coding DNA with multiple protein copies. Each DNA construct is compartmentalised in water-in-oil emulsion droplets. The corresponding protein is expressed, in vitro, inside the droplets as a SNAP-tag fusion. The covalent bond between DNA and the SNAP-tag is created by reaction with dendrimer-bound benzylguanine (BG). The ability to form dendrimer-like DNA straightforwardly from oligonucleotides bearing BG allowed the comparison of a series of templates differing in size, valency and position of BG. In model selections the most efficient constructs show recoveries of up to 0.86 % and up to 400-fold enrichments. The comparison of mono- and multivalent constructs suggests that the avidity effect enhances enrichment by up to fivefold and recovery by up to 25-fold. Our data establish a multivalent format for SNAP-display based on dendrimer-like DNA as the first in vitro display system with defined tailor-made valencies and explore a new application for DNA nanostructures. These data suggest that multivalent SNAP dendrimers have the potential to facilitate the selection of protein binders especially during early rounds of directed evolution, allowing a larger diversity of candidate binders to be recovered. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery.

    PubMed

    Chen, Wenqi; Liu, Yong; Liang, Xiao; Huang, Yu; Li, Quanshun

    2017-07-15

    Chondroitin sulfate (CS) was modified on a polyamidoamine dendrimer (PAMAM) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The derivative CS-PAMAM was demonstrated to achieve an efficient cellular uptake of miR-34a in a CD44-dependent endocytosis way and further facilitate the endosomal escape of miR-34a after 4h. Through the miR-34a delivery, obvious inhibition of cell proliferation could be detected which was attributed to the enhancement of cell apoptosis and cell cycle arrest, and meanwhile the cell migration and invasion has been observed to be inhibited. Finally, the intravenous injection of CS-PAMAM/miR-34a formulation into mice bearing human lung adenocarcinoma cell A549 xenografts could efficiently inhibit the tumor growth and induce the tumor apoptosis owing to the enhanced accumulation of miR-34a in tumor tissue. Overall, CS-PAMAM is potential to be used as a tumor-targeted oligonucleotide carrier for achieving tumor gene therapy. The cationic dendrimer PAMAM was modified by chondroitin sulfate (CS) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The introduction of CS could achieve an efficient cellular uptake and intracellular transfection of miR-34a in a CD44-dependent endocytosis manner. The miR-34a delivery could execute the anti-proliferation activity by simultaneously inducing cell apoptosis and cell cycle arrest, and also the anti-migration activity. The CS-PAMAM-mediated systemic delivery of miR-34a showed significant inhibition of tumor growth and induction of tumor apoptosis using a mice model of subcutaneously implanted tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Preclinical studies of dendrimer prodrugs.

    PubMed

    Kojima, Chie

    2015-01-01

    Dendrimers are synthetic macromolecules with well-defined structures bearing a wide variety of functional groups on their periphery. These groups can be used to conjugate bioactive molecules such as drugs, ligands and imaging agents. Dendrimer prodrugs can be used to improve the water solubility and pharmacokinetic properties of the corresponding free drugs. This article summarizes preclinical studies pertaining to the use of drug-dendrimer conjugates as dendrimer prodrugs for the treatments of various diseases, including cancer and inflammatory diseases. A wide range of anticancer drugs have been conjugated to dendrimers via biodegradable linkers. The side effects of the parent drugs can be markedly reduced using dendrimer prodrugs, with some drugs showing improved efficacy. Anti-inflammatory agents have also been conjugated to dendrimers and used to treat a number of inflammatory diseases. Drug-dendrimer conjugates are preferable to drug-dendrimer complexes, where the use of degradable linkers is critical to the release of the drug. Polyethylene glycol and/or ligands can be added to a dendrimer prodrug, which is useful for the targeting of affected tissues. Imaging probes can also be incorporated into dendrimer prodrugs for the simultaneous delivery of therapeutic and diagnostic agents as 'theranostics.'

  5. Special Issue: "Functional Dendrimers".

    PubMed

    Tomalia, Donald A

    2016-08-09

    This special issue entitled "Functional Dendrimers" focuses on the manipulation of at least six "critical nanoscale design parameters" (CNDPs) of dendrimers including: size, shape, surface chemistry, flexibility/rigidity, architecture and elemental composition. These CNDPs collectively define properties of all "functional dendrimers". This special issue contains many interesting examples describing the manipulation of certain dendrimer CNDPs to create new emerging properties and, in some cases, predictive nanoperiodic property patterns (i.e., dendritic effects). The systematic engineering of CNDPs provides a valuable strategy for optimizing functional dendrimer properties for use in specific applications.

  6. Ordered Layered Dendrimers Constructed from Two Known Dendrimer Families: Inheritance and Emergence of Properties.

    PubMed

    Dib, Hanna; Rebout, Cyrille; Laurent, Régis; Mallet-Ladeira, Sonia; Sournia-Saquet, Alix; Sárosi, Menyhárt B; Hey-Hawkins, Evamarie; Majoral, Jean-Pierre; Delavaux-Nicot, Béatrice; Caminade, Anne-Marie

    2016-07-25

    A new concept is presented, namely the synthesis of dendrimers intrinsically composed in alternation of building blocks pertaining to two known families of dendrimers: phosphorhydrazone dendrimers and triazine-piperazine dendrimers. These mixed dendrimers with layered controlled architecture inherit their easy (31) P NMR characterization and their thermal stability from the phosphorhydrazone family, and their decreased solubility from the triazine-piperazine family. However, they have also their own and original characteristics. Both parent families are white powders, whereas the mixed dendrimers are yellow, orange, or red powders, depending on the generation. DFT calculations were carried out on model dendrons to understand these special color features. Remarkably, these dendrimers incorporating redox-active organic entities allow for the first time the monitoring of the growth of an organic dendrimer by electrochemistry while highlighting an even-odd generation behavior. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and study of the vibrational spectra of a first generation phosphorus-containing dendrimer with pyridyl functional groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-06-01

    A new phosphorus-containing dendrimer of the first-generation with potential pharmacological activity was synthesized and studied by spectral methods. The FTIR, FT Raman, 1H and 31P NMR spectra of the first generation dendrimer G1 with a cyclotriphosphazene core, six branches sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S) < and twelve 4-oxyphenethylamidopyridyl end groups sbnd Osbnd C6H4sbnd (CH2)2sbnd NHsbnd COsbnd C5NH4 were recorded. Amide groups of the dendrimer participate in the formation of an intermolecular hydrogen bond. Structure, geometric parameters, the frequency and intensity of the bands in the vibrational spectra were calculated using DFT with PBE functional and TZ2P basis set. Spectral characteristics, charge distribution and reactivity of the core, repeating units and terminal groups of the dendrimer were determined. The first-generation dendrimer molecule has the shape of a concave lens with a slightly non-planar cyclotriphosphazene core and flat repeating units. Repeating units are arranged symmetrically on three on each side of the core, there are no steric hindrances in it and the end groups are able to enter into subsequent reactions and dendrimer has a sufficiently large cavity for accommodating guest molecules. The HOMO covers the repeating units with a noticeable conjugation and the LUMO belongs to the terminal groups.

  8. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration.

    PubMed

    Yang, Hu; Tyagi, Puneet; Kadam, Rajendra S; Holden, Christopher A; Kompella, Uday B

    2012-09-25

    We report a novel hybrid polyamidoamine (PAMAM) dendrimer hydrogel/poly(lactic-co-glycolic acid) (PLGA) nanoparticle platform (HDNP) for codelivery of two antiglaucoma drugs, brimonidine and timolol maleate. This platform was not cytotoxic to human corneal epithelial cells. Cellular uptake of Nile red-encapsulating PLGA nanoparticles was significantly increased by dendrimer hydrogel. A prolonged residence time of nanoparticles was demonstrated through investigation of FluoSpheres loaded into dendrimer hydrogel. Both brimonidine and timolol maleate were slowly released in vitro over a period of 28-35 days. Following topical administration of one eye drop (30 μL of 0.7% w/v brimonidine and 3.5% w/v timolol maleate) in normotensive adult Dutch-belted male rabbits, the HDNP formulation resulted in a sustained and effective IOP reduction (18% or higher) for 4 days. Furthermore, the HDNP maintained significantly higher concentrations of brimonidine in aqueous humor and cornea as well as timolol maleate in the aqueous humor, cornea, and conjunctiva up to 7 days as compared to saline, DH, and PLGA nanoparticle dosage forms, without inducing ocular inflammation or discomfort. Histological analysis of the cornea and conjunctiva did not reveal any morphological or structural changes. Our work demonstrated that this new platform is capable of enhancing drug bioavailability and sustaining effective IOP reduction over an extended period of time. This newly developed platform can greatly reduce dosing frequency of topical formulations, thus, improving long-term patient compliance and reducing enormous societal and economic costs. Given its high structural adaptability, many other chronic ocular diseases would benefit from long-lasting drug delivery of this new platform.

  9. Experimental and Theoretical Investigations in Stimuli Responsive Dendrimer-based Assemblies

    PubMed Central

    Molla, Mijanur Rahaman; Rangadurai, Poornima

    2014-01-01

    Stimuli-responsive macromolecular assemblies are of great interest in drug delivery applications, as it holds the promise to keep the drug molecules sequestered under one set of conditions and release them under another. The former set of conditions could represent circulation, while the latter could represent a disease location. Over the past two decades, sizeable contributions to this field have come from dendrimers, which along with their monodispersity, provide great scope for structural modifications at the molecular level. In this paper, we briefly discuss the various synthetic strategies that have been developed so far to obtain a range of functional dendrimers. We then discuss the design strategies utilized to introduce stimuli responsive elements within the dendritic architecture. The stimuli itself are broadly classified into two categories, viz. extrinsic and intrinsic. Extrinsic stimuli are externally induced such as temperature and light variations, while intrinsic stimuli involve physiological aberrations such as variations in pH, redox conditions, proteins and enzyme concentrations in pathological tissues. Furthermore, the unique support from molecular dynamics (MD) simulations has been highlighted. MD simulations have helped back many of the observations made from assembly formation properties to rationalized the mechanism of drug release and this has been illustrated with discussions on G4 PPI (Poly propylene imine) dendrimers and biaryl facially amphiphilic dendrimers. The synergy that exists between experimental and theoretical studies open new avenues for the use of dendrimers as versatile drug delivery systems. PMID:25260107

  10. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs.

    PubMed

    Holden, Christopher A; Tyagi, Puneet; Thakur, Ashish; Kadam, Rajendra; Jadhav, Gajanan; Kompella, Uday B; Yang, Hu

    2012-07-01

    Dendrimer hydrogel (DH), made from ultraviolet-cured polyamidoamine dendrimer G3.0 tethered with three polyethylene glycol (PEG, 12,000 Da)-acrylate chains (8.1% w/v) in pH 7.4 phosphate buffered saline (PBS), was studied for the delivery of brimonidine (0.1% w/v) and timolol maleate (0.5% w/v), two antiglaucoma drugs. DH was found to be mucoadhesive to mucin particles and nontoxic to human corneal epithelial cells. DH increased the PBS solubility of brimonidine by 77.6% and sustained the in vitro release of both drugs over 56-72 hours. As compared to eye drop formulations (PBS-drug solutions), DH brought about substantially higher human corneal epithelial cells uptake and significantly increased bovine corneal transport for both drugs. DH increased timolol maleate uptake in bovine corneal epithelium, stroma, and endothelium by 0.4- to 4.6-fold. This work demonstrated that DH can enhance the delivery of antiglaucoma drugs in multiple aspects and represents a novel platform for ocular drug delivery. Dendrimer hydrogel was studied as agent for simultaneous delivery of two anti-glaucoma drugs, one hydrophobic and one hydrophilic. Superiority over standard PBS-based formulation was clearly demonstrated for both drugs. The work may be a novel platform for ocular drug delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers

    NASA Astrophysics Data System (ADS)

    Falkovich, S.; Markelov, D.; Neelov, I.; Darinskii, A.

    2013-08-01

    Poly-L-lysine (PLL) dendrimers are promising systems for biomedical applications due to their biocompatibility. These dendrimers have a specific topology: two spacers of different lengths come out of each branching point and thus the branching is asymmetric. Because of this asymmetry terminal groups are located at branches of different lengths, unlike dendrimers with a symmetric branching. This paper presents the results of the first systematic molecular dynamics simulation of such asymmetric PLL dendrimers. It is shown that PLL dendrimers are porous molecules with all terminal groups equally accessible to water. We have found that in spite of an asymmetry of branching the general structural characteristics of PLL dendrimers are rather similar to those of dendrimers with symmetric branching. We have also found that the structural characteristics of PLL dendrimers obey the general laws for dendrimers and that their electrostatic properties agree with the predictions of a general analytic theory.

  12. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats.

    PubMed

    Leong, Nathania J; Mehta, Dharmini; McLeod, Victoria M; Kelly, Brian D; Pathak, Rashmi; Owen, David J; Porter, Christopher Jh; Kaminskas, Lisa M

    2018-05-28

    PEGylated polylysine dendrimers have demonstrated potential as inhalable drug delivery systems that can improve the treatment of lung cancers. Their treatment potential may be enhanced by developing constructs that display prolonged lung retention, together with good systemic absorption, the capacity to passively target lung tumours from the blood and highly selective, yet rapid liberation in the tumour microenvironment. This study sought to characterise how the nature of cathepsin B cleavable peptide linkers, used to conjugate doxorubicin to a PEGylated (PEG570) G4 polylysine dendrimer, affect drug liberation kinetics and intravenous and pulmonary pharmacokinetics in rats. The construct bearing a self-emolative diglycolic acid-V-Citrulline linker exhibited faster doxorubicin release kinetics compared to constructs bearing self emolative diglycolic acid-GLFG, or non-self emolative glutaric acid-GLFG linkers. The V-Citrulline construct exhibited slower plasma clearance, but faster absorption from the lungs than a GLFG construct, although mucociliary clearance and urinary elimination were unchanged. Doxorubicin-conjugation enhanced localisation in the bronchoalveolar lavage fluid compared to lung tissue, suggesting that projection of doxorubicin from the dendrimer surface reduced tissue uptake. These data show that the linker chemistry employed to conjugate drugs to PEGylated carriers can affect drug release profiles and systemic and lung disposition. Copyright © 2018. Published by Elsevier Inc.

  13. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy.

    PubMed

    Cao, Jie; Ge, Ruifen; Zhang, Min; Xia, Junfei; Han, Shangcong; Lu, Wei; Liang, Yan; Zhang, Tingting; Sun, Yong

    2018-05-17

    Functional theranostic systems for drug delivery capable of concurrent near-infrared (NIR) fluorescence imaging, active tumor targeting and anticancer therapies are desired for concise cancer diagnosis and treatment. Dendrimers with controllable size and surface functionalities are good candidates for such platforms. However, integration of active targeting ligands and imaging agents separately on the surface or encapsulation of the imaging agents in the inner core of the dendrimers will result in a more complex composition or reduced drug loading efficiency. Herein, we reported a PAMAM-based theranostic system, with a simple integrin-specific imaging ligand prepared from two motifs. One motif is a NIR carbocyanine fluorescent dye (Cyp) for precise in vivo monitoring of the system and identification of tumor or cancer cells, and the other is a novel tumor-penetrating cyclic peptide (CRGDKGPDC, abbreviated iRGD). BSA was non-covalently bonded with Cyp to reduce NIR agent fluorescence-quenching aggregates and enhance imaging signals. The chemotherapy effect of these dendritic systems was achieved by encapsulating paclitaxel into the hydrophobic interior of the dendrimers. In vitro and in vivo targeting and penetrating studies revealed that a significantly high amount of the dendritic systems was endocytosed by HepG2 cells and enhanced accumulation and penetration at tumor sites. Our safety evaluation showed that masking of cationic-end groups of PAMAM to neutral or anionic groups has resulted in decreased or even zero-toxicity. The preliminary antitumor efficacy of the dendritic system was evaluated. In vitro and in vivo studies confirmed that paclitaxel-encapsulated functionalized PAMAM can efficiently kill HepG2 cancer cells. In conclusion, our functionalized theranostic dendritic system could be a promising nanocarrier to effectively deliver drugs to deep tumor regions for anticancer therapy.

  14. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen.

    PubMed

    Manikkath, Jyothsna; Hegde, Aswathi R; Kalthur, Guruprasad; Parekh, Harendra S; Mutalik, Srinivas

    2017-04-15

    The aim of this study was to determine the individual and combined effects of peptide dendrimers and low frequency ultrasound on the transdermal permeation of ketoprofen. Arginine terminated peptide dendrimers of varying charges (4 + , 8 + and 16 + , named as A4. A8 and A16 respectively) were synthesized and characterized. Ketoprofen was subjected to passive, peptide dendrimer-assisted and sonophoretic permeation studies (with and without dendrimer application) across Swiss albino mouse skin, both in vitro and in vivo. The studies revealed that the synthesized peptide dendrimers considerably increased the transdermal permeation of ketoprofen and displayed enhancement ratios of up to 3.25 (with A16 dendrimer), compared to passive diffusion of drug alone in vitro. Moreover, the combination of peptide dendrimer treatment and ultrasound application worked in synergy and gave enhancement ratios of up to 1369.15 (with ketoprofen-A16 dendrimer complex). In vivo studies demonstrated that dendrimer and ultrasound-assisted permeation of drug achieved much higher plasma concentration of drug, compared to passive diffusion. Comparison of transdermal and oral absorption studies revealed that transdermal administration of ketoprofen with A8 dendrimer showed comparable absorption and plasma drug levels with oral route. The excised mouse skin after in vivo permeation study with dendrimers and ultrasound did not show major toxic reactions. This study demonstrates that arginine terminated peptide dendrimers combined with sonophoresis can effectively improve the transdermal permeation of ketoprofen. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Computer simulations of dendrimer-polyelectrolyte complexes.

    PubMed

    Pandav, Gunja; Ganesan, Venkat

    2014-08-28

    We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.

  16. Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment.

    PubMed

    González, Blanca; Colilla, Montserrat; Díez, Jaime; Pedraza, Daniel; Guembe, Marta; Izquierdo-Barba, Isabel; Vallet-Regí, María

    2018-03-01

    This work aims to provide an effective and novel solution for the treatment of infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, thus increasing the antimicrobial effectiveness. These nanosystems, named "nanoantibiotics", are composed of mesoporous silica nanoparticles (MSNs), which act as nanocarriers of an antimicrobial agent (levofloxacin, LEVO) localized inside the mesopores. To provide the nanosystem of bacterial membrane interaction capability, a polycationic dendrimer, concretely the poly(propyleneimine) dendrimer of third generation (G3), was covalently grafted to the external surface of the LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing a high penetrability throughout Gram-negative bacterial membranes. This work evidences that the synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on Gram-negative bacterial biofilm. These positive results open up very promising expectations for their potential application in new infection therapies. Seeking new alternatives to current available treatments of bacterial infections represents a great challenge in nanomedicine. This work reports the design and optimization of a new class of antimicrobial agent, named "nanoantibiotic", based on mesoporous silica nanoparticles (MSNs) decorated with polypropyleneimine dendrimers of third generation (G3) and loaded with levofloxacin (LEVO) antibiotic. The covalently grafting of these G3 dendrimers to MSNs allows an effective internalization in Gram-negative bacteria. Furthermore, the LEVO loaded into the mesoporous cavities is released in a sustained manner at effective antimicrobial

  17. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    PubMed

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  18. Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers

    NASA Astrophysics Data System (ADS)

    Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.

    2009-03-01

    Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.

  19. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity.

    PubMed

    Varamini, Pegah; Rafiee, Amirreza; Giddam, Ashwini Kumar; Mansfeld, Friederike M; Steyn, Frederik; Toth, Istvan

    2017-10-26

    Gonadotropin-releasing hormone (GnRH) agonists (e.g., triptorelin) are used for androgen suppression therapy. They possess improved stability as compared to the natural GnRH, yet they suffer from a poor pharmacokinetic profile. To address this, we used a GnRH peptide-modified dendrimer platform with and without lipidation strategy. Dendrimers were synthesized on a polylysine core and bore either native GnRH (1, 2, and 5) or lipid-modified GnRH (3 and 4). Compound 3, which bore a lipidic moiety in a branched tetramer structure, showed approximately 10-fold higher permeability and metabolic stability and 39 times higher antitumor activity against hormone-resistant prostate cancer cells (DU145) relative to triptorelin. In gonadotropin-release experiments, dendrimer 3 was shown to be the most potent construct. Dendrimer 3 showed similar luteinizing hormone (LH)-release activity to triptorelin in mice. Our findings indicate that dendrimer 3 is a promising analog with higher potency for the treatment of hormone-resistant prostate cancer than the currently available GnRH agonists.

  20. On Topological Indices of Certain Families of Nanostar Dendrimers.

    PubMed

    Husin, Mohamad Nazri; Hasni, Roslan; Arif, Nabeel Ezzulddin; Imran, Muhammad

    2016-06-24

    A topological index of graph G is a numerical parameter related to G which characterizes its molecular topology and is usually graph invariant. In the field of quantitative structure-activity (QSAR)/quantitative structure-activity structure-property (QSPR) research, theoretical properties of the chemical compounds and their molecular topological indices such as the Randić connectivity index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are used to predict the bioactivity of different chemical compounds. A dendrimer is an artificially manufactured or synthesized molecule built up from the branched units called monomers. In this paper, the fourth version of ABC index and the fifth version of GA index of certain families of nanostar dendrimers are investigated. We derive the analytical closed formulas for these families of nanostar dendrimers. The obtained results can be of use in molecular data mining, particularly in researching the uniqueness of tested (hyper-branched) molecular graphs.

  1. Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method

    NASA Astrophysics Data System (ADS)

    Markham, Jonathan P. J.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Richards, Gary J.; Burn, Paul L.; Im, Chan; Bassler, Heinz

    2002-10-01

    Measurements of the mobility of a first-generation (G1) bis-fluorene cored dendrimer have been performed on spin-coated samples of 500 nm thickness using the charge-generation-layer time-of-flight (TOF) technique. A 10 nm perylene charge generation layer was excited by the 532 nm line of a Q-switched Nd:YAG laser and the generated carriers swept through the dendrimer film under an applied field. We observe nondispersive hole transport in the dendrimer layer with a room-temperature mobility mu=2.0 x10-4 cm2/V s at a field of 0.55 MV/cm. There is a weak field dependence of the mobility and it increases from mu=1.6 x10-4 cm2/V s at 0.2 MV/cm to mu=3.0 x10-4 cm2/V s at 1.4 MV/cm. These results suggest that the measurement of mobility by TOF in spin-coated samples on thickness scales relevant to organic light-emitting diodes can yield valuable information, and that dendrimers are promising materials for device applications.

  2. Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis.

    PubMed

    Astruc, Didier; Ornelas, Cátia; Ruiz, Jaime

    2008-07-01

    We have investigated the movement of electrons around the peripheries of dendrimers and between their redox termini and electrodes through studies of the electrochemistry of dendrimers presenting metallocenes (and other transition metal sandwich complexes) as terminal groups. Because these compounds can be stabilized in both their oxidized and their reduced forms, their electrochemical and chemical redox processes proceed without decomposition (chemical reversibility). Most interestingly, electrochemical studies reveal that electron transfer within the dendrimers and between the dendrimers and electrodes are both very fast processes when the branches are flexible (electrochemical reversibility). When the dendrimer branches are sufficiently long, the redox events at the many termini of the metallodendrimer are independent, appearing as a single wave in the cyclic voltammogram, because of very weak electrostatic effects. As a result, these metallodendrimers have applications in the molecular recognition, sensing, and titration of anions (e.g., ATP(2-)) and cations (e.g., transition metal complexes). When the recognition properties are coupled with catalysis, the metallodendrimers function in an enzyme-like manner. For example, Pd(II) can be recognized and titrated using the dendrimer's terminal redox centers and internal coordinate ligands. Redox control over the number of Pd(II) species located within a dendrimer allows us to predetermine the number of metal atoms that end up in the form of a dendrimer-encapsulated Pd nanoparticle (PdNP). For hydrogenation of olefins, the efficiency (turnover frequency, TOF) and stability (turnover number, TON) depend on the size of the dendrimer-encapsulated PdNP catalysts, similar to the behavior of polymer-supported PdNP catalysts, suggesting a classic mechanism in which all of the steps proceed on the PdNP surface. On the other hand, Miyaura-Suzuki carbon-carbon bond-forming reactions catalyzed by dendrimer-encapsulated Pd

  3. Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate.

    PubMed

    Leng, Zhen-Hua; Zhuang, Qian-Fen; Li, Yan-Chao; He, Zeng; Chen, Zhao; Huang, Sai-Peng; Jia, Hong-Ying; Zhou, Jian-Wei; Liu, Yang; Du, Li-Bo

    2013-10-15

    Encapsulating anticancer drugs to synthetic polymer is a promising approach to improve the efficiency and reduce the side effects of anticancer drugs. In this study, novel chitosan derivatives with polyamidoamine moieties (CS-PAMAM) were synthesized and characterized by morphology, particle size, and zeta potential. Then the anticancer drug-methotrexate-encapsulated CS-PAMAM was prepared by hydrophobic-hydrophilic interactions. The drug release assay showed that the amount of the methotrexate release from CS-PAMAM was pH depended. Meanwhile, the cell viability assay illustrated that CS-PAMAM was suitable for the drug delivery because of its low cytotoxicity on cells. Moreover, our results showed that the CS-PAMAM could significantly improve the cytotoxicity of free methotrexate on A549 cells. These results demonstrate that CS-PAMAM may provide a suitable platform for the water-insoluble drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Gd3+-DTPA-bis (N-methylamine) - anionic linear globular Dendrimer-G1; a more efficient MRI contrast media.

    PubMed

    Ghalandarlaki, N; Mohammadi, T D; Agha Babaei, R; Tabasi, M A; Keyhanvar, P; Mehravi, B; Yaghmaei, P; Cohan, R A; Ardestani, M S

    2014-02-01

    By advancing of molecular imaging techniques, magnetic resonance imaging (MRI) is becoming an increasingly important tool in early diagnosis. Researchers have found new ways to increase contrast of MRI images.Therefore some types of drug known as contrast media are produced. Contrast media improve the visibility of internal body structures in MRI images. Gadodiamide (Omniscan®) is one of these contrast media which is produced commercially and used clinically. In this study Gadodiamide was first synthesized and then qualitative and quantitative methods were carried out to ensure the proper synthesis of this drug then to increase the efficiency of this contrast medium use dendrimer that is one kind of nano particle. This dendrimer has a polyethylene glycol (PEG) core and citric acid branches. After dendrimer attached to Gadodiamide to ensure the proper efficient connection between them the stability studies were carried out and cytotoxicity of the drug was evaluated. Finally, after ensuring the non-toxicity of the drug, in vivo studies (injected into mice) MR imaging was performed to examine the impact of synthesis drug on the resolution of image.The result obtained from this study demonstrated that the attachment of Gadodiamide to dendrimer reduces its cytotoxicity and also improved resolution of image. Also the new contrast media (Gd3+-DTPA- bis [N-methylamine] - Dendrimer) - unlike Omniscan® - is biodegradable and able to enter the HEPG2 cell line. The results confirm the hypothesis that using dendrimer to synthesize this new nano contrast medium increases its effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  5. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography.

    PubMed

    Peng, Chen; Zheng, Linfeng; Chen, Qian; Shen, Mingwu; Guo, Rui; Wang, Han; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-02-01

    We report the synthesis and characterization of dendrimer-entrapped gold nanoparticles (Au DENPs) modified by polyethylene glycol (PEG) with enhanced biocompatibility for computed tomography (CT) imaging applications. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH(2)) modified by PEG monomethyl ether (G5.NH(2)-mPEG(20)) were used as templates to synthesize Au DENPs, followed by acetylation of the remaining dendrimer terminal amines to generate PEGylated Au DENPs. The partial PEGylation modification of dendrimer terminal amines allows high loading of Au within the dendrimer interior, and consequently by simply varying the Au salt/dendrimer molar ratio, the size of the PEGylated Au DENPs can be controlled at a range of 2-4 nm with a narrow size distribution. The formed PEGylated Au DENPs are water-dispersible, stable in a pH range of 5-8 and a temperature range of 0-50 °C, and non-cytotoxic at a concentration as high as 100 μm. X-ray absorption coefficient measurements show that the attenuation intensity of the PEGylated Au DENPs is much higher than that of Omnipaque with iodine concentration similar to Au. With the sufficiently long half-decay time demonstrated by pharmacokinetics studies, the PEGylated Au DENPs enabled not only X-ray CT blood pool imaging of mice and rats after intravenous injection of the particles, but also effective CT imaging of a xenograft tumor model in nude mice. These findings suggest that the designed PEGylated Au DENPs can be used as a promising contrast agent with enhanced biocompatibility for CT imaging of various biological systems, especially in cancer diagnosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel.

    PubMed

    Wu, Duo; Yang, Jiaojiao; Li, Jiyao; Chen, Liang; Tang, Bei; Chen, Xingyu; Wu, Wei; Li, Jianshu

    2013-07-01

    In situ remineralization of hydroxyapatite (HA) on human tooth enamel surface induced by organic matrices is of great interest in the fields of material science and stomatology. In order to mimic the organic matrices induced biomineralization process in developing enamel and enhance the binding strength at the remineralization interface, carboxyl-terminated poly(amido amine) (PAMAM-COOH)-alendronate (ALN) conjugate (ALN-PAMAM-COOH) was synthesized and characterized. PAMAM-COOH has a highly ordered architecture and is capable of promoting the HA crystallization process. ALN is conjugated on PAMAM-COOH due to its specific adsorption on HA (the main component of tooth enamel), resulting in increased binding strength which is tight enough to resist phosphate buffered saline (PBS) rinsing as compared with that of PAMAM-COOH alone. While incubated in artificial saliva, ALN-PAMAM-COOH could induce in situ remineralization of HA on acid-etched enamel, and the regenerated HA has the nanorod-like crystal structure similar to that of human tooth enamel. The hardness of acid-etched enamel samples treated by ALN-PAMAM-COOH can recover up to 95.5% of the original value with strong adhesion force. In vivo experiment also demonstrates that ALN-PAMAM-COOH is effective in repairing acid-etched enamel in the oral cavity. Overall, these results suggest that ALN-PAMAM-COOH is highly promising as a restorative biomaterial for in situ remineralization of human tooth enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of electron donating groups on polyphenol-based antioxidant dendrimers.

    PubMed

    Lee, Choon Young; Nanah, Cyprien N; Held, Rich A; Clark, Amanda R; Huynh, Uyen G T; Maraskine, Marina C; Uzarski, Rebecca L; McCracken, John; Sharma, Ajit

    2015-04-01

    Numerous studies have reported the beneficial effects of antioxidants in human diseases. Among their biological effects, a majority of antioxidants scavenge reactive radicals in the body, thereby reducing oxidative stress that is associated with the pathogenesis of many diseases. Antioxidant dendrimers are a new class of potent antioxidant compounds reported recently. In this study, six polyphenol-based antioxidant dendrimers with or without electron donating groups (methoxy group) were synthesized in order to elucidate the influence of electron donating groups (EDG) on their antioxidant activities. Syringaldehyde (2 ortho methoxy groups), vanillin (1 ortho methoxy group), and 4-hydroxybenzaldehyde (0 methoxy group) were derivatized with propargylamine to form building blocks for the dendrimers. All the six dendrimers contain polyether cores, which were synthesized by attaching pentaerythritol and methyl α-d-glucopyranoside to in-house prepared spacer units. To prepare generation 1 antioxidant dendrimers, microwave energy and granulated metallic copper catalyst were used to link the cores and building blocks together via alkyne-azide 1,3-cycloaddition click chemistry. These reaction conditions resulted in high yields of the target dendrimers that were free from copper contamination. Based on DPPH antioxidant assay, antioxidant dendrimers decorated with syringaldehyde and vanillin exhibited over 70- and 170-fold increase in antioxidant activity compared to syringaldehyde and vanillin, respectively. The antioxidant activity of dendrimers increased with increasing number of EDG groups. Similar results were obtained when the dendrimers were used to protect DNA and human LDL against organic carbon and nitrogen-based free radicals. In addition, the antioxidant dendrimers did not show any pro-oxidant activity on DNA in the presence of physiological amounts of copper. Although the dendrimers showed potent antioxidant activities against carbon and nitrogen free radicals

  8. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they

  9. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    PubMed

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  10. Peptide dendrimer-conjugates of ketoprofen: Synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery.

    PubMed

    Hegde, Aswathi R; Rewatkar, Prarthana V; Manikkath, Jyothsna; Tupally, Karnaker; Parekh, Harendra S; Mutalik, Srinivas

    2017-05-01

    The aim of this study was to evaluate skin delivery of ketoprofen when covalently tethered to mildly cationic (2 + or 4 + ) peptide dendrimers prepared wholly by solid phase peptide synthesis. The amino acids glycine, arginine and lysine formed the dendrimer with ketoprofen tethered either to the lysine side-arm (N ε ) or periphery of dendrimeric branches. Passive diffusion, sonophoresis- and iontophoresis-assisted permeation of each peptide dendrimer-drug conjugate (D1-D4) was studied across mouse skin, both in vitro and in vivo. In addition, skin toxicity of dendrimeric conjugates when trialed with iontophoresis or sonophoresis was also evaluated. All dendrimeric conjugates improved aqueous solubility at least 5-fold, compared to ketoprofen alone, while also exhibiting appreciable lipophilicity. In vitro passive diffusion studies revealed that ketoprofen in its native form was delivered to a greater extent, compared with a dendrimer-conjugated form at the end of 24h (Q 24h (μg/cm 2 ): ketoprofen (68.06±3.62)>D2 (49.62±2.92)>D4 (19.20±0.89)>D1 (6.45±0.40)>D3 (2.21±0.19). However, sonophoresis substantially increased the skin permeation of ketoprofen-dendrimer conjugates in 30min (Q 30min (μg/cm 2 ): D4 (122.19±7.14)>D2 (66.74±3.86)>D1 (52.10±3.22)>D3 (41.66±3.22)) although ketoprofen alone again proved superior (Q 30min : 167.99±9.11μg/cm 2 ). Next, application of iontophoresis was trialed and shown to considerably increase permeation of dendrimeric ketoprofen in 6h (Q 6h (μg/cm 2 ): D2 (711.49±39.14)>D4 (341.23±16.43)>D3 (89.50±4.99)>D1 (50.91±2.98), with a Q 6h value of 96.60±5.12μg/cm 2 for ketoprofen alone). In vivo studies indicated that therapeutically relevant concentrations of ketoprofen could be delivered transdermally when iontophoresis was paired with D2 (985.49±43.25ng/mL). Further, histopathological analysis showed that the dendrimeric approach was a safe mode as ketoprofen alone. The present study successfully demonstrates that

  11. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  12. Synthesis and activity of histidine-containing catalytic peptide dendrimers.

    PubMed

    Delort, Estelle; Nguyen-Trung, Nhat-Quang; Darbre, Tamis; Reymond, Jean-Louis

    2006-06-09

    Peptide dendrimers built by iteration of the diamino acid dendron Dap-His-Ser (His = histidine, Ser = Serine, Dap = diamino propionic acid) display a strong positive dendritic effect for the catalytic hydrolysis of 8-acyloxypyrene 1,3,6-trisulfonates, which proceeds with enzyme-like kinetics in aqueous medium (Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642-3). Thirty-two mutants of the original third generation dendrimer A3 ((Ac-His-Ser)8(Dap-His-Ser)4(Dap-His-Ser)2Dap-His-Ser-NH2) were prepared by manual synthesis or by automated synthesis with use of a Chemspeed PSW1100 peptide synthesizer. Dendrimer catalysis was specific for 8-acyloxypyrene 1,3,6-trisulfonates, and there was no activity with other types of esters. While dendrimers with hydrophobic residues at the core and histidine residues at the surface only showed weak activity, exchanging serine residues in dendrimer A3 against alanine (A3A), beta-alanine (A3B), or threonine (A3C) improved catalytic efficiency. Substrate binding was correlated with the total number of histidines per dendrimer, with an average of three histidines per substrate binding site. The catalytic rate constant kcat depended on the placement of histidines within the dendrimers and the nature of the other amino acid residues. The fastest catalyst was the threonine mutant A3C ((Ac-His-Thr)8(Dap-His-Thr)4(Dap-His-Thr)2Dap-His-Thr-NH2), with kcat = 1.3 min(-1), kcat/k(uncat) = 90'000, KM = 160 microM for 8-bytyryloxypyrene 1,3,6-trisulfonate, corresponding to a rate acceleration of 18'000 per catalytic site and a 5-fold improvement over the original sequence A3.

  13. Dendrimer-based nanoparticles for cancer therapy.

    PubMed

    Baker, James R

    2009-01-01

    Recent work has suggested that nanoparticles in the form of dendrimers may be a keystone in the future of therapeutics. The field of oncology could soon be revolutionized by novel strategies for diagnosis and therapy employing dendrimer-based nanotherapeutics. Several aspects of cancer therapy would be involved. Diagnosis using imaging techniques such as MRI will be improved by the incorporation of dendrimers as advanced contrast agents. This might involve novel contrast agents targeted specifically to cancer cells. Dendrimers can also be being applied to a variety of cancer therapies to improve their safety and efficacy. A strategy, somewhat akin to the "Trojan horse," involves targeting anti-metabolite drugs via vitamins or hormones that tumors need for growth. Further applications of dendrimers in photodynamic therapy, boron neutron capture therapy, and gene therapy for cancer are being examined. This presentation will cover the fundamentals of research utilizing dendrimers for cancer diagnosis and therapy. An evaluation of this new technologies will detail what advantage dendrimer based therapeutics might have over conventional cancer drugs.

  14. Targeting hepatic cancer cells with pegylated dendrimers displaying N-acetylgalactosamine and SP94 peptide ligands.

    PubMed

    Medina, Scott H; Tiruchinapally, Gopinath; Chevliakov, Maxim V; Durmaz, Yasemin Yuksel; Stender, Rachell N; Ensminger, William D; Shewach, Donna S; Elsayed, Mohamed E H

    2013-10-01

    Poly(amidoamine) (PAMAM) dendrimers are branched water-soluble polymers defined by consecutive generation numbers (Gn) indicating a parallel increase in size, molecular weight, and number of surface groups available for conjugation of bioactive agents. In this article, we compare the biodistribution of N-acetylgalactosamine (NAcGal)-targeted [(14) C]1 -G5-(NH2 )5 -(Ac)108 -(NAcGal)14 particles to non-targeted [(14) C]1 -G5-(NH2 )127 and PEGylated [(14) C]1 -G5-(NH2 )44 -(Ac)73 -(PEG)10 particles in a mouse hepatic cancer model. Results show that both NAcGal-targeted and non-targeted particles are rapidly cleared from the systemic circulation with high distribution to the liver. However, NAcGal-targeted particles exhibited 2.5-fold higher accumulation in tumor tissue compared to non-targeted ones. In comparison, PEGylated particles showed a 16-fold increase in plasma residence time and a 5-fold reduction in liver accumulation. These results motivated us to engineer new PEGylated G5 particles with PEG chains anchored to the G5 surface via acid-labile cis-aconityl linkages where the free PEG tips are functionalized with NAcGal or SP94 peptide to investigate their potential as targeting ligands for hepatic cancer cells as a function of sugar conformation (α versus β), ligand concentration (100-4000 nM), and incubation time (2 and 24 hours) compared to fluorescently (Fl)-labeled and non-targeted G5-(Fl)6 -(NH2 )122 and G5-(Fl)6 -(Ac)107 -(cPEG)15 particles. Results show G5-(Fl)6 -(Ac)107 -(cPEG[NAcGalβ ])14 particles achieve faster uptake and higher intracellular concentrations in HepG2 cancer cells compared to other G5 particles while escaping the non-specific adsorption of serum protein and phagocytosis by Kupffer cells, which make these particles the ideal carrier for selective drug delivery into hepatic cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced Incretin Effects of Exendin-4 Expressing Chimeric Plasmid Based On Two-Step Transcription Amplification System with Dendritic Bioreducible Polymer for the Treatment of Type 2 Diabetes

    PubMed Central

    Kim, Pyung-Hwan; Lee, Minhyung; Nam, Kihoon; Kim, Sung Wan

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) agonist, exenxdin-4, is currently being advanced as a promising diabetes remedy via a variety of incretin actions similar with GLP-1. In this study, we investigated an effective anti-diabetic therapy via exendin-4 expressing chimeric plasmid based on two-step transcription amplification (TSTA) system with dendrimer-type bioreducible polymer for more improved incretin-based gene therapy. Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amido amine) (PAMAM) dendrimer (PAM-ABP) was used as gene carrier. PAM-ABP/chimeric DNA polyplex was markedly elevated exendin-4 expression in ectopic cells as well as increased insulin production through an enhanced activation of protein kinase K (PKA) induced by up-regulation of exendin-4-stimulated cyclic adenosine monophosphate (cAMP) in pancreatic β-cell. Consistent with these results, intravenous administration of PAM-ABP/chimeric DNA polyplex improved glucoregulotory effects, as well as increased insulin secretion by high expression of exendin-4 in blood in type 2 diabetic mice with no any toxicity. Our exendin-4 system can be attributed to provide a potential diabetes therapeutic agent for improved incretin gene therapy. PMID:24839613

  16. G2 and G5 carboxyl-terminated polyamidoamine dendrimers interact differently with 1-palmitoyl-2-oleoyl phosphocholine bilayers **1

    USDA-ARS?s Scientific Manuscript database

    Limits on non-target tissue exposure and avoidance of metabolic changes to active agents make topical application/delivery of skin active agents highly desirable. Individually, phospholipid liposomes and polyamidoamine dendrimers are effective delivery systems of various active agents. Potentially...

  17. Investigation of Lysine-Functionalized Dendrimers as Dichlorvos Detoxification Agents.

    PubMed

    Durán-Lara, Esteban F; Marple, Jennifer L; Giesen, Joseph A; Fang, Yunlan; Jordan, Jacobs H; Godbey, W Terrence; Marican, Adolfo; Santos, Leonardo S; Grayson, Scott M

    2015-11-09

    Lysine-containing polymers have seen broad application due to their amines' inherent ability to bind to a range of biologically relevant molecules. The synthesis of multiple generations of polyester dendrimers bearing lysine groups on their periphery is described in this report. Their hydrolytic stabilities with respect to pH and time, their toxicity to a range of cell lines, and their possible application as nano-detoxification agents of organophosphate compounds are all investigated. These zeroth-, first-, and second-generation water-soluble dendrimers have been designed to bear exactly 4, 8, and 16 lysine groups, respectively, on their dendritic periphery. Such monodisperse bioactive polymers show potential for a range of applications including drug delivery, gene delivery, heavy metal binding, and the sequestration of organic toxins. These monodisperse bioactive dendrimers were synthesized using an aliphatic ester dendritic core (prepared from pentaerythritol) and protected amino acid moieties. This library of lysine-conjugated dendrimers showed the ability to efficiently capture the pesticide dichlorvos, confirming the potential of dendrimer-based antidotes to maintain acetylcholinesterase activity in response to poisoning events.

  18. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  19. Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers.

    PubMed

    Wan, Jingjing; Brust, Andreas; Bhola, Rebecca F; Jha, Prerna; Mobli, Mehdi; Lewis, Richard J; Christie, Macdonald J; Alewood, Paul F

    2016-05-01

    Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. Poly(amidoamine) Dendrimer Nanocarriers and Their Aerosol Formulations for siRNA Delivery to the Lung Epithelium

    PubMed Central

    2015-01-01

    Small interfering RNA (siRNA)-based therapies have great promise in the treatment of a number of prevalent pulmonary disorders including lung cancer, asthma and cystic fibrosis. However, progress in this area has been hindered due to the lack of carriers that can efficiently deliver siRNA to lung epithelial cells, and also due to challenges in developing oral inhalation (OI) formulations for the regional administration of siRNA and their carriers to the lungs. In this work we report the ability of generation four, amine-terminated poly(amidoamine) (PAMAM) dendrimer (G4NH2)–siRNA complexes (dendriplexes) to silence the enhanced green fluorescent protein (eGFP) gene on A549 lung alveolar epithelial cells stably expressing eGFP. We also report the formulation of the dendriplexes and their aerosol characteristics in propellant-based portable OI devices. The size and gene silencing ability of the dendriplexes was seen not to be a strong function of the N/P ratio. Silencing efficiencies of up to 40% are reported. Stable dispersions of the dendriplexes encapsulated in mannitol and also in a biodegradable and water-soluble co-oligomer were prepared in hydrofluoroalkane (HFA)-based pressurized metered-dose inhalers (pMDIs). Their aerosol characteristics were very favorable, and conducive to deep lung deposition, with respirable fractions of up to 77%. Importantly, siRNA formulated as dendriplexes in pMDIs was shown to keep its integrity after the particle preparation processes, and also after long-term exposures to HFA. The relevance of this study stems from the fact that this is the first work to report the formulation of inhalable siRNA with aerosol properties suitable to deep lung deposition using pMDIs devices that are the least expensive and most widely used portable inhalers. This study is relevant because, also for the first time, it shows that siRNA–G4NH2 dendriplexes can efficiently target lung alveolar epithelial A549 cells and silence genes even after si

  1. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin.

    PubMed

    Golshan, Marzieh; Salami-Kalajahi, Mehdi; Mirshekarpour, Mina; Roghani-Mamaqani, Hossein; Mohammadi, Maryam

    2017-07-01

    The aim of current work is synthesis 4th-generation-poly(propylene imine) (PPI)-dendrimer modified gold nanoparticles (Au-G4A) as nanocarriers for doxorubicin (DOX) and studying in vitro drug release kinetics from nanocarriers into different media. Accordingly, AuNPs were synthesized by reduction of chloroauric acid (HAuCl 4 ) aqueous solution with trisodium citrate and modified with cysteamine to obtain amine-functionalized (Au-NH 2 ) nanoparticles. Au-NH 2 nanoparticles were used as multifunctional cores and participated in Michael addition of acrylonitrile and reduction process by lithium aluminum hydride (LAH) to synthesize Au-G4A nanoparticles. Also, peripheral primary amine groups of Au-G4A were conjugated with folic acid (FA) (Au-G4F) to study the bioconjugation effect on drug release behavior of nanostructures. Ultraviolet spectroscopy (UV-vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) were used to approve the synthesis of different nanostructures. Finally, Au-G4A and Au-G4F samples were loaded with DOX and exposed to environments with different pH values to examine the release properties of nanostructures. Also, drug release kinetics was investigated by fitting of experimental data with different release models. As a result, synthesized dendritic structures showed Higuchi and Korsmeyer-Peppas models release behavior due to better solubility of drug in release media with respect to dendrimer cavities and drug release through polymeric matrix respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Understanding the Structure-Function Relationships of Dendrimers in Environmental and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Bo

    -Protein interactions such as NP-protein corona are also explained. In the following topic, I will look into amyloid protein aggregation mediated by dendrimers, which is of high expectations for combating amyloidogenic-related diseases. Chapter 4 concludes the whole dissertation. It also briefly introduces my ongoing projects and future research directions about dendrimers. This dissertation has presented a systematic study of dendrimers in environmental and biomedical applications which might provide valuable information for future dendrimer design thus benefit the nanobiotechnology.

  3. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole.

    PubMed

    Mansuri, Shakir; Kesharwani, Prashant; Tekade, Rakesh Kumar; Jain, Narendra Kumar

    2016-05-01

    Dendrimers are multifunctional carriers widely employed for delivering drugs in a variety of disease conditions including HIV/AIDS and cancer. Albendazole (ABZ) is a commonly used anthelmintic drug in human as well as veterinary medicine. In this investigation, ABZ was formulated as a "muco-dendrimer" based sustained released tablet. The mucoadhesive complex was synthesized by anchoring chitosan to fifth generation PPI dendrimer (Muco-PPI) and characterized by UV, FTIR, (1)H NMR spectroscopy and electron microscopy. ABZ was entrapped inside Muco-PPI followed by lyophilization and tableting as matrix tablet. A half-life (t1/2) of 8.06±0.15, 8.17±0.47, 11.04±0.73, 11.49±0.92, 12.52±1.04 and 16.9±1.18h was noted for ABZ (free drug), conventional ABZ tablet (F1), conventional ABZ matrix tablet (F2), PPI-ABZ complex, PPI-ABZ matrix tablet (F3) and Muco-PPI-ABZ matrix tablet (F4), respectively. Thus the novel mucoadhesive-PPI based formulation of ABZ (F4) increased the t1/2 of ABZ significantly by almost twofold as compared to the administration of free drug. The in vivo drug release data showed that the Muco-PPI based formulations have a significantly higher Cmax (2.40±0.02μg/mL) compared with orally administered free ABZ (0.19±0.07μg/mL) as well as conventional tablet (0.20±0.05μg/mL). In addition, the Muco-PPI-ABZ matrix tablet displayed increased mean residence time (MRT) and is therefore a potential candidate to appreciably improve the pharmacokinetic profile of ABZ. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    PubMed

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  5. Tailoring the dendrimer core for efficient gene delivery.

    PubMed

    Hu, Jingjing; Hu, Ke; Cheng, Yiyun

    2016-04-15

    Dendrimers have been widely used as non-viral gene vectors due to well-defined chemical structures, high density of cationic charges and ease of surface modification. Although a large number of studies have reported the important roles of dendrimer architecture, component, generation and surface functionality in gene delivery, the effect of dendrimer core on this issue still remains unclear. Recent literatures suggest that a slight alternation in dendrimer core has a profound effect in the transfection efficacy and biocompatibility. In this review, we will discuss the transfection mechanism of dendrimers with different types of cores in respect of flexibility, hydrophobicity and functionality. We hope to open a possibility of designing efficient dendrimers for gene delivery by choosing a proper dendrimer core. As a branch of researches on dendrimers and dendritic polymers, the design of biocompatible and high efficient polymeric gene carriers has attracted increasing attentions during these years. Although the effect of dendrimer generation, species, architecture and surface functionality on gene delivery have been widely reported, the effect of dendrimer core on this issue still remains unclear. Recent literatures suggest that a minor variation on the dendrimer core has a profound effect in the transfection efficacy and biocompatibility. This critical review summarized the dendrimers with different types of cores and discussed the transfection mechanism with particular focus on the flexibility, hydrophobicity, and functionality. It is hoped to provide a new insight to design efficient and safe dendrimer-based gene vectors by choosing a proper core. To the best of our knowledge, this is the first review on the effect of dendrimer core on gene delivery. The findings obtained in this filed are of central importance in the design of efficient polymeric gene vectors. This article will appeal a wide readership such as physical chemist, dendrimer chemist, biological

  6. Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bosko, Jaroslaw T.; Todd, B. D.; Sadus, Richard J.

    2004-12-01

    The viscoelastic properties of dendrimers of generation 1-4 are studied using nonequilibrium molecular dynamics. Flow properties of dendrimer melts under shear are compared to systems composed of linear chain polymers of the same molecular weight, and the influence of molecular architecture is discussed. Rheological material properties, such as the shear viscosity and normal stress coefficients, are calculated and compared for both systems. We also calculate and compare the microscopic properties of both linear chain and dendrimer molecules, such as their molecular alignment, order parameters and rotational velocities. We find that the highly symmetric shape of dendrimers and their highly constrained geometry allows for substantial differences in their material properties compared to traditional linear polymers of equivalent molecular weight.

  7. Docosahexaenoic acid triglyceride-based microemulsions with an added dendrimer - Structural considerations.

    PubMed

    Lidich, Nina; Francesca Ottaviani, M; Hoffman, Roy E; Aserin, Abraham; Garti, Nissim

    2016-12-01

    Omega fatty acids, mainly the triglyceride of docosahexaenoic acid (TG-DHA), are considered important nutraceuticals. These compounds are water-insoluble and their transport across membranes depends on their carriers. Dendrimers are known as drug carriers across cell membranes and also as permeation enhancers. The solubilization of TG-DHA and dendrimer into a microemulsion (ME) system serving as a carrier could be used for a targeted delivery in the future. The interactions between TG-DHA and second generation poly(propyleneimine) dendrimers (PPI-G2) and their effect on structural transitions of ME were explored along the water dilution line using electron paramagnetic resonance and pulsed-gradient spin-echo NMR along with other analytical techniques. The microviscosity, order parameter, and micropolarity of all studied systems decrease upon water dilution. Incorporation of TG-DHA reduces the microviscosity, order, and micropolarity, whereas PPI-G2 leads to an increase in these parameters. The effect of PPI-G2 is more pronounced at relative high contents (1 and 5wt%) where PPI-G2 interacts with the hydrophilic headgroups of the surfactants. In the macroscale, the effects of TG-DHA and PPI-G2 differ mostly in the bicontinuous region, where macroviscosity increases upon TG-DHA incorporation and decreases upon solubilization of 5wt% PPI-G2. From DSC measurements it was concluded that in the presence of TG-DHA the PPI-G2 is intercalated easily at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers

    PubMed Central

    Jishkariani, Davit; Timsina, Yam N.; Grama, Silvia; Gillani, Syeda S.; Divar, Masoumeh; Yadavalli, Srujana S.; Moussodia, Ralph-Olivier; Leowanawat, Pawaret; Berrios Camacho, Angely M.; Walter, Ricardo; Goulian, Mark; Klein, Michael L.; Percec, Virgil

    2017-01-01

    2,2-Bis(azidomethyl)propionic acid was prepared in four steps and 85% yield from the commercially available 2,2-bis(hydroxymethyl)propionic acid and used as the starting building block for the divergent, convergent, and double-stage convergent–divergent iterative methods for the synthesis of dendrimers and dendrons containing ethylenediamine (EDA), piperazine (PPZ), and methyl 2,2-bis(aminomethyl)propionate (COOMe) cores. These cores have the same multiplicity but different conformations. A diversity of synthetic methods were used for the synthesis of dendrimers and dendrons. Regardless of the method used, a self-interruption of the synthesis was observed at generation 4 for the dendrimer with an EDA core and at generation 5 for the one with a PPZ core, whereas for the COOMe core, self-interruption was observed at generation 6 dendron, which is equivalent to generation 5 dendrimer. Molecular modeling and molecular-dynamics simulations demonstrated that the observed self-interruption is determined by the backfolding of the azide groups at the periphery of the dendrimer. The latter conformation inhibits completely the heterogeneous hydrogenation of the azide groups catalyzed by 10% Pd/carbon as well as homogeneous hydrogenation by the Staudinger method. These self-terminated polyamide dendrimers are enzymatically and hydrolytically stable and also exhibit antimicrobial activity. Thus, these nanoscale constructs open avenues for biomedical applications. PMID:28270599

  9. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells.

    PubMed

    Gupta, Umesh; Dwivedi, Shailendra Kumar Dhar; Bid, Hemant Kumar; Konwar, Rituraj; Jain, N K

    2010-06-30

    Dendrimers are considered versatile carriers especially for the treatment of diseases like cancer, AIDS, malaria etc. Cancer is a worldwide threat particularly in developing countries. A breakthrough research in this regard is a prime requirement. In the present study, folic acid was conjugated to fifth generation polypropylene imine (PPI) dendrimers and characterized through IR, NMR ((13)C and (1)H), ESI mass spectroscopy as well as electron microscopic studies. Doxorubicin (DOX), an effective anticancer drug, was used in the present study to develop and explore the anticancer potential of the dendrimer based formulations. DOX was loaded (approximately 26 and 65%) to the PPI dendrimers as well as folate conjugated PPI (PPI-FA) dendrimers, respectively. These ligand conjugated dendrimers displayed very less (approximately 3 and 4%, respectively, for PPI-FA and PPI-FA-DOX) hemolysis. The developed formulation PPI-FA-DOX was stable enough. In vitro drug release of the formulation was found to be faster in the acidic media than at the higher pH. The prepared formulation displayed a higher cell uptake in MCF-7 cancer cell lines as evidenced by fluorescence studies. The results suggested that, in future, folic acid conjugated PPI dendrimers may emerge as a better choice for anticancer drug targeting. 2010 Elsevier B.V. All rights reserved.

  10. Research progress on synthesis and characteristic about dendrimers

    NASA Astrophysics Data System (ADS)

    Tang, Zitao

    2017-12-01

    Dendrimers are hyper-branched polymers which have perfectly defined structures. Different from the common polymers, dendrimers are synthesized by a step-by-step iterative style, which starts from a central core and forms branching parts outward. The dendrimers also have different physical and chemical characteristics from common polymers. In this paper, contributions to dendrimer synthesis from different researchers with different scientific background, synthesis of different dendrimers, and applications of them will be reviewed.

  11. pH responsiveness of dendrimer-like poly(ethylene oxide)s.

    PubMed

    Feng, Xiaoshuang; Taton, Daniel; Borsali, Redouane; Chaikof, Elliot L; Gnanou, Yves

    2006-09-06

    Poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA), two polymers known to form pH-sensitive aggregates through noncovalent interactions, were assembled in purposely designed architecture -a dendrimer-like PEO scaffold carrying short inner PAA chains-to produce unimolecular systems that exhibit pH responsiveness. Because of the particular placement of the PAA chains within the dendrimer-like structure, intermolecular complexation between acrylic acid (AA) and ethylene oxide (EO) units-and thus macroscopic aggregation or even mesoscopic micellization-could be avoided in favor of the sole intramolecular complexation. The sensitivity of such interactions to pH was exploited to generate dendrimer-like PEOs that reversibly shrink and expand with the pH. Such PAA-carrying dendrimer-like PEOs were synthesized in two main steps. First, a fifth-generation dendrimer-like PEO was obtained by combining anionic ring-opening polymerization (AROP) of ethylene oxide from a tris-hydroxylated core and selective branching reactions of PEO chain ends. To this end, an AB(2)C-type branching agent was designed: the latter includes a chloromethyl (A) group for its covalent attachment to the arm ends, two geminal hydroxyls (B(2)) protected in the form of a ketal ring for the growth of subsequent PEO generations by AROP, and a vinylic (C) double bonds for further functionalization of the interior of dendrimer-like PEOs. Reiteration of AROP and derivatization of PEO branches allowed us to prepare a dendrimer-like PEO of fourth generation with a total molar mass of 52,000 g x mol(-1), containing 24 external hydroxyl functions and 21 inner vinylic groups in the interior. A fifth generation of PEO chains was generated from this parent dendrimer-like PEO of fourth generation using a "conventional" AB(2)-type branching agent, and 48 PEO branches could be grown by AROP. The 48 outer hydroxy-end groups of the fifth-generation dendrimer-like PEO obtained were subsequently quantitatively

  12. Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers☆

    PubMed Central

    Zhang, Fan; Nance, Elizabeth; Zhang, Zhi; Jasty, Venkatasai; Kambhampati, Siva P.; Mishra, Manoj K.; Burd, Irina; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2017-01-01

    Cerebral Palsy (CP) is a chronic childhood disorder with limited therapeutic options. Maternal intrauterine inflammation/infection is a major risk factor in the pathogenesis of CP. In pre-clinical models, dendrimer-based therapies are viable in postnatal period, attenuating inflammation and improving motor function in vivo. However, treatment to the mother, in the prenatal period, may provide the possibility of preventing/resolving inflammation at early stages. Towards this goal, we used a maternal intrauterine inflammation-induced rabbit model of CP to study fetal-maternal transport and neuroinflammation targeting of intra-amniotically administrated dendrimers with neutral/anionic surface functionality. Our study suggested both hydroxyl-terminated ‘neutral’ (D-OH) and carboxyl-terminated ‘anionic’ (D-COOH) Polyamidoamine (PAMAM) dendrimers were absorbed by fetuses and demonstrated bi-directional transport between fetuses and mother. D-OH was more effective in crossing the fetal blood-brain barrier, and targeting activated microglia. The cell-specific targeting was associated with the extent of microglia activation. This study demonstrated intra-amniotically administered hydroxyl PAMAM dendrimers could be an effective drug delivery vehicle for targeting fetal inflammation and preventing subsequent neurologic injury associated with chorioamnionitis. PMID:27378700

  13. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    NASA Astrophysics Data System (ADS)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  14. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    -inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03884g

  15. Dendrimer-stabilized bismuth sulfide nanoparticles: synthesis, characterization, and potential computed tomography imaging applications.

    PubMed

    Fang, Yi; Peng, Chen; Guo, Rui; Zheng, Linfeng; Qin, Jinbao; Zhou, Benqing; Shen, Mingwu; Lu, Xinwu; Zhang, Guixiang; Shi, Xiangyang

    2013-06-07

    We report here a general approach to synthesizing dendrimer-stabilized bismuth sulfide nanoparticles (Bi2S3 DSNPs) for potential computed tomography (CT) imaging applications. In this study, ethylenediamine core glycidol hydroxyl-terminated generation 4 poly(amidoamine) dendrimers (G4.NGlyOH) were used as stabilizers to first complex the Bi(III) ions, followed by reaction with hydrogen sulfide to generate Bi2S3 DSNPs. By varying the molar ratio of Bi atom to dendrimer, stable Bi2S3 DSNPs with an average size range of 5.2-5.7 nm were formed. The formed Bi2S3 DSNPs were characterized via different techniques. X-ray absorption coefficient measurements show that the attenuation of Bi2S3 DSNPs is much higher than that of iodine-based CT contrast agent at the same molar concentration of the active element (Bi versus iodine). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay and hemolysis assay reveal that the formed Bi2S3 DSNPs are noncytotoxic and have a negligible hemolysis effect in the studied concentration range. Furthermore, we show that cells incubated with the Bi2S3 DSNPs are able to be imaged using CT, a prominent enhancement at the point of rabbit injected subcutaneously with the Bi2S3 DSNPs is able to be visualized via CT scanning, and the mouse's pulmonary vein can be visualized via CT after intravenous injection of the Bi2S3 DSNPs. With the good biocompatibility, enhanced X-ray attenuation property, and tunable dendrimer chemistry, the designed Bi2S3 DSNPs should be able to be further functionalized, allowing them to be used as a highly efficient contrast agent for CT imaging of different biological systems.

  16. Perspective: Dendrimer drugs for infection and inflammation.

    PubMed

    Shaunak, Sunil

    2015-12-18

    Biologists are dissecting complex biological pathways at breath taking speed. It is opening up new opportunities for the therapeutic evaluation of novel dendrimer drugs. This review focuses on studies of small dendrimers decorated with sulfate, phosphonate, N-acetyl-cysteine, glucosamine and mannose in animal model studies of infection and inflammation. It highlights those animal model studies which have demonstrated the most promising dendrimer drug constructs as potential new medicines. The issues relating to their analytical chemistry that are slowing the progress of dendrimer drugs into the clinic are highlighted. It should be possible to solve these with additional analytical expertise because it is small dendrimers with only 16-32 peripheral groups that make for the best infection and inflammation related medicines. Public-private partnerships are now needed to progress these dendrimer drugs into proof-of-concept clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.

    PubMed

    Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok

    2017-02-01

    An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm -2 μg -1 and lower limit of detection of cTnI was found 20fgmL -1 . Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Kinetics and structure-activity relationship of dendritic bridged hindered phenol antioxidants to protect styrene against free radical induced peroxidation

    NASA Astrophysics Data System (ADS)

    Li, Cui-Qin; Guo, Su-Yue; Wang, Jun; Shi, Wei-Guang; Zhang, Zhi-Qiu; Wang, Peng-Xiang

    2017-12-01

    A series of dendritic poly(amido-amine) (PAMAM) bridged hindered phenols antioxidants were synthesized. The active antioxidant group (3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionic acid) was attached to two generations of PAMAM dendrimers, and their structure was verified by nuclear magnetic resonance (NMR) and fourier transform infrared spectra (FT-IR). The antioxidant abilities of the dendritic phenols to inhibit the oxidation of styrene were evaluated and the relationships between the length of core, the generation of dendrimers and the antioxidant activities were established. The reaction kinetics of scavenging peroxyl radicals was followed by oxygen consumption. The inhibition time ( t inh) values showed the dendritic phenols had the ability of scavenging peroxyl radicals, and that the antioxidant ability increased with the increasing length of the core and the generation. The kinetic analysis demonstrated that dendritic phenols could slow the rate of styrene peroxidation induced by AIBN, as shown by the number of trapping ROO· ( n), and this role was in accordance with that of the t inh values.

  19. Enhanced bioactivity of internally functionalized cationic dendrimers with PEG cores

    PubMed Central

    Albertazzi, Lorenzo; Mickler, Frauke M.; Pavan, Giovanni M.; Salomone, Fabrizio; Bardi, Giuseppe; Panniello, Mariangela; Amir, Elizabeth; Kang, Taegon; Killops, Kato L.; Bräuchle, Christoph; Amir, Roey J.; Hawker, Craig J.

    2012-01-01

    Hybrid dendritic-linear block copolymers based on a 4-arm polyethylene glycol (PEG) core were synthesized using an accelerated AB2/CD2 dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end-groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules, on their DNA binding and delivery capablities. PMID:23140570

  20. Self-assembled novel multi-porphyrin micro-crystals as a photocatalyst for 2,4,6-trinitrotoluene degradation

    NASA Astrophysics Data System (ADS)

    Hikal, Walid M.

    In this thesis I have presented the findings of my research pursued during my Ph.D. study. Following the findings that 2,4,6-trinitrotoluene binds to porphyrins at room temperature and could be photoctalytically degraded using porphyrin solutions and visible light, the purpose of this work was to determine the nature of the binding between the two species and develop a solid porphyrin-based photocatalyst for TNT degradation. C1TPP porphyrin is found to be able to bind to TNT via 1.94 kcal/mole hydrogen bonds at room temperature and hydrophobic bonds at higher temperatures. Photocatalytic solid porphyrin crystalline structures have been developed using two oppositely charged, commercially available, and low cost porphyrins in presence and absence of PAMAM generation 4 (G4) dendrimer, by self-assembly at room temperature without acidification. Solid porphyrin crystals were characterized by means of optical microscopy, UV-visible spectroscopy, fluorescence spectroscopy, and powder X-ray diffraction. A hypothetical model for the structure of the crystals is proposed. The porphyrin crystals show photocatalytic capabilities; illumination of the crystals in a 2,4,6-trinitrotoluene solution by visible light results in degradation of TNT and the intermediates have been determined using high pressure liquid chromatography (HPLC) and gas chromatography (GC).

  1. Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane.

    PubMed

    Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G

    2010-01-01

    A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.

  2. Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties

    PubMed Central

    Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Zloh, Mire; Barata, Teresa S

    2017-01-01

    Dendrimers are hyperbranched polymers with a multifunctional architecture that can be tailored for the use in various biomedical applications. Peptide dendrimers are particularly relevant for drug delivery applications due to their versatility and safety profile. The overall lack of knowledge of their three-dimensional structure, conformational behavior and structure–activity relationship has slowed down their development. Fluorophores are often conjugated to dendrimers to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, we have used computer-aided molecular design and molecular dynamics simulations to identify optimal topology of a poly(l-glutamic acid) (PG) backbone dendrimer that allows incorporation of fluorophores in the core with minimal availability for undesired interactions. Extensive all-atom molecular dynamic simulations with the CHARMM force field were carried out for different generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis of structural and topological features of all designed dendrimers provided information about their size, shape, internal distribution and dynamic behavior. We have found that four generations of a PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to external environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system. PMID

  3. Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties.

    PubMed

    Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Zloh, Mire; Barata, Teresa S

    2017-01-01

    Dendrimers are hyperbranched polymers with a multifunctional architecture that can be tailored for the use in various biomedical applications. Peptide dendrimers are particularly relevant for drug delivery applications due to their versatility and safety profile. The overall lack of knowledge of their three-dimensional structure, conformational behavior and structure-activity relationship has slowed down their development. Fluorophores are often conjugated to dendrimers to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, we have used computer-aided molecular design and molecular dynamics simulations to identify optimal topology of a poly(l-glutamic acid) (PG) backbone dendrimer that allows incorporation of fluorophores in the core with minimal availability for undesired interactions. Extensive all-atom molecular dynamic simulations with the CHARMM force field were carried out for different generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis of structural and topological features of all designed dendrimers provided information about their size, shape, internal distribution and dynamic behavior. We have found that four generations of a PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to external environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system.

  4. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers.

    PubMed Central

    Kukowska-Latallo, J F; Bielinska, A U; Johnson, J; Spindler, R; Tomalia, D A; Baker, J R

    1996-01-01

    Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines. Images Fig. 1 Fig. 2 Fig. 4 PMID:8643500

  5. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin.

    PubMed

    Ryan, Gemma M; Kaminskas, Lisa M; Bulitta, Jürgen B; McIntosh, Michelle P; Owen, David J; Porter, Christopher J H

    2013-11-28

    the lymphatic system would ultimately be 9796 times and 6.1 times greater after administration of dendrimer doxorubicin when compared to the solution and liposome formulations respectively. The recovery of doxorubicin in the sentinel lymph nodes draining the subcutaneous injection site was also quantified directly, and consistent with the lymph pharmacokinetic data, lymph node recovery was greatest for the dendrimer formulation (12% of dosed doxorubicin/g node) when compared to the liposome (1.4%/g node) and solution (<1%/g node) formulations. The data suggest that dendrimer-based drug delivery systems have the potential to enhance drug exposure to lymph-based drug targets such as lymphatic metastases. © 2013.

  6. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation

    PubMed Central

    Nance, Elizabeth; Zhang, Fan; Mishra, Manoj K.; Zhang, Zhi; Kambhampati, Siva P.; Kannan, Rangaramanujam M.; Kannan, Sujatha

    2017-01-01

    Neuroinflammation, mediated by activated microglia and astrocytes, plays a key role in the pathogenesis of many neurological disorders. Systemically-administered dendrimers target neuroinflammation and deliver drugs with significant efficacy, without the need for ligands. Elucidating the nanoscale aspects of targeting neuroinflammation will enable superior nanodevices for eventual translation. Using a rabbit model of cerebral palsy, we studied the in vivo contributions of dendrimer physicochemical properties and disease pathophysiology on dendrimer brain uptake, diffusion, and cell specific localization. Neutral dendrimers move efficiently within the brain parenchyma and rapidly localize in glial cells in regions of injury. Dendrimer uptake is also dependent on the extent of blood-brain-barrier breakdown, glial activation, and disease severity (mild, moderate, or severe), which can lend the dendrimer to be used as an imaging biomarker for disease phenotype. This new understanding of the in vivo mechanism of dendrimer-mediated delivery in a clinically-relevant rabbit model provides greater opportunity for clinical translation of targeted brain injury therapies. PMID:27267631

  7. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery.

    PubMed

    Sun, Qihang; Ma, Xinpeng; Zhang, Bo; Zhou, Zhuxian; Jin, Erlei; Shen, Youqing; Van Kirk, Edward A; Murdoch, William J; Radosz, Maciej; Sun, Weilin

    2016-06-24

    An inherent dilemma in the use of nanomedicines for cancer drug delivery is their limited penetration into tumors due to their large size. We have demonstrated that dendrimer/lipid nanoassemblies can solve this problem by means of tumor-triggered disassembly and the release of small (several nanometers) dendrimers to facilitate tumor penetration. Herein, we report a general strategy for the fabrication of nanoassemblies from hydrophobic and hydrophilic dendrimers with phospholipids. Hydrophobic dendrimers could assemble with lipids via hydrophobic interactions, whereas hydrophilic dendrimers could only assemble with lipids in the presence of anionic surfactants via both electrostatic and hydrophobic interactions. The nanoassemblies of hydrophobic dendrimers/lipids were found to be capable of stripping off their lipid layers via fusion with the cell membrane and then intracellular or extracellular release of dendrimers, whereas the nanoassemblies of hydrophilic dendrimers/lipids were internalized via endocytosis and then released their dendrimers inside the cells. Therefore, these dendrimer/lipid nanoassemblies could be used for the delivery of different cancer drugs.

  8. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine.

    PubMed

    Caminade, Anne-Marie

    2016-10-07

    Dendrimers are hyperbranched polymers having a perfectly defined structure because they are synthesized step-by-step in an iterative fashion, and not by polymerization reactions. Some dendrimers are considered as inorganic, as they possess inorganic atoms at each branching point. Among numerous examples, two families of inorganic dendrimers have emerged as particularly promising: silicon-containing dendrimers, particularly carbosilanes, and phosphorus-containing dendrimers, particularly phosphorhydrazones. This tutorial review will display the main properties of both families of dendrimers in the fields of catalysis, materials and biology/nanomedicine. Emphasis will be put on the most recent and promising examples.

  9. Light-emitting dendrimer film morphology: A neutron reflectivity study

    NASA Astrophysics Data System (ADS)

    Vickers, S. V.; Barcena, H.; Knights, K. A.; Thomas, R. K.; Ribierre, J.-C.; Gambino, S.; Samuel, I. D. W.; Burn, P. L.; Fragneto, Giovanna

    2010-06-01

    We have used neutron reflectivity (NR) measurements to probe the physical structure of phosphorescent dendrimer films. The dendrimers consisted of fac-tris(2-phenylpyridyl)iridium(III) cores, biphenyl-based dendrons (first or second generation), and perdeuterated 2-ethylhexyloxy surface groups. We found that the shape and hydrodynamic radius of the dendrimer were both important factors in determining the packing density of the dendrimers. "Cone" shaped dendrimers were found to pack more effectively than "spherical" dendrimers even when the latter had a smaller radius. The morphology of the films determined by NR was consistent with the measured photoluminescence and charge transporting properties of the materials.

  10. Nanoscale effects in dendrimer-mediated targeting of neuroinflammation.

    PubMed

    Nance, Elizabeth; Zhang, Fan; Mishra, Manoj K; Zhang, Zhi; Kambhampati, Siva P; Kannan, Rangaramanujam M; Kannan, Sujatha

    2016-09-01

    Neuroinflammation, mediated by activated microglia and astrocytes, plays a key role in the pathogenesis of many neurological disorders. Systemically-administered dendrimers target neuroinflammation and deliver drugs with significant efficacy, without the need for ligands. Elucidating the nanoscale aspects of targeting neuroinflammation will enable superior nanodevices for eventual translation. Using a rabbit model of cerebral palsy, we studied the in vivo contributions of dendrimer physicochemical properties and disease pathophysiology on dendrimer brain uptake, diffusion, and cell specific localization. Neutral dendrimers move efficiently within the brain parenchyma and rapidly localize in glial cells in regions of injury. Dendrimer uptake is also dependent on the extent of blood-brain-barrier breakdown, glial activation, and disease severity (mild, moderate, or severe), which can lend the dendrimer to be used as an imaging biomarker for disease phenotype. This new understanding of the in vivo mechanism of dendrimer-mediated delivery in a clinically-relevant rabbit model provides greater opportunity for clinical translation of targeted brain injury therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Theoretical Studies for Dendrimer-Based Drug Delivery.

    PubMed

    Bello, Martiniano; Fragoso-Vázquez, Jonathan; Correa-Basurto, José

    2017-01-01

    Numerous theoretical studies have been performed to iteratively optimize the physicochemical properties such as dendrimer size and surface constituents in solution, as well as their molecular recognition properties for drugs, lipid membranes, nucleic acids and proteins, etc. Molecular modeling approaches such as docking and molecular dynamic (MD) simulations have supported experimental efforts by providing important insights into the structural properties of dendrimers in solution and possible binding properties of drugs at the atomic level. We review the utilization of molecular modelling tools to obtain insight into the study and design of dendrimers, with particular importance placed on the improvement of binding properties of dendrimers for their use as drug nanocarriers and to increase the water solubility properties and drug delivery. The modeling studies discussed in this review have provided substantial insight into the physicochemical properties of dendrimers in solution, including solvent pH and counterion distribution, at the atomic level, as well as the elucidation of some of the key interactions in solution of unmodified and modified dendrimers with some drugs of pharmaceutics interest and biological systems such as nucleic acids, proteins and lipid membranes. the described studies illustrate that whether simulations will be run at the all-atom or coarse-grained level, physicochemical conditions such as the type of force field, the treatment of electrostatics effects, counterion distribution, protonation state of dendrimers, and dendrimer concentrations which have been probed to play a crucial role in the structural behavior and binding properties must be prudently incorporated in the simulations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Practical computational toolkits for dendrimers and dendrons structure design.

    PubMed

    Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Barata, Teresa; Zloh, Mire

    2017-09-01

    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

  13. Practical computational toolkits for dendrimers and dendrons structure design

    NASA Astrophysics Data System (ADS)

    Martinho, Nuno; Silva, Liana C.; Florindo, Helena F.; Brocchini, Steve; Barata, Teresa; Zloh, Mire

    2017-09-01

    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

  14. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides

    NASA Astrophysics Data System (ADS)

    Briz, Verónica; Sepúlveda-Crespo, Daniel; Diniz, Ana Rita; Borrego, Pedro; Rodes, Berta; de La Mata, Francisco Javier; Gómez, Rafael; Taveira, Nuno; Muñoz-Fernández, Mª Ángeles

    2015-08-01

    The development of topical microbicide formulations for vaginal delivery to prevent HIV-2 sexual transmission is urgently needed. Second- and third-generation polyanionic carbosilane dendrimers with a silicon atom core and 16 sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-groups have shown potent and broad-spectrum anti-HIV-1 activity. However, their antiviral activity against HIV-2 and mode of action have not been probed. Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers were determined. Analysis of combined effects of triple combinations with tenofovir and raltegravir was performed by using CalcuSyn software. We also assessed the mode of antiviral action on the inhibition of HIV-2 infection through a panel of different in vitro antiviral assays: attachment, internalization in PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological analysis in female BALB/c mice were evaluated. Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 activity at an early stage of viral replication inactivating the virus, inhibiting cell-to-cell HIV-2 transmission, and blocking the binding of gp120 to CD4, and the HIV-2 entry. Triple combinations with tenofovir and raltegravir increased the anti-HIV-2 activity, consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation was detected in BALB/c mice after two consecutive applications for 2 days with 3% G2-S16. Our results have clearly shown that G2-S16, G2-NS16 and G3-Sh16 have high potency against HIV-2 infection. The modes of action confirm their multifactorial and non-specific ability, suggesting that these dendrimers deserve further studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-2 transmission in humans.

  15. Second-generation supramolecular dendrimer with a defined structure due to orthogonal binding.

    PubMed

    Eckelmann, Jens; Dethlefs, Christiane; Brammer, Stefan; Doğan, Ahmet; Uphoff, Andreas; Lüning, Ulrich

    2012-07-02

    A second-generation supramolecular dendrimer has been prepared by orthogonal multiple hydrogen bonding. In the first (inner) recognition domain, the interaction of one bis-isocyanuric acid (25) with two branching units (21) that carry complementary Hamilton receptors has been exploited. In the second (outer) generation, the two ADDA (A=hydrogen-bond acceptor, D=donor) receptors of each branching unit (21) have bound complementary DAAD units (4). The problem of limited solubility of the building blocks has been overcome by the introduction of branched ethylhexyl residues and by the use of flexible alkylene or oligo(ethylene glycol) linking chains. The orthogonal binding of the two hydrogen-bonding pairs was elucidated by chemical induced shift NMR titrations, which proved that the two pairs, isocyanuric acid with the Hamilton receptor and ADDA with DAAD, bind preferentially. The formation of the supramolecular self-assembled 1:2:4 dendrimer with a molecular weight of 5065 g mol(-1) was investigated by diffusion NMR spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Internalization and Subcellular Trafficking of Poly-l-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2015-06-01

    Internalization and intracellular trafficking of dendrimer-drug conjugates play an important role in achieving successful drug delivery. In this study, we aimed to elucidate the endocytosis mechanisms and subcellular localization of poly-l-lysine (PLL) dendrimers in Caco-2 cells. We also investigated the impact of fluorophore conjugation on cytotoxicity, uptake, and transepithelial transport. Oregon green 514 (OG) was conjugated to PLL G3 at either the dendrimer periphery or the core. Chemical inhibitors of clathrin-, caveolin-, cholesterol-, and dynamin-mediated endocytosis pathways and macropinocytosis were employed to establish internalization mechanisms, while colocalization with subcellular markers was used to determine dendrimer trafficking. Cell viability, internalization, and uptake were all influenced by the site of fluorophore conjugation. Uptake was found to be highly dependent on cholesterol- and dynamin-mediated endocytosis as well as macropinocytosis. Dendrimers were trafficked to endosomes and lysosomes, and subcellular localization was impacted by the fluorophore conjugation site. The results of this study indicate that PLL dendrimers exploit multiple pathways for cellular entry, and internalization and trafficking can be impacted by conjugation. Therefore, design of dendrimer-drug conjugates requires careful consideration to achieve successful drug delivery.

  17. CELLULAR UPTAKE AND TOXICITY OF DENDRITIC NANOMATERIALS: AN INTEGRATED PHYSICOCHEMICAL AND TOXICOGENOMICS STUDY

    EPA Science Inventory

    The successful completion of this project is expected to provide industry with critical data and predictive tools needed to assess the health and environmental impact of dendritic nanomaterials such as EDA core PAMAM dendrimers.

  18. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats

    PubMed Central

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2017-01-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  19. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development.

    PubMed

    Soda, N; Arotiba, O A

    2017-12-01

    A novel polyamidoamine dendrimer-streptavidin supramolecular architecture suitable as a versatile platform for biosensor development is reported. The dendrimer was electrodeposited on a glassy carbon electrode via cyclic voltammetry. The dendrimer electrode was further modified with streptavidin by electrostatic attraction upon drop coating. The platform i.e. the dendrimer-streptavidin modified electrode was electrochemically interrogated in phosphate buffer, ferrocyanide and H 2 O 2 . The dendrimer-streptavidin platform was used in the preparation of a simple DNA biosensor as a proof of concept. The supramolecular architecture of dendrimer-streptavidin was stable, electroactive and thus lends itself as a versatile immobilisation layer for any biotinylated bioreceptors in biosensor development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. NMR studies of excluded volume interactions in peptide dendrimers.

    PubMed

    Sheveleva, Nadezhda N; Markelov, Denis A; Vovk, Mikhail A; Mikhailova, Maria E; Tarasenko, Irina I; Neelov, Igor M; Lähderanta, Erkki

    2018-06-11

    Peptide dendrimers are good candidates for diverse biomedical applications due to their biocompatibility and low toxicity. The local orientational mobility of groups with different radial localization inside dendrimers is important characteristic for drug and gene delivery, synthesis of nanoparticles, and other specific purposes. In this paper we focus on the validation of two theoretical assumptions for dendrimers: (i) independence of NMR relaxations on excluded volume effects and (ii) similarity of mobilities of side and terminal segments of dendrimers. For this purpose we study 1 H NMR spin-lattice relaxation time, T 1H , of two similar peptide dendrimers of the second generation, with and without side fragments in their inner segments. Temperature dependences of 1/T 1H in the temperature range from 283 to 343 K were measured for inner and terminal groups of the dendrimers dissolved in deuterated water. We have shown that the 1/T 1H temperature dependences of inner groups for both dendrimers (with and without side fragments) practically coincide despite different densities of atoms inside these dendrimers. This result confirms the first theoretical assumption. The second assumption is confirmed by the 1/T 1H temperature dependences of terminal groups which are similar for both dendrimers.

  1. Interactions between cells and ionized dendritic biomaterials: Flow cytometry and fluorescence spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.

  2. Preparation of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin

    NASA Astrophysics Data System (ADS)

    Gholipour-Mahmoudalilou, Meysam; Roghani-Mamaqani, Hossein; Azimi, Reza; Abdollahi, Amin

    2018-01-01

    Thermal properties of epoxy resin were improved by preparation of a curing agent of poly (amidoamine) (PAMAM) dendrimer-grafted graphene oxide (GO). Hyperbranched PAMAM-modified GO (GD) was prepared by a divergent dendrimer synthesis methodology. Modification of GO with (3-Aminopropyl)triethoxysilane (APTES), Michael addition of methacrylic acid, and amidation reaction with ethylenediamine results in the curing agent of GD. Then, epoxy resin was cured in the presence of different amounts of GD and the final products were compared with ethylenediamine-cured epoxy resin (E) in their thermal degradation temperature and char contents. Functionalization of GO with APTES and hyperbranched dendrimer formation at the surface of GO were evaluated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and thermogravimetric analysis (TGA) results. TGA results showed that the weight loss associated with chemical moieties in GONH2, GOMA, and GD is estimated to be 10.1, 12.2, and 14.1%, respectively. Covalent attachment of dendrimer at the surface of GO increases its thermal stability. TGA also showed that decomposition temperature and char content are higher for composites compared with E. Scanning and transmission electron microscopies show that flat and smooth graphene nanolayers are wrinkled in GO and re-stacking and flattening of nanolayers is observed in GD.

  3. Structure of star-burst dendrimers: a comparison between small angle x-ray scattering and computer simulation results.

    PubMed

    Rathgeber, Silke; Pakula, Tadeusz; Urban, Volker

    2004-08-22

    We investigated the generation dependent shape and internal structure of star-burst dendrimers under good solvent conditions using small angle x-ray scattering and molecular modeling. Measurements have been performed on poly(amidoamine) dendrimers with generations ranging from g=0 up to g=8 at low concentrations in methanol. We described the static form factor P(q) by a model taking into account the compact, globular shape as well as the loose, polymeric character of dendrimers. Monomer distributions within dendrimers are of special interest for potential applications and have been characterized by the pair correlation function gamma(r), as well as by the monomer and end-group density profile, rho(r) and rho(e)(r), respectively. Monomer density profiles and gamma(r) can be derived from P(q) by modeling and via a model independent approach using the inverse Fourier transformation algorithm first introduced by Glatter. Experimental results are compared with computer simulations performed for single dendrimers of various generations using the cooperative motion algorithm. The simulation gives direct access to gamma(r) and rho(r), allows an independent determination of P(q), and yields in addition to the scattering experiment information about the distribution of the end groups. Excellent qualitative agreement between experiment and simulation has been found. (c) 2004 American Institute of Physics

  4. Elegant pH-Responsive Nanovehicle for Drug Delivery Based on Triazine Dendrimer Modified Magnetic Nanoparticles.

    PubMed

    Landarani-Isfahani, Amir; Moghadam, Majid; Mohammadi, Shima; Royvaran, Maryam; Moshtael-Arani, Naimeh; Rezaei, Saghar; Tangestaninejad, Shahram; Mirkhani, Valiollah; Mohammadpoor-Baltork, Iraj

    2017-08-29

    Owing to properties of magnetic nanoparticles and elegant three-dimensional macromolecule architectural features, dendrimeric structures have been investigated as nanoscale drug delivery systems. In this work, a novel magnetic nanocarrier, generation two (G2) triazine dendrimer modified Fe 3 O 4 @SiO 2 magnetic nanoparticles (MNP-G2), was designed, fabricated, and characterized by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The prepared MNP-G2 nanosystem offers a new formulation that combines the unique properties of MNPs and triazine dendrimer as a biocompatible material for biomedical applications. To demonstrate the potential of MNP-G2, the nanoparticles were loaded with methotrexate (MTX), a proven chemotherapy drug. The MTX-loaded MNP-G2 (MNP-G2/MTX) exhibited a high drug-loading capacity of MTX and the excellent ability for controlled drug release. The cytotoxicity of MNP-G2/MTX using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide based assay and MCF-7, HeLa, and Caov-4 cell lines revealed that MNP-G2/MTX was more active against the tumor cells than the free drug in a mildly acidic environment. The results of hemolysis, hemagglutination, and coagulation assays confirmed the good blood safety of MNP-G2/MTX. Moreover, the cell uptake and intracellular distribution of MNP-G2/MTX were studied by flow cytometry analysis and confocal laser scanning microscopy (CLSM). This research suggests that MNP-G2/MTX with good biocompatibility and degradability can be selected as an ideal and effective drug carrier in targeted biomedicine studies especially anticancer applications.

  5. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy.

    PubMed

    Yang, Hu

    2016-02-01

    Dendrimers possess discrete highly compact nanostructures constituted of successive branched layers. Soon after the inception of dendrimers, recognition of their tunable structures and biologically favorable properties provoked a great enthusiasm in delving deeply into the utility of dendrimers for biomedical and pharmaceutical applications. One of the most important nanotechnology applications is the development of nanomedicines for targeted cancer therapies. Tremendous success in targeted therapies has been achieved with the use of dendrimer-based nanomedicines. This article provides a concise review on latest advances in the utility of dendrimers in immunotherapies and hormone therapies. Much basic and clinical research has been done since the invention of dendrimers, which are highly branched nano-sized molecules with the ability to act as carriers in nanomedicine. In this concise review article, the authors highlighted the current use of dendrimers in immunotherapies and hormone therapies in the fight against cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges.

    PubMed

    Wu, Lin-Ping; Ficker, Mario; Christensen, Jørn B; Trohopoulos, Panagiotis N; Moghimi, Seyed Moein

    2015-07-15

    Dendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments. These have included the use of dendrimers as pro-drugs and vehicles for solubilization, encapsulation, complexation, delivery, and site-specific targeting of small-molecule drugs, biopharmaceuticals, and contrast agents. We briefly review these advances, paying particular attention to attributes that make dendrimers versatile for drug formulation as well as challenging issues surrounding the future development of dendrimer-based medicines.

  7. Energy transfer dynamics in Light-Harvesting Dendrimers

    NASA Astrophysics Data System (ADS)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  8. Novel Targeting Approach for Breast Cancer Gene Therapy

    DTIC Science & Technology

    2009-09-30

    specificity of sigma receptor ligands ( haloperidol and ibogaine)- conjugated polyamidoamine (PAMAM) dendrimers 1. Synthesis, purification and...Heparanase promoter. Cancer Lett., 2006, 240, 114-122. 5. Mukherjee A, Prasad TK, Rao NM, Banerjee R. Haloperidol associated stealth liposomes: A

  9. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers.

    PubMed

    Jemnitz, Katalin; Bátai-Konczos, Attila; Szabó, Mónika; Ioja, Enikő; Kolacsek, Orsolya; Orbán, Tamás I; Török, György; Homolya, László; Kovács, Eszter; Jablonkai, István; Veres, Zsuzsa

    2017-02-01

    Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca 2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca 2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca 2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca 2+ oscillation and sustained Ca 2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca 2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. On Topological Indices of Certain Dendrimer Structures

    NASA Astrophysics Data System (ADS)

    Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei

    2017-05-01

    A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.

  11. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gregurec, Danijela; Irigoyen, Joseba; Martinez, Angel; Moya, Sergio; Ciganda, Roberto; Hermange, Philippe; Ruiz, Jaime; Astruc, Didier

    2016-10-01

    Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

  12. Targeting the lymphatics using dendritic polymers (dendrimers).

    PubMed

    Kaminskas, Lisa M; Porter, Christopher J H

    2011-09-10

    Dendrimers are unique biomaterials that are constructed by the stepwise addition of layers (generations) of polymer around a central core. They can be constructed with a range of molecular weights and have a polyfunctional surface that facilitates the attachment of drugs and pharmacokinetic modifiers such PEG or targeting moieties. These properties have led to considerable interest in the development of dendrimers for a range of biomedical applications. After subcutaneous administration, larger dendrimers in particular (> 8 nm), preferentially drain from the injection site into the peripheral lymphatic capillaries and therefore have potential as lymphatic imaging agents for magnetic resonance and optical fluorescence lymphangiography and as vectors for drug-targeting to lymphatic sites of disease progression. In general, lymphatic targeting of dendrimers is enhanced by increasing size although ultimately larger constructs may be incompletely absorbed from the injection site. Increasing hydrophilicity and reducing surface charge enhances drainage from subcutaneous injection sites, but the reverse is true of uptake into lymph nodes where charge and hydrophobicity promote retention. Larger hydrophilic dendrimers are also capable of extravasation from the systemic circulation, absorption into the lymphatic system and recirculation into the blood. Lymphatic recirculation may therefore be a characteristic of PEGylated dendrimers with long systemic circulation times. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of TRPN dendrimer-modified disordered mesoporous silica for CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyun; Zhang, Sisi; Qin, Hongyan

    2014-08-15

    Highlights: • A novel series of TRPN dendrimers are synthesized. • Structurally disordered mesoporous silica was used to develop the CO{sub 2} adsorbent. • The CO{sub 2} adsorption capacity is relatively high. • The sorbent exhibits a high stability after 12 cycling runs. • The sorbent achieves complete desorption at low temperature (60 °C). - Abstract: A novel series of tri(3-aminopropyl) amine (TRPN) dendrimers were synthesized and impregnated on structurally disordered mesoporous silica (DMS) to generate CO{sub 2} adsorbents (TS). The physicochemical and adsorption properties of the adsorbents before and after dendrimer modification were characterized by X-ray diffraction (XRD), thermogravimetricmore » analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N{sub 2} adsorption–desorption (N{sub 2}-BET) techniques. CO{sub 2} adsorption–desorption tests indicated that the sorbent demonstrates high CO{sub 2} adsorption capacity (138.1 mg g{sup −1} for G1 sample TS-G1-3CN-50 and 91.7 mg g{sup −1} for G2 sample TS-G2-6CN-50), and can completely desorb CO{sub 2} under vacuum at 60 °C. Its CO{sub 2} adsorption capacity at 25 °C increases with the amine loading, achieving the highest adsorption capacity (140.6 mg g{sup −1} for TS-G1-3CN) at 60%. The developed TS materials exhibited excellent cycling stability. After 12 consecutive adsorption–desorption runs, TS-G1-3CN-50 shows an adsorption capacity of 136.0 mg g{sup −1}, retaining 98.5% of its original value.« less

  14. Dendron engineering in self-host blue iridium dendrimers towards low-voltage-driving and power-efficient nondoped electrophosphorescent devices.

    PubMed

    Wang, Yang; Wang, Shumeng; Ding, Junqiao; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2016-12-20

    Dendron engineering in self-host blue Ir dendrimers is reported to develop power-efficient nondoped electrophosphorescent devices for the first time, which can be operated at low voltage close to the theoretical limit (E g /e: corresponding to the optical bandgap divided by the electron charge). With increasing dendron's HOMO energy levels from B-POCz to B-CzCz and B-CzTA, effective hole injection is favored to promote exciton formation, resulting in a significant reduction of driving voltage and improvement of power efficiency. Consequently, the nondoped device of B-CzTA achieves extremely low driving voltages of 2.7/3.4/4.4 V and record high power efficiencies of 30.3/24.4/16.3 lm W -1 at 1, 100 and 1000 cd m -2 , respectively. We believe that this work will pave the way to the design of novel power-efficient self-host blue phosphorescent dendrimers used for energy-saving displays and solid-state lightings.

  15. Vibrational spectroscopic investigation of the gold complexation within the cascade structure of phosphorus-containing dendrimer.

    PubMed

    Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Gottis, S; Laurent, R; Kovalenko, V I

    2018-05-29

    The interaction of the phosphoric dendrimer with gold was performed by means of vibrational spectroscopy and quantum chemistry. Stable complexes are formed with a PN-PS linkage, whereas with an isolated PS bond this does not occur. The change in geometric parameters and delocalization of electric charge under the influence of gold was discovered. The classification of bands in the experimental vibrational spectra of the dendrimer and its complex was carried out. HOMO of molecule of the dendrimer is localized on the SPNP linkage, whereas the LUMO is located on the terminal group. In the SPNP linkage there is a noticeable delocalization of the charge which leads to a change in the reactivity of this group. Interaction energy was estimated as the difference between the energies of the complex and the energies of the molecules of the dendrimer G' 0 and two molecules AuCl and is equal to 25.2 eV. The ionization energy IE and electron affinity EA for AuCl are higher than for dendrimer, therefore, when the complex is formed, these quantities increases. Chemical potential and the electrophilicity index in the complex also increases. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Sulfonate-ended carbosilane dendrimers with a flexible scaffold cause inactivation of HIV-1 virions and gp120 shedding.

    PubMed

    Sepúlveda-Crespo, Daniel; de la Mata, Francisco J; Gómez, Rafael; Muñoz-Fernández, Mª A

    2018-05-17

    Infection with human immunodeficiency virus type 1 (HIV-1) continues to be a global public health issue, especially in low-resource countries. Sexual transmission is responsible for the majority of HIV-1 infections worldwide. Women are more susceptible to HIV-1 acquisition than men and represent nearly 50% of the HIV-infected population. Topical vaginal microbicides that act at the earlier stages of infection offer a prevention strategy to reduce the acquisition of HIV-1. Dendrimers are nano-sized, radially symmetric molecules with a well-defined and monodisperse structure consisting of tree-like arms or branches. We perform a TZM.bl cell line-based screening of two families of carbosilane dendrimers (6 nanocompounds: G1-S12P, G2-S24P, G3-S48P, G1-C12P, G2-C24P and G3-C48P) that we have previously synthesized, containing 12, 24 or 48 sulfonate (or carboxylate) end-groups and a polyphenolic core. This work shows that second- and third-generation sulfonate-ended carbosilane dendrimers with a polyphenolic core (G2-S24P and G3-S48P, respectively) display low cytotoxicity (CC50 > 300 μM) with virucidal anti-R5-HIV-1 activity (EC50 < 50 nM; therapeutic index >6000) causing irreversible HIV-1 inactivation (80-90%) by loss of HIV-1 RNA (40%), gp120 shedding (70-80%) and p24 capsid protein release (45-60%). Herein, we demonstrate that sulfonate end-groups and a flexible scaffold from carbosilane dendrimers strongly influence their properties acting as potent virucides.

  17. Molecular dynamics simulation of coarse-grained poly(L-lysine) dendrimers.

    PubMed

    Rahimi, Ali; Amjad-Iranagh, Sepideh; Modarress, Hamid

    2016-03-01

    Poly(L-lysine) (PLL) dendrimer are amino acid based macromolecules and can be used as drug delivery agents. Their branched structure allows them to be functionalized by various groups to encapsulate drug agents into their structure. In this work, at first, an attempt was made on all-atom simulation of PLL dendrimer of different generations. Based on all-atom results, a course-grained model of this dendrimer was designed and its parameters were determined, to be used for simulation of three generations of PLL dendrimer, at two pHs. Similar to the all-atom, the coarse-grained results indicated that by increasing the generation, the dendrimer becomes more spherical. At pH 7, the dendrimer had larger size, whereas at pH 12, due to back folding of branching chains, they had the tendency to penetrate into the inner layers. The calculated radial probability and radial distribution functions confirm that at pH 7, the PLL dendrimer has more cavities and as a result it can encapsulate more water molecules into its inner structure. By calculating the moment of inertia and the aspect ratio, the formation of spherical structure for PLL dendrimer was confirmed.

  18. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    PubMed Central

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  19. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers.

    PubMed

    Zielińska, Paulina; Staniszewska, Monika; Bondaryk, Małgorzata; Koronkiewicz, Mirosława; Urbańczyk-Lipkowska, Zofia

    2015-11-13

    Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.