Sample records for g5r protein possesses

  1. A conserved protein interaction interface on the type 5 G protein beta subunit controls proteolytic stability and activity of R7 family regulator of G protein signaling proteins.

    PubMed

    Porter, Morwenna Y; Xie, Keqiang; Pozharski, Edwin; Koelle, Michael R; Martemyanov, Kirill A

    2010-12-24

    Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.

  2. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects.

    PubMed

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S; Griffin, Patrick R; Dawson, Philip E; McDonald, Patricia H; Lerner, Richard A

    2015-12-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as 'ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM.

  3. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα13.

    PubMed

    Scherer, Stephanie L; Cain, Matthew D; Kanai, Stanley M; Kaltenbronn, Kevin M; Blumer, Kendall J

    2017-06-16

    The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ 5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of G i/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated G i/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα 13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα 13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα 13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα 13 ·R7-RGS complexes. Because Gα 13 /R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ 5 with or without R7BP. We found that neurite retraction evoked by Gα 12/13 -dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα 12/13 but not Gα i/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα 13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function. © 2017 by

  4. R4 RGS Proteins: Regulation of G Protein Signaling and Beyond

    PubMed Central

    Bansal, Geetanjali; Druey, Kirk M.; Xie, Zhihui

    2007-01-01

    The Regulators of G protein Signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCRs) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly-appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways as well as a diverse array of non-GPCR-mediated biological responses. PMID:18006065

  5. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system.

    PubMed

    Bertini, Elisa V; Nieto Peñalver, Carlos G; Leguina, Ana C; Irazusta, Verónica P; de Figueroa, Lucía I C

    2014-09-01

    The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.

  6. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension.

    PubMed

    Hong, Kwangseok; Li, Min; Nourian, Zahra; Meininger, Gerald A; Hill, Michael A

    2017-12-01

    Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT 1 R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT 1 R when activated by mechanical stress or angiotensin II and whether this modulates AT 1 R-mediated vasoconstriction. To determine whether activation of the AT 1 R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT 1 R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT 1 R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT 1 R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT 1 R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT 1 R activation results in translocation of RGS5 toward the plasma membrane, limiting AT 1 R-mediated vasoconstriction through its role in G q/11 protein-dependent signaling. © 2017 American Heart Association, Inc.

  7. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  8. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  9. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    PubMed

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  10. The impact of miR-34a on protein output in hepatocellular carcinoma HepG2 cells.

    PubMed

    Cheng, Jun; Zhou, Lin; Xie, Qin-Fen; Xie, Hai-Yang; Wei, Xu-Yong; Gao, Feng; Xing, Chun-Yang; Xu, Xiao; Li, Lan-Juan; Zheng, Shu-Sen

    2010-04-01

    MicroRNAs are small non-coding RNA molecules that play essential roles in biological processes ranging from cell cycle to cell migration and invasion. Accumulating evidence suggests that miR-34a, as a key mediator of p53 tumor suppression, is aberrantly expressed in human cancers. In the present study, we aimed to explore the precise biological role of miR-34a and the global protein changes in HCC cell line HepG2 cells transiently transfected with miR-34a. Transfection of miR-34a into HepG2 cells caused suppression of cell proliferation, inhibition of cell migration and invasion. It also induced an accumulation of HepG2 cells in G1 phase. Among 116 protein spots with differential expression separated by 2-DE method, 34 proteins were successfully identified by MALDI-TOF/TOF analysis. Of these, 15 downregulated proteins may be downstream targets of miR-34a. Bioinformatics analysis produced a protein-protein interaction network, which revealed that the p53 signaling pathway and cell cycle pathway were two major hubs containing most of the proteins regulated by miR-34a. Cytoskeletal proteins such as LMNA, GFAP, MACF1, ALDH2, and LOC100129335 are potential targets of miR-34a. In conclusion, abrogation of miR-34a function could cause downstream molecules to switch on or off, leading to HCC development.

  11. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    PubMed

    Liu, Jingyan; Yang, Haibian; Bao, Fei; Ao, Kevin; Zhang, Xiaoyan; Zhang, Yuelin; Yang, Shuhua

    2015-10-01

    Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1) to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1), RPS4 (Resistance to P. syringae 4) and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1). Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  12. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily.

    PubMed

    Muntean, Brian S; Martemyanov, Kirill A

    2016-03-25

    Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Maye, M; Zhang, Y

    We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.

  14. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    PubMed

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  15. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes.

    PubMed

    Braun, L; Ghebrehiwet, B; Cossart, P

    2000-04-03

    InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.

  16. The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors.

    PubMed

    Bondar, Alexey; Lazar, Josef

    2017-06-09

    The G i/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of G i/o -GPCR coupling and the high rate of G i/o signal transduction have been hypothesized to be enabled by the existence of stable associates between G i/o proteins and their cognate GPCRs in the inactive state (G i/o -GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gα i1 subunits labeled with fluorescent proteins and four GPCRs: the α 2A -adrenergic receptor, GABA B , cannabinoid receptor type 1 (CB 1 R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gα i1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gα i1 subunits and α 2A -adrenergic receptor, GABA B , or dopamine receptor type 2 receptors did not reveal any interaction between the G i1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB 1 R exhibited an interaction with the G i1 protein. Further experiments revealed that this interaction is caused solely by CB 1 R basal activity; no preassembly between CB 1 R and the G i1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active G i1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and G i1 (basal coupling). These findings suggest that G i1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria

    PubMed Central

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau; Lavstsen, Thomas; Aide, Pedro; Jiménez, Alfons; Turner, Louise; Gupta, Himanshu; De Las Salas, Briegel; Mandomando, Inacio; Wang, Christian W.; Petersen, Jens E. V.; Muñoz, Jose; Gascón, Joaquim; Macete, Eusebio; Alonso, Pedro L.; Chitnis, Chetan E.

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falciparum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-transcending functional antibodies. This study supports a key role for gC1qR in malaria-associated endovascular pathogenesis and suggests the feasibility of designing interventions against severe malaria targeting this specific interaction. PMID:27835682

  18. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.

    PubMed

    Rose, Alexander S; Zachariae, Ulrich; Grubmüller, Helmut; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W

    2015-01-01

    GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.

  19. 5. Photograph of a line drawing in the possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a line drawing in the possession of the Engineer's Office of the Marion, IL Veterans Administration Medical Center. PLOT PLAN; DRAWING 1R, DATED SEPTEMBER 4, 1940. (8 x 10 negative) - Veterans Administration Medical Center, Old State Route 13 West, Marion, Williamson County, IL

  20. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein.

    PubMed

    Tayou, Junior; Wang, Qiang; Jang, Geeng-Fu; Pronin, Alexey N; Orlandi, Cesare; Martemyanov, Kirill A; Crabb, John W; Slepak, Vladlen Z

    2016-04-22

    RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Induction of Cardiac Fibrosis by β-Blocker in G Protein-independent and G Protein-coupled Receptor Kinase 5/β-Arrestin2-dependent Signaling Pathways*

    PubMed Central

    Nakaya, Michio; Chikura, Satsuki; Watari, Kenji; Mizuno, Natsumi; Mochinaga, Koji; Mangmool, Supachoke; Koyanagi, Satoru; Ohdo, Shigehiro; Sato, Yoji; Ide, Tomomi; Nishida, Motohiro; Kurose, Hitoshi

    2012-01-01

    G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers. PMID:22888001

  2. When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation.

    PubMed

    DiGiacomo, Vincent; Marivin, Arthur; Garcia-Marcos, Mikel

    2018-01-23

    Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.

  3. Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction

    PubMed Central

    Mnpotra, Jagjeet S.; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L.; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P.; Pitman, Michael C.; Song, Zhao-Hui; Reggio, Patricia H.

    2014-01-01

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. PMID:24855641

  4. GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation.

    PubMed

    Damian, Marjorie; Pons, Véronique; Renault, Pedro; M'Kadmi, Céline; Delort, Bartholomé; Hartmann, Lucie; Kaya, Ali I; Louet, Maxime; Gagne, Didier; Ben Haj Salah, Khoubaib; Denoyelle, Séverine; Ferry, Gilles; Boutin, Jean A; Wagner, Renaud; Fehrentz, Jean-Alain; Martinez, Jean; Marie, Jacky; Floquet, Nicolas; Galès, Céline; Mary, Sophie; Hamm, Heidi E; Banères, Jean-Louis

    2018-04-24

    The growth hormone secretagogue receptor (GHSR) and dopamine receptor (D2R) have been shown to oligomerize in hypothalamic neurons with a significant effect on dopamine signaling, but the molecular processes underlying this effect are still obscure. We used here the purified GHSR and D2R to establish that these two receptors assemble in a lipid environment as a tetrameric complex composed of two each of the receptors. This complex further recruits G proteins to give rise to an assembly with only two G protein trimers bound to a receptor tetramer. We further demonstrate that receptor heteromerization directly impacts on dopamine-mediated Gi protein activation by modulating the conformation of its α-subunit. Indeed, association to the purified GHSR:D2R heteromer triggers a different active conformation of Gαi that is linked to a higher rate of GTP binding and a faster dissociation from the heteromeric receptor. This is an additional mechanism to expand the repertoire of GPCR signaling modulation that could have implications for the control of dopamine signaling in normal and physiopathological conditions.

  5. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    PubMed

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  6. Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864

  7. Co-possession of phosphodiesterase type-5 inhibitors (PDE5-I) with nitrates.

    PubMed

    Chang, Li-Ling; Ma, Mark; Allmen, Heather von; Henderson, Scott C; Harper, Kristine; Hornbuckle, Kenneth

    2010-06-01

    Estimate the proportion of phosphodiesterase type-5 inhibitor (PDE5-I) patients who co-possess nitrates and compare the proportion of tadalafil patients dispensed nitrates to a matched control group. Secondarily, examine the percentage of co-possession of PDE5-Is and nitrates where the products were dispensed on the same day or written by the same prescriber. Male patients aged 18+ years filling PDE5-I prescriptions between December 2003 and March 2006 were identified using a U.S. longitudinal prescription database (IMS Health LRx). Similar patients not dispensed a PDE5-I during this period were matched to the tadalafil-dispensed cohort using a propensity score approach. Co-possession, as a proxy for concurrent use, was defined as an overlap in time on therapy for a PDE5-I and nitrate and was compared for the three PDE5-Is and for tadalafil to the matched control group. Among 601,063 tadalafil patients, 3.31% were dispensed a nitrate during the study period, compared to 6.18% in control patients (n = 601,063). When co-possessed prescriptions were defined by overlapping exposure periods, the proportion of PDE5-I patients with co-possessed nitrates ranged from 1.44% (tadalafil) to 1.72% (vardenafil) and 2.13% (sildenafil). Co-possession percentages of PDE5-I prescriptions were 0.83% for tadalafil and 1.07% for sildenafil and vardenafil. The majority (54.29%) of co-possessed PDE5-I and nitrate prescriptions had the nitrate dispensed prior to the PDE5-I prescription identified in the study cohort. Keeping in mind the limitations of observational studies, these results suggest that co-dispensing of nitrates and PDE5-Is is low. Compared to control patients, the proportion of nitrate co-possession was lowest for patients filling tadalafil. Tadalafil patients also had the lowest co-possessed proportion among the three PDE5-I cohorts. While the majority of co-possessed drug pairs were prescribed by different providers, the highest percentage of co-prescribing from the same

  8. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity.

    PubMed

    Ilyaskina, Olga S; Lemoine, Horst; Bünemann, Moritz

    2018-05-08

    G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of G i/o , G q/11 , G s , and G 12/13 proteins to muscarinic M 1 , M 2 , and M 3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M 3 -R interactions but rather the affinities of G q and G o proteins to M 3 -Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.

  9. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation.

    PubMed

    Jia, Lixia; Chisari, Mariangela; Maktabi, Mohammad H; Sobieski, Courtney; Zhou, Hao; Konopko, Aaron M; Martin, Brent R; Mennerick, Steven J; Blumer, Kendall J

    2014-02-28

    Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.

  10. Effect of the R119G mutation on human P5CR structure and its interactions with NAD: Insights derived from molecular dynamics simulation and free energy analysis.

    PubMed

    Sang, Peng; Xie, Yue-Hui; Li, Lin-Hua; Ye, Yu-Jia; Hu, Wei; Wang, Jing; Wan, Wen; Li, Rui; Li, Long-Jun; Ma, Lin-Ling; Li, Zhi; Liu, Shu-Qun; Meng, Zhao-Hui

    2017-04-01

    Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex. These MD simulations and ED analyses suggest that the R119G mutation decreases the flexibility of P5CR, specifically in the substrate binding pocket, which could decrease the kinetics of the cofactor entrance and egress. Furthermore, the MM-PBSA calculations suggest the R119G mutant has a lower cofactor binding affinity for NAD than WT. Our study provides insight into the possible role of the R119G mutation during interactions between P5CR and NAD, thus bettering our understanding of how the mutation promotes cutis laxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function

    PubMed Central

    Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart

    2013-01-01

    Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739

  12. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons.

    PubMed

    Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun

    2017-09-01

    Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mutations in the Vaccinia Virus A33R and B5R Envelope Proteins That Enhance Release of Extracellular Virions and Eliminate Formation of Actin-Containing Microvilli without Preventing Tyrosine Phosphorylation of the A36R Protein

    PubMed Central

    Katz, Ehud; Ward, Brian M.; Weisberg, Andrea S.; Moss, Bernard

    2003-01-01

    The spread of vaccinia virus in cell cultures is mediated by virions that adhere to the tips of specialized actin-containing microvilli and also by virions that are released into the medium. The use of a small plaque-forming A36R gene deletion mutant to select spontaneous second-site mutants exhibiting enhanced virus release was described previously. Two types of mutations were found: C-terminal truncations of the A33R envelope protein and a single amino acid substitution of the B5R envelope protein. In the present study, we transferred each type of mutation into a wild-type virus background in order to study their effects in vitro and in vivo. The two new mutants conserved the enhanced virus release properties of the original isolates; the A33R mutant produced considerably more extracellular virus than the B5R mutant. The extracellular virus particles contained the truncated A33R protein in one case and the mutated B5R protein in the other. Remarkably, both mutants failed to form actin tails and specialized microvilli, despite the presence of an intact A36R gene. The synthesis of the A36R protein as well as its physical association with the mutated or wild-type A33R protein was demonstrated. Moreover, the A36R protein was tyrosine phosphorylated, a step mediated by a membrane-associated Src kinase that regulates the nucleation of actin polymerization. The presence of large numbers of adherent virions on the cell surface argued against rapid dissociation as having a key role in preventing actin tail formation. Thus, the A33R and B5R proteins may be more directly involved in the formation or stabilization of actin tails than had been previously thought. When mice were inoculated intranasally, the A33R mutant was highly attenuated and the B5R mutant was mildly attenuated compared to wild-type virus. Enhanced virus release, therefore, did not compensate for the loss of actin tails and specialized microvilli. PMID:14581563

  14. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus.

    PubMed

    Wen, Weitao; He, Zhenjian; Jing, Qinlong; Hu, Yiwen; Lin, Cuiji; Zhou, Rui; Wang, Xiaoqun; Su, Yangfan; Yuan, Jiehao; Chen, Zhenxin; Yuan, Jie; Wu, Jueheng; Li, Jun; Zhu, Xun; Li, Mengfeng

    2015-06-01

    It has been well recognized that microRNA plays a role in the host-pathogen interaction network. The significance of microRNA in the regulation of dengue virus (DENV) replication, however, remains unknown. The objective of our study was to determine the biological function of miR-548g-3p in modulating the replication of dengue virus. Here we report that employment of a microRNA target search algorithm to analyze the 5' untranslated region (5'UTR) consensus sequences of DENV (DENV serotypes 1-4) led to a discovery that miR-548g-3p directly targets the stem loop A promoter element within the 5'UTR, a region essential for DENV replication. Real-time PCR was used to measure the expression levels of miR-548g-3p under DENV infection. We performed overexpression and inhibition assays to test the role of miR-548g-3p on DENV replication. The protein and mRNA levels of interferon were measured by ELISA and real-time PCR respectively. We found that overexpression of miR-548g-3p suppressed multiplication of DENV 1, 2, 3 and 4, and that miR-548g-3p was also found to interfere with DENV translation, thereby suppressing the expression of viral proteins. Our results suggest that miR-548g-3p directly regulates DENV replication and warrant further study to investigate the feasibility of microRNA-based anti-DENV approaches. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  15. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin

    PubMed Central

    Alagarsamy, Sudar; Saugstad, Julie; Warren, Lee; Mansuy, Isabelle M.; Gereau, Robert W.; Conn, P. Jeffrey

    2010-01-01

    Previous reports have shown that activation of N-methyl-D-aspartate (NMDA) receptors potentiates responses to activation of the group I metabotropic glutamate receptor mGluR5 by reversing PKC-mediated desensitization of this receptor. NMDA-induced reversal of mGluR5 desensitization is dependent on activation of protein phosphatases. However, the specific protein phosphatase involved and the precise mechanism by which NMDA receptor activation reduces mGluR desensitization are not known. We have performed a series of molecular, biochemical, and genetic studies to show that NMDA-induced regulation of mGluR5 is dependent on activation of calcium-dependent protein phosphatase 2B/calcineurin (PP2B/CaN). Furthermore, we report that purified calcineurin directly dephosphorylates the C-terminal tail of mGluR5 at sites that are phosphorylated by PKC. Finally, immunoprecipitation and GST fusion protein pull-down experiments reveal that calcineurin interacts with mGluR5, suggesting that these proteins could be colocalized in a signaling complex. Taken together with previous studies, these data suggest that activation of NMDA receptors leads to activation of calcineurin and that calcineurin modulates mGluR5 function by directly dephosphorylating mGluR5 at PKC sites that are involved in desensitization of this receptor. 2005 Elsevier Ltd. All rights reserved. PMID:16005030

  16. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site.

    PubMed

    Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H

    2006-11-21

    Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.

  17. A quantitative characterization of the yeast heterotrimeric G protein cycle

    PubMed Central

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  18. R516Q mutation in Melanoma differentiation-associated protein 5 (MDA5) and its pathogenic role towards rare Singleton-Merten syndrome; a signature associated molecular dynamics study.

    PubMed

    Raghuraman, P; Sudandiradoss, C

    2018-02-20

    Singleton-Merten syndrome, a critical and rare multifactorial disorder that is closely linked to R516Q mutation in MDA5 protein associated with an enhanced interferon response in the affected individual. In the present study, we provide conclusive key evidence on R516Q mutation and their connectivity towards sequence-structural basis dysfunction of MDA5 protein. Among the various mutations, we found R516Q is the most pathogenic mutation based on mutational signature Q-A-[RE]-G-R-[GA]-R-A-[ED]-[DE]-S-[ST]-Y-[TSAV]-L-V designed from our work. Further, we derived a distant ortholog for this mutational signature from which we identified 343 intra-residue interactions that fall communally in the position required to maintain the structural and functional integration of protein architecture. This identification served us to understand the critical role of hot spots in residual aggregation that holds a native form of folding conformation in the functional region. In addition, the long-range molecular dynamics simulation demarcated the residual dependencies of conformational transition in distinct regions ( L29 360-370 α18 , α19 380-410 L31 , α21 430-480 L33-α22-L35 and α24 510-520 L38 ) occurring upon R516Q mutation. Together, our results emphasise that the dislocation of functional hot spots Pro229, Arg414, Val498, Met510, Ala513, Gly515 and Arg516 in MDA5 protein which is important for interior structural packing and fold arrangements. In a nutshell, our findings are perfectly conceded with other experimental reports and will have potential implications in immune therapeutical advancement for rare singleton-merten syndrome.

  19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenman, W.M.; Meuser, R.U.

    1986-02-01

    Chlamydia trachomatis proteins were electrophoresed and then transferred to nitrocellulose paper to detect chlamydial proteins which bind to eucaryotic cell membranes. Resolved polypeptides of C. trachomatis serovars J and L/sub 2/ were reacted with iodinated HeLa cell membranes and autoradiographed. Infectious elementary bodies of both serovars possess 31,000- and 18,000-dalton proteins which bind to HeLa cells. In contrast, noninfectious reticulate bodies do not possess eucaryotic cell-binding proteins. Both proteins are antigenic when reacted with hyperimmune rabbit antisera in immunoblots and antisera raised against the 31,000- and 18,000-dalton proteins are inhibitory to chlamydia-host cell association. In addition, these antisera exhibit neutralizingmore » activity. These data suggest that these putative chlamydial adhesions play a key role in the early steps of chlamydia-host cell interaction and that antibody directed against them may be protective.« less

  1. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5.

    PubMed

    Zhu, Jinliang; Li, Ming; Chen, Lixue; Liu, Ping; Qiao, Jie

    2014-07-01

    Does protein source or human serum albumin (HSA) in embryo culture media influence the subsequent birthweight? A significant difference was observed in gestational age- and gender-adjusted birthweight (Z scores) and the proportion of large-for-gestational age (LGA) babies between embryos cultured in G1 v5 and those cultured in G1-PLUS v5 media. It has been reported that the birthweights of singletons born from embryos cultured in Vitrolife are significantly higher than those cultured in the Cook group of media, and that G1-PLUS (Vitrolife, Gothenburg, Sweden) is associated with increased birth and placenta weights compared with Medicult ISMI. This study was a retrospective analysis of neonatal birthweights, and included 1097 singletons born from fresh embryo transfer cycles at the Center for Reproductive Medicine of Peking University Third Hospital between January 2011 and August 2012. The number of singletons born from G1 v5 culture media was 489, and the number of singletons born from G1-PLUS v5 media was 608. Patients <40 years of age with a BMI <30 kg/m² were analysed. Only data from newborns from singleton pregnancies and born alive after the 28th week of gestation were included. Patients with a vanishing twin or with pregnancy-related complications, such as diabetes and hypertension, were excluded, as were patients who received preimplantation genetic diagnosis or used donor oocytes. Multiple linear regression analysis was performed to determine the influence of individual factors on birthweights of singleton newborns. The birthweights and Z scores of singletons and LGA babies were compared between the G1 v5 and G1-PLUS v5 media groups. The absolute birthweights for singletons resulting from G1-PLUS v5 were not different from singletons resulting from G1 v5 (3375.9 ± 479.6 g versus 3333.2 ± 491.6 g, respectively; P = 0.14). However the Z scores for singletons from embryos cultured in G1-PLUS v5 were significantly higher than for singletons cultured in G1 v

  2. Structural studies of G protein-coupled receptors.

    PubMed

    Lu, Mengjie; Wu, Beili

    2016-11-01

    G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y 1 R and P2Y 12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  3. Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5)*

    PubMed Central

    Haas, Laura T.; Kostylev, Mikhail A.; Strittmatter, Stephen M.

    2014-01-01

    Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrPC). PrPC interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrPC to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrPC and mGluR5 in cell lines and mouse brain. We show that the PrPC segment of amino acids 91–153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrPC interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrPC and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrPC and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrPC segment of amino acids 91–153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrPC. The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrPC and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol. PMID:25148681

  4. Induction of apoptosis in human liver carcinoma HepG2 cell line by 5-allyl-7-gen-difluoromethylenechrysin.

    PubMed

    Tan, Xiang-Wen; Xia, Hong; Xu, Jin-Hua; Cao, Jian-Guo

    2009-05-14

    To investigate the effect of 5-allyl-7-gen-difluoromethylenechrysin (ADFMChR) on apoptosis of human liver carcinoma HepG2 cell line and the molecular mechanisms involved. HepG2 cells and L-02 cells were cultured in vitro and the inhibitory effect of ADFMChR on their proliferation was measured by MTT assay. The apoptosis of HepG2 cells was determined by flow cytometry (FCM) using propidium iodide (PI) fluorescence staining. DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of ADFMChR on the proxisome proliferator-activated receptor gamma (PPARgamma), NF-kappaB, Bcl-2 and Bax protein expression of HepG2 cells were analyzed by Western blotting. MTT assay showed that ADFMChR significantly inhibited proliferation of HepG2 cells in a dose-dependent manner, with little effect on growth of L-02 cells, and when IC(50) was measured as 8.45 micromol/L and 191.55 micromol/L respectively, the potency of ADFMChR to HepG2 cells, was found to be similar to 5-fluorouracil (5-FU, IC(50) was 9.27 micromol/L). The selective index of ADFMChR cytotoxicity to HepG2 cells was 22.67 (191.55/8.45), higher than 5-FU (SI was 7.05 (65.37/9.27). FCM with PI staining demonstrated that the apoptosis rates of HepG2 cells treated with 3.0, 10.0 and 30.0 micromol/L ADFMChR for 48 h were 5.79%, 9.29% and 37.8%, respectively, and were significantly higher when treated with 30.0 micromol/L ADFMChR than when treated with 30.0 micromol/L ChR (16.0%) (P < 0.05) and were similar to those obtained with 30.0 micromol/L 5-FU (41.0%). DNA agarose gel electrophoresis showed that treatment of HepG2 cells with 10.0 micromol/L ADFMChR for 48 h and 72 h resulted in typical DNA ladders which could be reversed by 10.00 micromol/L GW9662, a blocker of PPARgamma. Western blotting analysis revealed that after 24 h of treatment with 3.0, 10.0, 30.0 micromol/L ADFMChR, PPARgamma and Bax protein expression in HepG2 cells increased but Bcl-2 and NF-kappaB expression decreased; however, pre

  5. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5).

    PubMed

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-12-23

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5 , which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.

  6. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)

    PubMed Central

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-01-01

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541

  7. Pindolol antagonises G-protein activation at both pre- and postsynaptic serotonin 5-HT1A receptors: a.

    PubMed

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2001-04-01

    The arylalkylamine, pindolol, may potentiate the clinical actions of antidepressant agents. Although it is thought to act via blockade of 5-HT1A autoreceptors, its efficacy at these sites remains controversial. Herein, we evaluated the actions of pindolol at 5-HT1A autoreceptors and specific populations of postsynaptic 5-HT1A receptors employing [35S]GTPgammaS autoradiography, a measure of receptor-mediated G-protein activation. Both 8-OH-DPAT (1 microM) and 5-HT (10 microM) elicited a pronounced increase in [35S]GTPyS binding in the dorsal raphe nucleus, which contains serotonergic cell bodies bearing 5-HT1A autoreceptors. Pindolol abolished their actions. In the dentate gyrus, lateral septum and entorhinal cortex, structures enriched in postsynaptic 5-HT1A receptors, 8-OH-DPAT (1 microM) and 5-HT (10 microM) also elicited a marked increase in [35S]GTPgammaS binding which was likewise blocked by pindolol. The antagonism of 5-HT-induced [35S]GTPgammaS labelling in the dentate gyrus was shown to be concentration-dependent, yielding a pIC50 of 5.82. Pindolol did not, itself, affect [35S]GTPgammaS binding in any brain region examined. In conclusion, these data suggest that, as characterised by [35S]GTPgammaS autoradiography, and compared with 5-HT and 8-OH-DPAT, pindolol possesses low efficacy at both pre- and postsynaptic 5-HT1A receptors.

  8. Stereochemistry of an agonist determines coupling preference of beta2-adrenoceptor to different G proteins in cardiomyocytes.

    PubMed

    Woo, Anthony Yiu-Ho; Wang, Tian-Bing; Zeng, Xiaokun; Zhu, Weizhong; Abernethy, Darrell R; Wainer, Irving W; Xiao, Rui-Ping

    2009-01-01

    A fundamental question regarding receptor-G protein interaction is whether different agonists can lead a receptor to different intracellular signaling pathways. Our previous studies have demonstrated that although most beta(2)-adrenoceptor agonists activate both G(s) and G(i) proteins, fenoterol, a full agonist of beta(2)-adrenoceptor, selectively activates G(s) protein. Fenoterol contains two chiral centers and may exist as four stereoisomers. We have synthesized a series of stereoisomers of fenoterol and its derivatives and characterized their receptor binding and pharmacological properties. We tested the hypothesis that the stereochemistry of an agonist determines selectivity of receptor coupling to different G protein(s). We found that the R,R isomers of fenoterol and methoxyfenoterol exhibited more potent effects to increase cardiomyocyte contraction than their S,R isomers. It is noteworthy that although (R,R)-fenoterol and (R,R)-methoxyfenoterol preferentially activate G(s) signaling, their S,R isomers were able to activate both G(s) and G(i) proteins as evidenced by the robust pertussis toxin sensitivities of their effects on cardiomyocyte contraction and on phosphorylation of extracellular signal-regulated kinase 1/2. The differential G protein selectivities of the fenoterol stereoisomers were further confirmed by photoaffinity labeling studies on G(s),G(i2), and G(i3) proteins. The inefficient G(i) signaling with the R,R isomers is not caused by the inability of the R,R isomers to trigger the protein kinase A (PKA)-mediated phosphorylation of the beta(2)-adrenoceptor, because the R,R isomers also markedly increased phosphorylation of the receptor at serine 262 by PKA. We conclude that in addition to receptor subtype and phosphorylation status, the stereochemistry of a given agonist plays an important role in determining receptor-G protein selectivity and downstream signaling events.

  9. Effects of immunization with the rNfa1 protein on experimental Naegleria fowleri-PAM mice.

    PubMed

    Lee, Y J; Kim, J H; Sohn, H J; Lee, J; Jung, S Y; Chwae, Y J; Kim, K; Park, S; Shin, H J

    2011-07-01

    Free-living Naegleria fowleri causes primary amoebic meningoencephalitis (PAM) in humans and animals. To examine the effect of immunization with Nfa1 protein on experimental murine PAM because of N. fowleri, BALB/c mice were intra-peritoneally or intra-nasally immunized with a recombinant Nfa1 protein. We analysed Nfa1-specific antibody and cytokine induction, and the mean survival time of infected mice. Mice immunized intra-peritoneally or intra-nasally with rNfa1 protein developed specific IgG, IgA and IgE antibodies; the IgG response was dominated by IgG1, followed by IgG2b, IgG2a and IgG3. High levels of the Th1 cytokine, IFN-γ, and the regulatory cytokine, IL-10, were also induced. The mean survival time of mice immunized intra-peritoneally with rNfa1 protein was prolonged compared with controls, (25.0 and 15.5 days, respectively). Similarly, the mean survival time of mice immunized intra-nasally with rNfa1 protein was 24.7 days, compared with 15.0 days for controls. © 2011 Blackwell Publishing Ltd.

  10. A single-nucleotide polymorphism in the canine cytochrome b5 reductase (CYB5R3) gene is associated with sulfonamide hypersensitivity and is overrepresented in Doberman Pinschers.

    PubMed

    Reinhart, J M; Ekena, J; Cioffi, A C; Trepanier, L A

    2018-06-01

    Canine sulfonamide hypersensitivity (HS) has been associated with a variant in the cytochrome b 5 reductase gene (CYB5R3 729A>G), which encodes a drug-detoxifying enzyme. Study objectives were to determine variant allele frequency in Doberman Pinschers (DOBE), a breed which may be predisposed to sulfonamide HS, and to characterize the effects of CYB5R3 729G on gene expression and function. CYB5R3 729A>G allele frequencies were compared between DOBE (n = 24) vs. non-Doberman (non-DOBE; n = 60) dogs. CYB5R3mRNA expression, protein expression, and reduction of sulfamethoxazole hydroxylamine were compared between banked canine liver samples of 729AA vs. GG genotype. The 729G allele was overrepresented in DOBE (1.00) vs. non-DOBE dogs (0.567, p < .0001). mRNA and protein expressions as well as cyt b 5 reductase activity were similar between livers of AA and GG genotype. All Doberman Pinschers in this study were homozygous for CYB5R3 729G, which could contribute to this breed's apparent predisposition to sulfonamide HS. However, CYB5R3 729G does not alter sulfamethoxazole detoxification capacity, so a direct role could not be demonstrated. It is possible that this marker is linked to another contributing variant. © 2018 John Wiley & Sons Ltd.

  11. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    PubMed

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. S+T+R+O+N+G Kids Life Skills Program: Levels K-5.

    ERIC Educational Resources Information Center

    Silbert, Linda Bress; Silbert, Alvin J.

    Strong kids have the fortitude to resist drug/alcohol abuse and other tendencies towards anti-social behavior. Research has shown that strong kids have attained a high level of development in six crucial areas. The S+T+R+O+N+G Kids Program builds upon each of these areas: (1) Self-Esteem; (2) Trust; (3) Responsibility; (4) Options; (5) Needs; (6)…

  13. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    PubMed

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  14. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site

    PubMed Central

    Diederich, Sandra; Berhane, Yohannes; Embury-Hyatt, Carissa; Hisanaga, Tamiko; Handel, Katherine; Cottam-Birt, Colleen; Ranadheera, Charlene; Kobasa, Darwyn

    2015-01-01

    ABSTRACT Although a polybasic HA0 cleavage site is considered the dominant virulence determinant for highly pathogenic avian influenza (HPAI) H5 and H7 viruses, naturally occurring virus isolates possessing a polybasic HA0 cleavage site have been identified that are low pathogenic in chickens. In this study, we generated a reassortant H5N3 virus that possessed the hemagglutinin (HA) gene from H5N1 HPAI A/swan/Germany/R65/2006 and the remaining gene segments from low pathogenic A/chicken/British Columbia/CN0006/2004 (H7N3). Despite possessing the HA0 cleavage site GERRRKKR/GLF, this rH5N3 virus exhibited a low pathogenic phenotype in chickens. Although rH5N3-inoculated birds replicated and shed virus and seroconverted, transmission to naive contacts did not occur. To determine whether this virus could evolve into a HPAI form, it underwent six serial passages in chickens. A progressive increase in virulence was observed with the virus from passage number six being highly transmissible. Whole-genome sequencing demonstrated the fixation of 12 nonsynonymous mutations involving all eight gene segments during passaging. One of these involved the catalytic site of the neuraminidase (NA; R293K) and is associated with decreased neuraminidase activity and resistance to oseltamivir. Although introducing the R293K mutation into the original low-pathogenicity rH5N3 increased its virulence, transmission to naive contact birds was inefficient, suggesting that one or more of the remaining changes that had accumulated in the passage number six virus also play an important role in transmissibility. Our findings show that the functional linkage and balance between HA and NA proteins contributes to expression of the HPAI phenotype. IMPORTANCE To date, the contribution that hemagglutinin-neuraminidase balance can have on the expression of a highly pathogenic avian influenza virus phenotype has not been thoroughly examined. Reassortment, which can result in new hemagglutinin

  15. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    PubMed

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  16. Enterococcus faecium PBP5-S/R, the missing link between PBP5-S and PBP5-R.

    PubMed

    Pietta, Ester; Montealegre, Maria Camila; Roh, Jung Hyeob; Cocconcelli, Pier Sandro; Murray, Barbara E

    2014-11-01

    During a study to investigate the evolution of ampicillin resistance in Enterococcus faecium, we observed that a number of E. faecium strains, mainly from the recently described subclade A2, showed PBP5 sequences in between PBP5-S and PBP5-R. These hybrid PBP5-S/R patterns reveal a progression of amino acid changes from the S form to the R form of this protein; however, these changes do not strictly correlate with changes in ampicillin MICs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP.

    PubMed

    Kim, Do Jin; Bitto, Eduard; Bingman, Craig A; Kim, Hyun-Jung; Han, Byung Woo; Phillips, George N

    2015-07-01

    Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann-like α/β overall fold. The bound AMP and conservation of residues in the ATP-binding loop suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  18. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.

    PubMed

    Suzuki, Takuo; Ishii-Watabe, Akiko; Tada, Minoru; Kobayashi, Tetsu; Kanayasu-Toyoda, Toshie; Kawanishi, Toru; Yamaguchi, Teruhide

    2010-02-15

    The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.

  19. Jacalin Lectin At5g28520 Is Regulated By ABA and miR846

    PubMed Central

    Jia, Fan; Rock, Christopher D.

    2013-01-01

    Plant microRNAs (miRNAs) are important regulators of development and stress responses and are oftentimes under transcriptional regulation by stresses and plant hormones. We recently showed that polycistronic MIR842 and MIR846 are expressed from the same primary transcript which is subject to alternative splicing. ABA treatment affects the alternative splicing of the primary cistronic transcript which results in differential expression of the two miRNAs that are predicted to target the same family of jacalin lectin genes. One variant of miR846 in roots can direct the cleavage of AT5G28520, which is also highly upregulated by ABA in roots. In this addendum, we present additional results further supporting the regulation of AT5G28520 by MIR846 using a T-DNA insertion line mapping upstream of MIR842 and MIR846. We also show that AT5G28520 is transcriptionally induced by ABA and this induction is subject to ABA signaling effectors in seedlings. Based on previous results and data presented in this paper, we propose an interaction loop between MIR846, AT5G28520 and ABA in roots. PMID:23603955

  20. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    PubMed

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-05-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.

  1. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    PubMed Central

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-01-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033

  2. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.

    PubMed

    Schöneberg, Johannes; Heck, Martin; Hofmann, Klaus Peter; Noé, Frank

    2014-09-02

    Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. C5aR expression in a novel GFP reporter gene knock-in mouse: implications for the mechanism of action of C5aR signaling in T cell immunity1

    PubMed Central

    Dunkelberger, Jason; Zhou, Lin; Miwa, Takashi; Song, Wen-Chao

    2012-01-01

    C5aR is a G protein-coupled receptor for the anaphylatoxin C5a and mediates many pro-inflammatory reactions. C5aR signaling has also been shown to regulate T cell immunity, but its sites and mechanism of action in this process remains uncertain. Here, we created a green fluorescence protein (GFP) knock-in mouse and used GFP as a surrogate marker to examine C5aR expression. GFP was knocked into the 3′-untranslated region (3′-UTR) of C5aR by gene targeting. We show that GFP is expressed highly on Gr-1+CD11b+ cells in the blood, spleen and bone marrow (BM), and moderately on CD11b+F4/80+ circulating leukocytes and elicited peritoneal macrophages. No GFP is detected on resting or activated T lymphocytes, nor on splenic myeloid or plasmacytoid dendritic cells. In contrast, 5–20% cultured BM-derived dendritic cells expressed GFP. Interestingly, GFP knock-in prevented cell surface but not intracellular C5aR expression. We conclude that C5aR is unlikely to play an intrinsic role on murine T cells and primary DCs. Instead, its effect on T cell immunity in vivo may involve CD11b+F4/80+ or other C5aR-expressing leukocytes. Further, our data reveal a surprising role of the 3′UTR of C5aR mRNA in regulating C5aR protein targeting to the plasma membrane. PMID:22430734

  4. Allosterism in human complement component 5a ((h)C5a): a damper of C5a receptor (C5aR) signaling.

    PubMed

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-06-01

    The phenomena of allosterism continues to advance the field of drug discovery, by illuminating gainful insights for many key processes, related to the structure-function relationships in proteins and enzymes, including the transmembrane G-protein coupled receptors (GPCRs), both in normal as well as in the disease states. However, allosterism is completely unexplored in the native protein ligands, especially when a small covalent change significantly modulates the pharmacology of the protein ligands toward the signaling axes of the GPCRs. One such example is the human C5a ((h)C5a), the potent cationic anaphylatoxin that engages C5aR and C5L2 to elicit numerous immunological and non-immunological responses in humans. From the recently available structure-function data, it is clear that unlike the mouse C5a ((m)C5a), the (h)C5a displays conformational heterogeneity. However, the molecular basis of such conformational heterogeneity, otherwise allosterism in (h)C5a and its precise contribution toward the overall C5aR signaling is not known. This study attempts to decipher the functional role of allosterism in (h)C5a, by exploring the inherent conformational dynamics in (m)C5a, (h)C5a and in its point mutants, including the proteolytic mutant des-Arg(74)-(h)C5a. Prima facie, the comparative molecular dynamics study, over total 500 ns, identifies Arg(74)-Tyr(23) and Arg(37)-Phe(51) "cation-π" pairs as the molecular "allosteric switches" on (h)C5a that potentially functions as a damper of C5aR signaling.

  5. Characterization of mGluR5R, a novel, metabotropic glutamate receptor 5-related gene.

    PubMed

    Bates, Brian; Xie, Yuhong; Taylor, Noel; Johnson, Jeremy; Wu, Leeying; Kwak, Seung; Blatcher, Maria; Gulukota, Kamalakar; Paulsen, Janet E

    2002-12-30

    We report here the isolation of a novel gene termed mGluR5R (mGluR5-related). The N-terminus of mGluR5R is highly similar to the extracellular domain of metabotropic glutamate receptor 5 (mGluR5) whereas the C-terminus bears similarity to the testis-specific gene, RNF18. mGluR5R is expressed in the human CNS in a coordinate fashion with mGluR5. Although the sequence suggests that mGluR5R may be a secreted glutamate binding protein, we found that when expressed in HEK293 cells it was membrane associated and not secreted. Furthermore, mGluR5R was incapable of binding the metabotropic glutamate receptor class I selective agonist, quisqualate. Although mGluR5R could not form disulfide-mediated covalent homodimers, it was able to form a homomeric complex, presumably through noncovalent interactions. mGluR5R also formed noncovalent heteromeric associations with an engineered construct of the extracellular domain of mGluR5 as well as with full-length mGluR5 and mGluR1alpha. The ability of mGluR5R to associate with mGluR1alpha and mGluR5 suggests that it may be a modulator of class I metabotropic glutamate receptor function.

  6. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif

    PubMed Central

    Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr

    2007-01-01

    The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon–helix–helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF ≈30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal ΔParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization. PMID:17261809

  7. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.

    PubMed

    Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr

    2007-02-06

    The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.

  8. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency.

    PubMed

    Chettimada, Sukrutha; Joshi, Sachindra Raj; Dhagia, Vidhi; Aiezza, Alessandro; Lincoln, Thomas M; Gupte, Rakhee; Miano, Joseph M; Gupte, Sachin A

    2016-10-01

    Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-β-phenyl-1,N 2 -etheno-8-bromo-guanosine-3',5'-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways. Copyright © 2016 the American Physiological Society.

  9. 26 CFR 1.881-5 - Exception for certain possessions corporations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 9 2014-04-01 2014-04-01 false Exception for certain possessions corporations... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Foreign Corporations § 1.881-5 Exception for certain possessions corporations. (a) Scope. Section 881(b) and this section provide special rules for the...

  10. 26 CFR 1.881-5 - Exception for certain possessions corporations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Exception for certain possessions corporations... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Foreign Corporations § 1.881-5 Exception for certain possessions corporations. (a) Scope. Section 881(b) and this section provide special rules for the...

  11. 26 CFR 1.881-5 - Exception for certain possessions corporations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Exception for certain possessions corporations... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Foreign Corporations § 1.881-5 Exception for certain possessions corporations. (a) Scope. Section 881(b) and this section provide special rules for the application...

  12. 26 CFR 1.881-5 - Exception for certain possessions corporations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 9 2013-04-01 2013-04-01 false Exception for certain possessions corporations... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Foreign Corporations § 1.881-5 Exception for certain possessions corporations. (a) Scope. Section 881(b) and this section provide special rules for the...

  13. 26 CFR 1.881-5 - Exception for certain possessions corporations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 9 2011-04-01 2011-04-01 false Exception for certain possessions corporations... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Foreign Corporations § 1.881-5 Exception for certain possessions corporations. (a) Scope. Section 881(b) and this section provide special rules for the...

  14. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect onmore » 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.« less

  15. Comparative analysis of the 5S rRNA and its associated proteins reveals unique primitive rather than parasitic features in Giardia lamblia.

    PubMed

    Feng, Jin-Mei; Sun, Jun; Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features.

  16. Comparative Analysis of the 5S rRNA and Its Associated Proteins Reveals Unique Primitive Rather Than Parasitic Features in Giardia lamblia

    PubMed Central

    Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    Background 5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. Methodology/Principal Findings By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. Conclusion/Significance The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features. PMID

  17. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.

    PubMed

    Zhong, Huailing; Wade, Susan M; Woolf, Peter J; Linderman, Jennifer J; Traynor, John R; Neubig, Richard R

    2003-02-28

    Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals.

  18. Functional Analysis of Vaccinia Virus B5R Protein: Essential Role in Virus Envelopment Is Independent of a Large Portion of the Extracellular Domain

    PubMed Central

    Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.

    1998-01-01

    Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227

  19. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    PubMed Central

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  20. Polymorphisms affecting the gE and gI proteins partly contribute to the virulence of a newly-emergent highly virulent Chinese pseudorabies virus.

    PubMed

    Dong, Jing; Gu, Zhenqing; Jin, Ling; Lv, Lin; Wang, Jichun; Sun, Tao; Bai, Juan; Sun, Haifeng; Wang, Xianwei; Jiang, Ping

    2018-06-01

    An outbreak of a highly virulent pseudorabies virus strain, ZJ01, occurred in PRV-vaccinated pigs in China in 2011. In this study, ZJ01 caused fatal diseases, while the Chinese prototypic PRV strain LA caused mild respiratory disorders. Full-genome sequencing results indicate the two viruses can be classified into two sub-clusters that distinct from traditional European and US strains. To examine the potential role of the gE and gI proteins in ZJ01 virulence, we generated several recombinant viruses. In two chimeric viruses (rZJ01-LA/gEI and rLA-ZJ01/gEI), the gE and gI genes were swapped using corresponding genes from ZJ01 and LA. rZJ01-LA/gEI and the parental virus rZJ01 retained high virulence in piglets, although the survival time for rZJ01-LA/gEI infected piglets was obviously prolonged. In contrast, rLA-ZJ01/gEI exhibited higher virulence than its parental virus rLA. We conclude that changes in gE and gI proteins partly contribute to the enhanced virulence of ZJ01 strain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    PubMed

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  2. Integration of G protein α (Gα) signaling by the regulator of G protein signaling 14 (RGS14).

    PubMed

    Brown, Nicole E; Goswami, Devrishi; Branch, Mary Rose; Ramineni, Suneela; Ortlund, Eric A; Griffin, Patrick R; Hepler, John R

    2015-04-03

    RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4(-). Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4(-) and an AlF4(-)-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Eukaryotic 5S rRNA biogenesis

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  4. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    PubMed

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases.

    PubMed

    Komolov, Konstantin E; Bhardwaj, Anshul; Benovic, Jeffrey L

    2015-08-21

    G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly conserved feature that is divided into three segments as follows: the C-lobe tether, the active-site tether (AST), and the N-lobe tether (NLT). This domain is fully resolved in GRK5 and reveals novel interactions with the nucleotide and N-lobe. Similar to other AGC kinases, the GRK5 AST is an integral part of the nucleotide-binding pocket, a feature not observed in other GRKs. The AST also mediates contact between the kinase N- and C-lobes facilitating closure of the kinase domain. The GRK5 NLT is largely displaced from its previously observed position in other GRKs. Moreover, although the autophosphorylation sites in the NLT are >20 Å away from the catalytic cleft, they are capable of rapid cis-autophosphorylation suggesting high mobility of this region. In summary, we provide a snapshot of GRK5 in a partially closed state, where structural elements of the kinase domain C-tail are aligned to form novel interactions to the nucleotide and N-lobe not previously observed in other GRKs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR.

    PubMed

    McAninch, Damian S; Heinaman, Ashley M; Lang, Cara N; Moss, Kathryn R; Bassell, Gary J; Rita Mihailescu, Mihaela; Evans, Timothy L

    2017-07-25

    G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.

  7. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    PubMed Central

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  8. From distress to disease: a critique of the medicalisation of possession in DSM-5.

    PubMed

    Padmanabhan, Divya

    2017-12-01

    This paper critiques the category of possession-form dissociative identity disorder as defined in the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) published in 2013 by the American Psychiatric Association (APA). The DSM as an index of psychiatry pathologises possession by categorising it as a form of dissociative identity disorder. Drawing upon ethnographic fieldwork, this paper argues that such a pathologisation medicalises possession, which is understood as a non-pathological condition in other contexts such as by those individuals who manifest possession at a temple in Kerala, South India. Through medicalising and further by creating distinctions between acceptable and pathological possession, the DSM converts a form of distress into a disease. This has both conceptual and pragmatic implications. The temple therefore becomes reduced to a culturally acceptable site for the manifestation of a mental illness in a form that is culturally available and possession is explained solely through a biomedical framework, denying alternative conceptualisations and theories which inform possession. By focussing on the DSM-5 classification of possession and the limitations of such a classification, this paper seeks to posit an alternative conceptualisation of possession by engaging with three primary areas which are significant in the DSM categorisation of possession: the DSM's conceptualisation of self in the singular, the distinction between pathological and non-pathological forms of possession, and the limitations of the DSM's equation of the condition of possession with the manifestation of possession. Finally, the paper briefly highlights alternative conceptualisations of possession, which emerged from the perspective of those seeking to heal possession at the Chottanikkara temple.

  9. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  10. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation.

    PubMed

    Antony A, Charles; Alone, Pankaj V

    2017-05-13

    In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5 G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui - ) phenotype due to its hyper GTPase activity. The eIF5 G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn - phenotype) in the eIF5 G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.

    PubMed

    Wan, Qingwen; Okashah, Najeah; Inoue, Asuka; Nehmé, Rony; Carpenter, Byron; Tate, Christopher G; Lambert, Nevin A

    2018-05-11

    G protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells. Mini G (mG) proteins are engineered GTPase domains of Gα subunits that were developed for structural studies of active-state GPCRs. Confocal imaging revealed that mG proteins fused to fluorescent proteins were located diffusely in the cytoplasm and translocated to sites of receptor activation at the cell surface and at intracellular organelles. Bioluminescence resonance energy transfer (BRET) assays with mG proteins fused to either a fluorescent protein or luciferase reported agonist, superagonist, and inverse agonist activities. Variants of mG proteins (mGs, mGsi, mGsq, and mG12) corresponding to the four families of Gα subunits displayed appropriate coupling to their cognate GPCRs, allowing quantitative profiling of subtype-specific coupling to individual receptors. BRET between luciferase-mG fusion proteins and fluorescent markers indicated the presence of active GPCRs at the plasma membrane, Golgi apparatus, and endosomes. Complementation assays with fragments of NanoLuc luciferase fused to GPCRs and mG proteins reported constitutive receptor activity and agonist-induced activation with up to 20-fold increases in luminescence. We conclude that mG proteins are versatile tools for studying GPCR activation and coupling specificity in cells and should be useful for discovering and characterizing G protein subtype-biased ligands. © 2018 Wan et al.

  12. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo.

    PubMed

    Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M

    2014-08-01

    5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

  13. Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment.

    PubMed

    Matosin, Natalie; Fernandez-Enright, Francesca; Lum, Jeremy S; Newell, Kelly A

    2017-03-15

    Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    PubMed

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  16. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence.

    PubMed

    Turner, D P; Connolly, B A

    2000-12-15

    The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.

  17. Anti-dengue virus envelope protein domain III IgG ELISA among infants with primary dengue virus infections.

    PubMed

    Libraty, Daniel H; Zhang, Lei; Obcena, AnaMae; Brion, Job D; Capeding, Rosario Z

    2015-02-01

    Dengue is the most prevalent arthropod-borne viral illness in humans. The current gold standard serologic test for dengue virus (DENV) infection is a neutralizing antibody assay. We examined a DENV recombinant (r)E protein domain III IgG ELISA among infants with primary DENV infections. Infants experience a primary DENV infection in the presence of maternally derived anti-DENV IgG. The estimated DENV rE protein domain III IgG levels to the infecting serotype at the time of infant primary symptomatic DENV2 and DENV3 infections correlated with the 50% plaque reduction neutralization reciprocal antibody titers (PRNT50). Anti-DENVs 1-4 rE protein domain III IgG levels all correlated with each other, and the estimated rE protein domain III IgG level to the infecting serotype at the time of infection inversely correlated with dengue disease severity. The anti-DENV rE protein domain III IgG ELISA may be a useful and potentially high-throughput alternative to traditional DENV neutralizing antibody assays. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe oryzae Effectors AVR-Pia and AVR1-CO39 by Direct Binding[W][OA

    PubMed Central

    Cesari, Stella; Thilliez, Gaëtan; Ribot, Cécile; Chalvon, Véronique; Michel, Corinne; Jauneau, Alain; Rivas, Susana; Alaux, Ludovic; Kanzaki, Hiroyuki; Okuyama, Yudai; Morel, Jean-Benoit; Fournier, Elisabeth; Tharreau, Didier; Terauchi, Ryohei; Kroj, Thomas

    2013-01-01

    Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer–fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain. PMID:23548743

  19. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples

    PubMed Central

    2013-01-01

    Background Alternative splicing (AS) is a major mechanism for modulating gene expression of an organism, allowing the synthesis of several structurally and functionally distinct mRNAs and protein isoforms from a unique gene. Related to AS is the Transcription Induced Chimerism (TIC) or Tandem Chimerism, by which chimeric RNAs between adjacent genes can be found, increasing combinatorial complexity of the proteome. The Ly6g5b gene presents particular behaviours in its expression, involving an intron retention event and being capable to form RNA chimera transcripts with the upstream gene Csnk2b. We wanted to characterise these events more deeply in four tissues in six different mammals and analyse their protein products. Results While canonical Csnk2b isoform was widely expressed, Ly6g5b canonical isoform was less ubiquitous, although the Ly6g5b first intron retained transcript was present in all the tissues and species analysed. Csnk2b-Ly6g5b chimeras were present in all the samples analysed, but with restricted expression patterns. Some of these chimeric transcripts maintained correct structural domains from Csnk2b and Ly6g5b. Moreover, we found Csnk2b, Ly6g5b, and Csnk2b-Ly6g5b transcripts that present exon skipping, alternative 5' and 3' splice site and intron retention events. These would generate truncated or aberrant proteins whose role remains unknown. Some chimeric transcripts would encode CSNK2B proteins with an altered C-terminus, which could affect its biological function broadening its substrate specificity. Over-expression of human CSNK2B, LY6G5B, and CSNK2B-LY6G5B proteins, show different patterns of post-translational modifications and cell distribution. Conclusions Ly6g5b intron retention and Csnk2b-Ly6g5b transcript chimerism are broadly distributed in tissues of different mammals. PMID:23521802

  20. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  1. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  2. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5' UTR of tumor-associated mRNAs.

    PubMed

    Serikawa, Tatsuo; Spanos, Christos; von Hacht, Annekathrin; Budisa, Nediljko; Rappsilber, Juri; Kurreck, Jens

    2018-01-01

    G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions

  3. COMT Val158Met and 5-HT1A-R -1019 C/G polymorphisms: effects on the negative symptom response to clozapine.

    PubMed

    Bosia, Marta; Lorenzi, Cristina; Pirovano, Adele; Guglielmino, Carmelo; Cocchi, Federica; Spangaro, Marco; Bramanti, Placido; Smeraldi, Enrico; Cavallaro, Roberto

    2015-01-01

    Clozapine is still considered the gold standard for treatment-resistant schizophrenia patients; however, up to 40% of patients do not respond adequately. Identifying potential predictors of clinical response to this last-line antipsychotic could represent an important goal for treatment. Among these, functional polymorphisms involved in dopamine system modulation, known to be disrupted in schizophrenia, may play a role. We examined the COMT Val158Met polymorphism, which plays a key role in dopamine regulation at the prefrontal level, and the 5-HT1A-R -1019 C/G polymorphism, a target of clozapine activity involved in the interaction between the serotonin and dopamine systems. 107 neuroleptic-refractory, biologically unrelated Italian patients (70 males and 37 females) with a DSM-IV diagnosis of schizophrenia who were being treated with clozapine were recruited. Psychopathology was assessed by the Positive and Negative Symptoms Scale (PANSS) at the beginning of treatment, and at weeks 8 and 12. Genomic DNA was extracted from venous blood samples. COMT rs4680 (Val158Met) and 5-HT1A-R rs6295 (-1019 C/G) polymorphisms were analyzed by PCR-based restriction fragment length and direct sequencing, respectively. We found a significant effect of COMT and 5-HT1A-R on the PANSS Negative Subscale variation, with greater improvement among COMT Val/Val and 5-HT1A-R G/G subjects. The findings support the hypothesis that COMT rs4680 and 5-HT1A-R rs6295 polymorphisms could influence the negative symptom response to clozapine, probably through modulation of the dopaminergic system.

  4. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wenbin; Zhou, You; Li, Jiwei

    We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum/nuclear envelope oxysterol-binding protein implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, a yeast two-hybrid screen identified Homo sapiens sperm associated antigen 5 (SPAG5)/Astrin as interaction partner of ORP8. The putative interaction was further confirmed by pull-down and co-immunoprecipitation assays. ORP8 did not colocalize with kinetochore-associated SPAG5 in mitotic HepG2 or HuH7 cells, but overexpressed ORP8 was capable of recruiting SPAG5 onto endoplasmic reticulum membranes in interphase cells. In our experiments, 25-hydroxycholesterol (25OHC) retarded the HepG2 cell cycle, causing accumulation in G2/M phase; ORP8 overexpressionmore » resulted in the same phenotype. Importantly, ORP8 knock-down dramatically inhibited the oxysterol effect on HepG2 cell cycle, suggesting a mediating role of ORP8. Furthermore, knock-down of SPAG5 significantly reduced the effects of both ORP8 overexpression and 25OHC on the cell cycle, placing SPAG5 downstream of the two cell-cycle interfering factors. Taken together, the present results suggest that ORP8 may via SPAG5 mediate oxysterol interference of the HepG2 cell cycle. - Highlights: • The oxysterol-binding protein ORP8 was found to interact with the mitotic regulator SPAG5/Astrin. • Treatment of HepG2 cells with 25-hydroxycholesterol caused cell cycle retardation in G2/M. • ORP8 overexpression caused a similar G2/M accumulation, and ORP8 knock-down reversed the 25-hydroxycholesterol effect. • Reduction of cellular of SPAG5/Astrin reversed the cell cycle effects of both 25-hydroxycholesterol and ORP8 overexpression. • Our results suggest that ORP8 mediates via SPAG5/Astrin the oxysterol interference of HepG2 cell cycle.« less

  5. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Design of fluorinated 5-HT(4)R antagonists: influence of the basicity and lipophilicity toward the 5-HT(4)R binding affinities.

    PubMed

    Fontenelle, Clement Q; Wang, Zhong; Fossey, Christine; Cailly, Thomas; Linclau, Bruno; Fabis, Frederic

    2013-12-01

    Analogues of potent 5-HT(4)R antagonists possessing a fluorinated N-alkyl chain have been synthesized in order to investigate the effect of the resulting change in basicity and lipophilicity on the affinity and selectivity profile. We demonstrate that for this series, the affinity is decreased with decreased basicity of the piperidine's nitrogen atom. In contrast, the resulting increase in lipophilicity has minimal impact on binding affinity and selectivity. 3,3,3-Trifluoropropyl and 4,4,4-trifluorobutyl derivatives 6d and 6e have shown to bind to the 5-HT(4)R while maintaining their pharmacological profile and selectivity toward other 5-HT receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish.

    PubMed

    Diaz de Cerio, Oihane; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Ortiz-Zarragoitia, Maren; Cancio, Ibon

    2012-07-17

    In anuran ovaries, 5S rDNA is regulated transcriptionally by transcription factor IIIA (TFIIIA), which upon transcription, binds 5S rRNA, forming 7S RNP. 5S rRNA can be stockpiled also in the form of 42S RNP bound to 42sp43. The aim of the present study was to assess the differential transcriptional regulation of 5S rRNA and associated proteins in thicklip gray mullet (Chelon labrosus) gonads. Up to 75% of the total RNA from mullet ovaries was 5S rRNA. qPCR quantification of 5S rRNA expression, in gonads of histologically sexed individuals from different geographical areas, successfully sexed animals. All males had expression levels that were orders of magnitude below expression levels in females, throughout an annual reproductive cycle, with the exception of two individuals: one in November and one in December. Moreover, intersex mullets from a polluted harbor had expression levels between both sexes. TFIIIA and 42sp43 were also very active transcriptionally in gonads of female and intersex mullets, in comparison to males. Nucleocytoplasmatic transport is important in this context and we also analyzed transcriptional levels of importins-α1, -α2, and -β2 and different exportins. Importin-αs behaved similarly to 5S rRNA. Thus, 5S rRNA and associated proteins constitute very powerful molecular markers of sex and effects of xenosterogens in fish gonads, with potential technological applications in the analysis of fish stock dynamics and reproduction as well as in environmental health assessment.

  8. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines.

    PubMed

    Grider, Arthur; Lewis, Richard D; Laing, Emma M; Bakre, Abhijeet A; Tripp, Ralph A

    2015-12-01

    MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 μM Zn), or with 15 or 50 μM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 μM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-β/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression.

  9. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. © The Author 2015. Published by Oxford University Press.

  10. Selective chaperone effect of aminocyclitol derivatives on G202R and other mutant glucocerebrosidases causing Gaucher disease.

    PubMed

    Serra-Vinardell, Jenny; Díaz, Lucía; Gutiérrez-de Terán, Hugo; Sánchez-Ollé, Gessamí; Bujons, Jordi; Michelakakis, Helen; Mavridou, Irene; Aerts, Johannes M F G; Delgado, Antonio; Grinberg, Daniel; Vilageliu, Lluïsa; Casas, Josefina

    2014-09-01

    Gaucher disease is an autosomal recessive lysosomal disorder characterized by the accumulation of glucosylceramide as a result of a deficiency of the enzyme glucocerebrosidase. Several competitive glucocerebrosidase inhibitors are able to act as pharmacological chaperones for an efficient rescue of the mutated, misfolded forms of the enzyme. Along this line, we report in this work on the ability of several aminocyclitols to increase the residual glucocerebrosidase activity in patient fibroblasts with different genotypes. Some of the compounds were slightly active on fibroblasts bearing some mutations, including the highly prevalent N370S mutation. All compounds were highly active as enzyme activity enhancers on fibroblasts from Gaucher disease patients containing the G202R mutation. Moreover, using the novel tagged sphingolipid ω-azidosphingosine, a reduction in the tagged glucosylceramide accumulation was also observed for selected aminocyclitols. Attempts to explain the activity impairment observed in glucocerebrosidase bearing the G202R mutation by comparative molecular dynamic studies on wild type and the G202R mutated proteins (free and isofagomine-bound, in both cases) were unsuccessful. Under the simulation conditions used, no clear effect of the G202R mutation neither over the global structure of the protein nor on the loops that constitute the glucocerebrosidase active site was observed. Since the G202R residue is located on the protein surface, altered protein-membrane or protein-protein interactions could account for the observed differences. In conclusion, we have tested novel compounds that have shown some chaperone effect on particular glucocerebrosidase mutant enzymes, supporting the enhancement therapy as an alternative approach for Gaucher disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Structural characterization of the Man5 glycoform of human IgG3 Fc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Ishan S.; Lovell, Scott; Mehzabeen, Nurjahan

    Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined themore » crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8 Å resolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain some of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.« less

  12. Gene encoding the group B streptococcal protein R4, its presence in clinical reference laboratory isolates & R4 protein pepsin sensitivity.

    PubMed

    Smith, B L; Flores, A; Dechaine, J; Krepela, J; Bergdall, A; Ferrieri, P

    2004-05-01

    R proteins were first identified by Lancefield in group B Streptococcus (GBS) as resistant to trypsin at pH8 and sensitive to pepsin at pH2. The R4 protein found predominantly in type III and some type II and V invasive isolates conforms to these criteria. The Rib protein, although structurally and epidemiologically similar to R4, was reported as resistant to both proteases. We report here the gene encoding the R4 protein from a type III group B streptococcal isolate (76-043) well characterized in our laboratory. Trypsin extracted GBS proteins were assayed for protease sensitivities by double-diffusion Ouchterlony using varying conditions for the enzyme pepsin. Standard haemoglobin assay was used to examine pepsin enzymatic activity. Thirty clinical isolates of varying protein profiles identified by double-diffusion from our reference strain laboratory were screened by PCR and Southern technique. SDS-PAGE gel purified R4 amino acid sequences were determined and used to design oligonucleotide primers for screening a 76-043 genomic library. R4 was sensitive to pepsin at pH2 but appeared resistant at pH4, the reported pH used for Rib. By standard haemoglobin assay and trypsin extract studies of R4 protein, pepsin was shown to be active at pH2, yet easily inactivated; assays of GBS surface proteins are critical at pH2. Of the amino acids initially sequenced from R4, 88 per cent (61/69) showed identity to Rib; the r4 nucleotide sequence was identical to that of rib. All isolates with strong positive protein reactions for R4 were positive in both PCR and Southern technique, whereas isolates expressing alpha, beta, R1/R4, and R5 (BPS) protein profiles were not. Sequenced PCR products aligned with identity to the R4 and Rib nucleotide sequences and confirmed the identity of these proteins and their molecular sequences.

  13. New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae.

    PubMed

    Lin, Jyun-Liang; Yu, Hui-Chia; Chao, Ju-Lan; Wang, Chung; Cheng, Ming-Yuan

    2012-12-01

    BUD23 in Saccharomyces cerevisiae encodes for a class I methyltransferase, and deletion of the gene results in slow growth and random budding phenotypes. Herein, two BUD23 mutants defective in methyltransferase activity were generated to investigate whether the phenotypes of the null mutant might be correlated with a loss in enzymatic activity. Expression at the physiological level of both D77A and G57R mutants was able to rescue the phenotypes of the bud23-null mutant. The result implied that the methyltransferase activity of the protein was not necessary for supporting normal growth and bud site selection of the cells. High-level expression of Bud23 (G57R), but not Bud23 or Bud23 (D77A), in BUD23 deletion cells failed to complement these phenotypes. However, just like Bud23, Bud23 (G57R) was localized in a DAPI-poor region in the nucleus. Distinct behaviour in Bud23 (G57R) could not be originated from a mislocalization of the protein. Over-expression of Bud23 (G57R) in null cells also produced changes in actin organization and additional septin mutant-like phenotypes. Therefore, the absence of Bud23, Bud23 (G57R) at a high level might affect the cell division of yeast cells through an as yet unidentified mechanism. Copyright © 2012 John Wiley & Sons, Ltd.

  14. The G Protein-Coupled Bile Acid Receptor, TGR5, Stimulates Gallbladder Filling

    PubMed Central

    Li, Tingting; Holmstrom, Sam R.; Kir, Serkan; Umetani, Michihisa; Schmidt, Daniel R.

    2011-01-01

    TGR5 is a G protein-coupled bile acid receptor present in brown adipose tissue and intestine, where its agonism increases energy expenditure and lowers blood glucose. Thus, it is an attractive drug target for treating human metabolic disease. However, TGR5 is also highly expressed in gallbladder, where its functions are less well characterized. Here, we demonstrate that TGR5 stimulates the filling of the gallbladder with bile. Gallbladder volume was increased in wild-type but not Tgr5−/− mice by administration of either the naturally occurring TGR5 agonist, lithocholic acid, or the synthetic TGR5 agonist, INT-777. These effects were independent of fibroblast growth factor 15, an enteric hormone previously shown to stimulate gallbladder filling. Ex vivo analyses using gallbladder tissue showed that TGR5 activation increased cAMP concentrations and caused smooth muscle relaxation in a TGR5-dependent manner. These data reveal a novel, gallbladder-intrinsic mechanism for regulating gallbladder contractility. They further suggest that TGR5 agonists should be assessed for effects on human gallbladder as they are developed for treating metabolic disease. PMID:21454404

  15. New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins.

    PubMed

    Chadli, Meriem; Rebaud, Samuel; Maniti, Ofelia; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès

    2017-10-03

    Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10 -7 cm 2 /s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP 2 ), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven

  16. CpA/CpG methylation of CiMDA5 possesses tight association with the resistance against GCRV and negatively regulates mRNA expression in grass carp, Ctenopharyngodon idella.

    PubMed

    Shang, Xueying; Su, Jianguo; Wan, Quanyuan; Su, Juanjuan

    2015-01-01

    Melanoma differentiation-associated gene 5 (MDA5) plays a crucial role in recognizing intracellular viral infection, activating the interferon regulatory factor pathways as well as inducing antiviral response. While the antiviral regulatory mechanism of MDA5 remains unclear. In the present study, CiMDA5 (Ctenopharyngodon idella MDA5) against grass carp reovirus (GCRV) would be initially revealed from the perspective of DNA methylation, a pivotal epigenetic modification. Two CpG islands (CGIs) were predicted located in the first exon of CiMDA5, of which the first CpG island was 427 bp in length possessed 29 candidate CpG loci and 34 CpA loci, and the second one was 130 bp in length involving 7 CpG loci as well as 10 CpA loci. By bisulfite sequencing PCR (BSP), the methylation statuses were detected in spleen of 70 individuals divided into resistant/susceptible groups post challenge experiment, and the resistance-association analysis was performed with Chi-square test. Quantitative real-time RT-PCR (qRT-PCR) was carried out to explore the relationship between DNA methylation and gene expression in CiMDA5. Results indicated that the methylation levels of CpA/CpG sites at +200, +202, +204, +207 nt, which consisted of a putative densely methylated element (DME), were significantly higher in the susceptible group than those in the resistant group. Meanwhile, the average transcription of CiMDA5 was down-regulated in the susceptible individuals compared with the resistant individuals. Evidently, the DNA methylation may be the negative modulator of CiMDA5 antiviral expression. Collectively, the methylation levels of CiMDA5 demonstrated the tight association with the resistance against GCRV and the negative-regulated roles in mRNA expression. This study first discovered the resistance-associated gene modulated by DNA methylation in teleost, preliminary revealed the underlying regulatory mechanism of CiMDA5 transcription against GCRV as well as laid a theoretical foundation

  17. 5. Photocopy of measured drawing (original in possession of Trinity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of measured drawing (original in possession of Trinity Episcopal Cathedral) Edward Tuckerman Potter, architect ca. 1867 CROSS SECTION, LOOKING NORTH - Grace Episcopal Cathedral, 1121 Main Street, Davenport, Scott County, IA

  18. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, Gary W., E-mail: gary.cline@yale.edu; Zhao, Xiaojian; Jakowski, Amy B.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity tomore » islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  19. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulates G-protein-coupled receptor kinase 5 (GRK5)-induced cardiac hypertrophy in vitro.

    PubMed

    Yeh, Szu-Tsen; Zambrano, Cristina M; Koch, Walter J; Purcell, Nicole H

    2018-05-25

    PH domain leucine-rich repeat protein phosphatase (PHLPP) is a serine/threonine phosphatase that has been shown to regulate cell growth and survival through dephosphorylation of several members of the AGC family of kinases. G-protein-coupled receptor kinase 5 (GRK5) is an AGC kinase that regulates phenylephrine (PE)-induced cardiac hypertrophy through its noncanonical function of directly targeting proteins to the nucleus to regulate transcription. Here we investigated the possibility that the PHLPP2 isoform can regulate GRK5-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). We show that removal of PHLPP2 by siRNA induces hypertrophic growth of NRVMs as measured by cell size changes at baseline, potentiated PE-induced cell size changes, and re-expression of fetal genes atrial natriuretic factor and brain natriuretic peptide. Endogenous GRK5 and PHLPP2 were found to interact in NRVMs, and PE-induced nuclear accumulation of GRK5 was enhanced upon down-regulation of PHLPP2. Conversely, overexpression of PHLPP2 blocked PE-induced hypertrophic growth, re-expression of fetal genes, and nuclear accumulation of GRK5, which depended on its phosphatase activity. Finally, using siRNA against GRK5, we found that GRK5 was necessary for the hypertrophic response induced by PHLPP2 knockdown. Our findings demonstrate for the first time a novel regulation of GRK5 by the phosphatase PHLPP2, which modulates hypertrophic growth. Understanding the signaling pathways affected by PHLPP2 has potential for new therapeutic targets in the treatment of cardiac hypertrophy and failure. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Determination of soluble immunoglobulin G in bovine colostrum products by Protein G affinity chromatography-turbidity correction and method validation.

    PubMed

    Holland, Patrick T; Cargill, Anne; Selwood, Andrew I; Arnold, Kate; Krammer, Jacqueline L; Pearce, Kevin N

    2011-05-25

    Immunoglobulin-containing food products and nutraceuticals such as bovine colostrum are of interest to consumers as they may provide health benefits. Commercial scale colostrum products are valued for their immunoglobulin G (IgG) content and therefore require accurate analysis. One of the most commonly used methods for determining total soluble IgG in colostrum products is based on affinity chromatography using a Protein G column and UV detection. This paper documents improvements to the accuracy of the Protein G analysis of IgG in colostrum products, especially those containing aggregated forms of IgG. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) analysis confirmed that aggregated IgG measured by Protein G does not contain significant amounts of casein or other milk proteins. Size exclusion chromatography identified the content of soluble IgG as mainly monomeric IgG and aggregated material MW > 450 kDa with small amounts of dimer and trimer. The turbidity of the eluting IgG, mainly associated with aggregated IgG, had a significant effect on the quantitative results. Practical techniques were developed to correct affinity LC data for turbidity on an accurate, consistent, and efficient basis. The method was validated in two laboratories using a variety of colostrum powders. Precision for IgG was 2-3% (RSD(r)) and 3-12% (RSD(R)). Recovery was 100.2 ± 2.4% (mean ± RSD, n = 10). Greater amounts of aggregated IgG were solubilized by a higher solution:sample ratio and extended times of mixing or sonication, especially for freeze-dried material. It is concluded that the method without acid precipitation and with turbidity correction provides accurate, precise, and robust data for total soluble IgG and is suitable for product specification and quality control of colostrum products.

  1. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  2. G2 phase-specific proteins of HeLa cells.

    PubMed Central

    Al-Bader, A A; Orengo, A; Rao, P N

    1978-01-01

    The objective of this study was to determine if HeLa cells irreversibly arrested in G2 phase of the cell cycle by a brief exposure to a nitrosourea compound were deficient in certain proteins when compared with G2-synchronized cells. Total cellular proteins of G2-synchronized, G2-arrested, and S phase-synchronized cells were compared by two-dimensional polyacrylamide gel electrophoresis. The S phase cells differed from the G2-synchronized and G2-arrested cells by the absence of about 35 and 25 protein spots, respectively, of a total of nearly 150. At least nine protein spots in the molecular weight range of 4--5 X 10(4) that were present in the G2-synchronized cells were absent in both the G2-arrested and the S phase cells. Thus, these studies suggest that the missing proteins are probably necessary for the transition of cells from G2 phase to mitosis. Supplying the missing proteins to the G2-arrested cells by fusion with G2-synchronized cells facilitated the entry of the former into mitosis. Images PMID:282623

  3. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST ELEVATION IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 280, Sylvan Drive, Rock Island, Rock Island County, IL

  4. Recombinant DHX33 Protein Possesses Dual DNA/RNA Helicase Activity.

    PubMed

    Wang, Xingshun; Ge, Wei; Zhang, Yandong

    2018-06-13

    RNA helicase DHX33 has been shown to participate in a variety of cellular activities, including ribosome biogenesis, protein translation, and gene transcription. We and others further discovered that DHX33 is strongly expressed in several types of human cancers and plays important roles in promoting cancer cell proliferation. To better understand the molecular mechanism for DHX33 in exerting its biological functions, we purified recombinant DHX33 and performed biochemical studies in vitro. DHX33 protein was found to have ATPase activity that is dependent on DNA or RNA duplexes. The ATPase activity of DHX33 is coupled with its RNA/DNA unwinding activity. If a key residue in the ATP binding site were mutated, the mutant DHX33 could not unwind DNA/RNA duplexes. Furthermore, a deletion mutant of a RKK motif previously identified to be involved in ribosome DNA binding could still unwind DNA duplexes, albeit with reduced efficiency. In summary, our study reveals that purified DHX33 protein possesses unwinding activity toward DNA and RNA duplexes.

  5. A Novel Association between Two Trypanosome-Specific Factors and the Conserved L5-5S rRNA Complex

    PubMed Central

    Ciganda, Martin; Prohaska, Kimberly; Hellman, Kristina; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis. PMID:22859981

  6. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy.

    PubMed

    Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien

    2012-04-24

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.

  7. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events

    PubMed Central

    Urbach, Jonathan M.; Ausubel, Frederick M.

    2017-01-01

    There are intriguing parallels between plants and animals, with respect to the structures of their innate immune receptors, that suggest universal principles of innate immunity. The cytosolic nucleotide binding site–leucine rich repeat (NBS-LRR) resistance proteins of plants (R-proteins) and the so-called NOD-like receptors of animals (NLRs) share a domain architecture that includes a STAND (signal transduction ATPases with numerous domains) family NTPase followed by a series of LRRs, suggesting inheritance from a common ancestor with that architecture. Focusing on the STAND NTPases of plant R-proteins, animal NLRs, and their homologs that represent the NB-ARC (nucleotide-binding adaptor shared by APAF-1, certain R gene products and CED-4) and NACHT (named for NAIP, CIIA, HET-E, and TEP1) subfamilies of the STAND NTPases, we analyzed the phylogenetic distribution of the NBS-LRR domain architecture, used maximum-likelihood methods to infer a phylogeny of the NTPase domains of R-proteins, and reconstructed the domain structure of the protein containing the common ancestor of the STAND NTPase domain of R-proteins and NLRs. Our analyses reject monophyly of plant R-proteins and NLRs and suggest that the protein containing the last common ancestor of the STAND NTPases of plant R-proteins and animal NLRs (and, by extension, all NB-ARC and NACHT domains) possessed a domain structure that included a STAND NTPase paired with a series of tetratricopeptide repeats. These analyses reject the hypothesis that the domain architecture of R-proteins and NLRs was inherited from a common ancestor and instead suggest the domain architecture evolved at least twice. It remains unclear whether the NBS-LRR architectures were innovations of plants and animals themselves or were acquired by one or both lineages through horizontal gene transfer. PMID:28096345

  8. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System

    PubMed Central

    Cianfanelli, Francesca R.; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J.

    2016-01-01

    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the

  9. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).

    PubMed

    Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A; Manglik, Aashish; Tesmer, John J G; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2015-04-24

    G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. 5. Photograph of line drawing in possession of Engineering Plans ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of line drawing in possession of Engineering Plans and Services Division, Rock Island Arsenal. PLAN, UNDATED. - Rock Island Arsenal, Building No. 105, South Avenue between Gillespie Avenue & Second Street, Rock Island, Rock Island County, IL

  11. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP).

    PubMed

    Long, Xin Hua; Zhou, Yun Fei; Peng, Ai Fen; Zhang, Zhi Hong; Chen, Xuan Yin; Chen, Wen Zhao; Liu, Jia Ming; Huang, Shan Hu; Liu, Zhi Li

    2015-05-01

    Previous studies demonstrated that increased Homo sapiens valosin-containing protein (VCP) may be involved in osteosarcoma (OS) metastasis. However, the underlying mechanism of VCP over-expression in OS remains unknown. In the present study, we found a significantly negative correlation between miR-129-5p and VCP protein expression in OS tissues with pulmonary metastasis (Spearman's rho, rs = -0.948). Bioinformatical prediction, Luciferase reporter assay, Western blot, and RT-PCR assays performed on OS cells indicated that VCP is a target of miR-129-5p. In addition, three CPG islands in the region of miR-129-5p promoter were detected by bioinformatical prediction, and significantly higher expression of miR-129-5p and lower methylation level of miR-129-2 gene in OS cells treated with 5-Aza-2'-deoxycytidine (a potent DNA demethylating agent) than in those untreated cells were observed. Furthermore, lower migratory and invasive ability was found in cells with elevated miR-129-5p than in those with decreased miR-129-5p. These findings indicated that increased miR-129-5p may be mediated by demethylation and inhibit OS cell migration and invasion by targeting VCP in OS, and targeting miR-129-5p/VCP signaling pathway may serve as a therapeutic strategy for OS management, although further studies will be necessary.

  12. An amphioxus gC1q protein binds human IgG and initiates the classical pathway: Implications for a C1q-mediated complement system in the basal chordate.

    PubMed

    Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui

    2014-12-01

    The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Brugarolas, Marc; Moreno, Estefanía; Aguinaga, David; Pérez-Benito, Laura; Ferre, Sergi; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Pardo, Leonardo; McCormick, Peter J; Franco, Rafael

    2018-02-28

    G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A 1 R or A 2A R) can form A 1 R-A 2A R heteromers (A 1 -A 2A Het), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (β-arrestin mediated) signaling. Adenosine has different affinities for A 1 R and A 2A R, allowing the heteromeric receptor to detect its concentration by integrating the downstream G i - and G s -dependent signals. cAMP accumulation and β-arrestin recruitment assays have shown that, within the complex, activation of A 2A R impedes signaling via A 1 R. We examined the mechanism by which A 1 -A 2A Het integrates G i - and G s -dependent signals. A 1 R blockade by A 2A R in the A 1 -A 2A Het is not observed in the absence of A 2A R activation by agonists, in the absence of the C-terminal domain of A 2A R, or in the presence of synthetic peptides that disrupt the heteromer interface of A 1 -A 2A Het, indicating that signaling mediated by A 1 R and A 2A R is controlled by both G i and G s proteins. We identified a new mechanism of signal transduction that implies a cross-communication between G i and G s proteins guided by the C-terminal tail of the A 2A R. This mechanism provides the molecular basis for the operation of the A 1 -A 2A Het as an adenosine concentration-sensing device that modulates the signals originating at both A 1 R and A 2A R.

  14. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR AFTER REMODELING INTO OFFICE SPACE. DATED FEBRUARY 13, 1943. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  15. 5. Photocopy of measured drawing (original drawing in the possession ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of measured drawing (original drawing in the possession of the Rigsarkivet (Royal Archives), Copenhagen, Denmark) Lieutenant Giellerup, delineator, May 1829 PLAN PROPOSED ALTERATIONS OF SECOND FLOOR OF GOVERNMENT HOUSE - Government House, King Street, Christiansted, St. Croix, VI

  16. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits.

    PubMed

    Suga, Hinako; Haga, Tatsuya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.

  17. 5. Photograph of line drawing in possession of Engineering Plans ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of line drawing in possession of Engineering Plans and Services Division, Rock Island Arsenal. PLAN, ELEVATION, AND SECTION, 1874; TRACING, 1935. - Rock Island Arsenal, Building No. 53, North Avenue North of Midpoint, Rock Island, Rock Island County, IL

  18. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.

    PubMed

    Cowger, Taku A; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E; Todd, Trever J; Wang, Geoffrey D; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.

  19. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling.

    PubMed

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-09-30

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.

  20. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling

    PubMed Central

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-01-01

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling. PMID:21909076

  1. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency.

    PubMed

    Brockmann, Sarah J; Freischmidt, Axel; Oeckl, Patrick; Müller, Kathrin; Ponna, Srinivas K; Helferich, Anika M; Paone, Christoph; Reinders, Jörg; Kojer, Kerstin; Orth, Michael; Jokela, Manu; Auranen, Mari; Udd, Bjarne; Hermann, Andreas; Danzer, Karin M; Lichtner, Peter; Walther, Paul; Ludolph, Albert C; Andersen, Peter M; Otto, Markus; Kursula, Petri; Just, Steffen; Weishaupt, Jochen H

    2018-02-15

    Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Association of Corynebacterium pseudotuberculosis recombinant proteins rCP09720 or rCP01850 with rPLD as immunogens in caseous lymphadenitis immunoprophylaxis.

    PubMed

    Silva, Mara Thais de Oliveira; Bezerra, Francisco Silvestre Brilhante; de Pinho, Rodrigo Barros; Begnini, Karine Rech; Seixas, Fabiana Kommling; Collares, Tiago; Portela, Ricardo Dias; Azevedo, Vasco; Dellagostin, Odir; Borsuk, Sibele

    2018-01-02

    Caseous lymphadenitis (CLA) is a chronic disease responsible for significant economic losses in sheep and goat breeding worldwide. The treatment for this disease is not effective, and an intense vaccination schedule would be the best control strategy. In this study, we evaluated the associations of rCP09720 or rCP01850 proteins from Corynebacterium pseudotuberculosis with recombinant exotoxin phospholipase D (rPLD) as subunit vaccines in mice. Four experimental groups (10 animals each) were immunized with a sterile 0.9% saline solution (G1), rPLD (G2), rPLD + rCP09720 (G3), and rPLD + rCP01850 (G4). The mice received two doses of each vaccine at a 21-day interval and were challenged 21 days after the last immunization. The animals were evaluated daily for 40 days after the challenge, and mortality rate was recorded. The total IgG production level increased significantly in the experimental groups on day 42 after the first vaccination. Similarly, higher levels of specific IgG2a were observed in experimental groups G2, G3, and G4 compared to the IgG1 levels on day 42. G4 showed a significant (p < .05) humoral response against both antigens of the antigenic formulations. The cellular immune response induced by immunization was characterized by a significant (p < .05) production of interferon-γ compared to that in the control, while the concentrations of interleukin (IL)-4 and IL-12 were not significant in any group. A significant increase of tumor necrosis factor was observed only in G4. The survival rates after the challenge were 30% (rPLD), 40% (rPLD + rCP09720), and 50% (rPLD + rCP01850). Thus, the association of rCP01850 with rPLD resulted in the best protection against the challenge with C. pseudotuberculosis and induced a more intense type 1 T-helper cell immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    PubMed

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  4. Abscisic Acid Acts as a Blocker of the Bitter Taste G Protein-Coupled Receptor T2R4.

    PubMed

    Pydi, Sai P; Jaggupilli, Appalaraju; Nelson, Ken M; Abrams, Suzanne R; Bhullar, Rajinder P; Loewen, Michele C; Chelikani, Prashen

    2015-04-28

    Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. In humans, 25 T2Rs mediate bitter taste sensation. In addition to the oral cavity, T2Rs are expressed in many extraoral tissues, including the central nervous system, respiratory system, and reproductive system. To understand the mechanistic roles of the T2Rs in oral and extraoral tissues, novel blockers or antagonists are urgently needed. Recently, we elucidated the binding pocket of T2R4 for its agonist quinine, and an antagonist and inhibitory neurotransmitter, γ-aminobutyric acid. This structure-function information about T2R4 led us to screen the plant hormone abscisic acid (ABA), its precursor (xanthoxin), and catabolite phaseic acid for their ability to bind and activate or inhibit T2R4. Molecular docking studies followed by functional assays involving calcium imaging confirmed that ABA is an antagonist with an IC50 value of 34.4 ± 1.1 μM. However, ABA precursor xanthoxin acts as an agonist on T2R4. Interestingly, molecular model-guided site-directed mutagenesis suggests that the T2R4 residues involved in quinine binding are also predominantly involved in binding to the novel antagonist, ABA. The antagonist ability of ABA was tested using another T2R4 agonist, yohimbine. Our results suggest that ABA does not inhibit yohimbine-induced T2R4 activity. The discovery of natural bitter blockers has immense nutraceutical and physiological significance and will help in dissecting the T2R molecular pathways in various tissues.

  5. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED APRIL 27, 1956. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  6. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ASSEMBLING OF ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  7. Comparative analysis of ribosomal protein L5 sequences from bacteria of the genus Thermus.

    PubMed

    Jahn, O; Hartmann, R K; Boeckh, T; Erdmann, V A

    1991-06-01

    The genes for the ribosomal 5S rRNA binding protein L5 have been cloned from three extremely thermophilic eubacteria, Thermus flavus, Thermus thermophilus HB8 and Thermus aquaticus (Jahn et al, submitted). Genes for protein L5 from the three Thermus strains display 95% G/C in third positions of codons. Amino acid sequences deduced from the DNA sequence were shown to be identical for T flavus and T thermophilus, although the corresponding DNA sequences differed by two T to C transitions in the T thermophilus gene. Protein L5 sequences from T flavus and T thermophilus are 95% homologous to L5 from T aquaticus and 56.5% homologous to the corresponding E coli sequence. The lowest degrees of homology were found between the T flavus/T thermophilus L5 proteins and those of yeast L16 (27.5%), Halobacterium marismortui (34.0%) and Methanococcus vannielii (36.6%). From sequence comparison it becomes clear that thermostability of Thermus L5 proteins is achieved by an increase in hydrophobic interactions and/or by restriction of steric flexibility due to the introduction of amino acids with branched aliphatic side chains such as leucine. Alignment of the nine protein sequences equivalent to Thermus L5 proteins led to identification of a conserved internal segment, rich in acidic amino acids, which shows homology to subsequences of E coli L18 and L25. The occurrence of conserved sequence elements in 5S rRNA binding proteins and ribosomal proteins in general is discussed in terms of evolution and function.

  8. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis

    PubMed Central

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M.; Meng, Fantao; Wu, Qi; Wemmie, John A.; Fisher, Rory A.

    2014-01-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT1ARs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT1AR-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT1AR-expressing cells implicated in mood disorders. RGS6−/− mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT1AR blockade. Effects of the SSRI fluvoxamine and 5-HT1AR agonist 8-OH-DPAT were also potentiated in RGS6+/− mice. The phenotype of RGS6−/− mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gαi-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6−/− animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents.—Stewart, A., Maity, B., Wunsch, A. M., Meng, F., Wu, Q., Wemmie, J. A., Fisher, R. A. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis. PMID:24421401

  9. Evidence that the granulocyte colony-stimulating factor (G-CSF) receptor plays a role in the pharmacokinetics of G-CSF and PegG-CSF using a G-CSF-R KO model.

    PubMed

    Kotto-Kome, Anne C; Fox, Samuel E; Lu, Wenge; Yang, Bing-Bing; Christensen, Robert D; Calhoun, Darlene A

    2004-07-01

    The covalent attachment of polyethylene glycol to filgrastim results in a new molecule pegfilgrastim, which has a significantly longer half-life than filgrastim. It is likely that the clearance of both filgrastim and pegfilgrastim involves granulocyte colony simulating factor (G-CSF) receptor binding, but the pharmacokinetics of these drugs have not been compared in mice with and without a functional G-CSF receptor. We sought to clarify the role of receptor-mediated clearance of filgrastim and pegfilgrastim using wild-type (WT) mice or mice with a non-functional G-CSF-R (knockout, KO). We administered single doses of filgrastim or pegfilgrastim (10 or 100 microg kg(-1)) intravenously to WT and KO mice. Plasma levels of protein were measured by enzyme-linked immunosorbent assay (ELISA) at preset time points, and AUC, MRT, CL, V(d), and T(1/2) were calculated. When compared with WT mice, the G-CSF-R KO mice had significantly greater AUC, longer MRT, longer T(1/2), and lower clearance. This was the case whether animals received 10 or 100 microg kg(-1) and whether they received filgrastim or pegfilgrastim. The volume of protein distribution was identical among WT and KO mice. However, the V(d) was larger after pegfilgrastim dosing than after filgrastim dosing. In both WT and KO mice, increasing the dose of figrastim or pegfilgrastim resulted in a proportional increase in the AUC. A functional G-CSF-R is an important mechanism in the plasma clearance of both filgrastim and pegfilgrastim.

  10. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors.

    PubMed

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Christopher Octeau, J; Kovoor, Abraham

    2013-10-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. © 2013 International Society for Neurochemistry.

  11. The compensatory G88R change is essential in restoring the normal functions of influenza A/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal.

    PubMed

    Xie, Hang; Lin, Zhengshi; Mosier, Philip D; Desai, Umesh R; Gao, Yamei

    2013-01-01

    G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.

  12. The SI strain of measles virus derived from a patient with subacute sclerosing panencephalitis possesses typical genome alterations and unique amino acid changes that modulate receptor specificity and reduce membrane fusion activity.

    PubMed

    Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto

    2011-11-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.

  13. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF STAIR TOWERS ON SOUTH FACADE. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 104, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  14. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS, BEFORE REMOVAL OF CHIMNEY, FINIALS, GINGERBREAD, AND VARIEGATED SLATE ROOFING. DATED C. 1876. - Rock Island Arsenal, Building No. 321, Rodman Avenue & Rock Island Avenue, Rock Island, Rock Island County, IL

  15. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. EAST AND NORTH ELEVATIONS BEFORE REMOVAL OF STRAP-HINGE DOOR. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 139, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  16. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS BEFORE REPLACEMENT OF STRAP-HINGE DOOR. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 140, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  17. Zinc induces exposure of hydrophobic sites in the C-terminal domain of gC1q-R/p33.

    PubMed

    Kumar, Rajeev; Peerschke, Ellinor I B; Ghebrehiwet, Berhane

    2002-09-01

    Endothelial cells and platelets are known to express gC1q-R on their surface. In addition to C1q, endothelial cell gC1q-R has been shown to bind high molecular weight kininogen (HK) and factor XII (FXII). However, unlike C1q, whose interaction with gC1q-R does not require divalent ions, the binding of HK to gC1q-R is absolutely dependent on the presence of zinc. However, the mechanism by which zinc modulates this interaction is not fully understood. To investigate the role of zinc, binding studies were done using the hydrophobic dye, bis-ANS. The fluorescence intensity of bis-ANS, greatly increases and the emission maximum is blue-shifted from 525 to 485nm upon binding to hydrophobic sites on proteins. In this report, we show that a blue-shift in emission maximum is also observed when bis-ANS binds to gC1q-R in the presence but not in the absence of zinc suggesting that zinc induces exposure of hydrophobic sites in the molecule. The binding of bis-ANS to gC1q-R is specific, dose-dependent, and reversible. In the presence of zinc, this binding is abrogated by monoclonal antibody 74.5.2 directed against gC1q-R residues 204-218. This segment of gC1q-R, which corresponds to the beta6 strand in the crystal structure, has been shown previously to be the binding site for HK. A similar trend in zinc-induced gC1q-R binding was also observed using the hydrophobic matrix octyl-Sepharose. Taken together, our data suggest that zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R involved in binding to HK/FXII.

  18. Small molecules targeting heterotrimeric G proteins.

    PubMed

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Are symptoms of spirit possessed patients covered by the DSM-IV or DSM-5 criteria for possession trance disorder? A mixed-method explorative study in Uganda.

    PubMed

    van Duijl, Marjolein; Kleijn, Wim; de Jong, Joop

    2013-09-01

    As in many cultures, spirit possession is a common idiom of distress in Uganda. The DSM-IV contains experimental research criteria for dissociative and possession trance disorder (DTD and PTD), which are under review for the DSM-5. In the current proposed categories of the DSM-5, PTD is subsumed under dissociative identity disorder (DID) and DTD under dissociative disorders not elsewhere classified. Evaluation of these criteria is currently urgently required. This study explores the match between local symptoms of spirit possession in Uganda and experimental research criteria for PTD in the DSM-IV and proposed criteria for DID in the DSM-5. A mixed-method approach was used combining qualitative and quantitative research methods. Local symptoms were explored of 119 spirit possessed patients, using illness narratives and a cultural dissociative symptoms' checklist. Possible meaningful clusters of symptoms were inventoried through multiple correspondence analysis. Finally, local symptoms were compared with experimental criteria for PTD in the DSM-IV and proposed criteria for DID in the DSM-5. Illness narratives revealed different phases of spirit possession, with passive-influence experiences preceding the actual possession states. Multiple correspondence analysis of symptoms revealed two dimensions: 'passive' and 'active' symptoms. Local symptoms, such as changes in consciousness, shaking movements, and talking in a voice attributed to spirits, match with DSM-IV-PTD and DSM-5-DID criteria. Passive-influence experiences, such as feeling influenced or held by powers from outside, strange dreams, and hearing voices, deserve to be more explicitly described in the proposed criteria for DID in the DSM-5. The suggested incorporation of PTD in DID in the DSM-5 and the envisioned separation of DTD and PTD in two distinctive categories have disputable aspects.

  20. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yan; Li, Fengling; Babault, Nicolas

    G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18more » (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.« less

  1. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody.

    PubMed

    Pardridge, William M

    2015-02-01

    Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.

  2. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF BRICK STAIR TOWERS ON SOUTH FACADE. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 110, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  3. 5G: rethink mobile communications for 2020+.

    PubMed

    Chih-Lin, I; Han, Shuangfeng; Xu, Zhikun; Sun, Qi; Pan, Zhengang

    2016-03-06

    The 5G network is anticipated to meet the challenging requirements of mobile traffic in the 2020s, which are characterized by super high data rate, low latency, high mobility, high energy efficiency and high traffic density. This paper provides an overview of China Mobile's 5G vision and potential solutions. Three key characteristics of 5G are analysed, i.e. super fast, soft and green. The main 5G R&D themes are further elaborated, which include five fundamental rethinkings of the traditional design methodologies. The 5G network design considerations are also discussed, with cloud radio access network, ultra-dense network, software defined network and network function virtualization examined as key potential solutions towards a green and soft 5G network. The paradigm shift to user-centric network operation from the traditional cell-centric operation is also investigated, where the decoupled downlink and uplink, control and data, and adaptive multiple connections provide sufficient means to achieve a user-centric 5G network with 'no more cells'. The software defined air interface is investigated under a uniform framework and can adaptively adapt the parameters to well satisfy various requirements in different 5G scenarios. © 2016 The Author(s).

  4. Structure-Activity Relationship Studies on a Macrocyclic Agouti-Related Protein (AGRP) Scaffold Reveal Agouti Signaling Protein (ASP) Residue Substitutions Maintain Melanocortin-4 Receptor Antagonist Potency and Result in Inverse Agonist Pharmacology at the Melanocortin-5 Receptor.

    PubMed

    Ericson, Mark D; Freeman, Katie T; Schnell, Sathya M; Fleming, Katlyn A; Haskell-Luevano, Carrie

    2017-10-12

    The melanocortin system consists of five reported receptors, agonists from the proopiomelanocortin gene transcript, and two antagonists, agouti-signaling protein (ASP) and agouti-related protein (AGRP). For both ASP and AGRP, the hypothesized Arg-Phe-Phe pharmacophores are on exposed β-hairpin loops. In this study, the Asn and Ala positions of a reported AGRP macrocyclic scaffold (c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro]) were explored with 14-compound and 8-compound libraries, respectively, to generate more potent, selective melanocortin receptor antagonists. Substituting diaminopropionic acid (Dap), DDap, and His at the Asn position yielded potent MC4R ligands, while replacing Ala with Ser maintained MC4R potency. Since these substitutions correlate to ASP loop residues, an additional Phe to Ala substitution was synthesized and observed to maintain MC4R potency. Seventeen compounds also possessed inverse agonist activity at the MC5R, the first report of this pharmacology. These findings are useful in developing molecular probes to study negative energy balance conditions and unidentified functions of the MC5R.

  5. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  6. Silymarin suppresses the PGE2 -induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways.

    PubMed

    Woo, Seon Min; Min, Kyoung-Jin; Chae, In Gyeong; Chun, Kyung-Soo; Kwon, Taeg Kyu

    2015-03-01

    Silymarin has been known as a chemopreventive agent, and possesses multiple anti-cancer activities including induction of apoptosis, inhibition of proliferation and growth, and blockade of migration and invasion. However, whether silymarin could inhibit prostaglandin (PG) E2 -induced renal cell carcinoma (RCC) migration and what are the underlying mechanisms are not well elucidated. Here, we found that silymarin markedly inhibited PGE2 -stimulated migration. PGE2 induced G protein-dependent CREB phosphorylation via protein kinase A (PKA) signaling, and PKA inhibitor (H89) inhibited PGE2 -mediated migration. Silymarin reduced PGE2 -induced CREB phosphorylation and CRE-promoter activity. PGE2 also activated G protien-independent signaling pathways (Src and STAT3) and silymarin reduced PGE2 -induced phosphorylation of Src and STAT3. Inhibitor of Src (Saracatinib) markedly reduced PGE2 -mediated migration. We found that EP2, a PGE2 receptor, is involved in PGE2 -mediated cell migration. Down regulation of EP2 by EP2 siRNA and EP2 antagonist (AH6809) reduced PGE2 -inudced migration. In contrast, EP2 agonist (Butaprost) increased cell migration and silymarin effectively reduced butaprost-mediated cell migration. Moreover, PGE2 increased EP2 expression through activation of positive feedback mechanism, and PGE2 -induced EP2 expression, as well as basal EP2 levels, were reduced in silymarin-treated cells. Taken together, our study demonstrates that silymarin inhibited PGE2 -induced cell migration through inhibition of EP2 signaling pathways (G protein dependent PKA-CREB and G protein-independent Src-STAT3). © 2013 Wiley Periodicals, Inc.

  7. Computational design of a pH-sensitive IgG binding protein.

    PubMed

    Strauch, Eva-Maria; Fleishman, Sarel J; Baker, David

    2014-01-14

    Computational design provides the opportunity to program protein-protein interactions for desired applications. We used de novo protein interface design to generate a pH-dependent Fc domain binding protein that buries immunoglobulin G (IgG) His-433. Using next-generation sequencing of naïve and selected pools of a library of design variants, we generated a molecular footprint of the designed binding surface, confirming the binding mode and guiding further optimization of the balance between affinity and pH sensitivity. In biolayer interferometry experiments, the optimized design binds IgG with a Kd of ∼ 4 nM at pH 8.2, and approximately 500-fold more weakly at pH 5.5. The protein is extremely stable, heat-resistant and highly expressed in bacteria, and allows pH-based control of binding for IgG affinity purification and diagnostic devices.

  8. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    PubMed

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells*

    PubMed Central

    Teng, Yun; Radde, Brandie N.; Litchfield, Lacey M.; Ivanova, Margarita M.; Prough, Russell A.; Clark, Barbara J.; Doll, Mark A.; Hein, David W.; Klinge, Carolyn M.

    2015-01-01

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3–12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. PMID:25969534

  10. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins.

    PubMed

    Bernard, M L; Peterson, Y K; Chung, P; Jourdan, J; Lanier, S M

    2001-01-12

    AGS3 (activator of G-protein signaling 3) was isolated in a yeast-based functional screen for receptor-independent activators of heterotrimeric G-proteins. As an initial approach to define the role of AGS3 in mammalian signal processing, we defined the AGS3 subdomains involved in G-protein interaction, its selectivity for G-proteins, and its influence on the activation state of G-protein. Immunoblot analysis with AGS3 antisera indicated expression in rat brain, the neuronal-like cell lines PC12 and NG108-15, as well as the smooth muscle cell line DDT(1)-MF2. Immunofluorescence studies and confocal imaging indicated that AGS3 was predominantly cytoplasmic and enriched in microdomains of the cell. AGS3 coimmunoprecipitated with Galpha(i3) from cell and tissue lysates, indicating that a subpopulation of AGS3 and Galpha(i) exist as a complex in the cell. The coimmunoprecipitation of AGS3 and Galpha(i) was dependent upon the conformation of Galpha(i3) (GDP GTPgammaS (guanosine 5'-3-O-(thio)triphosphate)). The regions of AGS3 that bound Galpha(i) were localized to four amino acid repeats (G-protein regulatory motif (GPR)) in the carboxyl terminus (Pro(463)-Ser(650)), each of which were capable of binding Galpha(i). AGS3-GPR domains selectively interacted with Galpha(i) in tissue and cell lysates and with purified Galpha(i)/Galpha(t). Subsequent experiments with purified Galpha(i2) and Galpha(i3) indicated that the carboxyl-terminal region containing the four GPR motifs actually bound more than one Galpha(i) subunit at the same time. The AGS3-GPR domains effectively competed with Gbetagamma for binding to Galpha(t(GDP)) and blocked GTPgammaS binding to Galpha(i1). AGS3 and related proteins provide unexpected mechanisms for coordination of G-protein signaling pathways.

  11. The SI Strain of Measles Virus Derived from a Patient with Subacute Sclerosing Panencephalitis Possesses Typical Genome Alterations and Unique Amino Acid Changes That Modulate Receptor Specificity and Reduce Membrane Fusion Activity ▿ ‡

    PubMed Central

    Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto

    2011-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity. PMID:21917959

  12. Safety and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the E2 protein of classical swine fever virus in pigs.

    PubMed

    Lei, Jian-Lin; Xia, Shui-Li; Wang, Yimin; Du, Mingliang; Xiang, Guang-Tao; Cong, Xin; Luo, Yuzi; Li, Lian-Feng; Zhang, Lingkai; Yu, Jiahui; Hu, Yonghao; Qiu, Hua-Ji; Sun, Yuan

    2016-06-01

    Classical swine fever (CSF) and pseudorabies (PR) are both major infectious diseases of pigs, causing enormous economic losses to the swine industry in many countries. A marker vaccine that enables differentiation of infected from vaccinated animals (DIVA) is highly desirable for control and eradication of these two diseases in endemic areas. Since late 2011, PR outbreaks have been frequently reported in many Bartha-K61-vaccinated pig farms in China. It has been demonstrated that a pseudorabies virus (PRV) variant with altered antigenicity and increased pathogenicity was responsible for the outbreaks. Previously, we showed that rPRVTJ-delgE/gI/TK, a gE/gI/TK-deleted PRV variant, was safe for susceptible animals and provided a complete protection against lethal PRV variant challenge, indicating that rPRVTJ-delgE/gI/TK can be used as an attractive vaccine vector. To develop a safe bivalent vaccine against CSF and PR, we generated a recombinant virus rPRVTJ-delgE/gI/TK-E2 expressing the E2 protein of classical swine fever virus (CSFV) based on rPRVTJ-delgE/gI/TK and evaluated its safety and immunogenicity in pigs. The results indicated that pigs (n=5) immunized with rPRVTJ-delgE/gI/TK-E2 of different doses did not exhibit clinical signs or viral shedding following immunization, the immunized pigs produced anti-PRV or anti-CSFV neutralizing antibodies and the pigs immunized with 10(6) or 10(5) TCID50 rPRVTJ-delgE/gI/TK-E2 were completely protected against the lethal challenge with either CSFV Shimen strain or variant PRV TJ strain. These findings suggest that rPRVTJ-delgE/gI/TK-E2 is a promising bivalent DIVA vaccine candidate against CSFV and PRV coinfections. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  14. Th1 Stimulatory Proteins of Leishmania donovani: Comparative Cellular and Protective Responses of rTriose Phosphate Isomerase, rProtein Disulfide Isomerase and rElongation Factor-2 in Combination with rHSP70 against Visceral Leishmaniasis

    PubMed Central

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  15. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR.

    PubMed

    Defoirdt, Tom; Miyamoto, Carol M; Wood, Thomas K; Meighen, Edward A; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter

    2007-10-01

    This study aimed at getting a deeper insight in the molecular mechanism by which the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double mutants revealed that the furanone blocks all three channels of the V. harveyi quorum sensing system. In further experiments using mutants with mutations in the quorum sensing signal transduction pathway, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component located downstream of the Hfq protein. Furthermore, reverse transcriptase real-time polymerase chain reaction with specific primers showed that there was no effect of the furanone on luxR(Vh) mRNA levels in wild-type V. harveyi cells. In contrast, mobility shift assays showed that in the presence of the furanone, significantly lower levels of the LuxR(Vh) response regulator protein were able to bind to its target promoter sequences in wild-type V. harveyi. Finally, tests with purified LuxR(Vh) protein also showed less shifts with furanone-treated LuxR(Vh), whereas the LuxR(Vh) concentration was found not to be altered by the furanone (as determined by SDS-PAGE). Therefore, our data indicate that the furanone blocks quorum sensing in V. harveyi by rendering the quorum sensing master regulator protein LuxR(Vh) unable to bind to the promoter sequences of quorum sensing-regulated genes.

  16. Structures of the G85R Variant of SOD1 in Familial Amyotrophic Lateral Sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xiaohang; Antonyuk, Svetlana V.; Seetharaman, Sai V.

    2008-07-21

    Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ionmore » deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.« less

  17. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    PubMed Central

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  18. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  19. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor.

    PubMed

    Nakajima, Ken-ichiro; Wess, Jürgen

    2012-10-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M₃ muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types.

  20. Molecular epidemiology of Rotavirus A, causing acute gastroenteritis hospitalizations among children in Nha Trang, Vietnam, 2007-2008: Identification of rare G9P[19] and G10P[14] strains.

    PubMed

    Do, Loan Phuong; Kaneko, Miho; Nakagomi, Toyoko; Gauchan, Punita; Agbemabiese, Chantal Ama; Dang, Anh Duc; Nakagomi, Osamu

    2017-04-01

    Rotavirus A (RVA) causes acute diarrhea in children as well as animals. As part of a cross-sectional study of children less than 5 years of age hospitalized for acute diarrhea in Vietnam during a 15-month period (2007-2008), 322 (43.5%) of 741 fecal specimens contained RVA with 92% either G1P[8] or G3P[8]. This study was undertaken to further characterize strains that remained untypeable to complete the G and P genotypes of the 322 rotavirus-positive specimens. While 307 (95.3%) strains possessed the common human RVA genotypes: G1P[8] (45.0%), G2P[4] (2.8%), G3P[8] (46.9%), and G9P[8] (0.6%), sequencing of initially untypeable specimens revealed the presence of two unusual strains designated NT0073 and NT0082 possessing G9P[19] and G10P[14], respectively. The genotype constellation of NT0073 (G9-P[19]-I5-R1-C1-M1-A8-N1-T7-E1-H1) and the phylogenetic trees suggested its origin as a porcine RVA strain causing diarrhea in a 24-month-old girl whereas the genotype constellation of NT0082 (G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3) and the phylogenetic trees suggested its origin as an RVA strain of artiodactyl origin (such as cattle, sheep and goats) causing diarrhea in a 13-month-old boy. This study showed that RVA strains of animal host origin were not necessarily attenuated in humans. A hypothesis may be postulated that P[19] and P[14] VP4 spike proteins helped the virus to replicate in the human intestine but that efficient onward human-to-human spread after crossing the host species barrier may require the virus to obtain some additional features as there was no evidence of widespread transmission with the limited sampling performed over the study period. J. Med. Virol. 89:621-631, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. R248G cystic fibrosis transmembrane conductance regulator mutation in three siblings presenting with recurrent acute pancreatitis and reproductive issues: a case series.

    PubMed

    Villalona, Seiichi; Glover-López, Guillermo; Ortega-García, Juan Antonio; Moya-Quiles, Rosa; Mondejar-López, Pedro; Martínez-Romero, Maria C; Rigabert-Montiel, Mariano; Pastor-Vivero, María D; Sánchez-Solís, Manuel

    2017-02-15

    Mutational combinations of the cystic fibrosis transmembrane conductance regulator, CFTR, gene have different phenotypic manifestations at the molecular level with varying clinical consequences for individuals possessing such mutations. Reporting cystic fibrosis transmembrane conductance regulator mutations is important in understanding the genotype-phenotype correlations and associated clinical presentations in patients with cystic fibrosis. Understanding the effects of mutations is critical in developing appropriate treatments for individuals affected with cystic fibrosis, non-classic cystic fibrosis, or cystic fibrosis transmembrane conductance regulator-related disorders. This is the first report of related individuals possessing the R248G missense cystic fibrosis transmembrane conductance regulator mutation and we present their associated clinical histories. All three patients are of Spanish descent. Deoxyribonucleic acid analysis revealed that all three siblings possessed a novel c.742A>G mutation, resulting in a p.Arg248Gly (R248G) amino acid change in exon 6 in trans with the known N1303K mutant allele. Case 1 patient is a 39-year-old infertile man presenting with congenital unilateral absence of the vas deferens and recurrent episodes of epigastric pain. Case 2 patient is a 32-year-old woman presenting with periods of infertility, two previous spontaneous abortions, recurrent epigastric pain, and recurrent pancreatitis. Case 3 patient is a 29-year-old woman presenting with recurrent pancreatitis and epigastric pain. We report the genotype-phenotype correlations and clinical manifestations of a novel R248G cystic fibrosis transmembrane conductance regulator mutation: congenital unilateral absence of the vas deferens in males, reduced female fertility, and recurrent acute pancreatitis. In addition, we discuss the possible functional consequences of the mutations at the molecular level.

  2. FUNCTIONAL CHARACTERIZATION OF THE A411T (L137F) and G364A (D122N) GENETIC POLYMORPHISMS IN HUMAN N-ACETYLTRANSFERASE 2

    PubMed Central

    Zang, Yu; Zhao, Shuang; Doll, Mark A.; States, J Christopher; Hein, David W.

    2007-01-01

    Human N-acetyltransferase 2 (NAT2) genetic polymorphisms may modify drug efficacy and toxicity and individual cancer susceptibility from carcinogen exposure. A411T (L137F) and G364A (D122N) are two single nucleotide polymorphisms (SNPs) that coexist with other SNPs in human NAT2 alleles NAT2*5I and NAT2*12D, respectively. Cloning and expression in COS-1 cells showed that both A411T and G364A reduced NAT2 immunoreactive protein to an undetectable level without causing changes in mRNA level. Missense mutants displayed different effects on sulfamethazine N-acetylation activity for both L137 (wild-type: 70.2±5.2; L137F: 1.34±0.03; L137W: non-detectable; L137I: 34.2±2.0; L137G: 0.52±0.04 nmol/min/mg) and D122 (wildtype: 70.2±5.2; D122R: non-detectable; D122Q: non-detectable; D122E: 1.72±0.24 nmol/min/mg). To further test our hypothesis that A411T (L137F) and G364A (D122N) accelerate protein degradation, various NAT2 alleles were cloned and expressed in E. coli, which does not possess the ubiquitin-mediated degradation pathway. In contrast to the expression in mammalian cells, recombinant NAT2 possessing either of these two SNPs showed no reduction in immunoreactive NAT2 level when expressed in E. coli. These findings suggest that both A411T (L137F) and G364A (D122N) enhance NAT2 degradation, resulting in reduced NAT2 protein and catalytic activity for NAT2 5I and NAT2 12D. PMID:17264801

  3. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    PubMed

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  4. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    PubMed

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  5. Hepatitis B core protein promotes liver cancer metastasis through miR-382-5p/DLC-1 axis.

    PubMed

    Du, Juan; Bai, Fuxiang; Zhao, Peiqing; Li, Xiaoyan; Li, Xueen; Gao, Lifen; Ma, Chunhong; Liang, Xiaohong

    2018-01-01

    The hepatitis B virus core protein (HBc), also named core antigen, is well-known for its key role in viral capsid formation and virus replication. Recently, studies showed that HBc has the potential to control cell biology activity by regulating host gene expression. Here, we utilized miRNA microarray to identify 24 upregulated miRNAs and 21 downregulated miRNAs in HBc-expressed HCC cells, which were involved in multiple biological processes, including cell motility. Consistently, the in vitro transwell assay and the in vivo tail-vein injection model showed HBc promotion on HCC metastasis. Further, the miRNA-target gene network analysis displayed that the deleted in liver cancer (DLC-1) gene, an important negative regulator for cell motility, was potentially targeted by several differentially expressed miRNAs in HBc-introduced cells. Introduction of miRNAs mimics or inhibitors and 3'UTR luciferase activity assay proved that miR-382-5p efficiently suppressed DLC-1 expression and its 3'-UTR luciferase reporter activity. Importantly, cotransfection of miR-382-5p mimics/inhibitors and the DLC-1 expression vector almost abrogated HBc promotion on cell motility, indicating that the miR-382-5p/DLC-1 axis is important for mediating HBc-enhanced HCC motility. Clinical HCC samples also showed a negative correlation between miR-382-5p and DLC-1 expression level. Furthermore, HBc-positive HCC tissues showed high miR-382-5p level and reduced DLC-1 expression. In conclusion, our findings revealed that HBc promoted HCC motility by regulating the miR-382-5p/DLC-1 axis, which might provide a novel target for clinical diagnosis and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203).

    PubMed

    Beninson, Lida A; Brown, Peter N; Loughridge, Alice B; Saludes, Jonel P; Maslanik, Thomas; Hills, Abigail K; Woodworth, Tyler; Craig, Wendy; Yin, Hang; Fleshner, Monika

    2014-01-01

    Exosomes, biologically active nanoparticles (40-100 nm) released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA). Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72) and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS) activation of alpha-1 adrenergic receptors (ADRs), since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.

  7. A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women.

    PubMed

    Meng, Xingqiong; Zhu, Kun; Devine, Amanda; Kerr, Deborah A; Binns, Colin W; Prince, Richard L

    2009-11-01

    Long-term effects of high dietary protein intake on muscle and bone structure in the elderly are not clear. The aim of this study was to investigate the relationship between baseline protein intake and lean mass and BMC 5 yr later in a cohort of elderly postmenopausal women. A total of 862 community-dwelling women 75 +/- 3 yr of age provided baseline data including nutrient intake assessed by a food frequency questionnaire. At 5 yr, upper arm muscle area (UAMA) and body composition using DXA were measured. Baseline protein intake was 81 +/- 28 g/d (1.2 +/- 0.4 g/kg/d), contributing 19 +/- 3% of total energy intake. There were positive correlations between baseline protein intake and whole body and appendicular bone-free lean mass and BMC (r = 0.14-0.18, p < 0.001) and UAMA (r = 0.08, p < 0.05). Compared with those in the lowest tertile of protein intake (<66 g/d), women in the top tertile (>87 g/d) had 5.4-6.0% higher whole body and appendicular lean mass and UAMA and 5.3-6.0% higher whole body and appendicular BMC. These effects remained after adjusting for potential confounders. However, the effect on BMC disappeared after further adjustment for lean mass. This study shows that high protein intake is associated with long-term beneficial effects on muscle mass and size and bone mass in elderly women. The protein effect on bone may be partly mediated by its effects on muscle.

  8. The essential nature of YqfG, a YbeY homologue required for 3' maturation of Bacillus subtilis 16S ribosomal RNA is suppressed by deletion of RNase R.

    PubMed

    Baumgardt, Kathrin; Gilet, Laetitia; Figaro, Sabine; Condon, Ciarán

    2018-06-05

    Ribosomal RNAs are processed from primary transcripts containing 16S, 23S and 5S rRNAs in most bacteria. Maturation generally occurs in a two-step process, consisting of a first crude separation of the major species by RNase III during transcription, followed by precise trimming of 5' and 3' extensions on each species upon accurate completion of subunit assembly. The various endo- and exoribonucleases involved in the final processing reactions are strikingly different in Escherichia coli and Bacillus subtilis, the two best studied representatives of Gram-negative and Gram-positive bacteria, respectively. Here, we show that the one exception to this rule is the protein involved in the maturation of the 3' end of 16S rRNA. Cells depleted for the essential B. subtilis YqfG protein, a homologue of E. coli YbeY, specifically accumulate 16S rRNA precursors bearing 3' extensions. Remarkably, the essential nature of YqfG can be suppressed by deleting the ribosomal RNA degrading enzyme RNase R, i.e. a ΔyqfG Δrnr mutant is viable. Our data suggest that 70S ribosomes containing 30S subunits with 3' extensions of 16S rRNA are functional to a degree, but become substrates for degradation by RNase R and are eliminated.

  9. Mutations in MYB3R1 and MYB3R4 Cause Pleiotropic Developmental Defects and Preferential Down-Regulation of Multiple G2/M-Specific Genes in Arabidopsis1[C][W

    PubMed Central

    Haga, Nozomi; Kobayashi, Kosuke; Suzuki, Takamasa; Maeo, Kenichiro; Kubo, Minoru; Ohtani, Misato; Mitsuda, Nobutaka; Demura, Taku; Nakamura, Kenzo; Jürgens, Gerd; Ito, Masaki

    2011-01-01

    R1R2R3-Myb proteins represent an evolutionarily conserved class of Myb family proteins important for cell cycle regulation and differentiation in eukaryotic cells. In plants, this class of Myb proteins are believed to regulate the transcription of G2/M phase-specific genes by binding to common cis-elements, called mitosis-specific activator (MSA) elements. In Arabidopsis (Arabidopsis thaliana), MYB3R1 and MYB3R4 act as transcriptional activators and positively regulate cytokinesis by activating the transcription of KNOLLE, which encodes a cytokinesis-specific syntaxin. Here, we show that the double mutation myb3r1 myb3r4 causes pleiotropic developmental defects, some of which are due to deficiency of KNOLLE whereas other are not, suggesting that multiple target genes are involved. Consistently, microarray analysis of the double mutant revealed altered expression of many genes, among which G2/M-specific genes showed significant overrepresentation of the MSA motif and a strong tendency to be down-regulated by the double mutation. Our results demonstrate, on a genome-wide level, the importance of the MYB3R-MSA pathway for regulating G2/M-specific transcription. In addition, MYB3R1 and MYB3R4 may have diverse roles during plant development by regulating G2/M-specific genes with various functions as well as genes possibly unrelated to the cell cycle. PMID:21862669

  10. Reduced carriership of 4G allele of plasminogen activator inhibitor-1 4G/5G polymorphism in very young survivors of myocardial infarction.

    PubMed

    Rallidis, Loukianos S; Gialeraki, Argyri; Merkouri, Efrosyni; Liakos, George; Dagres, Nikolaos; Sionis, Dimitrios; Travlou, Anthi; Lekakis, John; Kremastinos, Dimitrios T

    2010-05-01

    There are limited and controversial data regarding the impact of 4G/5G polymorphism of the plasminogen activator inhibitor-1 (PAI-1) gene in the pathogenesis of premature myocardial infarction (MI). We explored whether 4G/5G polymorphism of the PAI-1 gene is associated with the development of MI G/5G polymorphism of PAI-1 was tested with polymerase chain reaction and reverse hybridization. 4G allele carriers (4G/4G and 4G/5G genotypes) of PAI-1 were less frequent in patients than in controls (69.6 vs. 83.6%, P = 0.007). 4G carriership of the polymorphism of PAI-1 was associated with lower risk for acute MI (odds ratio 0.45, 95% confidence interval 0.23-0.88, P = 0.02) after adjusting for major cardiovascular risk factors. Patients possessing the 4G allele had higher PAI-1 plasma levels (32.2 +/- 25 vs. 22.2 +/- 11.3 ng/ml, P = 0.006) but lower lipoprotein(a) levels (10.1 [2.1-29.9] vs. 15.3 [8.2-57.1] mg/dl, P = 0.03) compared to 5G/5G homozygotes. Our data indicate that the 4G allele of the PAI-1 4G/5G polymorphism is less frequent among survivors of MI at very young age compared with matched controls.

  11. Effects of miR-33a-5P on ABCA1/G1-Mediated Cholesterol Efflux under Inflammatory Stress in THP-1 Macrophages

    PubMed Central

    Mao, Min; Lei, Han; Liu, Qing; Chen, Yaxi; Zhao, Lei; Li, Qing; Luo, Suxin; Zuo, Zhong; He, Quan; Huang, Wei; Zhang, Nan; Zhou, Chao; Ruan, Xiong Z.

    2014-01-01

    The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol). The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages. PMID:25329888

  12. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages.

    PubMed

    Mao, Min; Lei, Han; Liu, Qing; Chen, Yaxi; Zhao, Lei; Li, Qing; Luo, Suxin; Zuo, Zhong; He, Quan; Huang, Wei; Zhang, Nan; Zhou, Chao; Ruan, Xiong Z

    2014-01-01

    The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol). The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages.

  13. Structural prerequisites for G-protein activation by the neurotensin receptor

    PubMed Central

    Krumm, Brian E.; White, Jim F.; Shah, Priyanka; Grisshammer, Reinhard

    2015-01-01

    We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A3.49, L310A6.37, F358A7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F3587.42 causes the conserved W3216.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocket and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L3106.37 side chain dictates the position of R1673.50 of the highly conserved D/ERY motif. These residues, together with the presence of E1663.49 provide determinants for G-protein activation by NTSR1. PMID:26205105

  14. Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor

    PubMed Central

    Nakajima, Ken-ichiro

    2012-01-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M3 muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types. PMID:22821234

  15. The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential.

    PubMed

    Sprous, Dennis; Palmer, Kyle R

    2010-01-01

    Taste signaling is a critical determinant of ingestive behaviors and thereby linked to obesity and related metabolic dysfunctions. Recent evidence of taste signaling pathways in the gut suggests the link to be more direct, raising the possibility that taste receptor systems could be regarded as therapeutic targets. T1R2/T1R3, the G protein coupled receptor that mediates sweet taste, and the TRPM5 ion channel have been the focus of discovery programs seeking novel compounds that could be useful in modifying taste. We review in this chapter the hypothesis of gastrointestinal taste signaling and discuss the potential for T1R2/T1R3 and TRPM5 as targets of therapeutic intervention in obesity and diabetes. Critical to the development of a drug discovery program is the creation of libraries that enhance the likelihood of identifying novel compounds that modulate the target of interest. We advocate a computer-based chemoinformatic approach for assembling natural and synthetic compound libraries as well as for supporting optimization of structure activity relationships. Strategies for discovering modulators of T1R2/T1R3 and TRPM5 using methods of chemoinformatics are presented herein. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Identification and Characterization of a G Protein-binding Cluster in α7 Nicotinic Acetylcholine Receptors.

    PubMed

    King, Justin R; Nordman, Jacob C; Bridges, Samuel P; Lin, Ming-Kuan; Kabbani, Nadine

    2015-08-14

    α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345-348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345-348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. MiR-223-5p works as an oncomiR in vulvar carcinoma by TP63 suppression

    PubMed Central

    de Melo Maia, Beatriz; Rodrigues, Iara Santana; Akagi, Erica Mie; Soares do Amaral, Nayra; Ling, Hui; Monroig, Paloma; Soares, Fernando Augusto; Calin, George Adrian; Rocha, Rafael Malagoli

    2016-01-01

    MiR-223-5p has been previously mentioned to be associated with tumor metastasis in HPV negative vulvar carcinomas, such as in several other tumor types. In the present study, we hypothesized that this microRNA would be important in vulvar cancer carcinogenesis and progression. To investigate this, we artificially mimicked miR-223-5p expression in a cell line derived from lymph node metastasis of vulvar carcinoma (SW962) and performed in vitro assays. As results, lower cell proliferation (p < 0.01) and migration (p < 0.001) were observed when miR-223-5p was overexpressed. In contrast, increased invasive potential of these cells was verified (p < 0.004). In silico search indicated that miR-223-5p targets TP63, member of the TP53 family of proteins, largely described with importance in vulvar cancer. We experimentally demonstrated that this microRNA is capable to decrease levels of p63 at both mRNA and protein levels (p < 0.001, and p < 0.0001; respectively). Also, a significant inverse correlation was observed between miR-223-5p and p63 expressions in tumors from patients (p = 0.0365). Furthermore, low p63 protein expression was correlated with deeper tumor invasion (p = 0.0491) and lower patient overall survival (p = 0.0494). Our study points out miR-223-5p overexpression as a putative pathological mechanism of tumor invasion and a promising therapeutic target and highlights the importance of both miR-223-5p and p63 as prognostic factors in vulvar cancer. Also, it is plausible that the evaluation of p63 expression in vulvar cancer at the biopsy level may bring important contribution on prognostic establishment and in elaborating better surgical approaches for vulvar cancer patients. PMID:27359057

  18. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2).

    PubMed

    Ross, T S; Bernard, O A; Berger, R; Gilliland, D G

    1998-06-15

    We report the fusion of the Huntingtin interactin protein 1 (HIP1) gene to the platelet-derived growth factor betareceptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia (CMML) with a t(5;7)(q33;q11.2) translocation. Southern blot analysis of patient bone marrow cells with a PDGFbetaR gene probe demonstrated rearrangement of the PDGFbetaR gene. Anchored polymerase chain reaction using PDGFbetaR primers identified a chimeric transcript containing the HIP1 gene located at 7q11.2 fused to the PDGFbetaR gene on 5q33. HIP1 is a 116-kD protein recently cloned by yeast two-hybrid screening for proteins that interact with Huntingtin, the mutated protein in Huntington's disease. The consequence of t(5;7)(q33;q11.2) is an HIP1/PDGFbetaR fusion gene that encodes amino acids 1 to 950 of HIP1 joined in-frame to the transmembrane and tyrosine kinase domains of the PDGFbetaR. The reciprocal PDGFbetaR/HIP1 transcript is not expressed. HIP1/PDGFbetaR is a 180-kD protein when expressed in the murine hematopoietic cell line, Ba/F3, and is constitutively tyrosine phosphorylated. Furthermore, HIP1/PDGFbetaR transforms the Ba/F3 cells to interleukin-3-independent growth. These data are consistent with an alternative mechanism for activation of PDGFbetaR tyrosine kinase activity by fusion with HIP1, leading to transformation of hematopoietic cells, and may implicate Huntingtin or HIP1 in the pathogenesis of hematopoietic malignancies.

  19. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Core Research for Evolutional Science and Technology

    2006-02-03

    BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM{sup lo}IgD{sup hi} B-cells but not in AICD susceptible immature IgM{sup hi}IgD{sup lo} B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23{sup hi} B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack ofmore » G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells.« less

  20. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Differential in vitro inhibition of M3G and M6G formation from morphine by (R)- and (S)-methadone and structurally related opioids

    PubMed Central

    Morrish, Glynn A; Foster, David J R; Somogyi, Andrew A

    2006-01-01

    Aims To determine the in vitro kinetics of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) formation and the inhibition potential by methadone enantiomers and structurally related opioids. Methods M3G and M6G formation kinetics from morphine were determined using microsomes from five human livers. Inhibition of glucuronide formation was investigated with eight inhibitors (100 µm) and the mechanism of inhibition determined for (R)- and (S)-methadone (70–500 µm) using three microsomal samples. Results Glucuronide formation displayed single enzyme kinetics. The M3G Vmax (mean ± SD) was 4.8-fold greater than M6G Vmax (555 ± 110 vs. 115 ± 19 nmol mg−1 protein h−1; P = 0.006, mean of difference 439; 95% confidence interval 313, 565 nmol mg−1 protein h−1). Km values for M3G and M6G formation were not significantly different (1.12 ± 0.37 vs. 1.11 ± 0.31 mm; P = 0.89, 0.02; −0.29, 0.32 mm). M3G and M6G formation was inhibited (P < 0.01) with a significant increase in the M3G/M6G ratio (P < 0.01) for all compounds tested. Detailed analysis with (R)- and (S)-methadone revealed noncompetitive inhibition with (R)-methadone Ki of 320 ± 42 µm and 192 ± 12 µm for M3G and M6G, respectively, and (S)-methadone Ki of 226 ± 30 µm and 152 ± 20 µm for M3G and M6G, respectively. Ki values for M3G inhibition were significantly greater than for M6G for (R)-methadone (P = 0.017, 128; 55, 202 µm) and (S)-methadone (P = 0.026, 75; 22, 128 µm). Conclusions Both methadone enantiomers noncompetitively inhibited the formation of morphine's primary metabolites, with greater inhibition of M6G formation compared with M3G. These findings indicate a mechanism for reduced morphine clearance in methadone-maintained patients and reduced relative formation of the opioid active M6G compared with M3G. PMID:16487227

  2. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer.

    PubMed

    Shen, Yin; Rampino, Melissa Ann F; Carroll, Reed C; Nawy, Scott

    2012-05-29

    ON bipolar cells are critical for the function of the ON pathway in the visual system. They express a metabotropic glutamate receptor (mGluR6) that, when activated, couples to the G(o) class of G protein. The channel that is primarily responsible for the synaptic response has been recently identified as the transient receptor potential cation channel subfamily M member 1 (TRPM1); TRPM1 is negatively coupled to the mGluR6/Go cascade such that activation of the cascade results in closure of the channel. Light indirectly opens TRPM1 by reducing transmitter release from presynaptic photoreceptors, resulting in a decrease in mGluR6 activation. Conversely, in the dark, binding of synaptic glutamate to mGluR6 inhibits TRPM1 current. Closure of TRPM1 by G-protein activation in the dark is a critical step in the process of ON bipolar cell signal transduction, but the precise pathway linking these two events is not understood. To address this question, we measured TRPM1 activity in retinal bipolar cells, in human ependymal melanocytes (HEMs) that endogenously express TRPM1, and in HEK293 cells transfected with TRPM1. Dialysis of the Gβγ subunit dimer, but not Gα(o), closed TRPM1 channels in every cell type that we tested. In addition, activation of an endogenous G-protein-coupled receptor pathway in HEK293 cells that releases Gβγ without activating Go protein also closed TRPM1 channels. These results suggest a model in which the Gβγ dimer that is released as a result of the dissociation from Gα(o) upon activation of mGluR6 closes the TRPM1 channel, perhaps via a direct interaction.

  3. miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression.

    PubMed

    Guo, Junwei; Ren, Fangli; Wang, Yinyin; Li, Shan; Gao, Zhengrong; Wang, Xiaoyan; Ning, Hongxiu; Wu, Jianguo; Li, Yi; Wang, Zhao; Chim, Shek Man; Xu, Jiake; Chang, Zhijie

    2012-07-01

    Differentiation of committed precursor cells into the osteoblast lineage is tightly regulated by several factors, including Runx2 and BMP2. We previously reported that C terminus of Hsc70-interacting protein/STIP1 homology and U-Box containing protein 1 (CHIP/STUB1) negatively regulated osteoblast differentiation through promoting Runx2 protein degradation. However, how CHIP is regulated during osteoblast differentiation remains unknown. In this study, we found that miR-764-5p is up-expressed during the osteoblast differentiation in calvarial and osteoblast progenitor cells, coupled with down-expression of CHIP protein. We observed that forced expression or inhibition of miR-764-5p decreased or increased the CHIP protein level through affecting its translation by targeting the 3'-UTR region. Perturbation of miR-764-5p resulted in altered differentiation fate of osteoblast progenitor cells and the role of miR-764-5p was reversed by overexpression of CHIP, whereas depletion of CHIP impaired the effect of miR-764-5p. Our data showed that miR-764-5p positively regulates osteoblast differentiation from osteoblast progenitor cells by repressing the translation of CHIP protein. Copyright © 2012 American Society for Bone and Mineral Research.

  4. Instrumentation and monitoring of the nextgen road infrastructure: Some results and perspectives from the R5G project

    NASA Astrophysics Data System (ADS)

    Hautière, Nicolas; Bourquin, Frédéric

    2017-04-01

    Through the centuries, the roads - which today constitute in France a huge transport network of 1 millions kilometers length - have always been able to cope with society needs and challenges. As a consequence, the next generation road infrastructure will have to take into account at least three societal transitions: ecological, energetic and digital. The goal of the 5th generation road project (R5G©) [1], led by Ifsttar in France, aligned with the Forever Open program [2], is to design and build demonstrators of such future road infrastructures. The goal of this presentation is to present different results related to the greening of road materials [3], the design of energy-positive roads [4, 5], the test of roads that self-diagnose [6], the design of roads adapted for connected [7], autonomous [8] and electrified vehicles [9], etc. In terms of perspectives, we will demonstrate that the road infrastructures will soon become a complex system: On one side road users will benefit from new services, on the other side such massively connected and instrumented infrastructures will potentially become an opportune sensor for knowledge development in geoscience, such as air quality, visibility and fog monitoring. References: [1] R5G project. r5g.ifsttar.fr [2] Forever Open Road project. www.foreveropenroad.eu [3] Biorepavation project. www.infravation.net/projects/BIOREPAVATION [4] N. Le Touz, J. Dumoulin. Numerical study of the thermal behavior of a new deicing road structure design with energy harvesting capabilities. EGU General Assembly 2015, Apr 2015, Vienne, Austria. [5] S. Asfour, F. Bernardin, E. Toussaint, J.-M. Piau. Hydrothermal modeling of porous pavement for its surface de-freezing. Applied Thermal Engineering. Volume 107, 25 August 2016, Pages 493-500 [6] LGV BPL Instrumentation. http://railenium.eu/wp-content/uploads/2016/08/INSTRUMENTATION-BPL-FR.pdf [7] SCOOP@F project. https

  5. A new human IgG avidity test, using mixtures of recombinant antigens (rROP1, rSAG2, rGRA6), for the diagnosis of difficult-to-identify phases of toxoplasmosis.

    PubMed

    Drapała, Dorota; Holec-Gąsior, Lucyna; Kur, Józef; Ferra, Bartłomiej; Hiszczyńska-Sawicka, Elżbieta; Lautenbach, Dariusz

    2014-07-01

    The preliminary diagnostic utility of two mixtures of Toxoplasma gondii recombinant antigens (rROP1+rSAG2 and rROP1+rGRA6) in IgG ELISA and IgG avidity test has been evaluated. A total of 173 serum samples from patients with toxoplasmosis and seronegative people were examined. The sensitivity of IgG ELISA for rROP1+rSAG2 and rROP1+rGRA6 was 91.1% and 76.7%, respectively, while the reactivity for sera from patients where acute toxoplasmosis was suspected was higher, at 100% and 95.4%, respectively, than for people with chronic infection, at 88.2% and 70.6%. In this study a different trend in avidity maturation of IgG antibodies for two mixtures of proteins in comparison with native antigen was observed. The results suggest that a new IgG avidity test using the mixtures of recombinant antigens may be useful for the diagnosis of difficult-to-identify phases of toxoplasmosis. For this reason, selected mixtures after the additional tests on groups of sera with well-defined dates of infection could be used as a better alternative to the native antigens of the parasite in the serodiagnosis of human T. gondii infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. "Default" versus "pre-atopic" IgG responses to foodborne and airborne pathogenesis-related group 10 protein molecules in birch-sensitized and nonatopic children.

    PubMed

    Hofmaier, Stephanie; Hatzler, Laura; Rohrbach, Alexander; Panetta, Valentina; Hakimeh, Dani; Bauer, Carl Peter; Hoffman, Ute; Forster, Johannes; Zepp, Fred; Schuster, Antje; Stock, Philippe; Wahn, Ulrich; Keil, Thomas; Lau, Susanne; Matricardi, Paolo Maria

    2015-05-01

    The route and dose of exposure are believed to be relevant factors in the sensitization process. Pathogenesis-related group 10 protein (PR-10) molecules are a family of allergenic proteins shared by many pollens (eg, birch and alder) and foods (eg, apple, peach, and soy). Children are exposed to both pollen-derived (inhaled) and food-derived (ingested) PR-10 molecules. We sought to investigate the role of route and dose of exposure in the evolution of IgG and IgE responses to recombinant PR-10 molecules. The German Multicentre Allergy Study examined a birth cohort born in 1990. Blood samples were collected at the ages of 1, 2, 3, 5, 6, 7, 10, and 13 years. Participants were included in the present analysis if they had (1) at least 1 serum sample at each of the 4 age periods or time points (1-3 years, 5-7 years, 10 years, and 13 years) and (2) IgE responses to birch (children with birch atopy) or no IgE response at all to 9 common aeroallergens and food allergens (nonatopic children). Therefore serum IgE antibodies to a panel of 4 airborne and 5 foodborne extracts, as well as to Bet v 1, were measured in singleplex assays, whereas IgG and IgE antibodies to a panel of 3 airborne PR-10 molecules (rBet v 1, rAln g 1, and rCor a 1.0101) and 7 foodborne PR-10 molecules (rCor a 1.0401, rMal d 1, rPru p 1, rGly m 4, rAra h 8, rApi g 1, and rDau c 1) were tested by using a multiplex microarray. In the present analyses we included 28 children with birch atopy and randomly selected 28 nonatopic children from the 190 children fulfilling the inclusion criteria. Two different patterns of IgG responses to PR-10 molecules were identified. Among nonatopic subjects, a "default" IgG response was directed mostly against foodborne PR-10, started often before age 2 years, stayed weak, and was mostly transient. Among all atopic subjects, the default IgG response at age 1 year was overwhelmed after age 2 years by an "pre-atopic" IgG response, which started with or shortly before the Ig

  7. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  8. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking

    PubMed Central

    2014-01-01

    Background The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease. Results We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism. Conclusion This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use. PMID:25170421

  9. Resolution of G(s)alpha and G(q)alpha/G(11)alpha proteins in membrane domains by two-dimensional electrophoresis: the effect of long-term agonist stimulation.

    PubMed

    Matousek, P; Novotný, J; Svoboda, P

    2004-01-01

    Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition.

  10. Abnormal N-Glycosylation of a Novel Missense Creatine Transporter Mutant, G561R, Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization.

    PubMed

    Uemura, Tatsuki; Ito, Shingo; Ohta, Yusuke; Tachikawa, Masanori; Wada, Takahito; Terasaki, Tetsuya; Ohtsuki, Sumio

    2017-01-01

    Cerebral creatine deficiency syndromes (CCDSs) are caused by loss-of-function mutations in creatine transporter (CRT, SLC6A8), which transports creatine at the blood-brain barrier and into neurons of the central nervous system (CNS). This results in low cerebral creatine levels, and patients exhibit mental retardation, poor language skills and epilepsy. We identified a novel human CRT gene missense mutation (c.1681 G>C, G561R) in Japanese CCDSs patients. The purpose of the present study was to evaluate the reduction of creatine transport in G561R-mutant CRT-expressing 293 cells, and to clarify the mechanism of its functional attenuation. G561R-mutant CRT exhibited greatly reduced creatine transport activity compared to wild-type CRT (WT-CRT) when expressed in 293 cells. Also, the mutant protein is localized mainly in intracellular membrane fraction, while WT-CRT is localized in plasma membrane. Western blot analysis revealed a 68 kDa band of WT-CRT protein in plasma membrane fraction, while G561R-mutant CRT protein predominantly showed bands at 55, 110 and 165 kDa in crude membrane fraction. The bands of both WT-CRT and G561R-mutant CRT were shifted to 50 kDa by N-glycosidase treatment. Our results suggest that the functional impairment of G561R-mutant CRT was probably caused by incomplete N-linked glycosylation due to misfolding during protein maturation, leading to oligomer formation and changes of cellular localization.

  11. ATP-dependent RecG Helicase Is Required for the Transcriptional Regulator OxyR Function in Pseudomonas species*

    PubMed Central

    Yeom, Jinki; Lee, Yunho; Park, Woojun

    2012-01-01

    The oxyR gene appears to reside in an operon with the recG helicase gene in many bacteria, including pathogenic Pseudomonas aeruginosa and Pseudomonas putida. Analysis of P. putida transcriptomes shows that many OxyR-controlled genes are regulated by the ATP-dependent RecG helicase and that RecG alone modulates the expression of many genes. We found that purified RecG binds to the promoters of many OxyR-controlled genes and that expression of these genes was not induced under conditions of oxidative stress in recG mutants of P. aeruginosa, P. putida, and Escherichia coli. In vitro data revealed that promoters containing palindromic sequences are essential for RecG binding and that single-strand binding proteins and ATP are also needed for RecG to promote transcription, whereas a magnesium ion has the opposite effect. The OxyR tetramer preferentially binds to promoters after RecG has generated linear DNA in the presence of ATP; otherwise, the OxyR dimer has higher affinity. This study provides new insights into the mechanism of bacterial transcription by demonstrating that RecG might be required for the induction of the OxyR regulon by unwinding palindromic DNA for transcription. This work describes a novel bacterial transcriptional function by RecG helicase with OxyR and may provide new targets for controlling Pseudomonas species pathogen. PMID:22621928

  12. Structural Evidence for a Sequential Release Mechanism for Activation of Heterotrimeric G Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Neeraj; Menon, Santosh T.; Chauhan, Radha

    2010-01-12

    Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5'-diphosphate (GDP) release by the G protein {alpha}-subunit is not well understood. Amino acid substitutions in the conserved {alpha}5 helix of Gi, which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant G{alpha}{sub i1}-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of G{alpha}{submore » i1}-T329A {center_dot} GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg{sup +2} coordination sphere and dislodge bound Mg{sup +2}. We propose a 'sequential release' mechanism whereby a transient conformational change in the {alpha}5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8.« less

  13. Characterization of a gene coding for a type IIo bacterial IgG-binding protein.

    PubMed

    Boyle, M D; Weber-Heynemann, J; Raeder, R; Podbielski, A

    1995-06-01

    Two antigenic classes of non-immune IgG-binding proteins can be expressed by group A streptococci. One antigenic group of proteins is recognized by an antibody prepared against the product of a cloned fcrA gene (anti-FcRA). In this study, the immunogen used to prepare the antibody that defines the second antigenic class was shown to be the product of the emm-like (emmL) gene of M serotype 55 group A isolate, A928. The emmL55 gene expressed in E. coli produced an M(r) approximately 58,000 molecule which bound human IgG1, IgG2, IgG3 and IgG4, as well as horse, rabbit and pig IgG in a non-immune fashion. These properties are characteristic of the previously described type IIo IgG-binding protein isolated from this strain. In addition, the recombinant protein was reactive with human serum albumin and fibrinogen. The emmL 55 gene sequence was analysed and found to have the organization and sequence characteristics of a typical class I emm-like gene.

  14. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility

    PubMed Central

    Stefanovic, Snezana; Bassell, Gary J.

    2015-01-01

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. PMID:25406362

  15. Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells

    PubMed Central

    Falkenburger, Björn H.; Jensen, Jill B.

    2010-01-01

    G protein–coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Gα subunit, are common for many different GPCRs. For Gq-coupled M1 muscarinic (acetylcholine) receptors (M1Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M1R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M1R signaling through Gq to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with ∼3,000 fluorescently labeled receptors, G proteins, or PLC molecules per µm2 of plasma membrane. Endogenous levels are much lower, 1–40 per µm2. Our kinetic model reproduces the time courses and concentration–response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M1R and Gβ FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Gαq greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of

  16. Prader-Willi region non-protein coding RNA 1 suppressed gastric cancer growth as a competing endogenous RNA of miR-425-5p.

    PubMed

    Chen, Zihao; Ju, Hongping; Yu, Shan; Zhao, Ting; Jing, Xiaojie; Li, Ping; Jia, Jing; Li, Nan; Tan, Bibo; Li, Yong

    2018-05-23

    Gastric cancer (GC) is one of the major global health problems, especially in Asia. Nowadays, long non-coding RNA (lncRNA) has gained significant attention in the current research climate such as carcinogenesis. This research desires to explore the mechanism of Prader-Willi region non-protein coding RNA 1 (PWRN1) on regulating GC process. Differentially expressed lncRNAs in GC tissues were screened out through microarray analysis. The RNA and protein expression level were detected by quantitative real-time PCR (qRT-PCR) and Western blot. Cell proliferation, apoptosis rate, metastasis abilities were respectively determined by cell counting kit 8 (CCK8), flow cytometry, wound healing, and transwell assay. The luciferase reporter system was used to verify the targetting relationships between PWRN1, miR-425-5p , and phosphatase and tensin homolog ( PTEN ). RNA-binding protein immunoprecipitation (RIP) assay was performed to prove whether PWRN1 acted as a competitive endogenous RNA (ceRNA) of miR-425-5p Tumor xenograft model and immunohistochemistry (IHC) were developed to study the influence of PWRN1 on tumor growth in vivo Microarray analysis determined that PWRN1 was differently expressed between GC tissues and adjacent tissues. qRT-PCR revealed PWRN1 low expression in GC tissues and cells. Up-regulated PWRN1 could reduce proliferation and metastasis and increase apoptosis in GC cells, while miR-425-5p had reverse effects. The RIP assay indicated that PWRN1 may target an oncogene, miR-425-5p The tumor xenograft assay found that up-regulated PWRN1 suppressed the tumor growth. The bioinformatics analysis, luciferase assay, and Western blot indicated that PWRN1 affected PTEN / Akt / MDM2 / p53 axis via suppressing miR-425-5p Our findings suggested that PWRN1 functioned as a ceRNA targetting miR-425-5p and suppressed GC development via p53 signaling pathway. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. G-protein mediated gating of inward-rectifier K+ channels.

    PubMed

    Mark, M D; Herlitze, S

    2000-10-01

    G-protein regulated inward-rectifier potassium channels (GIRK) are part of a superfamily of inward-rectifier K+ channels which includes seven family members. To date four GIRK subunits, designated GIRK1-4 (also designated Kir3.1-4), have been identified in mammals, and GIRK5 has been found in Xenopus oocytes. GIRK channels exist in vivo both as homotetramers and heterotetramers. In contrast to the other mammalian GIRK family members, GIRK1 can not form functional channels by itself and has to assemble with GIRK2, 3 or 4. As the name implies, GIRK channels are modulated by G-proteins; they are also modulated by phosphatidylinositol 4,5-bisphosphate, intracellular sodium, ethanol and mechanical stretch. Recently a family of GTPase activating proteins known as regulators of G-protein signaling were shown to be the missing link for the fast deactivation kinetics of GIRK channels in native cells, which contrast with the slow kinetics observed in heterologously expressed channels. GIRK1, 2 and 3 are highly abundant in brain, while GIRK4 has limited distribution. Here, GIRK1/2 seems to be the predominant heterotetramer. In general, neuronal GIRK channels are involved in the regulation of the excitability of neurons and may contribute to the resting potential. Interestingly, only the GIRK1 and 4 subunits are distributed in the atrial and sinoatrial node cells of the heart and are involved in the regulation of cardiac rate. Our main objective of this review is to assess the current understanding of the G-protein modulation of GIRK channels and their physiological importance in mammals.

  18. IL-8 induces miR-424-5p expression and modulates SOCS2/STAT5 signaling pathway in oral squamous cell carcinoma.

    PubMed

    Peng, Hsuan-Yu; Jiang, Shih-Sheng; Hsiao, Jenn-Ren; Hsiao, Michael; Hsu, Yuan-Ming; Wu, Guan-Hsun; Chang, Wei-Min; Chang, Jang-Yang; Jin, Shiow-Lian Catherine; Shiah, Shine-Gwo

    2016-06-01

    Suppressor of cytokine signaling (SOCS) proteins are negative feedback regulators of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Dysregulation of SOCS protein expression in cancers can be one of the mechanisms that maintain STAT activation, but this mechanism is still poorly understood in oral squamous cell carcinoma (OSCC). Here, we report that SOCS2 protein is significantly downregulated in OSCC patients and its levels are inversely correlated with miR-424-5p expression. We identified the SOCS2 protein, which modulates STAT5 activity, as a direct target of miR-424-5p. The miR-424-5p-induced STAT5 phosphorylation, matrix metalloproteinases (MMPs) expression, and cell migration and invasion were blocked by SOCS2 restoration, suggesting that miR-424-5p exhibits its oncogenic activity through negatively regulating SOCS2 levels. Furthermore, miR-424-5p expression could be induced by the cytokine IL-8 primarily through enhancing STAT5 transcriptional activity rather than NF-κB signaling. Antagomir-mediated inactivation of miR-424-5p prevented the IL-8-induced cell migration and invasion, indicating that miR-424-5p is required for IL-8-induced cellular invasiveness. Taken together, these data indicate that STAT5-dependent expression of miR-424-5p plays an important role in mediating IL-8/STAT5/SOCS2 feedback loop, and scavenging miR-424-5p function using antagomir may have therapeutic potential for the treatment of OSCC. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    PubMed

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further

  20. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling.

    PubMed

    Jing, Pengyu; Zhao, Nan; Ye, Mingxiang; Zhang, Yong; Zhang, Zhipei; Sun, Jianyong; Wang, Zhengxin; Zhang, Jian; Gu, Zhongping

    2018-07-28

    Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro. PRMT5 was frequently overexpressed in lung tumors, and its expression was positively related to tumor stages, lymphatic metastasis and poor outcome. In this model, PRMT5 repressed the transcription of the miR-99 family by symmetrical dimethylation of histone H4R3, which increased FGFR3 expression and in turn activated Erk1/2 and Akt, leading to cell growth and metastasis in lung cancer. Furthermore, loss of PRMT5 exerted anti-metastasis effects on lung cancer progression by blocking histone-modification of miR-99 family. Overall, this study provides new insights into the PRMT5/miR-99 family/FGFR3 axis in regulating lung cancer progression and identifies PRMT5 as a promising prognostic biomarker and therapeutic target. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor.

    PubMed

    Morini, Gabriella; Bassoli, Angela; Temussi, Piero A

    2005-08-25

    The sweet taste receptor, a heterodimeric G protein coupled receptor (GPCR) protein, formed by the T1R2 and T1R3 subunits, recognizes several sweet compounds including carbohydrates, amino acids, peptides, proteins, and synthetic sweeteners. Its similarity with the metabotropic glutamate mGluR1 receptor allowed us to build homology models. All possible dimers formed by combinations of the human T1R2 and T1R3 subunits, modeled on the A (closed) or B (open) chains of the extracellular ligand binding domain of the mGluR1 template, yield four ligand binding sites for low-molecular-weight sweeteners. These sites were probed by docking a set of molecules representative of all classes of sweet compounds and calculating the free energy of ligand binding. These sites are not easily accessible to sweet proteins, but docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft. Our models account for many experimental observations on the tastes of sweeteners, including sweetness synergy, and can help to design new sweeteners.

  2. The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection

    PubMed Central

    Haynes, Lia M.; Anderson, Larry J.

    2017-01-01

    Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182–186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting. PMID:28671606

  3. The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection.

    PubMed

    Bakre, Abhijeet A; Harcourt, Jennifer L; Haynes, Lia M; Anderson, Larry J; Tripp, Ralph A

    2017-07-03

    Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182-186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting.

  4. TM4SF5-mediated protein-protein networks and tumorigenic roles

    PubMed Central

    Lee, Jung Weon

    2014-01-01

    Transmembrane 4 L six family member 5 (TM4SF5), as a membrane glycoprotein with 4 transmembrane domains, is similar to the tetraspanins in terms of membrane topology and plays important roles in tumorigenesis and tumor metastasis. Especially, TM4SF5 appears to form a massive protein-protein complex consisting of diverse membrane proteins and/or receptors in addition to cytosolic signaling molecules to regulate their signaling activities during the pathological processes. TM4SF5 is shown to interact with integrins α2, α5, and β1, EGFR, IL6R, CD151, focal adhesion kinase (FAK), and c-Src. This review focuses on the significance of the interactions with regards to TM4SF5-positive tumorigenesis and metastasis. [BMB Reports 2014; 47(9): 483-487] PMID:25027595

  5. Structural prerequisites for G-protein activation by the neurotensin receptor

    DOE PAGES

    Krumm, Brian E.; White, Jim F.; Shah, Priyanka; ...

    2015-07-24

    We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A 3.49, L310A 6.37, F358A 7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F358 7.42 causes the conserved W321 6.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocketmore » and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L310 6.37 side chain dictates the position of R167 3.50 of the highly conserved D/ERY motif. These residues, together with the presence of E166 3.49 provide determinants for G-protein activation by NTSR1.« less

  6. Structural prerequisites for G-protein activation by the neurotensin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumm, Brian E.; White, Jim F.; Shah, Priyanka

    We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A 3.49, L310A 6.37, F358A 7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F358 7.42 causes the conserved W321 6.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocketmore » and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L310 6.37 side chain dictates the position of R167 3.50 of the highly conserved D/ERY motif. These residues, together with the presence of E166 3.49 provide determinants for G-protein activation by NTSR1.« less

  7. Signaling through G protein coupled receptors.

    PubMed

    Tuteja, Narendra

    2009-10-01

    Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.

  8. A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yun; Kwon, Young-Chan; Kim, Soo-In

    Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by {alpha}v{beta}3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infectionmore » and pathogenesis.« less

  9. X-ray structure of the mammalian GIRK2-βγ G-protein complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whorton, Matthew R.; MacKinnon, Roderick

    2013-07-30

    G-protein-gated inward rectifier K + (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K + channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K + channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation thatmore » is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with ‘membrane delimited’ activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP 2) and intracellular Na + ions participate in multi-ligand regulation of GIRK channels.« less

  10. Functional capabilities of an N-formyl peptide receptor-G(alpha)(i)(2) fusion protein: assemblies with G proteins and arrestins.

    PubMed

    Shi, Mei; Bennett, Teresa A; Cimino, Daniel F; Maestas, Diane C; Foutz, Terry D; Gurevich, Vsevolod V; Sklar, Larry A; Prossnitz, Eric R

    2003-06-24

    G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.

  11. PAI-1 4G/5G polymorphism and plasma levels association in patients with coronary artery disease.

    PubMed

    Lima, Luciana Moreira; Carvalho, Maria das Graças; Fonseca Neto, Cirilo Pereira; Garcia, José Carlos Faria; Sousa, Marinez Oliveira

    2011-12-01

    Type-1 plasminogen activator inhibitor (PAI-1) 4G/5G polymorphism may influence the PAI-1 expression. High plasma levels of PAI-1 are associated with coronary artery disease (CAD). This study investigated the influence of PAI-1 4G/5G polymorphism on plasma PAI-1 levels and its association with CAD assessed by coronary angiography. Blood sample of 35 individuals with angiographically normal coronary arteries, 31 individuals presenting mild/moderate atheromatosis, 57 individuals presenting severe atheromatosis and 38 healthy individuals (controls) were evaluated. In patients and controls, the PAI-1 4G/5G polymorphism was determined by PCR amplification using allele-specific primers. Plasma PAI-1 levels were quantified by ELISA assay (American Diagnostica). No difference was found between groups regarding age, gender and body mass index. Plasma PAI-1 levels and 4G/4G genotype frequency were significantly higher in the severe atheromatosis group compared to the other groups (p<0.001). Furthermore, patients with 4G/4G genotype (r=0.28, p<0.001) had significantly higher plasma PAI-1 levels than those with 5G/5G genotype (r=0.02, p=0.4511). In addition, in a multiple logistic regression model, adjusted for all the other variables, PAI-1 was observed to be independently associated with CAD > 70% (p<0.001). The most important finding of this study was the association between 4G/4G genotype, high plasma PAI-1 levels and coronary stenosis higher than 70% in Brazilian individuals. Whether high plasma PAI-1 levels are a decisive factor for atherosclerosis worsening or it is a consequence remains to be established.

  12. Altered G Protein Coupling in Olfactory Neuroepithelial Cells From Patients With Schizophrenia

    PubMed Central

    Borgmann-Winter, Karin E.; Wang, Hoau-Yan; Ray, Rabindranath; Willis, Brooke R.; Moberg, Paul J.; Rawson, Nancy E.; Gur, Raquel E.; Turetsky, Bruce I.; Hahn, Chang-Gyu

    2016-01-01

    Increasing evidence suggests that olfactory dysfunction is an endophenotype of schizophrenia, and thus the olfactory system can be studied both in relation to this sensory dysfunction and also as a means of examining pathophysiologic mechanisms of schizophrenia. In this study, we examined human olfactory neuroepithelial (ON) biopsy tissues and their in vitro culture cells for ligand-induced guanine nucleotide-binding protein (G protein) activation and downstream signaling. We assessed the binding of a nonhydrolyzable GTP analogue [35S]GTPγS binding to specific G protein subtypes in response to odorants, dopamine, or serotonin in ON cell membranes from matched schizophrenia-control subjects. In response to odorant mixtures, we found decreased [35S]GTPγS binding to Gαs/olf in schizophrenia patients. These changes were not mediated by mRNA expression of key molecules of G protein coupling, including adenylate cyclase III (ACIII), protein kinase A (PKA), protein kinase Cγ (PKCγ), or Gαs or Gαolf in ON cells or ON biopsy tissues. In contrast, dopamine (DA)- and serotonin (5HT)-induced S35-GTPγS binding to Gαs/olf and Gαq/11 were significantly increased in schizophrenia cases, while these parameters were strikingly reduced by in vitro treatment with antipsychotics. Patients with schizophrenia exhibit increases in electrolfactogram (EOG) recordings, suggesting enhanced odorant-induced activation. Our results of decreased odorant-induced G protein activation may point further downstream for underlying mechanisms for increased EOG measures. Increased G protein activation in response to DA and 5HT may suggest increased postreceptor DA or 5HT signaling as an additional mechanism of dopaminergic or serotonergic dysregulation in schizophrenia. PMID:26373539

  13. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  14. The 5HT(1A) receptor ligand, S15535, antagonises G-protein activation: a [35S]GTPgammaS and [3H]S15535 autoradiography study.

    PubMed

    Newman-Tancredi, A; Rivet, J; Chaput, C; Touzard, M; Verrièle, L; Millan, M J

    1999-11-19

    4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine (S15535) is a highly selective ligand at 5-HT(1A) receptors. The present study compared its autoradiographic labelling of rat brain sections with its functional actions, visualised by guanylyl-5'-[gamma-thio]-triphosphate ([35S]GTPgammaS) autoradiography, which affords a measure of G-protein activation. [3H]S15535 binding was highest in hippocampus, frontal cortex, entorhinal cortex, lateral septum, interpeduncular nucleus and dorsal raphe, consistent with specific labelling of 5-HT(1A) receptors. In functional studies, S15535 (10 microM) did not markedly stimulate G-protein activation in any brain region, but abolished the activation induced by the selective 5-HT(1A) agonist, (+)-8-hydroxy-dipropyl-aminotetralin ((+)-8-OH-DPAT, 1 microM), in structures enriched in [3H]S15535 labelling. S15535 did not block 5-HT-stimulated activation in caudate nucleus or substantia nigra, regions where (+)-8-OH-DPAT was ineffective and [3H]S15535 binding was absent. Interestingly, S15535 attenuated (+)-8-OH-DPAT and 5-HT-stimulated G-protein activation in dorsal raphe, a region in which S15535 is known to exhibit agonist properties in vivo [Lejeune, F., Millan, M.J., 1998. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY100,635-reversible actions of the highly selective ligands, flesinoxan and S15535. Synapse 30, 172-180.]. The present data show that (i) [3H]S15535 labels pre- and post-synaptic populations of 5-HT(1A) sites in rat brain sections, (ii) S15535 exhibits antagonist properties at post-synaptic 5-HT(1A) receptors in corticolimbic regions, and (iii) S15535 also attenuates agonist-stimulated G-protein activation at raphe-localised 5-HT(1A) receptors.

  15. G quadruplex RNA structures in PSD-95 mRNA: potential regulators of miR-125a seed binding site accessibility.

    PubMed

    Stefanovic, Snezana; Bassell, Gary J; Mihailescu, Mihaela Rita

    2015-01-01

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3'-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3' UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson-Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. © 2014 Stefanovic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Regulated expression of a repressor protein: FadR activates iclR.

    PubMed Central

    Gui, L; Sunnarborg, A; LaPorte, D C

    1996-01-01

    The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR. PMID:8755903

  17. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    PubMed Central

    Gustafsson, Erika; Haas, Pieter-Jan; Walse, Björn; Hijnen, Marcel; Furebring, Christina; Ohlin, Mats; van Strijp, Jos AG; van Kessel, Kok PM

    2009-01-01

    Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies have been mapped on the

  18. Odorants selectively activate distinct G protein subtypes in olfactory cilia.

    PubMed

    Schandar, M; Laugwitz, K L; Boekhoff, I; Kroner, C; Gudermann, T; Schultz, G; Breer, H

    1998-07-03

    Chemoelectrical signal transduction in olfactory neurons appears to involve intracellular reaction cascades mediated by heterotrimeric GTP-binding proteins. In this study attempts were made to identify the G protein subtype(s) in olfactory cilia that are activated by the primary (odorant) signal. Antibodies directed against the alpha subunits of distinct G protein subtypes interfered specifically with second messenger reponses elicited by defined subsets of odorants; odor-induced cAMP-formation was attenuated by Galphas antibodies, whereas Galphao antibodies blocked odor-induced inositol 1,4, 5-trisphosphate (IP3) formation. Activation-dependent photolabeling of Galpha subunits with [alpha-32P]GTP azidoanilide followed by immunoprecipitation using subtype-specific antibodies enabled identification of particular individual G protein subtypes that were activated upon stimulation of isolated olfactory cilia by chemically distinct odorants. For example odorants that elicited a cAMP response resulted in labeling of a Galphas-like protein, whereas odorants that elicited an IP3 response led to the labeling of a Galphao-like protein. Since odorant-induced IP3 formation was also blocked by Gbeta antibodies, activation of olfactory phospholipase C might be mediated by betagamma subunits of a Go-like G protein. These results indicate that different subsets of odorants selectively trigger distinct reaction cascades and provide evidence for dual transduction pathways in olfactory signaling.

  19. Revisiting the Roco G-protein cycle.

    PubMed

    Terheyden, Susanne; Ho, Franz Y; Gilsbach, Bernd K; Wittinghofer, Alfred; Kortholt, Arjan

    2015-01-01

    Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is strictly controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because of contradictory structural and biochemical data, the regulatory mechanism of the LRRK2 Roc G-domain and the RocCOR tandem is still under debate. In the present study, we solved the first nucleotide-bound Roc structure and used LRRK2 and bacterial Roco proteins to characterize the RocCOR function in more detail. Nucleotide binding induces a drastic structural change in the Roc/COR domain interface, a region strongly implicated in patients with an LRRK2 mutation. Our data confirm previous assumptions that the C-terminal subdomain of COR functions as a dimerization device. We show that the dimer formation is independent of nucleotide. The affinity for GDP/GTP is in the micromolar range, the result of which is high dissociation rates in the s-1 range. Thus Roco proteins are unlikely to need GEFs to achieve activation. Monomeric LRRK2 and Roco G-domains have a similar low GTPase activity to small G-proteins. We show that GTPase activity in bacterial Roco is stimulated by the nucleotide-dependent dimerization of the G-domain within the complex. We thus propose that the Roco proteins do not require GAPs to stimulate GTP hydrolysis but stimulate each other by one monomer completing the catalytic machinery of the other.

  20. Improved feed protein fractionation schemes for formulating rations with the cornell net carbohydrate and protein system.

    PubMed

    Lanzas, C; Broderick, G A; Fox, D G

    2008-12-01

    Adequate predictions of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) supplies are necessary to optimize performance while minimizing losses of excess nitrogen (N). The objectives of this study were to evaluate the original Cornell Net Carbohydrate Protein System (CNCPS) protein fractionation scheme and to develop and evaluate alternatives designed to improve its adequacy in predicting RDP and RUP. The CNCPS version 5 fractionates CP into 5 fractions based on solubility in protein precipitant agents, buffers, and detergent solutions: A represents the soluble nonprotein N, B1 is the soluble true protein, B2 represents protein with intermediate rates of degradation, B3 is the CP insoluble in neutral detergent solution but soluble in acid detergent solution, and C is the unavailable N. Model predictions were evaluated with studies that measured N flow data at the omasum. The N fractionation scheme in version 5 of the CNCPS explained 78% of the variation in RDP with a root mean square prediction error (RMSPE) of 275 g/d, and 51% of the RUP variation with RMSPE of 248 g/d. Neutral detergent insoluble CP flows were overpredicted with a mean bias of 128 g/d (40% of the observed mean). The greatest improvements in the accuracy of RDP and RUP predictions were obtained with the following 2 alternative schemes. Alternative 1 used the inhibitory in vitro system to measure the fractional rate of degradation for the insoluble protein fraction in which A = nonprotein N, B1 = true soluble protein, B2 = insoluble protein, C = unavailable protein (RDP: R(2) = 0.84 and RMSPE = 167 g/d; RUP: R(2) = 0.61 and RMSPE = 209 g/d), whereas alternative 2 redefined A and B1 fractions as the non-amino-N and amino-N in the soluble fraction respectively (RDP: R(2) = 0.79 with RMSPE = 195 g/d and RUP: R(2) = 0.54 with RMSPE = 225 g/d). We concluded that implementing alternative 1 or 2 will improve the accuracy of predicting RDP and RUP within the CNCPS framework.

  1. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.

  2. Potential Role of Regulator of G-Protein Signaling 5 in the Protection of Vagal-Related Bradycardia and Atrial Tachyarrhythmia.

    PubMed

    Qin, Mu; Liu, Xu; Liu, Tao; Wang, Teng; Huang, Congxin

    2016-03-09

    The regulator of G-protein signaling 5 (Rgs5), which functions as the regulator of G-protein-coupled receptor (GPCR) including muscarinic receptors, has a potential effect on atrial muscarinic receptor-activated IKA ch current. In the present study, hearts of Rgs5 knockout (KO) mice had decreased low-frequency/high-frequency ratio in spectral measures of heart rate variability. Loss of Rgs5 provoked dramatically exaggerated bradycardia and significantly (P<0.05) prolonged sinus nodal recovery time in response to carbachol (0.1 mg/kg, intraperitoneally). Compared to those from wild-type (WT) mice, Langendorff perfused hearts from Rgs5 KO mice had significantly (P<0.01) abbreviated atrial effective refractory periods and increased dominant frequency after administration of acetylcholine (ACh; 1 μmol/L). In addition, whole patch clamp analyses of single atrial myocytes revealed that the ACh-regulated potassium current (IKA ch) was significant increased in the time course of activation and deactivation (P<0.01) in Rgs5 KO, compared to those in WT, mice. To further determine the effect of Rgs5, transgenic mice with cardiac-specific overexpression of human Rgs5 were found to be resistant to ACh-related effects in bradycardia, atrial electrophysiology, and atrial tachyarrhythmia (AT). The results of this study indicate that, as a critical regulator of parasympathetic activation in the heart, Rgs5 prevents vagal-related bradycardia and AT through negatively regulating the IKA ch current. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. PGE1, dexamethasone, U-74389G, or Bt2-cAMP as an additive to promote protection by UW solution in I/R injury.

    PubMed

    Chiang, C H; Hsu, K; Yan, H C; Harn, H J; Chang, D M

    1997-08-01

    A method to reduce ischemia-reperfusion (I/R) injury can be an important criterion to improve the preservation solution. Although University of Wisconsin solution (UW) works as a lung preservation solution, its attenuation effect on I/R injury has not been investigated. We attempted to determine whether, by adding various protective agents, modified UW solutions will enhance the I/R attenuation by UW. We examined the I/R injury in an isolated rat lung model. Various solutions, e.g., physiological salt solution (PSS), UW, and modified UW solutions containing various protective agents such as prostaglandin E1, dexamethasone, U-74389G, or dibutyryl adenosine 3',5'-cyclic monophosphate were perfused individually to evaluate the I/R injury. Isolated rat lung experiments, with ischemia for 45 min, then reperfusion for 60 min, were conducted in a closed circulating system. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficient (Kfc), protein content of lavage fluid, concentration of cytokines, and lung histopathology were analyzed. Results showed that the acute I/R lung injury with immediate permeability pulmonary edema was associated with an increase in tumor necrosis factor-alpha (TNF-alpha) production. A significant correlation existed between TNF-alpha and Kfc (r = 0.8, P < 0.0001) and TNF-alpha and LWG (r = 0. 9, P < 0.0001), indicating that TNF-alpha is an important cytokine modulating early I/R injury. Significantly lower levels of Kfc, LWG, TNF-alpha, and protein concentration of lung lavage (P < 0.05) were found in the UW-perfused group than in the control group perfused with PSS. Modified UW promoted the protective effect of UW to further decrease Kfc, LWG, and TNF-alpha (P < 0.05). Histopathological observations also substantiated this evidence. In the UW+U-74389G group, bronchial alveolar lavage fluid contained lowest protein concentration. We conclude that the UW solution attenuates I/R injury of rat lung and that the modified UW

  4. Surface Density of the Hendra G Protein Modulates Hendra F Protein-Promoted Membrane Fusion: Role for Hendra G Protein Trafficking and Degradation

    PubMed Central

    Whitman, Shannon D.; Dutch, Rebecca Ellis

    2007-01-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F. PMID:17328935

  5. miR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianyong; Wang, Jingnan; Li, Xiangqi

    2015-02-20

    microRNAs (miRNAs) are frequently dysregulated in human malignancies. It was recently shown that miR-204-5p is downregulated in papillary thyroid carcinoma (PTC); however, the functional significance of this observation is not known. This study investigated the role of miR-204-5p in PTC. Overexpressing miR-204-5p suppressed PTC cell proliferation and induced cell cycle arrest and apoptosis. The results of a luciferase reporter assay showed that miR-204-5p can directly bind to the 3′ untranslated region (UTR) of insulin-like growth factor-binding protein 5 (IGFBP5) mRNA, and IGFBP5 overexpression partially reversed the growth-inhibitory effects of miR-204-5p. These results indicate that miR-204-5p acts as a tumor suppressormore » in PTC by regulating IGFBP5 expression and that miR-204-5p can potentially serve as an antitumorigenic agent in the treatment of PTC. - Highlights: • miR-204-5p expression is downregulated in PTC tissues and cell lines. • miR-204-5p suppresses proliferation and promotes apoptosis in PTC cells. • miR-204-5p suppresses IGFBP5 expression by direct binding to the 3′-UTR. • IGFBP5 overexpression reverses the effects of miR-204-5p.« less

  6. miR-139 is up-regulated in osteoarthritis and inhibits chondrocyte proliferation and migration possibly via suppressing EIF4G2 and IGF1R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weihua; Zhang, Weikai; Li, Feng

    Osteoarthritis (OA) is one of the most progressive articular cartilage erosions. microRNAs (miRNAs) play pivotal roles in OA modulation, but the role of miR-139 in OA remains elusive. This study aims to reveal the effects and possible mechanism of miR-139 in OA and chondrocytes. The levels of miR-139 and its possible targets eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) and insulin-like growth factor 1 receptor (IGF1R) were detected by qRT-PCR in the articular cartilages of 20 OA patients and 20 non-OA patients. Human chondrocyte CHON-001 cells were transfected with miR-139 mimic or inhibitor, as well as the siRNAs of EIF4G2more » and IGF1R. Cell viability by MTT assay, proliferation by colony formation assay and migration by Transwell assay were performed. Results showed that miR-139 was up-regulated, while EIF4G2 and IGF1R mRNAs down-regulated in OA cartilages (P < 0.001), and negative correlations existed between the level of miR-139 and EIF4G2 or IGF1R. Overexpression of miR-139 in CHON-001 cells suppressed both mRNA and protein levels of EIF4G2 and IGF1R, and inhibited cell viability, colony formation number and cell migration, while miR-139 inhibitor induced the opposite effects. Knockdown of EIF4G2 or IGF1R in CHON-001 cells reversed the effects of miR-139 inhibitor on cell viability, colony formation and cell migration. These results indicate that miR-139 is capable of inhibiting chondrocyte proliferation and migration, thus being a possible therapeutic target for OA. The mechanism of miR-139 in chondrocytes may be related to its regulation on EIF4G2 and IGF1R.« less

  7. A Dynamic Response Regulator Protein Modulates G-Protein–Dependent Polarity in the Bacterium Myxococcus xanthus

    PubMed Central

    Zhang, Yong; Guzzo, Mathilde; Ducret, Adrien; Li, Yue-Zhong; Mignot, Tâm

    2012-01-01

    Migrating cells employ sophisticated signal transduction systems to respond to their environment and polarize towards attractant sources. Bacterial cells also regulate their polarity dynamically to reverse their direction of movement. In Myxococcus xanthus, a GTP-bound Ras-like G-protein, MglA, activates the motility machineries at the leading cell pole. Reversals are provoked by pole-to-pole switching of MglA, which is under the control of a chemosensory-like signal transduction cascade (Frz). It was previously known that the asymmetric localization of MglA at one cell pole is regulated by MglB, a GTPase Activating Protein (GAP). In this process, MglB specifically localizes at the opposite lagging cell pole and blocks MglA localization at that pole. However, how MglA is targeted to the leading pole and how Frz activity switches the localizations of MglA and MglB synchronously remained unknown. Here, we show that MglA requires RomR, a previously known response regulator protein, to localize to the leading cell pole efficiently. Specifically, RomR-MglA and RomR-MglB complexes are formed and act complementarily to establish the polarity axis, segregating MglA and MglB to opposite cell poles. Finally, we present evidence that Frz signaling may regulate MglA localization through RomR, suggesting that RomR constitutes a link between the Frz-signaling and MglAB polarity modules. Thus, in Myxococcus xanthus, a response regulator protein governs the localization of a small G-protein, adding further insight to the polarization mechanism and suggesting that motility regulation evolved by recruiting and combining existing signaling modules of diverse origins. PMID:22916026

  8. The Magnitude of the Light-induced Conformational Change in Different Rhodopsins Correlates with Their Ability to Activate G Proteins*

    PubMed Central

    Tsukamoto, Hisao; Farrens, David L.; Koyanagi, Mitsumasa; Terakita, Akihisa

    2009-01-01

    Light converts rhodopsin, the prototypical G protein-coupled receptor, into a form capable of activating G proteins. Recent work has shown that the light-activated state of different rhodopsins can possess different molecular properties, especially different abilities to activate G protein. For example, bovine rhodopsin is ∼20-fold more effective at activating G protein than parapinopsin, a non-visual rhodopsin, although these rhodopsins share relatively high sequence similarity. Here we have investigated possible structural aspects that might underlie this difference. Using a site-directed fluorescence labeling approach, we attached the fluorescent probe bimane to cysteine residues introduced in the cytoplasmic ends of transmembrane helices V and VI in both rhodopsins. The fluorescence spectra of these probes as well as their accessibility to aqueous quenching agents changed dramatically upon photoactivation in bovine rhodopsin but only moderately so in parapinopsin. We also compared the relative movement of helices V and VI upon photoactivation of both rhodopsins by introducing a bimane label and the bimane-quenching residue tryptophan into helices VI and V, respectively. Both receptors showed movement in this region upon activation, although the movement appears much greater in bovine rhodopsin than in parapinopsin. Together, these data suggest that a larger conformational change in helices V and VI of bovine rhodopsin explains why it has greater G protein activation ability than other rhodopsins. The different amplitude of the helix movement may also be responsible for functional diversity of G protein-coupled receptors. PMID:19497849

  9. Divergent β-Arrestin-dependent Signaling Events Are Dependent upon Sequences within G-protein-coupled Receptor C Termini*

    PubMed Central

    Pal, Kasturi; Mathur, Maneesh; Kumar, Puneet; DeFea, Kathryn

    2013-01-01

    β-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of β-arrestin signaling depends upon the activating receptor. For example, activation of two Gαq-coupled receptors, protease-activated receptor-2 (PAR2) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR2 promotes β-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/β-arrestin interactions in real time, we observe that PAR2 has a higher apparent affinity for both β-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of β-arrestins to PAR2 does not require prior Gαq signaling events, whereas inhibition of Gαq signaling intermediates inhibits recruitment of β-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR2 is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR2, we demonstrate that interactions between β-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of β-arrestin recruitment as well as the ultimate signaling outcome. PMID:23235155

  10. SOCS1 and SOCS3 Are Targeted by Hepatitis C Virus Core/gC1qR Ligation To Inhibit T-Cell Function

    PubMed Central

    Yao, Zhi Qiang; Waggoner, Stephen N.; Cruise, Michael W.; Hall, Caroline; Xie, Xuefang; Oldach, David W.; Hahn, Young S.

    2005-01-01

    T cells play an important role in the control of hepatitis C virus (HCV) infection. We have previously demonstrated that the HCV core inhibits T-cell responses through interaction with gC1qR. We show here that core proteins from chronic and resolved HCV patients differ in sequence, gC1qR-binding ability, and T-cell inhibition. Specifically, chronic core isolates bind to gC1qR more efficiently and inhibit T-cell proliferation as well as gamma interferon (IFN-γ) production more profoundly than resolved core isolates. This inhibition is mediated by the disruption of STAT phosphorylation through the induction of SOCS molecules. Silencing either SOCS1 or SOCS3 by small interfering RNA dramatically augments the production of IFN-γ in T cells, thereby abrogating the inhibitory effect of core. Additionally, the ability of core proteins from patients with chronic infections to induce SOCS proteins and suppress STAT activation greatly exceeds that of core proteins from patients with resolved infections. These results suggest that the HCV core/gC1qR-induced T-cell dysfunction involves the induction of SOCS, a powerful inhibitor of cytokine signaling, which represents a novel mechanism by which a virus usurps the host machinery for persistence. PMID:16306613

  11. Dynamical analysis on f(R, G) cosmology

    NASA Astrophysics Data System (ADS)

    Santos da Costa, S.; Roig, F. V.; Alcaniz, J. S.; Capozziello, S.; De Laurentis, M.; Benetti, M.

    2018-04-01

    We use a dynamical system approach to study the cosmological viability of f(R, G) gravity theories. The method consists of formulating the evolution equations as an autonomous system of ordinary differential equations, using suitable variables. The formalism is applied to a class of models in which f(R, G)\\propto RnG1-n and its solutions and corresponding stability are analysed in detail. New accelerating solutions that can be attractors in the phase space are found. We also find that this class of models does not exhibit a matter-dominated epoch, a solution which is inconsistent with current cosmological observations.

  12. gC1qR expression in chimpanzees with resolved and chronic infection: Potential role of HCV core/gC1qR-mediated T cell suppression in the outcome of HCV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Zhiqang; Shata, Mohamed Tarek; Tricoche, Nancy

    2006-03-15

    Chimpanzee is a unique animal model for HCV infection, in which about 50% of infections resolve spontaneously. It has been reported that the magnitude of T cell responses to HCV core in recovered chimpanzees is greater than that in chronically infected ones. However, the mechanism(s) by which the chimpanzees with resolved infection overcome core-mediated immunosuppression remains unknown. In this study, we examined the effect of HCV core on T cell responsiveness in chimpanzees with resolved and chronic HCV infection. We found that core protein strongly inhibited T cell activation and proliferation in chimpanzees with chronic infection, while this inhibition wasmore » limited in chimpanzees with resolved infection. Notably, the level of gC1qR, as well as the binding of core protein, on the surface of T cells was lower in recovered chimpanzees when compared to chimpanzees with chronic HCV infection. Intriguingly, the observed differences in gC1qR expression levels and susceptibility to core-induced suppression amongst HCV-chronically infected and recovered chimpanzees were observed prior to HCV challenge, suggesting a possible genetic determination of the outcome of infection. These findings suggest that gC1qR expression on the surface of T cells is crucial for HCV core-mediated T cell suppression and viral clearance, and that represents a novel mechanism by which a virus usurps host machinery for persistence.« less

  13. Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans.

    PubMed

    De, Arpan; Liao, Sumei; Bitoun, Jacob P; Roth, Randy; Beatty, Wandy L; Wu, Hui; Wen, Zezhang T

    2017-09-01

    Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG , encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation ( P < 0.01). Double and triple mutants with deficiency in brpA and/or psr , genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically ( P < 0.001). Under transmission electron microscopy, both double mutants resembled the rgpG mutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope. IMPORTANCE Streptococcus mutans , a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S

  14. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    PubMed Central

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  15. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    PubMed

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer.

    PubMed

    Tao, Sifeng; He, Haifei; Chen, Qiang; Yue, Wenjie

    2014-08-15

    Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A respiratory syncytial virus (RSV) anti-G protein F(ab')2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice.

    PubMed

    Boyoglu-Barnum, Seyhan; Gaston, Kelsey A; Todd, Sean O; Boyoglu, Cemil; Chirkova, Tatiana; Barnum, Thomas R; Jorquera, Patricia; Haynes, Lia M; Tripp, Ralph A; Moore, Martin L; Anderson, Larry J

    2013-10-01

    Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.

  18. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing,more » and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.« less

  19. Spinal intracellular metabotropic glutamate receptor 5 (mGluR5) contributes to pain and c-fos expression in a rat model of inflammatory pain.

    PubMed

    Vincent, Kathleen; Wang, Shu Fan; Laferrière, André; Kumar, Naresh; Coderre, Terence J

    2017-04-01

    Metabotropic glutamate receptor 5 (mGluR5) is an excitatory G-protein-coupled receptor (GPCR) present in the spinal cord dorsal horn (SCDH) where it has a well-established role in pain. In addition to its traditional location on the cytoplasmic membrane, recent evidence shows that these receptors are present intracellularly on the nuclear membrane in the spinal cord dorsal horn and are implicated in neuropathic pain. Nuclear mGluR5 is a functional receptor that binds glutamate entering the cell through the neuronal glutamate transporter (GT) EAAT3 and activates transcription factor c-fos, whereas plasma membrane mGluR5 is responsible for c-jun activation. Here, we extend these findings to a model of inflammatory pain using complete Freund's adjuvant (CFA) and show that nuclear mGluR5 is also upregulated in the spinal cord dorsal horn following inflammation. We also show that pretreatment with an excitatory amino acid transporter (EAAT) inhibitor attenuates pain and decreases Fos, but not Jun, expression in complete Freund's adjuvant rats. In contrast, selective glial glutamate transporter inhibitors are pronociceptive and increase spinal glutamate concentrations. Additionally, we found that permeable mGluR5 antagonists are more effective at attenuating pain and Fos expression than nonpermeable group I mGluR antagonists. Taken together, these results suggest that under inflammatory conditions, intracellular mGluR5 is actively involved in the relay of nociceptive information in the spinal cord.

  20. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status

    PubMed Central

    Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L

    2000-01-01

    p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365

  1. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53{sup −/−} cancer cells, in which PLK1 protein wasmore » suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.« less

  2. Optimizing pH response of affinity between protein G and IgG Fc: how electrostatic modulations affect protein-protein interactions.

    PubMed

    Watanabe, Hideki; Matsumaru, Hiroyuki; Ooishi, Ayako; Feng, Yanwen; Odahara, Takayuki; Suto, Kyoko; Honda, Shinya

    2009-05-01

    Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.

  3. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.

  4. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma.

    PubMed

    Jasinski-Bergner, Simon; Stoehr, Christine; Bukur, Juergen; Massa, Chiara; Braun, Juliane; Hüttelmaier, Stefan; Spath, Verena; Wartenberg, Roland; Legal, Wolfgang; Taubert, Helge; Wach, Sven; Wullich, Bernd; Hartmann, Arndt; Seliger, Barbara

    2015-06-01

    In human tumors of distinct origin including renal cell carcinoma (RCC), the non-classical human leukocyte antigen G (HLA-G) is frequently expressed, thereby inhibiting the cytotoxic activity of T and natural killer (NK) cells. Recent studies demonstrated a strong post-transcriptional gene regulation of the HLA-G by miR-152, -148A, -148B and -133A. Standard methods were applied to characterize the expression and function of HLA-G, HLA-G-regulatory microRNAs (miRs) and the immune cell infiltration in 453 RCC lesions using a tissue microarray and five RCC cell lines linking these results to clinical parameters. Direct interactions with HLA-G regulatory miRs and the HLA-G 3' untranslated region (UTR) were detected and the affinities of these different miRs to the HLA-G 3'-UTR compared. qPCR analyses and immunohistochemical staining revealed an inverse expression of miR-148A and -133A with the HLA-G protein in situ and in vitro . Stable miR overexpression caused a downregulation of HLA-G protein enhancing the NK and LAK cell-mediated cytotoxicity in in vitro CD107a activation assays revealing a HLA-G-dependent cytotoxic activity of immune effector cells. A significant higher frequency of CD3 + /CD8 + T cell lymphocytes, but no differences in the activation markers CD69, CD25 or in the presence of CD56 + , FoxP3 + and CD4 + immune cells were detected in HLA-G + compared to HLA-G - RCC lesions. This could be associated with higher WHO grade, but not with a disease-specific survival. These data suggest a miR-mediated control of HLA-G expression in RCC, which is associated with a distinct pattern of immune cell infiltration.

  5. Regulators of G-protein signaling 4 in adrenal gland: localization, regulation, and role in aldosterone secretion.

    PubMed

    Romero, Damian G; Zhou, Ming Yi; Yanes, Licy L; Plonczynski, Maria W; Washington, Tanganika R; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P

    2007-08-01

    Regulators of G-protein signaling (RGS proteins) interact with Galpha subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)-ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. We studied RGS4 expression and regulation in the rat adrenal gland, including the signaling pathways involved, as well as the role of RGS4 in steroidogenesis in human adrenocortical H295R cells. We reported that RGS4 mRNA expression in the rat adrenal gland was restricted to the adrenal zonal glomerulosa and upregulated by low-salt diet and Ang II infusion in rat adrenal glands in vivo. In H295R cells, Ang II caused a rapid and transient increase in RGS4 mRNA levels mediated by the calcium/calmodulin/calmodulin-dependent protein kinase and protein kinase C pathways. RGS4 overexpression by retroviral infection in H295R cells decreased Ang II-stimulated aldosterone secretion. In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.

  6. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Sifeng, E-mail: taosifeng@aliyun.com; He, Haifei; Chen, Qiang

    Highlights: • E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells. • GPER mediates the E2-induced increase of miR-148a in MCF-7 and MDA-MB-231 cells. • E2-GPER regulates the expression of HLA-G by miR-148a. - Abstract: Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development andmore » progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.« less

  7. Myc and Omomyc functionally associate with the Protein Arginine Methyltransferase 5 (PRMT5) in glioblastoma cells

    PubMed Central

    Mongiardi, Maria Patrizia; Savino, Mauro; Bartoli, Laura; Beji, Sara; Nanni, Simona; Scagnoli, Fiorella; Falchetti, Maria Laura; Favia, Annarita; Farsetti, Antonella; Levi, Andrea; Nasi, Sergio; Illi, Barbara

    2015-01-01

    The c-Myc protein is dysregulated in many human cancers and its function has not been fully elucitated yet. The c-Myc inhibitor Omomyc displays potent anticancer properties in animal models. It perturbs the c-Myc protein network, impairs c-Myc binding to the E-boxes, retaining transrepressive properties and inducing histone deacetylation. Here we have employed Omomyc to further analyse c-Myc activity at the epigenetic level. We show that both Myc and Omomyc stimulate histone H4 symmetric dimethylation of arginine (R) 3 (H4R3me2s), in human glioblastoma and HEK293T cells. Consistently, both associated with protein Arginine Methyltransferase 5 (PRMT5)—the catalyst of the reaction—and its co-factor Methylosome Protein 50 (MEP50). Confocal experiments showed that Omomyc co-localized with c-Myc, PRMT5 and H4R3me2s-enriched chromatin domains. Finally, interfering with PRMT5 activity impaired target gene activation by Myc whereas it restrained Omomyc-dependent repression. The identification of a histone-modifying complex associated with Omomyc represents the first demonstration of an active role of this miniprotein in modifying chromatin structure and adds new information regarding its action on c-Myc targets. More importantly, the observation that c-Myc may recruit PRMT5-MEP50, inducing H4R3 symmetric di-methylation, suggests previously unpredictable roles for c-Myc in gene expression regulation and new potential targets for therapy. PMID:26563484

  8. Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma

    PubMed Central

    Jasinski-Bergner, Simon; Stoehr, Christine; Bukur, Juergen; Massa, Chiara; Braun, Juliane; Hüttelmaier, Stefan; Spath, Verena; Wartenberg, Roland; Legal, Wolfgang; Taubert, Helge; Wach, Sven; Wullich, Bernd; Hartmann, Arndt; Seliger, Barbara

    2015-01-01

    In human tumors of distinct origin including renal cell carcinoma (RCC), the non-classical human leukocyte antigen G (HLA-G) is frequently expressed, thereby inhibiting the cytotoxic activity of T and natural killer (NK) cells. Recent studies demonstrated a strong post-transcriptional gene regulation of the HLA-G by miR-152, −148A, −148B and −133A. Standard methods were applied to characterize the expression and function of HLA-G, HLA-G-regulatory microRNAs (miRs) and the immune cell infiltration in 453 RCC lesions using a tissue microarray and five RCC cell lines linking these results to clinical parameters. Direct interactions with HLA-G regulatory miRs and the HLA-G 3′ untranslated region (UTR) were detected and the affinities of these different miRs to the HLA-G 3′-UTR compared. qPCR analyses and immunohistochemical staining revealed an inverse expression of miR-148A and −133A with the HLA-G protein in situ and in vitro. Stable miR overexpression caused a downregulation of HLA-G protein enhancing the NK and LAK cell-mediated cytotoxicity in in vitro CD107a activation assays revealing a HLA-G-dependent cytotoxic activity of immune effector cells. A significant higher frequency of CD3+/CD8+ T cell lymphocytes, but no differences in the activation markers CD69, CD25 or in the presence of CD56+, FoxP3+ and CD4+ immune cells were detected in HLA-G+ compared to HLA-G− RCC lesions. This could be associated with higher WHO grade, but not with a disease-specific survival. These data suggest a miR-mediated control of HLA-G expression in RCC, which is associated with a distinct pattern of immune cell infiltration. PMID:26155421

  9. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai

    2012-02-21

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology ofmore » the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.« less

  10. Euglena gracilis and Trypanosomatids possess common patterns in predicted mitochondrial targeting presequences.

    PubMed

    Krnáčová, Katarína; Vesteg, Matej; Hampl, Vladimír; Vlček, Čestmír; Horváth, Anton

    2012-10-01

    Euglena gracilis possessing chloroplasts of secondary green algal origin and parasitic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania major belong to the protist phylum Euglenozoa. Euglenozoa might be among the earliest eukaryotic branches bearing ancestral traits reminiscent of the last eukaryotic common ancestor (LECA) or missing features present in other eukaryotes. LECA most likely possessed mitochondria of endosymbiotic α-proteobacterial origin. In this study, we searched for the presence of homologs of mitochondria-targeted proteins from other organisms in the currently available EST dataset of E. gracilis. The common motifs in predicted N-terminal presequences and corresponding homologs from T. brucei, T. cruzi and L. major (if found) were analyzed. Other trypanosomatid mitochondrial protein precursor (e.g., those involved in RNA editing) were also included in the analysis. Mitochondrial presequences of E. gracilis and these trypanosomatids seem to be highly variable in sequence length (5-118 aa), but apparently share statistically significant similarities. In most cases, the common (M/L)RR motif is present at the N-terminus and it is probably responsible for recognition via import apparatus of mitochondrial outer membrane. Interestingly, this motif is present inside the predicted presequence region in some cases. In most presequences, this motif is followed by a hydrophobic region rich in alanine, leucine, and valine. In conclusion, either RR motif or arginine-rich region within hydrophobic aa-s present at the N-terminus of a preprotein can be sufficient signals for mitochondrial import irrespective of presequence length in Euglenozoa.

  11. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  12. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    PubMed

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  14. Chronic Neuropathic Pain in Mice Reduces μ-Opioid Receptor-Mediated G-protein Activity in the Thalamus

    PubMed Central

    Hoot, Michelle R.; Sim-Selley, Laura J.; Selley, Dana E.; Scoggins, Krista L.; Dewey, William L.

    2011-01-01

    Neuropathic pain is a debilitating condition that is often difficult to treat using conventional pharmacological interventions and the exact mechanisms involved in the establishment and maintenance of this type of chronic pain have yet to be fully elucidated. The present studies examined the effect of chronic nerve injury on μ-opioid receptors and receptor-mediated G-protein activity within the supraspinal brain regions involved in pain processing of mice. Chronic constriction injury (CCI) reduced paw withdrawal latency, which was maximal at 10 days post-injury. [d-Ala2,(N-Me)Phe4, Gly5-OH] enkephalin (DAMGO)-stimulated [35S]GTPγS binding was then conducted at this time point in membranes prepared from the rostral ACC (rACC), thalamus and periaqueductal grey (PAG) of CCI and sham-operated mice. Results showed reduced DAMGO-stimulated [35S]GTPγS binding in the thalamus and PAG of CCI mice, with no change in the rACC. In thalamus, this reduction was due to decreased maximal stimulation by DAMGO, with no difference in EC50 values. In PAG, however, DAMGO Emax values did not significantly differ between groups, possibly due to the small magnitude of the main effect. [3H]Naloxone binding in membranes of the thalamus showed no significant differences in Bmax values between CCI and sham-operated mice, indicating that the difference in G-protein activation did not result from differences in μ-opioid receptor levels. These results suggest that CCI induced a region-specific adaptation of μ-opioid receptor-mediated G-protein activity, with apparent desensitization of the μ-opioid receptor in the thalamus and PAG and could have implications for treatment of neuropathic pain. PMID:21762883

  15. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice

    PubMed Central

    Glendinning, John I.; Gillman, Jennifer; Zamer, Haley; Margolskee, Robert F.; Sclafani, Anthony

    2012-01-01

    We examined the role of T1r3 and Trpm5 taste signaling proteins in carbohydrate-induced overeating and obesity. T1r3, encoded by Tas1r3, is part of the T1r2+T1r3 sugar taste receptor, while Trpm5 mediates signaling for G protein-coupled receptors in taste cells. It is known that C57BL/6 wild-type (WT) and Tas1r3 knock-out (KO) mice are attracted to the taste of Polycose (a glucose polymer), but not sucrose. In contrast, Trpm5 KO mice are not attracted to the taste of sucrose or Polycose. In Experiment 1, we maintained the WT, Tas1r3 KO and Trpm5 KO mice on one of three diets for 38 days: lab chow plus water (Control diet); chow, water and 34% Polycose solution (Polycose diet); or chow, water and 34% sucrose solution (Sucrose diet). The WT and Tas1r3 KO mice overconsumed the Polycose diet and became obese. The WT and Tas1r3 KO mice also overconsumed the Sucrose diet, but only the WT mice became obese. The Trpm5 KO mice, in contrast, showed little or no overeating on the Sucrose and Polycose diets, and gained slightly or significantly less weight than WT mice on these diets. In Experiment 2, we asked whether the Tas1r3 KO mice exhibited impaired weight gain on the Sucrose diet because it was insipid. To test this hypothesis, we maintained the WT and Tas1r3 KO mice on one of two diets for 38 days: chow, water and a dilute (1%) but highly palatable Intralipid emulsion (Control diet); or chow, water and a 34% sucrose + 1% Intralipid solution (Suc+IL diet). The WT and Tas1r3 KO mice both gained weight and became obese on the Suc+IL diet. Our results suggest that nutritive solutions must be highly palatable to cause carbohydrate-induced obesity in mice, and that palatability produces this effect in part by enhancing nutrient utilization. PMID:22683548

  16. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    PubMed

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. An anti-G protein monoclonal antibody treats RSV disease more effectively than an anti-F monoclonal antibody in BALB/c mice.

    PubMed

    Boyoglu-Barnum, Seyhan; Todd, Sean O; Chirkova, Tatiana; Barnum, Thomas R; Gaston, Kelsey A; Haynes, Lia M; Tripp, Ralph A; Moore, Martin L; Anderson, Larry J

    2015-09-01

    Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. To clarify the potential for an anti-G mAb, 131-2G which has both anti-viral and anti-inflammatory effects, to effectively treat RSV disease, we determined the kinetics of its effect compared to the effect of the anti-F mAb, 143-6C on disease in mice. Treatment administered three days after RSV rA2-line19F (r19F) infection showed 131-2G decreased breathing effort, pulmonary mucin levels, weight loss, and pulmonary inflammation earlier and more effectively than treatment with mAb 143-6C. Both mAbs stopped lung virus replication at day 5 post-infection. These data show that, in mice, anti-G protein mAb is superior to treating disease during RSV infection than an anti-F protein mAb similar to Palivizumab. This combination of anti-viral and anti-inflammatory activity makes 131-2G a promising candidate for treating for active human RSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. [miR-503-5p inhibits the proliferation of T24 and EJ bladder cancer cells by interfering with the Rb/E2F signaling pathway].

    PubMed

    Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao

    2017-10-01

    Objective To observe the effect of microRNA-503-5p (miR-503-5p) on the growth of T24 and EJ bladder cancer cells, and explore the possible molecular mechanism. Methods The miR-504-5p mimics or miR-NC was transfected into T24 and EJ cells. The target gene of miR-503-5p was predicted by bioinformatics. The expressions of E2F transcription factor 3 (E2F3) mRNA and Rb/E2F signaling pathway mRNA were detected by the real-time quantitative PCR (qPCR). The expressions of Rb/E2F signal pathway proteins E2F3, cyclin E, CDK2, Rb and p-Rb were detected by Western blotting. The cell cycle of bladder cancer cell lines was determined by flow cytometry. MTT assay and plate cloning assay were performed to observe the proliferation ability of bladder cancer cells. Results After miR-503-5p mimics transfection, the expression of miR-503-5p in bladder cancer cells significantly increased. The increased expression of miR-503-5p significantly reduced the expressions of E2F3 mRNA and Rb/E2F signaling pathway mRNA in bladder cancer cells. What's more, the expressions of Rb/E2F signal pathway proteins were down-regulated. The bladder cancer cells were arrested in G0/G1 phase, and their growth was significantly inhibited by miR-503-5p. Conclusion The miR-503-5p over-expression can inhibit the growth of bladder cancer cell lines T24 and EJ by down-regulating the expression of the Rb/E2F signaling pathway.

  19. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  20. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  1. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  2. Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth.

    PubMed

    Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan; Tafaj, Olta; Paltrinieri, Elena; Wu, Joy Y; He, Qing; Bastepe, Murat

    2018-05-01

    GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsα R201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsα R201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsα R201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    PubMed

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. C3aR and C5aR1 act as key regulators of human and mouse β-cell function.

    PubMed

    Atanes, Patricio; Ruz-Maldonado, Inmaculada; Pingitore, Attilio; Hawkes, Ross; Liu, Bo; Zhao, Min; Huang, Guo Cai; Persaud, Shanta J; Amisten, Stefan

    2018-02-01

    Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca 2+ ]i), ATP generation and apoptosis were assessed by standard techniques. C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca 2+ ]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.

  5. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    PubMed

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism.

    PubMed

    Feng, Youjun; Kumar, Ritesh; Ravcheev, Dmitry A; Zhang, Huimin

    2015-08-01

    Recently, we determined that BioR, the GntR family of transcription factor, acts as a repressor for biotin metabolism exclusively distributed in certain species of α-proteobacteria, including the zoonotic agent Brucella melitensis and the plant pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Paracoccus denitrificans, another closely related member of the same phylum α-proteobacteria featuring with denitrification. Not only does it encode two BioR homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respectively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each contains two tandem BioR boxes). It raised the possibility that unexpected complexity is present in BioR-mediated biotin regulation. Here we report that this is the case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed with LC-QToF-MS. Phylogenetic analyses combined with GC percentage raised a possibility that the bioR2 gene might be acquired by horizontal gene transfer. Gel shift assays revealed that the predicted BioR-binding sites are functional for the two BioR homologs, in much similarity to the scenario seen with the BioR site of A. tumefaciens bioBFDAZ. Using the A. tumefaciens reporter system carrying a plasmid-borne LacZ fusion, we revealed that the two homologs of P. denitrificans BioR are functional repressors for biotin metabolism. As anticipated, not only does the addition of exogenous biotin stimulate efficiently the expression of bioYB operon encoding biotin transport/uptake system BioY, but also inhibits the transcription of the bioBFDAGC operon resembling the de novo biotin synthetic pathway. EMSA-based screening failed to demonstrate that the biotin-related metabolite is involved in BioR-DNA interplay, which is consistent with our former observation with Brucella BioR. Our finding defined a complex regulatory network for biotin

  7. Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism

    PubMed Central

    Feng, Youjun; Kumar, Ritesh; Ravcheev, Dmitry A; Zhang, Huimin

    2015-01-01

    Recently, we determined that BioR, the GntR family of transcription factor, acts as a repressor for biotin metabolism exclusively distributed in certain species of α-proteobacteria, including the zoonotic agent Brucella melitensis and the plant pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Paracoccus denitrificans, another closely related member of the same phylum α-proteobacteria featuring with denitrification. Not only does it encode two BioR homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respectively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each contains two tandem BioR boxes). It raised the possibility that unexpected complexity is present in BioR-mediated biotin regulation. Here we report that this is the case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed with LC-QToF-MS. Phylogenetic analyses combined with GC percentage raised a possibility that the bioR2 gene might be acquired by horizontal gene transfer. Gel shift assays revealed that the predicted BioR-binding sites are functional for the two BioR homologs, in much similarity to the scenario seen with the BioR site of A. tumefaciens bioBFDAZ. Using the A. tumefaciens reporter system carrying a plasmid-borne LacZ fusion, we revealed that the two homologs of P. denitrificans BioR are functional repressors for biotin metabolism. As anticipated, not only does the addition of exogenous biotin stimulate efficiently the expression of bioYB operon encoding biotin transport/uptake system BioY, but also inhibits the transcription of the bioBFDAGC operon resembling the de novo biotin synthetic pathway. EMSA-based screening failed to demonstrate that the biotin-related metabolite is involved in BioR-DNA interplay, which is consistent with our former observation with Brucella BioR. Our finding defined a complex regulatory network for biotin

  8. Structure-Function Analysis of STING Activation by c[G(2′,5′)pA(3′,5′)p] and Targeting by Antiviral DMXAA

    PubMed Central

    Gao, Pu; Ascano, Manuel; Zillinger, Thomas; Wang, Weiyi; Dai, Peihong; Serganov, Artem A.; Gaffney, Barbara L.; Shuman, Stewart; Jones, Roger A.; Deng, Liang; Hartmann, Gunther; Barchet, Winfried; Tuschl, Thomas; Patel, Dinshaw J.

    2015-01-01

    SUMMARY Binding of dsDNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) triggers formation of the metazoan second messenger c[G(2′,5′)pA(3′,5′)p], which binds the signaling protein STING with subsequent activation of the interferon (IFN) pathway. We show that human hSTINGH232 adopts a ‘‘closed’’ conformation upon binding c[G(2′,5′)pA(3′,5′)p] and its linkage isomer c[G(2′,5′)pA(2′,5′)p], as does mouse mStingR231 on binding c[G(2′,5′)pA(3′,5′)p], c[G(3′,5′)pA(3′,5′)p] and the antiviral agent DMXAA, leading to similar ‘‘closed’’ conformations. Comparing hSTING to mSting, 2′,5′-linkage-containing cGAMP isomers were more specific triggers of the IFN pathway compared to the all-3′,5′-linkage isomer. Guided by structural information, we identified a unique point mutation (S162A) placed within the cyclic-dinucleotide-binding site of hSTING that rendered it sensitive to the otherwise mouse-specific drug DMXAA, a conclusion validated by binding studies. Our structural and functional analysis highlights the unexpected versatility of STING in the recognition of natural and synthetic ligands within a small-molecule pocket created by the dimerization of STING. PMID:23910378

  9. Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin

    2018-05-01

    The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.

  10. Fluorescence-based assay probing regulator of G protein signaling partner proteins.

    PubMed

    Huang, Po-Shiun; Yeh, Hsin-Sung; Yi, Hsiu-Ping; Lin, Chain-Jia; Yang, Chii-Shen

    2012-04-01

    The regulator of G protein signaling (RGS) proteins are one of the essential modulators for the G protein system. Besides regulating G protein signaling by accelerating the GTPase activity of Gα subunits, RGS proteins are implicated in exerting other functions; they are also known to be involved in several diseases. Moreover, the existence of a single RGS protein in plants and its seven-transmembrane domain found in 2003 triggered efforts to unveil detailed structural and functional information of RGS proteins. We present a method for real-time examination of the protein-protein interactions between RGS and Gα subunits. AtRGS1 from plants and RGS4 from mammals were site-directedly labeled with the fluorescent probe Lucifer yellow on engineered cysteine residues and used to interact with different Gα subunits. The physical interactions can be revealed by monitoring the real-time fluorescence changes (8.6% fluorescence increase in mammals and 27.6% in plants); their correlations to functional exertion were shown with a GTPase accelerating activity assay and further confirmed by measurement of K(d). We validate the effectiveness of this method and suggest its application to the exploration of more RGS signaling partner proteins in physiological and pathological studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    PubMed

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions

    PubMed Central

    Eaton, Heather E.; Kobayashi, Takeshi; Dermody, Terence S.; Johnston, Randal N.

    2017-01-01

    ABSTRACT Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5′ nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation. IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since

  13. Crystal structure of RlmAI: Implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site

    PubMed Central

    Das, Kalyan; Acton, Thomas; Chiang, Yiwen; Shih, Lydia; Arnold, Eddy; Montelione, Gaetano T.

    2004-01-01

    The RlmA class of enzymes (RlmAI and RlmAII) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmAI at 2.8-Å resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmAI molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmAI dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmAI dimer. PMID:14999102

  14. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication

    PubMed Central

    Li, Zhenhui; Luo, Qingbin; Xu, Haiping; Zheng, Ming; Abdalla, Bahareldin Ali; Feng, Min; Cai, Bolin; Zhang, Xiaocui; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 (MDA5) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro, overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated (P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway. PMID:28194372

  15. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication.

    PubMed

    Li, Zhenhui; Luo, Qingbin; Xu, Haiping; Zheng, Ming; Abdalla, Bahareldin Ali; Feng, Min; Cai, Bolin; Zhang, Xiaocui; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 ( MDA5 ) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro , overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated ( P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway.

  16. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.

    PubMed

    Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith

    2018-06-11

    Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity Gγ3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Protein Z G79A polymorphism in Turkish pediatriccerebral infarct patients.

    PubMed

    Öztürk, Ayşenur; Eğin, Yonca; Deda, Gülhis; Teber, Serap; Akar, Nejat

    2008-09-05

    Protein Z (PZ) plays an enhancer role in coagulation as an anticoagulant. This is the first study in which G79A polymorphism investigated in Turkish paediatric stroke patients. Ninety-one paediatric stroke patients with cerebral ischemia and 70 control subjects were analyzed for PZ G79A and also FVL, PT mutations. PZ 79 'A' allele in homozygous state was found in five patients (5,5%), while it was found only in one control subject (1,4%) and it was seemed as a risk factor for peadiatric ischemia [OR=3,94 (0,44-35,1)]. When patients and controls who had FVL and PT carriers were excluded, AA genotype carried a risk [OR=3,88 (0,41-36,5)]. Also plasma protein Z levels measured in 21 stroke patients and 52 controls. Plasma protein Z levels were not different between stroke patients (500,95 ngmL-1±158,35) and controls (447,34 ngmL-1±165,97). But the plasma levels of protein Z was decreased in patients with AA genotype. Our data showed that carrying 79 AA genotype could be a genetic risk factor for cerebral infarct in peadiatric patients.

  18. Alcohol use, risky sexual behavior, and condom possession among bar patrons.

    PubMed

    Chaney, Beth H; Vail-Smith, Karen; Martin, Ryan J; Cremeens-Matthews, Jennifer

    2016-09-01

    The current study seeks to: 1) assess the relationship between alcohol consumption and intentions to engage in unprotected sex in an uncontrolled environment, and 2) to identify if covariates (race, age, sex, breath alcohol content (BrAC), intentions to engage in sex, hazardous drinking rates) are significant predictors of condom possession during time of uncontrolled alcohol consumption. Data were collected from 917 bar patrons to assess alcohol use using the Alcohol Use Disorders Identification Test (AUDIT-C), BrAC levels, intentions to engage in risky sex, and condom possession. Correlational analysis and hierarchical binary logistic regression was conducted using SPSS. Correlational analyses indicated a negative relationship between AUDIT-C scores (r=-0.115, p=0.001), BrAC (r=-0.08, p=0.015), and intentions to use a condom. Over 70% of participants intended to use a condom if they engaged in sex; however, only 28.4% had a condom to use. The regression analysis indicated the predictive model (χ(2)=114.5, df=8, p<0.001) was statistically significant, and correctly classified 72.9% of those in possession of a condom. Alcohol consumption was associated with intentions to have unprotected sex; however, intentions to engage in protected sex and condom possession were higher for males and those with higher BrAC levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS

    NASA Astrophysics Data System (ADS)

    Han, Ling; Kitova, Elena N.; Klassen, John S.

    2016-11-01

    This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB5) and Shiga toxin type 1 B (Stx1B5) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB5 or Stx1B5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution.

  20. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    PubMed

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  1. HNF-4α regulated miR-122 contributes to development of gluconeogenesis and lipid metabolism disorders in Type 2 diabetic mice and in palmitate-treated HepG2 cells.

    PubMed

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Xue, Huan; Lan, Xiaoxin; Liu, Shuping; Hatch, Grant; Chen, Li

    2016-11-15

    Hepatocyte Nuclear Factor-4α (HNF-4α) is a key nuclear receptor protein required for liver development. miR-122 is a predominant microRNA expressed in liver and is involved in the regulation of cholesterol and fatty acid metabolism. HNF-4α is know to regulate expression of miR-122 in liver. We examined how HNF-4α regulated gluconeogenesis and lipid metabolism through miR-122 in vivo and in vitro. Expression of miR-122, HNF-4α, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), sterol response elementary binding protein-1 (SREBP-1), fatty acid synthase-1 (FAS-1), carnitine palmitoyltransferase-1 (CPT-1) and acetyl Coenzyme A carboxylase alpha (ACCα) were determined in livers of Type 2 diabetic mice and in insulin resistant palmitate-treated HepG2 cells. CPT-1 and phosphorylated ACCα expression were significantly decreased in livers of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. In contrast, expression of miR-122, HNF-4α, PEPCK, G6Pase, SREBP-1, FAS-1 and ACCα were significantly elevated in liver of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. Expression of HNF-4α increased whereas siRNA knockdown of HNF-4α decreased miR-122 levels in HepG2 cells compared to controls. In addition, expression of HNF-4α in HepG2 cells increased PEPCK, G6Pase, SREBP-1, FAS-1, ACCα mRNA and protein expression and decreased CPT-1 and p-ACCα mRNA and protein expression compared to controls. Addition of miR-122 inhibitors attenuated the HNF-4α mediated effect on expression of these gluconeogenic and lipid metabolism proteins. The results indicate that HNF-4α regulated miR-122 contributes to development of the gluconeogenic and lipid metabolism alterations observed in Type 2 diabetic mice and in palmitate-treated HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  3. Forskolin-mediated BeWo cell fusion involves down-regulation of miR-92a-1-5p that targets dysferlin and protein kinase cAMP-activated catalytic subunit alpha.

    PubMed

    Dubey, Richa; Malhotra, Sudha S; Gupta, Satish K

    2018-06-01

    To study the role of miRNA(s) during trophoblastic BeWo cell fusion. Changes in miRNA(s) profile of BeWo cells treated with forskolin were analyzed using Affymetrix miRNA microarray platform. Down-regulated miRNA, miR-92a-1-5p, was overexpressed in BeWo cells followed by forskolin treatment to understand its relevance in the process of BeWo cell fusion by desmoplakin I+II staining and hCG secretion by ELISA. Predicted targets of miR-92a-1-5p were also confirmed by qRT-PCR/Western blotting. The miRNA profiling of BeWo cells after forskolin (25 μmol/L) treatment identified miR-92a-1-5p as the most significantly down-regulated miRNA both at 24 and 48 hours time points. Overexpression of miR-92a-1-5p in these cells led to a significant decrease in forskolin-mediated cell fusion and hCG secretion. miRNA target prediction software, TargetScan, revealed dysferlin (DYSF) and protein kinase cAMP-activated catalytic subunit alpha (PRKACA), as target genes of miR-92a-1-5p. Overexpression of miR-92a-1-5p in BeWo cells showed reduction in forskolin-induced transcripts for DYSF and PRKACA. Further, reduction in DYSF (~2.6-fold) at protein level and PRKACA-encoded protein kinase A catalytic subunit alpha (PKAC-α; ~1.6-fold) were also observed. These observations suggest that miR-92a-1-5p regulates forskolin-mediated BeWo cell fusion and hCG secretion by regulating PKA signaling pathway and dysferlin expression. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry

    PubMed Central

    Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.

    2013-01-01

    Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation. PMID:23797863

  5. Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and Its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.

    2013-09-01

    Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.

  6. Protein-RNA crosslinking in Escherichia coli 30S ribosomal subunits. Identification of a 16S rRNA fragment crosslinked to protein S12 by the use of the chemical crosslinking reagent 1-ethyl-3-dimethyl-aminopropylcarbodiimide.

    PubMed Central

    Chiaruttini, C; Expert-Bezançon, A; Hayes, D; Ehresmann, B

    1982-01-01

    1-ethyl-3-dimethyl aminopropylcarbodiimide (EDC) was used to cross-link 30S ribosomal proteins to 16S rRNA within the E. coli 3OS ribosomal subunit. Covalently linked complexes containing 30S proteins and 16S rRNA, isolated by sedimentation of dissociated crosslinked 30S subunits through SDS containing sucrose gradients, were digested with RNase T1, and the resulting oligonucleotide-protein complexes were fractionated on SDS containing polyacrylamide gels. Eluted complexes containing 30S proteins S9 and S12 linked to oligonucleotides were obtained in pure form. Oligonucleotide 5'terminal labelling was successful in the case of S12 containing but not of the S9 containing complex and led to identification of the S12 bound oligonucleotide as CAACUCG which is located at positions 1316-1322 in the 16S rRNA sequence. Protein S12 is crosslinked to the terminal G of this heptanucleotide. Images PMID:6760129

  7. PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome

    PubMed Central

    Girardot, Michael; Hirasawa, Ryutaro; Kacem, Salim; Fritsch, Lauriane; Pontis, Julien; Kota, Satya K.; Filipponi, Doria; Fabbrizio, Eric; Sardet, Claude; Lohmann, Felix; Kadam, Shilpa; Ait-Si-Ali, Slimane; Feil, Robert

    2014-01-01

    Symmetrical dimethylation on arginine-3 of histone H4 (H4R3me2s) has been reported to occur at several repressed genes, but its specific regulation and genomic distribution remained unclear. Here, we show that the type-II protein arginine methyltransferase PRMT5 controls H4R3me2s in mouse embryonic fibroblasts (MEFs). In these differentiated cells, we find that the genome-wide pattern of H4R3me2s is highly similar to that in embryonic stem cells. In both the cell types, H4R3me2s peaks are detected predominantly at G + C-rich regions. Promoters are consistently marked by H4R3me2s, independently of transcriptional activity. Remarkably, H4R3me2s is mono-allelic at imprinting control regions (ICRs), at which it marks the same parental allele as H3K9me3, H4K20me3 and DNA methylation. These repressive chromatin modifications are regulated independently, however, since PRMT5-depletion in MEFs resulted in loss of H4R3me2s, without affecting H3K9me3, H4K20me3 or DNA methylation. Conversely, depletion of ESET (KMT1E) or SUV420H1/H2 (KMT5B/C) affected H3K9me3 and H4K20me3, respectively, without altering H4R3me2s at ICRs. Combined, our data indicate that PRMT5-mediated H4R3me2s uniquely marks the mammalian genome, mostly at G + C-rich regions, and independently from transcriptional activity or chromatin repression. Furthermore, comparative bioinformatics analyses suggest a putative role of PRMT5-mediated H4R3me2s in chromatin configuration in the nucleus. PMID:24097435

  8. Reduction in Brain Heparan Sulfate with Systemic Administration of an IgG Trojan Horse-Sulfamidase Fusion Protein in the Mucopolysaccharidosis Type IIIA Mouse.

    PubMed

    Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric Ka-Wai; Pardridge, William M

    2018-02-05

    Mucopolysaccharidosis Type IIIA (MPSIIIA), also known as Sanfilippo A syndrome, is an inherited neurodegenerative disease caused by mutations in the lysosomal enzyme, N-sulfoglucosamine sulfohydrolase (SGSH), also known as sulfamidase. Mutations in the SGSH enzyme, the only mammalian heparan N-sulfatase, cause accumulation of lysosomal inclusion bodies in brain cells comprising heparan sulfate (HS) glycosaminoglycans (GAGs). Treatment of MPSIIIA with intravenous recombinant SGSH is not possible because this large molecule does not cross the blood-brain barrier (BBB). BBB penetration by SGSH was enabled in the present study by re-engineering this enzyme as an IgG-SGSH fusion protein, where the IgG domain is a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated the cTfRMAb. The IgG domain of the fusion protein acts as a molecular Trojan horse to deliver the enzyme into brain via transport on the endogenous BBB TfR. The cTfRMAb-SGSH fusion protein bound to the mouse TfR with high affinity, ED 50 = 0.74 ± 0.07 nM, and retained high SGSH enzyme activity, 10 043 ± 1003 units/mg protein, which is comparable to recombinant human SGSH. Male and female MPSIIIA mice, null for the SGSH enzyme, were treated for 6 weeks with thrice-weekly intraperitoneal injections of vehicle, 5 mg/kg of the cTfRMAb alone, or 5 mg/kg of the cTfRMAb-SGSH fusion protein, starting at the age of 2 weeks, and were euthanized 1 week after the last injection. Brain and liver HS, as determined by liquid chromatography-mass spectrometry, were elevated 30-fold and 36-fold, respectively, in the MPSIIIA mouse. Treatment of the mice with the cTfRMAb-SGSH fusion protein caused a 70% and 85% reduction in brain and liver HS, respectively. The reduction in brain HS was associated with a 28% increase in latency on the rotarod test of motor activity in male mice. The mice exhibited no injection related reactions, and only a low titer end of study antidrug antibody

  9. Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics

    PubMed Central

    Williams, Grace R.; Bethard, Jennifer R.; Berkaw, Mary N.; Nagel, Alexis K.; Luttrell, Louis M.; Ball, Lauren E.

    2015-01-01

    The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry combined with bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5 min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation. PMID:26160508

  10. TMPRSS4 regulates levels of integrin α5 in NSCLC through miR-205 activity to promote metastasis.

    PubMed

    Larzabal, L; de Aberasturi, A L; Redrado, M; Rueda, P; Rodriguez, M J; Bodegas, M E; Montuenga, L M; Calvo, A

    2014-02-04

    TMPRSS4 is a membrane-anchored protease involved in cell migration and invasion in different cancer types including lung cancer. TMPRSS4 expression is increased in NSCLC and its inhibition through shRNA reduces lung metastasis. However, molecular mechanisms leading to the protumorigenic regulation of TMPRSS4 in lung cancer are unknown. miR-205 was identified as an overexpressed gene upon TMPRSS4 downregulation through microarray analysis. Cell migration and invasion assays and in vivo lung primary tumour and metastasis models were used for functional analysis of miR-205 overexpression in H2170 and H441 cell lines. Luciferase assays were used to identify a new miR-205 direct target in NSCLC. miR-205 overexpression promoted an epithelial phenotype with increased E-cadherin and reduced fibronectin. Furthermore, miR-205 expression caused a G0/G1 cell cycle arrest and inhibition of cell growth, migration, attachment to fibronectin, primary tumour growth and metastasis formation in vivo. Integrin α5 (a proinvasive protein) was identified as a new miR-205 direct target in NSCLC. Integrin α5 downregulation in lung cancer cells resulted in complete abrogation of cell migration, a decreased capacity to adhere to fibronectin and reduced in vivo tumour growth, compared with control cells. TMPRSS4 silencing resulted in a concomitant reduction of integrin α5 levels. We have demonstrated for the first time a new molecular pathway that connects TMPRSS4 and integrin α5 through miR-205 to regulate cancer cell invasion and metastasis. Our results will help designing new therapeutic strategies to inhibit this novel pathway in NSCLC.

  11. Emerging themes in heterotrimeric G-protein signaling in plants.

    PubMed

    Pandey, Sona; Vijayakumar, Anitha

    2018-05-01

    Heterotrimeric G-proteins are key signaling components involved during the regulation of a multitude of growth and developmental pathways in all eukaryotes. Although the core proteins (Gα, Gβ, Gγ subunits) and their basic biochemistries are conserved between plants and non-plant systems, seemingly different inherent properties of specific components, altered wirings of G-protein network architectures, and the presence of novel receptors and effector proteins make plant G-protein signaling mechanisms somewhat distinct from the well-established animal paradigm. G-protein research in plants is getting a lot of attention recently due to the emerging roles of these proteins in controlling many agronomically important traits. New findings on both canonical and novel G-protein components and their conserved and unique signaling mechanisms are expected to improve our understanding of this important module in affecting critical plant growth and development pathways and eventually their utilization to produce plants for the future needs. In this review, we briefly summarize what is currently known in plant G-protein research, describe new findings and how they are changing our perceptions of the field, and discuss important issues that still need to be addressed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effects of 2.0-g 1.75-g and 1.5-g Hypergravity on Pregnancy Outcome in Rats (Rattus norvegicus)

    NASA Technical Reports Server (NTRS)

    Mills, Nicole A.; Baer, Lisa A.; Ronca, April E.

    2001-01-01

    In 1995, ten pregnant female rats were launched on the Space Shuttle (STS-70) on Gestational day(G) 11 of their 22-day pregnancy as part of the NASA/NIH.Rodent (R)2 Experiment. Following landing on G20, fetuses were harvested from half of the dams, while the remaining five dams underwent birth. Spaceflight did not interrupt pregnancy, alter litter sizes, or affect body weights or gender ratios of the fetuses or neonates. In the present study we used the NASA/NIH.R2 experimental paradigm to analyze the effects of hypergravity on pregnancy outcome. On G10, time-bred Sprague-Dawley rat dams were assigned to either G20 or Birth conditions, then further assigned to Hypergravity (HG) 2.0-g, HG 1.75-g, HG 1.5-g, Rotational Control (RC, 1.03), or Stationary Control (SC, 1.0-g) treatments. Dams were exposed to continuous centrifugation from G11 through G20, with brief daily stops for animal health checks and maintenance. For both the G20 and Birth dams, comparable litter sizes and litter gender ratios were observed across gravity conditions. However, centrifugation-exposed (HG and RC) fetuses and neonates showed significantly lower body masses (p less than 0.05) relative to SC offspring. HG 2.0-g offspring weighed significantly less than those in all other gravity conditions (p less than 0.05). The observed reductions in offspring body mass at 1.5-g and 1.75-g, can be attributed to the rotational component of centrifugation, rather than to increased gravitational load, whereas 2.0-g hypergravity exposure further exacerbated the gravity centrifugation effect on offspring body mass. Pregnant dams exposed to centrifugation weighed significantly less than SC dams (p less than 0.05), suggesting that centrifugation effects on maternal body mass may contribute to reduced size of the developing offspring. These findings are consistent with previous reports of non-pregnant adult animals suggesting that, whereas spaceflight has virtually no effect on body mass, centrifugation is

  13. Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes.

    PubMed

    Kraft, Theresia; Witjas-Paalberends, E Rosalie; Boontje, Nicky M; Tripathi, Snigdha; Brandis, Almuth; Montag, Judith; Hodgkinson, Julie L; Francino, Antonio; Navarro-Lopez, Francisco; Brenner, Bernhard; Stienen, Ger J M; van der Velden, Jolanda

    2013-04-01

    Familial Hypertrophic Cardiomyopathy (FHC) is frequently caused by mutations in the β-cardiac myosin heavy chain (β-MyHC). To identify changes in sarcomeric function triggered by such mutations, distinguishing mutation effects from other functional alterations of the myocardium is essential. We previously identified a direct effect of mutation R723G (MyHC723) on myosin function in slow Musculus soleus fibers. Here we investigate contractile features of left ventricular cardiomyocytes of FHC-patients with the same MyHC723-mutation and compare these to the soleus data. In mechanically isolated, triton-permeabilized MyHC723-cardiomyocytes, maximum force was significantly lower but calcium-sensitivity was unchanged compared to donor. Conversely, MyHC723-soleus fibers showed significantly higher maximum force and reduced calcium-sensitivity compared to controls. Protein phosphorylation, a potential myocardium specific modifying mechanism, might account for differences compared to soleus fibers. Analysis revealed reduced phosphorylation of troponin I and T, myosin-binding-protein C, and myosin-light-chain 2 in MyHC723-myocardium compared to donor. Saturation of protein-kinaseA phospho-sites led to comparable, i.e., reduced MyHC723-calcium-sensitivity in cardiomyocytes as in M. soleus fibers, while maximum force remained reduced. Myofibrillar disarray and lower density of myofibrils, however, largely account for reduced maximum force in MyHC723-cardiomyocytes. The changes seen when phosphorylation of sarcomeric proteins in myocardium of affected patients is matched to control tissue suggest that the R723G mutation causes reduced Ca(++)-sensitivity in both cardiomyocytes and M. soleus fibers. In MyHC723-myocardium, however, hypophosphorylation can compensate for the reduced calcium-sensitivity, while maximum force generation, lowered by myofibrillar deficiency and disarray, remains impaired, and may only be compensated by hypertrophy. Copyright © 2013 Elsevier Ltd. All

  14. Can the DSM-5 differentiate between nonpathological possession and dissociative identity disorder? A case study from an Afro-Brazilian religion.

    PubMed

    Delmonte, Romara; Lucchetti, Giancarlo; Moreira-Almeida, Alexander; Farias, Miguel

    2016-01-01

    The aim of this article is to examine whether the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), are able to differentiate between nonpathological religious possession and dissociative identity disorder (DID). We use the case study of an individual who leads an Afro-Brazilian religious group (Umbanda), focusing on her personal development and possession experiences from early childhood to the present, spanning a period of more than 40 years, and examine these data following DSM-5 criteria for DID (300.14). Her experiences of possession can be broken into 2 distinct stages. In the 1st stage (childhood and early adulthood), she displayed intrusive thoughts and a lack of control over possession states, which were associated with a heightened state of anxiety, loneliness, amnesia, and family conflict (meeting all 5 criteria for DID). In the 2nd stage (late 20s up to the present), she regularly experienced possession states but felt in control of their onset and found them religiously meaningful. In this 2nd stage, she only fulfilled 3 criteria for DID. We question the accuracy of diagnosing this individual with DID in her earlier life and suggest that the DSM-5 criteria fail to address the ambiguity of affect surrounding possession experiences (positive at the individual level, negative at the interpersonal level) and lack a clearer acknowledgment of the prevalence of possession and other unusual experiences in general populations.

  15. Rapid kinetic BRET measurements to monitor G protein activation by GPCR and non-GPCR proteins.

    PubMed

    Maziarz, Marcin; Garcia-Marcos, Mikel

    2017-01-01

    Heterotrimeric G proteins are central hubs of signal transduction whose activity is controlled by G protein-coupled receptors (GPCRs) as well as by a complex network of regulatory proteins. Recently, bioluminescence resonance energy transfer (BRET)-based assays have been used to monitor real-time activation of heterotrimeric G proteins in cells. Here we describe the use of a previously established BRET assay to monitor G protein activation upon GPCR stimulation and its adaptation to measure G protein activation by non-GPCR proteins, such as by cytoplasmic guanine nucleotide exchange factors (GEFs) like GIV/Girdin. The BRET assay monitors the release of free Gβγ from Gα-Gβγ heterotrimers as a readout of G protein activation, which is readily observable upon agonist stimulation of GPCRs. To control the signal input for non-GPCR activators, we describe the use of a chemically induced dimerization strategy to promote rapid membrane translocation of proteins containing the Gα-binding and -activating (GBA) motif found in some nonreceptor GEFs. The assay described here allows the kinetic measurement of G protein activation with subsecond temporal resolution and to compare the levels of activation induced by GPCR agonists vs those induced by the membrane recruitment of nonreceptor G protein signaling activators. © 2017 Elsevier Inc. All rights reserved.

  16. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-02

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  17. Thematic minireview series: cell biology of G protein signaling.

    PubMed

    Dohlman, Henrik G

    2015-03-13

    This thematic series is on the topic of cell signaling from a cell biology perspective, with a particular focus on G proteins. G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors) are typically found at the cell surface. Upon agonist binding, these receptors will activate a GTP-binding G protein at the cytoplasmic face of the plasma membrane. Additionally, there is growing evidence that G proteins can also be activated by non-receptor binding partners, and they can signal from non-plasma membrane compartments. The production of second messengers at multiple, spatially distinct locations represents a type of signal encoding that has been largely neglected. The first minireview in the series describes biosensors that are being used to monitor G protein signaling events in live cells. The second describes the implementation of antibody-based biosensors to dissect endosome signaling by G proteins and their receptors. The third describes the function of a non-receptor, cytoplasmic activator of G protein signaling, called GIV (Girdin). Collectively, the advances described in these articles provide a deeper understanding and emerging opportunities for new pharmacology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. [Construction and expression of HSV-2gD-Hsp70 fusion protein gene].

    PubMed

    Fan, Jian-Yong; Yang, Hui-Lan; Wang, Ying; Guan, Lei

    2006-11-01

    To construct and express Hsp70-HSV2gD fusion protein. Genes of Hsp70 and HSV-2gD were subcloned into vectors pGEX-4T-1 respectively. After confirmed by DNA sequence analysis, the recombinant plasmids pGEX-4T-HSP-gD was transformed into E. coli DH5alpha and induced to express with IPTG. The expressed protein was characterized by SDS-PAGE and Western blot after purified. BALB/c mice were immunized with fusion proteins respectively via intra-m uscular injection. The proliferation of spleen lymphocytes, the level of y-IFN in culture and anti-HSV-2gD IgG antibody in serum was detected was detected. The expressed protein was analyzed by SDS-PAGE after induced with IPTG, which showed a new band with an apparent molecular mass corresponding to the predicted size (118 kD). Western Blotting analysis demonstrates that the purified Hsp70-HSV2gD fusion protein had specific binding activity. The stimulation indexes of spleen lymphocytes, the level of gamma-IFN in culture and anti-HSV-2gD IgG antibody in serum of GST-Hsp70-gD group was obviously higher than that of other groups (P < 0.05 respectively). The successful expression of the Hsp70-HSV2gD fusion protein, which can induce immune responses, laid a solid foundation for its further research.

  19. GPRC5A is a potential oncogene in pancreatic ductal adenocarcinoma cells that is upregulated by gemcitabine with help from HuR.

    PubMed

    Zhou, H; Telonis, A G; Jing, Y; Xia, N L; Biederman, L; Jimbo, M; Blanco, F; Londin, E; Brody, J R; Rigoutsos, I

    2016-07-14

    GPRC5A is an orphan G-protein coupled receptor with an intriguing dual behavior, acting as an oncogene in some cancers and as a tumor suppressor in other cancers. In the pancreatic cancer context, very little is known about GPRC5A. By analyzing messenger RNA (mRNA) expression data from 675 human cancer cell lines and 10 609 samples from The Cancer Genome Atlas (TCGA) we found that GPRC5A's abundance in pancreatic cancer is highest (cell lines) or second highest (TCGA) among all tissues and cancer types. Further analyses of an independent set of 252 pancreatic normal and cancer samples showed GPRC5A mRNA to be more than twofold upregulated in primary tumor samples compared with normal pancreas (P-value<10(-5)), and even further upregulated in pancreatic cancer metastases to various organs (P-value=0.0021). Immunostaining of 208 cores (103 samples) of a tissue microarray showed generally low expression of GPRC5A protein in normal pancreatic ductal cells; on the other hand, in primary and metastatic samples, GPRC5A protein levels were dramatically increased in pancreatic ductal cells. In vitro studies of multiple pancreatic cancer cell lines showed that an increase in GPRC5A protein levels promoted pancreatic cancer cell growth and migration. Unexpectedly, when we treated pancreatic cancer cell lines with gemcitabine (2',2'-difluorodeoxycytidine), we observed an increase in GPRC5A protein abundance. On the other hand, when we knocked down GPRC5A we sensitized pancreatic cancer cells to gemcitabine. Through further experimentation we showed that the monotonic increase in GPRC5A protein levels that we observe for the first 18 h following gemcitabine treatment results from interactions between GPRC5A's mRNA and the RNA-binding protein HuR, which is an established key mediator of gemcitabine's efficacy in cancer cells. As we discovered, the interaction between GPRC5A and HuR is mediated by at least one HuR-binding site in GPRC5A's mRNA. Our findings indicate that GPRC

  20. Cannabinoid receptor activation correlates with the proapoptotic action of the β2-adrenergic agonist (R,R')-4-methoxy-1-naphthylfenoterol in HepG2 hepatocarcinoma cells.

    PubMed

    Paul, Rajib K; Ramamoorthy, Anuradha; Scheers, Jade; Wersto, Robert P; Toll, Lawrence; Jimenez, Lucita; Bernier, Michel; Wainer, Irving W

    2012-10-01

    Inhibition of cell proliferation by fenoterol and fenoterol derivatives in 1321N1 astrocytoma cells is consistent with β(2)-adrenergic receptor (β(2)-AR) stimulation. However, the events that result in fenoterol-mediated control of cell proliferation in other cell types are not clear. Here, we compare the effect of the β(2)-AR agonists (R,R')-fenoterol (Fen) and (R,R')-4-methoxy-1-naphthylfenoterol (MNF) on signaling and cell proliferation in HepG2 hepatocarcinoma cells by using Western blotting and [(3)H]thymidine incorporation assays. Despite the expression of β(2)-AR, no cAMP accumulation was observed when cells were stimulated with isoproterenol or Fen, although the treatment elicited both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt activation. Unexpectedly, isoproterenol and Fen promoted HepG2 cell growth, but MNF reduced proliferation together with increased apoptosis. The mitogenic responses of Fen were attenuated by 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118,551), a β(2)-AR antagonist, whereas those of MNF were unaffected. Because of the coexpression of β(2)-AR and cannabinoid receptors (CBRs) and their impact on HepG2 cell proliferation, these Gα(i)/Gα(o)-linked receptors may be implicated in MNF signaling. Cell treatment with (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a synthetic agonist of CB(1)R and CB(2)R, led to growth inhibition, whereas inverse agonists of these receptors blocked MNF mitogenic responses without affecting Fen signaling. MNF responses were sensitive to pertussis toxin. The β(2)-AR-deficient U87MG cells were refractory to Fen, but responsive to the antiproliferative actions of MNF and WIN 55,212-2. The data indicate that the presence of the naphthyl moiety in MNF results in functional coupling to the CBR pathway, providing one of the first examples of a dually acting β(2)-AR-CBR ligand.

  1. Evaluation of (1R,2R)-1-(5'-methylfur-3'-yl)propane-1,2,3-triol, a sphydrofuran derivative isolated from a Streptomyces species, as an anti-herpesvirus drug.

    PubMed

    Hayashi, K; Kawahara, K; Nakai, C; Sankawa, U; Seto, H; Hayashi, T

    2000-08-01

    (1R,2R)-1-(5'-Methylfur-3'-yl)propane-1,2,3-triol (MFPT), a stable anhydro derivative of sphydrofuran, was obtained from the culture broth of STREPTOMYCES: sp. strain FV60 as an inhibitor of herpes simplex virus type 1 (HSV-1). The compound showed antiherpetic activity with a 50% inhibitory concentration of 1.2 IM in an in vitro assay system. Although the binding of virus to host cells was not inhibited, the penetration of virus into cells was moderately blocked by MFPT. Some of the viruses, once they had penetrated cells, failed to form plaques in the presence of MFPT. When added to the late stages of HSV-1 replication, MFPT also inhibited virus production. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of isotope-labelled HSV-specific proteins revealed that a protein or proteins with reduced molecular weight (about 120 kDa) was clearly detected in cells treated with MFPT. Western blot analysis with antibodies against three HSV-specific glycoproteins (gB, gC and gD) showed a significant difference in gC synthesis between untreated and MFPT-treated cells. Release of progeny viruses was suppressed by MFPT. Syncytium formation by HSV-1 strain HF was inhibited and small plaques with rounded cells were formed in MFPT-treated cell cultures. When wild-type HSV-1 was serially propagated under the selective pressure of MFPT, resistant virus emerged. MFPT-resistant progeny were accompanied by the formation of plaques with rounded cells. These results, taken together, suggest that MFPT might act by limiting the maturation of HSV-specific glycoproteins, particularly of HSV-1 gC.

  2. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development.

    PubMed

    Chen, Shun; Yang, Chao; Zhang, Wei; Mahalingam, Suresh; Wang, Mingshu; Cheng, Anchun

    2018-05-06

    Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.

    PubMed

    Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2017-05-31

    Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.

  4. Allspice and Clove As Source of Triterpene Acids Activating the G Protein-Coupled Bile Acid Receptor TGR5

    PubMed Central

    Ladurner, Angela; Zehl, Martin; Grienke, Ulrike; Hofstadler, Christoph; Faur, Nadina; Pereira, Fátima C.; Berry, David; Dirsch, Verena M.; Rollinger, Judith M.

    2017-01-01

    Worldwide, metabolic diseases such as obesity and type 2 diabetes have reached epidemic proportions. A major regulator of metabolic processes that gained interest in recent years is the bile acid receptor TGR5 (Takeda G protein-coupled receptor 5). This G protein-coupled membrane receptor can be found predominantly in the intestine, where it is mainly responsible for the secretion of the incretins glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). The aim of this study was (i) to identify plant extracts with TGR5-activating potential, (ii) to narrow down their activity to the responsible constituents, and (iii) to assess whether the intestinal microbiota produces transformed metabolites with a different activity profile. Chenodeoxycholic acid (CDCA) served as positive control for both, the applied cell-based luciferase reporter gene assay for TGR5 activity and the biotransformation assay using mouse fecal slurry. The suitability of the workflow was demonstrated by the biotransformation of CDCA to lithocholic acid resulting in a distinct increase in TGR5 activity. Based on a traditional Tibetan formula, 19 plant extracts were selected and investigated for TGR5 activation. Extracts from the commonly used spices Syzygium aromaticum (SaroE, clove), Pimenta dioica (PdioE, allspice), and Kaempferia galanga (KgalE, aromatic ginger) significantly increased TGR5 activity. After biotransformation, only KgalE showed significant differences in its metabolite profile, which, however, did not alter its TGR5 activity compared to non-transformed KgalE. UHPLC-HRMS (high-resolution mass spectrometry) analysis revealed triterpene acids (TTAs) as the main constituents of the extracts SaroE and PdioE. Identification and quantification of TTAs in these two extracts as well as comparison of their TGR5 activity with reconstituted TTA mixtures allowed the attribution of the TGR5 activity to TTAs. EC50s were determined for the main TTAs, i.e., oleanolic acid (2.2 ± 1.6 μM), ursolic

  5. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    PubMed

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  6. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  7. Differential Effects of the G118R, H51Y, and E138K Resistance Substitutions in Different Subtypes of HIV Integrase

    PubMed Central

    Quashie, Peter K.; Oliviera, Maureen; Veres, Tamar; Osman, Nathan; Han, Ying-Shan; Hassounah, Said; Lie, Yolanda; Huang, Wei; Mesplède, Thibault

    2014-01-01

    ABSTRACT Dolutegravir (DTG) is the latest antiretroviral (ARV) approved for the treatment of human immunodeficiency virus (HIV) infection. The G118R substitution, previously identified with MK-2048 and raltegravir, may represent the initial substitution in a dolutegravir resistance pathway. We have found that subtype C integrase proteins have a low enzymatic cost associated with the G118R substitution, mostly at the strand transfer step of integration, compared to either subtype B or recombinant CRF02_AG proteins. Subtype B and circulating recombinant form AG (CRF02_AG) clonal viruses encoding G118R-bearing integrases were severely restricted in their viral replication capacity, and G118R/E138K-bearing viruses had various levels of resistance to dolutegravir, raltegravir, and elvitegravir. In cell-free experiments, the impacts of the H51Y and E138K substitutions on resistance and enzyme efficiency, when present with G118R, were highly dependent on viral subtype. Sequence alignment and homology modeling showed that the subtype-specific effects of these mutations were likely due to differential amino acid residue networks in the different integrase proteins, caused by polymorphic residues, which significantly affect native protein activity, structure, or function and are important for drug-mediated inhibition of enzyme activity. This preemptive study will aid in the interpretation of resistance patterns in dolutegravir-treated patients. IMPORTANCE Recognized drug resistance mutations have never been reported for naive patients treated with dolutegravir. Additionally, in integrase inhibitor-experienced patients, only R263K and other previously known integrase resistance substitutions have been reported. Here we suggest that alternate resistance pathways may develop in non-B HIV-1 subtypes and explain how “minor” polymorphisms and substitutions in HIV integrase that are associated with these subtypes can influence resistance against dolutegravir. This work also

  8. Differential effects of the G118R, H51Y, and E138K resistance substitutions in different subtypes of HIV integrase.

    PubMed

    Quashie, Peter K; Oliviera, Maureen; Veres, Tamar; Osman, Nathan; Han, Ying-Shan; Hassounah, Said; Lie, Yolanda; Huang, Wei; Mesplède, Thibault; Wainberg, Mark A

    2015-03-01

    Dolutegravir (DTG) is the latest antiretroviral (ARV) approved for the treatment of human immunodeficiency virus (HIV) infection. The G118R substitution, previously identified with MK-2048 and raltegravir, may represent the initial substitution in a dolutegravir resistance pathway. We have found that subtype C integrase proteins have a low enzymatic cost associated with the G118R substitution, mostly at the strand transfer step of integration, compared to either subtype B or recombinant CRF02_AG proteins. Subtype B and circulating recombinant form AG (CRF02_AG) clonal viruses encoding G118R-bearing integrases were severely restricted in their viral replication capacity, and G118R/E138K-bearing viruses had various levels of resistance to dolutegravir, raltegravir, and elvitegravir. In cell-free experiments, the impacts of the H51Y and E138K substitutions on resistance and enzyme efficiency, when present with G118R, were highly dependent on viral subtype. Sequence alignment and homology modeling showed that the subtype-specific effects of these mutations were likely due to differential amino acid residue networks in the different integrase proteins, caused by polymorphic residues, which significantly affect native protein activity, structure, or function and are important for drug-mediated inhibition of enzyme activity. This preemptive study will aid in the interpretation of resistance patterns in dolutegravir-treated patients. Recognized drug resistance mutations have never been reported for naive patients treated with dolutegravir. Additionally, in integrase inhibitor-experienced patients, only R263K and other previously known integrase resistance substitutions have been reported. Here we suggest that alternate resistance pathways may develop in non-B HIV-1 subtypes and explain how "minor" polymorphisms and substitutions in HIV integrase that are associated with these subtypes can influence resistance against dolutegravir. This work also highlights the importance

  9. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms.

    PubMed

    López-Ochoa, Jaqueline; Montes-García, J Fernando; Vázquez, Candelario; Sánchez-Alonso, Patricia; Pérez-Márquez, Victor M; Blackall, Patrick J; Vaca, Sergio; Negrete-Abascal, Erasmo

    2017-09-01

    Gallibacterium, which is a bacterial pathogen in chickens, can form biofilms. Amyloid proteins present in biofilms bind Congo red dye. The aim of this study was to characterize the cell-surface amyloid-like protein expressed in biofilms formed by Gallibacterium strains and determine the relationship between this protein and curli, which is an amyloid protein that is commonly expressed by members of the Enterobacteriaceae family. The presence of amyloid-like proteins in outer membrane protein samples from three strains of G. anatis and one strain of Gallibacterium genomospecies 2 was evaluated. A protein identified as elongation factor-Tu (EF-Tu) by mass spectrometric analysis and in silico analysis was obtained from the G. anatis strain F149 T . This protein bound Congo red dye, cross-reacted with anti-curli polyclonal serum, exhibited polymerizing properties and was present in biofilms. This protein also reacted with pooled serum from chickens that were experimentally infected with G. anatis, indicating the in vivo immunogenicity of this protein. The recombinant EF-Tu purified protein, which was prepared from G. anatis 12656-12, polymerizes under in vitro conditions, forms filaments and interacts with fibronectin and fibrinogen, all of which suggest that this protein functions as an adhesin. In summary, EF-Tu from G. anatis presents amyloid characteristics, is present in biofilms and could be relevant for the pathogenesis of G. anatis.

  10. Role of G protein-coupled receptor kinases in the homologous desensitization of the human and mouse melanocortin 1 receptors.

    PubMed

    Sánchez-Más, Jesús; Guillo, Lidia A; Zanna, Paola; Jiménez-Cervantes, Celia; García-Borrón, José C

    2005-04-01

    The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.

  11. Amino Acid Requirements for MDA5 and LGP2 Recognition by Paramyxovirus V Proteins: a Single Arginine Distinguishes MDA5 from RIG-I

    PubMed Central

    Rodriguez, Kenny R.

    2013-01-01

    Paramyxovirus V proteins bind to MDA5 (melanoma differentiation-associated gene 5) and LGP2 (laboratory of genetics and physiology gene 2) but not RIG-I (retinoic acid-inducible gene I). The results demonstrate MDA5 R806 is essential for inhibition by diverse V proteins. Complementary substitution for the analogous RIG-I L714 confers V protein recognition. The analogous LGP2 R455 is required for recognition by measles V protein, but not other V proteins. These findings indicate that paramyxoviruses use a single amino acid to distinguish MDA5 from RIG-I and have evolved distinct contact sites for LGP2 interference. PMID:23269789

  12. Studying the unfolding process of protein G and protein L under physical property space

    PubMed Central

    Zhao, Liling; Wang, Jihua; Dou, Xianghua; Cao, Zanxia

    2009-01-01

    Background The studies on protein folding/unfolding indicate that the native state topology is an important determinant of protein folding mechanism. The folding/unfolding behaviors of proteins which have similar topologies have been studied under Cartesian space and the results indicate that some proteins share the similar folding/unfolding characters. Results We construct physical property space with twelve different physical properties. By studying the unfolding process of the protein G and protein L under the property space, we find that the two proteins have the similar unfolding pathways that can be divided into three types and the one which with the umbrella-shape represents the preferred pathway. Moreover, the unfolding simulation time of the two proteins is different and protein L unfolding faster than protein G. Additionally, the distributing area of unfolded state ensemble of protein L is larger than that of protein G. Conclusion Under the physical property space, the protein G and protein L have the similar folding/unfolding behaviors, which agree with the previous results obtained from the studies under Cartesian coordinate space. At the same time, some different unfolding properties can be detected easily, which can not be analyzed under Cartesian coordinate space. PMID:19208146

  13. Mild Lipid Stress Induces Profound Loss of MC4R Protein Abundance and Function

    PubMed Central

    Cragle, Faith K.

    2014-01-01

    Food intake is controlled at the central level by the melanocortin pathway in which the agonist α-MSH binds to melanocortin 4 receptor (MC4R), a Gs-coupled G protein-coupled receptor expressed by neurons in the paraventricular nuclei of the hypothalamus, which signals to reduce appetite. Consumption of a high-fat diet induces hypothalamic accumulation of palmitate, endoplasmic reticulum (ER) stress, apoptosis, and unresponsiveness to prolonged treatment with MC4R agonists. Here we have modeled effects of lipid stress on MC4R by using mHypoE-42 immortalized hypothalamic neurons expressing endogenous MC4R and Neuro2A cells expressing a tagged MC4R reporter, HA-MC4R-GFP. In the hypothalamic neurons, exposure to elevated palmitate in the physiological range induced splicing of X-box binding protein 1, but it did not activate C/EBP-homologous protein or induce increased levels of cleaved caspase-3, indicating mild ER stress. Such mild ER stress coexisted with a minimal loss of MC4R mRNA and yet a profound loss of cAMP signaling in response to incubation with the agonist. These findings were mirrored in the Neuro2A cells expressing HA-MC4R-GFP, in which protein abundance of the tagged receptor was decreased, whereas the activity per receptor number was maintained. The loss of cAMP signaling in response to α-MSH by elevated palmitate was corrected by treatment with a chemical chaperone, 4-phenylbutyrate in both mHypoE-42 hypothalamic neurons and in Neuro2A cells in which protein abundance of HA-MC4R-GFP was increased. The data indicate that posttranscriptional decrease of MC4R protein contribute to lower the response to α-MSH in hypothalamic neurons exposed to even a mild level of lipid stress and that a chemical chaperone corrects such a defect. PMID:24506538

  14. Mosquito Protein Kinase G Phosphorylates Flavivirus NS5 and Alters Flight Behavior in Aedes aegypti and Anopheles gambiae

    PubMed Central

    Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.

    2013-01-01

    Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

  15. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Xu, H. Eric

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineeredmore » as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.« less

  16. Differential activation of G-proteins by mu-opioid receptor agonists.

    PubMed

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-03-01

    We investigated the ability of the activated mu-opioid receptor (MOR) to differentiate between myristoylated G(alphai1) and G(alphaoA) type G(alpha) proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each G(alpha) protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The G(alpha) subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified G(alpha) protein by CB(1) cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[(35)S]GTP(gamma)S exchange was then compared for G(alphai1) and G(alphaoA). Activation of MOR by DAMGO produced a high-affinity saturable interaction for G(alphaoA) (K(m)=20+/-1 nM) but a low-affinity interaction with G(alphai1) (K(m)=116+/-12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal G(alpha) activation among the agonists evaluated. Endomorphins 1 and 2, methadone and beta-endorphin activated both G(alpha) to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between G(alphai1) and G(alphaoA). Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two G(alpha). Differences in maximal activity and potency, for G(alphai1) versus G(alphaoA), are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects.

  17. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, T M; Meiler, Jens; Hamm, Heidi E

    2016-09-09

    G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. G protein signaling in plants: minus times minus equals plus.

    PubMed

    Stateczny, Dave; Oppenheimer, Jara; Bommert, Peter

    2016-12-01

    Heterotrimeric G proteins are key regulators in the transduction of extracellular signals both in animals and plants. In plants, heterotrimeric G protein signaling plays essential roles in development and in response to biotic and abiotic stress. However, over the last decade it has become clear that plants have unique mechanisms of G protein signaling. Although plants share most of the core components of heterotrimeric G proteins, some of them exhibit unusual properties compared to their animal counterparts. In addition, plants do not share functional GPCRs. Therefore the well-established paradigm of the animal G protein signaling cycle is not applicable in plants. In this review, we summarize recent insights into these unique mechanisms of G protein signaling in plants with special focus on the evident potential of G protein signaling as a target to modify developmental and physiological parameters important for yield increase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial–mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dongjing; Wu, Jilin, E-mail: 6296082@qq.com; Liu, Meizhou

    Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulatedmore » miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the

  20. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats.

    PubMed

    An, Xiaopeng; Hou, Jinxing; Gao, Teyang; Lei, Yingnan; Li, Guang; Song, Yuxuan; Wang, Jiangang; Cao, Binyun

    2015-06-01

    Single-nucleotide polymorphisms (SNPs) located at microRNA-binding sites (miR-SNPs) can affect the expression of genes. This study aimed to identify the miR-SNPs associated with litter size. Guanzhong (n = 321) and Boer (n = 191) goat breeds were used to detect SNPs in the caprine prolactin receptor (PRLR) gene by DNA sequencing, primer-introduced restriction analysis-polymerase chain reaction, and polymerase chain reaction-restriction fragment length polymorphism. Three novel SNPs (g.151435C>T, g.151454A>G, and g.173057T>C) were identified in the caprine PRLR gene. Statistical results indicated that the g.151435C>T and g.173057T>C SNPs were significantly associated with litter size in Guanzhong and Boer goat breeds. Further analysis revealed that combinative genotype C6 (TTAACC) was better than the others for litter size in both goat breeds. Furthermore, the PRLR g.173057T>C polymorphism was predicted to regulate the binding activity of bta-miR-302a. Luciferase reporter gene assay confirmed that 173057C to T substitution disrupted the binding site for bta-miR-302a, resulting in the reduced levels of luciferase. Taken together, these findings suggested that bta-miR-302a can influence the expression of PRLR protein by binding with 3'untranslated region, resulting in that the g.173057T>C SNP had significant effects on litter size. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Confirmation of translatability and functionality certifies the dual endothelin1/VEGFsp receptor (DEspR) protein.

    PubMed

    Herrera, Victoria L M; Steffen, Martin; Moran, Ann Marie; Tan, Glaiza A; Pasion, Khristine A; Rivera, Keith; Pappin, Darryl J; Ruiz-Opazo, Nelson

    2016-06-14

    In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein's existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions. To dissect the nucleotide sequence discrepancy, we performed Maxam-Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR's existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects. Maxam-Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5 kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass

  2. Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells.

    PubMed

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-11-13

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer's disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.

  3. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2.

    PubMed

    Burczyk, Martina; Burkhalter, Martin D; Blätte, Tamara; Matysik, Sabrina; Caron, Marc G; Barak, Lawrence S; Philipp, Melanie

    2015-01-27

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m(93) (mil(m93)), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling.

  4. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  5. Tyrosine phosphorylation switching of a G protein.

    PubMed

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS.

    PubMed

    Han, Ling; Kitova, Elena N; Klassen, John S

    2016-11-01

    This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB 5 ) and Shiga toxin type 1 B (Stx1B 5 ) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB 5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B 5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB 5 or Stx1B 5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB 5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB 5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB 5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B 5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB 5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution. Graphical Abstract .

  7. Intermediates and the folding of proteins L and G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Scott; Head-Gordon, Teresa

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contactsmore » involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.« less

  8. Intermediates and the folding of proteins L and G

    PubMed Central

    Brown, Scott; Head-Gordon, Teresa

    2004-01-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted β-1 and β-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third β-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment. PMID:15044729

  9. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5

    PubMed Central

    Liu, Fulu; Kunter, Ghada; Krem, Maxwell M.; Eades, William C.; Cain, Jennifer A.; Tomasson, Michael H.; Hennighausen, Lothar; Link, Daniel C.

    2008-01-01

    A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF–induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r. PMID:18292815

  10. Atorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p.

    PubMed

    Zuo, YaBei; Wang, YuZhao; Hu, HaiJuan; Cui, Wei

    2016-01-01

    This study aimed to evaluate the protective effects of atorvastatin against myocardial ischemia/reperfusion (I/R) injury in cardiomyocytes and its possible underlying mechanism. Direct cytotoxic effect of OGD/R on cardiomyocytes with and without atorvastatin pretreatment was evaluated. Effects of atorvastatin on expression of GSK-3β and miR-199a-5p were determined using RT-PCR and Western blot. In addition, GSK-3β expression with miR-199a-5p upregulation and downregulation was detected using RT-PCR, Western blot, and immunohistochemistry. Pretreatment with atorvastatin significantly improved the recovery of cells viability from OGD/R (p<0.05). In addition, the atorvastatin pretreatment significantly increased GSK-3β expression both in mRNA level and protein level and decreased miR-199a-5p expression in mRNA level (p<0.05). Upregulation and downregulation of miR-199a-5p respectively decreased and increased GSK-3β expression both in mRNA level and protein level. These results suggested that atorvastatin provides the cardioprotective effects against I/R injury via increasing GSK-3β through inhibition of miR-199a-5p. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis

    PubMed Central

    Woo, Hye Ryun; Dittmer, Travis A.; Richards, Eric J.

    2008-01-01

    Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing. PMID:18704160

  12. Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts.

    PubMed

    Miguel, Verónica; Busnadiego, Oscar; Fierro-Fernández, Marta; Lamas, Santiago

    2016-01-01

    Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression affecting a wide range of pathophysiological events including fibrogenesis. MicroRNA-9-5p (miR-9-5p) has been shown to exert a protective role in lung and peritoneal fibrosis. This study aimed to evaluate the role of miR-9-5p in skin fibrosis. miR-9-5p is up-regulated in TGF-β1-treated human dermal fibroblasts (HDFs). In silico identification of miR-9-5p targets spotted the type II TGF-β receptor (TGFBR2) as a potential TGF-β signaling-related effector for this miRNA. Consistently, over-expression of miR-9-5p in HDFs down-regulated TGFBR2 at both the mRNA and protein levels and reduced the phosphorylation of Smad2 and the translocation of Smad2/3 to the nucleus. In keeping, over-expression of miR-9-5p significantly delayed TGF-β1-dependent transformation of dermal fibroblasts, decreasing the expression of ECM protein collagen, type I, alpha 1 (Col1α1), and fibronectin (FN), the amount of secreted collagen proteins, and the expression of the archetypal myofibroblast marker alpha-smooth muscle actin (α-SMA). By contrast, specific inhibition of miR-9-5p resulted in enhanced presence of fibrosis markers. The expression of miR-9-5p was also detected in the skin and plasma in the mouse model of bleomycin-induced dermal fibrosis. Using lentiviral constructs, we demonstrated that miR-9-5p over-expression was also capable of deterring fibrogenesis in this same model. miR-9-5p significantly prevents fibrogenesis in skin fibrosis. This is mediated by an abrogation of TGF-β-mediated signaling through the down-regulation of TGFBR2 expression in HDFs

  13. CRIP1a inhibits endocytosis of G-protein coupled receptors activated by endocannabinoids and glutamate by a common molecular mechanism.

    PubMed

    Mascia, Fabrizio; Klotz, Lisa; Lerch, Judith; Ahmed, Mostafa H; Zhang, Yan; Enz, Ralf

    2017-05-01

    The excitability of the central nervous system depends largely on the surface density of neurotransmitter receptors. The endocannabinoid receptor 1 (CB 1 R) and the metabotropic glutamate receptor mGlu 8 R are expressed pre-synaptically where they reduce glutamate release into the synaptic cleft. Recently, the CB 1 R interacting protein cannabinoid receptor interacting protein 1a (CRIP1a) was identified and characterized to regulate CB 1 R activity in neurons. However, underlying molecular mechanisms are largely unknown. Here, we identified a common mechanism used by CRIP1a to regulate the cell surface density of two different types of G-protein coupled receptors, CB 1 R and mGlu 8a R. Five amino acids within the CB 1 R C-terminus were required and sufficient to reduce constitutive CB 1 R endocytosis by about 72% in the presence of CRIP1a. Interestingly, a similar sequence is present in mGlu 8a R and consistently, endocytosis of mGlu 8a R depended on CRIP1a, as well. Docking analysis and molecular dynamics simulations identified a conserved serine in CB 1 R (S468) and mGlu 8a R (S894) that forms a hydrogen bond with the peptide backbone of CRIP1a at position R82. In contrast to mGlu 8a R, the closely related mGlu 8b R splice-variant carries a lysine (K894) at this position, and indeed, mGlu 8b R endocytosis was not affected by CRIP1a. Chimeric constructs between CB 1 R, mGlu 8a R, and mGlu 8b R underline the role of the identified five CRIP1a sensitive amino acids. In summary, we suggest that CRIP1a negatively regulates endocytosis of two different G-protein coupled receptor types, CB 1 R and mGlu 8a R. © 2017 International Society for Neurochemistry.

  14. Site-directed mutagenesis of the Arabidopsis heterotrimeric G protein β subunit suggests divergent mechanisms of effector activation between plant and animal G proteins.

    PubMed

    Chakravorty, David; Trusov, Yuri; Botella, José Ramón

    2012-03-01

    Heterotrimeric G proteins are integral components of signal transduction in humans and other mammals and have been therefore extensively studied. However, while they are known to mediate many processes, much less is currently known about the effector pathways and molecular mechanisms used by these proteins to regulate effectors in plants. We designed a complementation strategy to study G protein signaling in Arabidopsis thaliana, particularly the mechanism of action of AGB1, the sole identified β subunit. We used biochemical and effector regulation data from human G protein studies to identify four potentially important residues for site-directed mutagenesis (T65, M111, D250 and W361 of AGB1). Each residue was individually mutated and the resulting mutated protein introduced in the agb1-2 mutant background under the control of the native AGB1 promoter. Interestingly, even though these mutations have been shown to have profound effects on effector signaling in humans, all the mutated subunits were able to restore thirteen of the fifteen Gβ-deficient phenotypes characterized in this study. Only one mutated protein, T65A was unable to complement the hypersensitivity to mannitol during germination observed in agb1 mutants; while only D250A failed to restore lateral root numbers in the agb1 mutant to wild-type levels. Our results suggest that the mechanisms used in mammalian G protein signaling are not well conserved in plant G protein signaling, and that either the effectors used by plant G proteins, or the mechanisms used to activate them, are at least partially divergent from the well-studied mammalian G proteins.

  15. Specific IgG4 antibodies to cow's milk proteins in pediatric patients with eosinophilic esophagitis.

    PubMed

    Schuyler, Alexander J; Wilson, Jeffrey M; Tripathi, Anubha; Commins, Scott P; Ogbogu, Princess U; Kruzsewski, Patrice G; Barnes, Barrett H; McGowan, Emily C; Workman, Lisa J; Lidholm, Jonas; Rifas-Shiman, Sheryl L; Oken, Emily; Gold, Diane R; Platts-Mills, Thomas A E; Erwin, Elizabeth A

    2018-04-18

    Allergen-specific IgG 4 (sIgG 4 ) antibodies are often associated with tolerance, but sIgG 4 antibodies to causally relevant foods have been reported recently in adults with eosinophilic esophagitis (EoE). Prevalence and levels of food sIgG 4 are not well established in the general pediatric population. We sought to investigate serum food sIgG 4 with component diagnostics in children with EoE and children from an unselected birth cohort and to explore the effects of sex, age, and milk consumption on sIgG 4 levels. Sera from 71 pediatric patients with EoE and 210 early adolescent children from an unselected birth cohort (Project Viva) were assayed for sIgG 4 and specific IgE (sIgE) to major cow's milk (CM) proteins (α-lactalbumin, β-lactoglobulin, and caseins) and to wheat, soy, egg, and peanut proteins. In the EoE cohort high-titer sIgG 4 (≥10 μg/mL) to CM proteins was more common than in control sera and achieved odds ratios for EoE ranging from 5.5 to 8.4. sIgE levels to CM proteins were mostly 4 IU/mL or less in patients with EoE, such that sIgG 4 /sIgE ratios were often 10,000 or greater. When adjusted for age and milk consumption, high-titer sIgG 4 to CM proteins was strongly associated with EoE, with an odds ratio of greater than 20 to all 3 CM proteins in boys. sIgG 4 to CM proteins are common and high titer in children with EoE. Although it is not clear that this response is pathogenic, sIgG 4 levels imply that these antibodies are an important feature of the local immune response that gives rise to EoE. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. The mRNA-stabilizing factor HuR protein is targeted by β-TrCP protein for degradation in response to glycolysis inhibition.

    PubMed

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K; Chen, Ching-Shih

    2012-12-21

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, (296)EEAMAIAS(304), in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy.

  17. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  18. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development.

    PubMed

    Pop, Andreea S; Gomez-Mancilla, Baltazar; Neri, Giovanni; Willemsen, Rob; Gasparini, Fabrizio

    2014-03-01

    Fragile X syndrome (FXS) is considered the leading inherited cause of intellectual disability and autism. In FXS, the fragile X mental retardation 1 (FMR1) gene is silenced and the fragile X mental retardation protein (FMRP) is not expressed, resulting in the characteristic features of the syndrome. Despite recent advances in understanding the pathophysiology of FXS, there is still no cure for this condition; current treatment is symptomatic. Preclinical research is essential in the development of potential therapeutic agents. This review provides an overview of the preclinical evidence supporting metabotropic glutamate receptor 5 (mGluR5) antagonists as therapeutic agents for FXS. According to the mGluR theory of FXS, the absence of FMRP leads to enhanced glutamatergic signaling via mGluR5, which leads to increased protein synthesis and defects in synaptic plasticity including enhanced long-term depression. As such, efforts to develop agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. Animal models, particularly the Fmr1 knockout mouse model, have become invaluable in exploring therapeutic approaches on an electrophysiological, behavioral, biochemical, and neuroanatomical level. Two direct approaches are currently being investigated for FXS treatment: reactivating the FMR1 gene and compensating for the lack of FMRP. The latter approach has yielded promising results, with mGluR5 antagonists showing efficacy in clinical trials. Targeting mGluR5 is a valid approach for the development of therapeutic agents that target the underlying pathophysiology of FXS. Several compounds are currently in development, with encouraging results.

  19. Differences between reversible (self-association) and irreversible aggregation of rHuG-CSF in carbohydrate and polyol formulations.

    PubMed

    Pavišić, Renata; Dodig, Ivana; Horvatić, Anita; Mijić, Lucija; Sedić, Mirela; Linarić, Maša Rajić; Sovulj, Ita Gruić; Preočanin, Tajana; Krajačić, Mirjana Bukvić; Cindrić, Mario

    2010-11-01

    Severe immunogenic and other debilitating human disorders potentially induced by protein aggregates have brought this phenomenon into the focus of biopharmaceutical science over the past decade. Depending on its driving forces, the process induced in the model protein rHuG-CSF may be either reversible or irreversible, resulting in the assembly of self-associated protein species or irreversible aggregates of various final morphologies. The aim of our work was to investigate the correlation between irreversible and reversible aggregation and the protective effect of non-specific formulation stabilisers, selected from the group of carbohydrates and polyols including trehalose, xylitol, cellobiitol, turanose, cellobiose, leucrose, lactitol, lyxose, and sorbitol, against both irreversible protein aggregation and reversible self-association processes of the rHuG-CSF. The formation of irreversible aggregates was thermally induced and evaluated using differential scanning calorimetry and size-exclusion chromatography. As opposed to the irreversible aggregation process, the process of self-association was induced by the agitation experiment by directly augmenting the protein solution contact surfaces. Absence of statistical connectivity between different stabilisers' ability to inhibit self-association or aggregation reactions indicates that these are two distinct physicochemical processes with different formulation stabilizing outcomes. Reaction mechanism of thermally induced aggregation observed in the study was in line with published literature data, while the reaction mechanism for self-association process was postulated. The postulate has been verified experimentally by isothermal calorimetry and agitation set of experiments conducted after size-exclusion chromatography and asymmetrical flow field-flow fractionation separation of monomeric, dimeric, trimeric, oligomeric, and large self-associated forms detected on multi-angle light scattering, fluorescence, UV, and

  20. Identification of novel proteins associated with yeast snR30 small nucleolar RNA

    PubMed Central

    Lemay, Vincent; Hossain, Ahmed; Osheim, Yvonne N.; Beyer, Ann L.; Dragon, François

    2011-01-01

    H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly. PMID:21893585

  1. Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors.

    PubMed

    Takahashi, Hirotaka; Takahashi, Chikako; Moreland, Nicole J; Chang, Young-Tae; Sawasaki, Tatsuya; Ryo, Akihide; Vasudevan, Subhash G; Suzuki, Youichi; Yamamoto, Naoki

    2012-12-01

    Whereas the dengue virus (DENV) non-structural (NS) proteins NS3 and NS5 have been shown to interact in vitro and in vivo, the biological relevance of this interaction in viral replication has not been fully clarified. Here, we first applied a simple and robust in vitro assay based on AlphaScreen technology in combination with the wheat-germ cell-free protein production system to detect the DENV-2 NS3-NS5 interaction in a 384-well plate. The cell-free-synthesized NS3 and NS5 recombinant proteins were soluble and in possession of their respective enzymatic activities in vitro. In addition, AlphaScreen assays using the recombinant proteins detected a specific interaction between NS3 and NS5 with a robust Z' factor of 0.71. By employing the AlphaScreen assay, we found that both the N-terminal protease and C-terminal helicase domains of NS3 are required for its association with NS5. Furthermore, a competition assay revealed that the binding of full-length NS3 to NS5 was significantly inhibited by the addition of an excess of NS3 protease or helicase domains. Our results demonstrate that the AlphaScreen assay can be used to discover novel antiviral agents targeting the interactions between DENV NS proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    PubMed

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. G protein signaling in the parasite Entamoeba histolytica

    PubMed Central

    Bosch, Dustin E; Siderovski, David P

    2013-01-01

    The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling–Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation. PMID:23519208

  4. Azithromycin 1.5g Over 5 Days Compared to 1g Single Dose in Urethral Mycoplasma genitalium: Impact on Treatment Outcome and Resistance.

    PubMed

    Read, Tim R H; Fairley, Christopher K; Tabrizi, Sepehr N; Bissessor, Melanie; Vodstrcil, Lenka; Chow, Eric P F; Grant, Mieken; Danielewski, Jennifer; Garland, Suzanne M; Hocking, Jane S; Chen, Marcus Y; Bradshaw, Catriona S

    2017-02-01

    We evaluated the impact of extended azithromycin (1.5g over 5 days) on selection of macrolide resistance and microbiological cure in men with Mycoplasma genitalium urethritis during 2013-2015 and compared this to cases treated with azithromycin 1g in 2012-2013. Microbiological cure was determined for men with M. genitalium urethritis treated with azithromycin 1.5g using quantitative polymerase chain reaction specific for M. genitalium DNA on samples 14-100 days post-treatment. Pre- and post-treatment macrolide resistance mutations were detected by sequencing the 23 S gene. There was no difference in proportions with microbiological cure between azithromycin 1.5g and 1g: 62/106 (58%; 95% confidence interval [CI], 49%, 68%) and 56/107 (52%; 95%CI 42-62%), P = .34, respectively. Also, there was no difference in the proportion of wild-type 23 S rRNA (presumed macrolide sensitive) infections cured after 1.5g and azithromycin 1g: 28/34 (82%; 95%CI 65-92%) and 49/60 (82%; 95%CI 70-90%), P=1.0, respectively. There was no difference between 1.5g and 1g in the proportions of wild-type infections with post-treatment resistance mutations: 4/34 (12%; 95%CI 3-27%) and 11/60 (18%; 95%CI 10-30%), respectively, P = .40. Pre-treatment resistance was present in 51/98 (52%; 95%CI 42-62%) cases in 2013-2015 compared to 47/107 (44%; 95%CI 34-54%) in 2012-2013, P = .25. Extended azithromycin 1.5g was no more effective than a single 1g dose at achieving cure of M. genitalium urethritis and importantly did not reduce the selection of macrolide resistance. Nonmacrolide and new approaches for the treatment of M. genitalium urethritis are required. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. An Orphan G Protein-Coupled Receptor, GPR1, Acts as a Coreceptor To Allow Replication of Human Immunodeficiency Virus Types 1 and 2 in Brain-Derived Cells

    PubMed Central

    Shimizu, Nobuaki; Soda, Yasushi; Kanbe, Katsuaki; Liu, Hui-Yu; Jinno, Atsushi; Kitamura, Toshio; Hoshino, Hiroo

    1999-01-01

    Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro. PMID:10233994

  6. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R.

    PubMed

    Li, Ge; Park, Hyeon U; Liang, Dong; Zhao, Richard Y

    2010-07-07

    Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  7. Identification of G-Protein-Coupled Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells as Novel Therapeutic Targets

    DTIC Science & Technology

    2015-10-01

    Michkov AV, Lynch RM, Overland AC, Corriden R. G Protein-Coupled Receptor (GPCR) Expression in Native Cells: "Novel" endoGPCRs as Physiologic...M. Chinn, Alexander V. Michkov, Rebecca M. Lynch , Aaron C. Overland, and Ross Corriden Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A...Sriram, Chinn, Michkov, Lynch , Overland, Corriden. References Ahmad R, Wojciech S, Jockers R (2014) Hunting for the function of orphan GPCRs - beyond

  8. A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

    PubMed

    Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen

    2016-04-08

    Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Evaluation of a competitive enzyme-linked immunosorbent assay for measurements of soluble HLA-G protein.

    PubMed

    Rasmussen, M; Dahl, M; Buus, S; Djurisic, S; Ohlsson, J; Hviid, T V F

    2014-08-01

    The human leukocyte antigen (HLA) class Ib molecule, HLA-G, has gained increased attention because of its assumed important role in immune regulation. The HLA-G protein exists in several soluble isoforms. Most important are the actively secreted HLA-G5 full-length isoform generated by alternative splicing retaining intron 4 with a premature stop codon, and the cleavage of full-length membrane-bound HLA-G1 from the cell surface, so-called soluble HLA-G1 (sHLA-G1). A specific and sensitive immunoassay for measurements of soluble HLA-G is mandatory for conceivable routine testing and research projects. We report a novel method, a competitive immunoassay, for measuring HLA-G5/sHLA-G1 in biological fluids. The sHLA-G immunoassay is based upon a competitive enzyme-linked immunosorbent assay (ELISA) principle. It includes a recombinant sHLA-G1 protein in complex with β2-microglobulin and a peptide as a standard, biotinylated recombinant sHLA-G1 as an indicator, and the MEM-G/9 anti-HLA-G monoclonal antibody (mAb) as the capture antibody. The specificity and sensitivity of the assay were evaluated. Testing with different recombinant HLA class I proteins and different anti-HLA class I mAbs showed that the sHLA-G immunoassay was highly specific. Optimal combinations of competitor sHLA-G1 and capture mAb concentrations were determined. Two versions of the assay were tested. One with a relatively wide dynamic range from 3.1 to 100.0 ng/ml, and another more sensitive version ranging from 1.6 to 12.5 ng/ml. An intra-assay coefficient of variation (CV) of 15.5% at 88 ng/ml and an inter-assay CV of 23.1% at 39 ng/ml were determined. An assay based on the competitive sHLA-G ELISA may be important for measurements of sHLA-G proteins in several conditions: assisted reproduction, organ transplantation, cancer, and certain pregnancy complications, both in research studies and possibly in the future also for clinical routine use. © 2014 John Wiley & Sons A/S. Published by John Wiley

  10. A physiologically required G protein-coupled receptor (GPCR)-regulator of G protein signaling (RGS) interaction that compartmentalizes RGS activity.

    PubMed

    Croft, Wayne; Hill, Claire; McCann, Eilish; Bond, Michael; Esparza-Franco, Manuel; Bennett, Jeannette; Rand, David; Davey, John; Ladds, Graham

    2013-09-20

    G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.

  11. miR-361-5p inhibits hepatocellular carcinoma cell proliferation and invasion by targeting VEGFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Wenxian; Li, Yuanguo; Xu, Keqing

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we found that miR-361-5p is down-regulated in 135 patients with HCV-related hepatocellular carcinoma (HCC). Moreover, the expressions of miR-361-5p were highly correlated with VEGFA in these HCC patients. Further, CCK-8 proliferation assay indicated that miR-361-5p mimics inhibited the cell proliferation of HepG2 and SNU-398 HCC cells. Transwell assay showed that miR-361-5p mimics inhibited the invasion and migration of HepG2 and SNU-398 HCC cells. Luciferase assays revealed that miR-361-5p directly bound to the 3'untranslated region of VEGFA, and westernmore » blotting showed that miR-361-5p inhibited the expression of VEGFA. Generally, this study indicated that miR-361-5p is down-regulated in HCC and inhibits proliferation and invasion of HCC cell lines via VEGFA. In future, miR-361-5p will be a potential therapeutic agent for HCC. - Highlights: • miR-361-5p is down-regulated in HCV-related HCC. • miR-361-5p mimics inhibit the proliferation and invasion of HCC cells. • miR-361-5p inhibitors promote the proliferation and invasion of HCC cells. • miR-361-5p targets 3′ UTR of VEGFA in HCC cells. • miR-361-5p inhibits VEGFA in HCC cells.« less

  12. Protein Transfer Into Human Cells by VSV-G-induced Nanovesicles

    PubMed Central

    Mangeot, Philippe-Emmanuel; Dollet, Sandra; Girard, Mathilde; Ciancia, Claire; Joly, Stéphane; Peschanski, Marc; Lotteau, Vincent

    2011-01-01

    Identification of new techniques to express proteins into mammal cells is of particular interest for both research and medical purposes. The present study describes the use of engineered vesicles to deliver exogenous proteins into human cells. We show that overexpression of the spike glycoprotein of the vesicular stomatitis virus (VSV-G) in human cells induces the release of fusogenic vesicles named gesicles. Biochemical and functional studies revealed that gesicles incorporated proteins from producer cells and could deliver them to recipient cells. This protein-transduction method allows the direct transport of cytoplasmic, nuclear or surface proteins in target cells. This was demonstrated by showing that the TetR transactivator and the receptor for the murine leukemia virus (MLV) envelope [murine cationic amino acid transporter-1 (mCAT-1)] were efficiently delivered by gesicles in various cell types. We further shows that gesicle-mediated transfer of mCAT-1 confers to human fibroblasts a robust permissiveness to ecotropic vectors, allowing the generation of human-induced pluripotent stem cells in level 2 biosafety facilities. This highlights the great potential of mCAT-1 gesicles to increase the safety of experiments using retro/lentivectors. Besides this, gesicles is a versatile tool highly valuable for the nongenetic delivery of functions such as transcription factors or genome engineering agents. PMID:21750535

  13. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    PubMed

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  14. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  15. Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction*

    PubMed Central

    Lewis, Aurélia E.; Sommer, Lilly; Arntzen, Magnus Ø.; Strahm, Yvan; Morrice, Nicholas A.; Divecha, Nullin; D'Santos, Clive S.

    2011-01-01

    Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(Xn = 3–7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions. PMID:21048195

  16. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, wemore » detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.« less

  17. Co-administration of recombinant major envelope proteins (rA27L and rH3L) of buffalopox virus provides enhanced immunogenicity and protective efficacy in animal models.

    PubMed

    Kumar, Amit; Yogisharadhya, Revanaiah; Venkatesan, Gnanavel; Bhanuprakash, Veerakyathappa; Pandey, Awadh Bihari; Shivachandra, Sathish Bhadravati

    2017-05-01

    Buffalopox virus (BPXV) and other vaccinia-like viruses (VLVs) are causing an emerging/re-emerging zoonosis affecting buffaloes, cattle and humans in India and other countries. A27L and H3L are immuno-dominant major envelope proteins of intracellular mature virion (IMV) of orthopoxviruses (OPVs) and are highly conserved with an ability to elicit neutralizing antibodies. In the present study, two recombinant proteins namely; rA27L ( 21 S to E 110 ; ∼30 kDa) and rH3L( 1 M to I 280 ; ∼50 kDa) of BPXV-Vij/96 produced from Escherichia coli were used in vaccine formulation. A combined recombinant subunit vaccine comprising rA27L and rH3L antigens (10 μg of each) was used for active immunization of adult mice (20μg/dose/mice) with or without adjuvant (FCA/FIA) by intramuscular route. Immune responses revealed a gradual increase in antigen specific serum IgG as well as neutralizing antibody titers measured by using indirect-ELISA and serum neutralization test (SNT) respectively, which were higher as compared to that elicited by individual antigens. Suckling mice passively administered with combined anti-A27L and anti-H3L sera showed a complete (100%) pre-exposure protection upon challenge with virulent BPXV. Conclusively, this study highlights the potential utility of rA27L and rH3L proteins as safer candidate prophylactic antigens in combined recombinant subunit vaccine for buffalopox as well as passive protective efficacy of combined sera in employing better pre-exposure protection against virulent BPXV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    PubMed

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  19. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis

    PubMed Central

    Koch, Miriam; Clementi, Nina; Rusca, Nicola; Vögele, Paul; Erlacher, Matthias; Polacek, Norbert

    2015-01-01

    During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis. PMID:25826414

  20. RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate.

    PubMed

    Wydeven, Nicole; Posokhova, Ekaterina; Xia, Zhilian; Martemyanov, Kirill A; Wickman, Kevin

    2014-01-24

    Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K(+) channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4(-/-), Rgs6(-/-), and Rgs4(-/-):Rgs6(-/-) mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6(-/-) mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6(-/-) and Gβ5(-/-) mice, suggest that the partial rescue of phenotypes in Rgs4(-/-):Rgs6(-/-) mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.

  1. Construction of a Functional S-Layer Fusion Protein Comprising an Immunoglobulin G-Binding Domain for Development of Specific Adsorbents for Extracorporeal Blood Purification

    PubMed Central

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit

    2004-01-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773

  2. Novel 4-Substituted-N,N-dimethyltetrahydronaphthalen-2-amines: Synthesis, Affinity, and In Silico Docking Studies at Serotonin 5-HT2-type and Histamine H1 G Protein-Coupled Receptors

    PubMed Central

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Córdova-Sintjago, Tania; Travers, Sean; Vincek, Adam S.; Kim, Myong Sang; Abboud, Khalil A.; Fang, Lijuan; Sun, Zhuming; Canal, Clinton E.; Booth, Raymond G.

    2015-01-01

    Syntheses were undertaken of derivatives of (2S, 4R)-(−)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N, N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([−]-trans > [+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4′-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S, 4R]-[+]-trans > [2S, 4R]-[−]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4′-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4′-Cl)-PAT and (−)-trans-4-(3′-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding (‘binge-eating’). PMID:25703249

  3. HBV X Protein induces overexpression of HERV-W env through NF-κB in HepG2 cells.

    PubMed

    Liu, Cong; Liu, Lijuan; Wang, Xiuling; Liu, Youyi; Wang, Miao; Zhu, Fan

    2017-12-01

    Human endogenous retrovirus W family (HERV-W) envelope (env) at chromosome 7 is highly expressed in the placenta and possesses fusogenic activity in trophoblast development. HERV-W env has been found to be overexpressed in some cancers and immune diseases. Viral transactivators can induce the overexpression of HERV-W env in human cell lines. Hepatitis B virus X protein (HBx) is believed to be a multifunctional oncogenic protein. Here, we reported that HBx could increase the promoter activity of HERV-W env and upregulate the mRNA levels of non-spliced and spliced HERV-W env and also its protein in human hepatoma HepG2 cells. Interestingly, we found that the inhibition of nuclear factor κB (NF-κB) using shRNA targeting NF-κB/p65 or PDTC (an inhibitor of NF-κB) could attenuate the upregulation of HERV-W env induced by HBx. These suggested that HBx might upregulate the expression of HERV-W env through NF-κB in HepG2 cells. This study might provide a new insight in HBV-associated liver diseases including HCC.

  4. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors.

    PubMed

    Carre-Pierrat, Maïté; Baillie, David; Johnsen, Robert; Hyde, Rhonda; Hart, Anne; Granger, Laure; Ségalat, Laurent

    2006-12-01

    Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.

  5. Molecular genetics of G proteins and atherosclerosis risk.

    PubMed

    Siffert, W

    2001-11-01

    Using a classical candidate gene approach, we have described a common C825T polymorphism in the gene GNB3 which encodes the ubiquitously expressed beta3 subunit of heterotrimeric G proteins. The 825T allele is associated with alternative splicing of the gene and the formation of a truncated but functionally active beta3 subunit which is referred to as Gbeta3s. Expression of the splice variant results in an enhanced G protein activation on stimulation of G protein-coupled receptors. Carriers of the 825T allele show an increased risk for hypertension and left ventricular hypertrophy. Homo- and heterozygous 825T allele carriers respond with a stronger decrease in blood pressure to therapy with a thiazide diuretic than homozygous 825C allele carriers. Moreover, 825T allele carriers appear to have an increased risk for obesity which appears sensible given the established role of G protein signaling in adipogenesis. The highest frequencies of the 825T allele are found in ethnicities with the highest lifestyle-dependent risk for obesity, e.g., black Africans and East Asians. This suggests that the 825T allele fulfills the criteria of a thrifty genotype.

  6. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels.

    PubMed

    Zhang, Yuan; Qin, Wenjuan; Qian, Zhiyuan; Liu, Xingjun; Wang, Hua; Gong, Shan; Sun, Yan-Gang; Snutch, Terrance P; Jiang, Xinghong; Tao, Jin

    2014-10-07

    Insulin-like growth factor 1 (IGF-1) is implicated in the nociceptive (pain) sensitivity of primary afferent neurons. We found that the IGF-1 receptor (IGF-1R) functionally stimulated voltage-gated T-type Ca(2+) (CaV3) channels in mouse dorsal root ganglia (DRG) neurons through a mechanism dependent on heterotrimeric G protein (heterotrimeric guanine nucleotide-binding protein) signaling. IGF-1 increased T-type channel currents in small-diameter DRG neurons in a manner dependent on IGF-1 concentration and IGF-1R but independent of phosphatidylinositol 3-kinase (PI3K). The intracellular subunit of IGF-1R coimmunoprecipitated with Gαo. Blocking G protein signaling by the intracellular application of guanosine diphosphate (GDP)-β-S or with pertussis toxin abolished the stimulatory effects of IGF-1. Antagonists of protein kinase Cα (PKCα), but not of PKCβ, abolished the IGF-1-induced T-type channel current increase. Application of IGF-1 increased membrane abundance of PKCα, and PKCα inhibition (either pharmacologically or genetically) abolished the increase in T-type channel currents stimulated by IGF-1. IGF-1 increased action potential firing in DRG neurons and increased the sensitivity of mice to both thermal and mechanical stimuli applied to the hindpaw, both of which were attenuated by intraplantar injection of a T-type channel inhibitor. Furthermore, inhibiting IGF-1R signaling or knocking down CaV3.2 or PKCα in DRG neurons abolished the increased mechanical and thermal sensitivity that mice exhibited under conditions modeling chronic hindpaw inflammation. Together, our results showed that IGF-1 enhances T-type channel currents through the activation of IGF-1R that is coupled to a G protein-dependent PKCα pathway, thereby increasing the excitability of DRG neurons and the sensitivity to pain. Copyright © 2014, American Association for the Advancement of Science.

  7. Large-scale synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by a stereoselective carbonyl reductase with high substrate concentration and product yield.

    PubMed

    Liu, Zhi-Qiang; Hu, Zhong-Liang; Zhang, Xiao-Jian; Tang, Xiao-Ling; Cheng, Feng; Xue, Ya-Ping; Wang, Ya-Jun; Wu, Lin; Yao, Dan-Kai; Zhou, Yi-Teng; Zheng, Yu-Guo

    2017-05-01

    To biosynthesize the (3R,5S)-CDHH in an industrial scale, a newly synthesized stereoselective short chain carbonyl reductase (SCR) was successfully cloned and expressed in Escherichia coli. The fermentation of recombinant E. coli harboring SCR was carried out in 500 L and 5000 L fermenters, with biomass and specific activity of 9.7 g DCW/L, 15749.95 U/g DCW, and 10.97 g DCW/L, 19210.12 U/g DCW, respectively. The recombinant SCR was successfully applied for efficient production of (3R,5S)-CDHH. The scale-up synthesis of (3R,5S)-CDHH was performed in 5000 L bioreactor with 400 g/L of (S)-CHOH at 30°C, resulting in a space-time yield of 13.7 mM/h/g DCW, which was the highest ever reported. After isolation and purification, the yield and d.e. of (3R,5S)-CDHH reached 97.5% and 99.5%, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:612-620, 2017. © 2017 American Institute of Chemical Engineers.

  8. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors

    PubMed Central

    Yin, Yanting; de Waal, Parker W.; He, Yuanzheng; Zhao, Li-Hua; Yang, Dehua; Cai, Xiaoqing; Jiang, Yi; Melcher, Karsten; Wang, Ming-Wei; Xu, H. Eric

    2017-01-01

    The glucagon receptor (GCGR) belongs to the secretin-like (class B) family of G protein-coupled receptors (GPCRs) and is activated by the peptide hormone glucagon. The structures of an activated class B GPCR have remained unsolved, preventing a mechanistic understanding of how these receptors are activated. Using a combination of structural modeling and mutagenesis studies, we present here two modes of ligand-independent activation of GCGR. First, we identified a GCGR-specific hydrophobic lock comprising Met-338 and Phe-345 within the IC3 loop and transmembrane helix 6 (TM6) and found that this lock stabilizes the TM6 helix in the inactive conformation. Disruption of this hydrophobic lock led to constitutive G protein and arrestin signaling. Second, we discovered a polar core comprising conserved residues in TM2, TM3, TM6, and TM7, and mutations that disrupt this polar core led to constitutive GCGR activity. On the basis of these results, we propose a mechanistic model of GCGR activation in which TM6 is held in an inactive conformation by the conserved polar core and the hydrophobic lock. Mutations that disrupt these inhibitory elements allow TM6 to swing outward to adopt an active TM6 conformation similar to that of the canonical β2-adrenergic receptor complexed with G protein and to that of rhodopsin complexed with arrestin. Importantly, mutations in the corresponding polar core of several other members of class B GPCRs, including PTH1R, PAC1R, VIP1R, and CRFR1, also induce constitutive G protein signaling, suggesting that the rearrangement of the polar core is a conserved mechanism for class B GPCR activation. PMID:28356352

  9. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination.

    PubMed

    Ribeiro de Almeida, Claudia; Dhir, Somdutta; Dhir, Ashish; Moghaddam, Amin E; Sattentau, Quentin; Meinhart, Anton; Proudfoot, Nicholas J

    2018-05-17

    Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Relationships between IgE/IgG4 Epitopes, Structure and Function in Anisakis simplex Ani s 5, a Member of the SXP/RAL-2 Protein Family

    PubMed Central

    García-Mayoral, María Flor; Treviño, Miguel Angel; Pérez-Piñar, Teresa; Caballero, María Luisa; Knaute, Tobias; Umpierrez, Ana

    2014-01-01

    Background Anisakiasis is a re-emerging global disease caused by consumption of raw or lightly cooked fish contaminated with L3 Anisakis larvae. This zoonotic disease is characterized by severe gastrointestinal and/or allergic symptoms which may misdiagnosed as appendicitis, gastric ulcer or other food allergies. The Anisakis allergen Ani s 5 is a protein belonging to the SXP/RAL-2 family; it is detected exclusively in nematodes. Previous studies showed that SXP/RAL-2 proteins are active antigens; however, their structure and function remain unknown. The aim of this study was to elucidate the three-dimensional structure of Ani s 5 and its main IgE and IgG4 binding regions. Methodology/Principal Findings The tertiary structure of recombinant Ani s 5 in solution was solved by nuclear magnetic resonance. Mg2+, but not Ca2+, binding was determined by band shift using SDS-PAGE. IgE and IgG4 epitopes were elucidated by microarray immunoassay and SPOTs membranes using sera from nine Anisakis allergic patients. The tertiary structure of Ani s 5 is composed of six alpha helices (H), with a Calmodulin like fold. H3 is a long, central helix that organizes the structure, with H1 and H2 packing at its N-terminus and H4 and H5 packing at its C-terminus. The orientation of H6 is undefined. Regarding epitopes recognized by IgE and IgG4 immunoglobulins, the same eleven peptides derived from Ani s 5 were bound by both IgE and IgG4. Peptides 14 (L40-K59), 26 (A76-A95) and 35 (I103-D122) were recognized by three out of nine sera. Conclusions/Significance This is the first reported 3D structure of an Anisakis allergen. Magnesium ion binding and structural resemblance to Calmodulin, suggest some putative functions for SXP/RAL-2 proteins. Furthermore, the IgE/IgG4 binding regions of Ani s 5 were identified as segments localized on its surface. These data will contribute towards a better understanding of the interactions that occur between immunoglobulins and allergens and, in turn

  11. The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells Through the PTEN/Akt/mTOR Pathway.

    PubMed

    Li, Yanhua; Gu, Junjiao; Lu, Hong

    2017-12-01

    Several lines of evidence have indicated that growth arrest-specific transcript 5 (GAS5) functions as a tumor suppressor and is aberrantly expressed in multiple cancers. GAS5 was found to be downregulated in gastric cancer (GC) tissues, and ectopic expression of GAS5 inhibited GC cell proliferation. The present study aimed to explore the underlying mechanisms of GAS5 involved in GC cell proliferation. GAS5 and miR-222 expressions in GC cell lines were estimated by quantitative real-time polymerase chain reaction. The effects of GAS5 and miR-222 on GC cell proliferation were assessed by MTT assay and 5-bromo-2-deoxyuridine (BrdU) incorporation assays. The interaction between GAS5 and miR-222 was confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The protein levels of the phosphatase and tensin homolog (PTEN), phosphorylated protein kinase B (Akt) (p-Akt), Akt, phosphorylated mammalian target of rapamycin (mTOR) (p-mTOR), and mTOR were determined by western blot. GAS5 was downregulated and miR-222 was upregulated in GC cells. GAS5 directly targeted and suppressed miR-222 expression. GAS5 overexpression and miR-222 inhibition suppressed cell proliferation, increased PTEN protein level and decreased p-Akt and p-mTOR protein levels in GC cells while GAS5 knockdown and miR-222 overexpression exhibited the opposite effects. Moreover, mechanistic analyses revealed that GAS5 regulated GC cell proliferation through the PTEN/Akt/mTOR pathway by negatively regulating miR-222. GAS5/miR-222 axis regulated proliferation of GC cells through the PTEN/Akt/mTOR pathway, which facilitated the development of lncRNA-directed therapy against this deadly disease.

  12. A single amino acid change, Q114R, in the cleavage-site sequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity.

    PubMed

    Samal, Sweety; Kumar, Sachin; Khattar, Sunil K; Samal, Siba K

    2011-10-01

    A key determinant of Newcastle disease virus (NDV) virulence is the amino acid sequence at the fusion (F) protein cleavage site. The NDV F protein is synthesized as an inactive precursor, F(0), and is activated by proteolytic cleavage between amino acids 116 and 117 to produce two disulfide-linked subunits, F(1) and F(2). The consensus sequence of the F protein cleavage site of virulent [(112)(R/K)-R-Q-(R/K)-R↓F-I(118)] and avirulent [(112)(G/E)-(K/R)-Q-(G/E)-R↓L-I(118)] strains contains a conserved glutamine residue at position 114. Recently, some NDV strains from Africa and Madagascar were isolated from healthy birds and have been reported to contain five basic residues (R-R-R-K-R↓F-I/V or R-R-R-R-R↓F-I/V) at the F protein cleavage site. In this study, we have evaluated the role of this conserved glutamine residue in the replication and pathogenicity of NDV by using the moderately pathogenic Beaudette C strain and by making Q114R, K115R and I118V mutants of the F protein in this strain. Our results showed that changing the glutamine to a basic arginine residue reduced viral replication and attenuated the pathogenicity of the virus in chickens. The pathogenicity was further reduced when the isoleucine at position 118 was substituted for valine.

  13. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    PubMed

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  14. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    PubMed Central

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. PMID:21952135

  15. Androgen receptor (AR) inhibitor ErbB3-binding protein-1 (Ebp1) is not targeted by the newly identified AR controlling signaling axis heat-shock protein HSP27 and microRNA miR-1 in prostate cancer cells.

    PubMed

    Stope, Matthias B; Peters, Stefanie; Großebrummel, Hannah; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin

    2015-03-01

    Androgen receptor (AR) networks are predominantly involved in prostate cancer (PCa) progression; consequently, factors of AR regulation represent promising targets for PCa therapy. The ErbB3-binding protein 1 (Ebp1) is linked to AR suppression and chemoresistance by so far unknown mechanisms. In this study, an assumed regulation of Ebp1 by the newly identified AR controlling signaling axis heat-shock protein 27 (HSP27)-microRNA-1 (miR-1) was examined. Transfection experiments were carried out overexpressing and knockdown HSP27 and miR-1, respectively, in LNCaP and PC-3 cells. Afterward, HSP27- and miR-1-triggered Ebp1 protein expression was monitored by Western blotting. AR-positive LNCaP cells and AR-negative PC-3 cells possessed diverse basal expression levels of Ebp1. However, subsequent studies revealed no differences in cellular Ebp1 concentrations after modulation of HSP27 and miR-1. Furthermore, docetaxel incubation experiments exhibited no effects on Ebp1 protein synthesis. In PCa, Ebp1 has been described as a regulator of AR functionality and as an effector of PCa therapy resistance. Our data suggest that Ebp1 functionality is independent from heat-shock-protein-regulated progression networks in PCa.

  16. Mitomycin C binding to poly[d(G-m5C)].

    PubMed Central

    Portugal, J; Sánchez-Baeza, F J

    1995-01-01

    Poly[d(G-m5C)] was modified by reductively activated mitomycin C, an anti-tumour drug, under buffer conditions which are known to favour either the B or the Z conformations of DNA. C.d. and 31P-n.m.r. were used to characterize the poly[d(G-m5C)]-mitomycin cross-linked complexes, as well as the effects on the equilibrium between the B and Z forms of the polynucleotide. Mitomycin C appears to inhibit the B-->Z transition, even in the presence of 3 mM MgCl2, while the Z-form of poly[d(G-m5C)] does not interact significantly with the drug under bifunctionally activating conditions; thus no reversion from the Z-form to the B-form of the polynucleotide can be observed under the salt conditions which are required for the Z-form to exist. PMID:7864808

  17. The presence of PAI-1 4G/5G and ACE DD genotypes increases the risk of early-stage AVF thrombosis in hemodialysis patients.

    PubMed

    Güngör, Yahya; Kayataş, Mansur; Yıldız, Gürsel; Özdemir, Öztürk; Candan, Ferhan

    2011-01-01

    In this study, we investigated the relationship between early arteriovenous fistula (AVF) thrombosis with angiotensin-converting enzyme (ACE) gene and thrombophilic factor gene polymorphisms. Thirty-five patients who suffered from three or more fistula thrombosis episodes in the early period after AVF operation and 33 control patients with no history of thrombosis for at least 3 years were enrolled in this study. Factor V G1691A Leiden, factor V H1299R (R2), prothrombin G20210A, factor XIIIV34L, β-fibrinogen-455 G-A, glycoprotein IIIa L33P human platelet antigens (HPA-1), methylenetetrahydrofolate reductase C677T, and methylenetetrahydrofolate reductase A1298C gene polymorphisms were similar in both groups (p > 0.05). Plasminogen activator inhibitor 1 (PAI-1) 4G/5G genotype in the study group and 4G/4G genotype in the control group were significantly higher (p = 0.014). No significant difference was detected in terms of the 5G/5G genotype. With regard to the ACE gene polymorphism, the control group showed more ID genotype (19/33, 57.6%), whereas the study group showed more DD genotype (17/35, 48.6%). II genotype was similar in both groups (x(2) = 7.40, p = 0.025). The rate of ACE inhibitor-angiotensin II receptor blockers use was 5/35 in the study group (14.3%) and 5/33 in the control group (15.2%). Individuals with PAI-1 4G/5G genotype showed 5.03 times more risk of thrombosis when compared with 4G/4G and 5G/5G genotypes [p = 0.008, OR = 5.03, 95% confidence interval (1.44:17.64)]. Individuals with ACE DD genotype showed 4.25 times more risk of thrombosis when compared with II and ID [p = 0.008, OR = 4.25, 95% confidence interval (1.404:12.83)]. PAI-1 4G/5G and ACE DD genotypes are associated with increased risk for early AVF thrombosis.

  18. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5.

    PubMed

    Topiol, Sid; Sabio, Michael

    2016-01-15

    We illustrate, with a focus on mGluR5, how the recently published, first X-ray structures of mGluR 7TM domains, specifically those of mGluR1 and mGluR5 complexed with negative allosteric modulators (NAMs), will begin to influence ligand- (e.g., drug- or sweetener-) discovery efforts involving class C GPCRs. With an extensive docking study allowing full ligand flexibility and full side chain flexibility of all residues in the ligand-binding cavity, we have predicted and analyzed the binding modes of a variety of structurally diverse mGluR5 NAM ligands, showing how the X-ray structures serve to effectively rationalize each ligand's binding characteristics. We demonstrated that the features that are inherent in our earlier overlay model are preserved in the protein structure-based docking models. We identified structurally diverse compounds, which potentially act as mGluR NAMs, and revealed binding-site differences by performing high-throughput docking using a database of approximately six million structures of commercially available compounds and the mGluR1 and mGluR5 X-ray structures. By comparing the 7TM domains of the mGluR5 and mGluR1 X-rays structures, we identified selectivity factors within group I of the mGluRs. Similarly, using homology models that we built for mGluR2 and mGluR4, we have identified the factors leading to the selectivity between group I and groups II and III for ligands occupying the deepest portion of the mGluR5 binding cavity. Finally, we have proposed a structure-based explanation of the pharmacological switching within a set of positive allosteric modulators (PAMs) and their corresponding, very close NAM analogs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lack of association between miR-218 rs11134527 A>G and Kawasaki disease susceptibility.

    PubMed

    Pi, Lei; Fu, Lanyan; Xu, Yufen; Che, Di; Deng, Qiulian; Huang, Xijing; Li, Meiai; Zhang, Li; Huang, Ping; Gu, Xiaoqiong

    2018-05-01

    Abstract Kawasaki disease (KD) is a type of disease that includes the development of a fever that lasts at least five days and involves the clinical manifestation of multicellular vasculitis. KD has become one of the most common pediatric cardiovascular diseases. Previous studies have reported that miR-218 rs11134527 A>G is associated with susceptibility to various cancer risks. However, there is a lack of evidence regarding the relationship between this polymorphism and KD risk. This study explored the correlation between the miR-218 rs11134527 A>G polymorphism and the risk of KD. We recruited 532 patients with KD and 623 controls to genotype the miR-218 rs11134527 A>G polymorphism with a TaqMan allelic discrimination assay. Our results illustrated that the miR-218 rs11134527 A>G polymorphism was not associated with KD risk. In an analysis stratified by age, sex, and coronary artery lesions, we found only that the risk of KD was significantly decreased for children older than 5 years (GG vs. AA/AG: adjusted OR=0.26, 95% CI=0.07-0.94, P =0.041). This study demonstrated that the miR-218 rs1113452 A>G polymorphism may have an age-related relationship with KD susceptibility that has not previously been revealed. ©2018 The Author(s).

  20. The mRNA-stabilizing Factor HuR Protein Is Targeted by β-TrCP Protein for Degradation in Response to Glycolysis Inhibition*

    PubMed Central

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K.; Chen, Ching-Shih

    2012-01-01

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, 296EEAMAIAS304, in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy. PMID:23115237

  1. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes.

    PubMed

    Tunc-Ozdemir, Meral; Jones, Alan M

    2017-01-01

    Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex becomes

  2. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes

    DOE PAGES

    Tunc-Ozdemir, Meral; Jones, Alan M.

    2017-02-10

    Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKsmore » and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included FoÈrster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP

  3. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tunc-Ozdemir, Meral; Jones, Alan M.

    Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKsmore » and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included FoÈrster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP

  4. Structural insights into the methyl donor recognition model of a novel membrane-binding protein UbiG.

    PubMed

    Zhu, Yuwei; Jiang, Xuguang; Wang, Chongyuan; Liu, Yang; Fan, Xiaojiao; Zhang, Linjuan; Niu, Liwen; Teng, Maikun; Li, Xu

    2016-03-15

    UbiG is a SAM-dependent O-methyltransferase, catalyzing two O-methyl transfer steps for ubiquinone biosynthesis in Escherichia coli. UbiG possesses a unique sequence insertion between β4 and α10, which is used for membrane lipid interaction. Interestingly, this sequence insertion also covers the methyl donor binding pocket. Thus, the relationship between membrane binding and entrance of the methyl donor of UbiG during the O-methyl transfer process is a question that deserves further exploration. In this study, we reveal that the membrane-binding region of UbiG gates the entrance of methyl donor. When bound with liposome, UbiG displays an enhanced binding ability toward the methyl donor product S-adenosylhomocysteine. We further employ protein engineering strategies to design UbiG mutants by truncating the membrane interacting region or making it more flexible. The ITC results show that the binding affinity of these mutants to SAH increases significantly compared with that of the wild-type UbiG. Moreover, we determine the structure of UbiG∆(165-187) in complex with SAH. Collectively, our results provide a new angle to cognize the relationship between membrane binding and entrance of the methyl donor of UbiG, which is of benefit for better understanding the O-methyl transfer process for ubiquinone biosynthesis.

  5. MiR-142-5p promotes bone repair by maintaining osteoblast activity.

    PubMed

    Tu, Manli; Tang, Juanjuan; He, Hongbo; Cheng, Peng; Chen, Chao

    2017-05-01

    MicroRNAs play important roles in regulating bone regeneration and remodeling. However, the pathophysiological roles of microRNAs in bone repair remain unclear. Here we identify a significant upregulation of miR-142-5p correlated with active osteoblastogenesis during the bone healing process. In vitro, miR-142-5p promoted osteoblast activity and matrix mineralization by targeting the gene encoding WW-domain-containing E3 ubiquitin protein ligase 1. We also found that the expression of miR-142-5p in the callus of aged mice was lower than that in the callus of young mice and directly correlated with the age-related delay in bone healing. Furthermore, treatment with agomir-142-5p in the fracture areas stimulated osteoblast activity which repaired the bone fractures in aged mice. Thus, our study revealed that miR-142-5p plays a crucial role in healing fractures by maintaining osteoblast activity, and provided a new molecular target therapeutic strategy for bone healing.

  6. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    PubMed

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  7. Purification of the active C5a receptor from human polymorphonuclear leukocytes as a receptor - G sub i complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, T.E.; Siciliano, S.; Kobayashi, S.

    1991-02-01

    The authors have isolated, in an active state, the C5a receptor from human polymorphonuclear leukocytes. The purification was achieved in a single step using a C5a affinity column in which the C5a molecule was coupled to the resin through its N terminus. The purified receptor, like the crude solubilized molecule, exhibited a single class of high-affinity binding sites with a K{sub d} of 30 pM. Further, the binding of C5a retained its sensitivity to guanine nucleotides, implying that the purified receptor contained a guanine nucleotide-binding protein (G protein). SDS/PAGE revealed the presence of three polypeptides with molecular masses of 42,more » 40, and 36 kDa, which were determined to be the C5a-binding subunit and the {alpha} and {beta} subunits of G{sub i}, respectively. The 36- and 40-kDa polypeptides were identified by immunoblotting and by the ability of pertussis toxin to ADP-ribosylate the 40-kDa molecule. These results confirm their earlier hypothesis that the receptor exists as a complex with a G protein in the presence or absence of C5a. The tight coupling between the receptor and G protein should make possible the identification of the G protein(s) involved in the transduction pathways used by C5a to produce its many biological effects.« less

  8. Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated GDP release rate.

    PubMed

    Guilfoyle, Amy P; Deshpande, Chandrika N; Vincent, Kimberley; Pedroso, Marcelo M; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-05-01

    GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαβγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base. © 2014 FEBS.

  9. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    PubMed

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  10. Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist.

    PubMed

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L; Litherland, Sally A; Haskell-Luevano, Carrie

    2010-06-08

    The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface

  11. A Little CFTR Goes a Long Way: CFTR-Dependent Sweat Secretion from G551D and R117H-5T Cystic Fibrosis Subjects Taking Ivacaftor

    PubMed Central

    Char, Jessica E.; Wolfe, Marlene H.; Cho, Hyung-ju; Park, Il-Ho; Jeong, Jin Hyeok; Frisbee, Eric; Dunn, Colleen; Davies, Zoe; Milla, Carlos; Moss, Richard B.; Thomas, Ewart A. C.; Wine, Jeffrey J.

    2014-01-01

    To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco) improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32–143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (−) ivacaftor, 3 only (+) ivacaftor and 3 (+/−) ivacaftor (1–5 tests per condition). The total number of gland measurements was 852 (−) ivacaftor and 906 (+) ivacaftor. A healthy control was tested 4 times (51 glands). For each gland we measured both CFTR-independent (M-sweat) and CFTR-dependent (C-sweat); C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects). By contrast, 6/6 subjects (113/342 glands) produced C-sweat in the (+) ivacaftor condition, but with large inter-subject differences; 3–74% of glands responded with C/M sweat ratios 0.04%–2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+) ivacaftor  = 1.6%–7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function. PMID:24520399

  12. Differential effects of protein phosphatases in the recycling of metabotropic glutamate receptor 5.

    PubMed

    Mahato, P K; Pandey, S; Bhattacharyya, S

    2015-10-15

    The major excitatory neurotransmitter Glutamate acts on both ionotropic and metabotropic glutamate receptors (mGluRs) in the central nervous system. mGluR5, a member of the group I mGluR family is widely expressed throughout the brain and plays important roles in a variety of neuronal processes including various forms of synaptic plasticity. This receptor is also involved in various neuropsychiatric disorders, viz., Fragile X syndrome, autism etc. It has been reported that mGluR5 undergoes desensitization and subsequently internalization on ligand exposure in various cell types. However, the downstream events after the internalization and the molecular players involved in the post-endocytic events of this receptor have not been studied. In the present study, we find that subsequent to internalization mGluR5 enters the recycling compartment. After that the receptor recycles back to the cell surface. We also show here that the recycling of mGluR5 is dependent on protein phosphatases. Our data suggest that mGluR5 recycling is completely dependent on the activity of PP2A whereas, PP2B has partial effect on this process. Thus our study suggests that mGluR5 recycles back to the cell surface after ligand-dependent internalization and protein phosphatases that have been implicated in various forms of synaptic plasticity have differential effects on the recycling of mGluR5. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology.

    PubMed

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2015-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins' regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. © 2015 Elsevier Inc. All rights reserved.

  14. SI-traceable calibration-free analysis for the active concentration of G2-EPSPS protein using surface plasmon resonance.

    PubMed

    Su, Ping; He, Zhangjing; Wu, Liqing; Li, Liang; Zheng, Kangle; Yang, Yi

    2018-02-01

    Active proteins play important roles in the function regulation of human bodies and attract much interest for use in pharmaceuticals and clinical diagnostics. However, the lack of primary methods to analyze active proteins means there is currently no metrology standard for active protein measurement. In recent years, calibration-free concentration analysis (CFCA), which is based on surface plasmon resonance (SPR) technology, has been proposed to determine the active concentration of proteins that have specific binding activity with a binding partner without any higher order standards. The CFCA experiment observes the changes of binding rates at totally different two flow rates and uses the known diffusion coefficient of an analyte to calculate the active concentration of proteins, theoretically required, the binding process have to be under diffusion-limited conditions. Measuring the active concentration of G2-EPSPS protein by CFCA was proposed in this study. This method involves optimization of the regeneration buffer and preparation of chip surfaces for appropriate reaction conditions by immobilizing ligands (G2-EPSPS antibodies) on sensor chips (CM5) via amine coupling. The active concentration of G2-EPSPS was then determined by injection of G2-EPSPS protein samples and running buffer over immobilized and reference chip surfaces at two different flow rates (5 and 100μLmin -1 ). The active concentration of G2-EPSPS was obtained after analyzing these sensorgrams with the 1:1 model. Using the determined active concentration of G2-EPSPS, the association, dissociation, and equilibrium constants of G2-EPSPS and its antibody were determined to be 2.18 ± 0.03 × 10 6 M -1 s -1 , 5.79 ± 0.06 ×10 -3 s -1 , and 2.65 ± 0.06 × 10 -9 M, respectively. The performance of the proposed method was evaluated. The within-day precisions were from 3.26% to 4.59%, and the between-day precision was 8.36%. The recovery rate of the method was from 97.46% to 104.34% in the

  15. SDSS (g--r) colors of isolated galaxies

    NASA Astrophysics Data System (ADS)

    Fernández Lorenzo, M.; Sulentic, J.; Verdes-Montenegro, L.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2013-05-01

    Several processes can affect a galaxy over its lifetime. If effects of interaction with companions are minimized, it is possible to focus on secular evolutionary processes. We present a study of the SDSS (g--r) colors of isolated galaxies in the AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es). Assuming that color is an indicator of the star formation history, this work better records the signature of passive star formation via pure secular evolution. We focused on median values for the main morphological subtypes found in the AMIGA sample (66% Sb--Sc and 14% E/S0) and compared them with equivalent measures of galaxies in denser environments. The main results of this study include: 1) a tendency for AMIGA spiral galaxies to be redder than similar type galaxies in close pairs, but 2) no clear difference when we compare with galaxies in other (e.g. group) environments; 3) a Gaussian distribution of the (g--r) color of isolated galaxies, as might be expected in the case of pure secular evolution; and 4) a smaller median absolute deviation in colors for isolated galaxies compared to both wide and close pairs.

  16. Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis.

    PubMed Central

    Chang, P K; Ehrlich, K C; Yu, J; Bhatnagar, D; Cleveland, T E

    1995-01-01

    The aflR gene from Aspergillus parasiticus and Aspergillus flavus may be involved in the regulation of aflatoxin biosynthesis. The aflR gene product, AFLR, possesses a GAL4-type binuclear zinc finger DNA-binding domain. A transformant, SU1-N3 (pHSP), containing an additional copy of aflR, showed increased transcription of aflR and the aflatoxin pathway structural genes, nor-1, ver-1, and omt-1, when cells were grown in nitrate medium, which normally suppresses aflatoxin production. Electrophoretic mobility shift assays showed that the recombinant protein containing the DNA-binding domain, AFLR1, bound specifically to the palindromic sequence, TTAGGCCTAA, 120 bp upstream of the AFLR translation start site. Expression of aflR thus appears to be autoregulated. Increased expression of aflatoxin biosynthetic genes in the transformant might result from an elevated basal level of AFLR, allowing it to overcome nitrate inhibition and to bind to the aflR promotor region, thereby initiating aflatoxin biosynthesis. Results further suggest that aflR is involved in the regulation of multiple parts of the aflatoxin biosynthetic pathway. PMID:7793958

  17. Selective cytotoxicity of PAMAM G5 core–PAMAM G2.5 shell tecto-dendrimers on melanoma cells

    PubMed Central

    Schilrreff, Priscila; Mundiña-Weilenmann, Cecilia; Romero, Eder Lilia; Morilla, Maria Jose

    2012-01-01

    Background The controlled introduction of covalent linkages between dendrimer building blocks leads to polymers of higher architectural order known as tecto-dendrimers. Because of the few simple steps involved in their synthesis, tecto-dendrimers could expand the portfolio of structures beyond commercial dendrimers, due to the absence of synthetic drawbacks (large number of reaction steps, excessive monomer loading, and lengthy chromatographic separations) and structural constraints of high-generation dendrimers (reduction of good monodispersity and ideal dendritic construction due to de Gennes dense-packing phenomenon). However, the biomedical uses of tecto-dendrimers remain unexplored. In this work, after synthesizing saturated shell core–shell tecto-dendrimers using amine-terminated polyamidoamine (PAMAM) generation 5 (G5) as core and carboxyl-terminated PAMAM G2.5 as shell (G5G2.5 tecto-dendrimers), we surveyed for the first time the main features of their interaction with epithelial cells. Methods Structural characterization of G5G2.5 was performed by polyacrylamide gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry, and microscopic techniques; their hydrodynamic size and Z-potential was also determined. Cellular uptake by human epidermal keratinocytes, colon adenocarcinoma, and epidermal melanoma (SK-Mel-28) cells was determined by flow cytometry. Cytotoxicity was determined by mitochondrial activity, lactate dehydrogenase release, glutathione depletion, and apoptosis/necrosis measurement. Results The resultant 60%–67% saturated shell, 87,000-dalton G5G2.5 (mean molecular weight) interacted with cells in a significantly different fashion in comparison to their building blocks and to its closest counterpart, PAMAM G6.5. After being actively taken up by epithelial cells, G5G2.5 caused cytotoxicity only on SK-Mel-28 cells, including depletion of intracellular glutathione and fast necrosis that was manifested above 5 μM G5

  18. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    PubMed

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  19. Molecular organization of the 5S rDNA gene type II in elasmobranchs

    PubMed Central

    Castro, Sergio I.; Hleap, Jose S.; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    ABSTRACT The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS. PMID:26488198

  20. The influence of monovalent cations on trimeric G protein G(i)1α activity in HEK293 cells stably expressing DOR-G(i)1α (Cys(351)-Ile(351)) fusion protein.

    PubMed

    Vošahlíková, M; Svoboda, P

    2011-01-01

    The effect of monovalent cations on trimeric G protein G(i)1α was measured at equimolar concentration of chloride anion in pertussis-toxin (PTX)-treated HEK293 cells stably expressing PTX-insensitive DOR- G(i)1α (Cys(351)-Ile(351)) fusion protein by high-affinity [(35)S]GTPgammaS binding assay. The high basal level of binding was detected in absence of DOR agonist and monovalent ions and this high level was inhibited with the order of: Na(+) > K(+) > Li(+). The first significant inhibition was detected at 1 mM NaCl. The inhibition by monovalent ions was reversed by increasing concentrations of DOR agonist DADLE. The maximum DADLE response was also highest for sodium and decreased in the order of: Na(+) > K(+) ~ Li(+). Our data indicate i) an inherently high activity of trimeric G protein G(i)1α when expressed within DOR- G(i)1α fusion protein and determined in the absence of monovalent cations, ii) preferential sensitivity of DOR- G(i)1alpha to sodium as far as maximum of agonist response is involved.

  1. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    PubMed

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  2. Pharmacological Characterization of 30 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin Derived Agonists, Synthetic Agonists, and the Endogenous Agouti-Related Protein (AGRP) Antagonist

    PubMed Central

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L.; Litherland, Sally A.; Haskell-Luevano, Carrie

    2010-01-01

    The melanocortin-4 receptor (MC4R) is a G-protein coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic bio marker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and non-obese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [α-, β, γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow

  3. G proteins as regulators in ethylene-mediated hypoxia signaling

    PubMed Central

    Sauter, Margret

    2010-01-01

    Waterlogging or flooding are frequently or constitutively encountered by many plant species. The resulting reduction in endogenous O2 concentration poses a severe threat. Numerous adaptations at the anatomical, morphological and metabolic level help plants to either escape low oxygen conditions or to endure them. Formation of aerenchyma or rapid shoot elongation are escape responses, as is the formation of adventitious roots. The metabolic shift from aerobic respiration to anaerobic fermentation contributes to a basal energy supply at low oxygen conditions. Ethylene plays a central role in hypoxic stress signaling, and G proteins have been recognized as crucial signal transducers in various hypoxic signaling pathways. The programmed death of parenchyma cells that results in hypoxia-induced aerenchyma formation is an ethylene response. In maize, aerenchyma are induced in the absence of ethylene when G proteins are constitutively activated. Similarly, ethylene induced death of epidermal cells that cover adventitious roots at the stem node of rice is strictly dependent on heterotrimeric G protein activity. Knock down of the unique Gα gene RGA1 in rice prevents epidermal cell death. Finally, in Arabidopsis, induction of alcohol dehydrogenase with resulting increased plant survival relies on the balanced activities of a small Rop G protein and its deactivating protein RopGAP4. Identifying the general mechanisms of G protein signaling in hypoxia adaptation of plants is one of the tasks ahead. PMID:20948297

  4. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology

    PubMed Central

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2016-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302

  5. PAI-1 mRNA expression and plasma level in rheumatoid arthritis: relationship with 4G/5G PAI-1 polymorphism.

    PubMed

    Muñoz-Valle, José Francisco; Ruiz-Quezada, Sandra Luz; Oregón-Romero, Edith; Navarro-Hernández, Rosa Elena; Castañeda-Saucedo, Eduardo; De la Cruz-Mosso, Ulises; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio; Castro-Alarcón, Natividad; Parra-Rojas, Isela

    2012-12-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the synovial membrane, cartilage and bone. PAI-1 is a key regulator of the fibrinolytic system through which plasminogen is converted to plasmin. The plasmin activates the matrix metalloproteinase system, which is closely related with the joint damage and bone destruction in RA. The aim of this study was to investigate the relationship between 4G/5G PAI-1 polymorphism with mRNA expression and PAI-1 plasma protein levels in RA patients. 113 RA patients and 123 healthy subjects (HS) were included in the study. The 4G/5G PAI-1 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism method; the PAI-1 mRNA expression was determined by real-time PCR; and the soluble PAI-1 (sPAI-1) levels were quantified using an ELISA kit. No significant differences in the genotype and allele frequencies of 4G/5G PAI-1 polymorphism were found between RA patients and HS. However, the 5G/5G genotype was the most frequent in both studied groups: RA (42%) and HS (44%). PAI-1 mRNA expression was slightly increased (0.67 fold) in RA patients with respect to HS (P = 0.0001). In addition, in RA patients, the 4G/4G genotype carriers showed increased PAI-1 mRNA expression (3.82 fold) versus 4G/5G and 5G/5G genotypes (P = 0.0001), whereas the sPAI-1 plasma levels did not show significant differences. Our results indicate that the 4G/5G PAI-1 polymorphism is not a marker of susceptibility in the Western Mexico. However, the 4G/4G genotype is associated with high PAI-1 mRNA expression but not with the sPAI-1 levels in RA patients.

  6. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors.

    PubMed

    Yin, Yanting; de Waal, Parker W; He, Yuanzheng; Zhao, Li-Hua; Yang, Dehua; Cai, Xiaoqing; Jiang, Yi; Melcher, Karsten; Wang, Ming-Wei; Xu, H Eric

    2017-06-16

    The glucagon receptor (GCGR) belongs to the secretin-like (class B) family of G protein-coupled receptors (GPCRs) and is activated by the peptide hormone glucagon. The structures of an activated class B GPCR have remained unsolved, preventing a mechanistic understanding of how these receptors are activated. Using a combination of structural modeling and mutagenesis studies, we present here two modes of ligand-independent activation of GCGR. First, we identified a GCGR-specific hydrophobic lock comprising Met-338 and Phe-345 within the IC3 loop and transmembrane helix 6 (TM6) and found that this lock stabilizes the TM6 helix in the inactive conformation. Disruption of this hydrophobic lock led to constitutive G protein and arrestin signaling. Second, we discovered a polar core comprising conserved residues in TM2, TM3, TM6, and TM7, and mutations that disrupt this polar core led to constitutive GCGR activity. On the basis of these results, we propose a mechanistic model of GCGR activation in which TM6 is held in an inactive conformation by the conserved polar core and the hydrophobic lock. Mutations that disrupt these inhibitory elements allow TM6 to swing outward to adopt an active TM6 conformation similar to that of the canonical β 2 -adrenergic receptor complexed with G protein and to that of rhodopsin complexed with arrestin. Importantly, mutations in the corresponding polar core of several other members of class B GPCRs, including PTH1R, PAC1R, VIP1R, and CRFR1, also induce constitutive G protein signaling, suggesting that the rearrangement of the polar core is a conserved mechanism for class B GPCR activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia.

    PubMed

    Murta, Veronica; Schilrreff, Priscila; Rosciszewski, Gerardo; Morilla, Maria Jose; Ramos, Alberto Javier

    2018-03-01

    Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia. © 2017 International Society for Neurochemistry.

  8. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    PubMed

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 < 1 min) between the plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  9. Cardioprotective role of G-Protein Coupled Estrogen Receptor 1 (GPER1).

    PubMed

    Koganti, Sivaramakrishna

    2015-01-01

    G-Protein Coupled Estrogen Receptor 1 (GPER1), also known as G-Protein Coupled Receptor 30 (GPR30) and initially considered an orphan receptor, has become one of the most important pharmacological targets in cardiovascular research. Since the gene encoding this putative receptor was cloned nearly 20 years ago, researchers have addressed its role in various aspects of physiology, including cardioprotection. Although extensive research has been carried out to understand the role of GPER1 as a pharmacological target to treat cardiovascular diseases, there are few current reviews addressing the overall cardioprotective benefits of this receptor and the signaling intermediates involved. This review considers the origins of GPER1, its cell biology, its physiological and pharmacological roles as a therapeutic target in cardiovascular disease, and what future research on GPER1 might entail. More specifically, the review focuses on GPER1 regulation of Angiotensin Type I Receptor (AT1R) and the role of estrogen receptors, epidermal growth factor receptor (EGFR) and matrix metalloproteinases (MMPs) in bringing about the cardioprotective effects of GPER1. Areas where improved knowledge of GPER1 biology is still needed to better understand the receptor's cardioprotective effects are also discussed.

  10. Comparative expression profiling of AtRAD5B and AtNDL1: Hints towards a role in G protein mediated signaling.

    PubMed

    Khatri, Nisha; Singh, Swati; Hakim, Nasmeen; Mudgil, Yashwanti

    2017-11-01

    Arabidopsis AtRAD5B encodes for a putative helicase of the class SWItch/Sucrose Non-Fermentable (SWI/SNF) ATPases. We identified AtRAD5B as an interactor of N-MYC DOWNREGULATED-LIKE1 (AtNDL1) in a yeast two-hybrid screen. AtNDL1 is a G protein signaling component which regulates auxin transport and gradients together with GTP binding protein beta 1 (AGB1). Auxin gradients are known to recruit SWI/SNF remodeling complexes to the chromatin and regulate expression of genes involved in flower and leaf formation. In current study, a comparative spatial and temporal co-expression/localization analysis of AtNDL1, AGB1 with AtRAD5B was carried out in order to explore the possibility of their coexistence in a common signaling network. Translational fusion (GUS) of AtNDL1 and AtRAD5B in seedlings and reproductive organs revealed that both shared similar expression patterns with the highest expression observed in male reproductive organs. Moreover, they shared similar domains of localization in roots, suggesting their potential functioning together in reproductive and root development processes. This study predicts the existence of a signaling network involving AtNDL1, AGB1 with AtRAD5B. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles.

    PubMed

    Jungblut, Lucas D; Paz, Dante A; López-Costa, Juan J; Pozzi, Andrea G

    2009-10-01

    We evaluated the presence of G protein subtypes Galpha(o), Galpha(i2), and Galpha(olf) in the main olfactory system (MOS) and accessory or vomeronasal system (VNS) of Rhinella (Bufo) arenarum tadpoles, and here describe the fine structure of the sensory cells in the olfactory epithelium (OE) and vomeronasal organ (VNO). The OE shows olfactory receptor neurons (ORNs) with cilia in the apical surface, and the vomeronasal receptor neurons (VRNs) of the VNO are covered with microvilli. Immunohistochemistry detected the presence of at least two segregated populations of ORNs throughout the OE, coupled to Galpha(olf) and Galpha(o). An antiserum against Galpha(i2) was ineffective in staining the ORNs. In the VNO, Galpha(o) neurons stained strongly but lacked immunoreactivity to any other Galpha subunit in all larval stages analyzed. Western blot analyses and preabsorption experiments confirmed the specificity of the commercial antisera used. The functional significance of the heterogeneous G-protein distribution in R. arenarum tadpoles is not clear, but the study of G- protein distributions in various amphibian species is important, since this vertebrate group played a key role in the evolution of tetrapods. A more complete knowledge of the amphibian MOS and VNS would help to understand the functional organization and evolution of vertebrate chemosensory systems. This work demonstrates, for the first time, the existence of a segregated distribution of G-proteins in the OE of R. arenarum tadpoles.

  12. Length and sequence heterogeneity in 5S rDNA of Populus deltoides.

    PubMed

    Negi, Madan S; Rajagopal, Jyothi; Chauhan, Neeti; Cronn, Richard; Lakshmikumaran, Malathi

    2002-12-01

    The 5S rRNA genes and their associated non-transcribed spacer (NTS) regions are present as repeat units arranged in tandem arrays in plant genomes. Length heterogeneity in 5S rDNA repeats was previously identified in Populus deltoides and was also observed in the present study. Primers were designed to amplify the 5S rDNA NTS variants from the P. deltoides genome. The PCR-amplified products from the two accessions of P. deltoides (G3 and G48) suggested the presence of length heterogeneity of 5S rDNA units within and among accessions, and the size of the spacers ranged from 385 to 434 bp. Sequence analysis of the non-transcribed spacer (NTS) revealed two distinct classes of 5S rDNA within both accessions: class 1, which contained GAA trinucleotide microsatellite repeats, and class 2, which lacked the repeats. The class 1 spacer shows length variation owing to the microsatellite, with two clones exhibiting 10 GAA repeat units and one clone exhibiting 16 such repeat units. However, distance analysis shows that class 1 spacer sequences are highly similar inter se, yielding nucleotide diversity (pi) estimates that are less than 0.15% of those obtained for class 2 spacers (pi = 0.0183 vs. 0.1433, respectively). The presence of microsatellite in the NTS region leading to variation in spacer length is reported and discussed for the first time in P. deltoides.

  13. Plant G-proteins come of age: Breaking the bond with animal models

    NASA Astrophysics Data System (ADS)

    Botella, Jimmy; Trusov, Yuri

    2016-05-01

    G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs fromthe accepted animal paradigm.

  14. Plant G-Proteins Come of Age: Breaking the Bond with Animal Models.

    PubMed

    Trusov, Yuri; Botella, José R

    2016-01-01

    G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs from the accepted animal paradigm.

  15. Influence of plasminogen activator inhibitor-1 (SERPINE1) 4G/5G polymorphism on circulating SERPINE-1 antigen expression in HCC associated with viral infection.

    PubMed

    Divella, Rosa; Mazzocca, Antonio; Gadaleta, Cosimo; Simone, Giovanni; Paradiso, Angelo; Quaranta, Michele; Daniele, Antonella

    2012-01-01

    Hepatocarcinogenesis is heavily influenced by chronic hepatitis B (HBV) and C (HCV) infection. Elevated levels of plasminogen activator inhibitor-1 (SERPINE1/PAI-1) have been reported in patients with hepatocellular carcinoma (HCC) associated with viral infection. The gene encoding SERPINE1 is highly polymorphic and the frequently associated 4/5 guanosine (4G/5G) polymorphism in the gene promoter may influence its expression. Here, we investigated the distribution of genotypes and the frequency of alleles of the 4G/5G polymorphism in patients with HCC, the influence of the 4G/5G polymorphism on plasma SERPINE1 levels and its association with viral infection. A total of 75 patients with HCC were enrolled: 32 (42.6%) were HBV(+)/HCV(+), 11 (14.6%) were only HCV(+), and 32 (42.6%) were negative for both viruses. A control group of healthy donors was also enrolled (n=50). SERPINE1 plasma concentrations were determined by ELISA and the detection of the promoter 4G/5G polymorphism was performed by an allele-specific PCR analysis. We found that the frequency of both the 4G/4G genotype (p=0.02) and the 4G allele (p=0.006) were significantly higher in patients with HCC compared to the control group, and particularly higher in patients with HCC co-infected with HBV(+)/HCV(+) than in those with no viral infection. We also found that patients with the 4G/4G genotype had significantly higher plasma SERPINE1 protein levels when compared with patients with the 4G/5G or 5G/5G genotype (p<0.001). Differences in frequency of 4G allele and genetic variability of 4G/5G SERPINE1 polymorphism with a higher level of SERPINE1 protein in patients with HCC with HBV(+)/HCV(+) than those without infection, suggest the presence of two distinct pathogenic mechanisms in hepatocarcinogenesis, depending on the etiology.

  16. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystalmore » structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.« less

  17. MiR-214 regulates oral cancer KB cell apoptosis through targeting RASSF5.

    PubMed

    Li, T K; Yin, K; Chen, Z; Bao, Y; Zhang, S X

    2017-03-08

    Ras association domain family member 5 (RASSF5), a member of the Ras association domain family, induces cell apoptosis by phosphorylating FOXO3a, which triggers target gene BIM (pro-apoptotic factor) activation. MiR-214 is overexpressed in oral cancer tissue, indicating its possible involvement in oral cancer pathogenesis. Bioinformatics analysis has revealed a complimentary sequence between miR-214 and the 3'-UTR of RASSF5 mRNA. However, whether miR-124 regulates RASSF5 in oral cancer remains poorly understood. We aimed to investigate the role of miR-214 in RASSF5 expression regulation in oral cancer. Tumor and paracarcinoma tissues were obtained from 48 oral cancer patients to examine miR-214 and RASSF5 expression. The relationship between miR-214 and RASSF5 was investigated by dual luciferase reporter gene assay. Oral cancer KB cells were cultured in vitro and divided into inhibitor NC, miR-214 inhibitor, Scramble-pMD18, RASSF5-pMD18, and miR-214 inhibitor + RASSF5-pMD18 groups. Caspase 3 activity, cell apoptosis, and total protein expression were measured by spectrophotometry, flow cytometry, and western blot, respectively. MiR-214 expression was significantly increased, while that of RASSF5 decreased in oral cancer tumor tissues compared to paracarcinoma tissues. Luciferase assay showed that miR-214 suppressed RASSF5 expression by targeting its 3'-UTR. Down-regulation of miR-214 and/or enhancement of RASSF5 expression markedly increased FOXO3a phosphorylation, BIM expression, caspase 3 activity, and apoptosis. In conclusion, miR-214 expression was elevated and RASSF5 was down-regulated in oral cancer. Moreover, miR-214 regulated KB cell apoptosis through targeted inhibition of RASSF5 expression, FOXO3a phosphorylation, and BIM expression, suggesting its possible application as a novel therapeutic oral cancer target.

  18. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling.

    PubMed

    Alvarez-Curto, Elisa; Inoue, Asuka; Jenkins, Laura; Raihan, Sheikh Zahir; Prihandoko, Rudi; Tobin, Andrew B; Milligan, Graeme

    2016-12-30

    G protein-coupled receptors (GPCRs) can initiate intracellular signaling cascades by coupling to an array of heterotrimeric G proteins and arrestin adaptor proteins. Understanding the contribution of each of these coupling options to GPCR signaling has been hampered by a paucity of tools to selectively perturb receptor function. Here we employ CRISPR/Cas9 genome editing to eliminate selected G proteins (Gα q and Gα 11 ) or arrestin2 and arrestin3 from HEK293 cells together with the elimination of receptor phosphorylation sites to define the relative contribution of G proteins, arrestins, and receptor phosphorylation to the signaling outcomes of the free fatty acid receptor 4 (FFA4). A lack of FFA4-mediated elevation of intracellular Ca 2+ in Gα q /Gα 11 -null cells and agonist-mediated receptor internalization in arrestin2/3-null cells confirmed previously reported canonical signaling features of this receptor, thereby validating the genome-edited HEK293 cells. FFA4-mediated ERK1/2 activation was totally dependent on G q / 11 but intriguingly was substantially enhanced for FFA4 receptors lacking sites of regulated phosphorylation. This was not due to a simple lack of desensitization of G q / 11 signaling because the G q / 11 -dependent calcium response was desensitized by both receptor phosphorylation and arrestin-dependent mechanisms, whereas a substantially enhanced ERK1/2 response was only observed for receptors lacking phosphorylation sites and not in arrestin2/3-null cells. In conclusion, we validate CRISPR/Cas9 engineered HEK293 cells lacking G q / 11 or arrestin2/3 as systems for GPCR signaling research and employ these cells to reveal a previously unappreciated interplay of signaling pathways where receptor phosphorylation can impact on ERK1/2 signaling through a mechanism that is likely independent of arrestins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Plasminogen activator inhibitor-1 5G/5G genotype is a protecting factor preventing posttransplant diabetes mellitus.

    PubMed

    Chang, Horng-Rong; Yang, Shun-Fa; Tsai, Jen-Pi; Hsieh, Ming-Chia; Wu, Sheng-Wen; Tsai, Hui-Ching; Hung, Tung-Wei; Huang, Jun-Huang; Lian, Jong-Da

    2011-01-30

    Plasminogen activator inhibitor 1 (PAI-1) is thought to play a role in the pathogenesis of obesity and insulin resistance. A connection between gestational diabetes mellitus and the functional -675 PAI-1 genotype has been reported. Therefore, we examined the role of the PAI-1 gene polymorphism in kidney transplant recipients. A total of 376 kidney transplant recipients were prospectively screened for posttransplant diabetes mellitus (PTDM). Eighty-one (21.5%) patients were diagnosed with PTDM and the other 295 patients were non-diabetic following kidney transplantation. DNA samples were isolated from the sera and analyzed for the functional -675 4G/5G promoter polymorphisms of the PAI-1 gene. Kidney transplant recipients with PTDM were significantly associated with tacrolimus use (p=0.03), older age (p=0.036), and higher body mass index (p=0.001). The genotype distribution was significantly different between the patients with PTDM (genotype 4G/4G:4G/5G:5G/5G=33.3%:60.5%:6.2%) and those without PTDM (genotype 4G/4G:4G/5G:5G/5G=36.9%:44.1%:19.0%) (p=0.018). Patients with homozygosity for 5G had a significantly lower rate of PTDM (aOR, 0.286, p=0.022) and higher cumulative event-free probability of time to PTDM (log rank test, p=0.0058). Homozygosity for the 5G allele of the PAI-1 gene constitutes a protecting factor for the development of PTDM. Our findings are similar to a previous study on gestational diabetes mellitus, and strongly support a possible genetic role of PAI-1 in the development of PTDM. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes

    PubMed Central

    Lun, Cheng Man; Samuel, Robin L.; Gillmor, Susan D.; Boyd, Anthony; Smith, L. Courtney

    2017-01-01

    The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1

  1. Comparison of hippocampal G protein activation by 5-HT(1A) receptor agonists and the atypical antipsychotics clozapine and S16924.

    PubMed

    Newman-Tancredi, A; Rivet, J-M; Cussac, D; Touzard, M; Chaput, C; Marini, L; Millan, M J

    2003-09-01

    This study employed [(35)S]guanosine 5'- O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding to compare the actions of antipsychotic agents known to stimulate cloned, human 5-HT(1A) receptors with those of reference agonists at postsynaptic 5-HT(1A) receptors. In rat hippocampal membranes, the following order of efficacy was observed (maximum efficacy, E(max), values relative to 5-HT=100): (+)8-OH-DPAT (85), flesinoxan (62), eltoprazine (60), S14506 (59), S16924 (48), buspirone (41), S15535 (22), clozapine (22), ziprasidone (21), pindolol (7), p-MPPI (0), WAY100,635 (0), spiperone (0). Despite differences in species and tissue source, the efficacy and potency (pEC(50)) of agonists (with the exception of clozapine) correlated well with those determined previously at human 5-HT(1A) receptors expressed in Chinese hamster ovary (CHO) cells. In contrast, clozapine was more potent at hippocampal membranes. The selective antagonists p-MPPI and WAY100,635 abolished stimulation of binding by (+)8-OH-DPAT, clozapine and S16924 (p-MPPI), indicating that these actions were mediated specifically by 5-HT(1A) receptors. Clozapine and S16924 also attenuated 5-HT- and (+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding, consistent with partial agonist properties. In [(35)S]GTPgammaS autoradiographic studies, 5-HT-induced stimulation, mediated through 5-HT(1A) receptors, was more potent in the septum (pEC(50) approximately 6.5) than in the dentate gyrus of the hippocampus (pEC(50) approximately 5) suggesting potential differences in coupling efficiency or G protein expression. Though clozapine (30 and 100 microM) did not enhance [(35)S]GTPgammaS labelling in any structure, S16924 (10 micro M) modestly increased [(35)S]GTPgammaS labelling in the dentate gyrus. On the other hand, both these antipsychotic agents attenuated 5-HT (10 microM)-stimulated [(35)S]GTPgammaS binding in the dentate gyrus and septum. In conclusion, clozapine, S16924 and ziprasidone act as partial agonists for G

  2. Bacterial Dose-Dependent Role of G Protein-Coupled Receptor Kinase 5 in Escherichia coli-Induced Pneumonia.

    PubMed

    Packiriswamy, Nandakumar; Steury, Michael; McCabe, Ian C; Fitzgerald, Scott D; Parameswaran, Narayanan

    2016-05-01

    G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase previously shown to mediate polymicrobial sepsis-induced inflammation. The goal of the present study was to examine the role of GRK5 in monomicrobial pulmonary infection by using an intratracheal Escherichia coli infection model of pneumonia. We used sublethal and lethal doses of E. coli to examine the mechanistic differences between low-grade and high-grade inflammation induced by E. coli infection. With a sublethal dose of E. coli, GRK5 knockout (KO) mice exhibited higher plasma CXCL1/KC levels and enhanced lung neutrophil recruitment early after infection, and lower bacterial loads, than wild-type (WT) mice. The inflammatory response was also diminished, and resolution of inflammation advanced, in the lungs of GRK5 KO mice. In contrast to the reduced bacterial loads in GRK5 KO mice following a sublethal dose, at a lethal dose of E. coli, the bacterial burdens remained high in GRK5 KO mice relative to those in WT mice. This occurred in spite of enhanced plasma CXCL1 levels as well as neutrophil recruitment in the KO mice. But the recruited neutrophils (following high-dose infection) exhibited decreased CD11b expression and reduced reactive oxygen species production, suggesting decreased neutrophil activation or increased neutrophil exhaustion in the GRK5 KO mice. In agreement with the increased bacterial burden, KO mice showed poorer survival than WT mice following E. coli infection at a lethal dose. Overall, our data suggest that GRK5 negatively regulates CXCL1/KC levels during bacterial pneumonia but that the role of GRK5 in the clinical outcome in this model is dependent on the bacterial dose. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. The G Protein α Chaperone Ric-8 as a Potential Therapeutic Target

    PubMed Central

    Papasergi, Makaía M.; Patel, Bharti R.

    2015-01-01

    Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein–coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein–protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies. PMID:25319541

  4. Strong association between a splice mutation (IVS12+5G{r_arrow}A) and haplotype 6 in hereditary tyrosinemia type I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, R.M.; St-Louis, M.; Gibson, K.

    1994-09-01

    Hereditary tyrosinemia type I (HT I; McKusick 276700) is a severe inborn error of tyrosine catabolism pathway caused by a deficiency of fumarylacetoacetate hydrolase (FAH). The highest frequency reported is the one in Saguenay-Lac St-Jean (Quebec, Canada) where 1:1,846 births are affected. The FAH gene has been cloned and several mutations have been described. Allele specific oligonucleotide (ASO) hybridization was used to examine the frequency of a splice (IVS12-5G{r_arrow}A) mutation recently reported and RFLP analysis was done to identify haplotypes related to HT I. The splice mutation was found on 45/50 alleles (90%) in patients from SLSJ and 12/66 (18%)more » alleles from patients world-wide. All 25 patients from the SLSJ region were positive with 20 being homozygous, indicating that this mutation is the major cause of HT I in French Canada. Of these 25 patients, 96% were positive for one haplotype called no 6 which is these 25 patients, 96% were positive for one haplotype called no 6 which is identified by TaqI, RsaI, BglII, MspI and KpnI digestions. These data show a really strong association between the mutation (IVS12+5G{r_arrow}A) and haplotype 6. Among our patients from around the world, {approximately}52% were positive for haplotype 6 indicating its strong relation with HT I. These results provide the rationale for DNA-based carrier testing for HT I in the F-C population at risk as well as in HT I patients in general.« less

  5. Application of RGS box proteins to evaluate G-protein selectivity in receptor-promoted signaling.

    PubMed

    Hains, Melinda D; Siderovski, David P; Harden, T Kendall

    2004-01-01

    Regulator of G-protein signaling (RGS) domains bind directly to GTP-bound Galpha subunits and accelerate their intrinsic GTPase activity by up to several thousandfold. The selectivity of RGS proteins for individual Galpha subunits has been illustrated. Thus, the expression of RGS proteins can be used to inhibit signaling pathways activated by specific G protein-coupled receptors (GPCRs). This article describes the use of specific RGS domain constructs to discriminate among G(i/o), Gq-and G(12/13)-mediated activation of phospholipase C (PLC) isozymes in COS-7 cells. Overexpression of the N terminus of GRK2 (amino acids 45-178) or p115 RhoGEF (amino acids 1-240) elicited selective inhibition of Galphaq- or Galpha(12/13)-mediated signaling to PLC activation, respectively. In contrast, RGS2 overexpression was found to inhibit PLC activation by both G(i/o)- and Gq-coupled GPCRs. RGS4 exhibited dramatic receptor selectivity in its inhibitory actions; of the G(i/o)- and Gq-coupled GPCRs tested (LPA1, LPA2, P2Y1, S1P3), only the Gq-coupled lysophosphatidic acid-activated LPA2 receptor was found to be inhibited by RGS4 overexpression.

  6. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells.

    PubMed

    Liang, Gaofeng; Kan, Shu; Zhu, Yanliang; Feng, Shuying; Feng, Wenpo; Gao, Shegan

    2018-01-01

    Exosomes are closed-membrane nanovesicles that are secreted by a variety of cells and exist in most body fluids. Recent studies have demonstrated the potential of exosomes as natural vehicles that target delivery of functional small RNA and chemotherapeutics to diseased cells. In this study, we introduce a new approach for the targeted delivery of exosomes loaded with functional miR-26a to scavenger receptor class B type 1-expressing liver cancer cells. The tumor cell-targeting function of these engineered exosomes was introduced by expressing in 293T cell hosts, the gene fusion between the transmembrane protein of CD63 and a sequence from Apo-A1. The exosomes harvested from these 293T cells were loaded with miR-26a via electroporation. The engineered exosomes were shown to bind selectively to HepG2 cells via the scavenger receptor class B type 1-Apo-A1 complex and then internalized by receptor-mediated endocytosis. The release of miR-26a in exosome-treated HepG2 cells upregulated miR-26a expression and decreased the rates of cell migration and proliferation. We also presented evidence that suggest cell growth was inhibited by miR-26a-mediated decreases in the amounts of key proteins that regulate the cell cycle. Our gene delivery strategy can be adapted to treat a broad spectrum of cancers by expressing proteins on the surface of miRNA-loaded exosomes that recognize specific biomarkers on the tumor cell.

  7. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go.

    PubMed

    García-Nafría, Javier; Nehmé, Rony; Edwards, Patricia C; Tate, Christopher G

    2018-06-20

    G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of G s to four different GPCRs have been elucidated 1-4 , but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT 1B receptor (5-HT 1B R) bound to the agonist donitriptan and coupled to an engineered G o heterotrimer. In this complex, 5-HT 1B R is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the β 2 -adrenoceptor (β 2 AR) 3 or the adenosine A 2A receptor (A 2A R) 1 in complex with G s . In contrast to the complexes with G s , the gap between the receptor and the Gβ-subunit in the G o -5-HT 1B R complex precludes molecular contacts, and the interface between the Gα-subunit of G o and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the G o α-subunit. The molecular variations between the interfaces of G o and G s in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.

  8. Cost Comparison Among Provable Data Possession Schemes

    DTIC Science & Technology

    2016-03-01

    possession,” in Proceedings of the 11th International Conference on Ap- plied Cryptography and Network Security. Berlin, Heidelberg: Springer-Verlag, 2013...curves,” in Security and Cryptography (SECRYPT), 2013 International Conference on, July 2013, pp. 1–12. [19] R. S. Kumar and A. Saxena, “Data integrity

  9. [Puerariae Lobatae Radix elevated expression levels of OB-R, IRS2, GLUT1 and GLUT2 to regulate glucose metabolism in insulin-resistance HepG2 cells].

    PubMed

    Li, Yu; Luo, Xin-Xin; Yan, Feng-Dong; Wei, Zhang-Bin; Tu, Jun

    2017-05-01

    To observe the anti-hyperglycemic effect of Puerariae Lobatae Radix in hepatocyte insulin resistance(IR) models, and investigate its preliminary molecular mechanism. IR-HepG2 cell model was stably established with 1×10-9 mol•L⁻¹ insulin plus 3.75×10-6 mol•L-1 dexamethasone treatment for 48 h according to optimized protocol in our research group. After IR-HepG2 cells were treated with different concentrations(5%,10% and 15%) of Puerariae Lobatae Radix-containing serum, cell viability was detected by CCK-8 assay; the glucose consumptions in IR-HepG2 cells were separately detected at different time points (12, 15, 18, 21, 24, 30, 36 h) by using glucose oxidase method; intracellular glycogen content was detected by anthrone method; and the protein expression levels of leptin receptor (Ob-R), insulin receptor substrate-2 (IRS2), glucose transporter 1(GLUT1) and GLUT2 were detected by Western blot assay. The results showed that Puerariae Lobatae Radix-containing serum (5%, 10% and 15%) had no significant effect on IR-HepG2 cell viability; 5% and 10% Puerariae Lobatae Radix-containing serum significantly increased glucose consumption of IR-HepG2 cells (P<0.01) at 18, 21 and 24 h; 15% Puerariae Lobatae Radix-containing serum elevated the glucose consumption of IR-HepG2 cells at 15 h (P<0.05), and significantly elevated the glucose consumption at 18, 21, 24 and 30 h (P<0.01) in a dose-dependent manner. The optimized time of anti-hyperglycemic effect was defined as 24 h, and further study showed that Puerariae Lobatae Radix-containing serum could increase intracellular glycogen content after 24 h treatment (P<0.01), and up-regulate IRS2, Ob-R, GLUT1 and GLUT2 protein expression levels. Our results indicated that Puerariae Lobatae Radix-containing serum could achieve the anti-hyperglycemic effect through important PI3K/PDK signaling pathway partially by up-regulating the expression levels of Ob-R and IRS2, GLUT1 and GLUT2 in IR-HepG2 cells, accelerating the glucose

  10. Progress toward heterologous expression of active G-protein-coupled receptors in Saccharomyces cerevisiae: Linking cellular stress response with translocation and trafficking

    PubMed Central

    O'Malley, Michelle A; Mancini, J Dominic; Young, Carissa L; McCusker, Emily C; Raden, David; Robinson, Anne S

    2009-01-01

    High-level expression of mammalian G-protein-coupled receptors (GPCRs) is a necessary step toward biophysical characterization and high-resolution structure determination. Even though many heterologous expression systems have been used to express mammalian GPCRs at high levels, many receptors are improperly trafficked or are inactive in these systems. En route to engineering a robust microbial host for GPCR expression, we have investigated the expression of 12 GPCRs in the yeast Saccharomyces cerevisiae, where all receptors are expressed at the mg/L scale. However, only the human adenosine A2a (hA2aR) receptor is active for ligand-binding and located primarily at the plasma membrane, whereas other tested GPCRs are mainly retained within the cell. Selective receptors associate with BiP, an ER-resident chaperone, and activated the unfolded protein response (UPR) pathway, which suggests that a pool of receptors may be folded incorrectly. Leader sequence cleavage of the expressed receptors was complete for the hA2aR, as expected, and partially cleaved for hA2bR, hCCR5R, and hD2LR. Ligand-binding assays conducted on the adenosine family (hA1R, hA2aR, hA2bR, and hA3R) of receptors show that hA2aR and hA2bR, the only adenosine receptors that demonstrate leader sequence processing, display activity. Taken together, these studies point to translocation as a critical limiting step in the production of active mammalian GPCRs in S. cerevisiae. PMID:19760666

  11. Overexpression of regulator of G protein signaling 11 promotes cell migration and associates with advanced stages and aggressiveness of lung adenocarcinoma.

    PubMed

    Yang, Sheng-Huei; Li, Chien-Feng; Chu, Pei-Yi; Ko, Hsiu-Hsing; Chen, Li-Tzong; Chen, Wan-Wen; Han, Chia-Hung; Lung, Jr-Hau; Shih, Neng-Yao

    2016-05-24

    Regulator of G protein signaling 11 (RGS11), a member of the R7 subfamily of RGS proteins, is a well-characterized GTPase-accelerating protein that is involved in the heterotrimeric G protein regulation of the amplitude and kinetics of receptor-promoted signaling in retinal bipolar and nerve cells. However, the role of RGS11 in cancer is completely unclear. Using subtractive hybridization analysis, we found that RGS11 was highly expressed in the lymph-node metastatic tissues and bone-metastatic tumors obtained from patients with lung adenocarcinoma. Characterization of the clinicopathological features of 91 patients showed that around 57.1% of the tumor samples displayed RGS11 overexpression that was associated with primary tumor status, nodal metastasis and increased disease stages. Its high expression was an independent predictive factor for poor prognosis of these patients. Cotransfection of guanine nucleotide-binding protein beta-5 (GNB5) markedly increased RGS11 expression. Enhancement or attenuation of RGS11 expression pinpointed its specific role in cell migration, but not in cell invasion and proliferation. Signaling events initiated by the RGS11-GNB5 coexpression activated the c-Raf/ERK/FAK-mediated pathway through upregulation of the Rac1 activity. Consistently, increasing the cell invasiveness of the transfectants by additional cotransfection of the exogenous urokinase-plasminogen activator gene caused a significant promotion in cell invasion in vitro and in vivo, confirming that RGS11 functions in cell migration, but requires additional proteolytic activity for cell and tissue invasion. Collectively, overexpression of RGS11 promotes cell migration, participates in tumor metastasis, and correlates the clinicopathological conditions of patients with lung adenocarcinoma.

  12. Gi- and Gs-coupled GPCRs show different modes of G-protein binding.

    PubMed

    Van Eps, Ned; Altenbach, Christian; Caro, Lydia N; Latorraca, Naomi R; Hollingsworth, Scott A; Dror, Ron O; Ernst, Oliver P; Hubbell, Wayne L

    2018-03-06

    More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, G s , and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR-G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin-G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, G i , using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin-G i complex, G i engages rhodopsin in a manner distinct from previous GPCR-G s structures, providing insight into specificity determinants. Copyright © 2018 the Author(s). Published by PNAS.

  13. Association of breast-fed neonatal hyperbilirubinemia with UGT1A1 polymorphisms: 211G>A (G71R) mutation becomes a risk factor under inadequate feeding.

    PubMed

    Sato, Hiroko; Uchida, Toshihiko; Toyota, Kentaro; Kanno, Miyako; Hashimoto, Taeko; Watanabe, Masashi; Nakamura, Tomohiro; Tamiya, Gen; Aoki, Kuraaki; Hayasaka, Kiyoshi

    2013-01-01

    Breastfeeding jaundice is a well-known phenomenon, but its pathogenesis is still unclear. Increased production of bilirubin, impaired hepatic uptake and metabolism of bilirubin, and increased enterohepatic circulation of bilirubin account for most cases of pathological neonatal hyperbilirubinemia. We previously reported that 211G>A (G71R) mutation of the UGT1A1 gene is prevalent in East Asians and is associated with the development of neonatal hyperbilirubinemia. Recently, significant association of G71R mutation with hyperbilirubinemia in breast-fed neonates was reported. We enrolled 401 full-term Japanese infants, who were exclusively breast-fed without supplementation of formula before developing hyperbilirubinemia, and classified them into two groups based on the degree of maximal body weight loss during the neonatal period. We analyzed the sex, gestational age, delivery mode, body weight at birth, maximal body weight loss and genotypes of G71R and (TA)(7) polymorphic mutations of UGT1A1. Statistical analysis revealed that maximal body weight loss during the neonatal period is the only independent risk factor for the development of neonatal hyperbilirubinemia. The effect of G71R mutation on neonatal hyperbilirubinemia is significant in neonates with 5% or greater maximal body weight loss and its influence increases in parallel with the degree of maximal body weight loss. Our study indicates that G71R mutation is a risk factor for neonatal hyperbilirubinemia only in infants with inadequate breastfeeding and suggests that adequate breastfeeding may overcome the genetic predisposing factor, G71R mutation, for the development of neonatal hyperbilirubinemia.

  14. Bee venom effects on ubiquitin proteasome system in hSOD1(G85R)-expressing NSC34 motor neuron cells.

    PubMed

    Kim, Seon Hwy; Jung, So Young; Lee, Kang-Woo; Lee, Sun Hwa; Cai, MuDan; Choi, Sun-Mi; Yang, Eun Jin

    2013-07-18

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from a progressive loss of motor neurons. Familial ALS (fALS) is caused by missense mutations in Cu, Zn-superoxide dismutase 1 (SOD1) that frequently result in the accumulation of mutant protein aggregates that are associated with impairments in the ubiquitin-proteasome system (UPS). UPS impairment has been implicated in many neurological disorders. Bee venom (BV) extracted from honey bees has been used as a traditional medicine for treating inflammatory diseases and has been shown to attenuate the neuroinflammatory events that occur in a symptomatic ALS animal model. NSC34 cells were transiently transfected with a WT or G85R hSOD1-GFP construct for 24 hrs and then stimulated with 2.5 μg/ml BV for 24 hrs. To determine whether a SOD1 mutation affects UPS function in NSC34 cells, we examined proteasome activity and performed western blotting and immunofluorescence using specific antibodies, such as anti-misfolded SOD1, anti-ubiquitin, anti-GRP78, anti-LC3, and anti-ISG15 antibodies. We found that GFP-hSOD1G85R overexpression induced SOD1 inclusions and reduced proteasome activity compared with the overexpression of GFP alone in NSC34 motor neuronal cells. In addition, we also observed that BV treatment restored proteasome activity and reduced the accumulation of ubiquitinated and misfolded SOD1 in GFP-hSOD1G85R-overexpressing NSC34 motor neuronal cells. However, BV treatment did not activate the autophagic pathway in these cells. Our findings suggest that BV may rescue the impairment of the UPS in ALS models.

  15. miR-758-5p regulates cholesterol uptake via targeting the CD36 3'UTR.

    PubMed

    Li, Bi-Rong; Xia, Lin-Qin; Liu, Jing; Liao, Lin-Ling; Zhang, Yang; Deng, Min; Zhong, Hui-Juan; Feng, Ting-Ting; He, Ping-Ping; Ouyang, Xin-Ping

    2017-12-09

    miR-758-3p plays an important role via regulting ABCA1-mediated cholesterol efflux in atherosclerosis. However, the mechanism of miR-758-5p in cholesterol metabolism is still unclear. Here, we revealed that miR-758-5p decreased total cholesterol accumulation in THP-1 macrophage derived foam cells through markedly reducing cholesterol uptake, and no effect on the cholesterol efflux. Interestingly, computational analysis suggests that CD36 may be a target gene of miR-758-5p. Our study further demonstrated that miR-758-5p decreased CD36 expression at both protein and mRNA levels via targeting the CD36 3'UTR in THP-1 macrophage derived foam cells. The present present study concluded that miR-758-5p decreases lipid accumulation of foam cell via regulating CD36-mediated the cholesterol uptake. Therefore, targeting miR-758-5p may offer a promising strategy to treat atherosclerotic vascular disease. Copyright © 2017. Published by Elsevier Inc.

  16. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  17. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice.

    PubMed

    Nogueira, Raquel Tayar; Sahi, Vincent; Huang, Jing; Tsuji, Moriya

    2017-08-01

    Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Circulating microRNA miR-21-5p, miR-150-5p and miR-30e-5p correlate with clinical status in late onset myasthenia gravis.

    PubMed

    Sabre, Liis; Maddison, Paul; Sadalage, Girija; Ambrose, Philip Alexander; Punga, Anna Rostedt

    2018-05-08

    There are no biomarkers for late onset myasthenia gravis (LOMG; onset >50 years). We evaluated circulating microRNA in a discovery cohort of 4 LOMG patients and 4 healthy controls and in a prospective diagnostic validation cohort of 73 LOMG patients (48 male) with longitudinal follow-up samples. In immunosuppression naïve patients, levels of miRNAs miR-150-5p, miR-21-5p and miR-30e-5p decreased in parallel with clinical improvement after initiation of immunosuppression and their levels positively correlated with the clinical MG composite score. Levels of miR-150-5p and miR-21-5p were lower in patients with ocular compared to generalized LOMG. Circulating miR-150-5p, miR-21-5p and miR-30e-5p correlate with the clinical course in LOMG. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    PubMed

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  20. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP)

    PubMed Central

    Kamina, Anyango D.; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains’ interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP. PMID:28542332

  1. Discovery of Nanomolar Desmuramylpeptide Agonists of the Innate Immune Receptor Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Possessing Immunostimulatory Properties.

    PubMed

    Gobec, Martina; Tomašič, Tihomir; Štimac, Adela; Frkanec, Ruža; Trontelj, Jurij; Anderluh, Marko; Mlinarič-Raščan, Irena; Jakopin, Žiga

    2018-04-12

    Muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, has long been known as the smallest fragment possessing adjuvant activity, on the basis of its agonistic action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). There is a pressing need for novel adjuvants, and NOD2 agonists provide an untapped source of potential candidates. Here, we report the design, synthesis, and characterization of a series of novel acyl tripeptides. A pivotal structural element for molecular recognition by NOD2 has been identified, culminating in the discovery of compound 9, the most potent desmuramylpeptide NOD2 agonist to date. Compound 9 augmented pro-inflammatory cytokine release from human peripheral blood mononuclear cells in synergy with lipopolysaccharide. Furthermore, it was able to induce ovalbumin-specific IgG titers in a mouse model of adjuvancy. These findings provide deeper insights into the structural requirements of desmuramylpeptides for NOD2-activation and highlight the potential use of NOD2 agonists as adjuvants for vaccines.

  2. Light bending in F [ g (□) R ] extended gravity theories

    NASA Astrophysics Data System (ADS)

    Giacchini, Breno L.; Shapiro, Ilya L.

    2018-05-01

    We show that in the weak field limit the light deflection alone cannot distinguish between different R + F [ g (□) R ] models of gravity, where F and g are arbitrary functions. This does not imply, however, that in all these theories an observer will see the same deflection angle. Owed to the need to calibrate the Newton constant, the deflection angle may be model-dependent after all necessary types of measurements are taken into account.

  3. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    PubMed

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-08

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  4. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    PubMed Central

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis. PMID:28401063

  5. Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex.

    PubMed

    Pandya, Nikhil J; Klaassen, Remco V; van der Schors, Roel C; Slotman, Johan A; Houtsmuller, Adriaan; Smit, August B; Li, Ka Wan

    2016-10-01

    The group 1 metabotropic glutamate receptors 1 and 5 (mGluR1/5) have been implicated in mechanisms of synaptic plasticity and may serve as potential therapeutic targets in autism spectrum disorders. The interactome of group 1 mGluRs has remained largely unresolved. Using a knockout-controlled interaction proteomics strategy we examined the mGluR5 protein complex in two brain regions, hippocampus and cortex, and identified mGluR1 as its major interactor in addition to the well described Homer proteins. We confirmed the presence of mGluR1/5 complex by (i) reverse immunoprecipitation using an mGluR1 antibody to pulldown mGluR5 from hippocampal tissue, (ii) coexpression in HEK293 cells followed by coimmunoprecipitation to reveal the direct interaction of mGluR1 and 5, and (iii) superresolution microscopy imaging of hippocampal primary neurons to show colocalization of the mGluR1/5 in the synapse. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    PubMed

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gα i3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis.

    PubMed

    Wu, Huali; Zhao, Yucheng; Huang, Qiaoling; Cai, Minxuan; Pan, Qi; Fu, Mengsi; An, Xiaohong; Xia, Zhenjiang; Liu, Meng; Jin, Yu; He, Ling; Shang, Jing

    2018-06-01

    Substance P (SP) is a candidate mediator along the brain-skin axis and can mimic the effects of stress to regulate melanogenesis. Previously, we and others have found that the regulation of SP for pigmentary function was mediated by neurokinin 1 receptor (NK1R). Emerging evidence has accumulated that psychologic stress can induce dysfunction in the cutaneous serotonin 5-hydroxytryptamine (5-HT)-5-HT1A/1B receptor system, thereby resulting in skin hypopigmentation. Moreover, NK1R and 5-HTR (except 5-HT3) belong to GPCR. The present study aimed at assessing the possible existence of NK1R-5-HTR interactions and related melanogenic functions. Western blot and PCR detection revealed that SP reduced expression of 5-HT1A receptor via the NK1 receptor. Biochemical analyses showed that NK1R and 5-HT1AR could colocalize and interact in a cell and in the skin. When the N terminus of the NK1R protein was removed NK1R surface targeting was prevented, the interaction between NK1R-5-HT1AR decreased, and the depigmentation caused by SP and WAY100635 could be rescued. Importantly, pharmaceutical coadministration of NK1R agonist (SP) and 5-HT1A antagonist (WAY100635) enhanced the NK1-5-HT1A receptor coimmunoprecipitation along with the depigmentary response. SP and WAY100635 cooperation elicited activation of a signaling cascade (the extracellular, regulated protein kinase p-JNK signaling pathway) and inhibition of p70S6K1 phosphorylation and greatly reduced melanin production in vitro and in vivo in mice and zebrafish. Moreover, the SP-induced depigmentation response did not be occur in 5-htr1aa +/- zebrafish embryos. Taken together, the results of our systemic study increases our knowledge of the roles of NK1R and 5-HT1AR in melanogenesis and provides possible, novel therapeutic strategies for treatment of skin hypo/hyperpigmentation.-Wu, H., Zhao, Y., Huang, Q., Cai, M., Pan, Q., Fu, M., An, X., Xia, Z., Liu, M., Jin, Y., He, L., Shang, J. NK1R/5-HT1AR interaction is related to

  8. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    PubMed

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  9. Probing heterotrimeric G protein activation: applications to biased ligands

    PubMed Central

    Denis, Colette; Saulière, Aude; Galandrin, Ségolène; Sénard, Jean-Michel; Galés, Céline

    2012-01-01

    Cell surface G protein-coupled receptors (GPCRs) drive numerous signaling pathways involved in the regulation of a broad range of physiologic processes. Today, they represent the largest target for modern drugs development with potential application in all clinical fields. Recently, the concept of “ligand-directed trafficking” has led to a conceptual revolution in pharmacological theory, thus opening new avenues for drug discovery. Accordingly, GPCRs do not function as simple on-off switch but rather as filters capable of selecting activation of specific signals and thus generating textured responses to ligands, a phenomenon often referred to as ligand-biased signaling. Also, one challenging task today remains optimization of pharmacological assays with increased sensitivity so to better appreciate the inherent texture of ligand responses. However, considering that a single receptor has pleiotropic signalling properties and that each signal can crosstalk at different levels, biased activity remains thus difficult to evaluate. One strategy to overcome these limitations would be examining the initial steps following receptor activation. Even if some G protein-independent functions have been recently described, heterotrimeric G protein activation remains a general hallmark for all GPCRs families and the first cellular event subsequent to agonist binding to the receptor. Herein, we review the different methodologies classically used or recently developed to monitor G protein activation and discuss them in the context of G protein biased -ligands. PMID:22229559

  10. DrsG from Streptococcus dysgalactiae subsp. equisimilis Inhibits the Antimicrobial Peptide LL-37

    PubMed Central

    Smyth, Danielle; Cameron, Ainslie; Davies, Mark R.; McNeilly, Celia; Hafner, Louise; Sriprakash, Kadaba S.

    2014-01-01

    SIC and DRS are related proteins present in only 4 of the >200 Streptococcus pyogenes emm types. These proteins inhibit complement-mediated lysis and/or the activity of certain antimicrobial peptides (AMPs). A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp. equisimilis. Here we show that geographically dispersed isolates representing 14 of 50 emm types examined possess variants of drsG. However, not all isolates within the drsG-positive emm types possess the gene. Sequence comparisons also revealed a high degree of conservation in different S. dysgalactiae subsp. equisimilis emm types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatants. Unlike SIC, but similar to DRS, DrsG does not inhibit complement-mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelicidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. Conservation of prolines in the C-terminal region also suggests that these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP-inhibitory protein in S. dysgalactiae subsp. equisimilis and suggests that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of the complement-inhibitory activity of SIC may reflect its continuing evolution. PMID:24664506

  11. Influence of continuous intervention on growth and metastasis of human cervical cancer cells and expression of RNAmiR-574-5p.

    PubMed

    Ma, D L; Li, J Y; Liu, Y E; Liu, C M; Li, J; Lin, G Z; Yan, J

    2016-01-01

    This study was carried out to acquire solid evidence that some common treatments could affect micro ribonucleic acids (miRNAs) by revealing the regulatory effect of genes, so as to provide a reference for further exploration of the prevention and treatment of cervical cancer. Nude mouse tumorigenicity assay was used to study the effect of inhibiting miR-574-5p on development and tumorigenic ability of Henrietta Lacks (HeLa) tumor. Cell wound scratch assay, flow cytometry and real-time quantitative polymerase chain reaction (RT-qPCR) were adopted to study the effects of anoxia and temperature, etc., on expression of miR-574-5p and QKI in HeLa as well as on the clone and migration ability of cells, to provide prevention and treatment of cervical cancer with new ideas and evidence. The results demonstrated that cervical cancer tissues had a significantly increased miR-574-5p expression compared with para-carcinoma tissues; conversely, Gomafu, overall QKI (pan-QKI) and QKI-5 messenger ribonucleic acid (mRNA) and protein expression all decreased. Part of the common nursing methods had a certain influence on miR-574-5p expression, HeLa reproduction and metastasis, and even cell cycle. For example, ultraviolet (UV) irradiation was effective in decreasing miR-574-5p expression of HeLa and inhibiting cell migration; severe hypoxia significantly decreased the survival rate of HeLa, leading to the increase of programmed death percentage and cell ratio in G2/M phase as well as the decrease of cell ratio in G1 phase. Incubation at different temperatures also affected miR-574-5p expression and cell proliferation. Thus, it can be known that miR-574-5p, Gomafu and QKI expression in cervical cancer tissues and para-carcinoma tissues are significantly up-regulated or down-regulated. Some treatments, such as UV irradiation, hypoxia, incubation temperatures, etc., can affect miR-574-5p expression and HeLa proliferation as well as metastases in different degrees. These findings provide

  12. Bidirectional signaling between TM4SF5 and IGF1R promotes resistance to EGFR kinase inhibitors.

    PubMed

    Choi, Jungeun; Kang, Minkyung; Nam, Seo Hee; Lee, Gyu-Ho; Kim, Hye-Jin; Ryu, Jihye; Cheong, Jin Gyu; Jung, Jae Woo; Kim, Tai Young; Lee, Ho-Young; Lee, Jung Weon

    2015-10-01

    The membrane glycoprotein TM4SF5 (transmembrane 4 L6 family member 5), which is similar to the tetraspanins, is highly expressed in different cancers and causes epithelial-mesenchymal transition (EMT). TM4SF5 interacts with other membrane proteins during its pro-tumorigenic roles, presumably at tetraspanin-enriched microdomains (TEMs/TERMs). Here, we explored TM4SF5-mediated resistance against the clinically important EGFR kinase inhibitors, with regards to cooperation with other membrane proteins, particularly the insulin-like growth factor 1 receptor (IGF1R). Using cancer cells including NSCLC with TM4SF5 overexpression or IGF1R suppression in either normal 2 dimensional (2D), 3D aqueous spheroids, or 3D collagen I gels systems, the sensitivity to tyrosine kinase inhibitors (TKIs) were evaluated. We found that TM4SF5 and IGF1R transcriptionally modulated one another, with each protein promoting the expressions of the other. Expression of TM4SF5 in gefitinib-sensitive HCC827 cells caused resistance to erlotinib and gefitinib, but not to sorafenib [a platelet derived growth factor receptor (PDGFR) inhibitor]; whereas suppression of IGF1R from gefitinib-resistant NCI-H1299 cells caused enhanced sensitization to the inhibitors. Expression of TM4SF5 and IGF1R in the drug-sensitive cells promoted signaling activities of extracellular signal-regulated kinases (ERKs), protein kinase B (Akt), and S6 kinase (S6K), and resulted in a higher residual EGFR activity, even after EGFR kinase inhibitor treatment. Complex formation between TM4SF5 and IGF1R was observed, and also included EGFR, dependent on TM4SF5 expression. The TM4SF5-mediated drug resistance was further confirmed in an aqueous 3D spheroid system or upon being embedded in 3D extracellular matrix (ECM)-surrounded gel systems. Collectively, these data suggest that anti-TM4SF5 reagents may be combined with the EGFR kinase inhibitors to enhance the efficacy of chemotherapies against NSCLC. Copyright © 2015 Elsevier

  13. Auto-phosphorylation Represses Protein Kinase R Activity.

    PubMed

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  14. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization.

    PubMed

    Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan

    2018-07-04

    The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.

  15. Renormalization group procedure for potential -g/r2

    NASA Astrophysics Data System (ADS)

    Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.

    2018-02-01

    Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.

  16. Analysis of R213R and 13494 g-->a polymorphisms of the p53 gene in individuals with esophagitis, intestinal metaplasia of the cardia and Barrett's Esophagus compared with a control group.

    PubMed

    Pilger, Diogo André; Lopez, Patrícia Luciana da Costa; Segal, Fábio; Leistner-Segal, Sandra

    2007-01-01

    Protein p53 is the tumor suppressor involved in cell cycle control and apoptosis. There are several polymorphisms reported for p53 which can affect important regions involved in protein tumor suppressor activity. Amongst the polymorphisms described, R213R and 13949 g-->a are rarely studied, with an estimate frequency not yet available for the Brazilian population. The purpose of this study was to investigate the genotype and allele frequencies and associations of these polymorphisms in a group of patients with altered esophageal tissue from South Brazil and compare with the frequency observed for a control population. A total of 35 patients for R213R and 45 for 13494 g-->a polymorphisms analysis with gastroesophageal reflux disease (GERD) symptoms diagnosed by upper digestive endoscopy and confirmed by biopsy were studied. For both groups, 100 controls were used for comparison. Loss of heterozygosity (LOH) was also analyzed for a selected group of patients where normal and affected tissue was available. There was one patient with Barrett's Esophagus (BE) showing LOH for R213R out of two heterozygous samples analyzed and two patients (esophagitis and BE) for 13494 g-->a polymorphism. We also aimed to build a haplotype for both polymorphisms collectively analyzed with R27P polymorphism, previously reported by our group. There were no significant differences in allele and genotype distribution between patients and controls. Although using esophagitis, intestinal metaplasia of the cardia and BE samples, all non-neoplastic lesions, we can conclude that these sites do not represent genetic susceptibility markers for the development and early progression of GERD to BE and esophageal cancer. Additional studies are required in order to investigate other determiners of early premalignant lesions known to predispose to esophageal cancer.

  17. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells.

    PubMed

    Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter

    2016-04-01

    Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.

  18. Dephosphorylation of HuR Protein during Alphavirus Infection Is Associated with HuR Relocalization to the Cytoplasm*

    PubMed Central

    Dickson, Alexa M.; Anderson, John R.; Barnhart, Michael D.; Sokoloski, Kevin J.; Oko, Lauren; Opyrchal, Mateusz; Galanis, Evanthia; Wilusz, Carol J.; Morrison, Thomas E.; Wilusz, Jeffrey

    2012-01-01

    We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3′ untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3′ UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3′ UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein. PMID:22915590

  19. rTANDEM, an R/Bioconductor package for MS/MS protein identification.

    PubMed

    Fournier, Frédéric; Joly Beauparlant, Charles; Paradis, René; Droit, Arnaud

    2014-08-01

    rTANDEM is an R/Bioconductor package that interfaces the X!Tandem protein identification algorithm. The package can run the multi-threaded algorithm on proteomic data files directly from R. It also provides functions to convert search parameters and results to/from R as well as functions to manipulate parameters and automate searches. An associated R package, shinyTANDEM, provides a web-based graphical interface to visualize and interpret the results. Together, those two packages form an entry point for a general MS/MS-based proteomic pipeline in R/Bioconductor. rTANDEM and shinyTANDEM are distributed in R/Bioconductor, http://bioconductor.org/packages/release/bioc/. The packages are under open licenses (GPL-3 and Artistice-1.0). frederic.fournier@crchuq.ulaval.ca or arnaud.droit@crchuq.ulaval.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol

    2006-10-06

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus ofmore » G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus.« less

  1. Polycomb-like proteins link the PRC2 complex to CpG islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haojie; Liefke, Robert; Jiang, Junyi

    The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and has essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like (PCL) proteins, such as PHF1, MTF2 and PHF19, are PRC2-associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate the enzymatic activity of PRC2 or the recruitment of PRC2 to specific genomic loci4,5,6,7,8,9,10,11,12,13. Mammalian PRC2-binding sites are enriched in CG content, which correlates with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood.more » Here we solve the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We show that the extended homologous regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a completely different manner from the canonical winged-helix DNA recognition motif. We also show that the PCL extended homologous domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic stem cells. Our research provides the first, to our knowledge, direct evidence to demonstrate that PCL proteins are crucial for PRC2 recruitment to CpG islands, and further clarifies the roles of these proteins in transcriptional regulation in vivo.« less

  2. The combination of ezetimibe and ursodiol promotes fecal sterol excretion and reveals a G5G8-independent pathway for cholesterol elimination[S

    PubMed Central

    Wang, Yuhuan; Liu, Xiaoxi; Pijut, Sonja S.; Li, Jianing; Horn, Jamie; Bradford, Emily M.; Leggas, Markos; Barrett, Terrence A.; Graf, Gregory A.

    2015-01-01

    Previous studies suggest an interdependent relationship between liver and intestine for cholesterol elimination from the body. We hypothesized that a combination of ursodiol (Urso) and ezetimibe (EZ) could increase biliary secretion and reduce cholesterol reabsorption, respectively, to promote cholesterol excretion. Treatment with Urso increased hepatic ABCG5 ABCG8 (G5G8) protein and both biliary and fecal sterols in a dose-dependent manner. To determine whether the drug combination (Urso-EZ) further increased cholesterol excretion, mice were treated with Urso alone or in combination with two doses of EZ. EZ produced an additive and dose-dependent increase in fecal neutral sterol (FNS) elimination in the presence of Urso. Finally, we sequentially treated wide-type and G5G8-deficient mice with Urso and Urso-EZ to determine the extent to which these effects were G5G8 dependent. Although biliary and FNS were invariably lower in G5G8 KO mice, the relative increase in FNS following treatment with Urso alone or the Urso-EZ combination was not affected by genotype. In conclusion, Urso increases G5G8, biliary cholesterol secretion, and FNS and acts additively with EZ to promote fecal sterol excretion. However, the stimulatory effect of these agents was not G5G8 dependent. PMID:25635125

  3. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease.

    PubMed

    Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E

    2015-01-01

    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.

  4. Global fibrinolytic activity, PAI-1 level, and 4G/5G polymorphism in Thai children with arterial ischemic stroke.

    PubMed

    Natesirinilkul, Rungrote; Sasanakul, Werasak; Chuansumrit, Ampaiwan; Kadegasem, Praguywan; Visudtibhan, Anannit; Wongwerawattanakoon, Pakawan; Sirachainan, Nongnuch

    2014-01-01

    Prolonged euglobulin clot lysis time (ECLT) and increased level of plasminogen activator inhibitor-1 (PAI-1) were reported to be risk factors of arterial ischemic stroke (AIS) by some studies; however, these findings were not supported by other studies. The objective of this study was to determine the association of ECLT, PAI-1 level, and polymorphisms of 4G and 5G of PAI-1 gene to the development of AIS in Thai children. This study included patients aged 1-18 years old. Diagnosis of AIS was confirmed by imaging study. The control group was age- and sex-matched healthy subjects. Demographic data were recorded, and blood was tested for ECLT, PAI-1 level, lipid profiles, fasting blood sugar (FBS), and 4G and 5G polymorphisms of PAI-1 gene. There were 70 subjects participating in this study, consisting of 30 patients and 40 controls. Demographic data, lipid profiles, and FBS were similar between the 2 groups. Furthermore, ECLT and PAI-1 level did not differ between patient and control groups; however, both showed significant correlation (r = .352, P = .006). The 4G/5G polymorphism was the most common genotype in both patient and control groups (69.0% vs. 80.0%). However, 4G and 5G polymorphisms of PAI-1 gene did not correlate with PAI-1 level in this study (P = .797). The PAI-1 level and 4G/5G polymorphism may not be a risk factor of AIS in this population. It was also found that the 4G/5G polymorphism was the most common PAI-1 genotype in this study. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    PubMed

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  6. Protein- and DNA-based anthrax toxin vaccines confer protection in guinea pigs against inhalational challenge with Bacillus cereus G9241.

    PubMed

    Palmer, John; Bell, Matt; Darko, Christian; Barnewall, Roy; Keane-Myers, Andrea

    2014-11-01

    In the past decade, several Bacillus cereus strains have been isolated from otherwise healthy individuals who succumbed to bacterial pneumonia presenting symptoms resembling inhalational anthrax. One strain was indistinguishable from B. cereus G9241, previously cultured from an individual who survived a similar pneumonia-like illness and which was shown to possess a complete set of plasmid-borne anthrax toxin-encoding homologs. The finding that B. cereus G9241 pathogenesis in mice is dependent on pagA1-derived protective antigen (PA) synthesis suggests that an anthrax toxin-based vaccine may be effective against this toxin-encoding B. cereus strain. Dunkin Hartley guinea pigs were immunized with protein- and DNA-based anthrax toxin-based vaccines, immune responses were evaluated and survival rates were calculated after lethal aerosol exposure with B. cereus G9241 spores. Each vaccine induced seroconversion with the protein immunization regimen eliciting significantly higher serum levels of antigen-specific antibodies at the prechallenge time-point compared with the DNA-protein prime-boost immunization schedule. Complete protection against lethal challenge was observed in all groups with a detectable prechallenge serum titer of toxin neutralizing antibodies. For the first time, we demonstrated that the efficacy of fully defined anthrax toxin-based vaccines was protective against lethal B. cereus G9241 aerosol challenge in the guinea pig animal model. Published 2014. This article is a US Government work and is in the public domain in the USA.

  7. Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis

    PubMed Central

    Giunti, Laura; da Ros, Martina; Vinci, Serena; Gelmini, Stefania; Iorio, Anna Lisa; Buccoliero, Anna Maria; Cardellicchio, Stefania; Castiglione, Francesca; Genitori, Lorenzo; de Martino, Maurizio; Giglio, Sabrina; Genuardi, Maurizio; Sardi, Iacopo

    2015-01-01

    Various signal transduction pathways seem to be involved in chemoresistance mechanism of glioblastomas (GBMs). miR-21 is an important oncogenic miRNA which modulates drug resistance of tumor cells. We analyzed the expression of 5 miRNAs, previously found to be dysregulated in high grade gliomas, in 9 pediatric (pGBM) and in 5 adult (aGBM) GBMs. miR-21 was over-expressed, with a significant difference between pGBMs and aGBMs represented by a 4 times lower degree of expression in the pediatric compared to the adult series (p = 0.001). Doxorubicin (Dox) seems to be an effective anti-glioma agent with high antitumor activity also against glioblastoma stem cells. We therefore evaluated the chemosensitivity to Dox in 3 GBM cell lines (A172, U87MG and T98G). Dox had a cytotoxic effect after 48 h of treatment in A172 and U87MG, while T98G cells were resistant. TUNEL assay verified that Dox induced apoptosis in A172 and U87MG but not in T98G. miR-21 showed a low basal expression in treated cells and was over-expressed in untreated cells. To validate the possible association of miR-21 with drug resistance of T98G cells, we transfected anti-miR-21 inhibitor into the cells. The expression level of miR-21 was significantly lower in T98G transfected cells (than in the parental control cells). Transfected cells showed a high apoptotic rate compared to control after Dox treatment by TUNEL assay, suggesting that combined Dox and miR-21 inhibitor therapy can sensitize GBM resistant cells to anthracyclines by enhancing apoptosis. PMID:25628933

  8. Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13.

    PubMed

    Che, Yuanyuan; Lu, Yinghu; Zha, Xiangdong; Huang, Huoqing; Yang, Peilong; Ma, Lijuan; Xu, Xuejiao

    2016-03-01

    G13 is a 19-residue cationic antimicrobial peptide derived from granulysin. In order to achieve high-level expression of G13 in Escherichia coli cells, and to reduce downstream processing costs, we introduced an Asp-Pro acid labile bond between the His-Patch thioredoxin and G13 and constructed the recombinant plasmid pThiohisA-DP-G13. The plasmid was transformed into E. coli BL21 (DE3). After induction with isopropyl-β-d-thiogalactopyranoside for 5 h, the fusion protein accumulated up to 200 mg/L in soluble form. The fusion protein was released by a high pressure homogenizer, cleaved using 13% acetic acid at 50 °C hydrolysis for 72 h. The recombinant G13 (r-G13) was then successively purified by fractional precipitation with ammonium sulfate and trichloroacetic acid, followed by one-step cation exchange chromatography. The purified r-G13 displayed a single band (about 2.2 kDa) as analyzed by Tris-Tricine buffered SDS-PAGE, and its precise molecular weight was confirmed using tandem mass spectrometry. Analysis of r-G13 by circular dichroism (CD) indicated that r-G13 contained predominantly β-sheet and random coil. Agar plate diffusion assay revealed that the r-G13 exhibited antibacterial activity against both Bacillus subtilis and E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cy5 total protein normalization in Western blot analysis.

    PubMed

    Hagner-McWhirter, Åsa; Laurin, Ylva; Larsson, Anita; Bjerneld, Erik J; Rönn, Ola

    2015-10-01

    Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neutrophil extracellular traps possess anti-human respiratory syncytial virus activity: Possible interaction with the viral F protein.

    PubMed

    Souza, Priscila Silva Sampaio; Barbosa, Lia Vezenfard; Diniz, Larissa Figueiredo Alves; da Silva, Gabriel Soares; Lopes, Bruno Rafael Pereira; Souza, Pedro Miyadaira Ribeiro; de Araujo, Gabriela Campos; Pessoa, Diogo; de Oliveira, Juliana; Souza, Fátima Pereira; Toledo, Karina Alves

    2018-06-02

    Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract, and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. The airways of patients infected with hRSV exhibit intense neutrophil infiltration, which is responsible for the release of neutrophil extracellular traps (NETs). These are extracellular structures consisting of DNA associated with intracellular proteins, and are efficient in capturing and eliminating various microorganisms, including some viruses. hRSV induces the release of NETs into the lung tissue of infected individuals; however, the pathophysiological consequences of this event have not been elucidated. The objective of this study was to utilize in vitro and in silico assays to investigate the impact of NETs on hRSV infection. NETs, generated by neutrophils stimulated with phorbol myristate acetate (PMA), displayed long fragments of DNA and an electrophoretic profile suggestive of the presence of proteins that are classically associated with these structures (elastase, cathepsin G, myeloperoxidase, and histones). The presence of NETs (>2 μg/ml) in HEp-2 cell culture medium resulted in cellular cytotoxicity of less than 50%. Pre-incubation (1 h) of viral particles (multiplicity of infection (MOI) values of 0.1, 0.5, and 1.0) with NETs (2-32 μg/ml) resulted in cellular protection from virus-induced death of HEp-2 cells. Concurrently, there was a reduction in the formation of syncytia, which is related to decreased viral spread in infected tissue. Results from western blotting and molecular docking, suggest interactions between F protein of the hRSV viral envelope and BPI (bactericidal permeability-increasing protein), a microbicidal member of NETs. Interactions occurred at sites important for the neutralization and coordination of the hRSV infection/replication process. Our results

  11. MARK1 is a Novel Target for miR-125a-5p: Implications for Cell Migration in Cervical Tumor Cells.

    PubMed

    Natalia, Martinez-Acuna; Alejandro, Gonzalez-Torres; Virginia, Tapia-Vieyra Juana; Alvarez-Salas, Luis Marat

    2018-01-01

    Aberrant miRNA expression is associated with the development of several diseases including cervical cancer. Dysregulation of miR-125a-5p is present in a plethora of tumors, but its role in cervical cancer is not well understood. The aim was to analyze the expression profile of miR-125a-5p in tumor and immortal cell lines with further target prediction, validation and function analysis. MiR-125a-5p expression was determined by real-time RT-PCR from nine cervical cell lines. In silico tools were used to find target transcripts with an miR-125-5p complementary site within the 3'UTR region. Further target selection was based on gene ontology annotation and ΔG analysis. Target validation was performed by transfection of synthetic miR-125a-5p mimics and luciferase assays. Functional evaluation of miR-125a-5p on migration was performed by transwell migration assays. Differential miR-125a-5p expression was observed between immortal and tumor cells regardless of the human papillomavirus (HPV) content. Thermodynamic and ontological analyses showed Microtubule-Affinity-Regulating Kinase1 (MARK1) as a putative target for miR-125a-5p. An inverse correlation was observed among miR-125a-5p expression and MARK1 protein levels in tumor but not in immortal cells. Luciferase assays showed direct miR-125a-5p regulation over MARK1 through recognition of a predicted target site within the 3'-UTR. HeLa and C-33A cervical tumor cells enhanced migration after transfection with miR-125a-5p mimics and stimulation of cell migration was reproduced by siRNA-mediated inhibition of MARK1. The results showed MARK1 as a novel functional target for miR-125a-5p with implications on cell migration of tumor cervical cancer cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Individual ball possession in soccer

    PubMed Central

    Hoernig, Martin

    2017-01-01

    This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC), Individual Ball Action (IBA), Individual Ball Control (IBC), Team Ball Possession (TBP), Team Ball Control (TBC) und Team Playmaking (TPM) according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min) and the longest for goalkeepers (1:38 ± 0:58 min), central defenders (1:38 ± 1:09 min) and central midfielders (1:27 ± 1:08 min). The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession. PMID:28692649

  13. Regulation of the Src homology 2-containing inositol 5-phosphatase SHIP1 in HIP1/PDGFbeta R-transformed cells.

    PubMed

    Saint-Dic, D; Chang, S C; Taylor, G S; Provot, M M; Ross, T S

    2001-06-15

    It has been shown previously that the Huntingtin interacting protein 1 gene (HIP1) was fused to the platelet-derived growth factor beta receptor gene (PDGFbetaR) in leukemic cells of a patient with chronic myelomonocytic leukemia. This resulted in the expression of the chimeric HIP1/PDGFbetaR protein, which oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the Ba/F3 murine hematopoietic cell line to interleukin-3-independent growth. Tyrosine phosphorylation of a 130-kDa protein (p130) correlates with transformation by HIP1/PDGFbetaR and related transforming mutants. We report here that the p130 band is immunologically related to the 125-kDa isoform of the Src homology 2-containing inositol 5-phosphatase, SHIP1. We have found that SHIP1 associates and colocalizes with the HIP1/PDGFbetaR fusion protein and related transforming mutants. These mutants include a mutant that has eight Src homology 2-binding phosphotyrosines mutated to phenylalanine. In contrast, SHIP1 does not associate with H/P(KI), the kinase-dead form of HIP1/PDGFbetaR. We also report that phosphorylation of SHIP1 by HIP1/PDGFbetaR does not change its 5-phosphatase-specific activity. This suggests that phosphorylation and possible PDGFbetaR-mediated sequestration of SHIP1 from its substrates (PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4)) might alter the levels of these inositol-containing signal transduction molecules, resulting in activation of downstream effectors of cellular proliferation and/or survival.

  14. Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins.

    PubMed

    Kutin, Yuri; Srinivas, Vivek; Fritz, Matthieu; Kositzki, Ramona; Shafaat, Hannah S; Birrell, James; Bill, Eckhard; Haumann, Michael; Lubitz, Wolfgang; Högbom, Martin; Griese, Julia J; Cox, Nicholas

    2016-09-01

    A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of Mn II and Fe II . Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess Mn II promotes heterobimetallic cofactor assembly. In the absence of Fe II , R2c cooperatively binds Mn II at both metal sites, whereas R2lox does not readily bind Mn II at either site. Heterometallic cofactor assembly is favored at substoichiometric Fe II concentrations in R2lox. Fe II and Mn II likely bind to the protein in a stepwise fashion, with Fe II binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of Mn II by Fe II at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular Mn II /Fe II concentrations in the host organisms from which they were isolated. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The calcium-sensing receptor and its interacting proteins

    PubMed Central

    Huang, Chunfa; Miller, R Tyler

    2007-01-01

    Abstract Seven membrane-spanning, or G protein-coupled receptors were originally thought to act through het-erotrimeric G proteins that in turn activate intracellular enzymes or ion channels, creating relatively simple, linear signalling pathways. Although this basic model remains true in that this family does act via a relatively small number of G proteins, these signalling systems are considerably more complex because the receptors interact with or are located near additional proteins that are often unique to a receptor or subset of receptors. These additional proteins give receptors their unique signalling ‘personalities’. The extracellular Ca-sensing receptor (CaR) signals via Gαi, Gαq and Gα12/13, but its effects in vivo demonstrate that the signalling pathways controlled by these subunits are not sufficient to explain all its biologic effects. Additional structural or signalling proteins that interact with the CaR may explain its behaviour more fully. Although the CaR is less well studied in this respect than other receptors, several CaR-interacting proteins such as filamin, a potential scaffolding protein, receptor activity modifying proteins (RAMPs) and potassium channels may contribute to the unique characteristics of the CaR. The CaR also appears to interact with additional proteins common to other G protein-coupled receptors such as arrestins, G protein receptor kinases, protein kinase C, caveolin and proteins in the ubiquitination pathway. These proteins probably represent a few initial members of CaR-based signalling complex. These and other proteins may not all be associated with the CaR in all tissues, but they form the basis for understanding the complete nature of CaR signalling. PMID:17979874

  16. Insights from molecular modeling and dynamics simulation of pathogen resistance (R) protein from brinjal.

    PubMed

    Shrivastava, Dipty; Nain, Vikrant; Sahi, Shakti; Verma, Anju; Sharma, Priyanka; Sharma, Prakash Chand; Kumar, Polumetla Ananda

    2011-01-22

    Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes.

  17. Lack of beta-arrestin signaling in the absence of active G proteins.

    PubMed

    Grundmann, Manuel; Merten, Nicole; Malfacini, Davide; Inoue, Asuka; Preis, Philip; Simon, Katharina; Rüttiger, Nelly; Ziegler, Nicole; Benkel, Tobias; Schmitt, Nina Katharina; Ishida, Satoru; Müller, Ines; Reher, Raphael; Kawakami, Kouki; Inoue, Ayumi; Rick, Ulrike; Kühl, Toni; Imhof, Diana; Aoki, Junken; König, Gabriele M; Hoffmann, Carsten; Gomeza, Jesus; Wess, Jürgen; Kostenis, Evi

    2018-01-23

    G protein-independent, arrestin-dependent signaling is a paradigm that broadens the signaling scope of G protein-coupled receptors (GPCRs) beyond G proteins for numerous biological processes. However, arrestin signaling in the collective absence of functional G proteins has never been demonstrated. Here we achieve a state of "zero functional G" at the cellular level using HEK293 cells depleted by CRISPR/Cas9 technology of the Gs/q/12 families of Gα proteins, along with pertussis toxin-mediated inactivation of Gi/o. Together with HEK293 cells lacking β-arrestins ("zero arrestin"), we systematically dissect G protein- from arrestin-driven signaling outcomes for a broad set of GPCRs. We use biochemical, biophysical, label-free whole-cell biosensing and ERK phosphorylation to identify four salient features for all receptors at "zero functional G": arrestin recruitment and internalization, but-unexpectedly-complete failure to activate ERK and whole-cell responses. These findings change our understanding of how GPCRs function and in particular of how they activate ERK1/2.

  18. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?

    PubMed

    Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2017-04-15

    Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response.

    PubMed

    Lee, Kwanuk; Lee, Hwa Jung; Kim, Dong Hyun; Jeon, Young; Pai, Hyun-Sook; Kang, Hunseung

    2014-04-16

    Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts.

  20. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response

    PubMed Central

    2014-01-01

    Background Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Results Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. Conclusions These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts. PMID:24739417