Sample records for ga oxygen disorder

  1. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  2. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  3. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  4. Positive and negative effects of oxygen in thermal annealing of p-type GaN

    NASA Astrophysics Data System (ADS)

    Wu, L. L.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Le, L. C.; Li, L.; Liu, Z. S.; Zhang, S. M.; Zhu, J. J.; Wang, H.; Zhang, B. S.; Yang, H.

    2012-08-01

    The effect of oxygen on ambient gas on activating p-GaN by rapid thermal annealing was investigated. When the ratio of N2 to O2 is 4:1, the sample activated after annealing at 750 °C exhibits the best electrical properties with respect to resistivity. It is confirmed that the concentration of hydrogen which passivates Mg acceptors in GaN decreases more efficiently when oxygen is introduced into N2 ambient gas. Although oxygen-involved annealing at higher temperature may further reduce the concentration of hydrogen, the resistivity of p-GaN may increase due to the negative effect caused by too much incorporation of oxygen-related donors.

  5. P-type doping of GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Raechelle Kimberly

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C.more » The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.« less

  6. Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.

    PubMed

    Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz

    2018-05-23

    Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.

  7. Energy scale of compositional disorder in Ga(AsBi)

    NASA Astrophysics Data System (ADS)

    Shakfa, M. K.; Jandieri, K.; Wiemer, M.; Ludewig, P.; Volz, K.; Stolz, W.; Baranovskii, S. D.; Koch, M.

    2015-10-01

    We report on a study of compositional disorder in Ga(AsBi) structures. Temperature-dependent photoluminescence measurements on Ga(AsBi)/GaAs heterostructures with different Bi contents are performed. Experimental observations show an essentially non-monotonous dependence of the energy scale of disorder on the Bi content. Our theoretical analysis concludes that this peculiar behavior is a consequence of an essential bowing of the valence band edge as a function of Bi content and of a specific compositional dependence of the hole effective mass in Ga(AsBi) compounds.

  8. Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications

    DOE PAGES

    Mitchell, Brandon; Timmerman, D.; Poplawsky, Jonathan D.; ...

    2016-01-04

    The detrimental influence of oxygen on the performance and reliability of V/III nitride based devices is well known. However, the influence of oxygen on the nature of the incorporation of other co-dopants, such as rare earth ions, has been largely overlooked in GaN. Here, we report the first comprehensive study of the critical role that oxygen has on Eu in GaN, as well as atomic scale observation of diffusion and local concentration of both atoms in the crystal lattice. We find that oxygen plays an integral role in the location, stability, and local defect structure around the Eu ions thatmore » were doped into the GaN host. Although the availability of oxygen is essential for these properties, it renders the material incompatible with GaN-based devices. However, the utilization of the normally occurring oxygen in GaN is promoted through structural manipulation, reducing its concentration by 2 orders of magnitude, while maintaining both the material quality and the favorable optical properties of the Eu ions. Furthermore, these findings open the way for full integration of RE dopants for optoelectronic functionalities in the existing GaN platform.« less

  9. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3

    PubMed Central

    Dong, Linpeng; Jia, Renxu; Xin, Bin; Peng, Bo; Zhang, Yuming

    2017-01-01

    The structural, electronic, and optical properties of β-Ga2O3 with oxygen vacancies are studied by employing first-principles calculations based on density function theory. Based on the defects formation energies, we conclude the oxygen vacancies are most stable in their fully charge states. The electronic structures and optical properties of β-Ga2O3 are calculated by Generalized Gradient Approximation + U formalisms with the Hubbard U parameters set 7.0 eV and 8.5 eV for Ga and O ions, respectively. The calculated bandgap is 4.92 eV, which is consistent with the experimental value. The static real dielectric constants of the defective structures are increased compared with the intrinsic one, which is attributed to the level caused by the Ga-4s states in the bandgap. Extra peaks are introduced in the absorption spectra, which are related to Ga-4s and O-2p states. Experimentally, β-Ga2O3 films are deposited under different O2 volume percentage with ratio-frequency magnetron sputtering method. The measured results indicate that oxygen vacancies can induce extra emission peaks in the photoluminescence spectrum, the location of these peaks are close to the calculated results. Extra O2 can increase the formation energies of oxygen vacancies and thus reduce oxygen vacancies in β-Ga2O3. PMID:28065936

  10. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3.

    PubMed

    Dong, Linpeng; Jia, Renxu; Xin, Bin; Peng, Bo; Zhang, Yuming

    2017-01-09

    The structural, electronic, and optical properties of β-Ga 2 O 3 with oxygen vacancies are studied by employing first-principles calculations based on density function theory. Based on the defects formation energies, we conclude the oxygen vacancies are most stable in their fully charge states. The electronic structures and optical properties of β-Ga 2 O 3 are calculated by Generalized Gradient Approximation + U formalisms with the Hubbard U parameters set 7.0 eV and 8.5 eV for Ga and O ions, respectively. The calculated bandgap is 4.92 eV, which is consistent with the experimental value. The static real dielectric constants of the defective structures are increased compared with the intrinsic one, which is attributed to the level caused by the Ga-4s states in the bandgap. Extra peaks are introduced in the absorption spectra, which are related to Ga-4s and O-2p states. Experimentally, β-Ga 2 O 3 films are deposited under different O 2 volume percentage with ratio-frequency magnetron sputtering method. The measured results indicate that oxygen vacancies can induce extra emission peaks in the photoluminescence spectrum, the location of these peaks are close to the calculated results. Extra O 2 can increase the formation energies of oxygen vacancies and thus reduce oxygen vacancies in β-Ga 2 O 3 .

  11. Low-temperature formation of Ga-oxide/GaN interface with remote oxygen plasma and its interface properties

    NASA Astrophysics Data System (ADS)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The Ga-oxide/GaN structures formed by remote oxygen plasma (ROP) exposure at various temperatures (T s) and times have been systematically investigated. X-ray photoelectron spectroscopy clarified the formation of Ga2O3 layers with close-to-stoichiometric composition and a slight N incorporation of ∼6 at. %. Also, we found that a high T s increases the intensity of a signal related to the N–O bond, which is located near the Ga-oxide/GaN interfaces. Total photoelectron yield spectroscopy (PYS) also revealed that the ROP exposure at T s of 300 °C produces fewer filled defect states in the bandgap of GaN than at 500 °C. This difference in the filled defect states could be attributable to the amount of N–O bonds at the interface.

  12. Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; Unold, T.; Berry, J.

    2016-01-11

    The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less

  13. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  14. Substitutional and interstitial oxygen in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Wright, A. F.

    2005-11-01

    Density-functional theory was used to compute energy-minimum configurations and formation energies of substitutional and interstitial oxygen (O) in wurtzite GaN. The results indicate that O substituted at a N site (ON) acts as a single donor with the ionized state (ON+1) being the most stable O state in p-type GaN. In n-type GaN, interstitial O (OI) is predicted to be a double acceptor and O substituted at a Ga site (OGa) is predicted to be a triple acceptor. The formation energies of these two species are comparable to that of ON in n-type GaN and, as such, they should form and compensate the ON donors. The extent of compensation was estimated for both Ga-rich and N-rich conditions with a total O concentration of 1017cm-3. Ga-rich conditions yielded negligible compensation and an ON concentration in excess of 9.9×1016cm-3. N-rich conditions yielded a 25% lower ON concentration, due to the increased stability of OI and OGa relative to ON, and moderate compensation. These findings are consistent with experimental results indicating that O acts as a donor in GaN(O). Complexes of ON with the Mg acceptor and OI with the Si donor were examined. Binding energies for charge-conserving reactions were ⩾0.5eV, indicating that these complexes can exist in equilibrium at room temperature. Complexes of ON with the Ga vacancy in n-type GaN were also examined and their binding energies were 1.2 and 1.4eV, indicating that appreciable concentrations can exist in equilibrium even at elevated temperatures.

  15. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  16. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  17. Comparison of alloy disorder scatterings in Ga- and N-polar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, He; Li, Hui-Jie; Yang, Shao-Yan; Zhang, Wei; Zhu, Ming; Liu, Li; Li, Nan

    2018-01-01

    The two-dimensional electron gas (2DEG) mobilities limited by alloy disorder (AD) scattering in both Ga- and N-polar AlGaN/GaN heterostructures are investigated. It was found that the AD scattering limited electron mobility in N-polar heterostructures is on the order of 103-104 cm2/Vs, which is comparable to the optical phonon scattering at room-temperature. In comparison, the AD scattering in Ga-polar samples is much less important. Moreover, the electron mobility decreases with the 2DEG density in the Ga-polar device but shows a reverse trend in the N-polar counterpart. This is found to be caused by the rather different electric field distributions in Ga- and N-polar AlGaN/GaN heterostructures. In addition, we find that an AlN interlayer can effectively reduce the alloy scattering, mainly due to the large band offset between AlN and GaN. The calculated mobilities have been compared with the experiment results and good agreements are found. We believe that our results are important for the design of AlGaN/GaN heterostructure-based devices, especially the N-polar ones.

  18. Energy band structure and electrical properties of Ga-oxide/GaN interface formed by remote oxygen plasma

    NASA Astrophysics Data System (ADS)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.

  19. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less

  20. Oxygen-induced Al surface segregation in Al(x)Ga(1-x)As and the effect of Y overlayers on the oxidation of the Y/Al(x)Ga(1-x)As interface

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Ignatiev, A.

    1992-01-01

    The oxidation of Al(x)Ga(1-x)As (x = 0.15, AlGaAs) was studied by AES and XPS at 350 C and different oxygen exposures (up to 5 x 10 exp 4 L). Also studied were the effects of yttrium overlayers (theta = 3 ML) on the oxidation of the AlGaAs surface. Substantial oxygen-induced Al surface segregation has been observed for both yttriated and nonyttriated AlGaAs surfaces which increased with increasing oxygen exposure. Also observed is a significant Y-enhanced oxidation of the AlGaAs surface. Oxidation of the yttriated AlGaAs surface was found to be a factor of 4 greater than that of the nonyttriated surface. Also, while oxidation of the nonyttriated AlGaAs yielded mainly Al2O(x) (x less than 3) and only little Ga2O3, the yttriated AlGaAs surface oxide layer was principally Ga2O3 and stoichiometric Al2O3. However, both the yttriated and nonyttriated surfaces were found to contain metallic As within the oxide layer.

  1. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  2. Evaluation of implantation-disordering of (InGa)As/GaAs strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Myers, D. R.; Barnes, C. E.; Arnold, G. W.; Dawson, L. R.; Biefeld, R. M.; Zipperian, T. E.; Gourley, P. L.; Fritz, I. J.

    The optical and transport properties of InO 2GaO 8As/GaAs strained-layer superlattices (SLS's) which were implanted either with 5 x 10 to the 15th power, 250 keV Zn(+) or with 5 x 10 to 14th power/square cm/cm(2), 70 keV Be(+) and annealed under an arsenic overpressure at 600 (0) C were examined. For both cases, electrical activation in the implantation-doped regions equalled that of similar implants and anneals in bulk GaAs, even though the Be implant retained the SLS structure, while the Zn implant intermixed the SLS layers to produce an alloy semiconductor of the average SLS composition. Photoluminescence intensities in the annealed implanted regions were significantly reduced from that of virgin material, apparently due to residual implant damage. Diodes formed from both the Be- and the Zn-implanted SLS' produced electroluminescence internsity comparable to that of grown-junction SLS diodes in the same chemical system, despite the implantation processing and the potential for vertical lattice mismatch in the Zn-disordered SLS device. These results indicate that Zn-disordering can be as useful for strained-layer superlattices as in lattice-matched systems.

  3. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  4. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    PubMed

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  5. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yunxiang; Liu, Chang-jun; Mei, Donghai

    The effects of hydration and oxygen vacancy on CO2 adsorption on the β-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect β-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect β-Ga2O3(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect β-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slight repulsive interactionmore » when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the co-adsorbed H2O to a bicarbonate species, making the overall process exothermic with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry β-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective β-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is instantaneous with an adsorption energy of -0.62 eV. These results indicate that, when water and CO2 are both present in the adsorption system simultaneously, the water molecule will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the computing time

  6. Co-adsorption of water and oxygen on GaN: Effects of charge transfer and formation of electron depletion layer.

    PubMed

    Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya

    2017-09-14

    Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.

  7. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  8. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting

    2017-08-01

    Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.

  9. Mesoporous Ga-TiO₂: Role of Oxygen Vacancies for the Photocatalytic Degradation Under Visible Light.

    PubMed

    Myilsamy, M; Mahalakshmi, M; Subha, N; Murugesan, V

    2018-02-01

    Gallium doped mesoporous TiO2 with different weight percentages were synthesized by sol-gel method using Pluronic P123 as the structure directing template. The physico-chemical properties of all the synthesized catalysts were determined by XRD, TEM, SEM-EDAX, N2 adsorption-desorption studies, XPS, UV-vis DRS, FT-IR and photoluminescence spectroscopy. 1.0 wt% Ga-TiO2 exhibited the highest photocatalytic efficiency among all the synthesized materials under visible light due to the high surface area, reduced band gap and suppressed electron-hole recombination. Ga3+ ions substitutions for Ti4+ ions in TiO2 lattice created oxygen vacancies in TiO2 lattice, which created a defect energy level below the conduction band of TiO2 and hence the band gap was reduced. The oxygen vacancy defects was playing significant role to improve the adsorption of oxygen molecules, hydroxide ions and cationic rhodamine B (RhB) on TiO2 surface in an aqueous medium. The lifetime of the charge carriers was also enhanced by trapping the photogenerated electrons in oxygen vacancies and transferring them to the adsorbed O2 to produce superoxide anion radicals (O-. 2 ). The photo-induced holes at valence band reduced the adsorbed OH- ions and produced a large number of .OH radicals, which subsequently degraded the RhB. Hence oxygen vacancies created by gallium doping on TiO2 enhanced the photocatalytic efficiency for the degradation of RhB under visible light.

  10. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  11. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  12. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    NASA Astrophysics Data System (ADS)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  13. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  14. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  15. Using thallium isotopes in the 2.63 Ga Jeerinah Formation from Hamersley Basin, Western Australia, to constrain ancient seafloor oxygenation

    NASA Astrophysics Data System (ADS)

    Holdaway, B. J.; Owens, J. D.; Nielsen, S.; Anbar, A. D.; Ostrander, C. M.

    2017-12-01

    Understanding the chemical and biological innovation and evolution of the global ocean is pivotal in understanding the processes for how early life on Earth and potentially habitable planets advanced. Previous research on early-Earth oxygenation has revealed a rise in atmospheric [O2] 2.32 billion years ago, coined the Great Oxidation Event, or GOE. Many lines of evidence, however, suggest continental oxidative weathering as early as 3.0 Ga, with possibilities of complementary ocean oxygenation. Modeling of the geochemical data suggests small oxygen "oases" prior to whiffs of O2, or even widespread oxygen-rich margins. However, constraining the extent and timing of oceanic oxygenation is difficult as proxies fall short in detecting early ocean oxygenation. Importantly, the formation and preservation of manganese (Mn) in the form of manganese-oxides requires an oxygenated water-column that penetrates the sediment-water interface. Until recently, tracking the global burial of Mn-oxides was very difficult, largely compounded by an incomplete ancient geologic record. Here we use thallium (Tl), a new and novel isotope system to better constrain marine [O2], specifically by constraining the global burial of Mn-oxides. Recently, it has been shown that modern seawater Tl isotope composition is faithfully recorded in anoxic to euxinic (anoxic and sulfidic) sediments. Nearly all isotopic inputs: riverine, dust, volcanic, hydrothermal, and benthic recycling of Tl into the ocean are constant with ɛ205Tl -2. In contrast, the two primary outputs impart significant fractionations, these outputs being the burial of Mn-oxides (ɛ205Tl +12) and altered oceanic crust (ɛ205Tl -10). Thus, seawater is mainly dictated by the mass balance of the outputs (Mn-oxides and altered oceanic crust) which, for short-term events, is likely driven by the amount of Mn-oxide burial. Tl isotope analyses of the dominantly euxinic 2.5 Ga Mt. McRae Shale from the Hamersley Basin, Western Australia

  16. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Guo, Daoyou; Qin, Xinyuan; Lv, Ming; Shi, Haoze; Su, Yuanli; Yao, Guosheng; Wang, Shunli; Li, Chaorong; Li, Peigang; Tang, Weihua

    2017-11-01

    Highly (201) oriented Zn-doped β-Ga2O3 thin films with different dopant concentrations were grown on (0001) sapphire substrates by radio frequency magnetron sputtering. With the increase of Zn dopant concentration, the crystal lattice expands, the energy band gap shrinks, and the oxygen vacancy concentration decreases. Both the metal semiconductor metal (MSM) structure photodetectors based on the pure and Zn-doped β-Ga2O3 thin films exhibit solar blind UV photoelectric property. Compared to the pure β-Ga2O3 photodetector, the Zn-doped one exhibits a lower dark current, a higher photo/dark current ratio, a faster photoresponse speed, which can be attributed to the decreases of oxygen vacancy concentration.[Figure not available: see fulltext.

  17. Growth condition dependence of unintentional oxygen incorporation in epitaxial GaN

    PubMed Central

    Schubert, Felix; Wirth, Steffen; Zimmermann, Friederike; Heitmann, Johannes; Mikolajick, Thomas; Schmult, Stefan

    2016-01-01

    Abstract Growth conditions have a tremendous impact on the unintentional background impurity concentration in gallium nitride (GaN) synthesized by molecular beam epitaxy and its resulting chemical and physical properties. In particular for oxygen identified as the dominant background impurity we demonstrate that under optimized growth stoichiometry the growth temperature is the key parameter to control its incorporation and that an increase by 55 °C leads to an oxygen reduction by one order of magnitude. Quantitatively this reduction and the resulting optical and electrical properties are analyzed by secondary ion mass spectroscopy, photoluminescence, capacitance versus voltage measurements, low temperature magneto-transport and parasitic current paths in lateral transistor test structures based on two-dimensional electron gases. At a growth temperature of 665 °C the residual charge carrier concentration is decreased to below 1015 cm−3, resulting in insulating behavior and thus making the material suitable for beyond state-of-the-art device applications. PMID:27877874

  18. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    NASA Astrophysics Data System (ADS)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  19. The structural and electrical evolution of graphene by oxygen plasma-induced disorder.

    PubMed

    Kim, Dong Chul; Jeon, Dae-Young; Chung, Hyun-Jong; Woo, YunSung; Shin, Jai Kwang; Seo, Sunae

    2009-09-16

    Evolution of a single graphene layer with disorder generated by remote oxygen plasma irradiation is investigated using atomic force microscopy, Raman spectroscopy and electrical measurement. Gradual changes of surface morphology from planar graphene to isolated granular structure associated with a decrease of transconductance are accounted for by two-dimensional percolative conduction by disorder and the oxygen plasma-induced doping effect. The corresponding evolution of Raman spectra of graphene shows several peculiarities such as a sudden appearance of a saturated D peak followed by a linear decrease in its intensity, a relatively inert characteristic of a D' peak and a monotonic increase of a G peak position as the exposure time to oxygen plasma increases. These are discussed in terms of a disorder-induced change of Raman spectra in the graphite system.

  20. Electron mobility of two-dimensional electron gas in InGaN heterostructures: Effects of alloy disorder and random dipole scatterings

    NASA Astrophysics Data System (ADS)

    Hoshino, Tomoki; Mori, Nobuya

    2018-04-01

    InGaN has a smaller electron effective mass and is expected to be used as a channel material for high-electron-mobility transistors. However, it is an alloy semiconductor with a random distribution of atoms, which introduces additional scattering mechanisms: alloy disorder and random dipole scatterings. In this work, we calculate the electron mobility in InGaN- and GaN-channel high-electron-mobility transistors (HEMTs) while taking into account acoustic deformation potential, polar optical phonon, alloy disorder, and random dipole scatterings. For InGaN-channel HEMTs, we find that not only alloy disorder but also random dipole scattering has a strong impact on the electron mobility and it significantly decreases as the In mole fraction of the channel increases. Our calculation also shows that the channel thickness w dependence of the mobility is rather weak when w > 1 nm for In0.1Ga0.9N-channel HEMTs.

  1. Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu 1.4 Ga 2.8 and CsAu 2 Ga 2.6

    DOE PAGES

    Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena

    2016-12-27

    Gold intermetallics are known for their unusual structures and bonding patterns. Two new compounds have been discovered in the cation-poor part of the Cs–Au–Ga system. We obtained both compounds directly by heating the elements at elevated temperatures. Structure determinations based on single-crystal X-ray diffraction analyses revealed two structurally and compositionally related formations: CsAu 1.4Ga 2.8 (I) and CsAu 2Ga 2.6 (II) crystallize in their own structure types (I: Rmore » $$\\bar{3}$$, a = 11.160(2) Å, c = 21.706(4) Å, Z = 18; II: R$$\\bar{3}$$, a = 11.106(1) Å, Å, c = 77.243(9) Å, Z = 54) and contain hexagonal cationic layers of cesium. Furthermore, this is a unique structural motif, which has never been observed for the other (lighter) alkali metals in combination with Au and post transition elements. The polyanionic part is characterized in contrast by Au/Ga tetrahedral stars, a structural feature that is characteristic for light alkali metal representatives, and disordered sites with mixed Au/Ga occupancies that occur in both structures with a more significant disorder in the polyanionic component of CsAu 2Ga 2.6. Examinations of the electronic band structure for a model approximating the composition of CsAu 1.4Ga 2.8 have been completed using density-functional-theory-based methods and reveal a deep pseudogap at E F. Bonding analysis by evaluating the crystal orbital Hamilton populations show dominant heteroatomic Au–Ga bonds and only a negligible contribution from Cs pairs.« less

  2. Impact of oxygen plasma postoxidation process on Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.

    2016-09-01

    Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.

  3. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  4. Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study

    DOE PAGES

    Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.

    2015-08-30

    Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less

  5. Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.

    Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less

  6. Age Effects on Cerebral Oxygenation and Behavior in Children with Sleep-disordered Breathing.

    PubMed

    Tamanyan, Knarik; Walter, Lisa M; Weichard, Aidan; Davey, Margot J; Nixon, Gillian M; Biggs, Sarah N; Horne, Rosemary S C

    2018-06-01

    Childhood sleep-disordered breathing ranges in severity from primary snoring to obstructive sleep apnea and is associated with behavioral and neurocognitive deficits. It remains unknown why children with primary snoring, who do not experience peripheral oxygen desaturation or sleep fragmentation, experience similar daytime deficits as those with obstructive sleep apnea or why effects are age-dependent. To examine cerebral tissue oxygenation and oxygen extraction as an explanation for daytime deficits in children with primary snoring. Children referred for suspected sleep-disordered breathing and nonsnoring control subjects underwent overnight polysomnography with near-infrared spectroscopy. Children were categorized into 3- to 6-year (n = 87) and 7- to 12-year (n = 72) old groups, and according to the obstructive apnea-hypopnea index into primary snoring (≤1 event/h), mild (>1-5 events/h), and moderate/severe obstructive sleep apnea (>5 events/h). Cognitive and behavioral performance were assessed. In the 3- to 6-year group, there were no differences in cerebral oxygenation or oxygen extraction between severity groups. In the 7- to 12-year group, cerebral oxygenation was significantly lower, although these differences were small, in control subjects versus primary snoring during quiet wakefulness before sleep onset, N1, and REM. Oxygen extraction was significantly higher in control subjects versus primary snoring during N1 sleep, with no differences between primary snoring and obstructive sleep apnea groups. Cerebral oxygenation was not associated with cognitive performance in either age group or behavior in the 3- to 6-year group; however, it was associated with behavior in the school-aged children. Children with sleep-disordered breathing are able to maintain cerebral oxygenation, and the small changes observed are not related to cognitive deficits. However, in older children these differences were related to behavioral measures.

  7. Photoelectrochemical response of GaN, InGaN, and GaNP nanowire ensembles

    NASA Astrophysics Data System (ADS)

    Philipps, Jan M.; Hölzel, Sara; Hille, Pascal; Schörmann, Jörg; Chatterjee, Sangam; Buyanova, Irina A.; Eickhoff, Martin; Hofmann, Detlev M.

    2018-05-01

    The photoelectrochemical responses of GaN, GaNP, and InGaN nanowire ensembles are investigated by the electrical bias dependent photoluminescence, photocurrent, and spin trapping experiments. The results are explained in the frame of the surface band bending model. The model is sufficient for InGaN nanowires, but for GaN nanowires the electrochemical etching processes in the anodic regime have to be considered additionally. These processes lead to oxygen rich surface (GaxOy) conditions as evident from energy dispersive X-ray fluorescence. For the GaNP nanowires, a bias dependence of the carrier transfer to the electrolyte is not reflected in the photoluminescence response, which is tentatively ascribed to a different origin of radiative recombination in this material as compared to (In)GaN. The corresponding consequences for the applications of the materials for water splitting or pH-sensing will be discussed.

  8. Improved photoluminescence characteristics of order-disorder AlGaInP quantum wells at room and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Kunal; Fitzgerald, Eugene A.; Deotare, Parag B.

    2015-04-06

    A set of nominally undoped CuPt-B type ordered (Al{sub x}Ga{sub 1−x}){sub 0.5}In{sub 0.5}P quantum-wells with disordered (Al{sub 0.7}Ga{sub 0.3}){sub 0.5}In{sub 0.5}P barriers were grown and characterized using transmission electron microscopy and photoluminescence spectroscopy. Such structures are potentially beneficial for light emitting devices due to the possibility of greater carrier confinement, reduced scattering into the indirect valleys, and band-offset adjustment beyond what is possible with strain and composition. Furthermore, the possibility of independently tuning the composition and the order-parameter of the quantum-well allows for the decoupling of the carrier confinement and the aluminum content and aids in the identification of carriermore » loss mechanisms. In this study, sharp order-disorder interfaces were achieved via the control of growth temperature between 650 °C and 750 °C using growth pauses. Improved high-temperature (400 K) photoluminescence intensity was obtained from quantum-wells with ordered Ga{sub 0.5}In{sub 0.5}P as compared to disordered Ga{sub 0.5}In{sub 0.5}P due to greater confinement. Additionally, in the ordered samples with a higher Al/Ga ratio to counter the band-gap reduction, the photoluminescence intensity at high temperature was as bright as that from conventional disordered heterostructures and had slightly improved wavelength stability. Room-temperature time-resolved luminescence measurements indicated a longer radiative lifetime in the ordered quantum-well with reduced scattering into the barrier. These results show that in samples of good material quality, the property controlling the luminescence intensity is the carrier confinement and not the presence of ordering or the aluminum content.« less

  9. Ultraviolet random lasing action from highly disordered n-AlN/p-GaN heterojunction.

    PubMed

    Yang, H Y; Yu, S F; Wong, J I; Cen, Z H; Liang, H K; Chen, T P

    2011-05-01

    Room-temperature random lasing is achieved from an n-AlN/p-GaN heterojunction. The highly disordered n-AlN layer, which was deposited on p-GaN:Mg layer via radio frequency magnetron sputtering, acts as a scattering medium to sustain coherent optical feedback. The p-GaN:Mg layer grown on sapphire provides optical amplification to the scattered light propagating along the heterojunction. Hence, lasing peaks of line width less than 0.4 nm are emerged from the emission spectra at round 370 nm for the heterojunction under forward bias larger than 5.1 V. Lasing characteristics of the heterojunction are in agreement with the behavior of random lasers.

  10. Effect of high density H 2 plasmas on InGaP/GaAs and AlGaAs/GaAs HEMTs

    NASA Astrophysics Data System (ADS)

    Ren, F.; Kopf, R. F.; Kuo, J. M.; Lothian, J. R.; Lee, J. W.; Pearton, S. J.; Shul, R. J.; Constantine, C.; Johnson, D.

    1998-05-01

    InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors have been exposed to inductively coupled plasma or electron cyclotron resonance H 2 plasmas as a function of pressure, source power and rf chuck power. The transconductance, gate ideality factor and saturated drain-source current are all degraded by the plasma treatment. Two mechanisms are identified: passivation of Si dopants in the InGaP or AlGaAs donor layers by H 0 and lattice disorder created by H + and H 2+ ion bombardment. HEMTs are found to be more susceptible to plasma-induced degradation than heterojunction bipolar transistors.

  11. Large-scale atomistic simulations demonstrate dominant alloy disorder effects in GaBixAs1 -x/GaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    2018-04-01

    Bismide semiconductor materials and heterostructures are considered a promising candidate for the design and implementation of photonic, thermoelectric, photovoltaic, and spintronic devices. This work presents a detailed theoretical study of the electronic and optical properties of strongly coupled GaBixAs1 -x /GaAs multiple quantum well (MQW) structures. Based on a systematic set of large-scale atomistic tight-binding calculations, our results reveal that the impact of atomic-scale fluctuations in alloy composition is stronger than the interwell coupling effect, and plays an important role in the electronic and optical properties of the investigated MQW structures. Independent of QW geometry parameters, alloy disorder leads to a strong confinement of charge carriers, a large broadening of the hole energies, and a red-shift in the ground-state transition wavelength. Polarization-resolved optical transition strengths exhibit a striking effect of disorder, where the inhomogeneous broadening could exceed an order of magnitude for MQWs, in comparison to a factor of about 3 for single QWs. The strong influence of alloy disorder effects persists when small variations in the size and composition of MQWs typically expected in a realistic experimental environment are considered. The presented results highlight the limited scope of continuum methods and emphasize on the need for large-scale atomistic approaches to design devices with tailored functionalities based on the novel properties of bismide materials.

  12. Selective layer disordering in intersubband Al 0.028Ga 0.972 N/AlN superlattices with silicon nitride capping layer

    DOE PAGES

    Wierer, Jonathan J.; Allerman, Andrew A.; Skogen, Erik J.; ...

    2015-06-01

    We demonstrate the selective layer disordering in intersubband Al 0.028Ga 0.972 N/AlN superlattices using a silicon nitride (SiN x) capping layer. The (SiN x) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiN x thickness. The layer disordering is caused by Si diffusion, and the SiN x layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiN x layer results in selective layer disordering, an attractive method to integrate active and passivemore » III–nitride-based intersubband devices.« less

  13. Hyperbaric oxygen therapy for children with autism spectrum disorder.

    PubMed

    Sakulchit, Teeranai; Ladish, Chris; Goldman, Ran D

    2017-06-01

    Question As autism spectrum disorder (ASD) is a multifactorial condition, with genetic and environmental risk factors contributing to children's unique presentation and symptom severity, a range of treatments have been suggested. Parents of children with ASD in my clinic are asking me about alternative therapies to improve their children's condition. One of those therapies is hyperbaric oxygen therapy (HBOT); commercial advertisement in the past has suggested good results with this approach. Should I recommend the use of HBOT for children with ASD? Answer Hyperbaric oxygen therapy provides a higher concentration of oxygen delivered in a chamber or tube containing higher than sea level atmospheric pressure. Case series and randomized controlled trials show no evidence to support the benefit of HBOT for children with ASD. Only 1 randomized controlled trial reported effectiveness of this treatment, and those results have yet to be repeated. Copyright© the College of Family Physicians of Canada.

  14. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  15. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE PAGES

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...

    2017-10-17

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  16. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

    NASA Astrophysics Data System (ADS)

    Zhang, Fabi; Li, Haiou; Cui, Yi-Tao; Li, Guo-Ling; Guo, Qixin

    2018-04-01

    The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.

  17. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  18. Patients with myogenic temporomandibular disorders have reduced oxygen extraction in the masseter muscle.

    PubMed

    Ferreira, Claudia Lúcia Pimenta; Bellistri, Giuseppe; Montagna, Stefano; de Felício, Claudia Maria; Sforza, Chiarella

    2017-06-01

    The objective of the present study is to investigate if changes in the oxygen saturation of masseter muscle during a chewing task can differentiate patients with myogenic temporomandibular disorders (TMD) from healthy subjects and if these differences are related to the gravity of the disorder and to the orofacial myofunctional status. Twelve women with moderate TMD (TMD group; 37 ± 16 years) and ten healthy control women (CTRL group 24 ± 5 years) participated. Validated protocols were used to evaluate the severity of TMD and the orofacial myofunctional status. Oxygen saturation in the masseter muscle was measured using near-infrared spectroscopy (NIRS) during unilateral chewing of a silicon device. Data were compared using Student's t test, Mann-Whitney test, and Spearman's rank correlation coefficient. The women of the TMD group showed higher total score of severity of symptoms of TMD, lower total score of the orofacial myofunctional status, and lower oxygen extraction capacity during mastication than healthy control subjects (p < 0.01). Moreover, percentage O 2 extraction was significantly related to the severity of signs/symptoms of TMD and of orofacial myofunctional disorders (p < 0.01). Women with TMD had a lower muscle oxygen extraction capacity than healthy subjects: the higher the signs and symptoms' severity, the lower the O 2 extraction. NIRS proposes as an important instrumental method to assess the metabolic alterations in the muscles of patients with TMD. The findings could be useful to complement clinical assessments, favoring the diagnosis and providing extra data for planning the rehabilitation of TMD patients, especially those with associated myofunctional orofacial disorders.

  19. The oxygenation of the atmosphere and oceans

    PubMed Central

    Holland, Heinrich D

    2006-01-01

    The last 3.85 Gyr of Earth history have been divided into five stages. During stage 1 (3.85–2.45 Gyr ago (Ga)) the atmosphere was largely or entirely anoxic, as were the oceans, with the possible exception of oxygen oases in the shallow oceans. During stage 2 (2.45–1.85 Ga) atmospheric oxygen levels rose to values estimated to have been between 0.02 and 0.04 atm. The shallow oceans became mildly oxygenated, while the deep oceans continued anoxic. Stage 3 (1.85–0.85 Ga) was apparently rather ‘boring’. Atmospheric oxygen levels did not change significantly. Most of the surface oceans were mildly oxygenated, as were the deep oceans. Stage 4 (0.85–0.54 Ga) saw a rise in atmospheric oxygen to values not much less than 0.2 atm. The shallow oceans followed suit, but the deep oceans were anoxic, at least during the intense Neoproterozoic ice ages. Atmospheric oxygen levels during stage 5 (0.54 Ga–present) probably rose to a maximum value of ca 0.3 atm during the Carboniferous before returning to its present value. The shallow oceans were oxygenated, while the oxygenation of the deep oceans fluctuated considerably, perhaps on rather geologically short time-scales. PMID:16754606

  20. Influence of Ga vacancies, Mn and O impurities on the ferromagnetic properties of GaN micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Escudero, R.; Silva, R.; Herrera, M.

    2018-04-01

    We present a study of the influence of gallium vacancy (VGa) point defects on the ferromagnetic properties of GaN:Mn and GaN:Mn,O micro- and nanostructures. Results demonstrate that the generation of these point defects enhances the ferromagnetic signal of GaN:Mn microstructures, while incorporation of oxygen as an impurity inhibits this property. XPS measurements revealed that Mn impurities in ferromagnetic GaN:Mn samples mainly exhibit a valence state of 2+. Cathodoluminescence (CL) spectra from Mn-doped GaN samples displayed emissions centered at about 1.97 eV, attributed to transitions between the 4T1-6A1 states of the Mn2+ d orbitals, and emissions centered at 2.45 and 2.9 eV, associated with the presence of VGa. CL measurements also revealed a blue shift of the GaN band-edge emission generated by the expansion of the wurtzite lattice due to Mn incorporation, which was confirmed by XRD measurements. These latter measurements also revealed an amorphization of GaN:Mn due to the incorporation of oxygen as impurities. The GaN:Mn samples were synthesized by thermal evaporation of GaN and MnCO3 powders onto Ni0.8Cr0.2/Si(100) in a horizontal furnace operated at low vacuum. The residual air inside the system was used as a source of oxygen during the synthesis of Mn and O co-doped GaN nanostructures. Mn and O impurities were incorporated into the nanostructures at different concentrations by varying the growth temperature. Energy Dispersive Spectroscopy, XRD, and XPS measurements confirmed that the obtained samples predominantly consisted of GaN.

  1. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Togashi, Rie; Murakami, Hisashi; Higashiwaki, Masataka; Kuramata, Akito; Yamakoshi, Shigenobu; Monemar, Bo; Kumagai, Yoshinao

    2018-06-01

    Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy (HVPE) using O2 or H2O as an oxygen source was investigated by thermodynamic analysis, and compared with measured properties after growth. The thermodynamic analysis revealed that Ga2O3 growth is expected even at 1000 °C using both oxygen sources due to positive driving forces for Ga2O3 deposition. The experimental results for homoepitaxial growth on (0 0 1) β-Ga2O3 substrates showed that the surfaces of the layers grown with H2O were smoother than those grown with O2, although the growth rate with H2O was approximately half that with O2. However, in the homoepitaxial layer grown using H2O, incorporation of Si impurities with a concentration almost equal to the effective donor concentration (2 × 1016 cm-3) was confirmed, which was caused by decomposition of the quartz glass reactor due to the presence of hydrogen in the system.

  2. Comparison of as-grown and annealed GaN/InGaN : Mg samples

    NASA Astrophysics Data System (ADS)

    Deng, Qingwen; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Yin, Haibo; Chen, Hong; Lin, Defeng; Jiang, Lijuan; Feng, Chun; Li, Jinmin; Wang, Zhanguo; Hou, Xun

    2011-08-01

    Mg-doped InGaN was grown on unintentionally doped GaN layer, and Mg and defect behaviours in both GaN and InGaN : Mg were investigated through photoluminescence measurement at 7 K. Mg acceptor was found in unintentionally doped GaN after thermal annealing in N2 ambient, and Mg activation energy was estimated to be 200 meV and 110 meV for GaN and InGaN, respectively. Particularly, the ultraviolet band (3.0-3.2 eV) in the GaN layer was infrequently observed in the unannealed sample but quenched in the annealed sample; this band may be associated with oxygen-substituted nitrogen defects. Moreover, the measurement errors of photoluminescence and x-ray diffraction originated from strain were taken into account.

  3. Physical and electrical characterizations of AlGaN/GaN MOS gate stacks with AlGaN surface oxidation treatment

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    The impacts of inserting ultrathin oxides into insulator/AlGaN interfaces on their electrical properties were investigated to develop advanced AlGaN/GaN metal–oxide–semiconductor (MOS) gate stacks. For this purpose, the initial thermal oxidation of AlGaN surfaces in oxygen ambient was systematically studied by synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) and atomic force microscopy (AFM). Our physical characterizations revealed that, when compared with GaN surfaces, aluminum addition promotes the initial oxidation of AlGaN surfaces at temperatures of around 400 °C, followed by smaller grain growth above 850 °C. Electrical measurements of AlGaN/GaN MOS capacitors also showed that, although excessive oxidation treatment of AlGaN surfaces over around 700 °C has an adverse effect, interface passivation with the initial oxidation of the AlGaN surfaces at temperatures ranging from 400 to 500 °C was proven to be beneficial for fabricating high-quality AlGaN/GaN MOS gate stacks.

  4. Hyperbaric oxygen ameliorates worsening signs and symptoms of post-traumatic stress disorder

    PubMed Central

    Eovaldi, Benjamin; Zanetti, Claude

    2010-01-01

    Hyperbaric oxygen therapy at 2.4 atmospheric pressure absolutes for 90 minutes per day ameliorated the signs and symptoms of agitation, confusion, and emotional distress in a 27-year-old male seven days following a traumatic accident. Hyperbaric oxygen was used to treat the patient’s crush injury and underlying nondisplaced pelvic fractures which were sustained in a bicycle versus automobile traffic accident. Its effect on the patient’s neuropsychiatric symptoms was surprising and obvious immediately following the initial hyperbaric oxygen treatment. Complete cognitive and psychiatric recovery was achieved by the seventh and final hyperbaric oxygen treatment. We propose that hyperbaric oxygen was effective in improving the patient’s neuropsychiatric symptoms by reducing cerebral oxidative stress, inflammation, vasogenic edema, and hippocampal neuronal apoptosis. Further investigation into the use of hyperbaric oxygen as a novel therapy for the secondary prevention of post-traumatic stress disorder that often accompanies post-concussive syndrome may be warranted. We acknowledge that hyperbaric oxygen therapy has been shown to have a strong placebo effect on neurologic and psychiatric diseases. PMID:21212826

  5. Thermal stability of isolated and complexed Ga vacancies in GaN bulk crystals

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Suski, T.; Grzegory, I.; Look, D. C.

    2001-12-01

    We have applied positron annihilation spectroscopy to show that 2-MeV electron irradiation at 300 K creates primary Ga vacancies in GaN with an introduction rate of 1 cm-1. The Ga vacancies recover in long-range migration processes at 500-600 K with an estimated migration energy of 1.5 (2) eV. Since the native Ga vacancies in as-grown GaN survive up to much higher temperatures (1300-1500 K), we conclude that they are stabilized by forming complexes with oxygen impurities. The estimated binding energy of 2.2 (4) eV of such complexes is in good agreement with the results of theoretical calculations.

  6. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  7. Lattice disorder produced in GaN by He-ion implantation

    NASA Astrophysics Data System (ADS)

    Han, Yi; Peng, Jinxin; Li, Bingsheng; Wang, Zhiguang; Wei, Kongfang; Shen, Tielong; Sun, Jianrong; Zhang, Limin; Yao, Cunfeng; Gao, Ning; Gao, Xing; Pang, Lilong; Zhu, Yabin; Chang, Hailong; Cui, Minghuan; Luo, Peng; Sheng, Yanbin; Zhang, Hongpeng; Zhang, Li; Fang, Xuesong; Zhao, Sixiang; Jin, Jin; Huang, Yuxuan; Liu, Chao; Tai, Pengfei; Wang, Dong; He, Wenhao

    2017-09-01

    The lattice disorders induced by He-ion implantation in GaN epitaxial films to fluences of 2 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) have been investigated by a combination of Raman spectroscopy, high-resolution X-ray diffraction (HRXRD), nano-indentation, and transmission electron microscopy (TEM). The experimental results present that Raman intensity decreases with increasing fluence. Raman frequency "red shift" occurs after He-ion implantation. Strain increases with increasing fluence. The hardness of the highly damaged layer increases monotonically with increasing fluence. Microstructural results demonstrate that the width of the damage band and the number density of observed dislocation loops increases with increasing fluence. High-resolution TEM images exhibit that He-ion implantation lead to the formation of planar defects and most of the lattice defects are of interstitial-type basal loops. The relationships of Raman intensity, lattice strain, swelling and hardness with He-implantation-induced lattice disorders are discussed.

  8. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  9. Oxygen disorder, a way to accommodate large epitaxial strains in oxides

    DOE PAGES

    Zhang, Yu Yang; Mishra, Rohan; Pennycook, Timothy J.; ...

    2015-09-22

    Density-functional calculations (total-energy comparisons) and checks for negative-frequency phonon modes are employed as a stability indicator to show that, in rutile- and fluorite-structure oxides, e.g., zirconia strained by a strontium titanate substrate, oxygen-sublattice disorder can be the energetically preferred way to accommodate strain.

  10. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  11. Laser induced OMCVD growth of AlGaAs on GaAs

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Warner, Joseph D.; Aron, Paul R.; Pouch, John J.; Hoffman, Richard W., Jr.

    1987-01-01

    A major factor limiting the efficiency of the GaAs-GaAlAs solar cell is the rate of recombination at the GaAs-AlGaAs interface. Evidence has been previously reported which indicates that recombination at this interface can be greatly reduced if the AlGaAs layer is grown at lower than normal temperatures. The authors examine the epitaxial growth of AlGaAs on GaAs using a horizontal OMCVD reactor and an excimer laser operating in the UV (lambda = 193 nm) region. The growth temperatures were 450 and 500 C. The laser beam was utilized in two orientations: 75 deg angle of incidence and parallel to the substrate. Film composition and structure were determined by Auger electron spectroscopy (AES) and transmission electron microscopy (TEM). Auger analysis of epilayers grown at 500 C with the laser impinging show no carbon or oxygen contamination of the epitaxial layers or interfaces. TEM diffraction patterns of these same epilayers exhibit single crystal (100) zone axis patterns.

  12. Strain, doping, and disorder effects in GaAs/Ge/Si heterostructures: A Raman spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Mlayah, A.; Carles, R.; Leycuras, A.

    1992-01-01

    The present work is devoted to a Raman study of GaAs/Ge/Si heterostructures grown by the vapor-phase epitaxy technique. We first show that the GaAs epilayers are submitted to a biaxial tensile strain. The strain relaxation generates misfit dislocations and thus disorder effects which we analyze in terms of translational invariance loss and Raman selection rules violation. The first-order Raman spectra of annealed samples exhibit an unexpected broadband we identify as due to scattering by a coupled LO phonon-damped plasmon mode. This is corroborated by an accurate line-shape analysis which accounts for the recorded spectra and makes evident the presence of free carriers within the GaAs layers. Their density is estimated from the deduced plasmon frequency and also using a method we have presented in a previous work.

  13. Anti-site disorder and improved functionality of Mn₂NiX (X = Al, Ga, In, Sn) inverse Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip, E-mail: subhra@iitg.ernet.in

    2014-10-07

    Recent first-principles calculations have predicted Mn₂NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn₂NiGa and Mn₂NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn₂NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizingmore » martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.« less

  14. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations inmore » InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.« less

  15. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films

    PubMed Central

    Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849

  16. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    PubMed

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  17. Composition dependent cation distribution in ZnxGa2O3+x nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Nannan; Zhu, Pengfei; Duan, Xiulan

    2018-02-01

    ZnxGa2O3+x (0.8 ≤ x ≤ 1.1) nanocrystals with the size of 15-30 nm were prepared by the sol-gel method. The effect of composition (Zn/Ga ratio) on the distribution of Zn2+ and Ga3+ ions was studied using X-ray photoelectron spectroscopy (XPS). Both of these cations occupied tetrahedral sites as well as octahedral sites of spinel structure in the studied samples. Octahedral Ga3+ ions are dominant and the as-synthesized samples are partially inverse spinel-structure. The fraction of tetrahedral Ga3+ ions was calculated to be 0.07-0.16, and increased with Zn/Ga ratio increasing. The inverse parameter (two times the fraction of Ga3+ in the tetrahedral sites) increases from 0.14 to 0.32 when x value increases from 0.8 to 1.1. The EPR and emission spectra indicated that oxygen vacancies formed in the nanocrystals. The emission intensity of the peak due to oxygen vacancies decreased with increasing Zn/Ga ratio, indicating the decreasing of the concentration of oxygen vacancy.

  18. Charge carrier relaxation in InGaAs-GaAs quantum wire modulation-doped heterostructures

    NASA Astrophysics Data System (ADS)

    Kondratenko, S. V.; Iliash, S. A.; Mazur, Yu I.; Kunets, V. P.; Benamara, M.; Salamo, G. J.

    2017-09-01

    The time dependencies of the carrier relaxation in modulation-doped InGaAs-GaAs low-dimensional structures with quantum wires have been studied as functions of temperature and light excitation levels. The photoconductivity (PC) relaxation follows a stretched exponent with decay constant, which depends on the morphology of InGaAs epitaxial layers, presence of deep traps, and energy disorder due to inhomogeneous distribution of size and composition. A hopping model, where electron tunnels between bands of localized states, gives appropriate interpretation for temperature-independent PC decay across the temperature range 150-290 K. At low temperatures (T < 150 K), multiple trapping-retrapping via 1D states of InGaAs quantum wires (QWRs), sub-bands of two-dimensional electron gas of modulation-doped n-GaAs spacers, as well as defect states in the GaAs environment are the dominant relaxation mechanism. The PC and photoluminescence transients for samples with different morphologies of the InGaAs nanostructures are compared. The relaxation rates are found to be largely dependent on energy disorder due to inhomogeneous distribution of strain, nanostructure size and composition, and piezoelectric fields in and around nanostructures, which have a strong impact on efficiency of carrier exchange between bands of the InGaAs QWRs, GaAs spacers, or wetting layers; presence of local electric fields; and deep traps.

  19. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  20. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  1. Basic ammonothermal GaN growth in molybdenum capsules

    NASA Astrophysics Data System (ADS)

    Pimputkar, S.; Speck, J. S.; Nakamura, S.

    2016-12-01

    Single crystal, bulk gallium nitride (GaN) crystals were grown using the basic ammonothermal method in a high purity growth environment created using a non-hermetically sealed molybdenum (Mo) capsule and compared to growths performed in a similarly designed silver (Ag) capsule and capsule-free René 41 autoclave. Secondary ion mass spectrometry (SIMS) analysis revealed transition metal free (<1×1017 cm-3) GaN crystals. Anomalously low oxygen concentrations ((2-6)×1018 cm-3) were measured in a {0001} seeded crystal boule grown using a Mo capsule, despite higher source material oxygen concentrations ((1-5)×1019 cm-3) suggesting that molybdenum (or molybdenum nitrides) may act to getter oxygen under certain conditions. Total system pressure profiles from growth runs in a Mo capsule system were comparable to those without a capsule, with pressures peaking within 2 days and slowly decaying due to hydrogen diffusional losses. Measured Mo capsule GaN growth rates were comparable to un-optimized growth rates in capsule-free systems and appreciably slower than in Ag-capsule systems. Crystal quality replicated that of the GaN seed crystals for all capsule conditions, with high quality growth occurring on the (0001) Ga-face. Optical absorption and impurity concentration characterization suggests reduced concentrations of hydrogenated gallium vacancies (VGa-Hx).

  2. Structural disorder and elementary magnetic properties of triangular lattice ErMgGaO 4 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cevallos, F. Alex; Stolze, Karoline; Cava, Robert J.

    The single crystal growth, structure, and basic magnetic properties of ErMgGaO 4 are reported. The structure consists of triangular layers of magnetic ErO 6 octahedra separated by a double layer of randomly occupied non-magnetic (Ga,Mg)O 5 bipyramids. The Er atoms are positionally disordered. Magnetic measurements parallel and perpendicular to the c axis of a single crystal reveal dominantly antiferromagnetic interactions, with a small degree of magnetic anisotropy. A weighted average of the directional data suggests an antiferromagnetic Curie Weiss temperature of approximately -30 K. Below 10 K the temperature dependences of the inverse susceptibilities in the in-plane and perpendicular-to planemore » directions are parallel, indicative of an isotropic magnetic moment at low temperatures. In conclusion, no sign of magnetic ordering is observed above 1.8 K, suggesting that ErMgGaO 4 is a geometrically frustrated magnet.« less

  3. Structural disorder and elementary magnetic properties of triangular lattice ErMgGaO 4 single crystals

    DOE PAGES

    Cevallos, F. Alex; Stolze, Karoline; Cava, Robert J.

    2018-03-23

    The single crystal growth, structure, and basic magnetic properties of ErMgGaO 4 are reported. The structure consists of triangular layers of magnetic ErO 6 octahedra separated by a double layer of randomly occupied non-magnetic (Ga,Mg)O 5 bipyramids. The Er atoms are positionally disordered. Magnetic measurements parallel and perpendicular to the c axis of a single crystal reveal dominantly antiferromagnetic interactions, with a small degree of magnetic anisotropy. A weighted average of the directional data suggests an antiferromagnetic Curie Weiss temperature of approximately -30 K. Below 10 K the temperature dependences of the inverse susceptibilities in the in-plane and perpendicular-to planemore » directions are parallel, indicative of an isotropic magnetic moment at low temperatures. In conclusion, no sign of magnetic ordering is observed above 1.8 K, suggesting that ErMgGaO 4 is a geometrically frustrated magnet.« less

  4. Isotopic evidence for oxygenated Mesoarchaean shallow oceans

    NASA Astrophysics Data System (ADS)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny

    2018-02-01

    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  5. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less

  6. Does the physics of (Ga,Mn)N differ from (GaMn)As qualitatively or quantitatively? Is valance of Mn impurity 2+ or 3+?

    NASA Astrophysics Data System (ADS)

    Nelson, Ryky; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2013-03-01

    (Ga,Mn)N is a promising material for spintronics due to its potential high currie temperature (Tc). However, unlike for (Ga,Mn)As, some of the experiments on (Ga,Mn)N are still controversial on the intrinsic nature of the magnetism. Furthermore, under debate are the spin and charge state of the disordered Mn impurities in (Ga,Mn)N and whether its local moments interact via the same exchange mechanism as in (Ga,Mn)As. To address these issues we will present ab-initio-based analyses of disorder and correlation via the recently developed Wannier function based methods.

  7. Simple method to enhance positive bias stress stability of In-Ga-Zn-O thin-film transistors using a vertically graded oxygen-vacancy active layer.

    PubMed

    Park, Ji Hoon; Kim, Yeong-Gyu; Yoon, Seokhyun; Hong, Seonghwan; Kim, Hyun Jae

    2014-12-10

    We proposed a simple method to deposit a vertically graded oxygen-vacancy active layer (VGA) to enhance the positive bias stress (PBS) stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). We deposited a-IGZO films by sputtering (target composition; In2O3:Ga2O3:ZnO = 1:1:1 mol %), and the oxygen partial pressure was varied during deposition so that the front channel of the TFTs was fabricated with low oxygen partial pressure and the back channel with high oxygen partial pressure. Using this method, we were able to control the oxygen vacancy concentration of the active layer so that it varied with depth. As a result, the turn-on voltage shift following a 10 000 s PBS of optimized VGA TFT was drastically improved from 12.0 to 5.6 V compared with a conventional a-IGZO TFT, without a significant decrease in the field effect mobility. These results came from the self-passivation effect and decrease in oxygen-vacancy-related trap sites of the VGA TFTs.

  8. Material quality frontiers of MOVPE grown AlGaAs for minority carrier devices

    NASA Astrophysics Data System (ADS)

    Heckelmann, S.; Lackner, D.; Dimroth, F.; Bett, A. W.

    2017-04-01

    In this study, secondary ion mass spectroscopy of oxygen, deep level transient spectroscopy and power dependent relative photoluminescence are compared regarding their ability to resolve differences in AlxGa1-xAs material quality. AlxGa1-xAs samples grown with two different trimethylaluminum sources showing low and high levels of oxygen contamination are compared. As tested in the growth of minority carrier devices, i.e. AlxGa1-xAs solar cells, the two precursors clearly lead to different device characteristics. It is shown that secondary ion mass spectroscopy could not resolve the difference in oxygen concentration, whereas deep level transient spectroscopy and photoluminescence based measurements indicate the influence of the precursor oxygen level on the material quality.

  9. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Shen, X.; Chen, J.; Duan, G. X.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Kaun, S. W.; Kyle, E. C. H.; Speck, J. S.; Pantelides, S. T.

    2016-07-01

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing ON-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare ON can naturally account for the "super-recovery" in the peak transconductance.

  10. Disorder induced gap states as a cause of threshold voltage instabilities in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.

    2017-12-01

    We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.

  11. Positron beam study of indium tin oxide films on GaN

    NASA Astrophysics Data System (ADS)

    Cheung, C. K.; Wang, R. X.; Beling, C. D.; Djurisic, A. B.; Fung, S.

    2007-02-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 °C without oxygen and at 200 °C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 × 10-3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy.

  12. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, R., E-mail: rong.jiang@vanderbilt.edu; Chen, J.; Duan, G. X.

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing O{sub N}-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare O{sub N} can naturally account for the “super-recovery” in the peak transconductance.

  13. Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy.

    PubMed

    Kharche, Neerav; Hybertsen, Mark S; Muckerman, James T

    2014-06-28

    The GaN/ZnO alloy functions as a visible-light photocatalyst for splitting water into hydrogen and oxygen. As a first step toward understanding the mechanism and energetics of water-splitting reactions, we investigate the microscopic structure of the aqueous interfaces of the GaN/ZnO alloy and compare them with the aqueous interfaces of pure GaN and ZnO. Specifically, we have studied the (101̄0) surface of GaN and ZnO and the (101̄0) and (12̄10) surfaces of the 1 : 1 GaN/ZnO alloy. The calculations are carried out using first-principles density functional theory based molecular dynamics (DFT-MD). The structure of water within a 3 Å distance from the semiconductor surface is significantly altered by the acid/base chemistry of the aqueous interface. Water adsorption on all surfaces is substantially dissociative such that the surface anions (N or O) act as bases accepting protons from dissociated water molecules while the corresponding hydroxide ions bond with surface cations (Ga or Zn). Additionally, the hard-wall interface presented by the semiconductor imparts ripples in the density of water. Beyond a 3 Å distance from the semiconductor surface, water exhibits a bulk-like hydrogen bond network and oxygen-oxygen radial distribution function. Taken together, these characteristics represent the resting (or "dark") state of the catalytic interface. The electronic structure analysis of the aqueous GaN/ZnO interface suggests that the photogenerated holes may get trapped on interface species other than the adsorbed OH(-) ions. This suggests additional dynamical steps in the water oxidation process.

  14. Interface properties of SiO2/GaN structures formed by chemical vapor deposition with remote oxygen plasma mixed with Ar or He

    NASA Astrophysics Data System (ADS)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The impacts of noble gas species (Ar and He) on the formation of a SiO2/GaN structure formed by a remote oxygen plasma-enhanced chemical vapor deposition (ROPE-CVD) method were systematically investigated. Atomic force microscopy revealed that ROPE-CVD with He leads to a smooth SiO2 surface compared with the case of Ar. We found that no obvious oxidations of the GaN surfaces after the SiO2 depositions with the both Ar and He cases were observed. The capacitance–voltage (C–V) curves of the GaN MOS capacitors formed by ROPE-CVD with the Ar and He dilutions show good interface properties with no hysteresis and good agreement with the ideal C–V curves even after post deposition annealing at 800 °C. Besides, we found that the current density–oxide electric field characteristics shows a gate leakage current for the Ar case lower than the He case.

  15. Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Bläsing, J.; Krost, A.; Hertkorn, J.; Scholz, F.; Kirste, L.; Chuvilin, A.; Kaiser, U.

    2009-02-01

    This paper presents an x-ray study of GaN, which is grown on nominally undoped and oxygen-doped AlN nucleation layers on sapphire substrates by metal organic vapor phase epitaxy. Without additional oxygen doping a trimodal nucleation distribution of AlN is observed leading to inhomogeneous in-plane strain fields, whereas in oxygen-doped layers a homogeneous distribution of nucleation centers is observed. In both types of nucleation layers extremely sharp correlation peaks occur in transverse ω-scans which are attributed to a high density of edge-type dislocations having an in-plane Burgers vector. The correlation peaks are still visible in the (0002) ω-scans of 500 nm GaN which might mislead an observer to conclude incorrectly that there exists an extremely high structural quality. For the undoped nucleation layers depth-sensitive measurements in grazing incidence geometry reveal a strong thickness dependence of the lattice parameter a, whereas no such dependence is observed for doped samples. For oxygen-doped nucleation layers, in cross-sectional transmission electron microscopy images a high density of stacking faults parallel to the substrate surface is found in contrast to undoped nucleation layers where a high density of threading dislocations is visible. GaN of 2.5 μm grown on top of 25 nm AlN nucleation layers with an additional in situ SiN mask show full widths at half maximum of 160″ and 190″ in (0002) and (10-10) high-resolution x-ray diffraction ω-scans, respectively.

  16. A study of the Au/Ni ohmic contact on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, D.; Yu, L. S.; Lau, S. S.

    2000-10-01

    The formation mechanism of the ohmic Au/Ni/p-GaN contact has been investigated. We found that it is essential to (i) deposit a structure of Au and Ni in the proper deposition sequence, and (ii) anneal the bilayer structure in an oxygen containing ambient. Our findings indicated that oxygen assists the layer-reversal reactions of the metallized layers to form a structure of NiO/Au/p-GaN. The presence of oxygen during annealing appears to increase the conductivity of the p-GaN. It is further suggested that Ni removes or reduces the surface contamination of the GaN sample before or during layer reversal. In the final contactmore » structure, an Au layer, which has a large work function, is in contact with the p-GaN substrate. The presence of Au in the entire contacting layer improves the conductivity of the contact. An ohmic formation mechanism based on our experimental results is proposed and discussed in this work. (c) 2000 American Institute of Physics.« less

  17. Cation disorder in Ga1212.

    PubMed

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  18. Cation disorder in MgX2O4 (X = Al, Ga, In) spinels from first principles

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Sickafus, Kurt E.; Stanek, Christopher R.; Rudin, Sven P.; Uberuaga, Blas P.

    2012-07-01

    We have performed first-principles density functional theory calculations to investigate the possible physical origins of the discrepancies between the existing theoretical and experimental studies on cation distribution in MgX2O4 (X = Al, Ga, In) spinel oxides. We show that for MgGa2O4 and MgIn2O4, it is crucial to consider the effects of lattice vibrations to achieve agreement between theory and experiment. For MgAl2O4, we find that neglecting short-range order effects in thermodynamic modeling can lead to significant underestimation of the degree of inversion. Furthermore, we demonstrate that the common practice of representing disordered structures by randomly exchanging atoms within a small periodic supercell can incur large computational error due to either insufficient statistical sampling or finite supercell size effects.

  19. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I.

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffersmore » also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.« less

  20. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors

    NASA Astrophysics Data System (ADS)

    Noh, Hyeon-Kyun; Chang, K. J.; Ryu, Byungki; Lee, Woo-Jin

    2011-09-01

    We perform first-principles density functional calculations to investigate the atomic and electronic properties of various O-vacancy (VO) defects in amorphous indium gallium zinc oxides (a-IGZO). The formation energies of VO have a tendency to increase with increasing number of neighboring Ga atoms, whereas they are generally low in the environment surrounded with In atoms. Thus, adding Ga atoms suppresses the formation of O-deficiency defects, which are considered as the origin of device instability in a-IGZO-based thin film transistors. The conduction band edge state is characterized by the In s orbital and insensitive to disorder, in good agreement with the experimental finding that increasing the In content enhances the carrier density and mobility. In a-IGZO, while most VO defects are deep donors, some of the defects act as shallow donors due to local environments different from those in crystalline oxides. As ionized O vacancies can capture electrons, it is suggested that these defects are responsible for positive shifts of the threshold voltage observed under positive gate bias stress. Under light illumination stress, VO defects can be ionized, becoming VO2+ defects due to the negative-U behavior. When electrons are captured by applying a negative bias voltage, ionized VO2+ defects return to the original neutral charge state. Through molecular dynamics simulations, we find that the initial neutral state is restored by annealing, in good agreement with experiments, although the annealing temperature depends on the local environment. Our calculations show that VO defects play an important role in the instability of a-IGZO-based devices.

  1. Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yun-xiang; Mei, Donghai; Liu, Chang-jun

    In the present work, hydrogen adsorption on the Ga2O3 surfaces was investigated using Fourier transform infrared spectroscopy (FTIR) measurements and periodic density functional theory (DFT) calculations. Both the FTIR and DFT studies suggest that H2 dissociates on the Ga2O3 surfaces, producing OH and GaH species. The FTIR bands at 3730, 3700, 3630 and 3600 cm-1 are attributed to the vibration of the OH species whereas those at 2070 and 1990 cm-1 to the GaH species. The structures of the species detected in experiments are established through a comparison with the DFT calculated stretching frequencies. The O atom of the experimentallymore » detected OH species is believed to originate from the surface O3c atom. On the other hand, the H atom that binds the coordinately unsaturated Ga atom results in the experimentally detected GaH species. Dissociation of H2 on the perfect Ga2O3 surface, with the formation of both OH and GaH species, is endothermic and has an energy barrier of 0.90 eV. In contrast, H2 dissociation on the defective Ga2O3 surface with oxygen vacancies, which mainly produces GaH species, is exothermic, with an energy barrier of 0.61 eV. Accordingly, presence of the oxygen vacancies promotes H2 dissociation and production of GaH species on the Ga2O3 surfaces. Higher temperatures are expected to favor oxygen vacancy creation on the Ga2O3 surfaces, and thereby benefit the production of GaH species. This analysis is consistent with the FTIR results that the bands assigned to GaH species become stronger at higher temperatures. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  2. Molecular fossils and the late rise of oxygenic photosynthesis

    NASA Astrophysics Data System (ADS)

    Brocks, J. J.

    2012-04-01

    Biomarkers are the molecular fossils of natural products such as lipids and pigments. They can yield a wealth of information about early microbial ecosystems and are particularly valuable when preserved in > 1 billion-year old (Ga) sedimentary rocks where conventional fossils are often lacking. Therefore, in 1999, the detection of traces of biomarkers in 2.5 to 2.7 Ga shales from Western Australia (Brocks et al. 1999, Summons et al. 1999) was celebrated as a breakthrough. The discovery, which was later confirmed by several independent studies, led to far reaching conclusions about the early evolution of oxygenic photosynthesis (Summons et al. 1999) and ancestral eukaryotes (Brocks et al. 1999). However, here we present new data based on the carbon isotopic composition of solidified hydrocarbons (Rasmussen et al. 2008) and the spatial distribution of liquid hydrocarbons within the original 2.5 and 2.7 Ga shales (Brocks 2011) that demonstrate that the molecules must have entered the rocks much later in Earth's history and therefore provide no information about the Archean (>2.5 Ga) biosphere or environment. The elimination of the Archean biomarker data has immense implications for our understanding of Earth's early biosphere. 2-Methylhopanes have been interpreted as evidence for the existence of cyanobacteria at 2.7 Ga, about ~300 million years before the atmosphere became mildly oxygenated in the Great Oxidation Event (GOE; between 2.45 and 2.32 Ga). Now, the oldest direct fossil evidence for cyanobacteria reverts back to 2.15 Ga, and the most ancient robust sign for oxygenic photosynthesis becomes the GOE itself. Moreover, the presence of steranes has been interpreted as evidence for the existence of ancestral eukaryotes at 2.7 Ga. However, without the steranes, the oldest fossil evidence for the domain falls into the range ~1.78-1.68 Ga. Recognition that the biomarkers from Archean rocks are not of Archean age renders permissive hypotheses about a late evolution

  3. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  4. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  5. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN) 5 /(GaN) 1 superlattice (SL) in Al 0.83 Ga 0.17 N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as Mg Ga δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using Mg Ga δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  6. Oxygen mask related nasal integument and osteocartilagenous disorders in F-16 fighter pilots.

    PubMed

    Schreinemakers, J Rieneke C; Westers, Paul; van Amerongen, Pieter; Kon, Moshe

    2013-01-01

    A preliminary survey showed half of the participating Royal Netherlands Air Force (RNLAF) F-16 fighter pilots to have nasal integument and osteocartilagenous disorders related to wearing in-flight oxygen masks. To make an inventory of these disorders and possible associated factors. All RNLAF F-16 pilots were requested to fill out a semi-structured questionnaire for a cross-sectional survey. Additionally, one squadron in The Netherlands and pilots in operational theater were asked to participate in a prospective study that required filling out a pain score after each flight. Pilot- and flight-related variables on all participants were collected from the RNLAF database. A linear mixed model was built to identify associated factors with the post-flight pain score. The response rate to the survey was 83%. Ninety of the 108 participants (88%, 6 missing) reported tenderness, irritation, pain, erythema, skin lesions, callous skin, or swelling of nasal bridge integument or architecture. Seventy-two participants (71%, 6 missing) reported their symptoms to be troublesome after a mean of 6±3 out of 10 flights (0;10, 54 missing). Sixty-six pilots participated in scoring post-flight pain. Pain scores were significantly higher if a participant had ≥3 nasal disorders, after longer than average flights, after flying abroad, and after flying with night vision goggles (respectively +2.7 points, p = 0.003; +0.2 points, p = 0.027; +1.8 points, p = 0.001; +1.2 points p = 0.005). Longer than average NVG flights and more than average NVG hours per annum decreased painscores (respectively -0.8 points, p = 0.017; -0.04 points, p = 0.005). The majority of the RNLAF F-16 fighter pilot community has nasal disorders in the contact area of the oxygen mask, including pain. Six pilot- or flight-related characteristics influence the experienced level of pain.

  7. Methods for separating oxygen from oxygen-containing gases

    DOEpatents

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  8. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  9. Sediment Sulfur Isotopes Reflect Seawater Oxygen Rise in Neoarchean

    NASA Astrophysics Data System (ADS)

    Fakhraee, M.; Crowe, S.; Katsev, S.

    2017-12-01

    The oxygenation of the ocean-atmosphere system is recorded in S isotopes preserved in sedimentary pyrites. Disappearance of mass independent fractionation of S (S-MIF) around 2.45 Ga signals the first large-scale oxygenation of the atmosphere (the GOE), while a narrow range of pyritic δ34S during the Archean eon suggests limited oxidative cycling of S. Both δ34S and S-MIF ranges, however, undergo a clear and unexplained expansion in the Neoarchean between 2.7 and 2.45 Ga, indicating a change in global S-cycling. By analyzing the preservation patterns of isotopic signals with a 1D reaction-transport model, we show that the rock record points to the rise of oxygen in shallow marine environments around 2.7 billion years ago. The model tracks d34S and Δ33S isotopic transformations during early diagenesis in a reaction-transport framework. The results indicate that δ34S and MIF signatures in >2.7Ga sulfides require deposition from anoxic or minimally oxygenated seawater, whereas the 2.7-2.4 Ga expansion in both δ34S and D33S ranges points to at least localized accumulation oxygen to low μM levels, accompanied by a moderate rise in sulfate from low μM concentrations to up to 200 μM. In contrast to the role of oxygen in the atmosphere where it suppresses the production of MIF, oxygen in seawater at levels below 25 μM does not necessarily suppress the MIF preservation, which instead depends on the availability of reactive organic matter, sulfate, and electron acceptors for sulfide re-oxidation. The S-isotopes in Neoarchean sulfides thus paint a picture of gradual oxygenation of shallow marine environments under a nearly anoxic atmosphere where the atmospherically produced S isotopic signals are overprinted by increasingly oxidative diagenesis, rising sulfate levels, and increasing organic sedimentation.

  10. Micro Raman and photoluminescence spectroscopy of nano-porous n and p type GaN/sapphire(0001).

    PubMed

    Ingale, Alka; Pal, Suparna; Dixit, V K; Tiwari, Pragya

    2007-06-01

    Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.

  11. Carbon- and oxygen-free Cu(InGa)(SSe)₂ solar cell with a 4.63% conversion efficiency by electrostatic spray deposition.

    PubMed

    Yoon, Hyun; Na, Seung Heon; Choi, Jae Young; Kim, Min Woo; Kim, Hayong; An, Hee Sang; Min, Byoung Koun; Ahn, SeJin; Yun, Jae Ho; Gwak, Jihye; Yoon, KyungHoon; Kolekar, Sanjay S; van Hest, Maikel F A M; Al-Deyab, Salem S; Swihart, Mark T; Yoon, Sam S

    2014-06-11

    We have demonstrated the first example of carbon- and oxygen-free Cu(In,Ga)(SSe)2 (CIGSSe) absorber layers prepared by electrospraying a CuInGa (CIG) precursor followed by annealing, sulfurization, and selenization at elevated temperature. X-ray diffraction and scanning electron microscopy showed that the amorphous as-deposited (CIG) precursor film was converted into polycrystalline CIGSSe with a flat-grained morphology after post-treatment. The optimal post-treatment temperature was 300 °C for annealing and 500 °C for both sulfurization and selenization, with a ramp rate of 5 °C/min. The carbon impurities in the precursor film were removed by air annealing, and oxide that was formed during annealing was removed by sulfurization. The fabricated CIGSSe solar cell showed a conversion efficiency of 4.63% for a 0.44 cm(2) area, with Voc = 0.4 V, Jsc = 21 mA/cm(2), and FF = 0.53.

  12. Study on photoemission surface of varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  13. Oxygen ion transference number of doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong; Liu, Meilin

    The transference numbers for oxygen ion (t O) in several LaGaO 3-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications.

  14. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  15. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to <1016 cm-3 when the off-angle of the m-plane GaN substrate was increased. The leakage current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  16. Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.

    2012-12-01

    We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.

  17. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis.

    PubMed

    Kopp, Robert E; Kirschvink, Joseph L; Hilburn, Isaac A; Nash, Cody Z

    2005-08-09

    Although biomarker, trace element, and isotopic evidence have been used to claim that oxygenic photosynthesis evolved by 2.8 giga-annum before present (Ga) and perhaps as early as 3.7 Ga, a skeptical examination raises considerable doubt about the presence of oxygen producers at these times. Geological features suggestive of oxygen, such as red beds, lateritic paleosols, and the return of sedimentary sulfate deposits after a approximately 900-million year hiatus, occur shortly before the approximately 2.3-2.2 Ga Makganyene "snowball Earth" (global glaciation). The massive deposition of Mn, which has a high redox potential, practically requires the presence of environmental oxygen after the snowball. New age constraints from the Transvaal Supergroup of South Africa suggest that all three glaciations in the Huronian Supergroup of Canada predate the Snowball event. A simple cyanobacterial growth model incorporating the range of C, Fe, and P fluxes expected during a partial glaciation in an anoxic world with high-Fe oceans indicates that oxygenic photosynthesis could have destroyed a methane greenhouse and triggered a snowball event on time-scales as short as 1 million years. As the geological evidence requiring oxygen does not appear during the Pongola glaciation at 2.9 Ga or during the Huronian glaciations, we argue that oxygenic cyanobacteria evolved and radiated shortly before the Makganyene snowball.

  18. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.

    PubMed

    Blanc, Frédéric; Middlemiss, Derek S; Gan, Zhehong; Grey, Clare P

    2011-11-09

    Doped lanthanum gallate perovskites (LaGaO(3)) constitute some of the most promising electrolyte materials for solid oxide fuel cells operating in the intermediate temperature regime. Here, an approach combining experimental multinuclear NMR spectroscopy with density functional theory total energy and GIPAW NMR calculations yields a comprehensive understanding of the structural and defect chemistries of Sr- and Mg-doped LaGaO(3) anionic conductors. The DFT energetics demonstrate that Ga-V(O)-Ga (V(O) = oxygen vacancy) environments are favored (vs Ga-V(O)-Mg, Mg-V(O)-Mg and Mg-O-Mg-V(O)-Ga) across a range y = 0.0625, 0.125, and 0.25 of fractional Mg contents in LaGa(1-y)Mg(y)O(3-y/2). The results are interpreted in terms of doping and mean phase formation energies (relative to binary oxides) and are compared with previous calculations and experimental calorimetry data. Experimental multinuclear NMR data reveal that while Mg sites remain six-fold coordinated across the range of phase stoichiometries, albeit with significant structural disorder, a stoichiometry-dependent minority of the Ga sites resonate at a shift consistent with Ga(V) coordination, demonstrating that O vacancies preferentially locate in the first anion coordination shell of Ga. The strong Mg-V(O) binding inferred by previous studies is not observed here. The (17)O NMR spectra reveal distinct resonances that can be assigned by using the GIPAW NMR calculations to anions occupying equatorial and axial positions with respect to the Ga(V)-V(O) axis. The disparate shifts displayed by these sites are due to the nature and extent of the structural distortions caused by the O vacancies.

  19. Structures, Properties and Defects of SrTiO3/GaAs Hetero-interfaces

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Öğüt, Serdar; Klie, Robert

    SrTiO3 thin film can be epitaxially grown on GaAs substrate and used as a platform for growing other oxides to create functional metal-oxide-semiconductor devices, where a high-quality SrTiO3/GaAs interface is essential. We studied the structural and electronic properties of SrTiO3/GaAs hetero-interfaces at atomic level using scanning transmission electron microscopy and first-principles calculations. Our results suggest the preferred termination of GaAs (001) is significantly dependent on the oxygen concentration in the first oxide layer. The favorable interface structure is characterized as oxygen-deficient SrO in contact with arsenic and is observed in both experiment and simulation. The electronic properties are calculated and found to be tunable by interfacial defects such as oxygen, gallium and arsenic vacancies. This work was supported by the National Science Foundation (Grant No. DMR-1408427). This work made use of instruments in the Electron Microscopy Service and the High Performance Computing Clusters at University of Illinois at Chicago.

  20. Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity

    PubMed Central

    Zhang, Yiyu; Qian, Ling-Xuan; Wu, Zehan; Liu, Xingzhao

    2017-01-01

    Recently, amorphous InGaZnO ultraviolet photo thin-film transistors have exhibited great potential for application in future display technologies. Nevertheless, the transmittance of amorphous InGaZnO (~80%) is still not high enough, resulting in the relatively large sacrifice of aperture ratio for each sensor pixel. In this work, the ultraviolet photo thin-film transistor based on amorphous InGaMgO, which processes a larger bandgap and higher transmission compared to amorphous InGaZnO, was proposed and investigated. Furthermore, the effects of post-deposition annealing in oxygen on both the material and ultraviolet detection characteristics of amorphous InGaMgO were also comprehensively studied. It was found that oxygen post-deposition annealing can effectively reduce oxygen vacancies, leading to an optimized device performance, including lower dark current, higher sensitivity, and larger responsivity. We attributed it to the combined effect of the reduction in donor states and recombination centers, both of which are related to oxygen vacancies. As a result, the 240-min annealed device exhibited the lowest dark current of 1.7 × 10−10 A, the highest photosensitivity of 3.9 × 106, and the largest responsivity of 1.5 × 104 A/W. Therefore, our findings have revealed that amorphous InGaMgO photo thin-film transistors are a very promising alternative for UV detection, especially for application in touch-free interactive displays. PMID:28772529

  1. Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity.

    PubMed

    Zhang, Yiyu; Qian, Ling-Xuan; Wu, Zehan; Liu, Xingzhao

    2017-02-13

    Recently, amorphous InGaZnO ultraviolet photo thin-film transistors have exhibited great potential for application in future display technologies. Nevertheless, the transmittance of amorphous InGaZnO (~80%) is still not high enough, resulting in the relatively large sacrifice of aperture ratio for each sensor pixel. In this work, the ultraviolet photo thin-film transistor based on amorphous InGaMgO, which processes a larger bandgap and higher transmission compared to amorphous InGaZnO, was proposed and investigated. Furthermore, the effects of post-deposition annealing in oxygen on both the material and ultraviolet detection characteristics of amorphous InGaMgO were also comprehensively studied. It was found that oxygen post-deposition annealing can effectively reduce oxygen vacancies, leading to an optimized device performance, including lower dark current, higher sensitivity, and larger responsivity. We attributed it to the combined effect of the reduction in donor states and recombination centers, both of which are related to oxygen vacancies. As a result, the 240-min annealed device exhibited the lowest dark current of 1.7 × 10 -10 A, the highest photosensitivity of 3.9 × 10⁶, and the largest responsivity of 1.5 × 10⁴ A/W. Therefore, our findings have revealed that amorphous InGaMgO photo thin-film transistors are a very promising alternative for UV detection, especially for application in touch-free interactive displays.

  2. Nanoscale electrical and structural modification induced by rapid thermal oxidation of AlGaN/GaN heterostructures.

    PubMed

    Greco, Giuseppe; Fiorenza, Patrick; Giannazzo, Filippo; Alberti, Alessandra; Roccaforte, Fabrizio

    2014-01-17

    In this paper, the structural and electrical modifications induced, in the nanoscale, by a rapid thermal oxidation process on AlGaN/GaN heterostructures, are investigated. A local rapid oxidation (900 ° C in O2, 10 min) localized under the anode region of an AlGaN/GaN diode enabled a reduction of the leakage current with respect to a standard Schottky contact. The insulating properties of the near-surface oxidized layer were probed by a nanoscale electrical characterization using scanning probe microscopy techniques. The structural characterization indicated the formation of a thin uniform oxide layer on the surface, with preferential oxidation paths along V-shaped defects penetrating through the AlGaN/GaN interface. The oxidation process resulted in an expansion of the lattice parameters due to the incorporation of oxygen atoms, accompanied by an increase of the crystal mosaicity. As a consequence, a decrease of the sheet carrier density of the two-dimensional electron gas and a positive shift of the threshold voltage are observed. The results provide useful insights for a possible future integration of rapid oxidation processes during GaN device fabrication.

  3. The Association of Early Blood Oxygenation with Child Development in Preterm Infants with Acute Respiratory Disorders

    PubMed Central

    Smith, Karen E.; Keeney, Susan; Zhang, Lifang; Perez-Polo, Regino; Rassin, David K.

    2008-01-01

    The potential negative impact of early blood oxygenation on development of specific cognitive and motor outcomes in children born at very low birth weight (VLBW; 1000 − 1500g) has not been examined even though these infants are exposed to varying durations and amounts of oxygen as part of their neonatal care. While this is the largest group of preterm infants, they receive much less research attention than extremely low birth weight infants (ELBW < 1000g). Although neonatologists are questioning the routine use of oxygen therapy for all neonates, research has focused primarily on the more medically fragile ELBW infants. To date there are no systematic studies available to guide decision making for oxygen supplementation for a large segment of the preterm infant population. The aim of the present study was to determine if there is an association between blood oxygenation in the first four hours of life and specific cognitive and motor skills in preterm infants with acute respiratory disorders but no severe intracranial insult using a selected cohort from a longitudinal study children recruited in 1991 and 1992 designed to examine the role of biological immaturity as defined by gestational age and parenting in development. From this cohort, 55 children had acute respiratory disorders without severe intracranial insult. Of these, 35 children had at least one partial pressure of oxygen obtained from arterial blood (PaO2) during the first four hours of life as part of their clinical care. Higher early PaO2 values were associated with lower impulse control and attention skills in the elementary school age period. Models that examined for relations between PaO2 values that also included birth weight and parenting quality across the first year of life revealed that higher PaO2 remained associated with impulse control but not attention skills. Birth weight was not associated with any outcomes. These results suggest that hyperoxia may be a risk factor for developmental

  4. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    NASA Astrophysics Data System (ADS)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2015-01-01

    We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm-3 at room temperature in (AlN)5/(GaN)1 SL. Our results prove that nMgGa-ON (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  5. Oxygen Mask Related Nasal Integument and Osteocartilagenous Disorders in F-16 Fighter Pilots

    PubMed Central

    Schreinemakers, J. Rieneke C.; Westers, Paul; van Amerongen, Pieter; Kon, Moshe

    2013-01-01

    Background A preliminary survey showed half of the participating Royal Netherlands Air Force (RNLAF) F-16 fighter pilots to have nasal integument and osteocartilagenous disorders related to wearing in-flight oxygen masks. Aim To make an inventory of these disorders and possible associated factors. Methods All RNLAF F-16 pilots were requested to fill out a semi-structured questionnaire for a cross-sectional survey. Additionally, one squadron in The Netherlands and pilots in operational theater were asked to participate in a prospective study that required filling out a pain score after each flight. Pilot- and flight-related variables on all participants were collected from the RNLAF database. A linear mixed model was built to identify associated factors with the post-flight pain score. Results The response rate to the survey was 83%. Ninety of the 108 participants (88%, 6 missing) reported tenderness, irritation, pain, erythema, skin lesions, callous skin, or swelling of nasal bridge integument or architecture. Seventy-two participants (71%, 6 missing) reported their symptoms to be troublesome after a mean of 6±3 out of 10 flights (0;10, 54 missing). Sixty-six pilots participated in scoring post-flight pain. Pain scores were significantly higher if a participant had ≥3 nasal disorders, after longer than average flights, after flying abroad, and after flying with night vision goggles (respectively +2.7 points, p = 0.003; +0.2 points, p = 0.027; +1.8 points, p = 0.001; +1.2 points p = 0.005). Longer than average NVG flights and more than average NVG hours per annum decreased painscores (respectively −0.8 points, p = 0.017; −0.04 points, p = 0.005). Conclusions The majority of the RNLAF F-16 fighter pilot community has nasal disorders in the contact area of the oxygen mask, including pain. Six pilot- or flight-related characteristics influence the experienced level of pain. PMID:23505413

  6. Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Yuan, Chao; Wang, Jun-Qiao; Liang, Er-Jun; Chao, Ming-Ju

    2013-08-01

    Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 °C, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values <= 8.5 mol% each exhibit basically ionic conduction while those for Co content values >= 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 × 105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.

  7. Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding

    NASA Astrophysics Data System (ADS)

    Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul

    2018-05-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.

  8. TNF-alpha -308G>A polymorphism is associated with suicide attempts in major depressive disorder.

    PubMed

    Kim, Yong-Ku; Hong, Jin-Pyo; Hwang, Jung-A; Lee, Heon-Jeong; Yoon, Ho-Kyoung; Lee, Bun-Hee; Jung, Han-Yong; Hahn, Sang-Woo; Na, Kyoung-Sae

    2013-09-05

    Despite the substantial role of the cytokine network in depression and suicide, few studies have investigated the role of genetic polymorphisms of pro- and anti-inflammatory cytokines in suicide in major depressive disorder (MDD). The aim of this study was to investigate whether tumor necrosis factor-alpha (TNF-alpha) -308G>A, interferon-gamma (IFN-gamma) +874A>T, and interleukin-10 (IL-10) -1082A>G are associated with increased risk for suicide attempts in MDD. Among patients with MDD, 204 patients who had attempted suicide and 97 control patients who had not attempted suicide were recruited. A chi-square test was used to identify a possible risk genotype or allele type for suicide. A subsequent multivariate logistic regression analysis was conducted to investigate the influence of a risk genotype or allele type adjusted for other environmental factors. The lethality of the suicide attempt was also tested between genotype and allele types among suicidal patients with MDD. The GG genotype of the TNF-alpha -308G>A polymorphism was found to significantly increase risk for suicide attempt (adjusted OR=2.630, 95% CI=1.206 to 5.734). IFN-gamma +874A>T and IL-10 -1082A>G were not associated with risk for suicide. Lethality of the suicide attempt was not associated with any of the three cytokine genotypes or allele types. Limitations include a relatively small sample size and a cross-sectional design. TNF-alpha -308G>A polymorphism is an independent risk factor for suicide attempts in MDD. Future studies should clarify the neural mechanisms by which the GG genotype of TNF-alpha -308G>A influences suicide in MDD. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain.

    PubMed

    Roche-Labarbe, Nadège; Fenoglio, Angela; Aggarwal, Alpna; Dehaes, Mathieu; Carp, Stefan A; Franceschini, Maria Angela; Grant, Patricia Ellen

    2012-03-01

    Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen consumption in the premature newborn brain. We combined quantitative frequency-domain near-infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO(2)) and CBV with diffusion correlation spectroscopy measures of cerebral blood flow index (BF(ix)) to determine the relationship between these measures, gestational age at birth (GA), and chronological age. We followed 56 neonates of various GA once a week during their hospital stay. We provide absolute values of SO(2) and CBV, relative values of BF(ix), and relative cerebral metabolic rate of oxygen (rCMRO(2)) as a function of postmenstrual age (PMA) and chronological age for four GA groups. SO(2) correlates with chronological age (r=-0.54, P value ≤0.001) but not with PMA (r=-0.07), whereas BF(ix) and rCMRO(2) correlate better with PMA (r=0.37 and 0.43, respectively, P value ≤0.001). Relative CMRO2 during the first month of life is lower when GA is lower. Blood flow index and rCMRO(2) are more accurate biomarkers of the brain development than SO(2) in the premature newborns.

  10. The G allele in IL-10-1082 G/A may have a role in lowering the susceptibility to panic disorder in female patients.

    PubMed

    Kim, Han-Joon; Kim, Yong-Ku

    2016-12-01

    Immune system activation is involved in the pathophysiology of panic disorder (PD). We investigated INF-γ+874 A/T, TNF-α-308 G/A, and IL-10-1082 G/A single nucleotide polymorphisms (SNPs) to determine their association with PD. This study enroled 135 PD patients and 135 healthy controls. INF-γ+874 A/T (rs2430561), TNF-α-308 G/A (rs1800629), and IL-10-1082 G/A (rs1800896) were genotyped. There were no differences in genotypes or allele frequencies between the patient and control groups, regardless of accompanying agoraphobia. However, for female patients, the G allele frequency in IL-10 SNP was higher in the control group than in the patient group. Additionally, the female control group had a higher frequency of the A/G and G/G genotype in the IL-10 SNP than the female patient group. We suggest that the G allele in IL-10-1082 G/A might have a role in reducing the manifestations of PD in female patients. Further studies are needed to extend and confirm our findings.

  11. Optimization of the defects and the nonradiative lifetime of GaAs/AlGaAs double heterostructures

    NASA Astrophysics Data System (ADS)

    Cevher, Z.; Folkes, P. A.; Hier, H. S.; VanMil, B. L.; Connelly, B. C.; Beck, W. A.; Ren, Y. H.

    2018-04-01

    We used Raman scattering and time-resolved photoluminescence spectroscopy to investigate the molecular-beam-epitaxy (MBE) growth parameters that optimize the structural defects and therefore the internal radiative quantum efficiency of MBE-grown GaAs/AlGaAs double heterostructures (DH). The DH structures were grown at two different temperatures and three different As/Ga flux ratios to determine the conditions for an optimized structure with the longest nonradiative minority carrier lifetime. Raman scattering measurements show an improvement in the lattice disorder in the AlGaAs and GaAs layers as the As/Ga flux ratio is reduced from 40 to 15 and as the growth temperature is increased from 550 to 595 °C. The optimized structure is obtained with the As/Ga flux ratio equal to 15 and the substrate temperature 595 °C. This is consistent with the fact that the optimized structure has the longest minority carrier lifetime. Moreover, our Raman studies reveal that incorporation of a distributed Bragg reflector layer between the substrate and DH structures significantly reduces the defect density in the subsequent epitaxial layers.

  12. Redox state of the Archean mantle: Evidence from V partitioning in 3.5-2.4 Ga komatiites

    NASA Astrophysics Data System (ADS)

    Nicklas, Robert W.; Puchtel, Igor S.; Ash, Richard D.

    2018-02-01

    Oxygen fugacity of the mantle is a crucial thermodynamic parameter that controls such fundamental processes as planetary differentiation, mantle melting, and possible core-mantle exchange. Constraining the evolution of the redox state of the mantle is of paramount importance for understanding the chemical evolution of major terrestrial reservoirs, including the core, mantle, and atmosphere. In order to evaluate the secular evolution of the redox state of the mantle, oxygen fugacities of six komatiite systems, ranging in age from 3.48 to 2.41 Ga, were determined using high-precision partitioning data of the redox-sensitive element vanadium between liquidus olivine, chromite and komatiitic melt. The calculated oxygen fugacities range from -0.11 ± 0.30 ΔFMQ log units in the 3.48 Ga Komati system to +0.43 ± 0.26 ΔFMQ log units in the 2.41 Ga Vetreny system. Although there is a slight hint in the data for an increase in the oxygen fugacity of the mantle between 3.48 and 2.41 Ga, these values generally overlap within their respective uncertainties; they are also largely within the range of oxygen fugacity estimates for modern MORB lavas of +0.60 ± 0.30 ΔFMQ log units that we obtained using the same technique. Our results are consistent with the previous findings that argued for little change in the mantle oxygen fugacity since the early Archean and indicate that the mantle had reached its nearly-present day redox state by at least 3.48 Ga.

  13. High-resolution depth profile of the InGaP-on-GaAs heterointerface by FE-AES and its relationship to device properties

    NASA Astrophysics Data System (ADS)

    Ichikawa, O.; Fukuhara, N.; Hata, M.; Nakano, T.; Sugiyama, M.; Shimogaki, Y.; Nakano, Y.

    2007-01-01

    At InGaP-on-GaAs heterointerface, transition layer is formed during metalorganic vapor phase epitaxy (MOVPE) growth that can affect device properties. Many studies of this transition layer have been done but the characterization methods used are not direct measures of the atomic structure at the heterointerface. In this study, we investigated the abruptness and thickness of the InGaP-on-GaAs transition layers by field-emission Auger electron spectroscopy, by which a depth profile with a resolution of abruptness of 30 Å or below can be obtained. The group V switching position relative to that of In goes deeper into the GaAs with increasing PH 3 supply, suggesting an initial, quick replacement of As atoms with P atoms followed by a slow P diffusion into the bulk GaAs. Changes of abruptness of the As or P profiles at the heterointerface with varying PH 3 supply on the GaAs surface are not observed. Furthermore, we evaluated the effect of the GaAsP-like transition layers on the turn-on voltage of an InGaP emitter HBT. A linear relationship is shown between the shift of the group V switching position and the HBT turn-on voltage, which is consistent with the assumption that current flow decreases at the transition layer. Calculated difference of conduction band energy between InGaP and the transition layer is 0.15 eV for the sample with ordered InGaP and 0.04 eV for disordered InGaP, is consistent with the difference of the band gap energies between ordered and disordered InGaP. Calculated P compositions are 0.52 and 0.35, respectively.

  14. Experimental visualization of covalent bonds and structural disorder in a gallium zinc oxynitride photocatalyst (Ga(1-x)Znx)(N(1-x)Ox): origin of visible light absorption.

    PubMed

    Yashima, Masatomo; Yamada, Hiroki; Maeda, Kazuhiko; Domen, Kazunari

    2010-04-14

    We present the experimental visualization of covalent bonding, positional disorders and split anion sites in visible-light responsive photocatalyst (Ga(0.885)Zn(0.115))(N(0.885)O(0.115)). ZnO alloying into GaN reduces the band gap, leading to the visible-light response. DFT calculations indicated no significant difference in band gap between structural models with and without split sites.

  15. Hidden disorder in the α '→δ transformation of Pu-1.9 at.% Ga

    DOE PAGES

    Jeffries, J. R.; Manley, M. E.; Wall, M. A.; ...

    2012-06-06

    Enthalpy and entropy are thermodynamic quantities critical to determining how and at what temperature a phase transition occurs. At a phase transition, the enthalpy and temperature-weighted entropy differences between two phases are equal (ΔH=TΔS), but there are materials where this balance has not been experimentally or theoretically realized, leading to the idea of hidden order and disorder. In a Pu-1.9 at. % Ga alloy, the δ phase is retained as a metastable state at room temperature, but at low temperatures, the δ phase yields to a mixed-phase microstructure of δ- and α'-Pu. The previously measured sources of entropy associated withmore » the α'→δ transformation fail to sum to the entropy predicted theoretically. We report an experimental measurement of the entropy of the α'→δ transformation that corroborates the theoretical prediction, and implies that only about 65% of the entropy stabilizing the δ phase is accounted for, leaving a missing entropy of about 0.5 k B/atom. Some previously proposed mechanisms for generating entropy are discussed, but none seem capable of providing the necessary disorder to stabilize the δ phase. This hidden disorder represents multiple accessible states per atom within the δ phase of Pu that may not be included in our current understanding of the properties and phase stability of δ-Pu.« less

  16. Reduction of gate leakage current on AlGaN/GaN high electron mobility transistors by electron-beam irradiation.

    PubMed

    Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S

    2013-03-01

    This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.

  17. Structural and optoelectronic properties of ZnGaO thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Han, Xiaowei; Wang, Li; Li, Shufeng; Gao, Dongwen; Pan, Yong

    2018-01-01

    ZnO has attracted much attention because of its high-energy gap and exciton binding energy at room temperature. Compared to ZnO thin films, ZnGaO thin films are more resistive to oxidation and have smaller deformation of lattice. In this study, the high purity ZnSe and Ga2O3 powders were weighted at a molar ratio of 18:1. Se was oxidized to Se2O3 and separated from the mixture powders by using conventional solid state reaction method in air, and the ZnGaO ceramic target was prepared. We fabricated the ZnGaO films on silica glass by pulsed laser deposition (PLD) method under different oxygen pressure at room temperature. The as-grown films were tested by X-ray diffraction and atomic force microscope (AFM) to diagnose the crystal structure and surface morphology. Moreover, we obtained the optical transmittance of ZnGaO film and found that the electrical conductivity capacity varied with the increase of oxygen pressure.

  18. H irradiation effects on the GaAs-like Raman modes in GaAs1-xNx/GaAs1-xNx:H planar heterostructures

    NASA Astrophysics Data System (ADS)

    Giulotto, E.; Geddo, M.; Patrini, M.; Guizzetti, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Martelli, F.; Rubini, S.

    2014-12-01

    The GaAs-like longitudinal optical phonon frequency in two hydrogenated GaAs1-xNx/GaAs1-xNx:H microwire heterostructures—with similar N concentration, but different H dose and implantation conditions—has been investigated by micro-Raman mapping. In the case of GaAs0.991N0.009 wires embedded in barriers where GaAs-like properties are recovered through H irradiation, the phonon frequency in the barriers undergoes a blue shift with respect to the wires. In GaAs0.992N0.008 wires embedded in less hydrogenated barriers, the phonon frequency exhibits an opposite behavior (red shift). Strain, disorder, phonon localization effects induced by H-irradiation on the GaAs-like phonon frequency are discussed and related to different types of N-H complexes formed in the hydrogenated barriers. It is shown that the red (blue) character of the frequency shift is related to the dominant N-2H (N-3H) type of complexes. Moreover, for specific experimental conditions, an all-optical determination of the uniaxial strain field is obtained. This may improve the design of recently presented devices that exploit the correlation between uniaxial stress and the degree of polarization of photoluminescence.

  19. High sensitivity of positrons to oxygen vacancies and to copper-oxygen chain disorder in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    von Stetten, E. C.; Berko, S.; Li, X. S.; Lee, R. R.; Brynestad, J.

    1988-05-01

    Temperature-dependent positron-electron momentum densities have been studied by two-dimensional angular correlation of annihilation radiation from 10 to 320 K in YBa2Cu3O(7-x) samples. The positron ground-state charge density, computed by the linearized augmented-plane-wave method, indicates that in YBa2Cu3O7 delocalized positrons sample preferentially the linear copper-oxygen chains. Positron localization due to disorder in these chains is invoked to explain the striking differences observed between superconducting (x = about 0.02) and nonsuperconducting (x = about 0.70) samples.

  20. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO 3-buffered ferroelectric BaTiO 3 film on GaAs

    DOE PAGES

    Qiao, Q.; Zhang, Y.; Contreras-Guerrero, Rocio; ...

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO 3 thin filmsgrown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO 3 grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. We also use a combination of aberration-corrected scanning transmission electron microscopy andmore » first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectricpolarization of a BaTiO 3 thin filmgrown on GaAs. Moreover, we demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO 3), and propose that the presence of surface charge screening allows the formation of switchable domains.« less

  1. Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2011-10-01

    We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the real-space Bogoliubov-de Gennes equations on a square lattice within the Swiss-cheese model in the presence of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one correspondence between the local maps of the density of states, superconducting order parameter, and superfluid density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp=4% gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old) and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T2 dependence of the low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5, but follows the same trend of short-coherence-length high-Tc cuprate superconductors.

  2. Tunable femtosecond laser based on the Nd3+:BaLaGa 3O 7 disordered crystal

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Pirzio, F.; Tartara, L.; Ugolotti, E.; Zhang, H.; Wang, J.; Yu, H.; Petrov, V.

    2014-03-01

    We demonstrate clear inhomogeneous linewidth broadening for the disordered laser crystal Nd:BaLaGa3O7 (Nd:BLG), which is very promising for the replacement of Nd:glass for ultrafast sources in multiwatt power applications. A Nd:BLG laser oscillator passively mode-locked and pumped by a Ti:sapphire laser generated pulses of 316-fs duration at 1060 nm, whose spectrum completely fills the fluorescence peak at such wavelength. More interestingly, sub-picosecond pulses were smoothly tunable in a 20-nm range, from 1070 to 1090 nm. The shortest pulses achieved were 290 fs long, centered at 1075 nm.

  3. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2017-10-01

    We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.

  4. Magnetic properties of Mn-doped GaN with defects: ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Salmani, E.; Benyoussef, A.; Ez-Zahraouy, H.; H. Saidi, E.

    2011-08-01

    According to first-principles density functional calculations, we have investigated the magnetic properties of Mn-doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.

  5. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells.

    PubMed

    Deng, Zhuo; Ning, Jiqiang; Su, Zhicheng; Xu, Shijie; Xing, Zheng; Wang, Rongxin; Lu, Shulong; Dong, Jianrong; Zhang, Baoshun; Yang, Hui

    2015-01-14

    In high-efficiency GaInP/GaAs double-junction tandem solar cells, GaInP layers play a central role in determining the performance of the solar cells. Therefore, gaining a deeper understanding of the optoelectronic processes in GaInP layers is crucial for improving the energy conversion efficiency of GaInP-based photovoltaic devices. In this work, we firmly show strong dependences of localization and recombination of photogenerated carriers in the top GaInP subcells in the GaInP/GaAs double-junction tandem solar cells on the substrate misorientation angle with excitation intensity- and temperature-dependent photoluminescence (PL). The entire solar cell structures including GaInP layers were grown with metalorganic chemical vapor deposition on GaAs substrates with misorientation angles of 2° (denoted as Sample 2°) and 7° (Sample 7°) off (100) toward (111)B. The PL spectral features of the two top GaInP subcells, as well as their excitation-power and temperature dependences exhibit remarkable variation on the misorientation angle. In Sample 2°, the dominant localization mechanism and luminescence channels are due to the energy potential minima caused by highly ordered atomic domains; In Sample 7°, the main localization and radiative recombination of photogenerated carriers occur in the atomically disordered regions. Our results reveal a more precise picture on the localization and recombination mechanisms of photogenerated carriers in the top GaInP subcells, which could be the crucial factors in controlling the optoelectronic efficiency of the GaInP-based multijunction photovoltaic devices.

  6. The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.

    PubMed

    El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; Ngombi Pemba, Lauriss; Hammarlund, Emma; Meunier, Alain; Moubiya Mouele, Idalina; Benzerara, Karim; Bernard, Sylvain; Boulvais, Philippe; Chaussidon, Marc; Cesari, Christian; Fontaine, Claude; Chi-Fru, Ernest; Garcia Ruiz, Juan Manuel; Gauthier-Lafaye, François; Mazurier, Arnaud; Pierson-Wickmann, Anne Catherine; Rouxel, Olivier; Trentesaux, Alain; Vecoli, Marco; Versteegh, Gerard J M; White, Lee; Whitehouse, Martin; Bekker, Andrey

    2014-01-01

    The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.

  7. Multiple S and O isotope constraints on O2 at 2.25 Ga

    NASA Astrophysics Data System (ADS)

    Killingsworth, B.; Sansjofre, P.; Philippot, P.; Thomazo, C.; Cartigny, P.; Lalonde, S.

    2017-12-01

    The composition of Earth's atmosphere around the time of the Great Oxidation Event (GOE) at the Archean-Proterozoic boundary is of great interest for reconstructing the redox evolution of the Earth. Sulfate has been shown to be a valuable recorder of isotopic signals of atmospheric O2 but its records are sparse around the time of the GOE. To constrain O2 around the GOE, we have measured quadruple sulfur and triple oxygen isotopes of sulfate from barite in sedimentary drill core from the Turee Creek Group, Australia from 2.25 Ga. A combined sulfur and oxygen approach for estimating the triple oxygen isotope composition of O2 at 2.25 Ga will be presented and its implications for the Paleoproterozoic atmosphere will be discussed.

  8. Hyperbaric oxygen treatment in autism spectrum disorders

    PubMed Central

    2012-01-01

    Traditionally, hyperbaric oxygen treatment (HBOT) is indicated in several clinical disorders include decompression sickness, healing of problem wounds and arterial gas embolism. However, some investigators have used HBOT to treat individuals with autism spectrum disorders (ASD). A number of individuals with ASD possess certain physiological abnormalities that HBOT might ameliorate, including cerebral hypoperfusion, inflammation, mitochondrial dysfunction and oxidative stress. Studies of children with ASD have found positive changes in physiology and/or behavior from HBOT. For example, several studies have reported that HBOT improved cerebral perfusion, decreased markers of inflammation and did not worsen oxidative stress markers in children with ASD. Most studies of HBOT in children with ASD examined changes in behaviors and reported improvements in several behavioral domains although many of these studies were not controlled. Although the two trials employing a control group reported conflicting results, a recent systematic review noted several important distinctions between these trials. In the reviewed studies, HBOT had minimal adverse effects and was well tolerated. Studies which used a higher frequency of HBOT sessions (e.g., 10 sessions per week as opposed to 5 sessions per week) generally reported more significant improvements. Many of the studies had limitations which may have contributed to inconsistent findings across studies, including the use of many different standardized and non-standardized instruments, making it difficult to directly compare the results of studies or to know if there are specific areas of behavior in which HBOT is most effective. The variability in results between studies could also have been due to certain subgroups of children with ASD responding differently to HBOT. Most of the reviewed studies relied on changes in behavioral measurements, which may lag behind physiological changes. Additional studies enrolling children with ASD

  9. Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity

    NASA Astrophysics Data System (ADS)

    Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.

    2010-10-01

    The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.

  10. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jahangeer; Department of Chemistry, College of Science, King Saud University, Riyadh 11451; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu

    2016-10-15

    Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed bymore » powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.« less

  11. X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound

    NASA Astrophysics Data System (ADS)

    Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.

    2017-09-01

    The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.

  12. Chemical disorder as an engineering tool for spin polarization in Mn3Ga -based Heusler systems

    NASA Astrophysics Data System (ADS)

    Chadov, S.; D'Souza, S. W.; Wollmann, L.; Kiss, J.; Fecher, G. H.; Felser, C.

    2015-03-01

    Our study highlights spin-polarization mechanisms in metals by focusing on the mobilities of conducting electrons with different spins instead of their quantities. Here, we engineer electron mobility by applying chemical disorder induced by nonstoichiometric variations. As a practical example, we discuss the scheme that establishes such variations in tetragonal Mn3Ga Heusler material. We justify this approach using first-principles calculations of the spin-projected conductivity components based on the Kubo-Greenwood formalism. It follows that, in the majority of cases, even a small substitution of some other transition element instead of Mn may lead to a substantial increase in spin polarization along the tetragonal axis.

  13. Biogeochemical Modeling of the Second Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon

  14. Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

    DOE PAGES

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  15. GaAs-oxide interface states - Gigantic photoionization via Auger-like process

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Kazior, T. E.; Gatos, H. C.; Walukiewicz, W.; Siejka, J.

    1981-01-01

    Spectral and transient responses of photostimulated current in MOS structures were employed for the study of GaAs-anodic oxide interface states. Discrete deep traps at 0.7 and 0.85 eV below the conduction band were found with concentrations of 5 x 10 to the 12th/sq cm and 7 x 10 to the 11th/sq cm, respectively. These traps coincide with interface states induced on clean GaAs surfaces by oxygen and/or metal adatoms (submonolayer coverage). In contrast to surfaces with low oxygen coverage, the GaAs-thick oxide interfaces exhibited a high density (about 10 to the 14th/sq cm) of shallow donors and acceptors. Photoexcitation of these donor-acceptor pairs led to a gigantic photoionization of deep interface states with rates 1000 times greater than direct transitions into the conduction band. The gigantic photoionization is explained on the basis of energy transfer from excited donor-acceptor pairs to deep states.

  16. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  17. Finite-temperature behavior of a classical spin-orbit-coupled model for YbMgGaO4 with and without bond disorder

    NASA Astrophysics Data System (ADS)

    Parker, Edward; Balents, Leon

    2018-05-01

    We present the results of finite-temperature classical Monte Carlo simulations of a strongly spin-orbit-coupled nearest-neighbor triangular-lattice model for the candidate U (1 ) quantum spin liquid YbMgGaO4 at large system sizes. We find a single continuous finite-temperature stripe-ordering transition with slowly diverging heat capacity that completely breaks the sixfold ground-state degeneracy, despite the absence of a known conformal field theory describing such a transition. We also simulate the effect of random-bond disorder in the model, and find that even weak bond disorder destroys the transition by fragmenting the system into very large domains—possibly explaining the lack of observed ordering in the real material. The Imry-Ma argument only partially explains this fragility to disorder, and we extend the argument with a physical explanation for the preservation of our system's time-reversal symmetry even under a disorder model that preserves the same symmetry.

  18. Ohmic contacts to p-GaN Using Au/Ni-Mg-O Metallization

    NASA Astrophysics Data System (ADS)

    Liday, Jozef; Vogrinčič, Peter; Hotový, Ivan; Bonanni, Alberta; Sitter, Helmut; Lalinský, Tibor; Vanko, Gabriel; Řeháček, Vlastimil; Breza, Juraj; Ecke, Gernot

    2010-11-01

    Electrical characteristics and elemental depth profiles of ohmic contacts to p-GaN using Au/Ni-Mg-Ox metallization have been investigated. The objective was to examine the possibilities of increasing the charge carrier concentration in the surface region of GaN by adding Mg, thus of a p-type dopant into the Au/NiOx metallization structure. For this purpose, a Ni-Mg-Ox layer with a low concentration of Mg was deposited on p-GaN by dc reactive magnetron sputtering. The top Au layer was deposited in a similar way. The fabricated contact structures were annealed in N2. When the Ni-Mg layer in the Au/Ni-Mg-Ox/p-GaN structure was deposited in an atmosphere with a low concentration of oxygen (0.2 at%), the structure exhibited a low resistance ohmic nature. The contact resistance was lower than in the case of a Au/Ni-Ox/p-GaN structure without the Mg dopant in the metallic layer. An increase in the concentration of oxygen in the working atmosphere resulted in higher values of the contact resistance of the Au/Ni-Mg-Ox/p-GaN structure. In our opinion the ohmic nature of the contact structure is related to the existence of a metal/p-NiO/p-GaN scheme. The measured values of the contact resistance in the Au/Ni-Mg-Ox/p-GaN structure in comparison with the Au/Ni-Ox/p-GaN structure are caused by an increased charge carrier concentration in the surface region of p-GaN, which is a consequence of Mg diffusion from the Ni-Mg-Ox layer.

  19. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGa δ-doping (AlN)5/(GaN)1: the strain effect

    NASA Astrophysics Data System (ADS)

    Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong

    2015-12-01

    To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.

  20. Mobility enhancement in crystalline In-Ga-Zn-oxide with In-rich compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutsui, Kazuhiro; Matsubayashi, Daisuke; Ishihara, Noritaka

    The electron mobility of In-Ga-Zn-oxide (IGZO) is known to be enhanced by higher In content. We theoretically investigated the mobility-enhancement mechanism by proposing an In-Ga-Zn-disorder scattering model for an In-rich crystalline IGZO (In{sub 1+x}Ga{sub 1−x}O{sub 3}(ZnO){sub m} (0 < x < 1, m > 0)) thin film. The obtained theoretical mobility was found to be in agreement with experimental Hall mobility for a crystalline In{sub 1.5}Ga{sub 0.5}O{sub 3}(ZnO) (or In{sub 3}GaZn{sub 2}O{sub 8}) thin film. The mechanism specific to In-rich crystalline IGZO thin films is based on three types of Coulomb scattering potentials that originate from effective valence differences. In this study, the In-Ga-Zn-disorder scattering modelmore » indicates that the effective valence of the In{sup 3+} ions in In-rich crystalline IGZO thin films significantly affects their electron mobility.« less

  1. The effects of oxygen pressure on disordering and magneto-transport properties of Ba{sub 2}FeMoO{sub 6} thin films grown via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyeong-Won; Mhin, Sungwook; Jones, Jacob L.

    2015-07-21

    Epitaxial Ba{sub 2}FeMoO{sub 6} thin films were grown via pulsed laser deposition under low oxygen pressure and their structural, chemical, and magnetic properties were examined, focusing on the effects of oxygen pressure. The chemical disorder, off-stoichiometry in B site cations (Fe and Mo) increased with increasing oxygen pressure and thus magnetic properties were degraded. Interestingly, in contrast, negative magneto-resistance, which is the characteristics of this double perovskite material, was enhanced with increasing oxygen pressure. It is believed that phase segregation of highly disordered thin films is responsible for the increased magneto-resistance of thin films grown at high oxygen pressure. Themore » anomalous Hall effect, which behaves hole-like, was also observed due to spin-polarized itinerant electrons under low magnetic field below 1 T and the ordinary electron-like Hall effect was dominant at higher magnetic fields.« less

  2. Mo isotope record of shales points to deep ocean oxygenation in the early Paleoproterozoic

    NASA Astrophysics Data System (ADS)

    Asael, Dan; Scott, Clint; Rouxel, Olivier; Poulton, Simon; Lyons, Timothy; Javaux, Emmanuelle; Bekker, Andrey

    2014-05-01

    Two steps in Earth's surface oxidation lie at either end of the Proterozoic Eon. The first step, known as the Great Oxidation Event (GOE), occurred at ca. 2.32 Ga (1), when atmospheric oxygen first exceeded 0.001% of present atmospheric levels (2). The second step, occurred at ca. 0.58 Ga, resulting in the pervasive oxygenation of the deep oceans, a feature that persisted through most of the Phanerozoic (3). The conventional model envisions two progressive and unidirectional increases in free oxygen. However, recent studies have challenged this simplistic view of the GOE (4, 5). A dramatic increase and decline in Earth oxidation state between 2.3 and 2.0 Ga is now well supported (6-9) and raises the question of how well-oxygenated the Earth surface was in the immediate aftermath of the GOE. In order to constrain the response of the deep oceans to the GOE, we present a study of Mo isotope composition and Mo concentration from three key early Paleoproterozoic black shale units with ages ranging from 2.32 to 2.06 Ga. Our results suggest high and unstable surface oxygen levels at 2.32 Ga, leading to an abrupt increase in Mo supply to the still globally anoxic ocean, and producing extreme seawater Mo isotopic enrichments in these black shales. We thus infer a period of significant Mo isotopic Rayleigh effects and non-steady state behaviour of the Mo oceanic system at the beginning of the GOE. Between 2.2-2.1 Ga, we observe smaller Mo isotopic variations and estimate the δ98Mo of seawater to be 1.42 ± 0.27 ‰W conclude that oxygen levels must have stabilized at a relatively high level and that the deep oceans were oxygenated for the first time in Earth's history. By ca. 2.06 Ga, immediately after the Lomagundi Event, the Mo isotopic composition decreased dramatically to δ98MoSW = 0.80 ± 0.21 o reflecting the end of deep ocean oxygenation and the return of largely anoxic deep oceans. References: [1] A. Bekker et al., 2004, Nature 427, 117-20. [2] A. Pavlov and J

  3. Ultrafast carrier dynamics in a GaN/Al 0.18Ga0.82N superlattice

    NASA Astrophysics Data System (ADS)

    Mahler, Felix; Tomm, Jens W.; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Flytzanis, Christos; Hoffmann, Veit; Weyers, Markus

    2018-04-01

    Relaxation processes of photoexcited carriers in a GaN /Al0.18Ga0.82N superlattice are studied in femtosecond spectrally resolved reflectivity measurements at ambient temperature. The transient reflectivity reveals electron trapping into defect states close to the conduction-band minimum with a 150-200 fs time constant, followed by few-picosecond carrier cooling. A second slower trapping process into a different manifold of defect states is observed on a time scale of approximately 10 ps. Our results establish the prominent role of structural defects and disorder for ultrafast carrier dynamics in nitride semiconductor structures.

  4. Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3-δ oxygen electrode for flexible power generation and hydrogen production

    NASA Astrophysics Data System (ADS)

    Meng, Xiuxia; Shen, Yichi; Xie, Menghan; Yin, Yimei; Yang, Naitao; Ma, Zi-Feng; Diniz da Costa, João C.; Liu, Shaomin

    2016-02-01

    This work investigates the performance of solid oxide cells as fuel cells (SOFCs) for power production and also as electrolysis cells (SOECs) for hydrogen production. In order to deliver this dual mode flexible operation system, a novel perovskite oxide based on Ga3+ doped SrCo0.8Fe0.1Ga0.1O3-δ (SCFG) is synthesized via a sol-gel method. Its performance for oxygen electrode catalyst was then evaluated. Single solid oxide cell in the configuration of Ni-YSZ|YSZ|GDC|SCFG is assembled and tested in SOFC or SOEC modes from 550 to 850 °C with hydrogen as the fuel or as the product, respectively. GDC is used to avoid the reaction between the electrolyte YSZ and the cobalt-based electrode. Under SOFC mode, a maximum power density of 1044 mW cm-2 is obtained at 750 °C. Further, the cell delivers a stable power output of 650 mW cm-2 up to 125 h at 0.7 V. In the electrolysis mode, when the applied voltage is controlled at 2 V, the electrolysis current density reaches 3.33 A cm-2 at 850 °C with the hydrogen production rate up to 22.9 mL min-1 cm-2 (STP). These results reveal that SCFG is a very promising oxygen electrode material for application in both SOFC and SOEC.

  5. Resuscitation of Preterm Neonates With Limited Versus High Oxygen Strategy

    PubMed Central

    Kapadia, Vishal S.; Chalak, Lina F.; Sparks, John E.; Allen, James R.; Savani, Rashmin C.

    2013-01-01

    OBJECTIVE: To determine whether a limited oxygen strategy (LOX) versus a high oxygen strategy (HOX) during delivery room resuscitation decreases oxidative stress in preterm neonates. METHODS: A randomized trial of neonates of 24 to 34 weeks’ gestational age (GA) who received resuscitation was performed. LOX neonates received room air as the initial resuscitation gas, and fraction of inspired oxygen (Fio2) was adjusted by 10% every 30 seconds to achieve target preductal oxygen saturations (Spo2) as described by the 2010 Neonatal Resuscitation Program guidelines. HOX neonates received 100% O2 as initial resuscitation gas, and Fio2 was adjusted by 10% to keep preductal Spo2 at 85% to 94%. Total hydroperoxide (TH), biological antioxidant potential (BAP), and the oxidative balance ratio (BAP/TH) were analyzed in cord blood and the first hour of life. Secondary outcomes included delivery room interventions, respiratory support on NICU admission, and short-term morbidities. RESULTS: Forty-four LOX (GA: 30 ± 3 weeks; birth weight: 1678 ± 634 g) and 44 HOX (GA: 30 ± 3 weeks; birth weight: 1463 ± 606 g) neonates were included. LOX decreased integrated excess oxygen (∑Fio2 × time [min]) in the delivery room compared with HOX (401 ± 151 vs 662 ± 249; P < .01). At 1 hour of life, BAP/TH was 60% higher for LOX versus HOX neonates (13 [9–16] vs 8 [6–9]) µM/U.CARR, P < .01). LOX decreased ventilator days (3 [0–64] vs 8 [0–96]; P < .05) and reduced the incidence of bronchopulmonary dysplasia (7% vs 25%; P < .05). CONCLUSIONS: LOX is feasible and results in less oxygen exposure, lower oxidative stress, and decreased respiratory morbidities and thus is a reasonable alternative for resuscitation of preterm neonates in the delivery room. PMID:24218465

  6. Visible light-induced OH radicals in Ga2O3: an EPR study.

    PubMed

    Tzitrinovich, Zeev; Lipovsky, Anat; Gedanken, Aharon; Lubart, Rachel

    2013-08-21

    Reactive oxygen species (ROS) were found to exist in water suspensions of several metal oxide nanoparticles (NPs), such as CuO, TiO2 and ZnO. Visible light irradiation enhanced the capability of TiO2 and ZnO NPs to generate ROS, thus increasing their antibacterial effects. Because of the possible toxic effects on the host tissue it is desired to find nano-metal oxides which do not produce ROS under room light, but only upon a strong external stimulus. Using the technique of electron-spin resonance (ESR) coupled with spin trapping, we examined the ability of Ga2O3 submicron-particle suspensions in water to produce reactive oxygen species with and without visible light irradiation. We found that in contrast to ZnO and TiO2 NPs, no ROS are produced by Ga2O3 under room light. Nevertheless blue light induced hydroxyl radical formation in Ga2O3. This finding might suggest that NPs of Ga2O3 could be used safely for infected skin sterilization.

  7. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer.

    PubMed

    Zhang, Zi-Hui; Tan, Swee Tiam; Liu, Wei; Ju, Zhengang; Zheng, Ke; Kyaw, Zabu; Ji, Yun; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-02-25

    This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced.

  8. Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, F.; Gao, K. H., E-mail: khgao@tju.edu.cn; Li, Z. Q.

    2015-04-21

    We study the effects of GaN interlayer on the transport properties of two-dimensional electron gases confined in lattice-matched AlInN/AlN/GaN heterostructures. It is found that the Hall mobility is evidently enhanced when an additional ultrathin GaN interlayer is introduced between AlInN and AlN layers. The enhancement of the Hall mobility is especially remarkable at low temperature. The high Hall mobility results in a low sheet resistance of 23 Ω/◻ at 2 K. Meanwhile, Shubnikov-de Haas oscillations (SdH) are also remarkably enhanced due to the existence of GaN interlayer. The enhancement of the SdH oscillations is related to the larger quantum mobility μ{sub q}more » owing to the suppression of the interface roughness, alloy disorder, and ionized impurity scatterings by the GaN interlayer.« less

  9. Transparent ZnO-based ohmic contact to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, E.; Piotrowska, A.; Golaszewska, K.

    2002-04-09

    Highly conductive ZnO films were fabricated on p-GaN in a two-step process. First, zinc was thermally evaporated on p-GaN. Next, zinc film was oxidized in oxygen flow. To increase the conductivity of ZnO, nitrogen was introduced into zinc during its deposition. The above procedure proved successful in fabricating ZnO of the resistivity of {approx}1 x 10{sup -3} {Omega}cm and resulted in ohmic contacts of resistivity {approx}1 x 10{sup -2} {Omega}cm{sup 2} to low-doped p-GaN, and light transmittance of {approx}75% in the wavelength range of 400-700 nm.

  10. Comparative investigation of InGaP/GaAs/GaAsBi and InGaP/GaAs heterojunction bipolar transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi-Chen; Tsai, Jung-Hui, E-mail: jhtsai@nknucc.nknu.edu.tw; Chiang, Te-Kuang

    2015-10-15

    In this article the characteristics of In{sub 0.49}Ga{sub 0.51}P/GaAs/GaAs{sub 0.975}Bi{sub 0.025} and In{sub 0.49}Ga{sub 0.51}P/GaAs heterojunction bipolar transistor (HBTs) are demonstrated and compared by two-dimensional simulated analysis. As compared to the traditional InGaP/GaAs HBT, the studied InGaP/GaAs/GaAsBi HBT exhibits a higher collector current, a lower base-emitter (B–E) turn-on voltage, and a relatively lower collector-emitter offset voltage of only 7 mV. Because the more electrons stored in the base is further increased in the InGaP/GaAs/GaAsBi HBT, it introduces the collector current to increase and the B–E turn-on voltage to decrease for low input power applications. However, the current gain is slightlymore » smaller than the traditional InGaP/GaAs HBT attributed to the increase of base current for the minority carriers stored in the GaAsBi base.« less

  11. The origin of the residual conductivity of GaN films on ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  12. Electrical characteristics and interface properties of ALD-HfO2/AlGaN/GaN MIS-HEMTs fabricated with post-deposition annealing

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Egawa, Takashi

    2017-12-01

    HfO2/AlGaN/GaN metal-insulator-semiconductor (MIS)-type high electron mobility transistors (HEMTs) on Si substrates were fabricated by atomic layer deposition of HfO2 layers and post-deposition annealing (PDA). The current-voltage characteristics of the MIS-HEMTs with as-deposited HfO2 layers showed a low gate leakage current (I g) despite the relatively low band gap of HfO2, and a dynamic threshold voltage shift (ΔV th) was observed. After PDA above 500 °C, ΔV th was reduced from 2.9 to 0.7 V with an increase in I g from 2.2 × 10-7 to 4.8 × 10-2 mA mm-1. Effects of the PDA on the HfO2 layer and the HfO2/AlGaN interface were investigated by x-ray photoelectron spectroscopy (XPS) using synchrotron radiation. XPS data showed that oxygen vacancies exist in the as-deposited HfO2 layers and they disappeared with an increase in the PDA temperature. These results indicate that the deep electron traps that cause ΔV th are related to the oxygen vacancies in the HfO2 layers.

  13. On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes.

    PubMed

    Kyaw, Zabu; Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ju, Zhen Gang; Zhang, Xue Liang; Ji, Yun; Hasanov, Namig; Zhu, Binbin; Lu, Shunpeng; Zhang, Yiping; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-01-13

    N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple quantum wells (MQWs) are systematically studied both experimentally and theoretically to increase the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN layer sandwiched in the NPNPN-GaN structure is completely depleted due to the built-in electric field in the NPNPN-GaN junctions, and the ionized acceptors in these P-GaN layers serve as the energy barriers for electrons from the n-GaN region, resulting in a reduced electron over flow and enhanced the current spreading horizontally in the n- GaN region. These lead to increased optical output power and external quantum efficiency (EQE) from the proposed device.

  14. Improving p-type doping efficiency in Al{sub 0.83}Ga{sub 0.17}N alloy substituted by nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice with Mg{sub Ga}-O{sub N} δ-codoping: Role of O-atom in GaN monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Hong-xia; Shi, Jun-jie, E-mail: jjshi@pku.edu.cn; Jiang, Xin-he

    2015-01-15

    We calculate Mg-acceptor activation energy E{sub A} and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on E{sub A} in nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice (SL), a substitution for Al{sub 0.83}Ga{sub 0.17}N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMg{sub Ga}-O{sub N} (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing E{sub A}. The shorter the Mg-O bond is, the smaller the E{sub A} is. The Mg-acceptor activation energy can be reduced significantly by nMg{sub Ga}-O{submore » N} δ-codoping. Our calculated E{sub A} for 2Mg{sub Ga}-O{sub N} is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg{sub Ga}-O{sub N}, which results in a high hole concentration in the order of 10{sup 20} cm{sup −3} at room temperature in (AlN){sub 5}/(GaN){sub 1} SL. Our results prove that nMg{sub Ga}-O{sub N} (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.« less

  15. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  16. Homoepitaxial growth of β-Ga{sub 2}O{sub 3} thin films by low pressure chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Subrina; Han, Lu; Zhao, Hongping, E-mail: hongping.zhao@case.edu

    2016-05-02

    This paper presents the homoepitaxial growth of phase pure (010) β-Ga{sub 2}O{sub 3} thin films on (010) β-Ga{sub 2}O{sub 3} substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O{sub 2}) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played anmore » important role in controlling both surface morphology and crystal quality of the β-Ga{sub 2}O{sub 3} thin films. The smallest root-mean-square surface roughness of ∼7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (∼1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.« less

  17. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+)

    PubMed Central

    Liu, Xiao; Fan, Huiqing; Shi, Jing; Li, Qiang

    2015-01-01

    Dielectric properties and dielectric relaxation behaviors of A/B sites co-substituted Bi0.5Na0.5TiO3 perovskite-type ferroelectrics are reported. The Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+) exhibits anomalous giant dielectric permittivity (ε’) of ~105 under a heterogeneous constitution with easily discernible grain and grain boundary conductivity. The lone pairs substitution theory as well as extrinsic disorders are used to clarify the significant structural evolution and the origin of the dielectric performance. A bigger free volume promotes the anomalous relaxation between oxygen sites, and the polarization direction on the nanoscale deviates from the average polarization direction at its ferroelectric state. Furthermore, no obvious phase transition indicates the considerable static substitutional disorder at the Bi/Na sites, which facilitates delocalized conduction of oxygen ions in the intermediate temperature range. PMID:26239525

  18. Band alignment at β-(AlxGa1-x)2O3/β-Ga2O3 (100) interface fabricated by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo; Hattori, Mai; Yoshimatsu, Kohei; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2018-06-01

    High-quality β-(AlxGa1-x)2O3 (x = 0-0.37) films were epitaxially grown on β-Ga2O3 (100) substrates by oxygen-radical-assisted pulsed-laser deposition with repeating alternate ablation of single crystals of β-Ga2O3 and α-Al2O3. The bandgap was tuned from 4.55 ± 0.01 eV (x = 0) to 5.20 ± 0.02 eV (x = 0.37), where bowing behavior was observed. The band alignment at the β-(AlxGa1-x)2O3/β-Ga2O3 interfaces was found to be type-I with conduction- and valence-band offsets of 0.52 ± 0.08 eV (0.37 ± 0.08 eV) and 0.13 ± 0.07 eV (0.02 ± 0.07 eV) for x = 0.37 (0.27), respectively. The large conduction-band offsets are ascribed to the dominant contribution of the cation-site substitution to the conduction band.

  19. Defense Health Care: Research on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury and Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2015-12-01

    injuries that are not combat related. Letter Page 2 GAO-16-154 Hyperbaric Oxygen Therapy depression , and suicide. Experts believe...fatigue, visual disturbances, sensitivity to noise, judgment problems, depression , and anxiety. Although the majority of individuals with mild TBI have...suffer from other ailments, such as depression and substance abuse. PTSD is one of the most prevalent mental disorders arising from combat. HBO2

  20. Nighttime oxygen desaturation and symptoms of sleep-disordered breathing in long-stay nursing home residents.

    PubMed

    Martin, Jennifer L; Mory, Aaron K; Alessi, Cathy A

    2005-01-01

    Sleep-disordered breathing (SDB) is common in older adults and has been implicated as a cause of decreased quality of life and even death. Sparse data exist on SDB in the nursing home setting. The authors evaluated SDB (using attended nocturnal pulse oximetry) in nursing home residents with daytime sleepiness and nighttime sleep disturbance. Pulse oximetry was used to estimate the prevalence of nighttime oxygen desaturation in 109 long-stay nursing home residents (mean [standard deviation] age = 86.2 [9.2] years; 74% women). Pulse oximetry findings were compared to a structured observational measurement of symptoms of SDB, the Observational Sleep Assessment Instrument. Seventy-one participants had concurrent wrist actigraphy to estimate total sleep time during oximetry recording. Using the oxygen desaturation index (ODI; average number of oxygen desaturations 4% or more below the baseline level per hour), the authors found that 40% of the residents had abnormal ODI (ODI more than 5, which is suggestive of SDB). Of all observational variables assessed, only loud breathing during sleep was significantly correlated with ODI (r =.284; p =.003). When ODI was adjusted for estimated total sleep time, higher adjusted ODI was associated with higher body mass index (kg/m(2)). Abnormal ODI is common in nursing home residents. Observed loud breathing at night and high body mass index may suggest that further assessment of SDB is indicated. Future research should determine the importance of SDB and abnormal nocturnal oxygen desaturation on functioning and quality of life in nursing home residents.

  1. Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Ke, Wen-Cheng; Lee, Fang-Wei; Yang, Cheng-Yi; Chen, Wei-Kuo; Huang, Hao-Ping

    2015-10-01

    This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10-4 Ω cm2 was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 108 cm-2. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy results showed that the oxygen vacancy (Vo) in the InON nanodots played a crucial role in carrier transport. The fitting I-V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.

  2. Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Vishwas; Liu, Wenyong; Janke, Eric M.

    2017-02-22

    Nearly three decades since the first report on the synthesis of colloidal GaAs nanocrystals (NCs), the preparation and properties of this material remain highly controversial. Traditional synthetic routes either fail to produce the GaAs phase or result in materials that do not show expected optical properties such as excitonic transitions. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS and transient absorption spectroscopies, we conclude that unusual optical properties of 2 colloidal GaAs NCs can be related to the presence of vacancies and lattice disorder. We introduce novelmore » molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.« less

  3. Ga(+) Basicity and Affinity Scales Based on High-Level Ab Initio Calculations.

    PubMed

    Brea, Oriana; Mó, Otilia; Yáñez, Manuel

    2015-10-26

    The structure, relative stability and bonding of complexes formed by the interaction between Ga(+) and a large set of compounds, including hydrocarbons, aromatic systems, and oxygen-, nitrogen-, fluorine and sulfur-containing Lewis bases have been investigated through the use of the high-level composite ab initio Gaussian-4 theory. This allowed us to establish rather accurate Ga(+) cation affinity (GaCA) and Ga(+) cation basicity (GaCB) scales. The bonding analysis of the complexes under scrutiny shows that, even though one of the main ingredients of the Ga(+) -base interaction is electrostatic, it exhibits a non-negligible covalent character triggered by the presence of the low-lying empty 4p orbital of Ga(+) , which favors a charge donation from occupied orbitals of the base to the metal ion. This partial covalent character, also observed in AlCA scales, is behind the dissimilarities observed when GaCA are compared with Li(+) cation affinities, where these covalent contributions are practically nonexistent. Quite unexpectedly, there are some dissimilarities between several Ga(+) -complexes and the corresponding Al(+) -analogues, mainly affecting the relative stability of π-complexes involving aromatic compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  5. Self-terminated etching of GaN with a high selectivity over AlGaN under inductively coupled Cl2/N2/O2 plasma with a low-energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Zhong, Yaozong; Zhou, Yu; Gao, Hongwei; Dai, Shujun; He, Junlei; Feng, Meixin; Sun, Qian; Zhang, Jijun; Zhao, Yanfei; DingSun, An; Yang, Hui

    2017-10-01

    Etching of GaN/AlGaN heterostructure by O-containing inductively coupled Cl2/N2 plasma with a low-energy ion bombardment can be self-terminated at the surface of the AlGaN layer. The estimated etching rates of GaN and AlGaN were 42 and 0.6 nm/min, respectively, giving a selective etching ratio of 70:1. To study the mechanism of the etching self-termination, detailed characterization and analyses were carried out, including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It was found that in the presence of oxygen, the top surface of the AlGaN layer was converted into a thin film of (Al,Ga)Ox with a high bonding energy, which effectively prevented the underlying atoms from a further etching, resulting in a nearly self-terminated etching. This technique enables a uniform and reproducible fabrication process for enhancement-mode high electron mobility transistors with a p-GaN gate.

  6. Enhanced Performance of GaN-Based Green Light-Emitting Diodes with Gallium-Doped ZnO Transparent Conducting Oxide

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Seo, Inseok

    2014-04-01

    Ga-doped ZnO (GZO) transparent conducting oxide was grown by oxygen plasma-enhanced pulsed laser deposition. GZO grown in the presence of oxygen radicals had resistivity of 1 × 10-3 Ω cm and average visible (500-700 nm) transmittance of 92.5%. A low specific contact resistance of 6.5 × 10-4 Ω cm2 of GZO on p-GaN was achieved by excimer laser annealing (ELA) treatment of p-GaN before GZO electrode deposition. The ELA-treated light emitting diode (LED) fabricated with the GZO electrode as a current-spreading layer resulted in light-output power enhanced by 56.2% at 100 mA compared with that fabricated with a conventional Ni/Au metal electrode. The high-light output and low degradation of light-output power were attributed to the decrease in contact resistance between the p-GaN layer and the GZO electrode and uniform current spreading over the p-GaN layer. In addition, low contact resistance results in a decrease of self-heat generation during current drive.

  7. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    PubMed

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  8. Optical signatures of deep level defects in Ga2O3

    NASA Astrophysics Data System (ADS)

    Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.

    2018-06-01

    We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.

  9. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching

    NASA Astrophysics Data System (ADS)

    Kwon, Yongbeom; Lee, Geonyeop; Oh, Sooyeoun; Kim, Jihyun; Pearton, Stephen J.; Ren, Fan

    2017-03-01

    We demonstrated the thinning of exfoliated quasi-two-dimensional β-Ga2O3 flakes by using a reactive ion etching technique. Mechanical exfoliation of the bulk β-Ga2O3 by using an adhesive tape was followed by plasma etching to tune its thickness. Since β-Ga2O3 is not a van der Waals material, it is challenging to obtain ultra-thin flakes below a thickness of 100 nm. In this study, an etch rate of approximately 16 nm/min was achieved at a power of 200 W with a flow of 50 sccm of SF6, and under these conditions, thinning of β-Ga2O3 flakes from 300 nm down to ˜60 nm was achieved with smooth morphology. We believe that the reaction between SF6 and Ga2O3 results in oxygen and volatile oxygen fluoride compounds, and non-volatile compounds such as GaFX that can be removed by ion bombardment. The opto-electrical properties were also characterized by fabricating solar-blind photodetectors using the plasma-thinned β-Ga2O3 flakes; these detectors showed fast response and decay with excellent responsivity and selectivity. Our results pave the way for tuning the thickness of two-dimensional materials by using this scalable, industry-compatible dry etching technique.

  10. Surface segregation and the Al problem in GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Shayegan, M.; Pfeiffer, L. N.

    2018-03-01

    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped AlxGa1 -xAs /GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the AlxGa1 -xAs barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the AlxGa1 -xAs barrier beneath the QW is increased, which we attribute to the surface segregation of oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.

  11. GaN as an interfacial passivation layer: tuning band offset and removing fermi level pinning for III-V MOS devices.

    PubMed

    Zhang, Zhaofu; Cao, Ruyue; Wang, Changhong; Li, Hao-Bo; Dong, Hong; Wang, Wei-Hua; Lu, Feng; Cheng, Yahui; Xie, Xinjian; Liu, Hui; Cho, Kyeongjae; Wallace, Robert; Wang, Weichao

    2015-03-11

    The use of an interfacial passivation layer is one important strategy for achieving a high quality interface between high-k and III-V materials integrated into high-mobility metal-oxide-semiconductor field-effect transistor (MOSFET) devices. Here, we propose gallium nitride (GaN) as the interfacial layer between III-V materials and hafnium oxide (HfO2). Utilizing first-principles calculations, we explore the structural and electronic properties of the GaN/HfO2 interface with respect to the interfacial oxygen contents. In the O-rich condition, an O8 interface (eight oxygen atoms at the interface, corresponding to 100% oxygen concentration) displays the most stability. By reducing the interfacial O concentration from 100 to 25%, we find that the interface formation energy increases; when sublayer oxygen vacancies exist, the interface becomes even less stable compared with O8. The band offset is also observed to be highly dependent on the interfacial oxygen concentration. Further analysis of the electronic structure shows that no interface states are present at the O8 interface. These findings indicate that the O8 interface serves as a promising candidate for high quality III-V MOS devices. Moreover, interfacial states are present when such interfacial oxygen is partially removed. The interface states, leading to Fermi level pinning, originate from unsaturated interfacial Ga atoms.

  12. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  13. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    PubMed

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  14. Molecular oxygen detection using frequency modulation diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    A high-sensitivity spectroscopic measurement of O2 using two-tone frequency modulation spectroscopy with a GaAlAs diode laser is presented. An oxygen sensor based on this technique would be non-intrusive, compact and possess high sensitivity and fast time response.

  15. Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Wen-Cheng, E-mail: wcke@mail.ntust.edu.tw; Yang, Cheng-Yi; Lee, Fang-Wei

    2015-10-21

    This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10{sup −4} Ω cm{sup 2} was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 10{sup 8} cm{sup −2}. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy resultsmore » showed that the oxygen vacancy (V{sub o}) in the InON nanodots played a crucial role in carrier transport. The fitting I–V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.« less

  16. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Seungho; Kaviany, Massoud, E-mail: kaviany@umich.edu

    2014-02-14

    Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightlymore » overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided.« less

  17. Paleosols and the evolution of atmospheric oxygen: a critical review

    NASA Technical Reports Server (NTRS)

    Rye, R.; Holland, H. D.

    1998-01-01

    A number of investigators have used chemical profiles of paleosols to reconstruct the evolution of atmospheric oxygen levels during the course of Earth history (Holland, 1984, 1994; Kirkham and Roscoe, 1993; Ohmoto, 1996). Over the past decade Holland and his co-workers have examined reported paleosols from six localities that formed between 2.75 and 0.45 Ga. They have found that the chemical profiles of these paleosols are consistent with a dramatic change in atmospheric PO2 between 2.2 and 2.0 Ga from < or = 0.002 to > or = 0.03 atm (Holland, 1994). Ohmoto (1996) examined chemical data from twelve reported paleosols ranging in age from 2.9 to 1.8 Ga. He concluded that these chemical profiles indicate that atmospheric PO2 has not changed significantly during the past 3.0 Ga. We seek to resolve the conflict between these reconstructions through a broader examination of the paleosol literature, both to determine which reported paleosols can be definitively identified as such and to determine what these definite paleosols tell us about atmospheric evolution. We here review reports describing over 50 proposed paleosols, all but two are older than 1.7 Ga. Our review indicates that 15 of these reported paleosols can be definitively identified as ancient soils. The behavior of iron uring the formation of these 15 paleosols provides both qualitative and semiquantitative information about the evolution of the redox state of the atmosphere. Every definitely identified pre-2.44 Ga paleosol suffered significant Fe loss during weathering. This loss indicates that atmospheric PO2 was always less than about 5 x l0(-4) atm prior to 2.44 Ga. Analysis of the Hokkalampi paleosol (2.44-2.2 Ga) (Marmo, 1992) and the Ville Marie paleosol (2.38-2.215 Ga) (Rainbird, Nesbitt, and Donaldson, 1990) yield ambiguous results regarding atmospheric PO2. Loss of Fe during the weathering of the 2.245 to 2.203 Ga Hekpoort paleosol (Button, 1979) indicates that atmospheric PO2 was less than 8 x 10

  18. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by carbon-centered radicals.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2014-06-23

    Hydrogen abstractions are important elementary reactions in a variety of reacting media at high temperatures in which oxygenates and hydrocarbon radicals are present. Accurate kinetic data are obtained from CBS-QB3 ab initio (AI) calculations by using conventional transition-state theory within the high-pressure limit, including corrections for hindered rotation and tunneling. From the obtained results, a group-additive (GA) model is developed that allows the Arrhenius parameters and rate coefficients for abstraction of the α-hydrogen from a wide range of oxygenate compounds to be predicted at temperatures ranging from 300 to 1500 K. From a training set of 60 hydrogen abstractions from oxygenates by carbon-centered radicals, 15 GA values (ΔGAV°s) are obtained for both the forward and reverse reactions. Among them, four ΔGAV°s refer to primary contributions, and the remaining 11 ΔGAV°s refer to secondary ones. The accuracy of the model is further improved by introducing seven corrections for cross-resonance stabilization of the transition state from an additional set of 43 reactions. The determined ΔGAV°s are validated upon a test set of AI data for 17 reactions. The mean absolute deviation of the pre-exponential factors (log A) and activation energies (E(a)) for the forward reaction at 300 K are 0.238 log(m(3)  mol(-1)  s(-1)) and 1.5 kJ mol(-1), respectively, whereas the mean factor of deviation <ρ> between the GA-predicted and the AI-calculated rate coefficients is 1.6. In comparison with a compilation of 33 experimental rate coefficients, the <ρ> between the GA-predicted values and these experimental values is only 2.2. Hence, the constructed GA model can be reliably used in the prediction of the kinetics of α-hydrogen-abstraction reactions between a broad range of oxygenates and oxygenate radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  20. Comparison of trap characteristics between AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by frequency dependent conductance measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Apurba, E-mail: apurba.chakraborty86@gmail.com; Biswas, Dhrubes; Advanced Technology Development Centre, IIT Kharagpur, Kharagpur 721302

    2015-02-23

    Frequency dependent conductance measurement is carried out to observe the trapping effect in AlGaN/InGaN/GaN double heterostructure and compared that with conventional AlGaN/GaN single heterostructure. It is found that the AlGaN/InGaN/GaN diode structure does not show any trapping effect, whereas single heterostructure AlGaN/GaN diode suffers from two kinds of trap energy states in near depletion to higher negative voltage bias region. This conductance behaviour of AlGaN/InGaN/GaN heterostructure is owing to more Fermi energy level shift from trap energy states at AlGaN/InGaN junction compare to single AlGaN/GaN heterostructure and eliminates the trapping effects. Analysis yielded interface trap energy state in AlGaN/GaN ismore » to be with time constant of (33.8–76.5) μs and trap density of (2.38–0.656) × 10{sup 12 }eV{sup −1} cm{sup −2} in −3.2 to −4.8 V bias region, whereas for AlGaN/InGaN/GaN structure no interface energy states are found and the extracted surface trap energy concentrations and time constants are (5.87–4.39) ×10{sup 10} eV{sup −1} cm{sup −2} and (17.8–11.3) μs, respectively, in bias range of −0.8–0.0 V.« less

  1. Parameter dependence of high-frequency nonlinear oscillations and intrinsic chaos in short GaAs/(Al, Ga)As superlattices

    NASA Astrophysics Data System (ADS)

    Essen, Jonathan; Ruiz-Garcia, Miguel; Jenkins, Ian; Carretero, Manuel; Bonilla, Luis L.; Birnir, Björn

    2018-04-01

    We explore the design parameter space of short (5-25 period), n-doped, Ga/(Al,Ga)As semiconductor superlattices (SSLs) in the sequential resonant tunneling regime. We consider SSLs at cool (77 K) and warm (295 K) temperatures, simulating the electronic response to variations in (a) the number of SSL periods, (b) the contact conductivity, and (c) the strength of disorder (aperiodicities). Our analysis shows that the chaotic dynamical phases exist on a number of sub-manifolds of codimension zero within the design parameter space. This result provides an encouraging guide towards the experimental observation of high-frequency intrinsic dynamical chaos in shorter SSLs.

  2. Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Kuwano, Yuka; Kaga, Mitsuru; Morita, Takatoshi; Yamashita, Kouji; Yagi, Kouta; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2013-08-01

    We demonstrated lateral Mg activation along p-GaN layers underneath n-GaN surface layers in nitride-based light emitting diodes (LEDs) with GaInN tunnel junctions. A high temperature thermal annealing was effective for the lateral Mg activation when the p-GaN layers were partly exposed to an oxygen ambient as etched sidewalls. The activated regions gradually extended from the etched sidewalls to the centers with an increase of annealing time, observed as emission regions with current injection. These results suggest that hydrogen diffuses not vertically thorough the above n-GaN but laterally through the exposed portions of the p-GaN. The lowest voltage drop at the GaInN tunnel junction was estimated to be 0.9 V at 50 mA with the optimized annealing condition.

  3. Comparison of airline passenger oxygen systems.

    PubMed

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  4. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases.

  5. Reduced oxygen utilization in septic shock: disorder or adaptation?

    PubMed

    Steiner, Alexandre A

    2015-01-01

    A fall in oxygen utilization during septic or endotoxic shock is thought to reflect circulatory hypoxia or mitochondrial dysfunction, but these pathology-oriented hypotheses do not explain all clinical observations. Here we discuss an alternative hypothesis of how oxygen utilization could fall as the result of a physiological thermometabolic adaptation.

  6. High-pressure synthesis and crystal structures of the strontium oxogallates Sr2Ga2O5 and Sr5Ga6O14

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Goettgens, Valerie; Mair, Philipp; Schmidmair, Daniela

    2015-08-01

    High-pressure synthesis experiments in a piston-cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr2Ga2O5 and Sr5Ga6O14, respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å3, Mr=394.68 u, Z=8, Dx=5.12 g/cm3) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranched vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr2Ga2O5 is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr5Ga6O14 is a phyllogallate as well. The crystal structure adopts the monoclinic space group P21/c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å3, Mr=1080.42 u, Z=2, Dx=4.96 g/cm3). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q3) und quaternary (Q4) connected [GaO4]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The layers in Sr5Ga6O14 are similar to those observed in the melilite structure-type. Crystallochemical relationships between the present phases and other

  7. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.

    PubMed

    Shen, J; Song, Y; Lee, M L; Cha, J J

    2014-11-21

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.

  8. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  9. Effects of phase transformation on the microstructures and magnetostriction of Fe-Ga and Fe-Ga-Zn ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lin, Yin-Chih; Lin, Chien-Feng

    2015-05-01

    The phase transformation and magnetostriction of bulk Fe73Ga27 and Fe73Ga18Zn9 (at. %) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe73Ga27 FSM alloy solution treated at 1100 °C for 4 h and quenched in ice brine, the antiphase boundary segments of the D03 domain were observed in the A2 (disordered) matrix, and the Fe73Ga27 FSM alloy had an optimal magnetostriction (λ‖s = 71 × 10-6 and λ⊥s = -31 × 10-6). In Fe73Ga27 FSM alloy as-quenched, aged at 700 °C for 24 h, and furnace cooled, D03 nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L10-like martensite) via Bain distortion, and finally L12 (Fe3Ga) structures precipitated, as observed by TEM and XRD. The L10-like martensite and L12 phases in the aged Fe73Ga27 FSM alloy drastically decreased the magnetostriction from positive to negative (λ‖s = -20 × 10-6 and λ⊥s = -8 × 10-6). However, in Fe73Ga18Zn9 FSM alloy as-quenched and aged, the phase transformation of D03 to an intermediate tetragonal martensite phase and precipitation of L12 structures were not found. The results indicate that the aged Fe73Ga18Zn9 FSM alloy maintained stable magnetostriction (λ‖s = 36 × 10-6 and λ⊥s = -31 × 10-6). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe73Ga18Zn9 alloy, which may be useful in application of the alloy in high temperature environments.

  10. Rising levels of atmospheric oxygen and evolution of Nrf2.

    PubMed

    Gacesa, Ranko; Dunlap, Walter C; Barlow, David J; Laskowski, Roman A; Long, Paul F

    2016-06-14

    In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the 'Great Oxygenation Event'. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0-1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359-252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health.

  11. Rising levels of atmospheric oxygen and evolution of Nrf2

    PubMed Central

    Gacesa, Ranko; Dunlap, Walter C.; Barlow, David J.; Laskowski, Roman A.; Long, Paul F.

    2016-01-01

    In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the ‘Great Oxygenation Event’. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0–1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359–252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health. PMID:27297177

  12. Defect studies in one MeV electron irradiated GaAs and in Al/sub x Ga/sub l-x As P-N junction solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1984-01-01

    Deep level transient spectroscopy reveals that the main electron traps for one-MeV electron irradiated GaAs cells are E9c)-0.31, E(c)-0.90 eV, and the main hole trap is due to the level. Electron trap density was found to vary from 3/tens-trillion ccm for 2/one quadrillion cm 3/3.7 quadrillion cm for 21 sextillion cm electron fluence for electron fluence; a similar result was also obtained for the hole trap density. As for the grown-in defects in the Al(x)Ga(1-x)As p-n junciton cells, only two electron traps with energies of E(c)-0.20 and E(c)-0.34 eV were observed in samples with x = 0.17, and none was found for x 0.05. Auger analysis on the Al(x)Ga(1-x) As window layer of the GaAs solar cell showed a large amount of oxygen and carbon contaminants near the surface of the AlGaAs epilayer. Thermal annealing experiment performed at 250 C for up to 100 min. showed a reduction in the density of both electron traps.

  13. Theoretical prediction of a self-forming gallium oxide layer at an n-type GaN/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Chokawa, Kenta; Narita, Tetsuo; Kikuta, Daigo; Kachi, Tetsu; Shiozaki, Koji; Shiraishi, Kenji

    2018-03-01

    We examine the energy band diagram at the n-type GaN (n-GaN)/SiO2 interface and show that electron transfer from n-GaN to SiO2 leads to the formation of negatively charged oxygen vacancies in the SiO2, resulting in the self-formation of an n-GaN/Ga2O3/SiO2 structure. On the other hand, it is difficult to automatically form Ga2O3 at a p-type GaN (p-GaN)/SiO2 interface. This electron-transfer-induced self-formation of Ga2O3 causes an interface dipole, which leads to band bending, resulting in an increase in the conduction band offset between GaN and SiO2. Accordingly, by using this self-forming phenomenon, GaN MOSFETs with lower leakage current can be realized.

  14. Study of the Ohmic Contact Mechanism of Oxidized Ni/Au Contact to p-GaN

    NASA Astrophysics Data System (ADS)

    Roesler, Erika; Chengyu, Hu; Zhang, Guoyi

    2004-03-01

    In the semiconductor industry, GaN is important for blue Laser Diodes (LDs) and Light Emitting Diodes (LEDs). In order to maximize efficiency for optoelectronic devices that utilize GaN products, a low contact resistance and an ohmic contact are needed. Previously, the contact resistance has been found to be as low as 10-4 Ohms cm^2. The aim of this research project was to investigate the influence of different annealing conditions for the contact resistance; analyze the microstructure of the electrodes; find the relationship between the microstructure, annealing conditions, and contact resistance; and then explain the mechanism. The sample was grown in a MOCVD system and had a mesa structure. It was activated with Mg-H 800 C for 20 minutes to become a p-type GaN semiconductor. The sample underwent four different annealing conditions. The first condition varied the temperature in constant Oxygen ambient; the second varied the temperature in air; the third varied the percentage of Oxygen with Nitrogen in constant temperature; and the fourth varied the time annealed under Oxygen ambient. The third condition has never previously been tested. We found definite minimums of the contact resistivity (using the TLM method) in the first condition and second conditions at 500 C. The third condition had the best results with a mix of 50% Oxygen and 50the fourth condition had the best results at 5 minutes. Once the effects of the microstructure are analyzed for the sample at each condition, a better understanding of the physical mechanisms to yield the contact resistance will be known.

  15. Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32-1.0) single crystals

    DOE PAGES

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila C.; ...

    2016-06-27

    Lattice disorder and compositional changes in InxGa1-xN (x=0.32, 0.47, 0.7, 0.8 and 1.0) films on GaN/Al2O3 substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3E13 cm-2, the relative level of lattice disorder in InxGa1-xN increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich InxGa1-xN (x=0.32 and 0.47),more » significant volume swelling of up to ~25% accompanied with oxidation in In-rich InxGa1-xN (x=0.7, 0.8 and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich InxGa1-xN and GaN. The results from this study indicate an extreme susceptibility of the high In-content InxGa1-xN to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.« less

  16. Microstructural response of InGaN to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, L. M.; Jiang, W.; Fadanelli, R. C.; Ai, W. S.; Peng, J. X.; Wang, T. S.; Zhang, C. H.

    2016-12-01

    A monocrystalline In0.18Ga0.82N film of ∼275 nm in thickness grown on a GaN/Al2O3 substrate was irradiated with 290 MeV 238U32+ ions to a fluence of 1.2 × 1012 cm-2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution X-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In0.18Ga0.82N film and the 3.0 μm thick GaN buffer layer. The mean diameter of the tracks in In0.18Ga0.82N is ∼9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the In0.18Ga0.82N material in the track is likely to be highly disordered or fully amorphized. The irradiation induced lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0 0 0 2) planes in GaN with lattice expansion are observed by HRXRD.

  17. Microstructural response of InGaN to swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L. M.; Jiang, W.; Fadanelli, R. C.

    2016-12-01

    A monocrystalline In0.18Ga0.82N film of ~275 nm in thickness grown on a GaN/Al 2O 3 substrate was irradiated with 290 MeV 238U 32+ ions to a fluence of 1.2 x 12 cm -2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution x-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In 0.18Ga 0.82N film and the 3.0 µm thick GaN buffer layer. The mean diameter of the tracks in In 0.18Ga 0.82N is ~9 nm, as determined by HIM examination. Combinationmore » of the HIM and RBS/C data suggests that the material in the track is likely to be highly disordered or fully amorphized, in contrast to a crystalline structure within the ion track in GaN. Lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0002) planes in GaN with lattice expansion are observed after irradiation.« less

  18. Optical absorption and disorder in delafossites

    DOE PAGES

    Senty, Tess R.; Haycock, Barry; Lekse, Jonathan; ...

    2017-07-06

    Here, we present compelling experimental results of the optical characteristics of transparent oxide CuGaO 2 and related CuGa 1-xFe xO 2 (with 0.00 ≤ x ≤ 0.05) alloys, whereby the forbidden electronic transitions for CuGaO 2 become permissible in the presence of B-site (Ga sites) alloying with Fe. Our computational structural results imply a correlation between the global strain on the system and a decreased optical absorption edge. However, herein, we show that the relatively ordered CuGa 1-xFe xO 2 (for 0.00 ≤ x ≤ 0.04) structures exhibit much weaker vis-absorption compared to the relatively disordered CuGa 0.95Fe 0.05O 2.

  19. Structures and optical properties of \\text{H}_{2}^{+} -implanted GaN epi-layers

    NASA Astrophysics Data System (ADS)

    Li, B. S.; Wang, Z. G.

    2015-06-01

    The implantation damage build-up and optical properties of GaN epitaxial films under \\text{H}2+ ion implantation have been investigated by a combination of Rutherford backscattering in channeling geometry, Raman spectroscopy, UV-visible spectroscopy and transmission electron microscopy. GaN epitaxial films were implanted with 134 keV \\text{H}2+ ions to doses ranging from 3.75   ×   1016 to 1.75   ×   1017 \\text{H}2+  cm-2 at room temperature or the same dose of 1.5   ×   1017 \\text{H}2+  cm-2 at room temperature, 573 and 723 K. The dependence of lattice disorder induced by \\text{H}2+ -implantation on the ion dose can be divided into a three-step damage process. A strong influence of the H concentration on the defect accumulation is discussed. The decrease in relative Ga disorder induced by \\text{H}2+ -implantation is linear with increasing implantation temperature. The absorption coefficient of GaN epitaxial films increases with increasing ion dose, leading to the decrease in Raman scattering spectra of Ga-N vibration. With increasing implantation doses up to 5   ×   1016 \\text{H}2+  cm-2, nanoscale hydrogen bubbles are observed in the H deposition peak region. Interstitial-type dislocation loops are observed in the damaged layer located near the damage peak region, and the geometry of the dislocation loops produced by H implantation is analyzed. The surface layer is almost free of lattice disorder induced by \\text{H}2+ -implantation.

  20. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    PubMed

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  1. Deep ultraviolet photodetectors based on p-Si/ i-SiC/ n-Ga2O3 heterojunction by inserting thin SiC barrier layer

    NASA Astrophysics Data System (ADS)

    An, Yuehua; Zhi, Yusong; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Guo, Daoyou; Li, Peigang; Tang, Weihua

    2016-12-01

    Deep ultraviolet photodetectors based on p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterojunctions were fabricated by laser molecular beam epitaxial (L-MBE), respectively. In compare with p-Si/ n-Ga2O3 heterostructure-based photodetector, the dark current of p-Si/ i-SiC/ n-Ga2O3-based photodetector decreased by three orders of magnitude, and the rectifying behavior was tuned from reverse to forward. In order to improve the quality of the photodetector, we reduced the oxygen vacancies of p-Si/ i-SiC/ n-Ga2O3 heterostructures by changing the oxygen pressure during annealing. As a result, the rectification ratio ( I F/ I R) of the fabricated photodetectors was 36 at 4.5 V and the photosensitivity was 5.4 × 105% under the 254 nm light illumination at -4.5 V. The energy band structure of p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterostructures was schematic drawn to explain the physic mechanism of enhancement of the performance of p-Si/ i-SiC/ n-Ga2O3 heterostructure-based deep UV photodetector by introduction of SiC layer.

  2. Ambient effect on thermal stability of amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan

    2016-12-01

    The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.

  3. Adaptive servoventilation versus oxygen therapy for sleep disordered breathing in patients with heart failure: a randomised trial

    PubMed Central

    Murase, Kimihiko; Ono, Koh; Yoneda, Tomoya; Iguchi, Moritake; Yokomatsu, Takafumi; Mizoguchi, Tetsu; Izumi, Toshiaki; Akao, Masaharu; Miki, Shinji; Nohara, Ryuji; Ueshima, Kenji; Mishima, Michiaki; Kimura, Takeshi; White, David P; Chin, Kazuo

    2016-01-01

    Background Both adaptive servoventilation (ASV) and nocturnal oxygen therapy improve sleep disordered breathing (SDB), but their effects on cardiac parameters have not been compared systematically. Methods and results 43 patients with chronic heart failure (CHF; left ventricular ejection fraction (LVEF) ≤50%) with SDB were randomly assigned to undergo ASV (n=19, apnoea hypopnoea index (AHI)=34.2±12.1/h) or oxygen therapy (n=24, 36.9±9.9/h) for 3 months. More than 70% of SDB events in both groups were central apnoeas or hypopnoeas. Although nightly adherence was less for the ASV group than for the oxygen group (4.4±2.0 vs 6.2±1.8 h/day, p<0.01), the improvement in AHI was larger in the ASV group than in the oxygen group (−27.0±11.5 vs −16.5±10.2/h, p<0.01). The N-terminal pro-brain natriuretic peptide (NT-proBNP) level in the ASV group improved significantly after titration (1535±2224 to 1251±2003 pg/mL, p=0.01), but increased slightly at follow-up and this improvement was not sustained (1311±1592 pg/mL, p=0.08). Meanwhile, the level of plasma NT-proBNP in the oxygen group did not show a significant change throughout the study (baseline 1071±1887, titration 980±1913, follow-up 1101±1888 pg/mL, p=0.19). The significant difference in the changes in the NT-proBNP level throughout the study between the 2 groups was not found (p=0.30). Neither group showed significant changes in echocardiographic parameters. Conclusions Although ASV produced better resolution of SDB in patients with CHF as compared with oxygen therapy, neither treatment produced a significant improvement in cardiac function in the short term. Although we could not draw a definite conclusion because of the small number of participants, our data do not seem to support the routine use of ASV or oxygen therapy to improve cardiac function in patients with CHF with SDB. Trial registration number NCT01187823 (http://www.clinicaltrials.gov). PMID:27099761

  4. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Murakami, Takashi; Sreenivas, Bulusu; Sharma, Subrata Das; Sugimori, Hirokazu

    2011-07-01

    The increase in atmospheric oxygen during the Precambrian is a key to understand the co-evolution of life and environment and has remained as a debatable topic. Among various proxies for the estimation of atmospheric oxygen levels, paleosols, ancient weathering profiles, can provide a quantitative pattern of atmospheric oxygen increase during the Precambrian period of Earth history. We have re-evaluated the chemical compositions of paleosols, and presented a new method of applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols to decipher the quantitative partial pressure of atmospheric oxygen ( P) between 2.5 and 2.0 Ga. We first estimated the compaction factor ( CF, the fraction of original thickness) using the immobile elements such as Ti, Al and Zr on equal volume basis, which was then used to calculate retention fractions ( M R), a mass ratio of paleosol to parent rock, of redox-sensitive elements. The CF and Fe R values were evaluated for factors such as homogeneity of immobile elements, erosion, and formation time of weathering. Fe R increased gradually within the time window of ˜2.5-2.1 Ga and remained close to 1.0 since ˜2.1 Ga onwards. Mn R also increased gradually similar to Fe R but at a slower rate and near complete retention was observed ˜1.85 Ga, suggesting an almost continuous increase in the oxidation of Fe 2+ and Mn 2+ in paleosols ranging in age between ˜2.5 and 1.9 Ga. We have modeled P variations during the Paleoproterozoic by applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols, which enabled us to derive an Fe 2+ oxidation term referred to as ψ. Possible changes in temperature and P during this time window and their effects on resulting models of P evolution have been also considered. We assumed four cases for the calculations of P variations between 2.5 and 2.0 Ga: no change in either temperature or P, long-term change in only P, long-term changes in both temperature and P

  5. Structure property relationships in gallium oxide thin films grown by pulsed laser deposition [Structure property relationships in Ga 2O 3 thin films grown by pulsed laser deposition

    DOE PAGES

    Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; ...

    2016-11-21

    Beta-gallium oxide (β-Ga 2O 3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga 2O 3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality β-Ga 2O 3 films on (0001) sapphire and (–201) Ga 2O 3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. As a result, there is a strong temperature dependencemore » to the phase formation, morphology, and electronic properties of β-Ga 2O 3 from 350 to 550 °C.« less

  6. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    PubMed

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  7. Evidence from EELS of oxygen in the nucleation layer of a MBE grown III-N HEMT[Electron Energy Loss Spectroscopy, Molecular Beam Epitaxy, High Electron Mobility Transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eustis, T.J.; Silcox, J.; Murphy, M.J.

    The presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N's on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleationmore » layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.« less

  8. Oxygen toxicity.

    PubMed

    Stogner, S W; Payne, D K

    1992-12-01

    currently available to avoid or minimize oxygen toxicity. Research is continuing into more effective ways to prevent, diagnose, and treat this disorder.

  9. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cilibrizzi, Pasquale; Askitopoulos, Alexis, E-mail: Alexis.Askitopoulos@soton.ac.uk; Silva, Matteo

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates,more » providing a platform for on chip quantum simulations.« less

  10. Redistribution kinetics of Ga and Al substitutions in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Röschmann, P.

    1980-01-01

    Results are presented for the octahedral-tetrahedral site redistribution rate of Ga or Al and Fe in YIG in the temperature range 773 to 1523 K. The activation energy for the cation transfer decreases with increasing the oxygen vacancy concentration by annealing. A screening model describes qualitatively the effects of enhanced cation redistribution.

  11. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    PubMed Central

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge. PMID:26755070

  12. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation.

    PubMed

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-12

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  13. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  14. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere

    PubMed Central

    Kump, Lee R.

    2014-01-01

    Considerable geological, geochemical, paleontological, and isotopic evidence exists to support the hypothesis that the atmospheric oxygen level rose from an Archean baseline of essentially zero to modern values in two steps roughly 2.3 billion and 0.8–0.6 billion years ago (Ga). The first step in oxygen content, the Great Oxidation Event, was likely a threshold response to diminishing reductant input from Earth’s interior. Here I provide an alternative to previous suggestions that the second step was the result of the establishment of the first terrestrial fungal–lichen ecosystems. The consumption of oxygen by aerobes respiring this new source of organic matter in soils would have necessitated an increase in the atmospheric oxygen content to compensate for the reduced delivery of oxygen to the weathering environment below the organic-rich upper soil layer. Support for this hypothesis comes from the observed spread toward more negative carbon isotope compositions in Neoproterozoic (1.0–0.542 Ga) and younger limestones altered under the influence of ground waters, and the positive correlation between the carbon isotope composition and oxygen content of modern ground waters in contact with limestones. Thus, the greening of the planet’s land surfaces forced the atmospheric oxygen level to a new, higher equilibrium state. PMID:25225378

  15. Oxygen radicals as key mediators in neurological disease: fact or fiction?

    PubMed

    Halliwell, B

    1992-01-01

    A free radical is any species capable of independent existence that contains one or more unpaired electrons. Free radicals and other reactive oxygen species are frequently proposed to be involved in the pathology of several neurological disorders. Criteria for establishing such involvement are presented. Development of new methods for measuring oxidative damage should enable elucidation of the precise role of reactive oxygen species in neurological disorders.

  16. Bacterial Bolsheviks: PS II and the Evolution of the Oxygenic Revolution

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Kirschvink, J. L.; Newman, D. K.; Nash, C. Z.; Hilburn, I. A.

    2003-12-01

    After the rise of life itself, the most radical transformation of Earth's biogeochemical cycles was the transition from an anoxic to an oxic world. Though various studies have suggested O2 made its first bulk appearance in the atmosphere some time between 3.8 and 2.1 Ga, virtually all analyses agree the production of large quantities of free O2 was triggered by the evolution of oxygenic photosynthesis. We suggest the oldest strong geological evidence for O2 is the 2.22 Ga Kalahari Mn member of the Hotazel BIF (1), as in the oceans only free O2 can oxidize soluble Mn(II) into insoluble Mn(IV). Some have argued, however, that oxygenic cyanobacteria had originated by 2.7 Ga. The ˜500 Myr "gap" has often been interpreted as the timescale for gradual evolutionary improvement of the O2-generating system. Biochemical and genomic analyses of photosynthetic bacteria indicate that photosystems I and II, which operate together in cyanobacteria, had a long history of parallel development. Green sulfur bacteria and heliobacteria use PS-II, while green non-sulfur and purple bacteria use PS-I; none can use H2O as an electron donor. Recent genetic analyses show lateral gene transfer was rampant among photosynthetic lineages (2). Moreover, extant cyanobacteria shut down PS-II in the presence of an alternative electron donor like H2S. This suggests PS-I and PS-II came together with their functions intact. Hence, most `debugging' of the two systems predates their merger in the ancestor of modern cyanobacteria. The time interval between the lateral transfer events and the evolution of oxygenic photosynthesis could thus have been geologically short. We suggest the ˜500 Myr "gap" may result from misinterpretations. The presence of oxygenic photosynthesis is uncertain before the deposition of the Hotazel formation, in the aftermath of the Makganyene glaciation (1). A simple model of nutrient and reductant fluxes argues that, once triggered, the oxygenation of a reducing surface

  17. Contralateral cerebral hemoglobin oxygen saturation changes in patients undergoing thoracotomy with general anesthesia with or without paravertebral block: a randomized controlled trial.

    PubMed

    Mukaihara, Keika; Hasegawa-Moriyama, Maiko; Kanmura, Yuichi

    2017-12-01

    Perioperative analgesia during thoracotomy is often achieved by combining paravertebral block (PVB) with general anesthesia (GA). Functional near-infrared spectroscopy (NIRS) can detect changes in cerebral oxygenation resulting from nociceptive stimuli in the awake state or under sedation. We used NIRS to measure changes in cerebral blood flow provoked by thoracotomy incision made under GA and determine how these changes were influenced by supplementation of GA with PVB. Thirty-four patients undergoing elective thoracotomy were enrolled. Patients were randomly assigned to a group receiving only GA, or GA combined with PVB (GA + PVB). Changes in cerebral oxygenated hemoglobin (ΔO 2 Hb), deoxygenated-Hb (ΔHHb), and total-Hb (ΔtotalHb) were evaluated by NIRS as surgery began. In the GA group, ΔO 2 Hb was significantly higher in the hemisphere contralateral to the side of surgery when the incision was made and 2 min after incision compared with the ipsilateral side (start of surgery, P < 0.01; 2 min, P < 0.05). In contrast, there were no significant changes in the ΔO 2 Hb at any of the time points in the GA + PVB group. Comparable with ΔO 2 Hb, the concentration of ΔtotalHb was significantly higher in the contralateral hemisphere in the GA group at the start of surgery (P < 0.05). Changes in the cerebral O 2 Hb concentration were detected by NIRS immediately after surgical incision under GA, but not in the presence of a PNB. NIRS could be used to monitor surgical pain. PVB inhibited changes in oxygenation induced by incision-provoked pain.

  18. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming

    2016-04-01

    In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade-1 and 3.62 × 1011 eV-1 cm-2, respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

  19. Radiation Damage Formation And Annealing In Mg-Implanted GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Sean; Kelly, Michael J.; Yan, John

    2005-06-30

    We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less

  20. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    NASA Astrophysics Data System (ADS)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  1. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  2. Formation of Ohmic contact to semipolar (11-22) p-GaN by electrical breakdown method

    NASA Astrophysics Data System (ADS)

    Jeong, Seonghoon; Lee, Sung-Nam; Kim, Hyunsoo

    2018-01-01

    The electrical breakdown (EBD) method was used to obtain Ohmic contact to semipolar (11-20) p-GaN surfaces using the Ti/SiO2/ p-GaN structure. The EBD method by which the electrical stress voltage was increased up to 70 V with a compliance current of 30 mA resulted in an Ohmic contact with a specific contact resistance of 3.1×10-3 Ωcm2. The transmission electron microscope (TEM) analysis revealed that the oxygen was slightly out-diffused from SiO2 layer toward Ti surface and the oxidation occurred at the Ti surface, while the GaN remained unchanged.

  3. Femtosecond coherent emission from GaAs bulk microcavities

    NASA Astrophysics Data System (ADS)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  4. Beta-Ga2O3: A transparent conductive oxide for potential resistive switching applications

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaohao

    My primary research focus is controlling conductivity in Ga2O3, with the broader goal of seeking both new materials science and possible applications. Regarding new materials science, the key goal is to elucidate connections between defects and conductivity in β- Ga2O3, then, based on an understanding of the conduction mechanism of Ga2O3, determine and evaluate the potential of β-Ga2O3 as a resistive switching (RS) material. To systematically investigate the feasibility of Ga2O3 in memristor applications, several aspects was examined. One of the first questions to be answered is how defects play a role in the conductivity of Ga2O3. To establish connections between conductivity and defects, a direct approach is to investigate the connections between the local structure and the concomitant electronic responses, paying particular attention to the role of both intrinsic and extrinsic defects. The approach I used was to compare the directional and thermal dependence of the conductivity induced through annealing in various environments (i.e., intentionally changing the intrinsic and extrinsic defect concentrations), and elucidate the roles of dimensionality and sample processing in controlling these processes through a comparison of the bulk. Such a strategy involves careful characterization of both the atomic and electronic structure at both nanoscopic and macroscopic length scales. Although various calculations has predicted conductivity is independent from oxygen vacancy, no experimental work is reported as supports to theoretical studies due to the hardness to dissociate oxygen vacancy increase from other defect changes, such as Hydrogen interstitial increase, surface band bending reduction from surface population of charged vacancies, metal contact to Ga2O3 interface changes, etc . We intentionally inject and/or remove oxygen defects through annealing in oxidizing and reducing atmospheres. The effects of such annealing treatments were investigated using X

  5. Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution.

    PubMed

    Salari, M; Aboutalebi, S H; Aghassi, A; Wagner, P; Mozer, A J; Wallace, G G

    2015-02-28

    The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 μL h(-1) and faradic efficiencies over 100%.

  6. Infrared photoconductivity and photovoltaic response from nanoscale domains of PbS alloyed with thorium and oxygen

    NASA Astrophysics Data System (ADS)

    Arad-Vosk, N.; Beach, R.; Ron, A.; Templeman, T.; Golan, Y.; Sarusi, G.; Sa'ar, A.

    2018-03-01

    Thin films of lead sulfide alloyed with thorium and oxygen were deposited on GaAs substrates and processed to produce a photo-diode structure. Structural, optical and electrical characterizations indicate the presence of small nanoscale domains (NDs) that are characterized by dense packaging, high quality interfaces and a blue-shift of the energy bandgap toward the short wavelength infrared range of the spectrum. Photocurrent spectroscopy revealed a considerable photoconductivity that is correlated with excitation of carriers in the NDs of lead sulfide alloyed with thorium and oxygen. Furthermore, the appearance of a photovoltaic effect under near infrared illumination indicates a quasi-type II band alignment at the interface of the GaAs and the film of NDs.

  7. Infrared photoconductivity and photovoltaic response from nanoscale domains of PbS alloyed with thorium and oxygen.

    PubMed

    Arad-Vosk, N; Beach, R; Ron, A; Templeman, T; Golan, Y; Sarusi, G; Sa'ar, A

    2018-03-16

    Thin films of lead sulfide alloyed with thorium and oxygen were deposited on GaAs substrates and processed to produce a photo-diode structure. Structural, optical and electrical characterizations indicate the presence of small nanoscale domains (NDs) that are characterized by dense packaging, high quality interfaces and a blue-shift of the energy bandgap toward the short wavelength infrared range of the spectrum. Photocurrent spectroscopy revealed a considerable photoconductivity that is correlated with excitation of carriers in the NDs of lead sulfide alloyed with thorium and oxygen. Furthermore, the appearance of a photovoltaic effect under near infrared illumination indicates a quasi-type II band alignment at the interface of the GaAs and the film of NDs.

  8. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  9. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua; Zhao, Chenglong

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperaturemore » is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.« less

  10. Self-trapped holes in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  11. Surface cleaning for negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang

    2012-10-01

    In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.

  12. GaAs Spectrometer for Electron Spectroscopy at Europa

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-12-01

    We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.

  13. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorczyca, I., E-mail: iza@unipress.waw.pl; Skrobas, K.; Suski, T.

    2015-08-21

    The electronic structures of short period mGaN/nGa{sub y}Al{sub 1−y}N and mIn{sub y}Ga{sub 1-y}N/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations,more » the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.« less

  14. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2015-08-01

    The electronic structures of short period mGaN/nGayAl1-yN and mInyGa1-yN/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations, the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.

  15. Efficient Ga(As)Sb quantum dot emission in AlGaAs by GaAs intermediate layer

    NASA Astrophysics Data System (ADS)

    Loeber, Thomas Henning; Richter, Johannes; Strassner, Johannes; Heisel, Carina; Kimmle, Christina; Fouckhardt, Henning

    2013-03-01

    Ga(As)Sb quantum dots (QDs) are epitaxially grown in AlGaAs/GaAs in the Stranski-Krastanov mode. In the recent past we achieved Ga(As)Sb QDs in GaAs with an extremely high dot density of 9.8•1010 cm-2 by optimization of growth temperature, Sb/Ga flux pressure ratio, and coverage. Additionally, the QD emission wavelength could be chosen precisely with these growth parameters in the range between 876 and 1035 nm. Here we report a photoluminescence (PL) intensity improvement for the case with AlGaAs barriers. Again growth parameters and layer composition are varied. The aluminium content is varied between 0 and 90%. Reflectance anisotropy spectroscopy (RAS) is used as insitu growth control to determine growth rate, layer thickness, and AlGaAs composition. Ga(As)Sb QDs, directly grown in AlxGa1-xAs emit no PL signal, even with a very low x ≈ 0.1. With additional around 10 nm thin GaAs intermediate layers between the Ga(As)Sb QDs and the AlGaAs barriers PL signals are detected. Samples with 4 QD layers and AlxGa1-xAs/GaAs barriers in between are grown. The thickness and composition of the barriers are changed. Depending on these values PL intensity is more than 4 times as high as in the case with simple GaAs barriers. With these results efficient Ga(As)Sb QD lasers are realized, so far only with pure GaAs barriers. Our index-guided broad area lasers operate continuous-wave (cw) @ 90 K, emit optical powers of more than 2•50 mW and show a differential quantum efficiency of 54% with a threshold current density of 528 A/cm2.

  16. Interface structure and composition of MoO3/GaAs(0 0 1)

    NASA Astrophysics Data System (ADS)

    Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold

    2018-04-01

    We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+  oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a  ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.

  17. Imaging putative foetal cerebral blood oxygenation using susceptibility weighted imaging (SWI).

    PubMed

    Yadav, Brijesh Kumar; Krishnamurthy, Uday; Buch, Sagar; Jella, Pavan; Hernandez-Andrade, Edgar; Yeo, Lami; Korzeniewski, Steven J; Trifan, Anabela; Hassan, Sonia S; Haacke, E Mark; Romero, Roberto; Neelavalli, Jaladhar

    2018-05-01

    To evaluate the magnetic susceptibility, ∆χ v , as a surrogate marker of venous blood oxygen saturation, S v O 2 , in second- and third-trimester normal human foetuses. Thirty-six pregnant women, having a mean gestational age (GA) of 31 2/7 weeks, underwent magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) data from the foetal brain were acquired. ∆χ v of the superior sagittal sinus (SSS) was quantified using MR susceptometry from the intra-vascular phase measurements. Assuming the magnetic property of foetal blood, ∆χ do , is the same as that of adult blood, S v O 2 was derived from the measured Δχ v . The variation of ∆χ v and S v O 2 , as a function of GA, was statistically evaluated. The mean ∆χ v in the SSS in the second-trimester (n = 8) and third-trimester foetuses (n = 28) was found to be 0.34± 0.06 ppm and 0.49 ±0.05 ppm, respectively. Correspondingly, the derived S v O 2 values were 69.4% ±3.27% and 62.6% ±3.25%. Although not statistically significant, an increasing trend (p = 0.08) in Δχ v and a decreasing trend (p = 0.22) in S v O 2 with respect to advancing gestation was observed. We report cerebral venous blood magnetic susceptibility and putative oxygen saturation in healthy human foetuses. Cerebral oxygen saturation in healthy human foetuses, despite a slight decreasing trend, does not change significantly with advancing gestation. • Cerebral venous magnetic susceptibility and oxygenation in human foetuses can be quantified. • Cerebral venous oxygenation was not different between second- and third-trimester foetuses. • Foetal cerebral venous oxygenation does not change significantly with advancing gestation.

  18. Photoreflectance from GaAs and GaAs/GaAs interfaces

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Angelo, James; Wilson, Jerome J.; Mitchel, W. C.; Yen, M. Y.

    1989-10-01

    Photoreflectance from semi-insulating GaAs, and GaAs/GaAs interfaces, is discussed in terms of its behavior with temperature, doping, epilayer thickness, and laser intensity. Semi-insulating substrates show an exciton-related band-edge signal below 200 K and an impurity-related photoreflectance above 400 K. At intermediate temperatures the band-edge signal from thin GaAs epilayers contains a contribution from the epilayer-substrate interface. The interface effect depends on the epilayer's thickness, doping, and carrier mobility. The effect broadens the band-edge photoreflectance by 5-10 meV, and artifically lowers the estimates for the critical-point energy, ECP, obtained through the customary third-derivative functional fit to the data.

  19. Decompression from Saturation Using Oxygen: Its Effect on DCS and RNA in Large Swine

    DTIC Science & Technology

    2010-01-01

    mask. The external jugular vein was catheter- ized with a 14-Ga., 30-cm single lumen catheter ( Central Venous Catheterization Set; Arrow... venous catheterization for sequential blood sampling from the pig. J Invest Surg 1991; 4:103-7. 3. Behnke AR. The isobaric (oxygen window) principle of...pressures may lead to toxicity that involves the pulmonary system and/ or the central nervous system (CNS). There is evidence that 100% oxygen in

  20. Effectiveness of Physiotherapy and GaAlAs Laser in the Management of Temporomandibular Joint Disorders

    PubMed Central

    Hlinakova, Petra; Kasparova, Magdalena; Rehacek, Adam; Vavrickova, Lenka; Navrátil, Leoš

    2012-01-01

    Abstract Objective: Low-level laser therapy (LLLT) is a treatment method commonly used in physiotherapy for musculoskeletal disorders. The aim of this study was to monitor the function of temporomandibular joint (TMJ) and surrounding tissues and compare the objective measurements of the effect of LLLT. Background data: LLLT has been considered effective in reducing pain and muscular tension; thus improving the quality of patients' lives. Materials and Methods: TMJ function was evaluated by cephalometric tracing analysis, orthopantomogram, TMJ tomogram, and computer face-bow record. Interalveolar space between central incisors before and after therapy was measured. Patients evaluated pain on the Visual Analog Scale. LLLT was performed in five treatment sessions (energy density of 15.4 J/cm2) by semiconductive GaAlAs laser with an output of 280 mW, emitting radiation wavelength of 830 mm. The laser supplied a spot of∼0.2 cm2. Results: Baseline comparisons between the healthy patients and patients with low-level laser application show that TMJ pain during function is based on anatomical and function changes in TMJ areas. Significant differences were seen in the posterior and anterior face height. The results comparing healthy and impaired TMJ sagittal condyle paths showed that patients with TMJ pain during function had significantly flatter nonanatomical movement during function. After therapy, the unpleasant feeling was reduced from 27.5 to 4.16 on the pain Visual Analog Scale. The pain had reduced the ability to open the mouth from 34 to 42 mm. Conclusions: The laser therapy was effective in the improvement of the range of temporomandibular disorders (TMD) and promoted a significant reduction of pain symptoms. PMID:22551049

  1. AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers

    NASA Astrophysics Data System (ADS)

    Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2011-09-01

    We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.

  2. Disorder Problem In Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Nelson, Ryky; Ekuma, Chinedu; Terletska, Hanna; Sudhindra, Vidhyadhiraja; Moreno, Juana; Jarrell, Mark

    2015-03-01

    Motivated by experimental studies addressing the role of impurity disorder in diluted magnetic semiconductors (DMS), we investigate the effects of disorder using a simple tight-binding Hamiltonian with random impurity potential and spin-fermion exchange which is self-consistently solved using the typical medium theory. Adopting the typical density of states (TDoS) as the order parameter, we find that the TDoS vanishes below a critical concentration of the impurity, which indicates an Anderson localization transition in the system. Our results qualitatively explain why at concentrations lower than a critical value DMS are insulating and paramagnetic, while at larger concentrations are ferromagnetic. We also compare several simple models to explore the interplay between ferromagnetic order and disorder induced insulating behavior, and the role of the spin-orbit interaction on this competition. We apply our findings to (Ga,Mn)As and (Ga,Mn)N to compare and contrast their phase diagrams.

  3. Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobanov, D. N., E-mail: dima@ipmras.ru; Novikov, A. V.; Yunin, P. A.

    2016-11-15

    In this publication, the results of development of the technology of the epitaxial growth of GaN on single-crystal langasite substrates La{sub 3}Ga{sub 5}SiO{sub 14} (0001) by the plasma-assisted molecular-beam epitaxy (PA MBE) method are reported. An investigation of the effect of the growth temperature at the initial stage of deposition on the crystal quality and morphology of the obtained GaN layer is performed. It is demonstrated that the optimal temperature for deposition of the initial GaN layer onto the langasite substrate is about ~520°C. A decrease in the growth temperature to this value allows the suppression of oxygen diffusion frommore » langasite into the growing layer and a decrease in the dislocation density in the main GaN layer upon its subsequent high-temperature deposition (~700°C). Further lowering of the growth temperature of the nucleation layer leads to sharp degradation of the GaN/LGS layer crystal quality. As a result of the performed research, an epitaxial GaN/LGS layer with a dislocation density of ~10{sup 11} cm{sup –2} and low surface roughness (<2 nm) is obtained.« less

  4. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, E. S.; Chang, A. S.; Martin, A. J.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  5. Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes

    PubMed Central

    Hsu, Kai-Chiang; Hsiao, Wei-Hua; Lee, Ching-Ting; Chen, Yan-Ting; Liu, Day-Shan

    2015-01-01

    This paper addressed the effect of post-annealed treatment on the electroluminescence (EL) of an n-ZnO/p-GaN heterojunction light-emitting diode (LED). The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES) depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n-ZnO and p-GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n-ZnO and p-GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n-ZnO/p-GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively. PMID:28793675

  6. Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes.

    PubMed

    Hsu, Kai-Chiang; Hsiao, Wei-Hua; Lee, Ching-Ting; Chen, Yan-Ting; Liu, Day-Shan

    2015-11-16

    This paper addressed the effect of post-annealed treatment on the electroluminescence (EL) of an n -ZnO/ p -GaN heterojunction light-emitting diode (LED). The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES) depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n -ZnO and p -GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n -ZnO and p -GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n -ZnO/ p -GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively.

  7. Direct observation of anti-phase boundaries in heteroepitaxy of GaSb thin films grown on Si(001) by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.

    2012-10-01

    Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.

  8. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  9. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation.

    PubMed

    Lepot, Kevin; Addad, Ahmed; Knoll, Andrew H; Wang, Jian; Troadec, David; Béché, Armand; Javaux, Emmanuelle J

    2017-03-23

    Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500-600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe 2+ toxicity during the Palaeoproterozoic.

  10. Influence of oxygen partial pressure on the composition and orientation of strontium-doped lead zirconate titanate thin films.

    PubMed

    Sriram, S; Bhaskaran, M; du Plessis, J; Short, K T; Sivan, V P; Holland, A S

    2009-01-01

    The influence of oxygen partial pressure during the deposition of piezoelectric strontium-doped lead zirconate titanate thin films is reported. The thin films have been deposited by RF magnetron sputtering in an atmosphere of high purity argon and oxygen (in the ratio of 9:1), on platinum-coated silicon substrates (heated to 650 degrees C). The influence of oxygen partial pressure is studied to understand the manner in which the stoichiometry of the thin films is modified, and to understand the influence of stoichiometry on the perovskite orientation. This article reports on the results obtained from films deposited at oxygen partial pressures of 1-5 mTorr. The thin films have been studied using a combination of X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GA-XRD), and atomic force microscopy (AFM). XPS analysis highlights the marked influence of variations in oxygen pressure during sputtering, observed by variations in oxygen concentration in the thin films, and in some cases by the undesirable decrease in lead concentration in the thin films. GA-XRD is used to study the relative variations in perovskite peak intensities, and has been used to determine the deposition conditions to attain the optimal combination of stoichiometry and orientation. AFM scans show the marked influence of the oxygen partial pressure on the film morphology.

  11. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis.

    PubMed

    Lalonde, Stefan V; Konhauser, Kurt O

    2015-01-27

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10(-5) times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE.

  12. Magnetometory of AlGaN/GaN heterostructure wafers

    NASA Astrophysics Data System (ADS)

    Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.

    2005-06-01

    AlGaN/GaN heterostructure wafers are becoming a key technology for next generation cellar-phone telecommunication system because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the extraordinary Hall effect measurement and the SQUID magnetometory of AlGaN/GaN heterostructure wafer at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540cm2/V s and 6.6 × 1012cm-2, respectively. In the extraordinary Hall effect measurement of AlGaN/GaN heterostructures, the hysteresis of Hall resistance appeared below 4.5 K and disappeared above 4.5 K. On the other hand, the hysteresis of magnetometric data obtained by SQUID magnetometory appears near zero magnetic field when the temperature is lower than 4.5 K. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears. And the slopes of magnetometric data with respect to magnetic field become lower as obeying Currie-Weiss law and the Curie temperature TC is 4.5 K. Agreement of TC measured by the extraordinary Hall effect and the SQUID magnetometory implies the ferromagnetism at the AlGaN/GaN heterojunction. However, the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.

  13. Modeling and optimization of a double-well double-barrier GaN/AlGaN/GaN/AlGaN resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying

    2017-06-01

    The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).

  14. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  15. Glutaric aciduria type I: A treatable neurometabolic disorder

    PubMed Central

    Kamate, Mahesh; Patil, Vishwanath; Chetal, Vivek; Darak, Pavan; Hattiholi, Virupaxi

    2012-01-01

    Background and Objectives: Glutaric aciduria Type-I (GA-I) has characteristic clinical and neuroimaging features, which clinches the diagnosis in a majority of patients. However, there have been few case reports on GA-I from India. This study was undertaken to study the clinical presentations, metabolic profile, neuroimaging findings and outcome of patients with GA-I. Study Design: The present study was a retrospective study. Materials and Methods: Retrospective review of charts of patients with a diagnosis of GA-I was carried out from March 2008 to April 2010. The clinical, laboratory and neuroimaging findings were extracted in a predesigned proforma and the data was analyzed. Results: Eleven cases were found to have GA-1. Clinical presentation was quite varied. Follow-up of patients revealed that one patient with macrocephaly as the only clinical finding was developmentally normal. One patient with encephalitis-like illness steadily improved and started walking at 2 years. Two patients were bed ridden and had severe dystonia. One patient died during follow-up. The remaining six patients had dystonia and other abnormal movements, but had attained sitting without support and were not ambulatory. Conclusion: GA-I is not an uncommon disorder and diagnosis can be made easily based on clinical, laboratory investigations and neuroimaging findings. It is one of the treatable metabolic disorders and, if managed appropriately, favorable prognosis can be given. PMID:22412270

  16. Glutaric aciduria type I: A treatable neurometabolic disorder.

    PubMed

    Kamate, Mahesh; Patil, Vishwanath; Chetal, Vivek; Darak, Pavan; Hattiholi, Virupaxi

    2012-01-01

    Glutaric aciduria Type-I (GA-I) has characteristic clinical and neuroimaging features, which clinches the diagnosis in a majority of patients. However, there have been few case reports on GA-I from India. This study was undertaken to study the clinical presentations, metabolic profile, neuroimaging findings and outcome of patients with GA-I. The present study was a retrospective study. Retrospective review of charts of patients with a diagnosis of GA-I was carried out from March 2008 to April 2010. The clinical, laboratory and neuroimaging findings were extracted in a predesigned proforma and the data was analyzed. Eleven cases were found to have GA-1. Clinical presentation was quite varied. Follow-up of patients revealed that one patient with macrocephaly as the only clinical finding was developmentally normal. One patient with encephalitis-like illness steadily improved and started walking at 2 years. Two patients were bed ridden and had severe dystonia. One patient died during follow-up. The remaining six patients had dystonia and other abnormal movements, but had attained sitting without support and were not ambulatory. GA-I is not an uncommon disorder and diagnosis can be made easily based on clinical, laboratory investigations and neuroimaging findings. It is one of the treatable metabolic disorders and, if managed appropriately, favorable prognosis can be given.

  17. Photosensitized generation of singlet oxygen in porous silicon studied by simultaneous measurements of luminescence of nanocrystals and oxygen molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongalsky, M. B.; Kharin, A. Yu.; Zagorodskikh, S. A.

    2011-07-01

    Photosensitization of singlet oxygen generation in porous silicon (PSi) was investigated by simultaneous measurements of the photoluminescence (PL) of silicon nanocrystals (nc-Si) and the infrared emission of the {sup 1}{Delta}-state of oxygen molecules at 1270 nm (0.98 eV) at room temperature. Photodegradation of the nc-Si PL properties was found to correlate with the efficiency of singlet oxygen generation. The quantum efficiency of singlet oxygen generation in PSi was estimated to be about 1%, while the lifetime of singlet oxygen was about fifteen ms. The kinetics of nc-Si PL intensity under cw excitation undergoes a power law dependence with the exponentmore » dependent on the photon energy of luminescence. The experimental results are explained with a model of photodegradation controlled by the diffusion of singlet oxygen molecules in a disordered structure of porous silicon.« less

  18. Transport properties of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Han, Xiuxun; Honda, Yoshio; Narita, Tetsuo; Yamaguchi, Masahito; Sawaki, Nobuhiko

    2007-01-01

    Magnetotransport measurements were performed on a series of AlxGa1-xN/GaN heterostructures with different Al compositions (x = 0.15, 0.20 and 0.30) at 4.2 K. Adopting a fast Fourier transform method, we analysed the Shubnikov-de Hass oscillations due to the two-dimensional electron gas to derive the quantum scattering time (τq). It was found that the quantum scattering time in the ground subband decreases with increasing Al composition: 0.194 ps (x = 0.15), 0.174 ps (x = 0.20) and 0.123 ps (x = 0.30), respectively. To discern the predominant scattering process, the scattering time limited by interface roughness, the residual impurity and the alloy disorder were investigated numerically by including inter-subband scattering. We found that enhanced interface roughness scattering dominates both the transport and quantum scattering time in the ground subband.

  19. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  20. Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.

    PubMed

    Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam

    2008-12-15

    We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.

  1. Electron microscopy investigations of purity of AlN interlayer in Al{sub x}Ga{sub 1-x}N/GaN heterostructures grown by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhara Rao, D. V.; Jain, Anubha; Lamba, Sushil

    2013-05-13

    The electron microscopy was used to characterize the AlN interlayer in Al{sub x}Ga{sub 1-x}N/AlN/GaN heterostructures grown by plasma assisted molecular beam epitaxy (PAMBE). We show that the AlN interlayer grown by PAMBE is without gallium and oxygen incorporation and the interfaces are coherent. The AlN interlayer has the ABAB stacking of lattice planes as expected for the wurtzite phase. High purity of AlN interlayer with the ABAB stacking leads to larger conduction band offset along with stronger polarization effects. Our studies show that the origin of lower sheet resistance obtained by PAMBE is the purity of AlN interlayer.

  2. Effect of the degree of disorder on electronic and optical properties in random superlattices

    NASA Technical Reports Server (NTRS)

    Wang, E. G.; Su, W. P.; Ting, C. S.

    1994-01-01

    A three-dimensional tight-binding calculation is developed and used to study disorder effects in a realistic random superlattice. With increasing disorder, a tendency of possible indirect-direct band-gap transition is suggested. Direct evidence of mobility edges between localized and extended states in three-dimensional random systems is given. As system disorder increases, the optical absorption intensities increase dramatically from five to forty-five times stronger than the ordered (GaAs)(sub 1)/(AlAs)(sub 1) superlattice. It is believed that the degree of disorder significantly affects electronic and optical properties of GaAs/AlAs random superlattices.

  3. ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs

    NASA Astrophysics Data System (ADS)

    Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.

    2017-11-01

    The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.

  4. Oxidation of GaSb(100) and its control studied by scanning tunneling microscopy and spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mäkelä, J., E-mail: jaakko.m.makela@utu.fi, E-mail: pekka.laukkanen@utu.fi, E-mail: rmwallace@utdallas.edu; Tuominen, M.; Yasir, M.

    2015-08-10

    Atomic-scale knowledge and control of oxidation of GaSb(100), which is a potential interface for energy-efficient transistors, are still incomplete, largely due to an amorphous structure of GaSb(100) oxides. We elucidate these issues with scanning-tunneling microscopy and spectroscopy. The unveiled oxidation-induced building blocks cause defect states above Fermi level around the conduction-band edge. By interconnecting the results to previous photoemission findings, we suggest that the oxidation starts with substituting second-layer Sb sites by oxygen. Adding small amount of indium on GaSb(100), resulting in a (4 × 2)-In reconstruction, before oxidation produces a previously unreported, crystalline oxidized layer of (1 × 3)-O free of gap states.

  5. Polarization compensation at low p-GaN doping density in InGaN/GaN p-i-n solar cells: Effect of InGaN interlayers

    NASA Astrophysics Data System (ADS)

    Saini, Basant; Adhikari, Sonachand; Pal, Suchandan; Kapoor, Avinsahi

    2017-07-01

    The effectiveness of polarization matching layer (PML) between i-InGaN/p-GaN is studied numerically for Ga-face InGaN/GaN p-i-n solar cell at low p-GaN doping (∼5e17 cm-3). The simulations are performed for four InxGa1-xN/GaN heterostructures (x = 10%, 15%, 20% and 25%), thus investigating the impact of PML for low as well as high indium containing absorber regions. Use of PML presents a suitable alternative to counter the effects of polarization-induced electric fields arising at low p-GaN doping density especially for absorber regions with high indium (>10%). It is seen that it not only mitigates the negative effects of polarization-induced electric fields but also reduces the high potential barriers existing at i-InGaN/p-GaN heterojunction. The improvement in photovoltaic properties of the heterostructures even at low p-GaN doping validates this claim.

  6. Technology of GaAs metal-oxide-semiconductor solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1977-01-01

    The growth of an oxide interfacial layer was recently found to increase the open-circuit voltage (OCV) and efficiency by up to 60 per cent in GaAs metal-semiconductor solar cells. Details of oxidation techniques to provide the necessary oxide thickness and chemical structure and using ozone, water-vapor-saturated oxygen, or oxygen gas discharges are described, as well as apparent crystallographic orientation effects. Preliminary results of the oxide chemistry obtained from X-ray, photoelectron spectroscopy are given. Ratios of arsenic oxide to gallium oxide of unity or less seem to be preferable. Samples with the highest OVC predominantly have As(+3) in the arsenic oxide rather than As(+5). A major difficulty at this time is a reduction in OCV by 100-200 mV when the antireflection coating is vacuum deposited.

  7. GaSbBi/GaSb quantum well laser diodes

    NASA Astrophysics Data System (ADS)

    Delorme, O.; Cerutti, L.; Luna, E.; Narcy, G.; Trampert, A.; Tournié, E.; Rodriguez, J.-B.

    2017-05-01

    We report on the structural and optical properties of GaSbBi single layers and GaSbBi/GaSb quantum well heterostructures grown by molecular beam epitaxy on GaSb substrates. Excellent crystal quality and room-temperature photoluminescence are achieved in both cases. We demonstrate laser operation from laser diodes with an active zone composed of three GaSb0.885Bi0.115/GaSb quantum wells. These devices exhibit continuous-wave lasing at 2.5 μm at 80 K, and lasing under pulsed operation at room-temperature near 2.7 μm.

  8. A phase width for CaGaSn. Crystal structure of mixed intermetallic Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} and SmGa{sub x}Sn{sub 3−x}, stability, geometry and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillard, Monique, E-mail: mtillard@univ-montp2.fr

    X-ray single-crystal structure has been established for new compositions in intermetallic systems of tin and gallium. Crystals were successfully obtained in alloys prepared from elements. The structure of SmGaSn{sub 2} (cubic Pm3̄m, a=4.5778(8) Å, Z=1, R1=0.012) is described with atomic disorder at all Sn/Ga positions and the structure of Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} (hexagonal, P6{sub 3}/mmc, a=4.2233(9), c=17.601(7) Å, Z=1, R1=0.062) raises an interesting question about existence of a composition domain for CaGaSn. Finally, Ca{sub 4}Ga{sub 4.9}Sn{sub 3.1} should be considered as a particular composition of Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}, a compound assumed to exist in the range x ~more » 0−1. Partial atomic ordering characterizes the Sn/Ga puckered layers of hexagons whose geometries are analyzed and discussed comparatively with analogous arrangements in AlB{sub 2} related hexagonal compounds. The study is supported by rigid band model and DFT calculations performed for different experimental and hypothetic arrangements. - Graphical abstract: A phase width for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x} belonging to the hexagonal YPtAs structure-type. - Highlights: • Single crystals of mixed tin gallium ternary intermetallics were obtained. • Partial ordering at metal sites and phase width are evidenced for Ca{sub 4}Ga{sub 4+x}Sn{sub 4−x}. • Layer deviation to flatness is studied comparatively with related structures. • Geometry and stability analyses based on DFT calculations are provided.« less

  9. Origin of subgap states in amorphous In-Ga-Zn-O

    NASA Astrophysics Data System (ADS)

    Körner, Wolfgang; Urban, Daniel F.; Elsässer, Christian

    2013-10-01

    We present a density functional theory analysis of stoichiometric and nonstoichiometric, crystalline and amorphous In-Ga-Zn-O (c-IGZO, a-IGZO), which connects the recently experimentally discovered electronic subgap states to structural features of a-IGZO. In particular, we show that undercoordinated oxygen atoms create electronic defect levels in the lower half of the band gap up to about 1.5 eV above the valence band edge. As a second class of fundamental defects that appear in a-IGZO, we identify mainly pairs of metal atoms which are not separated by oxygen atoms in between. These defects cause electronic defect levels in the upper part of the band gap. Furthermore, we show that hydrogen doping can suppress the deep levels due to undercoordinated oxygen atoms while those of metal defects just undergo a shift within the band gap. Altogether our results provide an explanation for the experimentally observed effect that hydrogen doping increases the transparency and improves the conductivity of a-IGZO.

  10. Nitrogen cycling in 2.7 Ga oceans

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zerkle, A.; Grassineau, N.; Nisbet, E.; Mettam, C.; Izon, G. J.; Morag, H.; Anthony, M.; Newton, J.; Boyce, A.

    2016-12-01

    A growing body of geochemical evidence suggests that localized oxygenation of the surface earth must have begun much earlier than the GOE ( 2.4 Ga). This could have triggered the emergence of the aerobic biogeochemical cycle of nitrogen (N), an essential nutrient for all organisms. However, the timing of this revolutionary transition is poorly known. Some sediments from 2.7 Ga possess exceptionally high enrichment of 15N. Whether these values are linked to the onset of the aerobic N cycle[1], or reflective of alkaline lakes on land[2], has been in dispute. To explore this, we are investigating one of the best-preserved unambiguously marine Achaean successions from the Belingwe Greenstone Belt, in Zimbabwe. We are focusing on nearly pristine sediments from the 2.7 Ga Manjeri Formation, which span both shallow and deep-water environments, preserving organic-rich shales and some of the oldest and most well-preserved stromatolites. The depositional conditions for this succession are further constrained by iron speciation data and sulfur isotopes, which show a redox transition from ferruginous to oxic environments from older to younger sediments. Nitrogen isotopes in these sediments will constrain the global nature of the extremely 15N-enriched values, and test hypotheses for the Neoarchean nitrogen cycle in a non-disputed marine setting. [1] Thomazo et al. (2011) Geobiology; [2] Stüeken et al. (2015) EPSL.

  11. Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina

    2017-12-01

    We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.

  12. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    , obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  13. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less

  14. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  15. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-01

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  16. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.

    PubMed

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-25

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  17. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins.

    PubMed

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-12-22

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1-11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons.

  18. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    NASA Astrophysics Data System (ADS)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  19. Meningiomas: A Comparative Study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for Molecular Imaging in Mice

    PubMed Central

    Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Mateos-Pérez, Jose María; Oteo, Marta; Romero, Eduardo; Morcillo, Miguel Ángel; Desco, Manuel

    2014-01-01

    Purpose The goal of this study was to compare the tumor uptake kinetics and diagnostic value of three 68Ga-DOTA-labeled somatostatin analogues (68Ga-DOTATOC, 68Ga-DOTANOC, and 68Ga-DOTATATE) using PET/CT in a murine model with subcutaneous meningioma xenografts. Methods The experiment was performed with 16 male NUDE NU/NU mice bearing xenografts of a human meningioma cell line (CH-157MN). 68Ga-DOTATOC, 68Ga-DOTANOC, and 68Ga-DOTATATE were produced in a FASTLab automated platform. Imaging was performed on an Argus small-animal PET/CT scanner. The SUVmax of the liver and muscle, and the tumor-to-liver (T/L) and tumor-to-muscle (T/M) SUV ratios were computed. Kinetic analysis was performed using Logan graphical analysis for a two-tissue reversible compartmental model, and the volume of distribution (Vt) was determined. Results Hepatic SUVmax and Vt were significantly higher with 68Ga-DOTANOC than with 68Ga-DOTATOC and 68Ga-DOTATATE. No significant differences between tracers were found for SUVmax in tumor or muscle. No differences were found in the T/L SUV ratio between 68Ga-DOTATATE and 68Ga-DOTATOC, both of which had a higher fraction than 68Ga-DOTANOC. The T/M SUV ratio was significantly higher with 68Ga-DOTATATE than with 68Ga-DOTATOC and 68Ga-DOTANOC. The Vt for tumor was higher with 68Ga-DOTATATE than with 68Ga-DOTANOC and relatively similar to that of 68Ga-DOTATOC. Conclusions This study demonstrates, for the first time, the ability of the three radiolabeled somatostatin analogues tested to image a human meningioma cell line. Although Vt was relatively similar with 68Ga-DOTATATE and 68Ga-DOTATOC, uptake was higher with 68Ga-DOTATATE in the tumor than with 68Ga-DOTANOC and 68Ga-DOTATOC, suggesting a higher diagnostic value of 68Ga-DOTATATE for detecting meningiomas. PMID:25369268

  20. Theoretical and experimental studies of electric field distribution in N-polar GaN/AlGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.

    2015-12-28

    Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less

  1. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.; hide

    2007-01-01

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include

  2. Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Malik, Amit; Sharma, Chandan; Laishram, Robert; Bag, Rajesh Kumar; Rawal, Dipendra Singh; Vinayak, Seema; Sharma, Rajesh Kumar

    2018-04-01

    This article reports negative shift in the threshold-voltage in AlGaN/GaN high electron mobility transistor (HEMT) with application of reverse gate bias stress. The device is biased in strong pinch-off and low drain to source voltage condition for a fixed time duration (reverse gate bias stress), followed by measurement of transfer characteristics. Negative threshold voltage shift after application of reverse gate bias stress indicates the presence of more carriers in channel as compared to the unstressed condition. We propose the presence of AlGaN/GaN interface states to be the reason of negative threshold voltage shift, and developed a process to electrically characterize AlGaN/GaN interface states. We verified the results with Technology Computer Aided Design (TCAD) ATLAS simulation and got a good match with experimental measurements.

  3. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes

    PubMed Central

    2011-01-01

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96. PMID:21711671

  4. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes.

    PubMed

    Alvi, N H; Ul Hasan, Kamran; Nur, Omer; Willander, Magnus

    2011-02-10

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96.

  5. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates

    NASA Astrophysics Data System (ADS)

    Yuliang, Huang; Lian, Zhang; Zhe, Cheng; Yun, Zhang; Yujie, Ai; Yongbing, Zhao; Hongxi, Lu; Junxi, Wang; Jinmin, Li

    2016-11-01

    We report a selective area growth (SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors (HEMTs) by metal-organic chemical vapor deposition. Compared with Schottky gate HEMTs, the SAG p-GaN gate HEMTs show more positive threshold voltage (V th) and better gate control ability. The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied. With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min, the V th raises from -0.67 V to -0.37 V. The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm. The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage. Project supported by the National Natural Sciences Foundation of China (Nos. 61376090, 61306008) and the National High Technology Program of China (No. 2014AA032606).

  6. Effects of phase transformation on the microstructures and magnetostriction of Fe-Ga and Fe-Ga-Zn ferromagnetic shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yin-Chih, E-mail: lin3312@cc.kuas.edu.tw; Lin, Chien-Feng

    2015-05-07

    The phase transformation and magnetostriction of bulk Fe{sub 73}Ga{sub 27} and Fe{sub 73}Ga{sub 18}Zn{sub 9} (at. %) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe{sub 73}Ga{sub 27} FSM alloy solution treated at 1100 °C for 4 h and quenched in ice brine, the antiphase boundary segments of the D0{sub 3} domain were observed in the A2 (disordered) matrix, and the Fe{sub 73}Ga{sub 27} FSM alloy had an optimal magnetostriction (λ{sub ‖}{sup s }= 71 × 10{sup −6} and λ{sub ⊥}{sup s }= −31 × 10{sup −6}). In Fe{sub 73}Ga{sub 27} FSM alloy as-quenched, aged at 700 °C formore » 24 h, and furnace cooled, D0{sub 3} nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L1{sub 0}-like martensite) via Bain distortion, and finally L1{sub 2} (Fe{sub 3}Ga) structures precipitated, as observed by TEM and XRD. The L1{sub 0}-like martensite and L1{sub 2} phases in the aged Fe{sub 73}Ga{sub 27} FSM alloy drastically decreased the magnetostriction from positive to negative (λ{sub ‖}{sup s }= −20 × 10{sup −6} and λ{sub ⊥}{sup s }= −8 × 10{sup −6}). However, in Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy as-quenched and aged, the phase transformation of D0{sub 3} to an intermediate tetragonal martensite phase and precipitation of L1{sub 2} structures were not found. The results indicate that the aged Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy maintained stable magnetostriction (λ{sub ‖}{sup s }= 36 × 10{sup −6} and λ{sub ⊥}{sup s }= −31 × 10{sup −6}). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe{sub 73}Ga{sub 18}Zn{sub 9} alloy, which may be useful in application of the alloy in high temperature environments.« less

  7. Reducing Threshold of Multi Quantum Wells InGaN Laser Diode by Using InGaN/GaN Waveguide

    NASA Astrophysics Data System (ADS)

    Abdullah, Rafid A.; Ibrahim, Kamarulazizi

    2010-07-01

    ISE TCAD (Integrated System Engineering Technology Computer Aided Design) software simulation program has been utilized to help study the effect of using InGaN/GaN as a waveguide instead of conventional GaN waveguide for multi quantum wells violet InGaN laser diode (LD). Simulation results indicate that the threshold of the LD has been reduced by using InGaN/GaN waveguide where InGaN/GaN waveguide increases the optical confinement factor which leads to increase the confinement carriers at the active region of the LD.

  8. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study

    NASA Astrophysics Data System (ADS)

    Popov, Ilya S.; Vorokh, Andrey S.; Enyashin, Andrey N.

    2018-06-01

    Synthesis from aqueous solutions is an affordable method for fabrication of II-VI semiconductors. However, application of this method often imposes a disorder of crystal lattice, manifesting as a rich variety of polytypes arising from wurtzite and zinc blende phases. The origin of this disordering still remains debatable. Here, the influence of the most likely impurity at water environment - substitutional oxygen - on the polytypic equilibrium of zinc sulphide is studied by means of density-functional tight-binding method. According to calculations, the inclusion of such oxygen does not affect the polytypic equilibrium. Apart of thermodynamic stability, the electronic and elastic properties of ZnS polytypes are studied as the function of oxygen distribution.

  9. Predictions of ground states of LiGa and NaGa

    NASA Astrophysics Data System (ADS)

    Boldyrev, Alexander I.; Simons, Jack

    1996-11-01

    The ground and very low-lying excited states of LiGa and NaGa have been studied using high level ab initio techniques. At the QCISD(T)/6-311 + G(2df) level of theory, the 1Σ + state was found to be the most stable for both molecules. The equilibrium bond lengths and dissociation energies were found to be: R( LiGa) = 2.865 Å and D0(LiGa) = 22.3 kcal/mol and R( NaGa) = 3.174 Å and D0(NaGa) = 17.1 kcal/mol. Trends within the ground electronic states of LiB, NaB, LiAl, NaAl, LiGa and NaGa are discussed and predictions for related AlkM (Alk LiCs and MBTl) species are made.

  10. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  11. Kinetics of Structural Changes on GaSb(001) Singular and Vicinal Surfaces During the UHV Annealing

    NASA Astrophysics Data System (ADS)

    Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.; Bakarov, A. K.; Toropov, A. I.

    2018-05-01

    The dynamics of processes of antimony desorption was investigated on the singular and vicinal GaSb(001) surface by RHEED method. The role of the terraces edges was determined during antimony evaporation in Langmuir desorption mode. It is shown that the structural transition (2x5) -> (1x3) is a complex of two transitions - order -> disorder and disorder -> order. The influence of the degree of surface miscut from the singular face on the dimension of the transition (2x5) -> DO was studied. The activation energies of structural transitions ex(2x5) -> (2x5), (2x5) -> DO and DO -> (1x3) on singular and vicinal faces GaSb(001) were determined.

  12. The Cloud Paradigm: Geostable molecules as proxies for surface oxygenation

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Hallmann, C.

    2011-12-01

    Geoscientists continue to puzzle over when and by which means Earth's surface environment became oxygenated. One of the prevailing scenarios, articulated by Cloud, Holland and Walker, proposes an initially anoxic or very low O2 atmosphere. Although photosystem II is thought to have appeared early, there was an extended period of imbalance between sources & sinks of O2 due to pervasive feedback between biosphere, atmosphere, hydrosphere & lithosphere. Ultimately O2 accumulated in the atmosphere to such levels that it left geochemical and physical evidence for mobilization of redox-sensitive elements in what is currently referred to as the 'Great Oxidation Event' or GOE at c. 2.45 Ga. While some researchers hold that the GOE marks the advent of oxygenic photosynthesis (e.g. Kopp et al., 2005), a wealth of geochemical and paleontological data is consistent with the presence of both cyanobacteria (e.g. Bosak et al., 2009) and traces of environmental oxygen (e.g. Anbar et al., 2007) several hundred million years prior. Further, molecular fossils present in 2.7-2.5 Ga rocks from the Transvaal Supergroup of the Kaapvaal Craton include steroids and other molecules indicative of oxygen-dependent biosynthesis and oxygen-respiring methanotrophic bacteria (Waldbauer et al., 2008). New molecular data for samples from the Mount McRae Formation in the Mt Bruce Supergroup, Pilbara Craton, identifies a diverse array of hydrocarbons including steroids and carotenoid residues diagnostic of phototrophic green sulfur bacteria. Co-variance of biomarker ratios with inorganic proxies-each leading to similar environmental reconstructions- confirm the authenticity of this signal. The carotenoid biomarkers indicate that the surface waters of the Hamersley Basin provided a sustained supply of hydrogen sulfide for anoxygenic photosynthesis and, indirectly, suggest the presence of precursor sulfate derived from the oxidative weathering of metal sulfides. Anbar A.D. et al. A whiff of oxygen

  13. Nonintrusive fast response oxygen monitoring system for high temperature flows

    NASA Technical Reports Server (NTRS)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  14. First principles calculations of La2O3/GaAs interface properties under biaxial strain and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan

    2017-04-01

    La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.

  15. Lattice damage and compositional changes in Xe ion irradiated In{sub x}Ga{sub 1-x}N (x = 0.32−1.0) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Limin, E-mail: zhanglm@lzu.edu.cn; Peng, Jinxin; Ai, Wensi

    2016-06-28

    Lattice disorder and compositional changes in In{sub x}Ga{sub 1-x}N (x = 0.32, 0.47, 0.7, 0.8, and 1.0) films on GaN/Al{sub 2}O{sub 3} substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3 × 10{sup 13 }cm{sup −2}, the relative level of lattice disorder in In{sub x}Ga{sub 1-x}N increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrastmore » to Ga-rich In{sub x}Ga{sub 1-x}N (x = 0.32 and 0.47), significant volume swelling of up to ∼25% accompanied with oxidation in In-rich In{sub x}Ga{sub 1-x}N (x = 0.7, 0.8, and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich In{sub x}Ga{sub 1-x}N and GaN. The results from this study indicate an extreme susceptibility of the high In-content In{sub x}Ga{sub 1-x}N to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.« less

  16. Carrier quenching in InGaP/GaAs double heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Nathan P., E-mail: nathan.p.wells@aero.org; Driskell, Travis U.; Hudson, Andrew I.

    2015-08-14

    Photoluminescence measurements on a series of GaAs double heterostructures demonstrate a rapid quenching of carriers in the GaAs layer at irradiance levels below 0.1 W/cm{sup 2} in samples with a GaAs-on-InGaP interface. These results indicate the existence of non-radiative defect centers at or near the GaAs-on-InGaP interface, consistent with previous reports showing the intermixing of In and P when free As impinges on the InGaP surface during growth. At low irradiance, these defect centers can lead to sub-ns carrier lifetimes. The defect centers involved in the rapid carrier quenching can be saturated at higher irradiance levels and allow carrier lifetimes tomore » reach hundreds of nanoseconds. To our knowledge, this is the first report of a nearly three orders of magnitude decrease in carrier lifetime at low irradiance in a simple double heterostructure. Carrier quenching occurs at irradiance levels near the integrated Air Mass Zero (AM0) and Air Mass 1.5 (AM1.5) solar irradiance. Additionally, a lower energy photoluminescence band is observed both at room and cryogenic temperatures. The temperature and time dependence of the lower energy luminescence is consistent with the presence of an unintentional InGaAs or InGaAsP quantum well that forms due to compositional mixing at the GaAs-on-InGaP interface. Our results are of general interest to the photovoltaic community as InGaP is commonly used as a window layer in GaAs based solar cells.« less

  17. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOEpatents

    Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0GaAs layer, with the InGaAsN and GaAs layers being lattice-matched to the substrate. The InGaAsN/GaAs p-n heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  18. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation

    PubMed Central

    Lepot, Kevin; Addad, Ahmed; Knoll, Andrew H.; Wang, Jian; Troadec, David; Béché, Armand; Javaux, Emmanuelle J.

    2017-01-01

    Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500–600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe2+ toxicity during the Palaeoproterozoic. PMID:28332570

  19. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  20. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    PubMed

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  1. High thermal stability of abrupt SiO2/GaN interface with low interface state density

    NASA Astrophysics Data System (ADS)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-04-01

    The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.

  2. Cubic anisotropy in (Ga,Mn)As layers: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Sawicki, M.; Proselkov, O.; Sliwa, C.; Aleshkevych, P.; Domagala, J. Z.; Sadowski, J.; Dietl, T.

    2018-05-01

    Historically, comprehensive studies of dilute ferromagnetic semiconductors, e.g., p -type (Cd,Mn)Te and (Ga,Mn)As, paved the way for a quantitative theoretical description of effects associated with spin-orbit interactions in solids, such as crystalline magnetic anisotropy. In particular, the theory was successful in explaining uniaxial magnetic anisotropies associated with biaxial strain and nonrandom formation of magnetic dimers in epitaxial (Ga,Mn)As layers. However, the situation appears much less settled in the case of the cubic term: the theory predicts switchings of the easy axis between in-plane <100 > and <110 > directions as a function of the hole concentration, whereas only the <100 > orientation has been found experimentally. Here, we report on the observation of such switchings by magnetization and ferromagnetic resonance studies on a series of high-crystalline quality (Ga,Mn)As films. We describe our findings by the mean-field p -d Zener model augmented with three new ingredients. The first one is a scattering broadening of the hole density of states, which reduces significantly the amplitude of the alternating carrier-induced contribution. This opens the way for the two other ingredients, namely the so-far disregarded single-ion magnetic anisotropy and disorder-driven nonuniformities of the carrier density, both favoring the <100 > direction of the apparent easy axis. However, according to our results, when the disorder gets reduced, a switching to the <110 > orientation is possible in a certain temperature and hole concentration range.

  3. Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2

    NASA Astrophysics Data System (ADS)

    Ahmed, Jahangeer; Mao, Yuanbing

    2016-10-01

    Delafossite CuGaO2 has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO2 particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron-sized particles by a modified hydrothermal method at 190 °C for 60 h [1-3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO2 hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles.

  4. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    PubMed

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  5. Red-emitting Ga/As,P///In,Ga/P heterojunction lasers

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Nuese, C. J.; Olsen, G. H.

    1978-01-01

    The paper describes in detail the properties of vapor-grown double-heterojunction lasers of Ga(As,P)/(In,Ga)P with room-temperature threshold current densities as low as 3400 A/sq cm at 7000 A and 6600 A/sq cm at 6800 A. These thresholds are three to eight times smaller than those of (Al,Ga)As lasers in this wavelength range due to the shorter-wavelength direct-indirect transition in Ga(As,P). The optical and electrical characteristics of the Ga(As,P)/(In,Ga)P lasers are found to be similar to those of (Al,Ga)As, with fundamental transverse-mode operation to 70 C, and spontaneous carrier lifetimes between 5 and 8 nsec typically observed at low current densities.

  6. Effects of surface plasma treatment on threshold voltage hysteresis and instability in metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure HEMTs

    NASA Astrophysics Data System (ADS)

    Zaidi, Z. H.; Lee, K. B.; Roberts, J. W.; Guiney, I.; Qian, H.; Jiang, S.; Cheong, J. S.; Li, P.; Wallis, D. J.; Humphreys, C. J.; Chalker, P. R.; Houston, P. A.

    2018-05-01

    In a bid to understand the commonly observed hysteresis in the threshold voltage (VTH) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors during forward gate bias stress, we have analyzed a series of measurements on devices with no surface treatment and with two different plasma treatments before the in-situ Al2O3 deposition. The observed changes between samples were quasi-equilibrium VTH, forward bias related VTH hysteresis, and electrical response to reverse bias stress. To explain these effects, a disorder induced gap state model, combined with a discrete level donor, at the dielectric/semiconductor interface was employed. Technology Computer-Aided Design modeling demonstrated the possible differences in the interface state distributions that could give a consistent explanation for the observations.

  7. Magnetometory Measurement of AlGaN/GaN 2DEG

    NASA Astrophysics Data System (ADS)

    Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.

    2004-03-01

    AlGaN/GaN heterostructure devices have been attracting much attention because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the magnetometory measurement of AlGaN/GaN 2DEG at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540 cm^2/Vs and 6.6 × 10^12 cm-2, respectively. When the temperature is lower than 4.5 K the hysteresis of magnetometric data is observed near zero magnetic field. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears and the slope of magnetometric data with respect to magnetic field becomes lower as obeying Currie-Weiss law. In general the hysteresis and Currie-Weiss law behavior in magnetometric data imply the possibility of the ferromagnetism, but the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.

  8. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  9. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins

    PubMed Central

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-01-01

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1–11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons. PMID:22190005

  10. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lin'an, E-mail: layang@xidian.edu.cn; Li, Yue; Wang, Ying

    Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al{sub 0.15}Ga{sub 0.85}N emitter barrier and a 1.7-nm-thick Al{sub 0.25}Ga{sub 0.75}N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A andmore » 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al{sub 0.2}Ga{sub 0.8}N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In{sub 0.03}Ga{sub 0.97}N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.« less

  11. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  12. Epitaxy of Zn{sub 2}TiO{sub 4} (1 1 1) thin films on GaN (0 0 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Chu-Yun; Wu, Jhih-Cheng; Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw

    2013-03-15

    Highlights: ► High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by sputtering. ► Oxygen atmosphere and post heat-treatment annealing effectively enhanced epitaxy. ► The epitaxial Zn{sub 2}TiO{sub 4} modifies the dielectric properties of ceramic oxide. - Abstract: High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by rf-sputtering. Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn{sub 2}TiO{sub 4} films. Lattice image at the Zn{sub 2}TiO{sub 4} (1 1 1)/GaN (0 0 1) interface was obtained by high-resolutionmore » transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: (111){sub Zn{sub 2TiO{sub 4}}}||(001){sub GaN}, (202{sup ¯}){sub Zn{sub 2TiO{sub 4}}}||(110){sub GaN},and[21{sup ¯}1{sup ¯}]{sub Zn{sub 2TiO{sub 4}}}||[01{sup ¯}10]{sub GaN}. Finally, the relative permittivity, interfacial trap density and the flat-band voltage of the Zn{sub 2}TiO{sub 4} based capacitor were ∼18.9, 8.38 × 10{sup 11} eV{sup −1} cm{sup −2}, and 1.1 V, respectively, indicating the potential applications of the Zn{sub 2}TiO{sub 4} thin film to the GaN-based metal-oxide-semiconductor capacitor.« less

  13. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  14. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers

    PubMed Central

    2012-01-01

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721

  15. Optical spectroscopy of disordered Ca3Ga2Ge4O14 crystal doped with manganese

    NASA Astrophysics Data System (ADS)

    Burkov, Vladimir; Alyabyeva, Liudmila; Mill, Boris; Kotov, Viacheslav

    2018-05-01

    Circular dichroism, absorption and luminescence spectra of single crystalline manganese doped calcium gallogermanate Ca3Ga2Ge4O14:Mn were investigated in 300-850 nm wavelength region in wide temperature range 8-300 K. Careful analysis of experimental results revealed presence of electron transitions typical for sixfold coordinated trivalent manganese ions with d4 electron configuration. Thus, manganese ions doping the crystal matrix of CCG incorporate into lattice in 1a octahedral site-positions substituting Ga3+ ions. The results obtained were compared with investigation of isostructural to CGG manganese doped langasite crystals, La3Ga5SiO14:Mn where dopant is in octahedral Mn4+ state.

  16. Oxygen chemisorption on copper (110)

    NASA Astrophysics Data System (ADS)

    Mundenar, J. M.; Baddorf, A. P.; Plummer, E. W.; Sneddon, L. G.; Didio, R. A.; Zehner, D. M.

    1987-09-01

    High resolution electron energy loss spectroscopy (EELS) and angle-resolved ultra-violet photoelectron spectroscopy (UPS) have been used: (1) to study a surface phonon of Cu(110) as a function of oxygen coverage, (2) to identify oxygen adsorption site(s) in the p(2×1)O, c(6×2)O, and disordered oxygen overlayer (formed by O 2 exposure at 100 K), and (3) to determine whether molecular adsorption or dissociation of O 2 followed by atomic adsorption occurs after oxygen exposure at 100 K. With EELS, a continuous shift in energy of the surface phonon as a function of oxygen exposure at 300 K is observed. Our EELS data for the p(2×1)O overlayer support previous reports of a single long-bridge adsorption site, while indicating two sites are populated in the c(6×2)O overlayer: a long-bridge site and a four-coordinated site. The long-bridge site is populated at all coverages while the four-coordinated sites is occupied only after high exposures (≥2×10 4 L) at room temperature, or after exposures >2 L at low temperature (100 K). For both conditions the oxygen coverages are greater than 0.5 monolayer. Also, EELS and complementary UPS data clearly show that oxygen adsorbs dissociatively on Cu(110) after O 2 exposure at 100 K. At this temperature, LEED results indicate that the oxygen atoms are adsorbed without long-range order; however, local adsorption sites, which are similar to those in the c(6×2)O surface, are observed.

  17. GaAs quantum dots in a GaP nanowire photodetector

    NASA Astrophysics Data System (ADS)

    Kuyanov, P.; McNamee, S. A.; LaPierre, R. R.

    2018-03-01

    We report the structural, optical and electrical properties of GaAs quantum dots (QDs) embedded along GaP nanowires. The GaP nanowires contained p-i-n junctions with 15 consecutively grown GaAs QDs within the intrinsic region. The nanowires were grown by molecular beam epitaxy using the self-assisted vapor-liquid-solid process. The crystal structure of the NWs alternated between twinned ZB and WZ as the composition along the NW alternated between the GaP barriers and the GaAs QDs, respectively, leading to a polytypic structure with a periodic modulation of the NW sidewall facets. Photodetector devices containing QDs showed absorption beyond the bandgap of GaP in comparison to nanowires without QDs. Voltage-dependent measurements suggested a field emission process of carriers from the QDs.

  18. Near-ultraviolet micro-Raman study of diamond grown on GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.

    2016-01-18

    Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

  19. Effect of V/III ratio on the surface morphology and electrical properties of m-plane (10 1 bar 0) GaN homoepitaxial layers

    NASA Astrophysics Data System (ADS)

    Barry, Ousmane I.; Tanaka, Atsushi; Nagamatsu, Kentaro; Bae, Si-Young; Lekhal, Kaddour; Matsushita, Junya; Deki, Manato; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi

    2017-06-01

    We have investigated the effect of V/III ratio on the surface morphology, impurity concentration and electrical properties of m-plane (10 1 bar 0) Gallium Nitride (GaN) homoepitaxial layers. Four-sided pyramidal hillocks are observed on the nominally on-axis m-plane GaN films. Hillocks sizes relatively increase by increasing the V/III ratio. All facets of pyramidal hillocks exhibit well-defined step-terrace features. Secondary ion mass spectrometry depth profiles reveal that carbon impurities decrease by increasing the V/III ratio while the lowest oxygen content is found at an optimized V/III ratio of 900. Vertical Schottky barrier diodes fabricated on the m-GaN samples were characterized. Low leakage current densities of the order of 10-10 A/cm2 at -5 V are obtained at the optimum V/III ratio. Oxygen impurities and screw-component dislocations around hillocks are found to have more detrimental impact on the leakage current mechanism.

  20. Local structure analysis on (La,Ba)(Ga,Mg)O3-δ by the pair distribution function method using a neutron source and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Kitamura, Naoto; Vogel, Sven C.; Idemoto, Yasushi

    2013-06-01

    In this work, we focused on La0.95Ba0.05Ga0.8Mg0.2O3-δ with the perovskite structure, and investigated the local structure around the oxygen vacancy by pair distribution function (PDF) method and density functional theory (DFT) calculation. By comparing the G(r) simulated based on the DFT calculation and the experimentally-observed G(r), it was suggested that the oxygen vacancy was trapped by Ba2+ at the La3+ site at least at room temperature. Such a defect association may be one of the reasons why the La0.95Ba0.05Ga0.8Mg0.2O3-δ showed lower oxide-ion conductivity than (La,Sr)(Ga,Mg)O3-δ which was widely-used as an electrolyte of the solid oxide fuel cell.

  1. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  2. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  3. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  4. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  5. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  6. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less

  7. Ga flux dependence of Er-doped GaN luminescent thin films

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Steckl, A. J.

    2002-02-01

    Er-doped GaN thin films have been grown on (111) Si substrates with various Ga fluxes in a radio frequency plasma molecular beam epitaxy system. Visible photoluminescence (PL) and electroluminescence (EL) emission at 537/558 nm and infrared (IR) PL emission at 1.5 μm from GaN:Er films exhibited strong dependence on the Ga flux. Both visible and IR PL and visible EL increase with the Ga flux up to the stoichiometric growth condition, as determined by growth rate saturation. Beyond this condition, all luminescence levels abruptly dropped to the detection limit with increasing Ga flux. The Er concentration, measured by secondary ion mass spectroscopy and Rutherford backscattering, decreases with increasing Ga flux under N-rich growth conditions and remains constant above the stoichiometric growth condition. X-ray diffraction indicated that the crystalline quality of the GaN:Er film was improved with increasing Ga flux up to stoichiometric growth condition and then saturated. Er ions in the films grown under N-rich conditions appear much more optically active than those in the films grown under Ga-rich conditions.

  8. The role of lead and excess oxygen in uranite

    USGS Publications Warehouse

    Berman, Robert Morris

    1957-01-01

    Analysed samples of uraninite were x-rayed, annealed by heating to 550° and 900° for various times in a nitrogen atmosphere, and x-rayed again. A decrease in unit cell size was generally observed. Calculations on the basis of Vegard's Law showed that the ordering of the interstitial oxygen ions could account for the decrease in cell size on annealing. The interstitial oxygens are not necessarily completely disordered before annealing. The degree of original disorder is dependent on the Rare Earth/ThO2 ratio; for high ThO2 and low rare earths, the interstitial oxygens are completely random. The degree of disorder apparently depends solely on the composition, and not on the past history of the sample; this implies that the oxygens are being continuously disordered, perhaps by alpha particles, to the equilibrium point determined by the R.E./ThO2 ratio. The degree of ordering of the interstitial oxygens also accounts for the difference in cell size between vein pitchblendes and those from the sediments of the Colorado Plateau. A study was also made of the degree of oxidation of uraninites. Although the uranium in many pegmatitic uraninites is more oxidized than can be obtained with the cubic UO2 phase in the laboratory, if the atoms proxying for uranium are calculated into the structural formula, and the lead is assumed to be radiogenic and calculated as original uranium, almost all pegmatitic uraninites fall into the range of interstitial oxygen content obtainable in the laboratory. This fact supports the auto-oxidation hypothesis. Many of the vein and sedimentary pitchblendes have compositions close to U3O8, although they are cubic. They may gave crystallized as U3O8, the decomposed to the cubic phase and a amorphous phase. This suggests that the stability range of U3O8 includes only very exceptional natural conditions. Vegard's Law calculations, studies of zoning in crystals, differential leaching, polished section textures, and other lines of evidence indicate

  9. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    NASA Astrophysics Data System (ADS)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  10. Optimal activation condition of nonpolar a-plane p-type GaN layers grown on r-plane sapphire substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Son, Ji-Su; Hyeon Baik, Kwang; Gon Seo, Yong; Song, Hooyoung; Hoon Kim, Ji; Hwang, Sung-Min; Kim, Tae-Geun

    2011-07-01

    The optimal conditions of p-type activation for nonpolar a-plane (1 1 -2 0) p-type GaN films on r-plane (1 -1 0 2) sapphire substrates with various off-axis orientations have been investigated. Secondary ion mass spectrometry (SIMS) measurements show that Mg doping concentrations of 6.58×10 19 cm -3 were maintained in GaN during epitaxial growth. The samples were activated at various temperatures and periods of time in air, oxygen (O 2) and nitrogen (N 2) gas ambient by conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The activation of nonpolar a-plane p-type GaN was successful in similar annealing times and temperatures when compared with polar c-plane p-type GaN. However, activation ambient of nonpolar a-plane p-type GaN was clearly different, where a-plane p-type GaN was effectively activated in air ambient. Photoluminescence shows that the optical properties of Mg-doped a-plane GaN samples are enhanced when activated in air ambient.

  11. Re-evaluation of the origin and evolution of > 4.2 Ga zircons from the Jack Hills metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Nemchin, A. A.; Pidgeon, R. T.; Whitehouse, M. J.

    2006-04-01

    New data are presented on internal structures, U-Pb systematics and oxygen isotope compositions of eight detrital zircons with ages greater than 4.2 Ga, from the Jack Hills metasedimentary belt, Australia. Cathodoluminescence imaging, ion-microprobe U-Pb and oxygen isotope results show evidence for an extensive period of complex zircon growth, secondary reaction and U-Pb isotopic disturbance from 4.36 to 3.90 Ga. In addition many of the zircons have discordant U-Pb systems and excess common Pb indicating a superimposed, relatively recent, reaction between radiation damaged zircon and low temperature fluids. The significance of oxygen isotope compositions for zircons with complex internal structures and U-Pb systems is complicated by uncertainty in the origin of the grains and the unknown effect of later reactions. However, a minority of grains with sharp oscillatory zoning, uniform and concordant U-Pb systems, igneous Th-U ratios and low common Pb contents, are interpreted as undisturbed primary magmatic zircons. The oldest identified, oscillatory zoned, magmatic grain, with an age 4363 ± 20 Ma, is one of a few reported magmatic grains with this age, which is interpreted as the oldest reliable age for Hadean magmatic zircons. Mantle δ18O values are reported for these zircons. Younger oscillatory zoned zircon, including oscillatory zoned cores in complex grains, have δ18O values lower than 6.5‰, which are within the range of ion microprobe analysed δ18O values for zircons in high temperature equilibrium with the normal mantle rocks of 5.3 ± 0.6‰ (2 standard deviations). These values are also within the range of δ18O values found in lunar zircons. The absence of heavy oxygen in the grains that can be interpreted as primary magmatic zircons and the complex history over the period from 4.36 to 3.9 Ga, seen in all other Jack Hills zircons and reflected in the internal structures and U-Pb isotopic systems, questions the model for the early Earth involving long

  12. Surface photovoltage in heavily doped GaN:Si,Zn

    NASA Astrophysics Data System (ADS)

    McNamara, J. D.; Behrends, A.; Mohajerani, M. S.; Bakin, A.; Waag, A.; Baski, A. A.; Reshchikov, M. A.

    2014-02-01

    In n-type GaN, an upward band bending of about 1 eV is caused by negative charge at the surface. UV light reduces the band bending by creating a surface photovoltage (SPV), which can be measured by a Kelvin probe. Previously, we reported a fast SPV signal of about 0.6 eV in undoped and moderately doped GaN. In this work, we have studied degenerate GaN co-doped with Zn and Si, with a Si concentration of about 1019 cm-3 and a Zn concentration of 6×1017 cm-3. At room temperature, a fast component of about 0.6 eV was observed. However, after preheating the sample at 600 K for one hour and subsequently cooling the sample to 300 K (all steps performed in vacuum), the fast component disappeared. Instead, a very slow (minutes) and logarithmic in time rise of the SPV was observed with UV illumination. The total change in SPV was about 0.4 eV. This slow SPV transient can be reversibly converted into the "normal" fast (subsecond) rise by letting air or dry oxygen in at room temperature. Possible explanations of the observed unusual SPV transients are discussed.

  13. Effect of GA3 treatment on seed development and seed-related gene expression in grape.

    PubMed

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe'), along with a seedless cultivar ('Thompson Seedless'), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.

  14. High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires.

    PubMed

    Jegenyes, Nikoletta; Morassi, Martina; Chrétien, Pascal; Travers, Laurent; Lu, Lu; Julien, Francois H; Tchernycheva, Maria; Houzé, Frédéric; Gogneau, Noelle

    2018-05-25

    We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm². These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources.

  15. Association of the 5-HT2A receptor gene promoter polymorphism-1438G/A with anorexia nervosa and psychopathological traits in the Chinese Han population: A preliminary study.

    PubMed

    Kang, Qing; Chen, Jue; Yu, Shunying; Yuan, Aihua; Zhang, Yanxia; Zhang, Ran; Jiang, Wenhui; Zhang, Chen; Zhang, Haiyin; Zhang, Mingdao; Xiao, Zeping

    2017-09-01

    The aim of the study was to explore the possible role of the 5-HT 2A -1438G/A polymorphism in the susceptibility to anorexia nervosa (AN) in the Chinese Han population. The -1438G/A polymorphism of 249 female AN patients, 228 matched healthy controls, and 198 trios was genotyped using SNaP shot assay. Psychopathological traits of eating-disordered behaviors in AN subjects were examined using the Chinese version of the Eating Disorder Examination Questionnaire. Neither the case-control analysis nor the transmission disequilibrium test revealed significant associations between the -1438G/A polymorphism and AN (P > .05). However, AA homozygote patients with AN had lower weight and shape concern scores of the EDE-Q6.0 than those of GA heterozygotes (P < .05). Our findings suggested that female AN patients with 5-HT 2A -1438AA genotype may be characterized by less severe eating-disordered psychopathological traits in the Chinese Han population. © 2017 John Wiley & Sons Australia, Ltd.

  16. Study of GaN nanorods converted from β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yuewen; Xiong, Zening; Zhang, Dongdong; Xiu, Xiangqian; Liu, Duo; Wang, Shuang; Hua, Xuemei; Xie, Zili; Tao, Tao; Liu, Bin; Chen, Peng; Zhang, Rong; Zheng, Youdou

    2018-05-01

    We report here high-quality β-Ga2O3 nanorods (NRs) grown on sapphire substrates by hydrothermal method. Ammoniating the β-Ga2O3 NRs results in strain-free wurtzite gallium nitride (GaN) NRs. It was shown by XRD and Raman spectroscopy that β-Ga2O3 was partially converted to GaN/β-Ga2O3 at 1000 °C and then completely converted to GaN NRs at 1050 °C, as confirmed by high-resolution transmission electron microscopy (HRTEM). There is no band-edge emission of β-Ga2O3 in the cathodoluminescence spectrum, and only a deep-level broad emission observed at 3.68-3.73 eV. The band edge emission (3.39 eV) of GaN NRs converted from β-Ga2O3 can also be observed.

  17. Growth Outcomes of Preterm Infants Exposed to Different Oxygen Saturation Target Ranges from Birth

    PubMed Central

    Navarrete, Cristina T.; Wrage, Lisa A.; Carlo, Waldemar A.; Walsh, Michele C.; Rich, Wade; Gantz, Marie G.; Das, Abhik; Schibler, Kurt; Newman, Nancy S.; Piazza, Anthony J.; Poindexter, Brenda B.; Shankaran, Seetha; Sánchez, Pablo J.; Morris, Brenda H.; Frantz, Ivan D.; Van Meurs, Krisa P.; Cotten, C. Michael; Ehrenkranz, Richard A.; Bell, Edward F.; Watterberg, Kristi L.; Higgins, Rosemary D.; Duara, Shahnaz

    2017-01-01

    Objective To test whether infants randomized to a lower oxygen saturation (SpO2) target range while on supplemental oxygen from birth will have better growth velocity from birth to 36 weeks postmenstrual age (PMA), and less growth failure at 36 weeks PMA and 18–22 months corrected age. Study design We evaluated a subgroup of 810 preterm infants from the Surfactant, Positive Pressure, and Oxygenation Randomized Trial, randomized at birth to lower (85–89%, n=402, GA 26 ± 1wk, BW 839 ± 186 g) or higher (91–95%, n=408, GA 26 ± 1wk, BW 840 ± 191 g) SpO2 target ranges. Anthropometric measures were obtained at birth, postnatal days 7, 14, 21, and 28; then at 32 and 36 weeks PMA, and 18–22 months corrected age. Growth velocities were estimated using the exponential method and analyzed using linear mixed models. Poor growth outcome, defined as weight < 10th percentile at 36 weeks PMA and 18–22 months corrected age, was compared across the two treatment groups using robust Poisson regression. Results Growth outcomes including growth at 36 weeks PMA and 18–22 months corrected age, as well as growth velocity were similar in the lower and higher SpO2 target groups. Conclusion Targeting different oxygen saturation ranges between 85% and 95% from birth did not impact growth velocity or reduce growth failure in preterm infants. PMID:27344218

  18. High-pressure synthesis and crystal structures of the strontium oxogallates Sr{sub 2}Ga{sub 2}O{sub 5} and Sr{sub 5}Ga{sub 6}O{sub 14}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlenberg, Volker, E-mail: volker.kahlenberg@uibk.ac.at; Goettgens, Valerie; Mair, Philipp

    2015-08-15

    High-pressure synthesis experiments in a piston–cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr{sub 2}Ga{sub 2}O{sub 5} and Sr{sub 5}Ga{sub 6}O{sub 14}, respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å{sup 3}, M{sub r}=394.68 u, Z=8, D{sub x}=5.12 g/cm{sup 3}) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranchedmore » vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr{sub 2}Ga{sub 2}O{sub 5} is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr{sub 5}Ga{sub 6}O{sub 14} is a phyllogallate as well. The crystal structure adopts the monoclinic space group P2{sub 1}/c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å{sup 3}, M{sub r}=1080.42 u, Z=2, D{sub x}=4.96 g/cm{sup 3}). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q{sup 3}) und quaternary (Q{sup 4}) connected [GaO{sub 4}]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The

  19. Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.

    2016-09-01

    Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d  =  0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d  =  10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.

  20. Ultralow-voltage-drop GaN/InGaN/GaN tunnel junctions with 12% indium content

    NASA Astrophysics Data System (ADS)

    Akyol, Fatih; Zhang, Yuewei; Krishnamoorthy, Sriram; Rajan, Siddharth

    2017-12-01

    We report a combination of highly doped layers and polarization engineering that achieves highly efficient blue-transparent GaN/InGaN/GaN tunnel junctions (In content = 12%). NPN diode structures with a low voltage drop of 4.04 V at 5 kA/cm2 and a differential resistance of 6.51 × 10-5 Ω·cm2 at 3 kA/cm2 were obtained. The tunnel junction design with n++-GaN (Si: 5 × 1020 cm-3)/3 nm p++-In0.12Ga0.88N (Mg: 1.5 × 1020 cm-3)/p++-GaN (Mg: 5 × 1020 cm-3) showed the best device performance. Device simulations agree well with the experimentally determined optimal design. The combination of low In composition and high doping can facilitate lower tunneling resistance for blue-transparent light-emitting diodes.

  1. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.

    PubMed

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-02

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  2. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-01

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  3. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis

    PubMed Central

    Konhauser, Kurt O.

    2015-01-01

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10−5 times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE. PMID:25583484

  4. Sc(2)MgGa(2) and Y(2)MgGa(2).

    PubMed

    Sahlberg, Martin; Andersson, Yvonne

    2009-03-01

    Scandium magnesium gallide, Sc(2)MgGa(2), and yttrium magnesium gallide, Y(2)MgGa(2), were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo(2)FeB(2)-type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc(2)MgGa(2 )was determined from single-crystal diffraction intensities and the isostructural Y(2)MgGa(2) was identified from powder diffraction data.

  5. Investigation of GaAs/Al(x)Ga(1-x)As and In(y)Ga(1-y)As/GaAs superlattices on Si substrates

    NASA Technical Reports Server (NTRS)

    Reddy, U. K.; Ji, G.; Huang, D.; Munns, G.; Morkoc, H.

    1987-01-01

    The optical properties of lattice-matched GaAs/Al(x)Ga(1-x)As and In(y)Ga(1-y)As/GaAs strained-layer superlattices grown on Si substrates have been studied using the photoreflectance technique. These preliminary results show that good quality III-IV epilayers can be grown on Si. The experimental data were compared with calculations based on the envelope-function approximation and fitted to the third-derivative functional form of reflectance modulation theory.

  6. Formation of two-dimensionally confined superparamagnetic (Mn, Ga)As nanocrystals in high-temperature annealed (Ga, Mn)As/GaAs superlattices.

    PubMed

    Sadowski, Janusz; Domagala, Jaroslaw Z; Mathieu, Roland; Kovacs, Andras; Dłużewski, Piotr

    2013-05-15

    The annealing-induced formation of (Mn, Ga)As nanocrystals in (Ga, Mn)As/GaAs superlattices was studied by x-ray diffraction, transmission electron microscopy and magnetometry. The superlattice structures with 50 Å thick (Ga, Mn)As layers separated by 25, 50 and 100 Å thick GaAs spacers were grown by molecular beam epitaxy at low temperature (250 °C), and then annealed at high temperatures of 400, 560 and 630 °C. The high-temperature annealing causes decomposition to a (Ga, Mn)As ternary alloy and the formation of (Mn, Ga)As nanocrystals inside the GaAs matrix. The nanocrystals are confined in the planes that were formerly occupied by (Ga, Mn)As layers for the up to 560 °C annealing and diffuse throughout the GaAs spacer layers at 630 °C annealing. The two-dimensionally confined nanocrystals exhibit a superparamagnetic behavior which becomes high-temperature ferromagnetism (~350 K) upon diffusion.

  7. Magnetoresistance Study in a GaAs/InGaAs/GaAs Delta-Doped Quantum Well

    NASA Astrophysics Data System (ADS)

    Hasbun, J. E.

    1997-03-01

    The magnetoresistance of a GaAs/Ga_0.87In_0.13As/GaAs with an electron concentration of N_s=6.3x10^11cm-2 is calculated at low temperature for a magnetic field range of 2-30 tesla and low electric field. The results obtained for the magnetotransport are compared with the experimental work of Herfort et al.(J. Herfort, K.-J. Friedland, H. Kostial, and R. Hey, Appl. Phys. Lett. V66, 23 (1995)). While the logitudinal magnetoresistance agrees reasonably well with experiment, the Hall resistance slope reflects a classical shape; however, its second derivative seems to show oscillations that are consistent with the Hall effect plateaus seen experimentally. Albeit with a much higher electron concentration, earlier calculationsfootnote J. Hasbun, APS Bull. V41, 419 (1996) for an Al_0.27Ga_0.73/GaAs /Al_0.27Ga_0.73As quantum well shows similar behavior. This work has been carried out with the use of a quantum many body approach employed in earlier work(J. Hasbun, APS Bull. V41, 1659 (1996)).

  8. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  9. Rosacea, reactive oxygen species, and azelaic Acid.

    PubMed

    Jones, David A

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea.

  10. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    PubMed

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  11. AlGaN/GaN heterostructures with an AlGaN layer grown directly on reactive-ion-etched GaN showing a high electron mobility (>1300 cm2 V-1 s-1)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Makino, Shinya; Kanatani, Keito; Kuzuhara, Masaaki

    2018-04-01

    In this study, the metal-organic-vapor-phase-epitaxial growth behavior and electrical properties of AlGaN/GaN structures prepared by the growth of an AlGaN layer on a reactive-ion-etched (RIE) GaN surface without regrown GaN layers were investigated. The annealing of RIE-GaN surfaces in NH3 + H2 atmosphere, employed immediately before AlGaN growth, was a key process in obtaining a clean GaN surface for AlGaN growth, that is, in obtaining an electron mobility as high as 1350 cm2 V-1 s-1 in a fabricated AlGaN/RIE-GaN structure. High-electron-mobility transistors (HEMTs) were successfully fabricated with AlGaN/RIE-GaN wafers. With decreasing density of dotlike defects observed on the surfaces of AlGaN/RIE-GaN wafers, both two-dimensional electron gas properties of AlGaN/RIE-GaN structures and DC characteristics of HEMTs were markedly improved. Since dotlike defect density was markedly dependent on RIE lot, rather than on growth lot, surface contaminations of GaN during RIE were believed to be responsible for the formation of dotlike defects and, therefore, for the inferior electrical properties.

  12. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    DTIC Science & Technology

    2010-05-17

    arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly

  13. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  14. GaSbBi/GaSb quantum-well and wire laser diodes

    NASA Astrophysics Data System (ADS)

    Ridene, Said

    2018-06-01

    In this work, we present detailed theoretical studies of the optical gain spectra and the emission wavelength of GaSb1-xBix/GaSb and traditional GaAs1-xBix/GaAs dilute-bismide quantum wells and wires (QWs, QWRs) focusing on comparison between their performances. It is found that the optical gain and the emission wavelength of the GaSb-based QW and QWRs lasers would be considerably greater than that of the GaAs-based QW lasers and QWRs for the same QW-, QWR-width, Bi-content and carrier density. The theoretical results were found to be in good agreement with available experimental data, especially for the emission wavelength given by GaSb-based QW laser diodes.

  15. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment

    NASA Astrophysics Data System (ADS)

    Hao, Ronghui; Fu, Kai; Yu, Guohao; Li, Weiyi; Yuan, Jie; Song, Liang; Zhang, Zhili; Sun, Shichuang; Li, Xiajun; Cai, Yong; Zhang, Xinping; Zhang, Baoshun

    2016-10-01

    In this letter, we report a method by introducing hydrogen plasma treatment to realize normally-off p-GaN/AlGaN/GaN HEMT devices. Instead of using etching technology, hydrogen plasma was adopted to compensate holes in the p-GaN above the two dimensional electron gas (2DEG) channel to release electrons in the 2DEG channel and form high-resistivity area to reduce leakage current and increase gate control capability. The fabricated p-GaN/AlGaN/GaN HEMT exhibits normally-off operation with a threshold voltage of 1.75 V, a subthreshold swing of 90 mV/dec, a maximum transconductance of 73.1 mS/mm, an ON/OFF ratio of 1 × 107, a breakdown voltage of 393 V, and a maximum drain current density of 188 mA/mm at a gate bias of 6 V. The comparison of the two processes of hydrogen plasma treatment and p-GaN etching has also been made in this work.

  16. An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, Nur Fahana Mohd; Ng, Sha Shiong

    2017-12-01

    In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.

  17. Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation

    NASA Astrophysics Data System (ADS)

    Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.

    2004-09-01

    The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.

  18. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekhal, K.; Damilano, B., E-mail: bd@crhea.cnrs.fr; De Mierry, P.

    2015-04-06

    Yellow/amber (570–600 nm) emitting In{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1−x}N QWs by the Al{sub y}Ga{sub 1−y}N layers, respectively.

  19. Titanium induced polarity inversion in ordered (In,Ga)N/GaN nanocolumns.

    PubMed

    Kong, X; Li, H; Albert, S; Bengoechea-Encabo, A; Sanchez-Garcia, M A; Calleja, E; Draxl, C; Trampert, A

    2016-02-12

    We report on the formation of polarity inversion in ordered (In,Ga)N/GaN nanocolumns grown on a Ti-masked GaN-buffered sapphire substrate by plasma assisted molecular beam epitaxy. High-resolution transmission electron microscopy and electron energy-loss spectroscopy reveal a stacking fault-like planar defect at the homoepitaxial GaN interface due to Ti incorporation, triggering the generation of N-polar domains in Ga-polar nanocolumns. Density functional theory calculations are applied to clarify the atomic configurations of a Ti monolayer occupation on the GaN (0002) plane and to prove the inversion effect. The polarity inversion leads to an enhanced indium incorporation in the subsequent (In,Ga)N segment of the nanocolumn. This study provides a deeper understanding of the effects of Ti mask in the well-controlled selective area growth of (In,Ga)N/GaN nanocolumns.

  20. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)x(Al2O3)1-x as potential gate dielectrics for GaN/AlxGa1-xN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Partida-Manzanera, T.; Roberts, J. W.; Bhat, T. N.; Zhang, Z.; Tan, H. R.; Dolmanan, S. B.; Sedghi, N.; Tripathy, S.; Potter, R. J.

    2016-01-01

    This paper describes a method to optimally combine wide band gap Al2O3 with high dielectric constant (high-κ) Ta2O5 for gate dielectric applications. (Ta2O5)x(Al2O3)1-x thin films deposited by thermal atomic layer deposition (ALD) on GaN-capped AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures have been studied as a function of the Ta2O5 molar fraction. X-ray photoelectron spectroscopy shows that the bandgap of the oxide films linearly decreases from 6.5 eV for pure Al2O3 to 4.6 eV for pure Ta2O5. The dielectric constant calculated from capacitance-voltage measurements also increases linearly from 7.8 for Al2O3 up to 25.6 for Ta2O5. The effect of post-deposition annealing in N2 at 600 °C on the interfacial properties of undoped Al2O3 and Ta-doped (Ta2O5)0.12(Al2O3)0.88 films grown on GaN-HEMTs has been investigated. These conditions are analogous to the conditions used for source/drain contact formation in gate-first HEMT technology. A reduction of the Ga-O to Ga-N bond ratios at the oxide/HEMT interfaces is observed after annealing, which is attributed to a reduction of interstitial oxygen-related defects. As a result, the conduction band offsets (CBOs) of the Al2O3/GaN-HEMT and (Ta2O5)0.16(Al2O3)0.84/GaN-HEMT samples increased by ˜1.1 eV to 2.8 eV and 2.6 eV, respectively, which is advantageous for n-type HEMTs. The results demonstrate that ALD of Ta-doped Al2O3 can be used to control the properties of the gate dielectric, allowing the κ-value to be increased, while still maintaining a sufficient CBO to the GaN-HEMT structure for low leakage currents.

  1. MOVPE growth of Ga(PBi) on GaP and GaP on Si with Bi fractions up to 8%

    NASA Astrophysics Data System (ADS)

    Nattermann, L.; Beyer, A.; Ludewig, P.; Hepp, T.; Sterzer, E.; Volz, K.

    2017-04-01

    Dilute bismide containing materials can play an important role in addressing the issue of finding new highly efficient lasers for telecommunications as well as sensing applications. In the last several years a growing body of literature has emerged, particularly on the growth of Ga(AsBi). However, the metal organic vapor phase epitaxy growth of Ga(AsBi) with high amounts of Bi, which are necessary to overcome Auger recombination and reach telecommunications wavelengths, still remains a challenge. Ga(PBi) could be a promising alternative, but has not been deposited with significant amounts of Bi so far. A second argument for Ga(PBi) is that it could be grown on GaP, which was already deposited on Si. A number of researchers have reported theoretical calculations on the band structure of Ga(PBi), but experimental results are still lacking. In this work we present the first Ga(PBi) structures, grown by metal organic vapor phase epitaxy on GaP and on GaP on Si. By careful characterization with high resolution X-ray diffraction, atomic force microscopy, secondary ion mass spectrometry and scanning transmission electron microscopy, we will show that we have realized high quality Ga(PBi) with Bi fractions over 8%.

  2. Oxygen Annealing in the Synthesis of the Electron-Doped Cuprates

    NASA Astrophysics Data System (ADS)

    Higgins, J. S.; Bach, P. L.; Yu, W.; Weaver, B. D.; Greene, R. L.

    2015-03-01

    Post-synthesis oxygen reduction (annealing) in the electron-doped, high-temperature superconducting cuprates is necessary for the establishment of superconductivity. It is not established what effect this reduction has microscopically on the lattice structure. Several mechanisms have been put forth as explanations; they range from disorder minimization1, antiferromagnetic suppression2, and copper migration3. Here we present an electronic transport study on electron-doped cuprate Pr2-xCexCuO4+/-δ (PCCO) thin films in an attempt to better understand the need for this post-synthesis process. Several different cerium doping concentrations of PCCO were grown. Within each doping, a series of films were grown with varying levels of oxygen concentration. As a measure of disorder on the properties of PCCO, several films were irradiated with various doses of 2 MeV protons. Analysis within each series, and among the different dopings, favors disorder minimization through the removal of apical oxygen as the explanation for the necessary post-synthesis annealing process. 1P. K. Mang, et al., Physical Review Letters, 93(2):027002, 2004. 2P. Richard, et al., Physical Review B, 70 (6), 064513, 2004. 3Hye Jung Kang, et al., Nature Materials, 2007. Supported by NSF DMR 1104256.

  3. A hole modulator for InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-02-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ˜332 meV to ˜294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  4. Ga originated kink-and-tail Zn diffusion profiles in InGaAsP and InGaAlAs alloys during MOVPE regrowth

    NASA Astrophysics Data System (ADS)

    Kitatani, T.; Okamoto, K.; Uchida, K.; Tanaka, S.

    2017-12-01

    We investigated the diffusion characteristics of Zn in ternary and quaternary alloys of InGaAsP and InGaAlAs, which are important materials in long-wavelength optical communication devices. The measured Zn diffusion profiles of InGaAs, InGaAsP, and InGaAlAs showed kink-and-tail shapes in which Zn concentration fell abruptly at first and then decreased slowly, whereas those of InP and InAlAs showed only abrupt decreases. Thus, only Ga-containing alloys had tail-like profiles. Since this tail was well described by the group-V vacancy related defect model, we deduced that its mechanism is closely related with group-V vacancies in Ga-related bonds such as GaP or GaAs. Furthermore, we demonstrated the possibility that many more group-V vacancies originated from GaP bonds than from GaAs bonds, indicating the difficulty in crystal growth of high quality alloys that have GaP components.

  5. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors.

    PubMed

    Li, Wenhao; Zhao, Xiaolong; Zhi, Yusong; Zhang, Xuhui; Chen, Zhengwei; Chu, Xulong; Yang, Hujiang; Wu, Zhenping; Tang, Weihua

    2018-01-20

    High-quality cerium-doped β-Ga 2 O 3 (Ga 2 O 3 :Ce) thin films could be achieved on (0001)α-Al 2 O 3 substrates using a pulsed-laser deposition method. The impact of dopant contents concentration on crystal structure, optical absorption, photoluminescence, and photoelectric properties has been intensively studied. X-ray diffraction analysis results have shown that Ga 2 O 3 :Ce films are highly (2¯01) oriented, and the lattice spacing of the (4¯02) planes is sensitive to the Ce doping level. The prepared Ga 2 O 3 :Ce films show a sharp absorption edge at about 250 nm, meaning a high transparency to deep ultraviolet (DUV) light. The photoluminescence results revealed that the emissions were in the violet-blue-green region, which are associated with the donor-acceptor transitions with the Ce 3+ and oxygen vacancies related defects. A simple DUV photodetector device with a metal-semiconductor-metal structure has also been fabricated based on Ga 2 O 3 :Ce thin film. A distinct DUV photoresponse was obtained, suggesting a potential application in DUV photodetector devices.

  6. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    PubMed

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.

  7. Above room temperature operation of InGaAs/AlGaAs/GaAs quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.; Gutowski, P.; Hałdaś, G.; Kolek, A.; Sankowska, I.; Grzonka, J.; Mizera, J.; Pierściński, K.; Bugajski, M.

    2018-03-01

    In this work we report on the performance of mid-infrared quantum cascade lasers (QCLs) based on strained InGaAs/AlGaAs grown by molecular beam epitaxy on GaAs substrate. Structures were grown with indium content from 1% to 6% in GaAs quantum wells (QW) and 45% of Al in AlGaAs barrier layers. The design results in strained heterostructure, however, no strain relaxation was observed as documented by x-ray diffraction measurements up to ∼3% of In content in QWs. The investigation of heterostructures and devices was performed, including structural measurements and electrooptical characterization of devices. Devices fabricated from epi wafers with 2.64% of In exhibited performance largely improved over GaAs/AlGaAs QCLs. Roughly two times reduction of the threshold current density was observed at lasing wavelength ∼9.45 μm. The lasers operated in pulsed mode up to T = 50 °C with characteristic temperature T 0 = 115 K. The decrease of the threshold current density has been mainly attributed to the reduction of interface roughness scattering and the increase of activation energy for the escape of carriers from the upper laser level to the 3D continuum. Further increase of In content in QWs resulted in the deterioration of device parameters.

  8. Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.

    2018-06-01

    In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.

  9. Effect of GA3 Treatment on Seed Development and Seed-Related Gene Expression in Grape

    PubMed Central

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D.; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    Background The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. Methodology/Principal Findings In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars (‘Kyoho’ and ‘Red Globe’), along with a seedless cultivar (‘Thompson Seedless’), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both ‘Kyoho’ and ‘Red Globe’ seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Conclusion Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development. PMID:24224035

  10. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  11. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  12. Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki

    2018-01-01

    We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.

  13. Effect of pH on the microstructure of β-Ga2O3 and its enhanced photocatalytic activity for antibiotic degradation.

    PubMed

    Liu, Jin; Lu, Wei; Zhong, Qian; Wu, Hongzhang; Li, Yunlin; Li, Lili; Wang, Zhenling

    2018-06-01

    Semiconductor photocatalysis has become the focus of recent research on antibiotic treatment because it is a green and efficient technology. In this study, α-GaOOH with several novel microstructures has been synthesized at a low temperature and its subsequent thermal transformation. The influence of pH on the synthesis of α-GaOOH is studied, and the results indicate that pH played an important role in the microstructures of α-GaOOH and β-Ga 2 O 3 . All Ga 2 O 3 samples possess macro-mesoporous network structures and exhibits a remarkable photocatalytic activity for antibiotic degradation. The photoelectron chemical tests show that the separation efficiency of photogenerated charge carriers of Ga 2 O 3 -7.0 is higher than that of other Ga 2 O 3 . The enhanced photocatalytic activity of Ga 2 O 3 -7.0 is mainly ascribed to its morphology and oxygen vacancy. The active species trapping and photoluminescence measurement experiments indicate that OH and O 2 - are the major active species contributing to the photocatalytic process. This study will bring about the potential application in treatment of the antibiotic pollutants. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reducedmore » channel thermal conductivity must be considered.« less

  15. Improvement of electrical and optical properties of p-GaN Ohmic metals under ultraviolet light irradiation annealing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, S.W.; Yoon, S.K.; Kwak, J.S.

    2006-05-15

    We report the improvement of electrical and optical properties of p-GaN Ohmic metals, ZnNi(10 nm)/Au(10 nm), by ultraviolet (UV) light irradiation. After UV light irradiation, the specific contact resistance of p-GaN decreased slightly from 2.99x10{sup -4} to 2.54x10{sup -4} {omega} cm{sup 2}, while the transmittance of the contact layer increased form 75% to 85% at a wavelength of 460 nm. In addition, the forward voltage of InGaN/GaN light-emitting diode chip at 20 mA decreased from 3.55 to 3.45 V, and the output power increased form 18 to 25 mW by UV light irradiation. The low resistance and high transmittance ofmore » the p-GaN Ohmic metals are attributed to the reduced Shottky barrier by the formation of gallium oxide and the increased oxidation of p-Ohmic metals, respectively, due to ozone generated form oxygen during UV light irradiation.« less

  16. A hole modulator for InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall holemore » concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332 meV to ∼294 meV at 80 A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.« less

  17. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fireman, Micha N.; Browne, David A.; Speck, James S.

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditionsmore » that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.« less

  18. Effect of Heat Treatment on Microstructure and Magnetostrictive Property of Melt-Spun Fe85Ga15 Ribbons

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Haiou; Cao, Mengxiong; Tan, Weishi; Shi, Yangguang; Chen, Yu; Huang, Yuying

    2013-09-01

    In order to study the microstructure of Fe-Ga alloy, Fe85Ga15 ribbons prepared with different wheel velocity were studied by high resolution X-ray diffraction (HRXRD) and extend X-ray absorption fine structure (EXAFS). HRXRD patterns showed that only disordered A2 phase was observed in as-cast Fe85Ga15 alloy. A modified-DO3 phase was detected in all of the melt spun samples. The HRXRD associated with EXAFS results indicated that Ga atoms were located as second-nearest neighbor along [100] orientation. A little DO3 phase was found in ribbons annealed at 1000°C under 0.06 MPa Ar atmosphere. The result of magnetostriction measurement revealed that in the ribbon prepared with higher wheel velocity, more modified-DO3 phase will enhance the magnetostriction. DO3 phase in the annealed sample will deteriorate the magnetostrictive properties of Fe-Ga ribbons.

  19. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extractingmore » binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.« less

  20. Current-induced switching in CoGa/L10 MnGa/(CoGa)/Pt structure with different thicknesses

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Mizukami, S.

    2018-06-01

    In this paper, we present the results of our study into current-induced spin-orbit torque (SOT) switching in perpendicularly magnetized CoGa/MnGa/Pt trilayers with different thicknesses of MnGa and Pt. The SOT switching was observed for all films that undergo Joule heating. We also investigate SOT switching in the bottom (CoGa)/MnGa/top(CoGa/Pt) films with different top layers. Although both the bottom and top layers contribute to the SOT, the relative magnitudes of the switching current densities JC in the top and bottom layers indicate that the SOT is dominant in the top layer. The JC as a function of thickness is discussed in terms of the magnetic properties and resistivity. Experimental data suggested that the MnGa thickness dependence of JC may originate from the perpendicular magnetic anisotropy thickness product Kueff t value. On the other hand, JC as a function of the Pt thickness shows weak dependence. This may be attributed to the slight change of spin-Hall angle θSH value with different thicknesses of Pt, when we assumed that the SOT switching is primarily due to the spin-Hall effect.

  1. Evaluation of band alignment of α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterostructures by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo

    2018-04-01

    The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.

  2. Doping of AlxGa1-xN

    NASA Astrophysics Data System (ADS)

    Stampfl, C.; Van de Walle, Chris G.

    1998-01-01

    N-type AlxGa1-xN exhibits a dramatic decrease in the free-carrier concentration for x⩾0.40. Based on first-principles calculations, we propose that two effects are responsible for this behavior: (i) in the case of doping with oxygen (the most common unintentional donor), a DX transition occurs, which converts the shallow donor into a deep level; and (ii) compensation by the cation vacancy (VGa or VAl), a triple acceptor, increases with alloy composition x. For p-type doping, the calculations indicate that the doping efficiency decreases due to compensation by the nitrogen vacancy. In addition, an increase in the acceptor ionization energy is found with increasing x.

  3. Pulsation-limited oxygen diffusion in the tumour microenvironment

    NASA Astrophysics Data System (ADS)

    Milotti, Edoardo; Stella, Sabrina; Chignola, Roberto

    2017-01-01

    Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation. We find that the low-frequency oscillations play an important role in the establishment of tumour hypoxia. The oscillations interact with consumption to inhibit oxygen diffusion in the microenvironment. This suggests that alpha-blockers-a class of drugs used to treat hypertension and stress disorders, and known to lower or even abolish low-frequency oscillations of arterial blood flow -may act as adjuvant drugs in the radiotherapy of solid tumours by enhancing the oxygen effect.

  4. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  5. Ultrafast carrier dynamics in GaN/InGaN multiple quantum wells nanorods

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2018-01-01

    GaN/InGaN multiple quantum wells (MQW) is a promising material for high-efficiency solid-state lighting. Ultrafast optical pump-probe spectroscopy is an important characterization technique for examining fundamental phenomena in semiconductor nanostructure with sub-picosecond resolution. In this study, ultrafast exciton and charge carrier dynamics in GaN/InGaN MQW planar layer and nanorod are investigated using femtosecond transient absorption (TA) techniques at room temperature. Here nanorods are fabricated by etching the GaN/InGaN MQW planar layers using nanosphere lithography and reactive ion etching. Photoluminescence efficiency of the nanorods have been proved to be much higher than that of the planar layers, but the mechanism of the nanorod structure improvement of PL efficiency is not adequately studied. By comparing the TA profile of the GaN/InGaN MQW planar layers and nanorods, the impact of surface states and nanorods lateral confinement in the ultrafast carrier dynamics of GaN/InGaN MQW is revealed. The nanorod sidewall surface states have a strong influence on the InGaN quantum well carrier dynamics. The ultrafast relaxation processes studied in this GaN/InGaN MQW nanostructure is essential for further optimization of device application.

  6. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  7. Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.

    PubMed

    Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano

    2018-06-18

    A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.

  8. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  9. Simulation and optimization performance of GaAs/GaAs0.5Sb0.5/GaSb mechanically stacked tandem solar cells

    NASA Astrophysics Data System (ADS)

    Tayubi, Y. R.; Suhandi, A.; Samsudin, A.; Arifin, P.; Supriyatman

    2018-05-01

    Different approaches have been made in order to reach higher solar cells efficiencies. Concepts for multilayer solar cells have been developed. This can be realised if multiple individual single junction solar cells with different suitably chosen band gaps are connected in series in multi-junction solar cells. In our work, we have simulated and optimized solar cells based on the system mechanically stacked using computer simulation and predict their maximum performance. The structures of solar cells are based on the single junction GaAs, GaAs0.5Sb0.5 and GaSb cells. We have simulated each cell individually and extracted their optimal parameters (layer thickness, carrier concentration, the recombination velocity, etc), also, we calculated the efficiency of each cells optimized by separation of the solar spectrum in bands where the cell is sensible for the absorption. The optimal values of conversion efficiency have obtained for the three individual solar cells and the GaAs/GaAs0.5Sb0.5/GaSb tandem solar cells, that are: η = 19,76% for GaAs solar cell, η = 8,42% for GaAs0,5Sb0,5 solar cell, η = 4, 84% for GaSb solar cell and η = 33,02% for GaAs/GaAs0.5Sb0.5/GaSb tandem solar cell.

  10. Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers.

    PubMed

    Cao, Dezhong; Xiao, Hongdi; Gao, Qingxue; Yang, Xiaokun; Luan, Caina; Mao, Hongzhi; Liu, Jianqiang; Liu, Xiangdong

    2017-08-17

    Herein, a lift-off mesoporous GaN-based thin film, which consisted of a strong phase-separated InGaN/GaN layer and an n-GaN layer, was fabricated via an electrochemical etching method in a hydrofluoric acid (HF) solution for the first time and then transferred onto quartz or n-Si substrates, acting as photoanodes during photoelectrochemical (PEC) water splitting in a 1 M NaCl aqueous solution. Compared to the as-grown GaN-based film, the transferred GaN-based thin films possess higher and blue-shifted light emission, presumably resulting from an increase in the surface area and stress relaxation in the InGaN/GaN layer embedded on the mesoporous n-GaN. The properties such as (i) high photoconversion efficiency, (ii) low turn-on voltage (-0.79 V versus Ag/AgCl), and (iii) outstanding stability enable the transferred films to have excellent PEC water splitting ability. Furthermore, as compared to the film transferred onto the quartz substrate, the film transferred onto the n-Si substrate exhibits higher photoconversion efficiency (2.99% at -0.10 V) due to holes (h + ) in the mesoporous n-GaN layer that originate from the n-Si substrate.

  11. Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Kuzmík, J.; Hilt, O.

    2015-11-09

    Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼10{sup 5 }s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due tomore » coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.« less

  12. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  13. A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    All Abbas, J. M.; Atmaca, G.; Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.

    2017-08-01

    Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger-Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.

  14. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  15. Materials and methods for the separation of oxygen from air

    DOEpatents

    MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2003-07-15

    Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.

  16. High efficiency epitaxial GaAs/GaAs and GaAs/Ge solar cell technology using OM/CVD

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Yeh, Y. C. M.; Stirn, R. J.; Swerdling, S.

    1980-01-01

    A technology for fabricating high efficiency, thin film GaAs solar cells on substrates appropriate for space and/or terrestrial applications was developed. The approach adopted utilizes organometallic chemical vapor deposition (OM-CVD) to form a GaAs layer epitaxially on a suitably prepared Ge epi-interlayer deposited on a substrate, especially a light weight silicon substrate which can lead to a 300 watt per kilogram array technology for space. The proposed cell structure is described. The GaAs epilayer growth on single crystal GaAs and Ge wafer substrates were investigated.

  17. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  18. Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5

    DOE PAGES

    Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...

    2016-10-07

    Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia

  19. Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghani, Awais; Yang, Sen; Rajput, S. S.; Ahmed, S.; Murtaza, Adil; Zhou, Chao; Yu, Zhonghai; Zhang, Yin; Song, Xiaoping; Ren, Xiaobing

    2018-06-01

    In this work, the effects of Ni substitution on the electrical leakage and multiferroic properties of GaFeO3 were examined. Structural analysis of grown ceramics using x-ray diffraction and Raman shows that all ceramics have pure phases with an orthorhombic structure and space group. Ni substitutions slightly modify lattice parameters and induce lattice distortion within the same crystalline structure. It is observed that with increasing Ni-content up to 0.10, the magnetic transition temperature () increases from 196 K to 407 K. Ni-doped samples showed better ferroelectric properties and a drastic reduction in leakage current (~three orders of magnitude) at room temperature. Enhanced characteristics behavior is observed for 10% Ni substitution (GaFe0.9Ni0.1O3) and higher substitution leads to deterioration of properties with a larger leakage current. It is proposed that the role of Ni substitution can reduce hopping between Fe+3 and Fe+2 as well as suppressing the oxygen vacancies. This work would open new possibilities for integrating polycrystalline GaFeO3 at room temperature for magnetoelectric applications.

  20. Optical and Structural Properties of Ion-implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Woo; Jeong, Pil Seong; Choi, Suk-Ho; Lee, Hosun; Kong, Bo Hyun; Koun Cho, Hyung

    2009-11-01

    Amorphous InGaZnO (IGZO) thin films were grown using RF sputtering deposition at room temperature and their corresponding dielectric functions were measured. In order to reduce defects and increase carrier concentrations, we examined the effect of forming gas annealing and ion implantation. The band gap energy increased with increasing forming gas annealing temperature. We implanted the IGZO thin films with F- ions in order to decrease oxygen vacancies. For comparison, we also implanted InO- ions. Transmission electron microscopy showed that the amorphous phase undergoes transformation to a nanocrystalline phase due to annealing. We also observed InGaZnO4 nanocrystals having an In-(Ga/Zn) superlattice structure. As the annealing temperature increased, the optical gap energy increased due to crystallization. After annealing, we observed an oxygen-vacancy-related 1.9 eV peak for both unimplanted and InO-implanted samples. However, F- ion implantation substantially reduced the amplitude of the 1.9 eV peak, which disappeared completely at a F fluence of 5×1015 cm-2. We observed other defect-related peaks at 3.6 and 4.2 eV after annealing, which also disappeared after F implantation.

  1. Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8-3.1 Ga detrital zircons

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Hofmann, Axel; Kemp, Anthony I. S.; Whitehouse, Martin J.; Wind, Sandra; Kamber, Balz S.

    2017-10-01

    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon δ18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In εHf-time space, 3.8-3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ∼0.015) that separated from chondritic mantle at ∼3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral

  2. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cevallos, F. Alex; Stolze, Karoline; Kong, Tai

    Here, the crystal growth, structure, and basic magnetic properties of TmMgGaO 4 are reported. The Tm ions are located in a planar triangular lattice consisting of distorted TmO6 octahedra, while the Mg and Ga atoms randomly occupy intermediary bilayers of M-O triangular bipyramids. The Tm ions are positionally disordered. The material displays an antiferromagnetic Curie Weiss theta of ~ -20 -25 K, with no clear ordering visible in the magnetic susceptibility down to 1.8 K; the structure and magnetic properties suggest that ordering of the magnetic moments is frustrated by both structural disorder and the triangular magnetic motif. Single crystalmore » magnetization measurements indicate that the magnetic properties are highly anisotropic, with large moments measured perpendicular to the triangular planes. At 2 K, a broad step-like feature is seen in the field-dependent magnetization perpendicular to the plane on applied field near 2 Tesla.« less

  3. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO 4

    DOE PAGES

    Cevallos, F. Alex; Stolze, Karoline; Kong, Tai; ...

    2018-04-30

    Here, the crystal growth, structure, and basic magnetic properties of TmMgGaO 4 are reported. The Tm ions are located in a planar triangular lattice consisting of distorted TmO6 octahedra, while the Mg and Ga atoms randomly occupy intermediary bilayers of M-O triangular bipyramids. The Tm ions are positionally disordered. The material displays an antiferromagnetic Curie Weiss theta of ~ -20 -25 K, with no clear ordering visible in the magnetic susceptibility down to 1.8 K; the structure and magnetic properties suggest that ordering of the magnetic moments is frustrated by both structural disorder and the triangular magnetic motif. Single crystalmore » magnetization measurements indicate that the magnetic properties are highly anisotropic, with large moments measured perpendicular to the triangular planes. At 2 K, a broad step-like feature is seen in the field-dependent magnetization perpendicular to the plane on applied field near 2 Tesla.« less

  4. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Nicols, S. P.; Haller, E. E.; Silveira, J. P.; Briones, F.

    2001-05-01

    Gallium and antimony self-diffusion experiments have been performed in undoped 69Ga121Sb/71Ga123Sb isotope heterostructures at temperatures between 571 and 708 °C under Sb- and Ga-rich ambients. Ga and Sb profiles measured with secondary ion mass spectrometry reveal that Ga diffuses faster than Sb by several orders of magnitude. This strongly suggests that the two self-atom species diffuse independently on their own sublattices. Experimental results lead us to conclude that Ga and Sb diffusion are mediated by Ga vacancies and Sb interstitials, respectively, and not by the formation of a triple defect proposed earlier by Weiler and Mehrer [Philos. Mag. A 49, 309 (1984)]. The extremely slow diffusion of Sb up to the melting temperature of GaSb is proposed to be a consequence of amphoteric transformations between native point defects which suppress the formation of those native defects which control Sb diffusion. Preliminary experiments exploring the effect of Zn indiffusion at 550 °C on Ga and Sb diffusion reveal an enhanced intermixing of the Ga isotope layers compared to undoped GaSb. However, under the same conditions the diffusion of Sb was not significantly affected.

  5. Highly efficient pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for monolithic integration

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Cody, J.; Forouhar, S.; Lang, R. J.

    1990-01-01

    Highly efficient ridge waveguide pseudomorphic single quantum well lasers, emitting at 980 nm, have been fabricated from an In(0.2)Ga(0.8)As/GaAs/AlGaAs graded-index separate confinement heterostructure grown by molecular beam epitaxy. The laterial index guiding provided by the ridge reduces the anomalously large lateral loss of optical power found in gain-guided structures, thereby reducing the internal loss by more than 50 percent. The low threshold current (7.6 mA) and high differential quantum efficiency (79 percent) obtained under continuous operation as well as the transparency of the GaAs substrate to the emitted radiation render these lasers attractive for Ga-As-based optoelectronic integration.

  6. Red cell 2,3-diphosphoglycerate and oxygen affinity.

    PubMed

    MacDonald, R

    1977-06-01

    The ease with which haemoglobin releases oxygen to the tissues is controlled by erythrocytic 2,3-diphosphoglycerate (2,3-DPG) such that an increase in the concentration of 2,3-DPG decreases oxygen affinity and vice versa. This review article describes the synthesis and breakdown of 2,3-DPG in the Embden-Meyerof pathway in red cells and briefly explains the molecular basis for its effect on oxygen affinity. Interaction of the effects of pH, Pco2, temperature and 2,3-DPG on the oxyhaemoglobin dissociation curve are discussed. The role of 2,3-DPG in the intraerythrocytic adaptation to various types of hypoxaemia is described. The increased oxygen affinity of blood stored in acid-citrate-dextrose (ACD) solution has been shown to be due to the decrease in the concentration of 2,3-DPG which occurs during storage. Methods of maintaining the concentration of 2,3-DPG in stored blood are described. The clinical implication of transfusion of elderly people, anaemic or pregnant patients with ACD stored blood to anaesthetically and surgically acceptable haemoglobin concentrations are discussed. Hypophosphataemia in association with parenteral feeding reduces 2,3-DPG concentration and so increases oxygen affinity. Since post-operative use of intravenous fluids such as dextrose or dextrose/saline also lead to hypophosphataemia, the addition of inorganic phosphorus to routine post-operative intravenous fluid may be advisable. Disorders of acid-base balance effect oxygen affinity not only by the direct effect of pH on the oxyhaemoglobin dissociation curve but by its control of 2,3-DPG metabolism. Management of acid-base disorders and pre-operative aklalinization of patients with sickle cell disease whould take account of this. It is known that anaesthesia alters the position of the oxyhaemoglobin dissociation curve, but it is thought that this is independent of any effects which anaesthetic agents may have on 2,3-DPG concentration. In vitro manipulation of 2,3-DPG concentration

  7. Centrosymmetry vs noncentrosymmetry in La2Ga0.33SbS5 and Ce4GaSbS9 based on the interesting size effects of lanthanides: Syntheses, crystal structures, and optical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Jun

    2016-05-01

    Two new quaternary sulfides La2Ga0.33SbS5 and Ce4GaSbS9 have been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. Interestingly, La2Ga0.33SbS5 crystallizes in the centrosymmetric structure, while Ce4GaSbS9 crystallizes in the noncentrosymmetric structure, which show obvious size effects of lanthanides on the crystal structures of these two compounds. Ce4GaSbS9 belongs to RE4GaSbS9 (RE=Pr, Nd, Sm, Gd-Ho) structure type with a=13.8834(9) Å, b=14.3004(11) Å, c=14.4102(13) Å, V=2861.0(4) Å3. The structure features infinite chains of [Ga2Sb2S1110-]∞ propagating along a direction separated by Ce3+ cations and S2- anions. La2Ga0.33SbS5 adopts the family of La4FeSb2S10-related structure with a=7.5193(6) Å, c=13.4126(17) Å, V=758.35(13) Å3. Its structure is built up from the alternate stacking of La/Sb/S and La/Ga/S 2D building blocks. The La/Sb/S slabs consist of teeter-totter chains of Sb1S4 seesaws, which are connected via sharing the apexes of μ4-S1. Moreover, La1 is positionally disordered with Sb1 and stabilized in a bicapped trigonal prismatic coordination sphere. Between these La/Sb/S slabs, La2S8 square antiprisms are connected via edge-sharing into 2D building blocks, creating tetrahedral sites partially occupied by the Ga1 atoms. UV/Vis diffuse reflectance spectroscopy study shows that the optical gap of La2Ga0.33SbS5 is about 1.76 eV.

  8. Characterisation of Ga-coated and Ga-brazed aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferchaud, E.; Christien, F., E-mail: frederic.christien@univ-nantes.fr; Barnier, V.

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples showsmore » that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.« less

  9. Charge density wave behavior and order-disorder in the antiferromagnetic metallic series Eu (Ga1 -xAlx)4

    NASA Astrophysics Data System (ADS)

    Stavinoha, Macy; Cooley, Joya A.; Minasian, Stefan G.; McQueen, Tyrel M.; Kauzlarich, Susan M.; Huang, C.-L.; Morosan, E.

    2018-05-01

    The solid solution Eu (Ga1-xAlx) 4 was grown in single crystal form to reveal a rich variety of crystallographic, magnetic, and electronic properties that differ from the isostructural end compounds EuGa4 and EuAl4, despite the similar covalent radii and electronic configurations of Ga and Al. Here we report the onset of magnetic spin reorientation and metamagnetic transitions for x =0 -1 evidenced by magnetization and temperature-dependent specific heat measurements. TN changes nonmonotonously with x , and it reaches a maximum around 20 K for x =0.50 , where the a lattice parameter also shows an extreme (minimum) value. Anomalies in the temperature-dependent resistivity consistent with charge density wave behavior exist only for x =0.50 and 1. Density functional theory calculations show increased polarization between the Ga-Al covalent bonds in the x =0.50 structure compared to the end compounds, such that crystallographic order and chemical pressure are proposed as the causes of the charge density wave behavior.

  10. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.

    PubMed

    Yu, Xuezhe; Wang, Hailong; Pan, Dong; Zhao, Jianhua; Misuraca, Jennifer; von Molnár, Stephan; Xiong, Peng

    2013-04-10

    Combining self-catalyzed vapor-liquid-solid growth of GaAs nanowires and low-temperature molecular-beam epitaxy of (Ga,Mn)As, we successfully synthesized all zinc-blende (ZB) GaAs/(Ga,Mn)As core-shell nanowires on Si(111) substrates. The ZB GaAs nanowire cores are first fabricated at high temperature by utilizing the Ga droplets as the catalyst and controlling the triple phase line nucleation, then the (Ga,Mn)As shells are epitaxially grown on the side facets of the GaAs core at low temperature. The growth window for the pure phase GaAs/(Ga,Mn)As core-shell nanowires is found to be very narrow. Both high-resolution transmission electron microscopy and scanning electron microscopy observations confirm that all-ZB GaAs/(Ga,Mn)As core-shell nanowires with smooth side surface are obtained when the Mn concentration is not more than 2% and the growth temperature is 245 °C or below. Magnetic measurements with different applied field directions provide strong evidence for ferromagnetic ordering in the all-ZB GaAs/(Ga,Mn)As nanowires. The hybrid nanowires offer an attractive platform to explore spin transport and device concepts in fully epitaxial all-semiconductor nanospintronic structures.

  11. Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs

    PubMed Central

    Sadofyev, Yuri G.; Samal, Nigamananda

    2010-01-01

    An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.

  12. Self-organized formation of GaSb/GaAs quantum rings.

    PubMed

    Timm, R; Eisele, H; Lenz, A; Ivanova, L; Balakrishnan, G; Huffaker, D L; Dähne, M

    2008-12-19

    Ring-shaped GaSb/GaAs quantum dots, grown by molecular beam epitaxy, were studied using cross-sectional scanning tunneling microscopy. These quantum rings have an outer shape of a truncated pyramid with baselengths around 15 nm and heights of about 2 nm but are characterized by a clear central opening extending over about 40% of the outer baselength. They form spontaneously during the growth and subsequent continuous capping of GaSb/GaAs quantum dots due to the large strain and substantial As-for-Sb exchange reactions leading to strong Sb segregation.

  13. Sorbent-based Oxygen Production for Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Vijay

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less

  14. Improving the ohmic properties of contacts to P-GaN by adding p-type dopants into the metallization layer

    NASA Astrophysics Data System (ADS)

    Liday, Jozef; Vogrinčič, Peter; Vincze, Andrej; Breza, Juraj; Hotový, Ivan

    2012-12-01

    The work investigates an increase of the density of free charge carriers in the sub-surface region of p-GaN by adding p-type dopants into the Ni-O layer of an Au/Ni-O metallization structure. We have examined electrical properties and concentration depth profiles of contact structures Au/Ni-Mg-O/p-GaN and Au/Ni-Zn-O/p-GaN, thus with magnesium and zinc as p-type dopants. The metallization layers were deposited on p-GaN by DC reactive magnetron sputtering in an atmosphere with a low concentration of oxygen (0.2 at%). The contacts were annealed in N2 . We have found that the structures containing magnesium or zinc exhibit lower values of contact resistivity in comparison with otherwise identical contacts without Mg or Zn dopants. In our opinion, the lower values of contact resistivity of the structures containing of Mg or Zn are caused by an increased density of holes in the sub-surface region of p-GaN due to diffusion of Mg or Zn from the deposited doped contact layers.

  15. Rectifying behavior in the GaN/graded-AlxGa1‑xN/GaN double heterojunction structure

    NASA Astrophysics Data System (ADS)

    Wang, Caiwei; Jiang, Yang; Ma, Ziguang; Zuo, Peng; Yan, Shen; Die, Junhui; Wang, Lu; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2018-05-01

    Rectifying characteristics induced by the polarization fields are achieved in the GaN/graded-AlxGa1‑xN/GaN double heterojunction structure (DHS). By grading AlxGa1‑xN from x  =  0.4(0.3) to 0.1, the DHS displays a better conductivity for smaller reverse bias than for forward bias voltages (reverse rectifying behavior) which is opposite to p–n junction rectifying characteristics. The mechanism of reverse rectifying behavior is illustrated via calculating the energy band structures of the samples. The band gap narrowing caused by decreasing Al composition could compensate the for the band tilt due to the polarization effect in AlxGa1‑xN barriers, thus lowering the barrier height for electron transport from top to bottom. The reverse rectifying behavior could be enhanced by increasing the Al content and the thickness of the multi-layer graded AlxGa1‑xN barriers. This work gives a better understanding of the mechanism of carrier transport in a DHS and makes it possible to realize novel GaN-based heterojunction transistors.

  16. Heterojunction light emitting diodes fabricated with different n-layer oxide structures on p-GaN layers by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun

    2010-06-01

    We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.

  17. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  18. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    NASA Astrophysics Data System (ADS)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  19. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6

  20. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Hai-Ming; Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Liang, Baolai, E-mail: bliang@cnsi.ucla.edu

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  1. Response of single junction GaAs/GaAs and GaAs/Ge solar cells to multiple doses of 1 MeV electrons

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Szedon, J. R.; Bartko, J.; Chung, M. A.

    1989-01-01

    A comparison of the radiation tolerance of MOCVD-grown GaAs cells and GaAs/Ge cells was undertaken using 1 MeV electrons. The GaAs/Ge cells are somewhat more tolerant of 1 MeV electron irradiation and more responsive to annealing than are the GaAs/GaAs cells examined in this study. However, both types of cells suffer a greater degradation in efficiency than has been observed in other recent studies. The reason for this is not certain, but it may be associated with an emitter thickness which appears to be greater than desired. The deep level transient spectroscopy (DLTS) spectra following irradiation are not significantly different for the GaAs/Ge and the GaAs/GaAs cells, with each having just two peaks. The annealing behavior of these peaks is also similar in the two samples examined. It appears that no penalty in radiation tolerance, and perhaps some benefit, is associated with fabricating MOCVD GaAs cells on Ge substrates rather than GaAs substrates.

  2. Polarization-Engineered Ga-Face GaN-Based Heterostructures for Normally-Off Heterostructure Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyeongnam; Nath, Digbijoy; Rajan, Siddharth; Lu, Wu

    2013-01-01

    Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/ p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/ p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80- μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.

  3. Medium energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.

    1982-01-01

    The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.

  4. Dependence of Ag/Ga composition ratio in AgGaSe2 thin film

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    AgGaSe2 thin film was deposited on glass substrates by vacuum evaporation method. The starting material was mixed Ag2Se and Ga2Se3 powders. Ag/Ga ratios of the samples were 1.5, 1.2, 1.0, 0.8, 0.7 and 0.4. The samples were annealed from 100 to 600 °C for 10 min. After these processes, single phase AgGaSe2 thin films could be obtained except Ag/Ga ratio of 0.4 at annealing temperature of 600 °C. Ag-rich samples had large grain. On the other hand, Ga-rich samples had small grain. Furthermore, Ga-rich and Ag-rich samples indicated p- and n-types because of Ag- and/or Ga-vacancy and Se-vacancy, respectively.

  5. Convergent beam electron-diffraction investigation of lattice mismatch and static disorder in GaAs/GaAs1-xNx intercalated GaAs/GaAs1-xNx:H heterostructures

    NASA Astrophysics Data System (ADS)

    Frabboni, S.; Grillo, V.; Gazzadi, G. C.; Balboni, R.; Trotta, R.; Polimeni, A.; Capizzi, M.; Martelli, F.; Rubini, S.; Guzzinati, G.; Glas, F.

    2012-09-01

    Hydrogen incorporation in diluted nitride semiconductors dramatically modifies the electronic and structural properties of the crystal through the creation of nitrogen-hydrogen complexes. We report a convergent beam electron-diffraction characterization of diluted nitride semiconductor-heterostructures patterned at a sub-micron scale and selectively exposed to hydrogen. We present a method to determine separately perpendicular mismatch and static disorder in pristine and hydrogenated heterostructures. The roles of chemical composition and strain on static disorder have been separately assessed.

  6. Thermal annealing effect on the Mg-doped AlGaN/GaN superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Baozhu; An, Shengbiao; Wen, Huanming; Wu, Ruihong; Wang, Xiaojun; Wang, Xiaoliang

    2009-11-01

    Mg-doped AlGaN/GaN superlattice has been grown by metalorganic chemical vapor deposition (MOCVD). Rapid thermal annealing (RTA) treament are carryied out on the samples under nitrogen as protect gas. Hall, photoluminescence (PL), high resolution x-ray diffraction (HRXRD) and atomic-force microscopy (AFM) are used to characterize the electrical, optical and structural properties of the as-grown and annealed samples, respectively. After annealing, the Hall results indicate more Mg acceptors are activated, which leads to higher hole concentration and lower p-type resistivity. The PL intensity of Mg related defect band shows a strong decrease after annealing. The annealing of the superlattice degrade the interface quality of the AlGaN/GaN from the HRXRD results. Many nanometer-grains can be observed on the surface of AlGaN/GaN superlattice from the AFM image. This maybe related with the decomposing of GaN or the separating of Mg from the AlGaN/GaN superlattice.

  7. Atomic-scale structure and electronic properties of GaN/GaAs superlattices

    NASA Astrophysics Data System (ADS)

    Goldman, R. S.; Feenstra, R. M.; Briner, B. G.; O'Steen, M. L.; Hauenstein, R. J.

    1996-12-01

    We have investigated the atomic-scale structure and electronic properties of GaN/GaAs superlattices produced by nitridation of a molecular beam epitaxially grown GaAs surface. Using cross-sectional scanning tunneling microscopy (STM) and spectroscopy, we show that the nitrided layers are laterally inhomogeneous, consisting of groups of atomic-scale defects and larger clusters. Analysis of x-ray diffraction data in terms of fractional area of clusters (determined by STM), reveals a cluster lattice constant similar to bulk GaN. In addition, tunneling spectroscopy on the defects indicates a conduction band state associated with an acceptor level of NAs in GaAs. Therefore, we identify the clusters and defects as nearly pure GaN and NAs, respectively. Together, the results reveal phase segregation in these arsenide/nitride structures, in agreement with the large miscibility gap predicted for GaAsN.

  8. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khromov, S.; Hemmingsson, C.; Monemar, B.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits,more » quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.« less

  9. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    PubMed

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  10. Energetics of defects formation and oxygen migration in pyrochlore compounds from first principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Kowalski, Piotr M.

    2018-07-01

    In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.

  11. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation

    NASA Astrophysics Data System (ADS)

    Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong

    2018-05-01

    The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

  12. Control of Ga-oxide interlayer growth and Ga diffusion in SiO2/GaN stacks for high-quality GaN-based metal-oxide-semiconductor devices with improved gate dielectric reliability

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Yamada, Hisashi; Takahashi, Tokio; Shimizu, Mitsuaki; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-01-01

    A simple and feasible method for fabricating high-quality and highly reliable GaN-based metal-oxide-semiconductor (MOS) devices was developed. The direct chemical vapor deposition of SiO2 films on GaN substrates forming Ga-oxide interlayers was carried out to fabricate SiO2/GaO x /GaN stacked structures. Although well-behaved hysteresis-free GaN-MOS capacitors with extremely low interface state densities below 1010 cm-2 eV-1 were obtained by postdeposition annealing, Ga diffusion into overlying SiO2 layers severely degraded the dielectric breakdown characteristics. However, this problem was found to be solved by rapid thermal processing, leading to the superior performance of the GaN-MOS devices in terms of interface quality, insulating property, and gate dielectric reliability.

  13. Microvascular oxygen consumption during sickle cell pain crisis.

    PubMed

    Rowley, Carol A; Ikeda, Allison K; Seidel, Miles; Anaebere, Tiffany C; Antalek, Matthew D; Seamon, Catherine; Conrey, Anna K; Mendelsohn, Laurel; Nichols, James; Gorbach, Alexander M; Kato, Gregory J; Ackerman, Hans

    2014-05-15

    Sickle cell disease is an inherited blood disorder characterized by chronic hemolytic anemia and episodic vaso-occlusive pain crises. Vaso-occlusion occurs when deoxygenated hemoglobin S polymerizes and erythrocytes sickle and adhere in the microvasculature, a process dependent on the concentration of hemoglobin S and the rate of deoxygenation, among other factors. We measured oxygen consumption in the thenar eminence during brachial artery occlusion in sickle cell patients and healthy individuals. Microvascular oxygen consumption was greater in sickle cell patients than in healthy individuals (median [interquartile range]; sickle cell: 0.91 [0.75-1.07] vs healthy: 0.75 [0.62-0.94] -ΔHbO2/min, P < .05) and was elevated further during acute pain crisis (crisis: 1.10 [0.78-1.30] vs recovered: 0.88 [0.76-1.03] -ΔHbO2/min, P < .05). Increased microvascular oxygen consumption during pain crisis could affect the local oxygen saturation of hemoglobin when oxygen delivery is limiting. Identifying the mechanisms of elevated oxygen consumption during pain crisis might lead to the development of new therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT01568710.

  14. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    PubMed Central

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-01-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166

  15. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    PubMed Central

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664

  16. Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study

    PubMed Central

    Chen, Ginden; Chiang, Wan-Lin; Shu, Bih-Ching; Guo, Yue Leon; Chiou, Shu-Ti; Chiang, Tung-liang

    2017-01-01

    Objectives Whether birth by caesarean section (CS) increases the occurrence of neurodevelopmental disorders, asthma or obesity in childhood is controversial. We tried to demonstrate the association between children born by CS and the occurrence of the above three diseases at the age of 5.5 years. Methods The database of the Taiwan Birth Cohort Study which was designed to assess the developmental trajectories of 24 200 children born in 2005 was used in this study. Associations between children born by CS and these three diseases were evaluated before and after controlling for gestational age (GA) at birth, children’s characteristics and disease-related predisposing factors. Results Children born by CS had significant increases in neurodevelopmental disorders (20%), asthma (14%) and obesity (18%) compared with children born by vaginal delivery. The association between neurodevelopmental disorders and CS was attenuated after controlling for GA at birth (OR 1.15; 95% CI 0.98 to 1.34). Occurrence of neurodevelopmental disorders steadily declined with increasing GA up to ≤40–42 weeks. CS and childhood asthma were not significantly associated after controlling for parental history of asthma and GA at birth. Obesity in childhood remained significantly associated with CS (OR 1.13; 95% CI 1.04 to 1.24) after controlling for GA and disease-related factors. Conclusions Our results implied that the association between CS birth and children’s neurodevelopmental disorders was significantly influenced by GA. CS birth was weakly associated with childhood asthma since parental asthma and preterm births are stronger predisposing factors. The association between CS birth and childhood obesity was robust after controlling for disease-related factors. PMID:28963295

  17. Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs

    PubMed Central

    Zhang, Qin; Rao, Xiuwen; Zhang, Lubin; He, Congcong; Yang, Fang; Zhu, Shijiang

    2016-01-01

    Internal browning (IB), a physiological disorder (PD) that causes severe losses in harvested pineapple, can be induced by exogenous gibberellins (GAs). Over the years, studies have focused on roles of Gibberellin 2-oxidase (GA2oxs), the major GAs catabolic enzyme in plants, in the regulation of changes in morphology or biomass. However, whether GA2oxs could regulate PD has not been reported. Here, a full-length AcGA2ox cDNA was isolated from pineapple, with the putative protein sharing 23.59% to 72.92% identity with GA2oxs from five other plants. Pineapples stored at 5 °C stayed intact, while those stored at 20 °C showed severe IB. Storage at 5 °C enhanced AcGA2ox expression and decreased levels of a GAs (GA4) ‘compared with storage at 20 °C. However, at 20 °C, exogenous application of abscisic acid (ABA) significantly suppressed IB. ABA simultaneously upregulated AcGA2ox and reduced GA4. Ectopic expression of AcGA2ox in Arabidopsis resulted in reduced GA4, lower seed germination, and shorter hypocotyls and roots, all of which were restored by exogenous GA4/7. Moreover, in pineapple, GA4/7 upregulated polyphenol oxidase, while storage at 5 °C and ABA downregulated it. These results strongly suggest the involvement of AcGA2ox in regulation of GAs levels and a role of AcGA2ox in regulating IB. PMID:27982026

  18. Hydrogenation of GaSb/GaAs quantum rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, P. D., E-mail: pdhodgson@hotmail.co.uk; Hayne, M.; Zhuang, Q. D.

    2014-08-25

    We present the results of photoluminescence measurements on hydrogenated type-II GaSb/GaAs quantum dot/ring (QD/QR) samples at temperatures ranging from 4.2 K to 400 K. Hydrogenation is found to suppress optically induced charge depletion (associated with the presence of carbon acceptors in this system). A redshift of the QD\\QR emission energy of a few tens of meV is observed at temperatures ≥300 K, consistent with a reduction in average occupancy by ∼1 hole. These effects are accompanied by a reduction in PL intensity post-hydrogenation. We conclude that although hydrogenation may have neutralized the carbon acceptors, multiple hole occupancy of type-II GaSb/GaAs QD/QRs is verymore » likely a precondition for intense emission, which would make extending the wavelength significantly beyond 1300 nm at room temperature difficult.« less

  19. 46 CFR 7.80 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Tybee Island south of the entrance to Buck Hammock Creek. (b) A line drawn from the southernmost... 46 Shipping 1 2011-10-01 2011-10-01 false Tybee Island, GA to St. Simons Island, GA. 7.80 Section... BOUNDARY LINES Atlantic Coast § 7.80 Tybee Island, GA to St. Simons Island, GA. (a) A line drawn from the...

  20. 46 CFR 7.80 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Tybee Island south of the entrance to Buck Hammock Creek. (b) A line drawn from the southernmost... 46 Shipping 1 2012-10-01 2012-10-01 false Tybee Island, GA to St. Simons Island, GA. 7.80 Section... BOUNDARY LINES Atlantic Coast § 7.80 Tybee Island, GA to St. Simons Island, GA. (a) A line drawn from the...

  1. 46 CFR 7.80 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Tybee Island south of the entrance to Buck Hammock Creek. (b) A line drawn from the southernmost... 46 Shipping 1 2014-10-01 2014-10-01 false Tybee Island, GA to St. Simons Island, GA. 7.80 Section... BOUNDARY LINES Atlantic Coast § 7.80 Tybee Island, GA to St. Simons Island, GA. (a) A line drawn from the...

  2. 46 CFR 7.80 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Tybee Island south of the entrance to Buck Hammock Creek. (b) A line drawn from the southernmost... 46 Shipping 1 2013-10-01 2013-10-01 false Tybee Island, GA to St. Simons Island, GA. 7.80 Section... BOUNDARY LINES Atlantic Coast § 7.80 Tybee Island, GA to St. Simons Island, GA. (a) A line drawn from the...

  3. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would

  4. Overall water splitting on (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution photocatalyst: relationship between physical properties and photocatalytic activity.

    PubMed

    Maeda, Kazuhiko; Teramura, Kentaro; Takata, Tsuyoshi; Hara, Michikazu; Saito, Nobuo; Toda, Kenji; Inoue, Yasunobu; Kobayashi, Hisayoshi; Domen, Kazunari

    2005-11-03

    The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.

  5. Optical properties of two-dimensional GaS and GaSe monolayers

    NASA Astrophysics Data System (ADS)

    Jappor, Hamad Rahman; Habeeb, Majeed Ali

    2018-07-01

    Optical properties of GaS and GaSe monolayers are investigated using first-principles calculations. The optical properties are studied up to 35 eV. Precisely, our results demonstrated that the optical properties appearance of GaS monolayer is comparative with GaSe monolayer with few informations contrasts. Moreover, the absorption begins in the visible region, although the peaks in the ultraviolet (UV) region. The refractive index values are 1.644 (GaS monolayer) and 2.01 (GaSe monolayer) at zero photon energy limit and increase to 2.092 and 2.698 respectively and both located in the visible region. Furthermore, we notice that the optical properties of both monolayers are obtained in the ultraviolet range and the results are significant. Accordingly, it can be used as a highly promising material in the solar cell, ultraviolet optical nanodevices, nanoelectronics, optoelectronic, and photocatalytic applications.

  6. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate

    NASA Astrophysics Data System (ADS)

    Schulze, C. S.; Huang, X.; Prohl, C.; Füllert, V.; Rybank, S.; Maddox, S. J.; March, S. D.; Bank, S. R.; Lee, M. L.; Lenz, A.

    2016-04-01

    The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration of III-V optoelectronic components into silicon-based technology.

  7. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    PubMed Central

    Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3− during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

  8. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.

    PubMed

    Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph

    2016-03-07

    There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.

  9. Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V

    2012-01-31

    Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less

  10. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McSkimming, Brian M., E-mail: mcskimming@engineering.ucsb.edu; Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions,more » the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.« less

  11. Photoluminescence emission from GaAs nanodisks in GaAs/AlGaAs nanopillar arrays fabricated by neutral beam etching

    NASA Astrophysics Data System (ADS)

    Ohori, Daisuke; Fukuyama, Atsuhiko; Sakai, Kentaro; Higo, Akio; Thomas, Cedric; Samukawa, Seiji; Ikari, Tetsuo

    2017-05-01

    GaAs quantum nanodisks (QNDs) in nanopillar (NP) arrays are considered to be an attractive candidate for photonic device applications. We report a damageless fabrication technique that can be used to produce large-area lattice-matched GaAs/AlGaAs heterostructure NP arrays through the use of a bio-template and neutral beam etching. We have successfully realized GaAs QNDs in NPs owing to nanoscale iron oxide masks included in poly(ethylene glycol)-decorated ferritin protein shells. We observed for first time the photoluminescence emission from as-etched GaAs QNDs and confirmed quantum confinement by quantum mechanical calculation. Our methodology is vital for high-efficiency pillar-based optoelectronic devices such as NP laser diodes.

  12. Surface States in the AlxGa1-xN Barrier in AlxGa1-xN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Shen, Bo; Wang, Mao-Jun; Zhou, Yu-Gang; Chen, Dun-Jun; Zhang, Rong; Shi, Yi; Zheng, You-Dou

    2004-01-01

    Frequency-dependent capacitance-voltage (C-V) measurements have been performed on modulation-doped Al0.22 Ga0.78N/GaN heterostructures to investigate the characteristics of the surface states in the AlxGa1-xN barrier. Numerical fittings based on the experimental data indicate that there are surface states with high density locating on the AlxGa1-xN barrier. The density of the surface states is about 1012 cm-2eV-1, and the time constant is about 1 mus. It is found that an insulating layer (Si3N4) between the metal contact and the surface of AlxGa1-xN can passivate the surface states effectively.

  13. Multilayer self-organization of InGaAs quantum wires on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zhiming M.; Kunets, Vasyl P.; Xie, Yanze Z.; Schmidbauer, Martin; Dorogan, Vitaliy G.; Mazur, Yuriy I.; Salamo, Gregory J.

    2010-12-01

    Molecular-Beam Epitaxy growth of multiple In 0.4Ga 0.6As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In 0.4Ga 0.6As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In 0.4Ga 0.6As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.

  14. Epitaxial nanowire formation in metamorphic GaAs/GaPAs short-period superlattices

    NASA Astrophysics Data System (ADS)

    Zheng, Nan; Ahrenkiel, S. Phillip

    2017-07-01

    Metamorphic growth presents routes to novel nanomaterials with unique properties that may be suitable for a range of applications. We discuss self-assembled, epitaxial nanowires formed during metalorganic chemical vapor deposition of metamorphic GaAs/GaPAs short-period superlattices. The heterostructures incorporate strain-engineered GaPAs compositional grades on 6°-<111>B miscut GaAs substrates. Lateral diffusion within the SPS into vertically aligned, three-dimensional columns results in nanowires extending along <110>A directions with a lateral period of 70-90 nm. The microstructure is probed by transmission electron microscopy to confirm the presence of coherent GaAs nanowires within GaPAs barriers. The compositional profile is inferred from analysis of {200} dark-field image contrast and <210> lattice images.

  15. Atmospheric pressure-MOVPE growth of GaSb/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Tile, Ngcali; Ahia, Chinedu C.; Olivier, Jaco; Botha, Johannes Reinhardt

    2018-04-01

    This study focuses on the growth of GaSb/GaAs quantum dots (QD) using an atmospheric pressure MOVPE system. For the best uncapped dots, the average dot height, base diameter and density are 5 nm, 45 nm and 4.5×1010 cm-2, respectively. Capping of GaSb QDs at high temperatures caused flattening and formation of thin inhomogeneous GaSb layer inside GaAs resulting in no obvious QD PL peak. Capping at low temperatures lead to the formation of dot-like features and a wetting layer (WL) with distinct PL peaks for QD and WL at 1097 nm and 983 nm respectively. Some of the dot-like features had voids. An increase in excitation power caused the QD and WL peaks to shift to higher energies. This is attributed to electrostatic band bending leading to triangular potential wells, typical of type-II alignment between GaAs and strained GaSb. Variable temperature PL measurements of the QD sample showed the decrease in the intensity of the WL peak to be faster than that of the QD peak as the temperature increased.

  16. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis

    PubMed Central

    Schopf, J. William; Kudryavtsev, Anatoliy B.; Walter, Malcolm R.; Van Kranendonk, Martin J.; Williford, Kenneth H.; Kozdon, Reinhard; Valley, John W.; Gallardo, Victor A.; Espinoza, Carola; Flannery, David T.

    2015-01-01

    The recent discovery of a deep-water sulfur-cycling microbial biota in the ∼2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga “Great Oxidation Event,” these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis. PMID:25646436

  17. Cryogenic operation of pseudomorphic AlGaAs/InGaAs single-quantum-well MODFETs

    NASA Technical Reports Server (NTRS)

    Masselink, W. T.; Ketterson, A.; Klem, J.; Kopp, W.; Morkoc, H.

    1985-01-01

    The 77 K operation of AlGaAs/InGaAs MODFETs has been investigated. The structures, grown by MBE, make use of a 200 A undoped In(0.15)Ga(0.85)As quantum well for electron confinement and an Si-doped Al(0.15)Ga(0.85)As top barrier. The MODFETs with 1 micron gate lengths exhibit extrinsic transconductances of 360 mS/mm and maximum currents of 310 mA/mm at 77 K. The use of a low Al mole fraction AlGaAs/InGaAs heterojunction makes it possible to avoid the persistent trapping effects encountered in AlGaAs/GaAs MODFETs without sacrificing device performance.

  18. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450 nm) light emitting diode. A voltage drop of 5.3 V at 100 mA, forward resistance of 2 × 10{sup −2} Ω cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5 × 10{sup −4} Ω cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. Themore » depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.« less

  19. Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report

    PubMed Central

    2009-01-01

    A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822

  20. Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Duan, Xiulan; Liu, Jian; Wang, Xinqiang; Jiang, Huaidong

    2014-11-01

    The distribution of cations in the spinel-type MgCr2yGa2-2yO4 (y = 0-0.6) nanocrystals and their optical properties as a function of annealing temperature and chromium content were investigated by using X-ray photoelectron spectroscopy (XPS) in combination with absorption spectroscopy. The cations in MgCr2yGa2-2yO4 nanocrystals are disorderly distributed with mixing of divalent and trivalent cations occupying the tetrahedral and octahedral sites. With the increase of annealing temperature, the inversion parameter (the fraction of Mg2+ ions in octahedral sites) decreases, which has the same varying tendency with the proportion of tetrahedral Ga3+ or Cr3+ ions. The inversion parameter increases with increasing Cr3+ concentration. The absorption spectra indicate that Cr3+ ions are located in the octahedral sites as well as in the tetrahedral sites. The fraction of tetrahedral Cr3+ decreases with Cr-enrichment. The optical absorption properties of Cr-doped MgGa2O4 nanocrystals may be tuned by varying the preparation temperature or Cr concentration.

  1. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, C. S.; Prohl, C.; Füllert, V.

    2016-04-04

    The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration ofmore » III-V optoelectronic components into silicon-based technology.« less

  2. Migration mechanisms and diffusion barriers of vacancies in Ga2O3

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2017-06-01

    We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.

  3. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  4. Growth and characterization of GaAs/Al/GaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, P.; Oh, J.E.; Singh, J.

    Theoretical and experimental aspects of the growth of GaAs/Al/GaAs heterostructures have been investigated. In these heterostructures the GaAs on top of the buried metal layer is grown by migration-enhanced epitaxy (MEE) at low temperatures (200 and 400 {degree}C) to provide a kinetic barrier to the outdiffusion of Al during superlayer growth. The crystallinity and orientation of the Al film itself deposited on (100) GaAs at {approx}0 {degree}C was studied by transmission electron diffraction, dark-field imaging, and x-ray diffraction measurements. It is found that the Al growth is polycrystalline with a grain size {approx}60 A and the preferred growth orientation ismore » (111), which may be textured in plane but oriented out of plane. The quality of the GaAs superlayer grown on top of Al by MEE is very sensitive to the growth temperature. The layer grown at 400 {degree}C has good structural and optical quality, but is accompanied by considerable outdiffusion of Al at the Al-GaAs heterointerface. At 200 {degree}C, where the interface has good structural integrity, the superlayer exhibits twinning and no luminescence is observed.« less

  5. Ultrathin type-II GaSb/GaAs quantum wells grown by OMVPE

    NASA Astrophysics Data System (ADS)

    Pitts, O. J.; Watkins, S. P.; Wang, C. X.; Stotz, J. A. H.; Meyer, T. A.; Thewalt, M. L. W.

    2004-09-01

    Heterostructures containing monolayer (ML) and submonolayer GaSb insertions in GaAs were grown using organometallic vapour phase epitaxy. At the GaAs-on-GaSb interface, strong intermixing occurs due to the surface segregation of Sb. To form structures with relatively abrupt interfaces, a flashoff growth sequence, in which growth interruptions are employed to desorb Sb from the surface, was introduced. Reflectance-difference spectroscopy and high-resolution X-ray diffraction data demonstrate that interfacial grading is strongly reduced by this procedure. For layer structures grown with the flashoff sequence, a GaSb coverage up to 1 ML can be obtained in the two-dimensional (2D) growth mode. For uncapped GaSb layers, on the other hand, atomic force microscope images show that the 2D-3D growth mode transition occurs at a submonolayer coverage between 0.3 and 0.5 ML. Low-temperature photoluminescence spectra of multiple quantum well samples grown using the flashoff sequence show a strong quantum well-related peak which shifts to lower energies as the amount of Sb incorporated increases. The PL peak energies are consistent with a type-II band lineup at the GaAs/GaSb interface.

  6. MOVPE of GaSb/InGaAsSb Multilayers and Fabrication of Dual Band Photodetectors

    NASA Technical Reports Server (NTRS)

    Xiao, Ye-Gao; Bhat, Ishwara; Refaat, Tamer F.; Abedin, M. Nurul; Shao, Qing-Hui

    2005-01-01

    Metalorganic vapor phase epitaxy (MOVPE) of GaSb/InGaAsSb multilayer thin films and fabrication of bias-selectable dual band photodetectors are reported. For the dual band photodetectors the short wavelength detector, or the upper p- GaSb/n-GaSb junction photodiode, is placed optically ahead of the long wavelength one, or the lower photodiode. The latter is based on latticed-matched In0.13Ga0.87As0.11Sb0.89 with bandgap near 0.6 eV. Specifically, high quality multilayer thin films are grown sequentially from top to bottom as p+-GaSb/p-GaSb/n-GaSb/n-InGaAsSb/p-InGaAsSb/p-GaSb on undoped p-type GaSb substrate, and as n-GaSb/p-GaSb/p-InGaAsSb/n-InGaAsSb/n-GaSb on Te-doped n-type GaSb substrate respectively. The multilayer thin films are characterized by optical microscope, atomic force microscope (AFM), electron microprobe analyses etc. The photodiode mesa steps are patterned by photolithography with wet chemical etching and the front metallization is carried out by e-beam evaporation with Pd/Ge/Au/Ti/Au to give ohmic contact on both n- and p-type Sb based layer surfaces. Dark I-V measurements show typical diode behavior for both the upper and lower photodiodes. The photoresponsivity measurements indicate that both the upper and lower photodiodes can sense the infrared illumination corresponding to their cutoff wavelengths respectively, comparable with the simulation results. More work is underway to bring the long wavelength band to the medium infrared wavelength region near 4 micrometers.

  7. Suppression in the electrical hysteresis by using CaF2 dielectric layer for p-GaN MIS capacitors

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Ren, Bing; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2018-04-01

    The capacitance-voltage (C-V) hysteresis in the bidirectional measurements of the p-GaN metal-insulator-semiconductor (MIS) capacitor is suppressed by using a CaF2 dielectric layer and a post annealing treatment. The density of trapped charge states at the CaF2/p-GaN interface is dramatically reduced from 1.3 × 1013 cm2 to 1.1 × 1011/cm2 compared to that of the Al2O3/p-GaN interface with a large C-V hysteresis. It is observed that the disordered oxidized interfacial layer can be avoided by using the CaF2 dielectric. The downward band bending of p-GaN is decreased from 1.51 to 0.85 eV as a result of the low-density oxides-related trap states. Our work indicates that the CaF2 can be used as a promising dielectric layer for the p-GaN MIS structures.

  8. A new system for sodium flux growth of bulk GaN. Part I: System development

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Albrithen, Hamad; Suihkonen, Sami; Nakamura, Shuji; Speck, James S.

    2016-12-01

    Though several methods exist to produce bulk crystals of gallium nitride (GaN), none have been commercialized on a large scale. The sodium flux method, which involves precipitation of GaN from a sodium-gallium melt supersaturated with nitrogen, offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. We successfully developed a novel apparatus for conducting crystal growth of bulk GaN using the sodium flux method which has advantages with respect to prior reports. A key task was to prevent sodium loss or migration from the growth environment while permitting N2 to access the growing crystal. We accomplished this by implementing a reflux condensing stem along with a reusable capsule containing a hermetic seal. The reflux condensing stem also enabled direct monitoring of the melt temperature, which has not been previously reported for the sodium flux method. Furthermore, we identified and utilized molybdenum and the molybdenum alloy TZM as a material capable of directly containing the corrosive sodium-gallium melt. This allowed implementation of a crucible-free system, which may improve process control and potentially lower crystal impurity levels. Nucleation and growth of parasitic GaN ("PolyGaN") on non-seed surfaces occurred in early designs. However, the addition of carbon in later designs suppressed PolyGaN formation and allowed growth of single crystal GaN. Growth rates for the (0001) Ga face (+c-plane) were up to 14 μm/h while X-ray omega rocking (ω-XRC) curve full width half-max values were 731″ for crystals grown using a later system design. Oxygen levels were high, >1019 atoms/cm3, possibly due to reactor cleaning and handling procedures.

  9. GaAsP on GaP top solar cells

    NASA Technical Reports Server (NTRS)

    Mcneely, J. B.; Negley, G. H.; Barnett, A. M.

    1985-01-01

    GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency.

  10. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  11. Observation of decreasing resistivity of amorphous indium gallium zinc oxide thin films with an increasing oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Singh, Anup K.; Adhikari, Sonachand; Gupta, Rajeev; Deepak

    2017-01-01

    We have investigated the electrical resistivity behavior in amorphous indium gallium zinc oxide (a-IGZO) thin films. It is well known that resistivity increases as the film is deposited at a higher and higher oxygen partial pressure; we also record the same. However, in process we have discovered a remarkable region, in the oxygen deficient condition, that the resistivity shows an inverse behavior. This leads to the possibility that resistive films, suitable for thin film transistors, can also be obtained in oxygen deficient deposition conditions. Optical spectroscopic investigation could discern between a-IGZO films grown in oxygen deficient and oxygen rich conditions. The related resistivity behavior could be correlated to the presence of sub-bandgap states in films deposited in oxygen deficiency. These subgap states appear to be due to defects arising from local variations around the cations or oxygen atoms. The likely cause is an increase in Ga relative to In around O atom and the nature of cation-cation interaction when an oxygen atom is missing.

  12. First-principles study of the interaction of H2O with the GaSb (001) surface

    NASA Astrophysics Data System (ADS)

    Bermudez, V. M.

    2013-05-01

    The adsorption of H2O on the GaSb (001) surface, both clean and with pre-adsorbed H atoms, has been studied computationally using dispersion-corrected density functional theory. The model employed is the α-(4×3) reconstruction consisting of Ga-Sb dimers adsorbed on the Sb-terminated surface, a disordered version of which is believed to constitute the frequently observed Sb-rich (1×3) surface. On the clean surface, molecular adsorption of H2O at a coordinatively unsaturated Ga site is exothermic (ΔE = -0.57 eV), but dissociation of this adsorbed H2O is significantly endothermic (ΔE = +0.45 eV or more). Dissociation can form either a (HO)Ga-Sb(H) site involving a Ga-Sb dimer or a (H)Ga-O(H)-Sb bridge. Other reactions are also energetically feasible, depending on the bond strength of different inequivalent Ga-Sb dimers. The two structures have essentially the same energy, and both can undergo an exothermic reaction with a second H2O. For the (HO)Ga-Sb(H) site, this reaction leads to the breaking of the dimer bond and the adsorption of molecular water, while the (H)Ga-O(H)-Sb bridge transforms to (HO)Ga-O(H)-Sb with the release of H2. On the H-terminated surface, molecular adsorption of H2O can be suppressed and dissociative adsorption enhanced, which means that formation of an OH-terminated surface may be easier when starting with an H-terminated vs. a clean surface. The implications of these results for the growth of oxide/GaSb heterostructures via atomic layer deposition are discussed.

  13. Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier.

    PubMed

    Zhou, Xiaorun; Lu, Taiping; Zhu, Yadan; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Yang, Yongzhen; Chen, Yongkang; Xu, Bingshe

    2017-12-01

    Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H 2 ) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H 2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H 2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H 2 proportion further increases, stress relaxation and H 2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.

  14. GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates

    NASA Astrophysics Data System (ADS)

    Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.

    2018-05-01

    The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.

  15. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Jung-Hui, E-mail: jhtsai@nknucc.nknu.edu.tw

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which canmore » be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.« less

  16. InGaN stress compensation layers in InGaN/GaN blue LEDs with step graded electron injectors

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Gheshlaghi, N.; Sözen, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2018-04-01

    We investigate the effect of InGaN stress compensation layer on the properties of light emitting diodes based on InGaN/GaN multiple quantum well (MQW) structures with step-graded electron injectors. Insertion of an InGaN stress compensation layer between n-GaN and the step graded electron injector provides, among others, strain reduction in the MQW region and as a result improves epitaxial quality that can be observed by 15-fold decrease of V-pit density. We observed more uniform distribution of In between quantum wells in MQW region from results of electro- and photoluminescence measurement. These structural improvements lead to increasing of radiant intensity by a factor of 1.7-2.0 and enhancement of LED efficiency by 40%.

  17. Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Tamaki, Ryo; Okada, Yoshitaka

    2017-06-01

    We have investigated the performance of 10-layer stacked GaSb/GaAs quantum dot (QD) and quantum ring (QR) solar cells (SCs) having a type-II band alignment. For both SCs, the external quantum efficiency (EQE) increased in the longer wavelength region beyond GaAs bandedge wavelength of λ > 870 nm due to an additive contribution from GaSb/GaAs QD or QR layers inserted in the intrinsic region of p-i-n SC structure. The EQE of GaSb/GaAs QRSC was higher than that of QDSC at room temperature and the photoluminescence intensity from GaSb/GaAs QRs was stronger compared with GaSb/GaAs QDs. These results indicate that crystal quality of GaSb/GaAs QRs is superior to that of GaSb/GaAs QDs. Furthermore, a photocurrent production due to two-step photo-absorption via GaSb/GaAs QD states or QR states, ΔEQE was measured at low temperature and the ratio of two-step absorption to total carrier extraction defined as ΔEQE / (ΔEQE + EQE), was higher for GaSb/GaAs QRSC than that of QDSC. The ratio of GaSb/GaAs QRSC exceeds 80% over the wavelength region of λ = 950 - 1250 nm. This suggests that two-step absorption process is more dominant for carrier extraction from GaSb/GaAs QR structure.

  18. Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Tan, T. Y.; You, H.-M.; Gösele, U. M.

    1993-03-01

    We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.

  19. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial.

    PubMed

    Francisco, Cristina de Oliveira; Beltrame, Thomas; Ferraresi, Cleber; Parizotto, Nivaldo Antonio; Bagnato, Vanderlei Salvador; Borghi Silva, Audrey; Benze, Benedito Galvão; Porta, Alberto; Catai, Aparecida Maria

    2015-12-15

    Type 2 diabetes mellitus (DM) is responsible for a significant reduction in the quality of life due to its negative impact on functional capacity. Cardiopulmonary fitness impairment in DM patients has been associated with limited tissue oxygenation. Phototherapy is widely utilized to treat several disorders due to expected light-tissue interaction. This type of therapy may help to improve muscular oxygenation, thereby increasing aerobic fitness and functional capacity. This study is a randomized, double-blind, placebo-controlled crossover trial approved by the Ethics Committee of the Federal University of São Carlos and registered at ClinicalTrials.gov. Four separate tests will be performed to evaluate the acute effect of phototherapy. All participants will receive both interventions in random order: light-emitting diode therapy (LEDT) and placebo, with a minimum 14-day interval between sessions (washout period). Immediately after the intervention, participants will perform moderate constant workload cycling exercise corresponding to 80 % of the pulmonary oxygen uptake [Formula: see text] during the gas exchange threshold (GET). LEDT will be administered with a multidiode cluster probe (50 GaAIA LEDs, 850 ηm, 75 mW each diode, and 3 J per point) before each exercise session. Pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure will be measured using a computerized metabolic cart, a near-infrared spectrometer, an electrocardiogram, and a photoplethysmography system, respectively. The main objective of this study is to evaluate the acute effects of muscular pre-conditioning using LED phototherapy on pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure dynamics during dynamic moderate exercise. We hypothesize that phototherapy may be beneficial to optimize aerobic fitness in the DM population. Data will be published after the study is completed. Registered at ClinicalTrials.gov under trial number NCT01889784 (date

  20. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    NASA Astrophysics Data System (ADS)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.