Sample records for gaas atomic layer

  1. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  2. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  3. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Fedyukin, A. V.; Arsentyev, I. N.

    The aim of this study is to explore the structural and optical properties of single-crystal GaAs(100) doped with Cr atoms by burning them into the substrate at high temperatures. The diffusion of chromium into single-crystal GaAs(100) substrates brings about the formation of a thin (~20–40 μm) GaAs:Cr transition layer. In this case, chromium atoms are incorporated into the gallium-arsenide crystal lattice and occupy the regular atomic sites of the metal sublattice. As the chromium diffusion time is increased, such behavior of the dopant impurity yields changes in the energy structure of GaAs, a decrease in the absorption at free chargemore » carriers, and a lowering of the surface recombination rate. As a result, the photoluminescence signal from the sample is significantly enhanced.« less

  4. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy.

    PubMed

    Tong, C Z; Yoon, S F

    2008-09-10

    We have directly imaged the formation of a GaAs quantum ring (QR) using droplet epitaxy followed by annealing in arsenic ambient. Based on the atomic force micrograph measurement and the analysis of surface energy, we determine that the formation of self-assembled GaAs QRs is due to the gallium atom's diffusion and crystallization driven by the gradient of surface energy. The phenomenon that GaAs is etched by the gallium droplets is reported and analyzed. It has been demonstrated that the epitaxy layers, such as AlAs and InGaP, can be used as the etching stop layer and hence can be used to control the shape and height of the QRs.

  5. HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.

    2007-09-28

    The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopymore » cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.« less

  6. Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.

    2018-01-01

    In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.

  7. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al2O3/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-01

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al2O3. This AlN passivation incorporated nitrogen at the Al2O3/GaAs interface, improving the capacitance-voltage (C-V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C-V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (Dit). The Dit was reduced over the entire GaAs band gap. In particular, these devices exhibited Dit around the midgap of less than 4 × 1012 cm-2eV-1, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  8. Planar regions of GaAs (001) prepared by Ga droplet motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Changxi, E-mail: changxi.zheng@monash.edu; Tang, Wen-Xin; Jesson, David E., E-mail: jessonDE@cardiff.ac.uk

    2016-07-15

    The authors describe a simple method for obtaining planar regions of GaAs (001) suitable for surface science studies. The technique, which requires no buffer layer growth, atomic hydrogen source, or the introduction of As flux, employs controllable Ga droplet motion to create planar trail regions during Langmuir evaporation. Low-energy electron microscopy/diffraction techniques are applied to monitor the droplet motion and characterize the morphology and the surface reconstruction. It is found that the planar regions exhibit atomic flatness at the level of a high-quality buffer layer.

  9. Structural and electronic properties of isovalent boron atoms in GaAs

    NASA Astrophysics Data System (ADS)

    Krammel, C. M.; Nattermann, L.; Sterzer, E.; Volz, K.; Koenraad, P. M.

    2018-04-01

    Boron containing GaAs, which is grown by metal organic vapour phase epitaxy, is studied at the atomic level by cross-sectional scanning tunneling microscopy (X-STM) and spectroscopy (STS). In topographic X-STM images, three classes of B related features are identified, which are attributed to individual B atoms on substitutional Ga sites down to the second layer below the natural {110} cleavage planes. The X-STM contrast of B atoms below the surface reflects primarily the structural modification of the GaAs matrix by the small B atoms. However, B atoms in the cleavage plane have in contrast to conventional isovalent impurities, such as Al and In, a strong influence on the local electronic structure similar to donors or acceptors. STS measurements show that B in the GaAs {110} surfaces gives rise to a localized state short below the conduction band (CB) edge while in bulk GaAs, the B impurity state is resonant with the CB. The analysis of BxGa1-xAs/GaAs quantum wells reveals a good crystal quality and shows that the incorporation of B atoms in GaAs can be controlled along the [001] growth direction at the atomic level. Surprisingly, the formation of the first and fourth nearest neighbor B pairs, which are oriented along the <110 > directions, is strongly suppressed at a B concentration of 1% while the third nearest neighbor B pairs are found more than twice as often than expected for a completely spatially random pattern.

  10. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al{sub 2}O{sub 3} gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Takeshi, E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, Noboru; Osada, Takenori

    2015-08-15

    This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resultingmore » MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.« less

  11. Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs1-xNx by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about ximp1 = 0.38% and ximp2 = 0.76%. The GaAs1-xNx layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs1-xNx samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice by FLA for ximp1 = 0.38% and ximp2 = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.

  12. Multilayer self-organization of InGaAs quantum wires on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zhiming M.; Kunets, Vasyl P.; Xie, Yanze Z.; Schmidbauer, Martin; Dorogan, Vitaliy G.; Mazur, Yuriy I.; Salamo, Gregory J.

    2010-12-01

    Molecular-Beam Epitaxy growth of multiple In 0.4Ga 0.6As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In 0.4Ga 0.6As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In 0.4Ga 0.6As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.

  13. Dielectric functions, chemical and atomic compositions of the near surface layers of implanted GaAs by In+ ions

    NASA Astrophysics Data System (ADS)

    Kulik, M.; Kołodyńska, D.; Bayramov, A.; Drozdziel, A.; Olejniczak, A.; Żuk, J.

    2018-06-01

    The surfaces of (100) GaAs were irradiated with In+ ions. The implanted samples were isobaric annealed at 800 °C and then of dielectric function, the surface atomic concentrations of atoms and also the chemical composition of the near surface layers in these implanted semiconductor samples were obtained. The following investigation methods were used: spectroscopic ellipsometry (SE), Rutherford backscattering spectrometry analyses (RBSA) and X-ray photoelectron spectroscopy (XPS) in the study of the above mentioned quantities, respectively. The change of the shape spectra of the dielectric functions at about 3.0 eV phonon energy, diffusion of In+ ions as well as chemical composition changes were observed after ion implantation and the thermal treatment. Due to displacement of Ga ions from GaAs by the In+ ions the new chemical compound InAs was formed. The relative amounts Ga2O3 and As2O3 ratio increase in the native oxide layers with the fluences increase after the thermal treatment of the samples. Additionally, it was noticed that the quantities of InO2 increase with the increasing values of the irradiated ions before thermal treatment.

  14. Heavily doped GaAs:Te layers grown by MOVPE using diisopropyl telluride as a source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniltsev, V. M.; Demidov, E. V.; Drozdov, M. N.

    2016-11-15

    The capabilities of GaAs epitaxial layers extremely heavily doped with tellurium by metal-organic vapor-phase epitaxy using diisopropyl telluride as a source are studied. It is shown that tellurium incorporation into GaAs occurs to an atomic concentration of 10{sup 21} cm{sup –3} without appreciable diffusion and segregation effects. Good carrier concentrations (2 × 10{sup 19} cm{sup –3}) and specific contact resistances of non-alloyed ohmic contacts (1.7 × 10{sup –6} Ω cm{sup 2}) give grounds to use such layers to create non-alloyed ohmic contacts in electronic devices. A sharp decrease in the electrical activity of Te atoms, a decrease in the electronmore » mobility, and an increase in the contact resistance at atomic concentrations above 2 × 10{sup 20} cm{sup –3} are detected.« less

  15. Effect of thermal annealing on the photoluminescence of structures with InGaAs/GaAs quantum wells and a low-temperature GaAs layer δ-doped with Mn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalentyeva, I. L.; Vikhrova, O. V., E-mail: istery@rambler.ru; Danilov, Yu. A.

    2016-11-15

    The effects of isochronal thermal annealing (at 325–725°C) on the radiative properties of InGaAs/GaAs nanoheterostructures containing a low-temperature GaAs layer δ-doped with Mn grown by laser deposition are studied. A decrease in the photoluminescence intensity and increase in the ground transition energy are observed upon thermal impact for quantum wells located near the low-temperature GaAs layer. The distribution of Mn atoms in the initial and annealed structures is obtained by secondary-ion mass spectrometry. A qualitative model of the observed effects of thermal annealing on the radiative properties of the structures is discussed; this model takes into account two main processes:more » diffusion of point defects (primarily gallium vacancies) from the GaAs coating layer deep into the structure and Mn diffusion in both directions by the dissociation mechanism. Magnetization studies show that, as a result of thermal annealing, an increase in the proportion of the ferromagnetic phase at room temperature (presumably, MnAs clusters) in the low-temperature GaAs coating layer takes place.« less

  16. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al{sub 2}O{sub 3}/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, T., E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, N.; Osada, T.

    2014-07-21

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap ofmore » less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.« less

  17. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  18. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-01

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2× the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  19. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less

  20. Nanostructuring-induced modification of optical properties of p-GaAs (1 0 0)

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2009-10-01

    A pulsed anodic etching method has been utilized for nanostructuring of p-type GaAs (1 0 0) surface, using HCl-based solution as electrolyte. The resulting porous GaAs layer is characterized by atomic force microscopy (AFM), room temperature photoluminescence (PL), Raman spectroscopy and optical reflectance measurements. AFM imaging reveals that the porous GaAs layer is consisted of a pillar-like of few nm in width distributed between more-reduced size nanostructures. In addition to the “infrared” PL band of un-etched GaAs, a strong “green” PL band is observed in the etched sample. The broad visible PL band of a high-energy (3.82 eV) excitation is found to compose of two PL band attributed to excitons confinement in two different sizes distribution of GaAs nanocrystals. The quantum confinement effects in GaAs nanocrystallites is also evidenced from Raman spectroscopy through the pronounced appearance of the transverse optical (TO) phonon line in the spectra of the porous sample. Porosity-induced a significant reduction of the specular reflection, in the spectral range (400-800 nm), is also demonstrated.

  1. High-resolution depth profile of the InGaP-on-GaAs heterointerface by FE-AES and its relationship to device properties

    NASA Astrophysics Data System (ADS)

    Ichikawa, O.; Fukuhara, N.; Hata, M.; Nakano, T.; Sugiyama, M.; Shimogaki, Y.; Nakano, Y.

    2007-01-01

    At InGaP-on-GaAs heterointerface, transition layer is formed during metalorganic vapor phase epitaxy (MOVPE) growth that can affect device properties. Many studies of this transition layer have been done but the characterization methods used are not direct measures of the atomic structure at the heterointerface. In this study, we investigated the abruptness and thickness of the InGaP-on-GaAs transition layers by field-emission Auger electron spectroscopy, by which a depth profile with a resolution of abruptness of 30 Å or below can be obtained. The group V switching position relative to that of In goes deeper into the GaAs with increasing PH 3 supply, suggesting an initial, quick replacement of As atoms with P atoms followed by a slow P diffusion into the bulk GaAs. Changes of abruptness of the As or P profiles at the heterointerface with varying PH 3 supply on the GaAs surface are not observed. Furthermore, we evaluated the effect of the GaAsP-like transition layers on the turn-on voltage of an InGaP emitter HBT. A linear relationship is shown between the shift of the group V switching position and the HBT turn-on voltage, which is consistent with the assumption that current flow decreases at the transition layer. Calculated difference of conduction band energy between InGaP and the transition layer is 0.15 eV for the sample with ordered InGaP and 0.04 eV for disordered InGaP, is consistent with the difference of the band gap energies between ordered and disordered InGaP. Calculated P compositions are 0.52 and 0.35, respectively.

  2. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  3. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard Jr, Lawrence Frederick

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize themore » binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION« less

  4. Sulfur doping of GaAs with (NH4)2Sx solution

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam

    1999-01-01

    A novel technique for sulfur doping to GaAs was demonstrated. The surface of GaAs was treated with (NH4)2Sx solution, subsequent to annealing using either furnace or rapid thermal processing. Sulfur atoms adsorbed at the surface of GaAs during the (NH4)2Sx treatment diffuse into GaAs during the annealing. The diffusion profiles of sulfur in both types of annealing treatments show a concave shape from the GaAs surface. Diffusion constants of sulfur determined using the Boltzmann-Matano technique increase with the decrease of sulfur concentration via the depth from the surface of GaAs. This suggests that immobile sulfur donor SAs+ forms at the near surface interacts with a Ga divacancy, and results in the production of mobile As interstitials, IAs. The IAs moves fast toward the inside of GaAs and kickout the SAs+ donor, producing a fast diffusing species of interstitial S atoms. The diffusion coefficients of sulfur determined are 2.5×10-14 cm2/s at 840 °C and 5×10-12 cm2/s at 900 °C. The sulfur doping technique is applied to the fabrication of metal-semiconductor field-effect transistors (MESFETs). The MESFETs with 1.0 μm gate length exhibit transconductance of 190 mS/mm, demonstrating the applicability of this technique to the formation of active channel layer of MESFETs.

  5. Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ok, Young-Woo; Choi, Chel-Jong; Seong, Tae-Yeon; Uesugi, K.; Suemune, I.

    2001-07-01

    Detailed transmission electron microscopy (TEM) and transmission electron diffraction (TED) examination has been made of metalorganic molecular beam epitaxial GaAsN layers grown on (001) GaAs substrates. TEM results show that lateral composition modulation occurs in the GaAs1-xNx layer (x 6.75%). It is shown that increasing N composition and Se (dopant) concentration leads to poor crystallinity. It is also shown that the addition of Se increases N composition. Atomic force microscopy (AFM) results show that the surfaces of the samples experience a morphological change from faceting to islanding, as the N composition and Se concentration increase. Based on the TEM and AFM results, a simple model is given to explain the formation of the lateral composition modulation.

  6. Effects of in-situ UV irradiation on the uniformity and optical properties of GaAsBi epi-layers grown by MBE

    NASA Astrophysics Data System (ADS)

    Beaton, Daniel A.; Steger, M.; Christian, T.; Mascarenhas, A.

    2018-02-01

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs1-xBix epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  7. Effects of in-situ UV irradiation on the uniformity and optical properties of GaAsBi epi-layers grown by MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaton, Daniel A.; Steger, M.; Christian, T.

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  8. Effects of in-situ UV irradiation on the uniformity and optical properties of GaAsBi epi-layers grown by MBE

    DOE PAGES

    Beaton, Daniel A.; Steger, M.; Christian, T.; ...

    2017-12-14

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  9. Diffusion and interface evolution during the atomic layer deposition of TiO{sub 2} on GaAs(100) and InAs(100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Liwang; Gougousi, Theodosia, E-mail: gougousi@umbc.edu

    2016-01-15

    Atomic layer deposition is used to form TiO{sub 2} films from tetrakis dimethyl amino titanium and H{sub 2}O on native oxide GaAs(100) and InAs(100) surfaces. The evolution of the film/substrate interface is examined as a function of the deposition temperature (100–325 °C) using ex situ x-ray photoelectron spectroscopy. An increase in the deposition temperature up to 250 °C leads to enhancement of the native oxide removal. For depositions at 300 °C and above, interface reoxidation is observed during the initial deposition cycles but when the films are thicker than 3 nm, the surface oxides are removed steadily. Based on these observations, two distinct filmmore » growth regimes are identified; up to 250 °C, layer-by-layer dominates while at higher temperatures island growth takes over. Angle resolved x-ray photoelectron spectroscopy measurements performed on 3 nm TiO{sub 2} film deposited at 325 °C on both surfaces demonstrates a very important difference between the two substrates: for GaAs the native oxides remaining in the stack are localized at the interface, while for InAs(100), the indium oxides are mixed in the TiO{sub 2} film.« less

  10. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  11. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englhard, M.; Klemp, C.; Behringer, M.

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-raymore » diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.« less

  12. Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene

    DTIC Science & Technology

    2015-07-16

    SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report

  13. ALD Al2O3 passivation of Lg = 100 nm metamorphic InAlAs/InGaAs HEMTs with Si-doped Schottky layers on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Chang, Hudong; Wang, Shengkai; Niu, Jiebin; Liu, Honggang

    2017-12-01

    In0.52Al0.48As/In0.7Ga0.3As metamorphic high-electron-mobility transistors (mHEMTs) on GaAs substrates have been demonstrated. The devices feature an epitaxial structure with Si-doped InP/In0.52Al0.48As Schottky layers, together with an atomic layer deposition (ALD) Al2O3 passivation process. In comparison to the GaAs mHEMTs with plasma enhanced chemical vapor deposition (PECVD) SiN passivation, the devices with ALD Al2O3 passivation exhibit more than one order of magnitude lower gate leakage current (Jg) and much lower contact resistance (RC) and specific contact resistivity (ρC). 100-nm gate length (Lg) In0.52Al0.48As/In0.7Ga0.3As mHEMTs with Si-doped InP/In0.52Al0.48As Schottky layers and ALD Al2O3 passivation exhibit excellent DC and RF characteristics, such as a maximum oscillation frequency (fmax) of 388.2 GHz.

  14. Modified energetics and growth kinetics on H-terminated GaAs (110)

    NASA Astrophysics Data System (ADS)

    Galiana, B.; Benedicto, M.; Díez-Merino, L.; Lorbek, S.; Hlawacek, G.; Teichert, C.; Tejedor, P.

    2013-10-01

    Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As4, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å2 measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As4 molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.

  15. Effects of local field and inherent strain in reflectance anisotropy spectra of A{sup III}B{sup V} semiconductors with naturally oxidized surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-28

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of localmore » field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.« less

  16. Effects of local field and inherent strain in reflectance anisotropy spectra of AIIIBV semiconductors with naturally oxidized surfaces

    NASA Astrophysics Data System (ADS)

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-01

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.

  17. Atomic-scale structural and electronic properties of SrTiO3/GaAs interfaces: A combined STEM-EELS and first-principles study

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar

    2017-07-01

    The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.

  18. Deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems: Theoretical calculations and experimental measurements

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Pelzel, Rodney I.; Nosho, Brett Z.; Weinberg, W. Henry; Maroudas, Dimitrios

    2001-09-01

    A comprehensive, quantitative analysis is presented of the deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems. The analysis combines a hierarchical theoretical approach with experimental measurements. Continuum linear elasticity theory is linked with atomic-scale calculations of structural relaxation for detailed theoretical studies of deformation in systems consisting of InAs thin films on thin GaAs(111)A substrates that are mechanically unconstrained at their bases. Molecular-beam epitaxy is used to grow very thin InAs films on both thick and thin GaAs buffer layers on epi-ready GaAs(111)A substrates. The deformation state of these samples is characterized by x-ray diffraction (XRD). The interplanar distances of thin GaAs buffer layers along the [220] and [111] crystallographic directions obtained from the corresponding XRD spectra indicate clearly that thin buffer layers deform parallel to the InAs/GaAs(111)A interfacial plane, thus aiding in the accommodation of the strain induced by lattice mismatch. The experimental measurements are in excellent agreement with the calculated lattice interplanar distances and the corresponding strain fields in the thin mechanically unconstrained substrates considered in the theoretical analysis. Therefore, this work contributes direct evidence in support of our earlier proposal that thin buffer layers in layer-by-layer semiconductor heteroepitaxy exhibit mechanical behavior similar to that of compliant substrates [see, e.g., B. Z. Nosho, L. A. Zepeda-Ruiz, R. I. Pelzel, W. H. Weinberg, and D. Maroudas, Appl. Phys. Lett. 75, 829 (1999)].

  19. Electrical and band structural analyses of Ti1-x Al x O y films grown by atomic layer deposition on p-type GaAs

    NASA Astrophysics Data System (ADS)

    An, Youngseo; Mahata, Chandreswar; Lee, Changmin; Choi, Sungho; Byun, Young-Chul; Kang, Yu-Seon; Lee, Taeyoon; Kim, Jiyoung; Cho, Mann-Ho; Kim, Hyoungsub

    2015-10-01

    Amorphous Ti1-x Al x O y films in the Ti-oxide-rich regime (x  <  0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1-x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1-x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1-x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.

  20. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  1. Image quality of a pixellated GaAs X-ray detector

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Makham, S.; Bourgoin, J. C.; Mauger, A.

    2007-02-01

    X-ray detection requires materials with large atomic numbers Z in order to absorb the radiation efficiently. In case of X-ray imaging, fluorescence is a limiting factor for the spatial resolution and contrast at energies above the kα threshold. Since both the energy and yield of the fluorescence of a given material increase with the atomic number, there is an optimum value of Z. GaAs, which can now be epitaxially grown as self-supported thick layers to fulfil the requirements for imaging (good homogeneity of the electronic properties) corresponds to this optimum. Image performances obtained with this material are evaluated in terms of line spread function and modulation transfer function, and a comparison with CsI is made. We evaluate the image contrast obtained for a given object contrast with GaAs and CsI detectors, in the photon energy range of medical applications. Finally, we discuss the minimum object size, which can be detected by these detectors in of mammography conditions. This demonstrates that an object of a given size can be detected using a GaAs detector with a dose at least 100 times lower than using a CsI detector.

  2. Atomic-scale structure and electronic properties of GaN/GaAs superlattices

    NASA Astrophysics Data System (ADS)

    Goldman, R. S.; Feenstra, R. M.; Briner, B. G.; O'Steen, M. L.; Hauenstein, R. J.

    1996-12-01

    We have investigated the atomic-scale structure and electronic properties of GaN/GaAs superlattices produced by nitridation of a molecular beam epitaxially grown GaAs surface. Using cross-sectional scanning tunneling microscopy (STM) and spectroscopy, we show that the nitrided layers are laterally inhomogeneous, consisting of groups of atomic-scale defects and larger clusters. Analysis of x-ray diffraction data in terms of fractional area of clusters (determined by STM), reveals a cluster lattice constant similar to bulk GaN. In addition, tunneling spectroscopy on the defects indicates a conduction band state associated with an acceptor level of NAs in GaAs. Therefore, we identify the clusters and defects as nearly pure GaN and NAs, respectively. Together, the results reveal phase segregation in these arsenide/nitride structures, in agreement with the large miscibility gap predicted for GaAsN.

  3. Structural and Optical Studies of ZnCdSe/ZnSe/ZnMgSSe Separate Confinement Heterostructures with Different Buffer Layers

    NASA Astrophysics Data System (ADS)

    Tu, Ru-Chin; Su, Yan-Kuin; Huang, Ying-Sheng; Chen, Giin-Sang; Chou, Shu-Tsun

    1998-09-01

    Detailed structural and optical studies of ZnCdSe/ZnSe/ZnMgSSe separate confinementheterostructures (SCH) grown on ZnSe, ZnSe/ZnSSe strained-layer superlattices (SLS),and GaAs buffer layers at the II VI/GaAs interface have been carried out by employingtransmission electron microscopy, variable temperature photoluminescence (PL), andcontactless electroreflectance (CER) measurements. A significant improvement onthe defect reduction and the optical quality has been observed by using either theZnSe/ZnSSe SLS or GaAs as the buffer layers when compared to that of the sample usingonly ZnSe as the buffer layer. However, the sample grown with the SLS buffer layersreveals a room temperature PL intensity higher than that of the sample grown witha GaAs buffer layer, which may still suffer from the great ionic differences betweenthe II V and III V atoms. Using 15 K CER spectra, we have also studied variousexcitonic transitions originating from strained Zn0.80Cd0.20Se/ZnSe single quantumwell in SCH with different buffer layers. An analysis of the CER spectra has ledto the identification of various excitonic transitions, mnH (L), between the mthconduction band state and the nth heavy (light)-hole band state. An excellentagreement between experiments and theoretical calculations based on the envelopefunction approximation model has been achieved.

  4. Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, S.; Dong, H.; Hawkins, J. M.

    2012-04-02

    The Al{sub 2}O{sub 3}/GaAs and HfO{sub 2}/GaAs interfaces after atomic layer deposition are studied using in situ monochromatic x-ray photoelectron spectroscopy. Samples are deliberately exposed to atmospheric conditions and interfacial oxide re-growth is observed. The extent of this re-growth is found to depend on the dielectric material and the exposure temperature. Comparisons with previous studies show that ex situ characterization can result in misleading conclusions about the interface reactions occurring during the metal oxide deposition process.

  5. Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.

    2017-07-01

    The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.

  6. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.

    PubMed

    Park, Suk In; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-18

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  7. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications

    NASA Astrophysics Data System (ADS)

    In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-01

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  8. Single quantum dot emission by nanoscale selective growth of InAs on GaAs: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, F.; Arciprete, F.; Placidi, E.

    2008-12-08

    We report on single dot microphotoluminescence ({mu}PL) emission at low temperature and low power from InAs dots grown by molecular beam epitaxy in nanoscale holes of a SiO{sub 2} mask deposited on GaAs(001). By comparing atomic force microscopy measurements with {mu}PL data, we show that the dot sizes inside the nanoholes are smaller than those of the dots nucleated on the extended GaAs surface. PL of dots spans a wide energy range depending on their size and on the thickness and composition of the InGaAs capping layer. Time-resolved PL experiments demonstrate a negligible loss of radiative recombination efficiency, proving highlymore » effective in the site-controlled dot nucleation.« less

  9. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  10. Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide

    NASA Astrophysics Data System (ADS)

    Mehdi, H.; Monier, G.; Hoggan, P. E.; Bideux, L.; Robert-Goumet, C.; Dubrovskii, V. G.

    2018-01-01

    The high density of interface and surface states that cause the strong Fermi pinning observed on GaAs surfaces can be reduced by depositing GaN ultra-thin films on GaAs. To further improve this passivation, it is necessary to investigate the nitridation phenomena by identifying the distinct steps occurring during the process and to understand and quantify the growth kinetics of GaAs nitridation under different conditions. Nitridation of the cleaned GaAs substrate was performed using N2 plasma source. Two approaches have been combined. Firstly, an AR-XPS (Angle Resolved X-ray Photoelectron Spectroscopy) study is carried out to determine the chemical environments of the Ga, As and N atoms and the composition depth profile of the GaN thin film which allow us to summarize the nitridation process in three steps. Moreover, the temperature and time treatment have been investigated and show a significant impact on the formation of the GaN layer. The second approach is a refined growth kinetic model which better describes the GaN growth as a function of the nitridation time. This model clarifies the exchange mechanism of arsenic with nitrogen atoms at the GaN/GaAs interface and the phenomenon of quasi-saturation of the process observed experimentally.

  11. Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanoto, H.; Loke, W. K.; Yoon, S. F.

    In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less

  12. Structures, Properties and Defects of SrTiO3/GaAs Hetero-interfaces

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Öğüt, Serdar; Klie, Robert

    SrTiO3 thin film can be epitaxially grown on GaAs substrate and used as a platform for growing other oxides to create functional metal-oxide-semiconductor devices, where a high-quality SrTiO3/GaAs interface is essential. We studied the structural and electronic properties of SrTiO3/GaAs hetero-interfaces at atomic level using scanning transmission electron microscopy and first-principles calculations. Our results suggest the preferred termination of GaAs (001) is significantly dependent on the oxygen concentration in the first oxide layer. The favorable interface structure is characterized as oxygen-deficient SrO in contact with arsenic and is observed in both experiment and simulation. The electronic properties are calculated and found to be tunable by interfacial defects such as oxygen, gallium and arsenic vacancies. This work was supported by the National Science Foundation (Grant No. DMR-1408427). This work made use of instruments in the Electron Microscopy Service and the High Performance Computing Clusters at University of Illinois at Chicago.

  13. Surface Chemistry and Interface Evolution during the Atomic Layer Deposition of High-k Metal Oxides on InAs(100) and GaAs(100) Surfaces

    NASA Astrophysics Data System (ADS)

    Henegar, Alex J.

    Device scaling has been key for creating faster and more powerful electronic devices. Integral circuit components like the metal-oxide semiconductor field-effect transistor (MOSFET) now rely on material deposition techniques, like atomic layer deposition (ALD), that possess atomic-scale thickness precision. At the heart of the archetypal MOSFET is a SiO2/Si interface which can be formed to near perfection. However when the thickness of the SiO 2 layer is shrunk down to a few nanometers several complications arise like unacceptably high leakage current and power consumption. Replacing Si with III-V semiconductors and SiO2 with high-k dielectric materials is appealing but comes with its own set of challenges. While SiO2 is practically defect-free, the native oxides of III-Vs are poor dielectrics. In this dissertation, the surface chemistry and interface evolution during the ALD of high-k metal oxides on Si(100), GaAs(100) and InAs(100) was studied. In particular, the surface chemistry and crystallization of TiO2 films grown on Si(100) was investigated using transmission Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Large, stable, and highly reactive anatase TiO2 grains were found to form during a post-deposition heat treatment after the ALD at 100 °C. The remainder of this work was focused on the evolution of the interfacial oxides during the deposition of TiO2 and Al2O3 on InAs(100) and GaAs(100) and during the deposition of Ta2O 5 on InAs(100). In summary the ALD precursor type, deposited film, and substrate had an influence in the evolution of the native oxides. Alkyl amine precursors fared better at removing the native oxides but the deposited films (TiO2 and Ta2O5) were susceptible to significant native oxide diffusion. The alkyl precursor used for the growth of Al 2O3 was relatively ineffective at removing the oxides but was a good diffusion barrier. In all cases the native oxides were more stable on GaAs compared to InAs. This project utilized a new methodology for the detection of arsenic oxide diffusion using transmission FTIR, and expanded the knowledge of the complexities of the high-k/III-V interface.

  14. Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off

    NASA Astrophysics Data System (ADS)

    Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo

    2015-03-01

    We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.

  15. Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.

    PubMed

    Darbandi, A; Kavanagh, K L; Watkins, S P

    2015-08-12

    GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.

  16. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  17. Influence of the local environment on Mn acceptors in GaAs

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Gohlke, David; Benjamin, Anne; Gupta, Jay A.

    2015-04-01

    As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending.

  18. Thermally activated decomposition of (Ga,Mn)As thin layer at medium temperature post growth annealing

    NASA Astrophysics Data System (ADS)

    Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.

    2016-05-01

    The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.

  19. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  20. Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Guo-Wei; Xu, Ying-Qiang; Xing, Jun-Liang; Xiang, Wei; Tang, Bao; Zhu, Yan; Ren, Zheng-Wei; He, Zhen-Hong; Niu, Zhi-Chuan

    2013-07-01

    InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al0.75Ga0.25Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al0.75Ga0.25Sb buffer were optimized. Al0.75Ga0.25Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al0.75Ga0.25Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 Å. The electron mobility has reached as high as 27 000 cm2/Vs with a sheet density of 4.54 × 1011/cm2 at room temperature.

  1. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  2. Formation and photoluminescence of GaAs{sub 1−x}N{sub x} dilute nitride achieved by N-implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kun, E-mail: k.gao@hzdr.de; Helm, M.; Technische Universität Dresden, 01062 Dresden

    2014-07-07

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs{sub 1−x}N{sub x} by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about x{sub imp1} = 0.38% and x{sub imp2} = 0.76%. The GaAs{sub 1−x}N{sub x} layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs{sub 1−x}N{sub x} samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice bymore » FLA for x{sub imp1} = 0.38% and x{sub imp2} = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.« less

  3. MBE growth and processing of III/V-nitride semiconductor thin film structures: Growth of gallium indium arsenic nitride and nano-machining with focused ion beam and electron beam

    NASA Astrophysics Data System (ADS)

    Park, Yeonjoon

    The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.

  4. Isolating GaSb membranes grown metamorphically on GaAs substrates using highly selective substrate removal etch processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrova, Olga; Balakrishnan, Ganesh

    2017-02-24

    The etch rates of NH 4OH:H 2O 2 and C 6H 8O 7:H 2O 2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH 4OH:H 2O 2 solution has a greater etch rate differential for the GaSb/GaAs material system than C 6H 8O 7:H 2O 2 solution. The selectivity of NH 4OH:H 2O 2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11471 ± 1691 whereas that of C 6H 8O 7:H 2O 2 has been measured upmore » to 143 ± 2. The etch contrast has been verified by isolating 2 μm thick GaSb epi-layers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high-resolution X-Ray diffraction (HR-XRD) and atomic force microscopy (AFM).« less

  5. Interface doping of conjugated organic films by means of diffusion of atomic components from the surfaces of semiconductors and of metal oxides.

    PubMed

    Komolov, A S; Akhremtchik, S N; Lazneva, E F

    2011-08-15

    The paper reports the results on the interface formation of 5-10 nm thick conjugated layers of Cu-phthalocyanine (CuPc) with a number of solid surfaces: polycrystalline Au, (SiO(2))n-Si, ZnO(0 0 0 1), Si(1 0 0), Ge(1 1 1), CdS(0 0 0 1) and GaAs(1 0 0). The results were obtained using Auger electron spectroscopy (AES) and low-energy target current electron spectroscopy (TCS). The organic overlayers were thermally deposited in situ in UHV onto substrate surfaces. The island-like organic deposits were excluded from the analysis so that only uniform organic deposits were considered. In the cases of polycrystalline Au, Si(1 0 0) and Ge(1 1 1) substrates the AES peaks of the substrate material attenuated down to the zero noise level upon the increase of the CuPc film thickness of 8-10 nm. The peaks corresponding to oxygen atoms in the case of SiO(2) substrate, and to atoms from the ZnO, GaAs and CdS substrates were clearly registered in the AES spectra of the 8-10 nm thick CuPc deposits. The relative concentration of the substrate atomic components diffused into the film was different from their relative concentration at the pure substrate surface. The concentration of the substrate dopant atoms in the CuPc film was estimated as one atom per one CuPc molecule. Using the target current electron spectroscopy, it was shown that the substrate atoms admixed in the CuPc film account for the appearance of a new peak in the density of unoccupied electronic states. Formation of intermediate TCS spectra until the CuPc deposit reaches 2-3 nm was observed in the cases of GaAs(1 0 0), ZnO(0 0 0 1), Ge(1 1 1) surfaces. The intermediate spectra show a less pronounced peak structure different from the one typical for the CuPc films. It was suggested that the intermediate layer was formed by the CuPc molecules fully or partially decomposed due to the interaction with the relatively reactive semiconductor surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors with atomic layer deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Yang, T.; Sharifi, H.; Kim, S. K.; Xuan, Y.; Shen, T.; Mohammadi, S.; Ye, P. D.

    2007-11-01

    Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with ex situ atomic-layer-deposited Al2O3 as gate dielectrics are studied. Maximum drain currents of 211 and 263mA/mm are obtained for 1μm gate-length Al2O3 MOS-HEMTs with 3 and 6nm thick gate oxide, respectively. C-V characteristic shows negligible hysteresis and frequency dispersion. The gate leakage current density of the MOS-HEMTs is 3-5 orders of magnitude lower than the conventional HEMTs under similar bias conditions. The drain current on-off ratio of MOS-HEMTs is ˜3×103 with a subthreshold swing of 90mV/decade. A maximum cutoff frequency (fT) of 27.3GHz and maximum oscillation frequency (fmax) of 39.9GHz and an effective channel mobility of 4250cm2/Vs are measured for the 1μm gate-length Al2O3 MOS-HEMT with 6nm gate oxide. Hooge's constant measured by low frequency noise spectral density characterization is 3.7×10-5 for the same device.

  7. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    PubMed

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the <110> direction, which is theoretically predicted to produce a high Curie temperature.

  8. Heteroepitaxial growth of Cd(1-x)Mn(x)Te on GaAs by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar; Stirn, Richard J.

    1987-01-01

    In this letter, preliminary results are reported of heteroepitaxial growth of the dilute magnetic semiconductor alloy Cd(1-x)Mn(x)Te on GaAs by metalorganic chemical vapor deposition. Dimethylcadmium (DMCd), diethyltellurium (DETe), and tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) were used as source materials. The TCPMn had to be heated to as high as 140 C to provide the required vapor pressure. Films with Mn atomic fractions up to 30 percent have been grown over the temperature range 410-450 C. Results of optical absorption/transmission, photoluminescence, and X-ray diffraction measurements are presented along with a scanning electron micrograph showing good surface morphology of the grown layers.

  9. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  10. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  11. Demonstrating antiphase domain boundary-free GaAs buffer layer on zero off-cut Si (0 0 1) substrate for interfacial misfit dislocation GaSb film by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2017-08-01

    High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1  ×  106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.

  12. STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Daughton, David; Gupta, Jay

    2009-03-01

    Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)

  13. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  14. Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×6) surface

    NASA Astrophysics Data System (ADS)

    Shimoda, M.; Tsukamoto, S.; Koguchi, N.

    1998-01-01

    Core-level X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) have been applied to investigate the sulfur-terminated GaAs(001)-(2×6) surface. No forward scattering peaks were found in the XPD pattern of S 2s emission, indicating that adsorbed S atoms form a single layer on the GaAs substrate. In accordance with the zincblende structure of GaAs, the AED patterns of Ga L 3M 45M 45 and As L 3M 45M 45 emission almost coincide with each other, if one of the emissions is rotated by 90° around the [001] direction. This fact suggests that the diffraction patterns mainly reflect the structure of the bulk GaAs crystal. In order to investigate the surface structure, AED patterns in large polar angles were analyzed with single scattering cluster (SSC) calculations. The best result was obtained with a model cluster where the S-S bond length was set at 0.28 nm, 30% shorter than the corresponding length of the ideal (1×1) structure, and the adsorption height was set at 0.12-0.13 nm, 10% shorter than the ideal interlayer distance of GaAs(001) planes. These values are in good agreement with the results of STM measurements. A modulation of the inter-dimer distance was also found, suggesting the existence of missing dimers.

  15. Lattice constant grading in the Al.sub.y Ca.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOEpatents

    Moon, Ronald L.

    1981-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5.mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photovoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of the growing layer.

  16. Lattice constant grading in the Al.sub.y Ga.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOEpatents

    Moon, Ronald L.

    1980-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5 .mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photolvoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of growing layer.

  17. Optical design of ZnO-based antireflective layers for enhanced GaAs solar cell performance.

    PubMed

    Lee, Hye Jin; Lee, Jae Won; Kim, Hee Jun; Jung, Dae-Han; Lee, Ki-Suk; Kim, Sang Hyeon; Geum, Dae-myeong; Kim, Chang Zoo; Choi, Won Jun; Baik, Jeong Min

    2016-01-28

    A series of hierarchical ZnO-based antireflection coatings with different nanostructures (nanowires and nanosheets) is prepared hydrothermally, followed by means of RF sputtering of MgF2 layers for coaxial nanostructures. Structural analysis showed that both ZnO had a highly preferred orientation along the 〈0001〉 direction with a highly crystalline MgF2 shell coated uniformly. However, a small amount of Al was present in nanosheets, originating from Al diffusion from the Al seed layer, resulting in an increase of the optical bandgap. Compared with the nanosheet-based antireflection coatings, the nanowire-based ones exhibited a significantly lower reflectance (∼2%) in ultraviolet and visible light wavelength regions. In particular, they showed perfect light absorption at wavelength less than approximately 400 nm. However, a GaAs single junction solar cell with nanosheet-based antireflection coatings showed the largest enhancement (43.9%) in power conversion efficiency. These results show that the increase of the optical bandgap of the nanosheets by the incorporation of Al atoms allows more photons enter the active region of the solar cell, improving the performance.

  18. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.

    2013-08-01

    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  19. Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence

    NASA Astrophysics Data System (ADS)

    Kang, M.; Jeon, S.; Jen, T.; Lee, J.-E.; Sih, V.; Goldman, R. S.

    2017-07-01

    We introduce a novel approach to the seamless integration of plasmonic nanoparticle (NP) arrays into semiconductor layers and demonstrate their enhanced photoluminescence (PL) efficiency. Our approach utilizes focused ion beam-induced self-assembly of close-packed arrays of Ga NPs with tailorable NP diameters, followed by overgrowth of GaAs layers using molecular beam epitaxy. Using a combination of PL spectroscopy and electromagnetic computations, we identify a regime of Ga NP diameter and overgrown GaAs layer thickness where NP-array-enhanced absorption in GaAs leads to enhanced GaAs near-band-edge (NBE) PL efficiency, surpassing that of high-quality epitaxial GaAs layers. As the NP array depth and size are increased, the reduction in spontaneous emission rate overwhelms the NP-array-enhanced absorption, leading to a reduced NBE PL efficiency. This approach provides an opportunity to enhance the PL efficiency of a wide variety of semiconductor heterostructures.

  20. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  1. Intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Yoshida, Hideto; Takeda, Seiji; Liang, Jianbo; Shigekawa, Naoteru

    2018-02-01

    The intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature is examined by plane-view transmission electron microscopy (TEM) and cross-sectional scanning TEM using damage-free TEM specimens prepared only by mechanochemical etching. The bonded heterointerfaces include an As-deficient crystalline GaAs layer with a thickness of less than 1 nm and an amorphous Si layer with a thickness of approximately 3 nm, introduced by the irradiation of an Ar atom beam for surface activation before bonding. It is speculated that the interface resistance mainly originates from the As-deficient defects in the former layer.

  2. Influence of δ p-doping on the behaviour of GaAs/AlGaAs SAM-APDs for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Steinhartova, T.; Nichetti, C.; Antonelli, M.; Cautero, G.; Menk, R. H.; Pilotto, A.; Driussi, F.; Palestri, P.; Selmi, L.; Koshmak, K.; Nannarone, S.; Arfelli, F.; Dal Zilio, S.; Biasiol, G.

    2017-11-01

    This work focuses on the development and the characterization of avalanche photodiodes with separated absorption and multiplication regions grown by molecular beam epitaxy. The i-GaAs absorption region is separated from the multiplication region by a δ p-doped layer of carbon atoms, which ensures that after applying a reverse bias, the vast majority of the potential drops in the multiplication region. Therein, thin layers of AlGaAs and GaAs alternate periodically in a so-called staircase structure to create a periodic modulation of the band gap, which under bias enables a well-defined charge multiplication and results in a low multiplication noise. The influence of the concentration of carbon atoms in the δ p-doped layer on the device characteristics was investigated and experimental data are presented together with simulation results.

  3. Passivation of oxide traps and interface states in GaAs metal-oxide-semiconductor capacitor by LaTaON passivation layer and fluorine incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. N.; Choi, H. W.; Lai, P. T., E-mail: laip@eee.hku.hk

    2015-11-23

    GaAs metal-oxide-semiconductor capacitor with TaYON/LaTaON gate-oxide stack and fluorine-plasma treatment is fabricated and compared with its counterparts without the LaTaON passivation interlayer or the fluorine treatment. Experimental results show that the sample exhibits better characteristics: low interface-state density (8 × 10{sup 11 }cm{sup −2}/eV), small flatband voltage (0.69 V), good capacitance-voltage behavior, small frequency dispersion, and small gate leakage current (6.35 × 10{sup −6} A/cm{sup 2} at V{sub fb} + 1 V). These should be attributed to the suppressed growth of unstable Ga and As oxides on the GaAs surface during gate-oxide annealing by the LaTaON interlayer and fluorine incorporation, and the passivating effects of fluorine atoms on the acceptor-likemore » interface and near-interface traps.« less

  4. Design optimization of GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan

    2011-06-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.

  5. Photoluminescence Study of N-Type Thermal Conversion in Semi-Insulating GaAs.

    DTIC Science & Technology

    1982-12-01

    free electron to the crystal. For example, in GaAs, a tellurium atom on an arsenic site (TeAs) or a silicon atom on a gallium site (SiGa) are donor atoms...Photoconductivity Photoluminescenc Silicon, SiGa 5.81 6.80 Germanium, GeGa 6.08 Sulfur, SAs 6.10 Selenium, SeAs 5.89 6.10 Tellurium , TeAs When an electron...34 to the neutral donor or acceptor (Ref 16:15). The following excitonic com- plexes have been observed in GaAs: (i) exciton bound to a neutron donor at

  6. Core-level photoemission investigation of atomic-fluorine adsorption on GaAs(110)

    NASA Astrophysics Data System (ADS)

    McLean, A. B.; Terminello, L. J.; McFeely, F. R.

    1989-12-01

    The adsorption of atomic F on the cleaved GaAs(110) surface has been studied with use of high-resolution core-level photoelectron spectroscopy by exposing the GaAs(110) surfaces to XeF2, which adsorbs dissociatively, leaving atomic F behind. This surface reaction produces two chemically shifted components in the Ga 3d core-level emission which are attributed to an interfacial monofluoride and a stable trifluoride reaction product, respectively. The As 3d core level develops only one chemically shifted component and from its exposure-dependent behavior it is attributed to an interfacial monofluoride. Least-squares analysis of the core-level line shapes revealed that (i) the F bonds to both the anion and the cation , (ii) the GaF3 component (characteristic of strong interfacial reaction) and the surface core-level shifted component (characteristic of a well ordered, atomically clean surface) are present together over a relatively large range of XeF2 exposures, and (iii) it is the initial disruption of the GaAs(110) surface that is the rate-limiting step in this surface reaction. These results are compared with similar studies of Cl and O adsorption on GaAs(110).

  7. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  8. Versatile buffer layer architectures based on Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.

    2005-05-01

    We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.

  9. Growth temperature optimization of GaAs-based In0.83Ga0.17As on InxAl1-xAs buffers

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Gu, Y.; Zhang, Y. G.; Ma, Y. J.; Du, B.; Zhang, J.; Ji, W. Y.; Shi, Y. H.; Zhu, Y.

    2018-04-01

    Improved quality of gas source molecular beam epitaxy grown In0.83Ga0.17As layer on GaAs substrate was achieved by adopting a two-step InxAl1-xAs metamorphic buffer at different temperatures. With a high-temperature In0.83Al0.17As template following a low-temperature composition continuously graded InxAl1-xAs (x = 0.05-0.86) buffer, better structural, optical and electrical properties of succeeding In0.83Ga0.17As were confirmed by atomic force microscopy, photoluminescence and Hall-effect measurements. Cross-sectional transmission electron microscopy revealed significant effect of the two-step temperature grown InAlAs buffer layers on the inhibition of threading dislocations due to the deposition of high density nuclei on GaAs substrate at the low growth temperature. The limited reduction for the dark current of GaAs-based In0.83Ga0.17As photodetectors on the two-step temperature grown InxAl1-xAs buffer layers was ascribed to the contribution of impurities caused by the low growth temperature of InAlAs buffers.

  10. Sublattice reversal in GaAs/Ge/GaAs (113)B heterostructures and its application to THz emitting devices based on a coupled multilayer cavity

    NASA Astrophysics Data System (ADS)

    Lu, Xiangmeng; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro

    2018-04-01

    We fabricated a coupled multilayer cavity with a GaAs/Ge/GaAs sublattice reversal structure for terahertz emission application. Sublattice reversal in GaAs/Ge/GaAs was confirmed by comparing the anisotropic etching profile of an epitaxial sample with those of reference (113)A and (113)B GaAs substrates. The interfaces of GaAs/Ge/GaAs were evaluated at the atomic level by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX) mapping. Defect-free GaAs/Ge/GaAs heterostructures were observed in STEM images and the sublattice lattice was directly seen through atomic arrangements in EDX mapping. A GaAs/AlAs coupled multilayer cavity with a sublattice reversal structure was grown on the (113)B GaAs substrate after the confirmation of sublattice reversal. Smooth GaAs/AlAs interfaces were formed over the entire region of the coupled multilayer cavity structure both below and above the Ge layer. Two cavity modes with a frequency difference of 2.9 THz were clearly observed.

  11. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface.

    PubMed

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Yamamoto, Naoki; Kim, Yousoo

    2015-09-11

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS.

  12. Effect of a low-temperature-grown GaAs layer on InAs quantum-dot photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosarev, A. N.; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Preobrazhenskii, V. V.

    2016-11-15

    The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancementmore » of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.« less

  13. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  14. III-V compound semiconductor growth on silicon via germanium buffer and surface passivation for CMOS technology

    NASA Astrophysics Data System (ADS)

    Choi, Donghun

    Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre-annealing at 400 °C. A 100 nm thick aluminum layer was deposited to form the gate contact for a MOS device fabrication. C-V measurement results show very small frequency dispersion and 200-300 mV hysteresis, comparable to our best results for InGaAs/GaAs MOS structures on GaAs substrate. Most notably, the quasi-static C-V curve demonstrates clear inversion layer formation. I-V curves show a reasonable leakage current level. The inferred midgap interface state density, Dit, of 2.4 x 1012 eV-1cm-2 was calculated by combined high-low frequency capacitance method. In addition, we investigated the interface properties of amorphous LaAlO 3/GaAs MOS capacitors fabricated on GaAs substrate. The surface was protected during sample transfer between III-V and oxide molecular beam deposition (MBD) chambers by a thick arsenic-capping layer. An annealing method, a low temperature-short time RTA followed by a high temperature RTA, was developed, yielding extremely small hysteresis (˜ 30 mV), frequency dispersion (˜ 60 mV), and interface trap density (mid 1010 eV-1cm -2). We used capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization of MOS devices, tapping-mode AFM for surface morphology analysis, X-ray photoelectron spectroscopy (XPS) for chemical elements analysis of interface, cross section transmission-electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and photoluminescence (PL) measurement for film quality characterization. This successful growth and appropriate surface treatments of III-V materials provides a first step for the fabrication of III-V optical and electrical devices on the same Si-based electronic circuits.

  15. Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yeonjoon; Cich, Michael J.; Zhao, Rian

    2000-05-01

    The formation of twin is common during GaAs(111) and GaN(0001) molecular beam epitaxy (MBE) metalorganic chemical vapor deposition growth. A stacking fault in the zinc-blende (ZB)(111) direction can be described as an insertion of one monolayer of wurtzite structure, sandwiched between two ZB structures that have been rotated 60 degree sign along the growth direction. GaAs(111)A/B MBE growth within typical growth temperature regimes is complicated by the formation of pyramidal structures and 60 degree sign rotated twins, which are caused by faceting and stacking fault formation. Although previous studies have revealed much about the structure of these twins, a well-establishedmore » simple nondestructive characterization method which allows the measurement of total aerial density of the twins does not exist at present. In this article, the twin density of AlGaAs layers grown on 1 degree sign miscut GaAs(111)B substrates has been measured using high resolution x-ray diffraction, and characterized with a combination of Nomarski microscopy, atomic force microscopy, and transmission electron microscopy. These comparisons permit the relationship between the aerial twin density and the growth condition to be determined quantitatively. (c) 2000 American Vacuum Society.« less

  16. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Henegar, A. J., , Dr.; Gougousi, T., , Prof.

    2016-12-01

    In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al2O3 and TiO2, using H2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al2O3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO2 and the native oxides continues well after the surface has been covered with 2 nm of TiO2. This difference is traced to the superior properties of Al2O3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  17. Growth rate dependence of boron incorporation into BxGa1-xAs layers

    NASA Astrophysics Data System (ADS)

    Detz, H.; MacFarland, D.; Zederbauer, T.; Lancaster, S.; Andrews, A. M.; Schrenk, W.; Strasser, G.

    2017-11-01

    This work provides a comprehensive study of the incorporation behavior of B in growing GaAs under molecular beam epitaxy conditions. Structural characterization of superlattices revealed a strong dependence of the BAs growth rate on the GaAs growth rate used. In general, higher GaAs growth rates lead to a higher apparent BAs growth rate, although lower B cell temperatures showed saturation behavior. Each B cell temperature requires a minimum GaAs growth rate for producing smooth films. The B incorporation into single thick layers was found to be reduced to 75-80% compared to superlattice structures. The p-type carrier densities in 1000 nm thick layers were found to be indirectly proportional to the B content. Furthermore, 500 nm thick BxGa1-xAs layers showed significantly lower carrier concentrations, indicating B segregation on the surface during growth of thicker layers.

  18. Formation of two-dimensionally confined superparamagnetic (Mn, Ga)As nanocrystals in high-temperature annealed (Ga, Mn)As/GaAs superlattices.

    PubMed

    Sadowski, Janusz; Domagala, Jaroslaw Z; Mathieu, Roland; Kovacs, Andras; Dłużewski, Piotr

    2013-05-15

    The annealing-induced formation of (Mn, Ga)As nanocrystals in (Ga, Mn)As/GaAs superlattices was studied by x-ray diffraction, transmission electron microscopy and magnetometry. The superlattice structures with 50 Å thick (Ga, Mn)As layers separated by 25, 50 and 100 Å thick GaAs spacers were grown by molecular beam epitaxy at low temperature (250 °C), and then annealed at high temperatures of 400, 560 and 630 °C. The high-temperature annealing causes decomposition to a (Ga, Mn)As ternary alloy and the formation of (Mn, Ga)As nanocrystals inside the GaAs matrix. The nanocrystals are confined in the planes that were formerly occupied by (Ga, Mn)As layers for the up to 560 °C annealing and diffuse throughout the GaAs spacer layers at 630 °C annealing. The two-dimensionally confined nanocrystals exhibit a superparamagnetic behavior which becomes high-temperature ferromagnetism (~350 K) upon diffusion.

  19. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  20. Structure of high-index GaAs surfaces - the discovery of the stable GaAs(2511) surface

    NASA Astrophysics Data System (ADS)

    Jacobi, K.; Geelhaar, L.; Márquez, J.

    We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( {1} {1} {3})B(8 ×1), (114)Aα2(2×1), (137), (3715), and (2511) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs(2511) surface.

  1. Ferromagnetic GaAs structures with single Mn delta-layer fabricated using laser deposition.

    PubMed

    Danilov, Yuri A; Vikhrova, Olga V; Kudrin, Alexey V; Zvonkov, Boris N

    2012-06-01

    The new technique combining metal-organic chemical vapor epitaxy with laser ablation of solid targets was used for fabrication of ferromagnetic GaAs structures with single Mn delta-doped layer. The structures demonstrated anomalous Hall effect, planar Hall effect, negative and anisotropic magnetoresistance in temperature range of 10-35 K. In GaAs structures with only single Mn delta-layer (without additional 2D hole gas channel or quantum well) ferromagnetism was observed for the first time.

  2. Time-of-flight secondary ion mass spectrometry studies of cluster ion analysis for semiconductors and diffusion of manganese in gallium arsenide at low temperatures

    NASA Astrophysics Data System (ADS)

    Goacher, Robyn Elizabeth

    Secondary Ion Mass Spectrometry (SIMS) is an established method for the quantitative analysis of dopants in semiconductors. The quasi-parallel mass acquisition of Time-of-Flight SIMS, along with the development of polyatomic primary ions, have rapidly increased the use of SIMS for analysis of organic and biological specimens. However, the advantages and disadvantages of using cluster primary ions for quantitative analysis of inorganic materials are not clear. The research described in this dissertation investigates the consequences of using polyatomic primary ions for the analysis of inorganic compounds in ToF-SIMS. Furthermore, the diffusion of Mn in GaAs, which is important in Spintronic material applications such as spin injection, is also studied by quantitative ToF-SIMS depth profiling. In the first portion of this work, it was discovered that primary ion bombardment of pre-sputtered compound semiconductors GaAs and InP for the purpose of spectral analysis resulted in the formation of cluster secondary ions, as well as atomic secondary ions (Chapter 2). In particular, bombardment using a cluster primary ion such as Bi3q + or C60q+ resulted in higher yields of high-mass cluster secondary ions. These cluster secondary ions did not have bulk stoichiometry, "non-stoichiometric", in contrast to the paradigm of stoichiometric cluster ions generated from salts. This is attributed to the covalent bonding of the compound semiconductors, as well as to preferential sputtering. The utility of high-mass cluster secondary ions in depth profiling is also discussed. Relative sensitivity factors (RSFs) calculated for ion-implanted Fe and Mn samples in GaAs also exhibit differences based on whether monatomic or polyatomic primary ions are utilized (Chapter 3). These RSFs are important for the quantitative conversion of intensity to concentration. When Bi 32+ primary ions are used for analysis instead of Bi + primary ions, there is a significantly higher proportion of Mn and Fe ions present in the spectra, as referenced to the matrix species. The magnitude of this effect differs depending on the sputtering ion, Cs or C60. The use of C60cluster primary ions for depth profiling of GaAs is also investigated (Chapter 4). In particular, for quantitative depth profiling, parameters such as depth resolution, ion and sputter yields, and relative sensitivity factors are pertinent to profiling thin layered structures quantitatively and quickly. C60 sputtering is compared to Cs sputtering in all of these aspects. It is found that 10 keV C60+ is advantageous for the analysis of metals (such as Au contacts on Si) but that previously reported roughness problems prohibit successful analysis in Si. For Al delta layers and quantum wells in GaAs, C60 q+ sputtering induced very little roughness in the sample, and resulted in high ion yields and excellent signal-to-noise as compared to Cs+ sputtering. However, the depth resolution of C60 is at best equivalent to 1 keV Cs+ and does not extend into the sub 2-nm range. Furthermore, C60 sputtering results in significant carbon implantation. In the second portion of this work, quantitative ToF-SIMS depth profiling was used to evaluate the diffusion of Mn into GaAs. Samples were prepared by Molecular Beam Epitaxy in the department of Physics. Mn diffusion from MnAs was investigated first, and Mn diffusion from layered epitaxial structures of GaAs / Ga1-xMnxAs / GaAs was investigated second. Diffusion experiments were conducted by annealing portions of the samples in sealed glass ampoules at low temperatures (200-400°C). Different sputtering rates were measured for MnAs and GaAs and the measured depth profiles were corrected for these effects. RSFs measured for Mn ion-implanted standards were used to calibrate the intensity scale. For diffusion from MnAs, thin MnAs layers resulted in no measurable changes except in the surface transient. For thick MnAs layers, it was determined that substantial loss of As occurred at 400°C, resulting in severe sample roughening, which inhibited proper SIMS analysis. Results for the diffusion of Mn out of a thick buried layer of Ga1-xMnxAs show that annealing induces diffusion of Mn species from the Ga1-xMnxAs layer into the neighboring GaAs with an activation energy of 0.69+/-0.09 eV. This results in doping of the GaAs layer, which is detrimental to spin injection for Spintronics devices.

  3. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  4. Atomic structure of the GaAs(001)-c(4x4) surface: first-principles evidence for diversity of heterodimer motifs.

    PubMed

    Penev, E; Kratzer, P; Scheffler, M

    2004-10-01

    The GaAs(001)-c(4x4) surface was studied using ab initio atomistic thermodynamics based on density-functional theory calculations. We demonstrate that in a range of stoichiometries, between those of the conventional three As-dimer and the new three Ga-As-dimer models, there exists a diversity of atomic structures featuring Ga-As heterodimers. These results fully explain the experimental scanning tunneling microscopy images and are likely to be relevant also to the c(4x4)-reconstructed (001) surfaces of other III-V semiconductors.

  5. Design and fabrication of GaAs OMIST photodetector

    NASA Astrophysics Data System (ADS)

    Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming

    1998-08-01

    We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

  6. Surface reflectance anisotropy of indium-terminated GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Springer, C.; Resch-Esser, U.; Goletti, C.; Richter, W.; Fimland, B. O.

    1997-04-01

    The growth of thin indium-layers on the GaAs(100) As-rich {(2 × 4)}/{c(2 × 8) } surface has been investigated by reflectance anisotropy spectroscopy (RAS), LEED and AES. Clean surfaces of the {(2 × 4)}/{c(2 × 8) } reconstruction were prepared in UHV by thermal desorption of a protective arsenic layer deposited on homoepitaxially grown MBE layers. Room temperature deposition of indium on the {(2 × 4)}/{c(2 × 8) } surface and subsequent annealing at 450°C leads to a 90° rotation of symmetry in the LEED pattern at a threshold coverage of 0.5 monolayers, i.e. a change from the {(2 × 4)}/{c(2 × 8) } to the {(4 × 2)}/{c(8 × 2) } reconstruction. The RAS spectra show the evolution of a distinct negative feature at 1.8 eV, that shifts to 2.1 eV after annealing, corresponding to optical transitions attributed to In-dimers orientated along the [011]-direction. AES analysis shows a change in growth mode beyond 0.5 ML indicating saturation of all available adsorption sites at this coverage and RAS spectra show a contribution from additional disordered In. The AES spectra display no evidence of a surface exchange reaction between gallium and arsenic atoms, thus indicating a surface termination by In-dimers adsorbed on a layer of As.

  7. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate.

    PubMed

    Desplanque, L; Bucamp, A; Troadec, D; Patriarche, G; Wallart, X

    2018-07-27

    In-plane InSb nanostructures are grown on a semi-insulating GaAs substrate using an AlGaSb buffer layer covered with a patterned SiO 2 mask and selective area molecular beam epitaxy. The shape of these nanostructures is defined by the aperture in the silicon dioxide layer used as a selective mask thanks to the use of an atomic hydrogen flux during the growth. Transmission electron microscopy reveals that the mismatch accommodation between InSb and GaAs is obtained in two steps via the formation of an array of misfit dislocations both at the AlGaSb buffer layer/GaAs and at the InSb nanostructures/AlGaSb interfaces. Several micron long in-plane nanowires (NWs) can be achieved as well as more complex nanostructures such as branched NWs. The electrical properties of the material are investigated by the characterization of an InSb NW MOSFET down to 77 K. The resulting room temperature field effect mobility values are comparable with those reported on back-gated MOSFETs based on InSb NWs obtained by vapor liquid solid growth or electrodeposition. This growth method paves the way to the fabrication of complex InSb-based nanostructures.

  8. Method for determining the composition and orientation of III-V {001} semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sung, M. M.; Kim, C.; Rabalais, J. W.

    1996-09-01

    A method for determining the composition and orientation of III-V {001} semiconductor surfaces is presented and applications are described. The information is obtained from the techniques of time-of-flight scattering and recoiling spectrometry (TOF-SARS), using the composition from azimuth-specific elemental accessibilities (CASEA) method, and low energy electron diffraction (LEED). The azimuth-specific elemental accessibilities (ASEA) are measured experimentally and calculated from the number of accessible atoms in the unit cell and from three-dimensional trajectory simulations using the SARIC program. The in situ analyses identify the 1st-layer elemental species and determine the orientation of the reconstructed surface symmetry elements with respect to the bulk crystallographic directions. This is demonstrated for the III-V {001} compound semiconductor surfaces of GaAs and InAs in the (4 × 2) and (4 × 2) phases and InP in the (4 × 2) phase. The analyses confirm the missing-row-dimer (MRD) structure for GaAs and InAs in which the missing row direction is parallel to the direction of the 1st-layer multimers (dimers) and the missing-row-trimer-dimer (MRTD) structure for InP in which the missing row direction is perpendicular to the direction of the 1st-layer multimers (trimers).

  9. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  10. Material growth and characterization directed toward improving III-V heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Alexander, W. E.; Collis, W.; Abul-Fadl, A.

    1979-01-01

    In addition to the existing materials growth laboratory, the photolithographic facility and the device testing facility were completed. The majority of equipment for data acquisition, solar cell testing, materials growth and device characterization were received and are being put into operation. In the research part of the program, GaAs and GaA1As layers were grown reproducibly on GaAs substrates. These grown layers were characterized as to surface morphology, thickness and thickness uniformity. The liquid phase epitaxial growth process was used to fabricate p-n junctions in Ga(1-x)A1(x)As. Sequential deposition of two alloy layers was accomplished and detailed analysis of the effect of substrate quality and dopant on the GaA1As layer quality is presented. Finally, solar cell structures were formed by growing a thin p-GaA1As layer upon an epitaxial n-GaA1As layer. The energy gap corresponding to the long wavelength cutoff of the spectral response characteristic was 1.51-1.63 eV. Theoretical calculations of the spectral response were matched to the measured response.

  11. Atomic-scale epitaxial aluminum film on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di

    2017-07-01

    Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  12. The atomic geometries of GaP(110) and ZnS(110) revisited - A structural ambiguity and its resolution

    NASA Technical Reports Server (NTRS)

    Duke, C. B.; Paton, A.; Kahn, A.

    1984-01-01

    The atomic geometries of GaP(110) and ZnS(110) are reexamined using the R-factor minimization procedure, developed for GaAs(110) and previously applied to GaSb(110), ZnTe(110), InAs(110), and AlP(110), to analyze experimental elastic low-energy electron diffraction intensities. Unlike most of the earlier cases, both GaP(110) and ZnS(110) exhibit two distinct minimum-Rx structures which cannot be distinguished by analysis of the shapes of the intensity profiles alone. One region of best-fit structures exhibits top-layer displacements normal to the surface characterized by a small bond-length-conserving, top-layer rotation (omega aproximately 2-3 deg), a small relaxation of the top layer away from the surface, and a 10 percent expansion of the top-layer bond length. The other region of best-fit structures is the conventional one: nearly bond-length-conserving rotations of omega = 26-28 deg in the top layer and a small (approximately 0.1 A) contraction of the uppermost layer spacing. This ambiguity may be removed, however, by consideration of the integrated beam intensities. The conventional region of structural parameters provides a decisively better description of the relative magnitudes of the integrated beam intensities and hence is the preferred structure.

  13. Study of clusters using negative ion photodetachment spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yuexing

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs -. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  14. Fabrication of GaAs/Al0.3Ga0.7As multiple quantum well nanostructures on (100) si substrate using a 1-nm InAs relief layer.

    PubMed

    Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J

    2014-04-01

    Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.

  15. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  16. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  17. Heteroepitaxy of orientation-patterned nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Tassev, Vladimir L.; Vangala, Shivashankar R.; Peterson, Rita D.; Snure, Michael

    2018-03-01

    We report some recent results on thick heteroepitaxial growth of GaP on GaAs substrates and on orientation-patterned (OP) GaAs templates conducted in a hot-wall horizontal quartz reactor for Hydride Vapor Phase Epitaxy. The growths on the plain substrates resulted in up to 500 μm thick GaP with smooth surface morphology (RMS < 1-2 nm) and high crystalline quality (FWHM = 100-150 arcsec), comparable to the quality of the related homoepitaxial growths of GaP on GaP. Up to 300 μm thick OPGaP quasi-phase matching structures with excellent domain fidelity were also heteroepitaxially grown with high reproducibility on OPGaAs templates in support of frequency conversion laser source development for the mid and longwave infrared. We studied the GaAsxP1-x ternary transition layer that forms between the growing film and the substrate. We also undertook steps to determine some important characteristics of heteroepitaxy such as thickness of the pseudomorphous growth and periodicity of the expected misfit dislocations. The formation of these and some other defects and their distribution within the layer thickness was also investigated. Samples were characterized by Nomarski optical microscopy, transmission optical measurements, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The focus was predominantly on the interface and, more precisely, on what influence the pre-growth surface treatment of the substrate has on the initial and the following stages of growth, as well on the mechanisms of the strain relaxation from the lattice and thermal mismatch between layer and substrate. The efforts to accommodate the growing film to the foreign substrate by engineering an intermediate buffer layer were extended to thick growths of GaAsxP1-x ternary with the idea to combine in one material the best of the nonlinear properties of GaP and GaAs that are strictly relevant to the pursued applications.

  18. Epitaxial lateral overgrowth of GaAs: effect of doping on LPE growth behaviour

    NASA Astrophysics Data System (ADS)

    Zytkiewicz, Z. R.; Dobosz, D.; Pawlowska, M.

    1999-05-01

    Results of epitaxial lateral overgrowth (ELO) of GaAs on (001) GaAs substrates by liquid phase epitaxy are reported. We show that by introducing Si, Sn or Te impurities to the Ga-As solution the vertical growth rate is reduced while the lateral growth rate is significantly enhanced, which leads to a growth habit modification. Furthermore, the impurity incorporation into the growing layer is different on the upper and side surfaces of the ELO, reflecting the fundamental differences between the lateral and vertical growth modes. This phenomenon can be applied for studying the temporal development of ELO layers.

  19. Substrate structures for InP-based devices

    DOEpatents

    Wanlass, Mark W.; Sheldon, Peter

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  20. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fangliang; Li, Guoqiang, E-mail: msgli@scut.edu.cn

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{submore » 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.« less

  1. Germanium- and tellurium-doped GaAs for non-alloyed p-type and n-type ohmic contacts

    NASA Astrophysics Data System (ADS)

    Park, Joongseo; Barnes, Peter A.; Lovejoy, Michael L.

    1995-08-01

    Epitaxial ohmic contacts to GaAs were grown by liquid phase epitaxy. Heavily Ge-doped GaAs was grown to prepare ohmic contacts to p-GaAs while Te was used for the n-type contacts. Hall measurements were carried out for the samples grown from melts in which the mole fraction of Ge was varied between 1.55 atomic % and 52.2 atomic %, while the Te mole fractions varied between 0.03% and 0.5%. Specific contact resistance, rc, as low as rcp=2.9×10-6 ohm-cm 2 for Ge doping of p=(Na-Nd)=6.0×1019 holes/cm3 was measured for p-contacts and rcn=9.6×10-5 ohm-cm2 was measured for Te doping of n=(Nd-Na)=8.9×1018 electrons/cm3 for GaAs metallized with non-alloyed contacts of Ti/Al.

  2. Nitridation of porous GaAs by an ECR ammonia plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  3. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  4. Structural and optical characteristics of GaAs films grown on Si/Ge substrates

    NASA Astrophysics Data System (ADS)

    Rykov, A. V.; Dorokhin, M. V.; Vergeles, P. S.; Baidus, N. V.; Kovalskiy, V. A.; Yakimov, E. B.; Soltanovich, O. A.

    2018-03-01

    A GaAs/AlAs heterostructure and a GaAs film grown on Si/Ge substrates have been fabricated and studied. A Ge buffer on a silicon substrate was fabricated using the MBE process. A3B5 films were grown by MOCVD at low pressures. Photoluminescence spectroscopy was used to define the optical quality of A3B5 films. Structural properties were investigated using the electron beam induced current method. It was established that despite a rather high density of dislocations on the epitaxial layers, the detected photoluminescence radiation of layers indicates the acceptable crystalline quality of the top GaAs layer.

  5. A Initio Theoretical Studies of Surfaces of Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    1993-01-01

    The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We shall use the predictive power of the ab initio approach to help guide experimental interpreation of otherwise enigmatic STM measurements. In particular, we will demonstrate by example that the predictive power of ab initio calculation allows one to harness the native chemical selectivity of the scanning tunneling electron microscope (STM) and produce an unambiguous and fully interpretable non-destructive chemical probe at the atomic level. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.) (Abstract shortened by UMI.).

  6. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.

    PubMed

    Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-12-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As 2 O 3 . Finally, a qualitative model is proposed to explain the porous As 2 O 3 layer formation on p-GaAs substrate.

  7. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  8. InAs wetting layer and quantum dots on GaAs(001) surface studied by in situ STM placed inside MBE growth chamber and kMC simulations based on first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, S.; Arakawa, Y.; Bell, G. R.

    2007-04-10

    Dynamic images of InAs quantum dots (QDs) formation are obtained using a unique scanning tunneling microscope (STM) placed within the growth chamber. These images are interpreted with the aid of kinetic Monte Carlo (kMC) simulations of the QD nucleation process. Alloy fluctuations in the InGaAs wetting layer prior to QD formation assist in the nucleation of stable InAs islands containing tens of atoms which grow extremely rapidly to form QDs. Furthermore, not all deposited In is initially incorporated into the lattice, providing a large supply of material to rapidly form QDs at the critical thickness.

  9. Fermi level pinning at epitaxial Si on GaAs(100) interfaces

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-12-01

    GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.

  10. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (..theta..-2..theta.. scan, ..omega..-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smoothmore » GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.« less

  11. Paths to light trapping in thin film GaAs solar cells.

    PubMed

    Xiao, Jianling; Fang, Hanlin; Su, Rongbin; Li, Kezheng; Song, Jindong; Krauss, Thomas F; Li, Juntao; Martins, Emiliano R

    2018-03-19

    It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.

  12. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  13. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  14. Temporal behavior of RHEED intensity oscillations during molecular beam epitaxial growth of GaAs and AlGaAs on (111)B GaAs substrates

    NASA Astrophysics Data System (ADS)

    Yen, Ming Y.; Haas, T. W.

    1990-10-01

    We present the temporal behavior of intensity oscillations in reflection high-energy electron diffraction (RHEED) during molecular beam epitaxial (MBE) growth of GaAs and A1GaAs on (1 1 1)B GaAs substrates. The RHEED intensity oscillations were examined as a function of growth parameters in order to provide the insight into the dynamic characteristics and to identify the optimal condition for the two-dimensional layer-by-layer growth. The most intense RHEED oscillation was found to occur within a very narrow temperature range which seems to optimize the surface migration kinetics of the arriving group III elements and the molecular dissodiative reaction of the group V elements. The appearance of an initial transient of the intensity upon commencement of the growth and its implications are described.

  15. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  16. N/P GaAs concentrator solar cells with an improved grid and bushbar contact design

    NASA Technical Reports Server (NTRS)

    Desalvo, G. C.; Mueller, E. H.; Barnett, A. M.

    1985-01-01

    The major requirements for a solar cell used in space applications are high efficiency at AMO irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the the simple diode model is used to calculate efficiencies at AMO irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar P/N solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the N/P cell compared to 69% in the top layer of a P/N solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized N/P device will prove to have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency.

  17. Band crossing in isovalent semiconductor alloys with large size mismatch

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Wei, Su-Huai

    2012-02-01

    Mixing isovalent compounds AC with BC to form alloys A1-xBxC has been an effective way in band structure engineering to enhance the availability of material properties. In most cases, the mixed isovalent atoms A and B, such as Al and Ga in Al1-xGaxAs or As and Sb in GaAs1-xSbx are similar in their atomic sizes and chemical potentials; therefore, the physical properties of A1-xBxC change smoothly from AC to BC. However, in some cases when the chemical and size differences between the isovalent atoms A and B are large, adding a small amount of B to AC or vice versa can lead to a discontinuous change in the electronic band structure. These large size- and chemicalmismatched (LSCM) systems often show unusual and abrupt changes in the alloys' material properties, which provide great potential in material design for novel device applications. In this report, based on first-principles band-structure calculations we show that for LSCM GaAs1-xNx and GaAs1-xBix alloys at the impurity limit the N (Bi)-induced impurity level is above (below) the conduction-(valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

  18. I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2017-09-01

    The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.

  19. Relevance of GaAs(001) surface electronic structure for high frequency dispersion on n-type accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Pi, T. W.; Chen, W. S.; Lin, Y. H.; Cheng, Y. T.; Wei, G. J.; Lin, K. Y.; Cheng, C.-P.; Kwo, J.; Hong, M.

    2017-01-01

    This study investigates the origin of long-puzzled high frequency dispersion on the accumulation region of capacitance-voltage characteristics in an n-type GaAs-based metal-oxide-semiconductor. Probed adatoms with a high Pauling electronegativity, Ag and Au, unexpectedly donate charge to the contacted As/Ga atoms of as-grown α2 GaAs(001)-2 × 4 surfaces. The GaAs surface atoms behave as charge acceptors, and if not properly passivated, they would trap those electrons accumulated at the oxide and semiconductor interface under a positive bias. The exemplified core-level spectra of the Al2O3/n-GaAs(001)-2 × 4 and the Al2O3/n-GaAs(001)-4 × 6 interfaces exhibit remnant of pristine surface As emission, thereby causing high frequency dispersion in the accumulation region. For the p-type GaAs, electrons under a negatively biased condition are expelled from the interface, thereby avoiding becoming trapped.

  20. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  1. Sn nanothreads in GaAs: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  2. Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.

    PubMed

    Walther, T; Krysa, A B

    2017-12-01

    Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% ofmore » efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.« less

  4. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  5. Hydrogen-impurity complexes in III V semiconductors

    NASA Astrophysics Data System (ADS)

    Ulrici, W.

    2004-12-01

    This review summarizes the presently available knowledge concerning hydrogen-impurity complexes in III-V compounds. The impurities form shallow acceptors on group III sites (Be, Zn, Cd) and on group V sites (C, Si, Ge) as well as shallow donors on group V sites (S, Se, Te) and on group III sites (Si, Sn). These complexes are mainly revealed by their hydrogen stretching modes. Therefore, nearly all information about their structure and dynamic properties is derived from vibrational spectroscopy. The complexes of shallow impurities with hydrogen have been most extensively investigated in GaAs, GaP and InP. This holds also for Mg-H in GaN. The complexes exhibit a different microscopic structure, which is discussed in detail. The isoelectronic impurity nitrogen, complexed with one hydrogen atom, is investigated in detail in GaAs and GaP. Those complexes can exist in different charge states. The experimental results such as vibrational frequencies, the microscopic structure and the activation energy for reorientation for many of these complexes are in very good agreement with results of ab initio calculations. Different types of oxygen-hydrogen complexes in GaAs and GaP are described, with one hydrogen atom or two hydrogen atoms bonded to oxygen. Three of these complexes in GaAs were found to be electrically active.

  6. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  7. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  8. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    NASA Astrophysics Data System (ADS)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  9. Characterization of Ar/N2/H2 middle-pressure RF discharge and application of the afterglow region for nitridation of GaAs

    NASA Astrophysics Data System (ADS)

    Raud, J.; Jõgi, I.; Matisen, L.; Navrátil, Z.; Talviste, R.; Trunec, D.; Aarik, J.

    2017-12-01

    This work characterizes the production and destruction of nitrogen and hydrogen atoms in RF capacitively coupled middle-pressure discharge in argon/nitrogen/hydrogen mixtures. Input power, electron concentration, electric field strength and mean electron energy were determined on the basis of electrical measurements. Gas temperature and concentration of Ar atoms in 1s states were determined from spectral measurements. On the basis of experimentally determined plasma characteristics, main production and loss mechanisms of H and N atoms were discussed. The plasma produced radicals were applied for the nitridation and oxide reduction of gallium arsenide in the afterglow region of discharge. After plasma treatment the GaAs samples were analyzed using x-ray photoelectron spectroscopy (XPS) technique. Successful nitridation of GaAs sample was obtained in the case of Ar/5% N2 discharge. In this gas mixture the N atoms were generated via dissociative recombination of N2+ created by charge transfer from Ar+. The treatment in Ar/5% N2/1% H2 mixture resulted in the reduction of oxide signals in the XPS spectra. Negligible formation of GaN in the latter mixture was connected with reduced concentration of N atoms, which was, in turn, due to less efficient mechanism of N atom production (electron impact dissociation of N2 molecules) and additional loss channel in reaction with H2.

  10. Narrow energy band gap gallium arsenide nitride semi-conductors and an ion-cut-synthesis method for producing the same

    DOEpatents

    Weng, Xiaojun; Goldman, Rachel S.

    2006-06-06

    A method for forming a semi-conductor material is provided that comprises forming a donor substrate constructed of GaAs, providing a receiver substrate, implanting nitrogen into the donor substrate to form an implanted layer comprising GaAs and nitrogen. The implanted layer is bonded to the receiver substrate and annealed to form GaAsN and nitrogen micro-blisters in the implanted layer. The micro-blisters allow the implanted layer to be cleaved from the donor substrate.

  11. Outdiffusion of recombination centers from the substrate into LPE layers - GaAs

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.; Lagowski, J.; Gatos, H. C.

    1979-01-01

    Experimental results are presented showing that outdiffusion of recombination centers from the GaAs substrate into the epitaxial layer takes place during growth. Such outdiffusion decreases the carrier lifetime in the epitaxial layer to much lower values than the radiative recombination limit. Furthermore, it introduces a lifetime gradient across the epitaxial layer which depends critically on the growth velocity and thermal treatment. High rates of growth (such as those attainable in electroepitaxy) and high cooling rates can minimize the adverse effects of normally available substrates on the epitaxial layers; however, good quality substrates are essential for the consistent growth of device quality layers.

  12. TEM studies of III-V MOSFETs for ultimate CMOS

    NASA Astrophysics Data System (ADS)

    Longo, Paolo

    Over the past half-century electronic industry has enormously grown changing the way people live their lives. Such growth has been driven by the miniaturisation and development of the transistors which are the main components in an integrated circuit (IC) commonly referred as a chip. Until today electronic industry has been based on the use of Si and its native oxide SiO2 in transistors. However, the performance limit of conventional Si based transistors is rapidly being approached and alternatives will soon be required. One of the proposed alternatives is GaAs. n-type GaAs has a mobility 5 times higher than Si. This makes it a suitable candidate for MOSFETs devices. So far, GaAs has not been used for practical MOSFETs because of the difficulties of making a good dielectric oxide layer in terms of leakage current and unpinned Fermi Level. Using processes pioneered by Passlack et al, dielectric gate stacks consisting of a template layer of amorphous Ga2O3 followed by amorphous GdGaO have been grown on GaAs substrates. Careful deposition of Ga2O3 can leave the Fermi Level unpinned. The introduction of Gd is important in order to decrease the leakage of current. The electrical properties of the Ga2O3/Gd[x]Ga[0.4-x]O[0.6] dielectric stack are related to the Gd concentration and the quality of the GaAs/Ga2O3 interface. Over the past years in a unique partnership several research groups from the Physics and the Electronic and Electrical engineering Department have collaboratively worked for the realisation and development of such new generation of GaAs based transistors using the technology described above. The properties of such devices depend on structures at the nanoscale which is only few atoms across. Thus the characterization using the transmission electron microscope (TEM) becomes essential. In this project TEM has been used to study several MBE grown III-V semiconductor nanostructures. In particular most of the thesis is focussed on the chemical characterisation of the GaAs/Ga2O3/GGO dielectric gate stack, mainly using electron energy loss spectroscopy (EELS) and high-resolution scanning Transmission electron microscopy (STEM) imaging. As said above the quality of such interfaces affects the properties of the whole device. Hence the results presented herein represent an important feedback for the realisation of world performance GaAs devices.

  13. MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers

    NASA Astrophysics Data System (ADS)

    Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.

    2017-12-01

    Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.

  14. Atomic ordering in GaAsP

    NASA Astrophysics Data System (ADS)

    Chen, G. S.; Jaw, D. H.; Stringfellow, G. B.

    1991-04-01

    CuPt type ordering, which consists of a monolayer compositional modulation along one of the 4 <111> directions in the lattice, was studied using transmission electron microscopy for GaAs1-xPx with values of x extending from 0.25 to 0.85. The samples were grown by organometallic vapor phase epitaxy on nominal (001) GaAs substrates that were misoriented by varying amounts in three directions. No CuPt type ordering was observed for GaAs1-xPx with x ≤0.35, while ordering was found to occur for 0.4≤x≤0.85. The direction of substrate misorientation has a major effect on the determination of which of the four possible CuPt variants are formed for 0.4≤x≤0.85. Two variants, with ordering on the (1¯11) and (11¯1) planes, appear for epilayers grown on substrates oriented exactly on the (001) plane and for substrates misoriented by 6° towards the [110] direction. Only one variant, with ordering on the (1¯11) plane, appears for epilayers grown on substrates misoriented by 6° towards [1¯10]. These ordering-induced spots observed in transmission electron diffraction (TED) patterns for GaAsP occur only for the [110] cross section. From TED studies of GaInP grown on similar substrates, we conclude that the CuPt variants in GaAsP are exactly the same as for GaInP. Further evidence supporting this conclusion was obtained by growing first a layer of GaInP followed by a layer of GaAsP. High-resolution dark field electron micrographs show domains of the same variants in both layers. A mechanism describing the formation of the specific ordered variant for both GaAsP and GaInP is proposed. From studies of ordering in a strain-layer superlattice, the strain due to lattice mismatch was found to play no significant role in the propagation of ordered domains. Microtwins, also generated due to lattice mismatch, can act as domain boundaries and prevent the propagation of the ordered domains.

  15. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Klimov, E. A.; Vasiliev, A. L.

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers ofmore » arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.« less

  16. Giant and reversible enhancement of the electrical resistance of GaAs1-xNx by hydrogen irradiation

    NASA Astrophysics Data System (ADS)

    Alvarez, J.; Kleider, J.-P.; Trotta, R.; Polimeni, A.; Capizzi, M.; Martelli, F.; Mariucci, L.; Rubini, S.

    2011-08-01

    The electrical properties of untreated and hydrogen-irradiated GaAs1-xNx are investigated by conductive-probe atomic force microscopy (CP-AFM). After hydrogen irradiation, the resistance R of GaAs1-xNx increases by more than three orders of magnitude while that of a N-free GaAs reference slightly decreases. Thermal annealing at 550 °C of H-irradiated GaAs1-xNx restores the pristine electrical properties of the as-grown sample thus demonstrating that this phenomenon is fully reversible. These effects are attributed to the nitrogen-hydrogen complexes that passivate N in GaAs1-xNx (thus restoring the energy gap of N-free GaAs) and, moreover, reduce the carrier scattering time by more than one order of magnitude. This opens up a route to the fabrication of planar conductive/resistive/conductive heterostructures with submicrometer spatial resolution, which is also reported here.

  17. New Passivation Methods of GaAs.

    DTIC Science & Technology

    1980-01-01

    Fabrication of Thin Nitride Layers on GaAs 33 - 35 CHAPTER 7 Passivation of InGaAsP 36 - 37 CHAPTER 8 Emulsions on GaAs Surfaces 38 - 42 APPENDIX...not yet given any useful results. The deposition of SiO2 by using emulsions is pursued and first results on the possibility of GaAs doping are...glycol-tartaric acid based aqueous solution was used in order to anodically oxidise the gate notch after the source and drain ohmic contacts were formed

  18. The ZnSe(110) puzzle - Comparison with GaAs(110)

    NASA Technical Reports Server (NTRS)

    Duke, C. B.; Paton, A.; Kahn, A.; Tu, D.-W.

    1984-01-01

    The surface structure of monocrystalline ZnSe(110) and of 4-5-nm-thick ZnSe(110) layers epitaxially grown on GaAs(110) is investigated by means of elastic LEED and AES; the results are analyzed using the computer programs and R-factor methods of Duke et al. (1981 and 1983), presented in graphs and tables, and compared to those for GaAs(110). Significant differences are attributed to bond-length-conserving outward rotation of Se and inward rotation of Zn in the top layer, with an angle of 4 deg between the actual plane of the cation-anion chain and the truncated bulk surface. The R intensities measured for ZnSe(110) and GaAs(110) are given as Rx = 0.22 and RI = 0.21 and Rx = 0.24 and RI = 0.16, respectively.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baidus, N. V.; Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru; Zvonkov, B. N.

    As a result of theoretical and experimental analyses, the parameters of heterostructures with InAs quantum dots in a GaAs matrix are determined, which provide the development of high-speed and efficient plasmon-polariton near-infrared light-emitting Schottky diodes based on such structures. The quantum dots should be arranged on a heavily doped (to a dopant concentration of 10{sup 19} cm{sup –3}) GaAs buffer layer and be separated from the metal by a thin (10–30 nm thick) undoped GaAs cap layer. The interface between the metal (e.g., gold) and GaAs provides the efficient scattering of surface plasmon-polaritons to ordinary photons if it contains inhomogeneitiesmore » shaped as metal-filled cavities with a characteristic size of ~30 nm and a surface concentration above 10{sup 10} cm{sup –2}.« less

  20. Displacement damage and predicted non-ionizing energy loss in GaAs

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.

    2017-03-01

    Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.

  1. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells

    PubMed Central

    Ho, Wen-Jeng; Lin, Jian-Cheng; Liu, Jheng-Jie; Bai, Wen-Bin; Shiao, Hung-Pin

    2017-01-01

    This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO2), indium tin oxide (ITO), and a hybrid layer of SiO2/ITO applied using Radio frequency (RF) sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52%) exceeded that of cells with a SiO2 antireflective coating (21.92%). Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO2/ITO coating. PMID:28773063

  2. Positron Annihilation Induced Auger Electron Spectroscopic Studies Of Reconstructed Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Reed, J. A.; Starnes, S. G.; Weiss, A. H.

    2011-06-01

    The positron annihilation induced Auger spectrum from GaAs(100) displays six As and three Ga Auger peaks below 110 eV corresponding to M4,5VV, M2M4V, M2,3M4,5M4,5 Auger transitions for As and M2,3M4,5M4,5 Auger transitions for Ga. The integrated Auger peak intensities have been used to obtain experimental annihilation probabilities of surface trapped positrons with As 3p and 3d and Ga 3p core level electrons. PAES data is analyzed by performing calculations of positron surface and bulk states and annihilation characteristics of surface trapped positrons with relevant Ga and As core level electrons for both Ga- and As-rich (100) surfaces of GaAs, ideally terminated, non-reconstructed and with (2×8), (2×4), and (4×4) reconstructions. The orientation-dependent variations of the atomic and electron densities associated with reconstructions are found to affect localization of the positron wave function at the surface. Computed positron binding energy, work function, and annihilation characteristics demonstrate their sensitivity both to chemical composition and atomic structure of the topmost layers of the surface. Theoretical annihilation probabilities of surface trapped positrons with As 3d, 3p, and Ga 3p core level electrons are compared with the ones estimated from the measured Auger peak intensities.

  3. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation

  4. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  5. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  6. Structural and phase transformation of A{sup III}B{sup V}(100) semiconductor surface in interaction with selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezryadin, N. N.; Kotov, G. I., E-mail: giktv@mail.ru; Kuzubov, S. V., E-mail: kuzub@land.ru

    2015-03-15

    Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.

  7. Efficient Ga(As)Sb quantum dot emission in AlGaAs by GaAs intermediate layer

    NASA Astrophysics Data System (ADS)

    Loeber, Thomas Henning; Richter, Johannes; Strassner, Johannes; Heisel, Carina; Kimmle, Christina; Fouckhardt, Henning

    2013-03-01

    Ga(As)Sb quantum dots (QDs) are epitaxially grown in AlGaAs/GaAs in the Stranski-Krastanov mode. In the recent past we achieved Ga(As)Sb QDs in GaAs with an extremely high dot density of 9.8•1010 cm-2 by optimization of growth temperature, Sb/Ga flux pressure ratio, and coverage. Additionally, the QD emission wavelength could be chosen precisely with these growth parameters in the range between 876 and 1035 nm. Here we report a photoluminescence (PL) intensity improvement for the case with AlGaAs barriers. Again growth parameters and layer composition are varied. The aluminium content is varied between 0 and 90%. Reflectance anisotropy spectroscopy (RAS) is used as insitu growth control to determine growth rate, layer thickness, and AlGaAs composition. Ga(As)Sb QDs, directly grown in AlxGa1-xAs emit no PL signal, even with a very low x ≈ 0.1. With additional around 10 nm thin GaAs intermediate layers between the Ga(As)Sb QDs and the AlGaAs barriers PL signals are detected. Samples with 4 QD layers and AlxGa1-xAs/GaAs barriers in between are grown. The thickness and composition of the barriers are changed. Depending on these values PL intensity is more than 4 times as high as in the case with simple GaAs barriers. With these results efficient Ga(As)Sb QD lasers are realized, so far only with pure GaAs barriers. Our index-guided broad area lasers operate continuous-wave (cw) @ 90 K, emit optical powers of more than 2•50 mW and show a differential quantum efficiency of 54% with a threshold current density of 528 A/cm2.

  8. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  9. Terahertz radiation in In{sub 0.38}Ga{sub 0.62}As grown on a GaAs wafer with a metamorphic buffer layer under femtosecond laser excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponomarev, D. S., E-mail: ponomarev-dmitr@mail.ru; Khabibullin, R. A.; Yachmenev, A. E.

    The results of time-domain spectroscopy of the terahertz (THz) generation in a structure with an In{sub 0.38}Ga{sub 0.62}As photoconductive layer are presented. This structure grown by molecular-beam epitaxy on a GaAs substrate using a metamorphic buffer layer allows THz generation with a wide frequency spectrum (to 6 THz). This is due to the additional contribution of the photo-Dember effect to THz generation. The measured optical-to-terahertz conversion efficiency in this structure is 10{sup –5} at a rather low optical fluence of ~40 μJ/cm{sup 2}, which is higher than that in low-temperature grown GaAs by almost two orders of magnitude.

  10. Properties of epitaxial BaTiO{sub 3} deposited on GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras-Guerrero, R.; Droopad, R.; Veazey, J. P.

    2013-01-07

    Single crystal BaTiO{sub 3} (BTO) has been grown epitaxially on GaAs using molecular beam epitaxy with a 2 unit cell SrTiO{sub 3} nucleation layer. The oxide film is lattice-matched to GaAs through an in-plane rotation of 45 Degree-Sign relative to the (100) surface leading to c-axis orientation of the BaTiO{sub 3}. X-ray diffraction confirmed the crystallinity and orientation of the oxide film with a full width half maximum of 0.58 Degree-Sign for a 7.5 nm thick layer. Piezoresponse force microscopy was used to characterize the ferroelectric domains in the BaTiO{sub 3} layer, and a coercive voltage of 1-2 V andmore » piezoresponse amplitude {approx}5 pm/V was measured.« less

  11. Ion implantation disorder in strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.; Picraux, S. T.; Peercy, P. S.; Myers, D. R.; Biefeld, R. M.; Dawson, L. R.

    Cantilever beam bending and RBS channeling measurements have been used to examine implantation induced disorder and stress buildup in InO 2GaO 8As/GaAs SLS structures. The critical fluence for saturation of compressive stress occurs prior to amorphous layer formation and is followed by stress relief. For all the ions the maximum ion induced stress scales with energy density into atomic processes and stress relief occurs above approximately 1x10 to the 20th keV/1 cubic cm. Stress relief is more pronounced for the SLSs than for bulk GaAs. Stress relief may lead to slip or other forms of inelastic material flow in SLSs, which would be undesirable for active regions in device applications. Such material flow may be avoided by limiting maximum fluences or by multiple step or simultaneous implantation and annealing for high fluences.

  12. Correlation study of sodium-atom chemisorption on the GaAs(110) surface

    NASA Astrophysics Data System (ADS)

    Song, K. M.; Khan, D. C.; Ray, A. K.

    1994-01-01

    Different possible adsorption sites of sodium atoms on a gallium arsenide surface have been investigated using ab initio self-consistent unrestricted Hartree-Fock total-energy cluster calculations with Hay-Wadt effective core potentials. The effects of electron correlation have been included by invoking the concepts of many-body perturbation theory and are found to be highly significant. We find that the Na-atom adsorption at a site modeled with an NaGa5As4H12 cluster is most favored energetically followed by Na adsorption at the site modeled with the NaGa4As5H12 cluster. The effects of charge transfer from Na to the GaAs surface as also possibilities of metallization are also analyzed and discussed.

  13. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate

    NASA Astrophysics Data System (ADS)

    Schulze, C. S.; Huang, X.; Prohl, C.; Füllert, V.; Rybank, S.; Maddox, S. J.; March, S. D.; Bank, S. R.; Lee, M. L.; Lenz, A.

    2016-04-01

    The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration of III-V optoelectronic components into silicon-based technology.

  14. LEED and AES characterization of the GaAs(110)-ZnSe interface

    NASA Technical Reports Server (NTRS)

    Tu, D.-W.; Kahn, A.

    1984-01-01

    In this paper, a study is conducted of the composition and structure of epitaxial ZnSe films grown by congruent evaporation on GaAs(110) at a rate of 2 A/min. It is found that the films grown on 300 C GaAs are nearly stoichiometric and form an abrupt interface with the substrate. Films grown at higher temperature (T greater than 350-400 C) are Se rich. The crystallinity of films grown at 300 C is good and their surface atomic geometry is identical to that of a ZnSe crystal. The GaAs-ZnSe interface geometry seems to be dominated by the Se-substrate bonds. The adsorption of Se, during the formation of very thin ZnSe films (2-3 A), produces a (1 x 2) LEED pattern and modifications of the LEED I-V profiles, which probably indicate a change in the substrate atomic relaxation.

  15. The effect of V/III ratio on the morphology and structure of GaAs nanowires by MOCVD

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Peng, Yan; Guo, Jingwei; La, Dongsheng; Xu, Zhaopeng

    2018-05-01

    In this paper, GaAs nanowires with different V/III ratios (70, 140, 280 and 560) were vertically grown from bottom to top on GaAs substrates by using metal organic chemical vapor deposition based on gold assisted vapor-liquid-solid mechanism. It is found that the growth rate of nanowires is inversely proportional to their V/III ratio. And the V/III ratio can also change nanowire growth type. For the nanowire with small V/III ratios (≤280), the reactants are most from those atoms merged in the catalyst. But, for the nanowire with V/III ratio 560, the contribution mainly comes from the diffusions of atoms pyrolyzed on the surface of the nanowire and the substrate. A shrunken neck under the catalyst is observed in TEM characterizations. These results will provide a theoretical basis for potential practical applications of nanowire-based devices.

  16. Modeling Bi-induced changes in the electronic structure of GaAs1-xBix alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-12-01

    We suggested recently [V. Virkkala , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.88.035204 88, 035204 (2013)] that the band-gap narrowing in dilute GaAs1-xNx alloys can be explained to result from the broadening of the localized N states due to the N-N interaction along the zigzag chains in the <110> directions. In that study our tight-binding modeling based on first-principles density-functional calculations took into account the random distribution of N atoms in a natural way. In this work we extend our modeling to GaAs1-xBix alloys. Our results indicate that Bi states mix with host material states. However, the states near the valence-band edge agglomerate along the zigzag chains originating from individual Bi atoms. This leads to Bi-Bi interactions in a random alloy broadening these states in energy and causing the band-gap narrowing.

  17. A new structure for comparing surface passivation materials of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  18. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.

    PubMed

    Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo

    2017-10-02

    GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

  19. Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates

    NASA Astrophysics Data System (ADS)

    Özden, Selin; Koc, Mumin Mehmet

    2018-03-01

    CdTe epitaxial thin films, for use as a buffer layer for HgCdTe defectors, were grown on GaAs (211)B using the molecular beam epitaxy method. Wet chemical etching (Everson method) was applied to the epitaxial films using various concentrations and application times to quantify the crystal quality and dislocation density. Surface characterization of the epitaxial films was achieved using Atomic force microscopy and Scanning electron microscopy (SEM) before and after each treatment. The Energy Dispersive X-Ray apparatus of SEM was used to characterize the chemical composition. Untreated CdTe films show smooth surface characteristics with root mean square (RMS) roughnesses of 1.18-3.89 nm. The thicknesses of the CdTe layers formed were calculated via FTIR spectrometry and obtained by ex situ spectroscopic ellipsometry. Raman spectra were obtained for various temperatures. Etch pit densities (EPD) were measured, from which it could be seen that EPD changes between 1.7 × 108 and 9.2 × 108 cm-2 depending on the concentration of the Everson etch solution and treatment time. Structure, shape and depth of pits resulting from each etch pit implementation were also evaluated. Pit widths varying between 0.15 and 0.71 µm with heights varying between 2 and 80 nm were observed. RMS roughness was found to vary by anything from 1.56 to 26 nm.

  20. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    NASA Astrophysics Data System (ADS)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  1. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    DOE PAGES

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; ...

    2017-03-24

    Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less

  2. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    NASA Astrophysics Data System (ADS)

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; Bossert, D. J.; Doyle, B. L.

    2017-05-01

    The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

  3. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.

    Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less

  4. Lateral epitaxial overgowth of GaAs by organometallic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Mcclelland, R. W.; Fan, J. C. C.; Bozler, C. O.

    1982-01-01

    Lateral epitaxial overgrowth of GaAs by organometallic chemical vapor deposition has been demonstrated. Pyrolytic decomposition of trimethylgallium and arsine, without the use of HCl, was used to deposit GaAs on substrates prepared by coating (110) GaAs wafers with SiO2, then using photolithography to open narrow stripes in the oxide. Lateral overgrowth was seeded by epitaxial deposits formed on the GaAs surfaces exposed by the stripe openings. The extent of lateral overgrowth was investigated as a function of stripe orientation and growth temperature. Ratios of lateral to vertical growth rates greater than five have been obtained. The lateral growth is due to surface-kinetic control for the two-dimensional growth geometry studied. A continuous epitaxial GaAs layer 3 microns thick has been grown over a patterned mask on a GaAs substrate and then cleaved from the substrate.

  5. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  6. Supernormal hardness increase of dilute Ga(As, N) thin films

    NASA Astrophysics Data System (ADS)

    Berggren, Jonas; Hanke, Michael; Luna, Esperanza; Trampert, Achim

    2017-03-01

    Hardness of epitaxial GaAs1-xNx films on GaAs(001) with different film thicknesses, varying from 80 to 700 nm, and nitrogen compositions x between zero (pure GaAs) and 0.031, were studied by means of nano-indentation. As a result, a disproportionate and monotonic increase by 17% in hardness was proved in the dilute range from GaAs to GaAs0.969N0.031. We are tracing this observation to solid solution strengthening, an extrinsic effect based on dislocation pinning due to interstitial nitrogen. On the other hand, intrinsic effects related to different electronegativities of As and N (i.e., altered bonding conditions) could be ruled out. Furthermore, in tensilely strained GaAs1-xNx layers, the appearance of cracks acts as the main strain relieving mechanism. A correlation between cracking and hardness reduction is investigated and discussed as a further relaxation pathway.

  7. Observation of spin-polarized photoconductivity in (Ga,Mn)As/GaAs heterojunction without magnetic field

    PubMed Central

    Wu, Qing; Liu, Yu; Wang, Hailong; Li, Yuan; Huang, Wei; Zhao, Jianhua; Chen, Yonghai

    2017-01-01

    In the absent of magnetic field, we have observed the anisotropic spin polarization degree of photoconduction (SPD-PC) in (Ga,Mn)As/GaAs heterojunction. We think three kinds of mechanisms contribute to the magnetic related signal, (i) (Ga,Mn)As self-producing due to the valence band polarization, (ii) unequal intensity of left and right circularly polarized light reaching to GaAs layer to excite unequal spin polarized carriers in GaAs layer, and (iii) (Ga,Mn)As as the spin filter layer for spin transport from GaAs to (Ga,Mn)As. Different from the previous experiments, the influence coming from the Zeeman splitting induced by an external magnetic field can be avoided here. While temperature dependence experiment indicates that the SPD-PC is mixed with the magnetic uncorrelated signals, which may come from current induced spin polarization. PMID:28084437

  8. Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Bhattacharya, P. K.; Chen, Y. C.; Tsukamoto, S.

    1989-01-01

    Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures.

  9. Effect of Sb in thick InGaAsSbN layers grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Donchev, V.; Milanova, M.; Asenova, I.; Shtinkov, N.; Alonso-Álvarez, D.; Mellor, A.; Karmakov, Y.; Georgiev, S.; Ekins-Daukes, N.

    2018-02-01

    Dilute nitride InGaAsSbN layers grown by low-temperature liquid phase epitaxy are studied in comparison with quaternary InGaAsN layers grown at the same growth conditions to understand the effect of Sb in the alloy. The lattice mismatch to the GaAs substrate is found to be slightly larger for the InGaAsSbN layers, which is explained by the large atomic radius of Sb. A reduction of the band gap energy with respect to InGaAsN is demonstrated by means of photoluminescence (PL), surface photovoltage (SPV) spectroscopy and tight-binding calculations. The band-gap energies determined from PL and ellipsometry measurements are in good agreement, while the SPV spectroscopy and the tight-binding calculations provide lower values. Possible reasons for these discrepancies are discussed. The PL spectra reveal localized electronic states in the band gap near the conduction band edge, which is confirmed by SPV spectroscopy. The analysis of the power dependence of the integrated PL has allowed determining the dominant radiative recombination mechanisms in the layers. The values of the refraction index in a wide spectral region are found to be higher for the Sb containing layers.

  10. High efficiency epitaxial GaAs/GaAs and GaAs/Ge solar cell technology using OM/CVD

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Yeh, Y. C. M.; Stirn, R. J.; Swerdling, S.

    1980-01-01

    A technology for fabricating high efficiency, thin film GaAs solar cells on substrates appropriate for space and/or terrestrial applications was developed. The approach adopted utilizes organometallic chemical vapor deposition (OM-CVD) to form a GaAs layer epitaxially on a suitably prepared Ge epi-interlayer deposited on a substrate, especially a light weight silicon substrate which can lead to a 300 watt per kilogram array technology for space. The proposed cell structure is described. The GaAs epilayer growth on single crystal GaAs and Ge wafer substrates were investigated.

  11. Epitaxial growth of quantum rods with high aspect ratio and compositional contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. H.; Patriarche, G.; Fiore, A.

    2008-12-01

    The epitaxial growth of quantum rods (QRs) on GaAs was investigated. It was found that GaAs thickness in the GaAs/InAs superlattice used for QR formation plays a key role in improving the QR structural properties. Increasing the GaAs thickness results in both an increased In compositional contrast between the QRs and surrounding layer, and an increased QR length. QRs with an aspect ratio of up to 10 were obtained, representing quasiquantum wires in a GaAs matrix. Due to modified confinement and strain potential, such nanostructure is promising for controlling gain polarization.

  12. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  13. Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, Takuya; Inoue, Tomoya; Kita, Takashi

    2008-10-01

    Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less

  14. Structural and physical properties of InAlAs quantum dots grown on GaAs

    NASA Astrophysics Data System (ADS)

    Vasile, B. S.; Daly, A. Ben; Craciun, D.; Alexandrou, I.; Lazar, S.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Craciun, V.

    2018-04-01

    Quantum dots (QDs), which have particular physical properties due to the three dimensions confinement effect, could be used in many advanced optoelectronic applications. We investigated the properties of InAlAs/AlGaAs QDs grown by molecular beam epitaxy on GaAs/Al0.5Ga0.5As layers. The optical properties of QDs were studied by low-temperature photoluminescence (PL). Two bandgap transitions corresponding to the X-Sh and X-Ph energy structure were observed. The QDs structure was investigated using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM). HRXRD investigations showed that the layers grew epitaxially on the substrate, with no relaxation. HRTEM investigations confirmed the epitaxial nature of the grown structures. In addition, it was revealed that the In atoms aggregated in some prismatic regions, forming areas of high In concentration, that were still in perfect registry with the substrate.

  15. Velocity surface measurements for ZnO films over /001/-cut GaAs

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Liu, Yongsheng; Jen, Cheng-Kuei

    1994-01-01

    A potential application for a piezoelectic film deposited on a GaAs substrate is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the filmed structure is critical for the optimum design of such devices. In this article, the measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metallized ZnO/SiO2 or Si3N4/GaAs /001/-cut samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. Comparisons, such as measurement accuracy and tradeoffs, between the former (dry) and the latter (wet) method are given. It is found that near the group of zone axes (110) propagation direction the autocollimating SAW property of the bare GaAs changes into a noncollimating one for the layered structure, but a reversed phenomenon exists near the group of zone axes (100) direction. The passivation layer of SiO2 or Si3N4 (less than 0.2 micrometer thick) and the metallization layer change the relative velocity but do not significantly affect the velocity surface. On the other hand, the passivation layer reduces the propagation loss by 0.5-1.3 dB/microseconds at 240 MHz depending upon the ZnO film thickness. Our SAW propagation measurements agree well with theorectical calculations. We have also obtained the anisotropy factors for samples with ZnO films of 1.6, 2.8, and 4.0 micrometer thickness. Comparisons concerning the piezoelectric coupling and acoustic loss between dc triode and rf magnetron sputtered ZnO films are provided.

  16. Fabrication, testing and reliability modeling of copper/titanium-metallized GaAs MESFETs and HEMTs for low-noise applications

    NASA Astrophysics Data System (ADS)

    Feng, Ting

    Today, GaAs based field effect transistors (FETs) have been used in a broad range of high-speed electronic military and commercial applications. However, their reliability still needs to be improved. Particularly the hydrogen induced degradation is a large remaining issue in the reliability of GaAs FETs, because hydrogen can easily be incorporated into devices during the crystal growth and virtually every device processing step. The main objective of this research work is to develop a new gate metallization system in order to reduce the hydrogen induced degradation from the gate region for GaAs based MESFETs and HEMTs. Cu/Ti gate metallization has been introduced into the GaAs MESFETs and HEMTs in our work in order to solve the hydrogen problem. The purpose of the use of copper is to tie up the hydrogen atoms and prevent hydrogen penetration into the device active region as well as to keep a low gate resistance for low noise applications. In this work, the fabrication technology of GaAs MESFETs and AlGaAs/GaAs HEMTs with Cu/Ti metallized gates have been successfully developed and the fabricated Cu/Ti FETs have shown comparable DC performance with similar Au-based GaAs FETs. The Cu/Ti FETs were subjected to temperature accelerated testing at NOT under 5% hydrogen forming gas and the experimental results show the hydrogen induced degradation has been reduced for the Cu/Ti FETs compared to commonly used AuPtTi based GaAs FETs. A long-term reliability testing for Cu/Ti FETs has also been carried out at 200°C and up to 1000hours and testing results show Cu/Ti FETs performed with adequate reliability. The failure modes were found to consist of a decrease in drain saturation current and pinch-off voltage and an increase in source ohmic contact resistance. Material characterization tools including Rutherford backscattering spectroscopy and a back etching technique were used in Cu/Ti GaAs FETs, and pronounced gate metal copper in-diffusion and intermixing compounds at the interface between the gate and GaAs channel layer were found. A quantifying gate sinking degradation model was developed in order to extend device physics models to reliability testing results of Cu/Ti GaAs FETs. The gate sinking degradation model includes the gate metal and hydrogen in-diffusion effect, decrease of effective channel due to the formation of interfacial compounds, decrease of electron mobility due to the increase of in-diffused impurities, and donor compensation from in-diffused metal impurity acceptors or hydrogen passivation. A variational charge control model was applied to simulate and understand the degradation mechanisms of Cu/Ti HEMTs, including hydrogen induced degradation due to the neutralization of donors. The degradation model established in this study is also applicable to other Au or Al metallized GaAs FETs for understanding the failure mechanisms induced by gate sinking and hydrogen neutralization of donors and con-elating the device physics model with reliability testing results.

  17. Overcoming Limitations in Semiconductor Alloy Design

    NASA Astrophysics Data System (ADS)

    Christian, Theresa Marie

    Inorganic semiconductors provide an astonishingly versatile, robust, and efficient platform for optoelectronic energy conversion devices. However, conventional alloys and growth regimes face materials challenges that restrict the full potential of these devices. Novel alloy designs based on isoelectronic co-doping, metamorphic growth and controllable atomic ordering offer new pathways to practical and ultra-high-efficiency optoelectronic devices including solar cells and light-emitting diodes. Abnormal isoelectronic alloys of GaP1-xBix, GaP 1-x-yBixNy, and GaAs1-xBix with unprecedented bismuth incorporation fractions and crystalline quality are explored in this thesis research. Comparative studies of several GaP1-xBix and GaP1-x-yBixNy alloys demonstrate that the site-specific incorporation of bismuth during epitaxial growth is sensitive to growth temperature and has dramatic effects on carrier transfer processes in these alloys. Additionally, distinctive bismuth-related localized states are spectrally identified for the first time in samples of GaAs1-xBix grown by laser-assisted epitaxial growth. These results address fundamental questions about the nature of bismuth-bismuth inter-impurity interactions. Finally, a metamorphic growth strategy for a novel light-emitting diode (LED) design is also discussed. This work utilized direct-bandgap AlxIn1-xP active layers with atomic ordering-based electron confinement to improve emission in the yellow and green spectral regions, where incumbent technologies are least effective, and demonstrated the feasibility of non-lattice-matched LED active materials for visible light emission.

  18. GaAs Photovoltaics on Polycrystalline Ge Substrates

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  19. Raman scattering studies of strain effects in (100) and (311)B GaAs1-xBix epitaxial layers

    NASA Astrophysics Data System (ADS)

    Steele, J. A.; Lewis, R. A.; Henini, M.; Lemine, O. M.; Alkaoud, A.

    2013-11-01

    We report room-temperature Raman studies of strained (100) and (311)B GaAs1-xBix epitaxial layers for x ≤ 0.039. The Raman spectra exhibit a two-mode behavior, as well as disorder-activated GaAs-like phonons. The experimental results show that the GaAs-like LO(Γ) mode experiences a strong composition-dependent redshift as a result of alloying. The peak frequency decreases linearly from the value for pure GaAs (˜293 cm-1) with the alloyed Bi fraction x and the introduced in-plane lattice strain ɛ∥, by ΔωLO=Δωalloy-Δωstrain. X-ray diffraction measurements are used to determine x and ɛ∥ allowing Δωalloy to be decoupled and is estimated to be -12(±4) cm-1/x for (100) GaAs1-xBix. ΔωLO is measured to be roughly double for samples grown on (311)B-oriented substrates to that of (100) GaAs. This large difference in redshift is accounted for by examining the Bi induced strain, effects from alloying, and defects formed during high-index (311)B crystal growth.

  20. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    NASA Astrophysics Data System (ADS)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  1. Selective Area Growth of GaAs on Si Patterned Using Nanoimprint Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L.; Makoutz, Emily A.; Horowitz, Kelsey A. W.

    Heteroepitaxial selective area growth (SAG) of GaAs on patterned Si substrates is a potential low-cost approach to integrate III-V and Si materials for tandem or multijunction solar cells. The use of nanoscale openings in a dielectric material can minimize nucleation-related defects and allow thinner buffer layers to be used to accommodate lattice mismatch between Si and an epitaxial III-V layer. For photovoltaic applications, the cost of patterning and growth, as well as the impact on the performance of the Si bottom cell must be considered. We present preliminary results on the use of soft nanoimprint lithography (SNIL) to create patternedmore » nucleation templates for the heteroepitaxial SAG of GaAs on Si. We demonstrate that SNIL patterning of passivating layers on the Si substrate improves measured minority carrier properties relative to unprotected Si. Cost modeling of the SNIL process shows that adding a patterning step only adds a minor contribution to the overall cost of a tandem III-V/Si solar cell, and can enable significant savings if it enables thinner buffer layers.« less

  2. Photoluminescence and capacitance voltage characterization of GaAs surface passivated by an ultrathin GaN interface control layer

    NASA Astrophysics Data System (ADS)

    Anantathanasarn, Sanguan; Hasegawa, Hideki

    2002-05-01

    A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.

  3. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application

    NASA Astrophysics Data System (ADS)

    Jiahui, Zhou; Hudong, Chang; Honggang, Liu; Guiming, Liu; Wenjun, Xu; Qi, Li; Simin, Li; Zhiyi, He; Haiou, Li

    2015-05-01

    The impact of various thicknesses of Al2O3 metal—insulator—metal (MIM) capacitors on direct current and radio frequency (RF) characteristics is investigated. For 20 nm Al2O3, the fabricated capacitor exhibits a high capacitance density of 3850 pF/mm2 and acceptable voltage coefficients of capacitance of 681 ppm/V2 at 1 MHz. An outstanding VCC-α of 74 ppm/V2 at 1 MHz, resonance frequency of 8.2 GHz and Q factor of 41 at 2 GHz are obtained by 100 nm Al2O3 MIM capacitors. High-performance MIM capacitors using GaAs process and atomic layer deposition Al2O3 could be very promising candidates for GaAs RFIC applications. Project supported by the National Natural Science Foundation of China (Nos. 61274077, 61474031), the Guangxi Natural Science Foundation (No. 2013GXNSFGA019003), the Guangxi Department of Education Project (No. 201202ZD041), the Guilin City Technology Bureau (Nos. 20120104-8, 20130107-4), the China Postdoctoral Science Foundation Funded Project (Nos. 2012M521127, 2013T60566), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449), the State Key Laboratory of Electronic Thin Films and Integrated Devices, UESTC (No. KFJJ201205), and the Guilin City Science and Technology Development Project (Nos. 20130107-4, 20120104-8).

  4. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  5. Extraordinary Transmission in the UV Range from Sub-wavelength Slits on Semiconductors

    DTIC Science & Technology

    2010-03-01

    M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, J. W. Haus and A. M. Zheltikov, "Negative refraction of ultrashort electromagnetic pulses...a GaAs Substrate We consider a single layer of a GaAs having the linear dispersion profile taken from Palik’s handbook of optical constants [11...wavelength to investigate the relationship between the extraordinary transmission regime and the dispersion peculiarities of GaAs. As Fig.6 shows, the

  6. Stacking InAs quantum dots over ErAs semimetal nanoparticles on GaAs (0 0 1) using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanchang; Eyink, Kurt G.; Grazulis, Lawrence; Hill, Madelyn; Peoples, Joseph; Mahalingam, Krishnamurthy

    2017-11-01

    Hybrid nanostructures are known to elicit an enhanced optical response. We study the directed alignment of ErAs metal nanoparticle (NP) and InAs quantum dot (QD) using molecular beam eptaxy (MBE) in a GaAs matrix. Due to high surface free energy caused by the crystal structure difference, overgrowth of an ErAs NP with GaAs forms a depression that condenses subsequent InAs adatoms to form an inverted QD self-aligned to the underlying ErAs NP. The ErAs NP growth, GaAs overgrowth, and InAs QD deposition were carefully controlled and studied with transmission electron microscopy (TEM) and atomic force microscopy (AFM) to investigate their effects on the QD-NP alignment.

  7. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    PubMed

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  8. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, C. S.; Prohl, C.; Füllert, V.

    2016-04-04

    The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration ofmore » III-V optoelectronic components into silicon-based technology.« less

  9. Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy

    PubMed Central

    2017-01-01

    Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film. PMID:28530829

  10. Rapid Thermal Processing of 3-5 Compound Semiconductors with Application to the Fabrication of Microwave Devices

    DTIC Science & Technology

    1988-05-01

    LE i GOD~’Q~/ SOLID STATE ELECTRONICS LABORATORY STANFORD ELECTRON ICS LABORATORIES DEPARTMENT OF ELECTRICAL ENGINEERING L STANFORD UNIVERSITY...defects in the growth of subsequent layers. Test structures consisting 325 zEP-H~ PrzC~ LE of multiple layers of GaAs or alternating lay ers of GaAs...QA5) ~erhfellowship. ’J L Ho~ viand ) IF Gibtxn,. itecr Res Soc S% mp Proc 52. 15119t 36 Rapid thermal annealing of Si-implanted GaAs with

  11. Heavily Sn-doped GaAs with abrupt doping profiles grown by migration-enhanced epitaxy at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanapranee, Tosaporn; Horikoshi, Yoshiji

    The characteristics of heavily Sn-doped GaAs samples grown at 300 deg. C by a migration-enhanced epitaxy (MEE) technique are investigated in comparison with those of the samples grown by a conventional molecular-beam epitaxy (MBE) at 580 deg. C. While no discernible difference is observed in the low doping regime, the difference in doping characteristics between the MBE- and MEE-grown samples becomes apparent when the doping concentration exceeds 1x10{sup 19} cm{sup -3}. Sn atoms as high as 4x10{sup 21} cm{sup -3} can be incorporated into MEE-grown GaAs films, unlike the MBE-grown samples that have a maximum doping level limited around 1x10{supmore » 19} cm{sup -3}. Due to an effective suppression of Sn segregation in the MEE growth case, high quality GaAs films with abrupt high-concentration Sn-doping profiles are achieved with the doping concentrations of up to 2x10{sup 21} cm{sup -3}. It has been shown that even though a high concentration of Sn atoms is incorporated into the GaAs film, the electron concentration saturates at 6x10{sup 19} cm{sup -3} and then gradually decreases with Sn concentration. The uniform doping limitation, as well as the electron concentration saturation, is discussed by means of Hall-effect measurement, x-ray diffraction, and Raman scattering spectroscopy.« less

  12. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoqing, E-mail: steelxu@stanford.edu; Parizi, Kokab B.; Huo, Yijie

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surfacemore » leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.« less

  13. Field-Dependent Measurement of GaAs Composition by Atom Probe Tomography.

    PubMed

    Di Russo, Enrico; Blum, Ivan; Houard, Jonathan; Da Costa, Gérald; Blavette, Didier; Rigutti, Lorenzo

    2017-12-01

    The composition of GaAs measured by laser-assisted atom probe tomography may be inaccurate depending on the experimental conditions. In this work, we assess the role of the DC field and the impinging laser energy on such compositional bias. The DC field is found to have a major influence, while the laser energy has a weaker one within the range of parameters explored. The atomic fraction of Ga may vary from 0.55 at low-field conditions to 0.35 at high field. These results have been interpreted in terms of preferential evaporation of Ga at high field. The deficit of As is most likely explained by the formation of neutral As complexes either by direct ejection from the tip surface or upon the dissociation of large clusters. The study of multiple detection events supports this interpretation.

  14. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  15. High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy

    PubMed Central

    2011-01-01

    We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained III-V compound semiconductor solar cell can be quite comparable to the metal-organic-chemical-vapor-deposition-grown high-efficiency solar cell. PMID:22040124

  16. Growth, Fabrication and Characterization of Patterned Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Kumari, Archana

    In this work we developed a new technique for the growth of GaAs nanostrcutures and tungsten disulphide (WS2) nanodots, a two dimensional dichalcogenide (2D-TMD). We patterned a thin SiO2 film for the first time by reactive ion etching through the alumina templates and GaAs nanopillars and nanodots were grown through the holes in SiO2 film by MBE. The WS2 nanodots were synthesized by the atomic layer deposition of WS 2 via alumina template. First, WO3 nanodots were deposited through the porous template using e-beam evaporation and then WO3 vapor reacts with sulfur to obtain WS2 nanodots by chemical vapor deposition technique. We studied morphological and optical properties of patterned nanostructures using SEM, TEM photoluminescence(PL) technique, AFM and Raman microscopy. We used different As2/Ga ratio to obtain patterned nanostructures through the holes of the SiO2 film. These nanopillars were epitaxially aligned to the GaAs(111)B substrates. We achieved (111)B oriented nanopillars with typical diameters between 72 nm to 76 nm and lengths between 200 nm- 600 nm. These nanopillars have six {110} side facets. Though there were few defects, but mostly they were following the pattern in SiO 2. We obtained nanopillars with predominantly two types of tops, triangular pyramidal tops and hexagonal flat tops. We find that these nanopillars have a mixed crystal structure of zinc-blende and wurtzite structures. There is a high density of twins and stacking faults. Alternating wurtzite and zinc-blende layers within the nanopillars, however, lead to quantum confinement effect and thus a blue-shift of PL emission. WS2 nanodots precisely controlled in size have potential applications in nanoelectronics due to their unique optical and electrical properties. Most of the nanodots synthesized so far are produced using liquid exfoliation method from the bulk. Here we report the size controlled growth of uniform WS2 nanodots using self -organized alumina templates as a growth mask on sapphire (1000) substrates by a chemical vapor deposition (CVD) technique. Scanning electron microscope (SEM) images show that the size of the nanodots predominantly varies from 46 nm to 76 nm. In one region which extends to few micrometers, the nanodots are approximately of same size and thickness. Atomic force microscopy (AFM) images confirm that the thickness of these nanodots varies from monolayer to few layers. In the measured PL spectra at room temperature, the emission peak of the nanodots on sapphire substrates was shown at 2.01eV. It was redshifted as compare to the emission from WS2 monolayers. The analysis of Raman spectra shows no effect related to the size.

  17. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun

    2017-01-01

    Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.

  18. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  19. Formation of III–V ternary solid solutions on GaAs and GaSb plates via solid-phase substitution reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil’ev, V. I.; Gagis, G. S., E-mail: galina.gagis@gmail.com; Kuchinskii, V. I.

    2015-07-15

    Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.

  20. Growth features and spectroscopic structure investigations of nanoprofiled AlN films formed on misoriented GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Goloshchapov, D. L.; Lenshin, A. S.

    Nanostructured aluminum-nitride films are formed by reactive ion-plasma sputtering onto GaAs substrates with different orientations. The properties of the films are studied via structural analysis, atomic force microscopy, and infrared and visible–ultraviolet spectroscopy. The aluminum-nitride films can have a refractive index in the range of 1.6–4.0 at a wavelength of ~250 nm and an optical band gap of ~5 eV. It is shown that the morphology, surface composition, and optical characteristics of AlN/GaAs heterophase systems can be controlled using misoriented GaAs substrates.

  1. Ion beam processing and characterization of advanced optical materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jie

    Ion beams have been extensively applied for materials modification and characterization. In this dissertation, I will focus on the applications of ion beams for advanced optical materials. The first part of my work addresses the effects of 1.0 MeV proton irradiation on photoluminescence (PL) properties of self-assembled InAs QDs. Compared to the QDs grown in a GaAs thin film, the QDs embedded in an AlAs/GaAs superlattice structure exhibits much higher photoluminescence degradation resistance to proton irradiation. Proton irradiation combined with thermal annealing results in significant blueshifts in PL spectra of QDs embedded in GaAs, suggesting enhanced atomic intermixing in the QD systems due to point defects introduced by ion irradiation. In the second part of my work, ion channeling combined with Rutherford backscattering is applied to investigate In-Ga atomic intermixing processes in the proton irradiated InAs QD system. Ion channeling along the growth (<100>) direction shows evidence of In atoms with small displacement from the atomic row, which gives direct signature of QD lattice structures, allowing us to monitor atomic intermixing between In and Ga. Based on the channeling data, a model for In-Ga atomic intermixing in InAs/GaAs QD system is proposed, in which In-Ga atomic intermixing can take place along both the growth direction and the lateral direction in the QD layer. The third part of my dissertation is the elemental mapping of silica-based optical cross section using micron-ion-beam imaging techniques. This work is intended to examine the thermal stability of Ge-doped fiber cores in high-temperature environments. Our measurements show that Ge completely diffuses out of the core region following thermal annealing at 1000°C. This indicates that silica-based optical fibers cannot be used for applications at extreme high temperatures. The final part is the study of the effects of various wet treatment on GaN surface, which is a necessary step during the GaN device fabrication. In our work, the HCL treatment has reduced the Ga concentration on the surface for N type GaN. However, for samples with lower concentration of Si doping or P type GaN samples, this effect does not occur.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkert, A.; Schumacher, C.; Brunner, K.

    The authors demonstrate in situ high-resolution x-ray diffraction applied during heteroepitaxy on (001)GaAs for instant layer characterization. The current thickness, composition, strain, and relaxation dynamics of pseudomorphic layers are precisely determined from q{sub z} scans at the (113) reflection measured at a molecular beam epitaxy chamber with a conventional x-ray tube in static geometry. A simple fitting routine enables real-time in situ x-ray diffraction analysis of layers as thin as 20 nm. Critical thicknesses for dislocation formation and plastic relaxation of ZnCdSe layers versus Cd content are determined. The strong influence of substrate temperature on heteroepitaxial nucleation process, deposition rate,more » composition, and strain relaxation dynamics of ZnCdSe on GaAs is also studied.« less

  3. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-05-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.

  4. Disruption of Higher Order DNA Structures in Friedreich’s Ataxia (GAA)n Repeats by PNA or LNA Targeting

    PubMed Central

    Bergquist, Helen; Rocha, Cristina S. J.; Álvarez-Asencio, Rubén; Nguyen, Chi-Hung; Rutland, Mark. W.; Smith, C. I. Edvard; Good, Liam; Nielsen, Peter E.; Zain, Rula

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression. PMID:27846236

  5. Nanoscale Semiconductor Electronics

    DTIC Science & Technology

    2015-02-25

    GaAs into Ga2O3 . Compared with LHO along the Al0.98Ga0.02As layer, however, the vertical oxidation into the GaAs capping is very slow. Its rate is...Then, NH4NO3 reacts with GaAs and results in Ga2O3 and As2O3. The oxidation rate is critically affected by pH and temperature. A high oxidation rate...shrinkage 500 nm Al0.98Ga0.02As Semi-insulating GaAs(001) 100 nm n+-GaAs Al2O3 100 nm SiO2 Ga2O3 n+-GaAs stripe ~20‐25 m LHO condition Temperature

  6. Chemical beam epitaxy of GaAs1-xNx using MMHy and DMHy precursors, modeled by ab initio study of GaAs(100) surfaces stability over As2, H2 and N2

    NASA Astrophysics Data System (ADS)

    Valencia, Hubert; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-06-01

    Using ab initio calculations, a simple model for GaAs1-xNx vapor-phase epitaxy on (100) surface of GaAs was created. By studying As2 and H2 molecules adsorptions and As/N atom substitutions on (100) GaAs surfaces, we obtain a relative stability diagram of all stable surfaces under varying As2, H2, and N2 conditions. We previously proved that this model could describe the vapor-phase epitaxy of GaAs1-x Nx with simple, fully decomposed, precursors. In this paper, we show that in more complex reaction conditions using monomethylhydrazine (MMHy), and dimethylhydrazine (DMHy), it is still possible to use our model to obtain an accurate description of the temperature and pressure stability domains for each surfaces, linked to chemical beam epitaxy (CBE) growth conditions. Moreover, the different N-incorporation regimes observed experimentally at different temperature can be explain and predict by our model. The use of MMHy and DMHy precursors can also be rationalized. Our model should then help to better understand the conditions needed to obtain an high quality GaAs1-xNx using vapor-phase epitaxy.

  7. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  8. Effect of growth temperature on closely lattice-matched GaAsSbN intrinsic layer for GaAs-based 1.3 {mu}m p-i-n photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicaksono, S.; Yoon, S.F.; Loke, W.K.

    2006-05-15

    GaAsSbN layers closely lattice-matched to GaAs were studied for application as the intrinsic layer in GaAs-based 1.3 {mu}m p-i-n photodetector. The GaAsSbN was grown as the intrinsic layer for the GaAs/GaAsSbN/GaAs photodetector structure using solid-source molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and valved antimony cracker source. The lattice mismatch of the GaAsSbN layer to GaAs was kept below 4000 ppm, which is sufficient to maintain coherent growth of {approx}0.45 {mu}m thick GaAsSbN on the GaAs substrate. The growth temperature of the GaAsSbN layer was varied from 420-480 deg. C. All samples exhibit room temperaturemore » photocurrent response in the 1.3 {mu}m wavelength region, with dark current density of {approx}0.3-0.5 mA/cm{sup 2} and responsivity of up to 33 mA/W at 2 V reverse bias. Reciprocal space maps reveal traces of point defects and segregation (clustering) of N and Sb, which may have a detrimental effect on the photocurrent responsivity.« less

  9. Removal of GaAs growth substrates from II-VI semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.

    2014-04-01

    We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.

  10. Reflection high energy electron diffraction study of nitrogen plasma interactions with a GaAs (100) surface

    NASA Astrophysics Data System (ADS)

    Hauenstein, R. J.; Collins, D. A.; Cai, X. P.; O'Steen, M. L.; McGill, T. C.

    1995-05-01

    Effect of a nitrogen electron-cyclotron-resonance (ECR) microwave plasma on near-surface composition, crystal structure, and morphology of the As-stabilized GaAs (100) surface is investigated with the use of digitally image-processed in situ reflection high energy electron diffraction. Nitridation is performed on molecular beam epitaxially (MBE) grown GaAs surfaces near 600 °C under typical conditions for ECR microwave plasma-assisted MBE growth of GaN films on GaAs. Brief plasma exposures (≊3-5 s) are shown to result in a specular, coherently strained, relatively stable, GaN film approximately one monolayer in thickness, which can be commensurately overgrown with GaAs while longer exposures (up to 1 min) result in incommensurate zincblende epitaxial GaN island structures. Specular and nonspecular film formations are explained in terms of N-for-As surface and subsurface anion exchange reactions, respectively. Commensurate growth of ultrathin buried GaN layers in GaAs is achieved.

  11. Low temperature growth and electrical characterization of insulators for GaAs MISFETS

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandhi, S. K.

    1981-01-01

    Progress in the low temperature growth of oxides and layers on GaAs and the detailed electrical characterization of these oxides is reported. A plasma anodization system was designed, assembled, and put into operation. A measurement system was assembled for determining capacitance and conductance as a function of gate voltage for frequencies in the range from 1 Hz to 1 MHz. Initial measurements were carried out in Si-SiO2 capacitors in order to test the system and in GaAs MIS capacitors abricated using liquid anodization.

  12. Arsine flow requirement for the flow modulation growth of high purity GaAs using adduct-grade triethylgallium

    NASA Astrophysics Data System (ADS)

    Pitts, B. L.; Emerson, D. T.; Shealy, J. R.

    1992-10-01

    Using arsine and triethylgallium with flow modulation, organometallic vapor phase epitaxy can produce high purity GaAs layers with V/III molar ratios near unity. We have estimated that under appropriate growth conditions the arsine incorporation efficiency into epitaxial GaAs can exceed 30%. The arsine flow requirement for obtaining good morphology has been identified over a range of substrate temperatures using adduct-grade triethylgallium. The process described reduces the environmental impact and life safety risk of the hydride based organometallic vapor phase epitaxial method.

  13. Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shafi, M.; Mari, R. H.; Khatab, A.; Henini, M.; Polimeni, A.; Capizzi, M.; Hopkinson, M.

    2011-12-01

    Dilute nitride GaAs1-xNx layers have been grown by molecular beam epitaxy with nitrogen concentration ranging from 0.2% to 0.8%. These samples have been studied before and after hydrogen irradiation by using standard deep level transient spectroscopy (DLTS) and high resolution Laplace DLTS techniques. The activation energy, capture cross section and density of the electron traps have been estimated and compared with results obtained in N-free as-grown and H-irradiated bulk GaAs.

  14. Conductivity and structure of ErAs nanoparticles embedded in GaAs pn junctions analyzed via conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Dasika, V. D.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.

    2012-06-01

    We have used conductive atomic force microscopy to investigate the influence of growth temperature on local current flow in GaAs pn junctions with embedded ErAs nanoparticles grown by molecular beam epitaxy. Three sets of samples, one with 1 ML ErAs deposited at different growth temperatures and two grown at 530 °C and 575 °C with varying ErAs depositions, were characterized. Statistical analysis of local current images suggests that the structures grown at 575 °C have about 3 times thicker ErAs nanoparticles than structures grown at 530 °C, resulting in degradation of conductivity due to reduced ErAs coverage. These findings explain previous studies of macroscopic tunnel junctions.

  15. Luminescence properties of ZnxMg1-xSe layers

    NASA Astrophysics Data System (ADS)

    Bala, Waclaw; Firszt, Franciszek; Dzik, Janusz; Gapinski, Adam; Glowacki, Grzegorz

    1995-10-01

    This work deals with the study of luminescence properties of ZnxMg1-xSe layers prepared by different methods. ZnxMg1-xSe mixed crystal layers were obtained by: (a) thermal diffusion of Mg metal in the temperature range 1050 K - 1200 K into ZnSe single crystal grown by Bridgman method, and (b) epitaxial growth on (001) GaAs and (111) ZnTe substrates by MBE using elemental Zn, Se and Mg sources. The luminescence spectra of ZnxMg1-xSe layers grown on (001) GaAs and (111) ZnTe substrates are dominated by narrow blue and violet emission bands with maxima positioned at about 3.05 - 3.28 eV, 2.88 - 3.04 eV, and 2.81 - 2.705 eV.

  16. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  17. High Bandwidth-Efficiency Resonant Cavity Enhanced Schottky Photodiodes for 800-850 nm Wavelength Operation

    DTIC Science & Technology

    1998-05-25

    at least 50 nm wide centered around 830 nm wavelength. The layers are grown by molecular beam epitaxy on a semi- insulating GaAs substrate. The...limited by the material properties. With the advent of GaAs vertical-cavity surface-emitting lasers ~ VCSEL !,2 the 800–850 nm wavelength range has recently

  18. Optimum Concentration Ratio Analysis Using Dynamic Thermal Model for Concentrated Photovoltaic System

    DTIC Science & Technology

    2012-03-22

    covalent bond with four adjacent atoms. Compound semiconductors such as GaAs have a crystal lattice similar to the diamond lattice, but since the...are found in both elemental (e.g. Si) and compound form (e.g. GaAs), but every semiconductor material is characterized by the properties of its crystal...lattice. The covalent bonds formed within a semiconducting material determine the shape of the crystal lattice [8]. For an in depth explanation

  19. Structural Study of GaAs(001):In 4×2 Surface

    NASA Astrophysics Data System (ADS)

    Lee, T.-L.; Zegenhagen, J.; Lyman, P. F.; Bedzyk, M. J.

    1997-03-01

    In a STM and LEED investigation (U. Resch-Esser et al., JVST B 13, 1672 (1995)), the indium-terminated GaAs(001) surface exhibited a (4×2) reconstruction. Based on this study, a dimer model, similar to that proposed by Biegelsen et al. (PRB 41, 5701(1990)) for the (4×2) clean surface, was proposed. However, the detailed local structure of the In ad-atoms was not resolvable from the STM image. In this work, we applied in situ x-ray standing wave (XSW) measurements to determine the surface structure of the GaAs(001) upon the adsorption of In at low coverages. The (4×2)/c(8×2) In-terminated GaAs(001) surface (Θ_In = 0.2 ML) was prepared by MBE. The (004) XSW measurement showed that the In ad-atoms were located 1.61 Åabove the (004) diffraction planes. At higher In coverages (up to 0.6 ML) the In (004) coherent fraction was small. This is consistent with the ladder-type pattern observed by STM at Θ_In > 0.5 ML, which indicated that there were two coexisting surface structures. For Θ_In = 0.2 ML, we found that our off-normal XSW measurements did not agree with the model proposed by Resch-Esser et al.. This work is sponsored by DOE-BES No. W-31-109-ENG-38 and by NSF No. DMR-9632472.

  20. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  1. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOEpatents

    Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

  2. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Vernon, S. M.

    1982-01-01

    The power to weight ratio of GaAs cells can be reduced by fabricating devices using thin GaAs films on low density substrate materials (silicon, glass, plastics). A graphoepitaxy technique was developed which uses fine geometric patterns in the substrate to affect growth. Initial substrates were processed by etching 25 microns deep grooves into 100 oriented wafers; fine-grained polycrystalline GaAs layers 25-50 microns thick were then deposited on these and recrystallization was performed, heating the substrates to above the GaAs melting point in ASH3 atmosphere, resulting in large grain regrowth oriented along the groove dimensions. Experiments with smaller groove depths and spacings were initially encouraging; single large GaAs grains would totally cover one and often two groove fields of 14 groove each spanning several hundred microns. Dielectric coatings on the grooved substrates were also used to modify the growth.

  3. Cubic zirconia as a species permeable coating for zinc diffusion in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bisberg, J. E.; Dabkowski, F. P.; Chin, A. K.

    1988-10-01

    Diffusion of zinc into GaAs through an yttria-stabilized cubic zirconia (YSZ) passivation layer has been demonstrated with an open-tube diffusion method. Pure zinc or GaAs/Zn2As3 sources produced high quality planar p-n junctions. The YSZ layer protects the GaAs surface from excessive loss of arsenic, yet is permeable to zinc, allowing its diffusion into the semiconductor. The YSZ films, deposited by electron beam evaporation, were typically 2000 Å thick. Zinc diffusion coefficients (DT) at 650 °C in the YSZ passivated GaAs ranged from 3.6×10-10 cm2/min for the GaAs/Zn2As3 source to 1.9×10-9 cm2/min for the pure zinc source. Doping concentrations for both YSZ passivated and uncapped samples were approximately 5×1019 cm-3.

  4. Room Temperature Sensing Achieved by GaAs Nanowires and oCVD Polymer Coating.

    PubMed

    Wang, Xiaoxue; Ermez, Sema; Goktas, Hilal; Gradečak, Silvija; Gleason, Karen

    2017-06-01

    Novel structures comprised of GaAs nanowire arrays conformally coated with conducting polymers (poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3,4-ethylenedioxythiophene-co-3-thiophene acetic acid) display both sensitivity and selectivity to a variety of volatile organic chemicals. A key feature is room temperature operation, so that neither a heater nor the power it would consume, is required. It is a distinct difference from traditional metal oxide sensors, which typically require elevated operational temperature. The GaAs nanowires are prepared directly via self-seeded metal-organic chemical deposition, and conducting polymers are deposited on GaAs nanowires using oxidative chemical vapor deposition (oCVD). The range of thickness for the oCVD layer is between 100 and 200 nm, which is controlled by changing the deposition time. X-ray diffraction analysis indicates an edge-on alignment of the crystalline structure of the PEDOT coating layer on GaAs nanowires. In addition, the positive correlation between the improvement of sensitivity and the increasing nanowire density is demonstrated. Furthermore, the effect of different oCVD coating materials is studied. The sensing mechanism is also discussed with studies considering both nanowire density and polymer types. Overall, the novel structure exhibits good sensitivity and selectivity in gas sensing, and provides a promising platform for future sensor design. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrophilic surface sites as precondition for the chemisorption of pyrrole on GaAs(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, Thomas; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str.9, 12489 Berlin; Fimland, Bjørn-Ove

    We report how the presence of electrophilic surface sites influences the adsorption mechanism of pyrrole on GaAs(001) surfaces. For this purpose, we have investigated the adsorption behavior of pyrrole on different GaAs(001) reconstructions with different stoichiometries and thus different surface chemistries. The interfaces were characterized by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and by reflectance anisotropy spectroscopy in a spectral range between 1.5 and 5 eV. On the As-rich c(4 × 4) reconstruction that exhibits only nucleophilic surface sites, pyrrole was found to physisorb on the surface without any significant modification of the structural and electronic properties of the surface. Onmore » the Ga-rich GaAs(001)-(4 × 2)/(6 × 6) reconstructions which exhibit nucleophilic as well as electrophilic surface sites, pyrrole was found to form stable covalent bonds mainly to the electrophilic (charge deficient) Ga atoms of the surface. These results clearly demonstrate that the existence of electrophilic surface sites is a crucial precondition for the chemisorption of pyrrole on GaAs(001) surfaces.« less

  6. Surface segregation and the Al problem in GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Shayegan, M.; Pfeiffer, L. N.

    2018-03-01

    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped AlxGa1 -xAs /GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the AlxGa1 -xAs barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the AlxGa1 -xAs barrier beneath the QW is increased, which we attribute to the surface segregation of oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.

  7. Covalent attachment of TAT peptides and thiolated alkyl molecules on GaAs surfaces.

    PubMed

    Cho, Youngnam; Ivanisevic, Albena

    2005-07-07

    Four TAT peptide fragments were used to functionalize GaAs surfaces by adsorption from solution. In addition, two well-studied alkylthiols, mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT) were utilized as references to understand the structure of the TAT peptide monolayer on GaAs. The different sequences of TAT peptides were employed in recognition experiments where a synthetic RNA sequence was tested to verify the specific interaction with the TAT peptide. The modified GaAs surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). AFM studies were used to compare the surface roughness before and after functionalization. XPS allowed us to characterize the chemical composition of the GaAs surface and conclude that the monolayers composed of different sequences of peptides have similar surface chemistries. Finally, FT-IRRAS experiments enabled us to deduce that the TAT peptide monolayers have a fairly ordered and densely packed alkyl chain structure. The recognition experiments showed preferred interaction of the RNA sequence toward peptides with high arginine content.

  8. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics.

    PubMed

    Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang

    2016-08-01

    The growth process of InAs quantum dots grown on GaAs (511)A substrates has been studied by atomic force microscopy. According to the atomic force microscopy studies for quantum dots grown with varying InAs coverage, a noncoherent nucleation of quantum dots is observed. Moreover, due to the long migration length of In atoms, the Ostwald ripening process is aggravated, resulting in the bad uniformity of InAs quantum dots on GaAs (511)A. In order to improve the uniformity of nucleation, the growth rate is increased. By studying the effects of increased growth rates on the growth of InAs quantum dots, it is found that the uniformity of InAs quantum dots is greatly improved as the growth rates increase to 0.14 ML s(-1) . However, as the growth rates increase further, the uniformity of InAs quantum dots becomes dual-mode, which can be attributed to the competition between Ostwald ripening and strain relaxation processes. The results in this work provide insights regarding the competition between thermal dynamical barriers and the growth kinetics in the growth of InAs quantum dots, and give guidance to improve the size uniformity of InAs quantum dots on (N11)A substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. First principle calculation in FeCo overlayer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vishal, E-mail: vjain045@gmail.com; Lakshmi, N.; Jain, Vivek Kumar

    In this work the first principle electronic structure calculation is reported for FeCo/GaAs thin film system to investigate the effect of orientation on the electronic structural properties. A unit cell describing FeCo layers and GaAs layers is constructed for (100), (110), (111) orientation with vacuum of 30Å to reduce dimensions. It is found that although the (110) orientation is energetically more favorable than others, the magnetic moment is quite large in (100) and (111) system compared to the (110) and is due to the total DOS variation with orientation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behaghel, B.; Institute of Research and Development on Photovoltaic Energy; NextPV, RCAST and CNRS, The University of Tokyo, Meguro-ku, Tokyo 153-8904

    We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  11. Microslab - Waveguide medium for the future

    NASA Astrophysics Data System (ADS)

    Sequeira, H. B.

    1986-09-01

    'Microslab' technology, which has the transmission properties of both microstrip and dielectric slab waveguides, and which is aimed for use in MIMIC devices, is described. The Microslab configuration consists of a guiding layer bonded to a metallized dielectric substrate (slab) and a metallized dielectric rod, with the dielectric material and thicknesses chosen for minimal loss and dispersion and for optimum control of the propagating energy. The propagating energy is confined mainly to the guiding layer. The new technology has been used to couple a GaAs Gunn oscillator directly to a GaAs Microslab network to produce 0.25 mW at 141 GHz.

  12. Probing semiconductor gap states with resonant tunneling.

    PubMed

    Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H

    2006-02-17

    Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.

  13. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  14. Deep-levels in gallium arsenide for device applications

    NASA Astrophysics Data System (ADS)

    McManis, Joseph Edward

    Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.

  15. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Emelyanov, V. M.; Rybalchenko, D. V.

    Heterostructures of metamorphic GaInAs photovoltaic converters (PVCs) are on GaAs substrates by the metal-organic chemical vapor deposition (MOCVD) method. It is shown that using a multilayer metamorphic buffer with a step of 2.5% in indium content and layer thicknesses of 120 nm provides the high quality of bulk layers subsequently grown on the buffer up to an indium content of 24%. PVCs with a long-wavelength photosensitivity edge up to 1300 nm and a quantum efficiency of ~80% in the spectral range 1050–1100 nm are fabricated. Analysis of the open-circuit voltage of the PVCs and diffusion lengths of minority carriers inmore » the layers demonstrates that the density of misfit dislocations penetrating into the bulk layers increases at an indium content exceeding 10%.« less

  16. Electrodeposition of CdSe on GaAs and InP substrates

    NASA Astrophysics Data System (ADS)

    Etcheberry, A.; Cachet, H.; Cortes, R.; Froment, M.

    2001-06-01

    Epitaxial CdSe layers have been electrodeposited on the (1 0 0) and ( 1¯ 1¯ 1¯) faces of GaAs and InP single crystals. Chemical composition and crystalline quality of CdSe have been studied by X-photoelectron spectroscopy, reflection high energy electron diffraction and X-ray diffraction. Influence of the substrate has been pointed out.

  17. An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshkin, V. Ya.; Dikareva, N. V.; Dubinov, A. A., E-mail: sanya@ipm.sci-nnov.ru

    2015-02-15

    A light-emitting diode structure based on GaAs with eight narrow Ge quantum wells is grown by laser sputtering. An electroluminescence line polarized predominately in the plane parallel to the constituent layers of the structure is revealed. The line corresponds to the direct optical transitions in momentum space in the Ge quantum wells.

  18. Wafer-Fused Orientation-Patterned GaAs

    DTIC Science & Technology

    2008-02-13

    frequencies utilizing existing industrial foundries. 15. SUBJECT TERMS Orientation-patterned Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase... Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase-matching, nonlinear frequency conversion 1. INTRODUCTION Quasi-phase-matching (QPM)1...and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy

  19. Optimization of the interfacial misfit array growth mode of GaSb epilayers on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Benyahia, D.; Kubiszyn, Ł.; Michalczewski, K.; Kębłowski, A.; Martyniuk, P.; Piotrowski, J.; Rogalski, A.

    2018-02-01

    The growth of undoped GaSb epilayers on GaAs (0 0 1) substrates with 2° offcut towards 〈1 1 0〉, by molecular beam epitaxy system (MBE) at low growth temperature is reported. The strain due to the lattice mismatch of 7.78% is relieved spontaneously at the interface by using interfacial misfit array (IMF) growth mode. Three approaches of this technique are investigated. The difference consists in the steps after the growth of GaAs buffer layer. These steps are the desorption of arsenic from the GaAs surface, and the cooling down to the growth temperature, under or without antimony flux. The X-ray analysis and the transmission electron microscopy point out that desorption of arsenic followed by the substrate temperature decreasing under no group V flux leads to the best structural and crystallographic properties in the GaSb layer. It is found that the 2 μm-thick GaSb is 99.8% relaxed, and that the strain is relieved by the formation of a periodic array of 90° pure-edge dislocations along the [1 1 0] direction with a periodicity of 5.6 nm.

  20. Hydrogenation of GaAs covered by GaAlAs and subgrain boundary passivation

    NASA Astrophysics Data System (ADS)

    Djemel, A.; Castaing, J.; Chevallier, J.; Henoc, P.

    1992-12-01

    Cathodoluminescence (CL) has been performed to study the influence of hydrogen on electronic properties of GaAs with and without a GaAlAs layer. Recombination at sub-boundaries has been examined. These extended defects have been introduced by high temperature plastic deformation. The results show that they are passivated by hydrogen. The penetration of hydrogen is slowed down by the GaAlAs layer. La cathodoluminescence (CL) a été utilisée pour étudier l'influence de l'hydrogène sur les propriétés électroniques de GaAs nu et recouvert d'une couche de GaAlAs. Le caractère recombinant des sous-joints de grains a été examiné. Ces défauts étendus ont été introduits par déformation plastique à chaud. Les résultats montrent que l'hydrogène passive ces défauts. La pénétration de l'hydrogène à l'intérieur de GaAs est retardée par la présence de la couche de GaAlAs.

  1. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Yin, Haiying; Fan, Yibing; Ma, Xing; Huang, Yongqing; Ren, Xiaomin

    2018-04-01

    In this work, a technique for the growth of GaAs epilayers on Si, combining an ultrathin amorphous Si buffer layer and a three-step growth method, has been developed to achieve high crystalline quality for monolithic integration. The influences of the combined technique for the crystalline quality of GaAs on Si are researched in this article. The crystalline quality of GaAs epilayer on Si with the combined technique is investigated by scanning electron microscopy, double crystal X-ray diffraction (DCXRD), photoluminescence, and transmission electron microscopy measurements. By means of this technique, a 1.8-µm-thick high-quality GaAs/Si epilayer was grown by metal-organic chemical vapor deposition. The full-width at half-maximum of the DCXRD rocking curve in the (400) reflection obtained from the GaAs/Si epilayers is about 163 arcsec. Compared with only using three-step growth method, the current technique reduces etch pit density from 3 × 106 cm-2 to 1.5 × 105 cm-2. The results demonstrate that the combined technique is an effective approach for reducing dislocation density in GaAs epilayers on Si.

  2. Growth control and design principles of self-assembled quantum dot multiple layer structures for photodetector applications

    NASA Astrophysics Data System (ADS)

    Asano, Tetsuya

    Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ˜ 77 K will enable RC-QDIP with detectivites > 1011 cmHz1/2/W that become competitive with other photodetector technologies in the mid IR (3 -- 5 mum) and long wavelength IR (8 -- 12 mum) ranges with the added advantage of materials stability and normal incidence sensitivity. Extended defect-free and size-uniform MQD structures of shallow InAs on GaAs (001) SAQDs capped with In0.15Ga0.85As strain relief layers and separated by GaAs spacer layer were grown up to 20 periods employing a judicious combination of MBE and migration enhanced epitaxy (MEE) techniques and examined by detailed transmission electron microscopy studies to reveal the absence of detectable extended defects (dislocation density < ˜ 107 /cm2). Photoluminescence studies revealed high optical quality. As our focus was on mid-infrared detectors, the MQD structures were grown in n (GaAs) -- i (MQD) -- n (GaAs) structures providing electron occupancy in at least the quantum confined ground energy states of the SAQDs and thus photodetection based upon transitions to electron excited states. Bias and temperature-dependent dark and photocurrent measurements were carried out for a variety of doping profiles and the electron density spatial distribution was determined from the resulting band bending profiles. It is revealed that almost no free electrons are present in the middle SAQD layers in the 10-period and 20-period n--i--n QDIP structures, indicating the existence of a high density (˜1015/cm3) of negative charges which can be attributed to electrons trapped in deep levels. To examine the nature of these deep traps, samples suitable for deep level transient spectroscopy measurement were synthesized and examined. These studies, carried out for the first time for SAQDs, revealed that the deep traps are dominantly present in the GaAs overgrowth layers grown at 500°C by MBE. For structures involving GaAs overgrowths using MEE at temperatures as low as 350°C, the deep trap density in the GaAs overgrowth layer was found to be significantly reduced by factor of ˜ 20. Thus, employing MEE growth for GaAs spacer layers in n--i(20-period MQD)-- n QDIP structures, electrons could be provided to all the SAQDs owing to the significantly reduced deep trap density. Finally, for enhancement of the incident photon absorption, we designed and fabricated asymmetric Fabry-Perot resonant cavity-enhanced QDIPs. For effective enhancement, SAQDs with a narrow photoresponse in the 3 -- 5 mum infrared regime were realized utilizing [(AlAs)1(GaAs)4]4 short-period superlattices as the confining barrier layers. Incorporating such SAQDs in RC-QDIPs, we successfully demonstrated ˜ 10 times enhancement of the QDIP detectivity. As stated above, this makes RC-QDIPs containing QDIPs with the currently demonstrated detectivities of ˜ 1010 cmHz 1/2/W at ˜ 77 K competitive with other IR photodetector technologies.

  3. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on 4-6 December 1991. Low Temperature (LT) GaAs and Related Materials. Volume 241.

    DTIC Science & Technology

    1992-09-14

    AIGaAs-GaAs QUANTUM WELLS GROWN ON LOW TEMPERATURE GaAs 239 Y. Hwang, D. Zhang, T. Zhang, M. Mytych, and R.M. Kolbas MOLECULAR BEAM EPITAXY OF LOW...GaA/ quantum wells : 24i howvever, in our case. AIks layers were not introduced. Formation (if these rows is most prolf,.+l influenced hb the diffusimon...regions. Preliminary investigations into this method have been performed using GaAs quantum wells between thick AIGaAs barriers as shown in Fig. 7. This

  4. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound

    NASA Astrophysics Data System (ADS)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.

    2017-01-01

    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  5. Ab initio study of GaAs(100) surface stability over As2, H2 and N2 as a model for vapor-phase epitaxy of GaAs1-xNx

    NASA Astrophysics Data System (ADS)

    Valencia, Hubert; Kangawa, Yoshihiro; Kakimoto, Koichi

    2015-12-01

    GaAs(100) c(4×4) surfaces were examined by ab initio calculations, under As2, H2 and N2 gas mixed conditions as a model for GaAs1-xNx vapor-phase epitaxy (VPE) on GaAs(100). Using a simple model consisting of As2 and H2 molecules adsorptions and As/N atom substitutions, it was shown to be possible to examine the crystal growth behavior considering the relative stability of the resulting surfaces against the chemical potential of As2, H2 and N2 gases. Such simple model allows us to draw a picture of the temperature and pressure stability domains for each surfaces that can be linked to specific growth conditions, directly. We found that, using this simple model, it is possible to explain the different N-incorporation regimes observed experimentally at different temperatures, and to predict the transition temperature between these regimes. Additionally, a rational explanation of N-incorporation ratio for each of these regimes is provided. Our model should then lead to a better comprehension and control of the experimental conditions needed to realize a high quality VPE of GaAs1-xNx.

  6. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Trevisi, G.; Frigeri, P.

    We report on the growth by molecular beam epitaxy and the study by atomic force microscopy and photoluminescence of low density metamorphic InAs/InGaAs quantum dots. subcritical InAs coverages allow to obtain 10{sup 8} cm{sup -2} dot density and metamorphic In{sub x}Ga{sub 1-x}As (x=0.15,0.30) confining layers result in emission wavelengths at 1.3 {mu}m. We discuss optimal growth parameters and demonstrate single quantum dot emission up to 1350 nm at low temperatures, by distinguishing the main exciton complexes in these nanostructures. Reported results indicate that metamorphic quantum dots could be valuable candidates as single photon sources for long wavelength telecom windows.

  7. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weiquan; Becker, Jacob; Liu, Shi

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with amore » textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.« less

  8. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.

    PubMed

    Ren, Shenqiang; Zhao, Ni; Crawford, Samuel C; Tambe, Michael; Bulović, Vladimir; Gradecak, Silvija

    2011-02-09

    We demonstrate an organic/inorganic solar cell architecture based on a blend of poly(3-hexylthiophene) (P3HT) and narrow bandgap GaAs nanowires. The measured increase of device photocurrent with increased nanowire loading is correlated with structural ordering within the active layer that enhances charge transport. Coating the GaAs nanowires with TiO(x) shells passivates nanowire surface states and further improves the photovoltaic performance. We find that the P3HT/nanowire cells yield power conversion efficiencies of 2.36% under white LED illumination for devices containing 50 wt % of TiO(x)-coated GaAs nanowires. Our results constitute important progress for the use of nanowires in large area solution processed hybrid photovoltaic cells and provide insight into the role of structural ordering in the device performance.

  9. Modeling of phase velocity and frequency spectrum of guided Lamb waves in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-11-01

    Modeling of guided Lamb waves propagation in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs is evaluated in this paper. Here, the Legendre polynomial method is used to calculate dispersion curves, frequency spectrum and field distributions of guided Lamb waves propagation modes in AlAs, GaAs, AlAs/GaAs and AlAs/GaAs/AlAs-1/2/1 structures. In fact, formulations are given for open-circuit surface. Consequently, the polynomial method is numerically stable according to the total number of layers and the frequency range. This analysis is meaningful for the applications of the piezoelectric-semiconductor multilayered structures made of AlAs and GaAs such as in novel acoustic devices.

  10. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  11. Effects of ultrathin oxides in conducting MIS structures on GaAs

    NASA Technical Reports Server (NTRS)

    Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.

    1978-01-01

    Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.

  12. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  13. Toward a III-V Multijunction Space Cell Technology on Si

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.

    2007-01-01

    High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red laser diodes on Si.9 Here we report on the first high performance dual junction GaInP/GaAs solar cells grown on Si using this promising SiGe engineered substrate approach.

  14. Buffer layer between a planar optical concentrator and a solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano, Manuel E.; Barber, Greg D.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structuremore » increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.« less

  15. Optical and structural properties in type-II InAlAs/AlGaAs quantum dots observed by photoluminescence, X-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ben Daly, A.; Craciun, D.; Laura Ursu, E.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Vasile, B. S.; Craciun, V.

    2017-10-01

    We present the effects of AlGaAs alloy composition on InAlAs quantum dots (QDs) optical and structural properties. Photoluminescence (PL) analysis of samples having a variety of aluminium composition values covering type-II transitions clearly in QDs showed the presence of two transitions X-Sh and X-Ph. High-resolution X-ray diffraction (HRXRD) investigations showed that the layers grew epitaxially on the GaAs substrate, with no relaxation regardless the Al content of AlGaAs layer. From the reciprocal space map (RSM) investigation around (004) and (115) diffraction peaks, it was shown that the InAlAs layer is fully strained, the in-plane lattice parameters (a and b, a = b) being identical to those of GaAs substrate, while the c lattice parameter was dependent on the In and Al concentrations, being larger than that of the substrate. High-resolution transmission electronic microscopy (HRTEM) investigations confirmed that films grew epitaxially on the GaAs substrate with no visible dislocations or other major defects within the InAlAs/GaAlAs QDs structure.

  16. GaAs MOEMS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.

    2003-03-01

    Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vitalmore » step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.« less

  17. Temperature effect on the coupling between coherent longitudinal phonons and plasmons in n -type and p -type GaAs

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Zhang, Hang; Sun, Yi; Misochko, Oleg V.; Nakamura, Kazutaka G.

    2018-04-01

    The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n - and p -type GaAs by using ultrafast coherent phonon spectroscopy. A suppression of coherent oscillations has been observed in p -type GaAs at lower temperature, strikingly different from n -type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of the surface field due to a slow diffusion of photoexcited carriers in p -type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.

  18. GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates

    NASA Astrophysics Data System (ADS)

    Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.

    2018-05-01

    The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.

  19. Study on the high-power semi-insulating GaAs PCSS with quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luan, Chongbiao; Wang, Bo; Huang, Yupeng

    A high-power semi-insulating GaAs photoconductive semiconductor switch (PCSS) with quantum well structure was fabricated. The AlGaAs layer was deposited on the surface of the GaAs material, and the reflecting film and the antireflection film have been made on the surface of the GaAs and AlGaAs, respectively. When the prepared PCSS worked at a bias voltage of 9.8 kV and triggered by a laser pulse with an incident optical energy of 5.4 mJ, a wavelength of 1064 nm and an optical pulse width of 25 ns, the on-state resistance of the AlGaAs/GaAs PCSS was only 0.45 Ω, and the longevity ofmore » the AlGaAs/GaAs PCSS was larger than 10{sup 6} shots. The results show that this structure reduces the on-state resistance and extends the longevity of the GaAs PCSS.« less

  20. Spatial structure of single and interacting Mn acceptors in GaAs

    NASA Astrophysics Data System (ADS)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.

  1. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  2. Defect characterization of proton irradiated GaAs pn-junction diodes with layers of InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shin-ichiro, E-mail: sato.shinichiro@jaea.go.jp; Optoelectronics and Radiation Effects Branch, U.S. Naval Research Laboratory, Washington, DC 20375; Schmieder, Kenneth J.

    2016-05-14

    In order to expand the technology of III-V semiconductor devices with quantum structures to both terrestrial and space use, radiation induced defects as well as native defects generated in the quantum structures should be clarified. Electrically active defects in GaAs p{sup +}n diodes with embedded ten layers of InAs quantum dots (QDs) are investigated using Deep Level Transient Fourier Spectroscopy. Both majority carrier (electron) and minority carrier (hole) traps are characterized. In the devices of this study, GaP layers are embedded in between the QD layers to offset the compressive stress introduced during growth of InAs QDs. Devices are irradiatedmore » with high energy protons for three different fluences at room temperature in order to characterize radiation induced defects. Seven majority electron traps and one minority hole trap are found after proton irradiation. It is shown that four electron traps induced by proton irradiation increase in proportion to the fluence, whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. These defects correspond to electron traps previously identified in GaAs. In addition, a 0.53 eV electron trap and a 0.14 eV hole trap are found in the QD layers before proton irradiation. It is shown that these native traps are also unaffected by irradiation. The nature of the 0.14 eV hole trap is thought to be Ga-vacancies in the GaP strain balancing layers.« less

  3. Room temperature operation of mid-infrared InAs0.81Sb0.19 based photovoltaic detectors with an In0.2Al0.8Sb barrier layer grown on GaAs substrates.

    PubMed

    Geum, Dae-Myeong; Kim, SangHyeon; Kang, SooSeok; Kim, Hosung; Park, Hwanyeol; Rho, Il Pyo; Ahn, Seung Yeop; Song, Jindong; Choi, Won Jun; Yoon, Euijoon

    2018-03-05

    In this paper, InAs 0.81 Sb 0.19 -based hetero-junction photovoltaic detector (HJPD) with an In 0.2 Al 0.8 Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs 0.81 Sb 0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm 2 /V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.

  4. Insights into semiconductor nanowire conductivity using electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, C.; Salehzadeh, O.; Poole, P. J.; Watkins, S. P.; Kavanagh, K. L.

    2012-10-01

    Copper (Cu) and iron (Fe) electrical contacts to gallium arsenide (GaAs) and indium arsenide (InAs) nanowires (NWs) have been fabricated via electrodeposition. For undoped or low carbon-doped (1017/cm-3), p-type GaAs NWs, Cu or Fe nucleate and grow only on the gold catalyst at the NW tip, avoiding the sidewalls. Metal growth is limited by the Au contact resistance due to thick sidewall depletion layers. For InAs NWs and heavier-doped, core-shell (undoped core-C-doped shell) GaAs NWs, metal nucleation and growth occurs on the sidewalls as well as on the gold catalyst limited now by the ion electrolyte diffusivity.

  5. Scanning microwave microscopy applied to semiconducting GaAs structures

    NASA Astrophysics Data System (ADS)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry

    2018-02-01

    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  6. Local structure of In0.5Ga0.5As from joint high-resolution and differential pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Petkov, V.; Jeong, I.-K.; Mohiuddin-Jacobs, F.; Proffen, Th.; Billinge, S. J. L.; Dmowski, W.

    2000-07-01

    High resolution total and indium differential atomic pair distribution functions (PDFs) for In0.5Ga0.5As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is resolved as a doublet due to the presence of two distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves only atomic pairs containing In, yields chemical specific information and helps ease the structure data interpretation. Both PDFs have been fit with structure models and the way in that the underlying cubic zinc-blende lattice of In0.5Ga0.5As semiconductor alloy distorts locally to accommodate the distinct In-As and Ga-As bond lengths present has been quantified.

  7. Performance Enhancement of a GaAs Detector with a Vertical Field and an Embedded Thin Low-Temperature Grown Layer

    PubMed Central

    Currie, Marc; Dianat, Pouya; Persano, Anna; Martucci, Maria Concetta; Quaranta, Fabio; Cola, Adriano; Nabet, Bahram

    2013-01-01

    Low temperature growth of GaAs (LT-GaAs) near 200 °C results in a recombination lifetime of nearly 1 ps, compared with approximately 1 ns for regular temperature ∼600 °C grown GaAs (RT-GaAs), making it suitable for ultra high speed detection applications. However, LT-GaAs detectors usually suffer from low responsivity due to low carrier mobility. Here we report electro-optic sampling time response measurements of a detector that employs an AlGaAs heterojunction, a thin layer of LT-GaAs, a channel of RT-GaAs, and a vertical electric field that together facilitate collection of optically generated electrons while suppressing collection of lower mobility holes. Consequently, these devices have detection efficiency near that of RT-GaAs yet provide pulse widths nearly an order of magnitude faster—∼6 ps for a cathode-anode separation of 1.3 μm and ∼12 ps for distances more than 3 μm. PMID:23429510

  8. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  9. Origin of Quantum Ring Formation During Droplet Epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Y.; Zheng, C. X.; Tang, W. X.; Tersoff, J.; Jesson, D. E.

    2013-07-01

    Droplet epitaxy of GaAs is studied in real time using in situ surface electron microscopy. The resulting movies motivate a theoretical model for quantum ring formation which can explain the origin of nanoscale features such as double rings observed under a variety of experimental conditions. Inner rings correspond to GaAs deposition at the droplet edge, while outer rings result from the reaction of Ga and As atoms diffusing along the surface. The observed variety of morphologies primarily reflects relative changes in the outer rings with temperature and As flux.

  10. Surface compositional profiles of self-assembled InAs/GaAs quantum rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magri, Rita; Heun, Stefan; Biasiol, Giorgio

    2010-01-04

    The surface composition profiles of self-assembled InAs/GaAs quantum rings (QR) are studied both experimentally and theoretically. By using X-ray Photoemission Electron Microscopy (XPEEM) we obtain a 2D composition mapping of unburied rings, which can be directly related to the QR topography measured by Atomic Force Microscopy (AFM). Top-surface composition mapping allows us to obtain information on structures which cannot be directly accessed with cross-sectional studies since overgrowing the QRs with a thick GaAs film alters both their morphology and composition. The 2D surface maps reveal a non-uniform distribution across the rings with an In richer InGaAs alloy in the centralmore » hole regions. Elastic energy calculations via a Valence Force Field (VFF) approach show that, for a given shape of the rings and a fixed total number of Ga and In atoms, an In enrichment of the alloy in the central hole region, together with an In enrichment of the surface layers, leads to a lowering of the total strain energy.« less

  11. Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics.

    PubMed

    Tasco, Vittorianna; Usman, Muhammad; De Giorgi, Milena; Passaseo, Adriana

    2014-02-07

    Tailoring of electronic and optical properties of self-assembled InAs quantum dots (QDs) is a critical limit for the design of several QD-based optoelectronic devices operating in the telecom frequency range. We describe how fine control of the strain-induced surface kinetics during the growth of vertically stacked multiple layers of QDs allows for the engineering of their self-organization process. Most noticeably, this study shows that the underlying strain field induced along a QD stack can be modulated and controlled by time-dependent intermixing and segregation effects occurring after capping with a GaAs spacer. This leads to a drastic increase of the TM/TE polarization ratio of emitted light, not accessible from conventional growth parameters. Our detailed experimental measurements, supported by comprehensive multi-million atom simulations of strain, electronic and optical properties, provide in-depth analysis of the grown QD samples allowing us to give a clear picture of the atomic scale phenomena affecting the proposed growth dynamics and consequent QD polarization response.

  12. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  13. Hybrid Molecular and Spin-Semiconductor Based Research

    DTIC Science & Technology

    2005-02-02

    thick layers of low- temperature-grown (LTG) GaAs, i.e. GaAs grown at lower than normal substrate temperatures in a molecular beam epitaxy system...1999 – Oct.31, 2004 4. TITLE AND SUBTITLE Hybrid Molecular and Spin-Semiconductor Based research 5. FUNDING NUMBERS DAAD19-99-1-0198...spintronic devices. Thrust III is entitled “ Molecular Electronics” and its objective is to develop, characterize and model organic/inorganic

  14. Effect of in situ annealing on the structural and electrical properties and infrared photodetection of III-Sb on GaAs using interfacial misfit array

    NASA Astrophysics Data System (ADS)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt

    2018-01-01

    This work presents the effects of in situ thermal annealing under antimony overpressure on the structural, electrical, and optical properties of III-Sb (GaSb and InSb) grown on (100) GaAs using an interfacial misfit array to accommodate the lattice mismatch. Both the sample growth and the in situ thermal annealing were carried out in the in the molecular beam epitaxy system, and the temperature of the as-grown sample was increased to exceed its growth temperature during the annealing. X-ray diffraction demonstrates nearly fully relaxed as-grown and annealed III-Sb layers. The optimal annealing temperatures and durations are for 590 °C, 5 min for GaSb and 420 °C, 15 min for InSb, respectively. In situ annealing decreased the surface roughness of the III-Sb layers. X-ray reciprocal space mapping and transmission electron microscopy observation showed stable interfacial misfit arrays, and no interfacial diffusion occurred in the annealed III-Sb layers. A Hall measurement of unintentionally doped III-Sb layers showed greater carrier mobility and a lower carrier concentration in the annealed samples at both 77 and 300 K. In situ annealing improved the photoresponsivity of GaSb and InSb photoconductors grown on GaAs in the near- and mid-infrared ranges, respectively.

  15. Low-Temperature Silicon Epitaxy by Remote, Plasma - Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Habermehl, Scott Dwight

    The dynamics of low temperature Si homoepitaxial and heteroepitaxial growth, by remote plasma enhanced chemical vapor deposition, RPECVD, have been investigated. For the critical step of pre-deposition surface preparation of Si(100) surfaces, the attributes of remote plasma generated atomic H are compared to results obtained with a rapid thermal desorption, RTD, technique and a hybrid H-plasma/RTD technique. Auger electron spectroscopy, AES, and electron diffraction analysis indicate the hybrid technique to be very effective at surface passivation, while the RTD process promotes the formation of SiC precipitates, which induce defective epitaxial growth. For GaP and GaAs substrates, the use of atomic H exposure is investigated as a surface passivation technique. AES shows this technique to be effective at producing atomically clean surfaces. For processing at 400^circrm C, the GaAs(100) surface is observed to reconstruct to a c(8 x 2)Ga symmetry while, at 530^ circrm C the vicinal GaP(100) surface, miscut 10^circ , is observed to reconstruct to a (1 x n) type symmetry; an unreconstructed (1 x 1) symmetry is observed for GaP(111). Differences in the efficiency with which native oxides are removed from the surface are attributed to variations in the local atomic bonding order of group V oxides. The microstructure of homoepitaxial Si films, deposited at temperatures of 25-450^circ rm C and pressures of 50-500 mTorr, is catalogued. Optimized conditions for the deposition of low defect, single crystal films are identified. The existence of two pressure dependent regimes for process activation are observed. In-situ mass spectral analysis indicates that the plasma afterglow is dominated by monosilane ions below 200 mTorr, while above 200 mTorr, low mass rm H_{x} ^+ (x = 1,2,3) and rm HHe^+ ions dominate. Consideration of the growth rate data indicates that downstream dissociative silane ionization, in the lower pressure regime, is responsible for an enhanced surface H abstraction rate. The observed increase in growth rate is concluded to be a manifestation of increased deposition site activation, resulting from the enhanced H abstraction mechanism. Secondary ion mass spectrometry measurements, of H incorporation in the Si films, yield an "effective" activation energy for the abstraction of surface H. A shift in the activation energy between 50 mTorr (0.7 eV) and 500 mTorr (0.3 eV) supports the conclusions for an ion-induced H abstraction mechanism. From this, a chemical sputtering reaction is proposed, whereby impinging ions react with chemisorbed H to form volatile species. Heteroepitaxial Si thin films are deposited upon GaP and GaAs surfaces. AES is used to evaluate the growth mode of Si on GaP(111) and vicinal GaP(100). In both instances, the data indicates a modified layer-plus-island growth mechanism, with possible interfacial alloy mixing. High quality epitaxial growth is observed to proceed on vicinal GaP(100) surfaces beyond the predicted critical thickness for strain relief of 140 A. For GaP(111), defective structures are observed well below the predicted critical thickness. This discrepancy is attributed to low precursor surface diffusion kinetics that are accommodated by the presence of steps on the vicinal surface. For deposition of Si on GaAs(100), disordered structure is observed within the first few monolayers of growth, which is in agreement with the predicted critical thickness for this system of approximately 10 A.

  16. Heterojunction solar cell

    DOEpatents

    Olson, Jerry M.

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  17. Reduced dislocation density in Ga xIn 1–xP compositionally graded buffer layers through engineered glide plane switch

    DOE PAGES

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...

    2016-11-17

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  18. Multi-Quantum Well Structures to Improve the Performance of Multijunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Samberg, Joshua Paul

    Current, lattice matched triple junction solar cell efficiency is approximately 44% at a solar concentration of 942x. Higher efficiency for such cells can be realized with the development of a 1eV bandgap material lattice matched to Ge. One of the more promising materials for this application is that of the InGaAs/GaAsP multi-quantum well (MQW) structure. By inserting a stress/strain-balanced InGaAs/GaAsP MQW structure into the iregion of a GaAs p-i-n diode, the absorption edge of the p-i-n diode can be red shifted with respect to that of a standard GaAs p-n diode. Compressive stress in the InGaAs wells are balanced via GaAsP barriers subjected to tensile stress. Individually, the InGaAs and GaAsP layers are grown below their critical layer thickness to prevent the formation of misfit and threading dislocations. Until recently InGaAs/GaAsP MQWs have been somewhat hindered by their usage of low phosphorus-GaAsP barriers. Presented within is the development of a high-P composition GaAsP and the merits for using such a high composition of phosphorus are discussed. It is believed that these barriers represent the highest phosphorus content to date in such a structure. By using high composition GaAsP the carriers are collected via tunneling (for barriers .30A) as opposed to thermionic emission. Thus, by utilizing thin, high content GaAsP barriers one can increase the percentage of the intrinsic region in a p-i-n structure that is comprised of the InGaAs well in addition to increasing the number of periods that can be grown for a given depletion width. However, standard MQWs of this type inherently possess undesirable compressive strain and quantum size effects (QSE) that cause the optical absorption of the InGaAs wells to blue shift. To circumvent these deleterious QSEs stress balanced, pseudomorphic InGaAs/GaAsP staggered MQWs were developed. Tunneling is still a viable mode for carrier transport in the staggered MQW structures. GaAs interfacial layers within the multi-quantum well have been found to be critical in producing quality multi-quantum well structures. The effect of the GaAs interfacial layers has been investigated. It was determined that a phosphorus carry-over had a profound effect on the absorption edge of the InGaAs wells. It was shown that the phosphorus carry-over can be prevented with sufficiently thick GaAs transition layers. Preliminary results for GaAs p-in solar cells utilizing the improved MQWs are presented. In addition to investigating the utilization of quantum wells in the i-region of a GaAs p-i-n diode to improve the efficiency of multijunction solar cells, an investigation into the effect a single GaAs:Te doped quantum well has on the performance of high bandgap InxGa1- xP:Te/Al0.6Ga 0.4As:C tunnel junctions was investigated. The insertion of 30A of GaAs:Te at the junction interface resulted in a peak current of 1000A/cm2 and a voltage drop of ~3mV for 30A/cm2 (2000x concentration). The presence of this GaAs interfacial layer also improved the uniformity across the wafer. This architecture could be used within multijunction solar cells to extend the range of usable solar concentration with minimal voltage drop.

  19. Origins of interlayer formation and misfit dislocation displacement in the vicinity of InAs/GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, S.; Kim, S. J.; Pan, X. Q.

    We have examined the origins of interlayer formation and misfit dislocation (MD) displacement in the vicinity of InAs/GaAs quantum dots (QDs). For QDs formed by the Stranski-Krastanov mode, regularly spaced MDs nucleate at the interface between the QD and the GaAs buffer layer. In the droplet epitaxy case, both In island formation and In-induced “nano-drilling” of the GaAs buffer layer are observed during In deposition. Upon annealing under As flux, the In islands are converted to InAs QDs, with an InGaAs interlayer at the QD/buffer interface. Meanwhile, MDs nucleate at the QD/interlayer interface.

  20. Effect of ZnSe/GaAs interface treatment in ZnSe quality control for optoelectronic device applications

    DOE PAGES

    Park, Kwangwook; Beaton, Daniel; Steirer, Kenneth X.; ...

    2017-01-27

    Here, we investigate the role of interface initiation conditions on the growth of ZnSe/GaAs heterovalent heterostructures. ZnSe epilayers were grown on a GaAs surface with various degrees of As-termination and the application of either a Zn or Se pre-treatment. Structural analysis revealed that Zn pre-treatment of an As-rich GaAs surface suppresses Ga 2Se 3 formation at the interface and promotes the growth of high crystal quality ZnSe. This is confirmed with low-temperature photoluminescence. However, moderation of Ga-Se bonding through a Se pre-treatment of an As-rich GaAs surface can prevent excessive intermixing at the interface and promote excitonic emission in themore » underlying GaAs layer. These results provide guidance on how best to prepare heterovalent interfaces for various applications.« less

  1. Conference on Semi-Insulating III-V Materials (2nd), held 19-21 Apr 82, Evian (France),

    DTIC Science & Technology

    1983-02-28

    Dist Special 19. KEY WORDS (Continue on reverse side If neceary mud Identity by block numb ) Semiconductor devices Field effect transitors Integrated...doped GaAs sub- 4 strates. The results showed no The catalog of defects includes statistically significant differ- vacancies, interstitials, anti...orientation also had high level profiles of GaAs active transconductance. In addition,the statistical scatter-uni-layers and their correlation to o m

  2. Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zh.M.; Seydmohamadi, Sh.; Lee, J.H.

    Self-organized surface ordering of (In,Ga)As quantum dots in a GaAs matrix was investigated using stacked multiple quantum dot layers prepared by molecular-beam epitaxy. While one-dimensional chain-like ordering is formed on singular and slightly misorientated GaAs(100) surfaces, we report on two-dimensional square-like ordering that appears on GaAs(n11)B, where n is 7, 5, 4, and 3. Using a technique to control surface diffusion, the different ordering patterns are found to result from the competition between anisotropic surface diffusion and anisotropic elastic matrix, a similar mechanism suggested before by Solomon [Appl. Phys. Lett. 84, 2073 (2004)].

  3. Heterojunction solar cell

    DOEpatents

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  4. Lattice vibration modes in type-II superlattice InAs/GaSb with no-common-atom interface and overlapping vibration spectra

    NASA Astrophysics Data System (ADS)

    Liu, Henan; Yue, Naili; Zhang, Yong; Qiao, Pengfei; Zuo, Daniel; Kesler, Ben; Chuang, Shun Lien; Ryou, Jae-Hyun; Justice, James D.; Dupuis, Russell

    2015-06-01

    Heterostructures like InAs /GaSb superlattices (SLs) are distinctly different from well-studied ones like GaAs /AlAs SLs in terms of band alignment, common interface atom, and phonon spectrum overlapping of the constituents, which manifests as stark differences in their electronic and vibrational properties. This paper reports a comprehensive examination of all four types of phonon modes (confined, quasiconfined, extended, and interface) that have long been predicted for the InAs /GaSb SL, with the observation and interpretation of a set of phonon modes by performing cleaved edge μ -Raman study with polarization analysis. Furthermore, we show a signature of symmetry reduction from D2 d for GaAs /AlAs SL to C2 v for InAs/GaSb SL revealed as a phonon-polariton effect.

  5. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakawa, Shigeyuki, E-mail: s-minakawa@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes,more » respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.« less

  6. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    PubMed

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  7. Deep level defects in dilute GaAsBi alloys grown under intense UV illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Tarun, Marianne; Beaton, D. A.

    2016-07-21

    Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less

  8. Quantum Dots obtained by LPE from under-saturated In-As liquid phases on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Ortiz, F. E.; Mishurnyi, V.; Gorbatchev, A.; De Anda, F.; Prutskij, T.

    2011-01-01

    In this work we inform about quantum dots (QD) obtained by Liquid Phase Epitaxy (LPE) on GaAs substrates from under-saturated In-As liquid phases. In our processes, we have prepared saturated In-rich liquid phases by dissolving an InAs wafer at one of the temperatures interval from 450 to 414 C for 60 minutes. The contact between In-As liquid phase and the GaAs substrate was always done at a constant temperature of 444 C for 5 seconds. Thus, the growth temperature for most of the samples was higher than the liquidus temperature. We think that the growth driving force is related to a transient process that occurs when the system is trying to reach equilibrium. Under the atom force microscope (AFM) we have observed nano-islands on the surfaces of the samples obtained from under-saturated liquid phases prepared at 438, 432 and 426 C. The 25 K photoluminescence spectrum shows a peak at a 1.33 eV, in addition to the GaAs related line.

  9. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  10. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  11. Non-Implanted Gallium-Arsenide and its Subsequent Annealing Effects.

    NASA Astrophysics Data System (ADS)

    Liou, Lih-Yeh

    Infrared spectroscopy is used to study ion-implanted GaAs and its subsequent annealing effects. The damage in the implantation region causes a change in dielectric constant resulting in an infrared reflection spectrum which shows the interference pattern of a multilayer structure. Reflection data are fitted by values calculated from a physically realistic model by using computer codes. The first part in this work studies the solid state regrowth of amorphous GaAs made by Be implantation at -100(DEGREES)C. The regrowth temperature is around 200(DEGREES)C. The regrowth starts with a narrowing of the transition region and the transformation of the implanted layer from as-implanted amorphous (a-l) state to thermally-stablized amorphous (a-ll) state. The non-epitaxial recrystallization from both the surface and the interfacial region follows. The final regrown layer has a slightly higher refractive index than the crystalline value, indicating a high residual defect concentration. The temperature dependent regrowth velocity and the activation energy for this process are determined. The second part studies the free carrier activation in Be-implanted GaAs. Free holes are activated with prolonged annealing at 400(DEGREES)C ((TURN)50 hours) or a shorter time at higher temperature. The carrier contribution to the dielectric constant is calculated from the classical model and best fit to the reflection results show that the carrier profile can be approximated by a two half-Gaussians joined smoothly at their peaks. The peak position for the profile occurs deeper than that for the Be impurity profile measured by SIMS. The carrier distribution is speculated to be the result of the Be impurity, Ga vacancy and possible compensating defect distributions. The final part studies the free carrier removal by proton implantation in heavily doped, high carrier density, n-type GaAs. The as-implantation region is highly compensated until annealed at 550(DEGREES)C. After annealing between 300 and 400(DEGREES)C, the infrared results show a partially compensated region diffused deeply into substrate from the as-implanted region. The SIMS measurements show a well correlated hydrogen diffusion layer which suggests that the compensation defect is hydrogen related. After 500(DEGREES)C, the hydrogen diffusion layer is still observed, but the compensation layer has disappeared. The diffusion coefficient of the compensating defect and the activation energy for this process are determined. Carbon -implanted GaAs having a high carrier density substrate is also measured and compared with the H-implanted cases. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  12. Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.

    2015-08-15

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for themore » (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.« less

  13. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E.

    2010-01-01

    A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.

  14. Wide-Band Monolithic Acoustoelectric Memory Correlators.

    DTIC Science & Technology

    1982-11-01

    piezoelectric and non- earlier analysis of thin- oxide varactors . The new analysis ex- conducting. Tapped structures which satisfy this criterion are plains...for tapped LiNbO3/metal- oxide - important realization. The logical consequence is that only silicon [26] structures is, in fact, not applicable here. It...Clarke, "The GaAs SAW depletion layer of’ the diode array. A more complex structure, diode storage correlalor," in 1980 Ultrasonics Synp. Proc., pp a GaAs

  15. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1993-12-09

    during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate... molecular beam epitaxy (MBE) crystal growth, the GaAs growth rate is highly sensitive to the substrate temperature above 650"C (2], a GaAs/AIGaAs... epitaxial growth technique to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer

  16. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  17. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  18. Silicon incorporation in GaAs: From delta-doping to monolayer insertion

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Newman, R. C.; Roberts, C.

    1995-08-01

    Raman spectroscopy was used to study the incorporation of Si into doping layers in GaAs, grown by molecular beam epitaxy at a temperature of 400 °C, for Si concentrations ranging from the δ-doping level to a ML coverage. The strength of the scattering by local vibrational modes of substitutional Si was almost constant for Si areal concentration [Si]A in the range 5×1012<[Si]A<5×1013 cm-2 but then decreased, dropping below the detection limit for [Si]A≳3×1014 cm-2. At these concentrations a new vibrational band emerged at a frequency close to 470 cm-1 and developed into the optic zone center phonon of a coherently strained epitaxial layer of Si embedded in GaAs when a coverage of ≊1.5 ML (9.3×1014 cm-2) was reached. These findings strongly indicate that the observed saturation and the eventual decrease of the concentration of substitutional silicon is caused by an increasing incorporation of deposited Si into two-dimensional islands of covalently bonded Si.

  19. Nonradiative recombination centers in GaAs:N δ-doped superlattice revealed by two-wavelength-excited photoluminescence

    NASA Astrophysics Data System (ADS)

    Dulal Haque, Md.; Kamata, Norihiko; Fukuda, Takeshi; Honda, Zentaro; Yagi, Shuhei; Yaguchi, Hiroyuki; Okada, Yoshitaka

    2018-04-01

    We use two-wavelength-excited photoluminescence (PL) to investigate nonradiative recombination (NRR) centers in GaAs:N δ-doped superlattice (SL) structures grown by molecular beam epitaxy. The change in photoluminescence (PL) intensity due to the superposition of below-gap excitation at energies of 0.75, 0.80, 0.92, and 0.95 eV and above-gap excitation at energies of 1.69 or 1.45 eV into the GaAs conduction band and the E- band implies the presence of NRR centers inside the GaAs:N δ-doped SL and/or GaAs layers. The change in PL intensity as a function of the photon number density of below-gap excitation is examined for both bands, which enables us to determine the distribution of NRR centers inside the GaAs:N δ-doped SL and GaAs layers. We propose recombination models to explain the experimental results. Defect-related parameters that give a qualitative insight into the samples are investigated systematically by fitting the rate equations to the experimental data.

  20. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  1. Kinetic modeling of microscopic processes during electron cyclotron resonance microwave plasma-assisted molecular beam epitaxial growth of GaN/GaAs-based heterostructures

    NASA Astrophysics Data System (ADS)

    Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.

    1996-03-01

    Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.

  2. /III-V semiconductor broadband distributed Bragg reflectors for long-wavelength VCSEL and SESAM devices

    NASA Astrophysics Data System (ADS)

    Koeninger, Anna; Boehm, Gerhard; Meyer, Ralf; Amann, Markus-Christian

    2014-12-01

    Semiconductor devices such as vertical-cavity surface-emitting lasers (VCSELs) or semiconductor-saturable absorber mirrors (SESAMs) require high-reflection mirrors. Moreover, in VCSELs, it is beneficial to have a crystalline mirror, which is as thin as possible in order to ensure a high thermal conductivity for efficient heat-sinking of the laser. On the other hand, the wavelength tuning range of a SESAM is limited by the reflection bandwidth of its distributed Bragg reflector (DBR). Thus, broadband mirrors are preferable here. This paper reports a three-pair DBR grown by molecular beam epitaxy (MBE) using BaCaF2 and GaAs on a GaAs (100) substrate. Due to the high ratio in refractive indices of GaAs and the group-IIa-fluorides, high-reflectivity mirrors and wide bandwidths can be obtained with low total thicknesses. We also investigated growth and stability of the material BaCaF2, as well as its thermal conductivity both as single layer and Bragg reflector. Observed peeling of the layers could be avoided by implementing a fluorine treatment previous to the BaCaF2 growth.

  3. Internal optical losses in very thin CW heterojunction laser diodes

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for CW room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 micron. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane.

  4. Optimization of solar cells for air mass zero operation and study of solar cells at high temperatures, phase 4

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    The Pd contact to GaAs was studied using backscattering, Auger analysis, and sheet resistance measurements. Several metallurgical phases were present at low temperatures, but PdGa was the dominant phase in samples annealed at 500 C. Ti/Pd/Ag contacts appeared to have the lowest contact resistance. Etchback epitaxy (EBE) was compared to saturated melt epitaxy (SME) method of growing liquid phase epitaxial layers. The SME method resulted in a lower density of Ga microdroplets in the grown layer, although the best solar cells were made by the EBE method. Photoluminescence was developed as a tool for contactless analysis of GaAs cells. Efficiencies of over 8 percent were measured at 250 C.

  5. Effect of Ion Sputtering on Interface Chemistry and Electrical Properties of an Gaas (100) Schottky Contacts

    NASA Technical Reports Server (NTRS)

    Wang, Y. X.; Holloway, P. H.

    1984-01-01

    Auger and electron photoelectron spectroscopy were used to measure the extent of As depletion during 1 keV to 5 keV argon sputtering of GaAs surfaces. This depletion was correlated with a general decrease in the barrier height of the rectifying Au contact deposited in situ. However, nondestructive angle resolved XPS measurements showed As was depleted at the outer surface more by 1 keV than 3 keV argon. These effects are explained based on a combined work effective work function model and creation of a donor like surface damage layer. The donor layer was correlated with As depletion by sputtering. Deep level trap formation and annealing of sputtering effects were studied.

  6. RF Properties of Epitaxial Lift-Off HEMT Devices

    NASA Technical Reports Server (NTRS)

    Young, Paul G.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.

    1993-01-01

    Epitaxial layers containing GaAs HEMT and P-HEMT structures have been lifted-off the GaAs substrate and attached to other host substrates using an AlAs parting layer. The devices were on-wafer RF probed before and after the lift-off step showing no degradation in the measured S-parameters. The maximum stable gain indicates a low frequency enhancement of the gain of 1-2 dB with some devices showing an enhancement of F(sub max)F(sub T) consistently shows an increase of 12-20% for all lifted-off HEMT structures. Comparison of the Hall measurements and small signal models show that the gain is improved and this is most probably associated with an enhanced carrier concentration.

  7. A Infrared Absorption Study of Dopant-Hydrogen Complexes in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kozuch, David Michael

    1992-01-01

    Hydrogen passivation of shallow electrical dopants in semiconductors has been investigated. In particular, the passivation of the shallow dopants tin, carbon, and silicon in gallium arsenide has been studied via Fourier transform infrared spectroscopy, thermal annealing, Hall effect, secondary ion mass spectroscopy, and uniaxial stress. The bond-stretching and bond-wagging vibrational modes of the rm Sn_{Ga} - H complex in GaAs have been identified at 1327.8 cm^{-1} and 967.7 cm ^{-1}, respectively. The presence of hydrogen in the defect pair is confirmed by the deuterium -shifted bond-stretching signal at 746.6 cm^ {-1}. Infrared and Hall data correlated the passivation of Sn_{rm Ga } donors with the formation of the rm Sn_{Ga} - H complexes. A series of isochronal anneals probed the thermal stability of the complex. Arguments supporting an antibonding configuration for the rm Sn_{Ga} - H complex are presented. Infrared measurements on highly carbon doped epi -layers reveal new absorption signals at 2643, 2651, and 2688 cm^{-1} in addition to the previously identified rm C_ {As} - H stretching vibration at 2636 cm^{-1}. These new signals are related to a family of carbon-hydrogen complexes: rm C_{x} - H. Deuterium -shifted counterparts for all these signals have been observed for the first time. Sources of hydrogen have been traced to the metalorganic precursors and carrier gas used during epi-layer growth. Hydrogen-containing annealing ambients were surprisingly effective for introducing hydrogen into the epi-layers. Several atomic arrangements for the new rm C_{x} - H complexes have been considered with the most likely candidate being a rm C_{As} - H complex perturbed by another C_{rm As} acceptor in a second nearest neighbor position. The first uniaxial stress measurements have been performed on the rm Si_{As} - H complex in GaAs. The stress-induced frequency shifts and the intensity ratios of the stress-split components of the 2094.45 cm^{-1} stretching frequency reveal that the complex has trigonal symmetry. Reorientation of the stress-aligned complexes occurred by thermally activated jumps of the hydrogen atom with an activation energy of E_{rm A} = 0.26 eV. The piezospectroscopic tensor of the rm Si_{As} - H complex has been determined. The similarities between the stress data for the rm Si_{As } - H complex and the well-studied B - H complex in silicon suggest a bond-centered configuration for the rm Si_{As} - H defect pair.

  8. Effect of H{sup +} implantation on the optical properties of semi-insulating GaAs crystals in the IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyui, N. I.; Lozinskii, V. B., E-mail: lvb@isp.kiev.ua; Liptuga, A. I.

    2017-03-15

    The optical properties of semi-insulating GaAs crystals subjected to multienergy hydrogen-ion implantation and treatment in a high-frequency electromagnetic field are studied in the infrared spectral region. It is established that such combined treatment provides a means for substantially increasing the transmittance of GaAs crystals to values characteristic of crystals of high optical quality. On the basis of analysis of the infrared transmittance and reflectance data, Raman spectroscopy data, and atomic-force microscopy data on the surface morphology of the crystals, a physical model is proposed to interpret the effects experimentally observed in the crystals. The model takes into account the interactionmore » of radiation defects with the initial structural defects in the crystals as well as the effect of compensation of defect centers by hydrogen during high-frequency treatment.« less

  9. Evidence of a New Hydrogen Complex in Dilute Nitride Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognin, G.; De Salvador, D.; Napolitani, E.

    2007-04-10

    By means of high resolution x-ray diffraction and photoluminescence measurements we demonstrate that, as a result of hydrogen irradiation of GaAs1-xNx/GaAs, the original tensile strain of the as-grown material is reversed into a compressive one and that, at the same time, N atoms are electronically passivated. We show that the amount of compressive strain is determined exclusively by N concentration. This compressive strain is caused by the formation of peculiar N-H complexes and disappears after moderate annealing, while N electronic passivation still holds. These experimental results demonstrate that the lattice properties of fully-hydrogenated GaAs1-xNx/GaAs are ruled by a H complexmore » which is different and less stable than that responsible for electronic passivation of N in GaAs1-xNx/GaAs.« less

  10. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ast, D.G.

    Research focused on control of misfit dislocations in strained epitaxial layers of GaAs through prepatterning of the substrate. Patterning and etching trenches into GaAs substrates before epitaxial growth results in nonplanar wafer surface, which makes device fabrication more difficult. Selective ion damaging the substrate prior to growth was investigated. The question of whether the overlayer must or must not be discontinuous was addressed. The third research direction was to extend results from molecular beam epitaxially grown material to organometallic chemical vapor deposition. Effort was increased to study the patterning processes and the damage it introduces into the substrate. The researchmore » program was initiated after the discovery that 500-eV dry etching in GaAs damages the substrate much deeper than the ion range.« less

  12. Electronic structure and dynamics of thin Ge/GaAs(110) heterostructures

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1990-10-01

    Using angle-resolved picosecond laser photoemission we have investigated both occupied and transiently excited empty states at the surface of Ge grown epitaxially on GaAs(110). We observe a normally unoccupied, Ge layer derived state whose separation from the valence-band maximum of the system is 700±50 meV at six monolayers Ge coverage. The evolution of the electronic structure is followed as a function of coverage and correlated with low-energy electron diffraction. The time dependence of the transiently occupied Ge signal is compared with that of the clean GaAs(110) surface and shows that electrons are prevented from diffusing into the GaAs bulk by the conduction-band offset of 330±40 meV.

  13. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    PubMed

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  14. Epitaxial gallium arsenide wafers

    NASA Technical Reports Server (NTRS)

    Black, J. F.; Robinson, L. B.

    1971-01-01

    The preparation of GaAs epitaxial layers by a vapor transport process using AsCl3, Ga and H2 was pursued to provide epitaxial wafers suitable for the fabrication of transferred electron oscillators and amplifiers operating in the subcritical region. Both n-n(+) structures, and n(++)-n-n(+) sandwich structures were grown using n(+) (Si-doped) GaAs substrates. Process variables such as the input AsCl3 concentration, gallium temperature, and substrate temperature and temperature gradient and their effects on properties are presented and discussed.

  15. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  16. Acoustic resonator and method of making same

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-03-05

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  17. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1983-10-13

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  18. Fabrication and characterization of multi-layer InAs/InGaAs quantum dot p-i-n GaAs solar cells grown on silicon substrates

    NASA Astrophysics Data System (ADS)

    Omri, M.; Sayari, A.; Sfaxi, L.

    2018-01-01

    This paper reports on InAs/InGaAs quantum dot solar cells (QDSCs) deposited by molecular beam epitaxy (MBE) on (001) n-type silicon ( n-Si) substrates. In-situ RHEED measurements show that InAs/InGaAs QDs SC has a high crystalline structure. The dislocation density in the active layer of the InAs/InGaAs QDSC and the lattice mismatch in the GaAs layer can be reduced by using an Si rough surface buffer layer (RSi). To show the effect of the QD layers, a reference SC with the same p-i-n structure as the InAs/InGaAs QDSC, but without InAs QDs, is also grown. The two SCs were studied by sepectroscopic ellipsometry (SE), in the 1-6 eV photon energy range, photoluminescence and photocurrent measurements. The optical constants of the two devices are determined in the photon energy range 1-6 eV from the SE data. The dominant features in the dielectric function spectra at 3 and 4.5 eV are attributed, respectively, to the E 1 and E 2 critical point structures of GaAs and InAs. The low-temperature photoluminescence spectrum of the InAs/InGaAs QDSC shows ground-state emissions, respectively, from the relatively small QDs near 1081 nm and from the large QDs near 1126 nm. Photocurrent measurements confirm the improved absorption performance (up to 1200 nm) of the InAs QDs SC which is ascribed to the optical absorption from the InAs/InGaAs QDs and the Si substrate as demonstrated by SE and photoluminescence measurements.

  19. Interface dynamics and crystal phase switching in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C.; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A.; Ross, Frances M.

    2016-03-01

    Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

  20. Interface dynamics and crystal phase switching in GaAs nanowires.

    PubMed

    Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A; Ross, Frances M

    2016-03-17

    Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

  1. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xu, J. P.; Zhu, S. Y.; Huang, Y.; Lai, P. T.

    2013-08-01

    The interfacial and electrical properties of sputtered HfTiON on sulfur-passivated GaAs with or without TaON as interfacial passivation layer (IPL) are investigated. Experimental results show that the GaAs metal-oxide-semiconductor capacitor with HfTiON/TaON stacked gate dielectric annealed at 600 °C exhibits low interface-state density (1.0 × 1012 cm-2 eV-1), small gate leakage current (7.3 × 10-5 A cm-2 at Vg = Vfb + 1 V), small capacitance equivalent thickness (1.65 nm), and large equivalent dielectric constant (26.2). The involved mechanisms lie in the fact that the TaON IPL can effectively block the diffusions of Hf, Ti, and O towards GaAs surface and suppress the formation of interfacial As-As bonds, Ga-/As-oxides, thus unpinning the Femi level at the TaON/GaAs interface and improving the interface quality and electrical properties of the device.

  2. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  3. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth processes. Summarizing, this special issue of Semiconductor Science and Technology reflects the rapidly growing interest in the ALD growth method and demonstrates the wide range of possible practical applications of ALD-grown materials, not only of high-k dielectrics, but also of a range of different materials (e.g. ZnO). Finally, I would like to thank the IOP editorial staff, in particular Alice Malhador, for their support and efforts in making this special issue possible.

  4. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-01

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  5. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.

    PubMed

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-25

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  6. Effects of surface passivation on twin-free GaAs nanosheets.

    PubMed

    Arab, Shermin; Chi, Chun-Yung; Shi, Teng; Wang, Yuda; Dapkus, Daniel P; Jackson, Howard E; Smith, Leigh M; Cronin, Stephen B

    2015-02-24

    Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.

  7. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells.

    PubMed

    Deng, Zhuo; Ning, Jiqiang; Su, Zhicheng; Xu, Shijie; Xing, Zheng; Wang, Rongxin; Lu, Shulong; Dong, Jianrong; Zhang, Baoshun; Yang, Hui

    2015-01-14

    In high-efficiency GaInP/GaAs double-junction tandem solar cells, GaInP layers play a central role in determining the performance of the solar cells. Therefore, gaining a deeper understanding of the optoelectronic processes in GaInP layers is crucial for improving the energy conversion efficiency of GaInP-based photovoltaic devices. In this work, we firmly show strong dependences of localization and recombination of photogenerated carriers in the top GaInP subcells in the GaInP/GaAs double-junction tandem solar cells on the substrate misorientation angle with excitation intensity- and temperature-dependent photoluminescence (PL). The entire solar cell structures including GaInP layers were grown with metalorganic chemical vapor deposition on GaAs substrates with misorientation angles of 2° (denoted as Sample 2°) and 7° (Sample 7°) off (100) toward (111)B. The PL spectral features of the two top GaInP subcells, as well as their excitation-power and temperature dependences exhibit remarkable variation on the misorientation angle. In Sample 2°, the dominant localization mechanism and luminescence channels are due to the energy potential minima caused by highly ordered atomic domains; In Sample 7°, the main localization and radiative recombination of photogenerated carriers occur in the atomically disordered regions. Our results reveal a more precise picture on the localization and recombination mechanisms of photogenerated carriers in the top GaInP subcells, which could be the crucial factors in controlling the optoelectronic efficiency of the GaInP-based multijunction photovoltaic devices.

  8. Atomic moments in Mn 2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGES

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; ...

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn 2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  9. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  10. Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates.

    PubMed

    Burrows, Christopher W; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P A; Wilkins, Stuart B; Walker, Marc; Mudd, James J; Maskery, Ian; Lees, Martin R; McConville, Christopher F; Leadley, David R; Bell, Gavin R

    2013-11-06

    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

  11. Optically-pumped spin-exchange polarized electron source

    NASA Astrophysics Data System (ADS)

    Pirbhai, Munir Hussein

    Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.

  12. The barrier to misfit dislocation glide in continuous, strained, epitaxial layers on patterned substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, G.P.; Ast, D.G.; Anderson, T.J.

    1993-09-01

    In a previous report [G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett. [bold 58], 2517 (1991)] we demonstrated that the motion of misfit dislocations in InGaAs, grown by organometallic vapor phase epitaxy on patterned GaAs substrates, can be impeded even if the strained epitaxial layer is continuous. Trenches etched into GaAs before growth are known to act as a barrier to misfit dislocation propagation [E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. [bold 65], 2220 (1989)]more » when those trenches create discontinuities in the epitaxial layers; but even shallow trenches, with continuous strained layers following the surface features, can act as barriers. By considering the strain energy required to change the length of the dislocation glide segments that stretch from the interface to the free surface, a simple model is developed that explains the major features of the unique blocking action observed at the trench edges. The trench wall angle is found to be an important parameter in determining whether or not a trench will block dislocation glide. The predicted blocking angles are consistent with observations made on continuous 300 and 600 nm thick In[sub 0.04]Ga[sub 0.96]As films on patterned GaAs. Based on the model, a structure is proposed that may be used as a filter to yield misfit dislocations with identical Burgers vectors or dislocations which slip in only one glide plane.« less

  13. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1985-03-05

    A method is disclosed of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers. 4 figs.

  14. Growth of semimetallic ErAs films epitaxially embedded in GaAs

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Lee, Jong H.; Ferrer, Domingo A.; Akinwande, Deji; Bank, Seth R.

    2011-10-01

    We present models for the growth and electrical conductivity of ErAs films grown with the nanoparticle-seeded film growth technique. This growth mode overcomes the mismatch in rotational symmetry between the rocksalt ErAs crystal structure and the zincblende GaAs crystal structure. This results in films of ErAs grown through a thin film of GaAs that preserves the symmetry of the substrate. The conductivity of the films, as a function of film thickness, are investigated and a surface roughness model is used to explain observed trends. Transmission electron micrographs confirm the suppression of anti-phase domains. A simple diffusion model is developed to describe the diffusion and incorporation of surface erbium into subsurface ErAs layers and predict potential failure mechanisms of the growth method.

  15. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.

    PubMed

    Plissard, S; Larrieu, G; Wallart, X; Caroff, P

    2011-07-08

    We report and detail a method to achieve growth of vertical self-catalyzed GaAs nanowires directly on Si(111) with a near-perfect vertical yield, using electron-beam-defined arrays of holes in a dielectric layer and molecular beam epitaxy. In our conditions, GaAs nanowires are grown along a vapor-liquid-solid mechanism, using in situ self-forming Ga droplets. The focus of this paper is to understand the role of the substrate preparation and of the pre-growth conditioning. Without changing temperature or the V/III ratio, the yield of vertical nanowires is increased incrementally up to 95%. The possibility to achieve very dense arrays, with center-to-center inter-wire distances less than 100 nm, is demonstrated.

  16. Enhancement of photoluminescence intensity of GaAs with cubic GaS chemical vapor deposited using a structurally designed single-source precursor

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster /(t-Bu)GaS/4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  17. Photoluminescence intensity enhancement of GaAs by vapor-deposited GaS - A rational approach to surface passivation

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip P.; Hepp, Aloysius F.; Power, Michael B.; Macinnes, Andrew N.; Barron, Andrew R.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster (/t-Bu/GaS)4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally-characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  18. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  19. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  20. Infrared-sensitive photocathode

    DOEpatents

    Mariella, Jr., Raymond P.; Cooper, Gregory A.

    1995-01-01

    A single-crystal, multi-layer device incorporating an IR absorbing layer that is compositionally different from the Ga.sub.x Al.sub.1-x Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga.sub.w In.sub.y Al.sub.1-y-w Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga.sub.x Al.sub.1-x Sb, from which they are ejected into vacuum. Because the band alignments of Ga.sub.x Al.sub.1-x Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 .mu.m to at least 10 .mu.m.

  1. Infrared-sensitive photocathode

    DOEpatents

    Mariella, R.P. Jr.; Cooper, G.A.

    1995-04-04

    A single-crystal, multi-layer device is described incorporating an IR absorbing layer that is compositionally different from the Ga{sub x}Al{sub 1{minus}x}Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga{sub w}In{sub y}Al{sub 1{minus}y{minus}w}Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga{sub x}Al{sub 1{minus}x}Sb, from which they are ejected into vacuum. Because the band alignments of Ga{sub x}Al{sub 1{minus}x}Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 {mu}m to at least 10 {mu}m. 9 figures.

  2. Growth and characterization of GaAs/Al/GaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, P.; Oh, J.E.; Singh, J.

    Theoretical and experimental aspects of the growth of GaAs/Al/GaAs heterostructures have been investigated. In these heterostructures the GaAs on top of the buried metal layer is grown by migration-enhanced epitaxy (MEE) at low temperatures (200 and 400 {degree}C) to provide a kinetic barrier to the outdiffusion of Al during superlayer growth. The crystallinity and orientation of the Al film itself deposited on (100) GaAs at {approx}0 {degree}C was studied by transmission electron diffraction, dark-field imaging, and x-ray diffraction measurements. It is found that the Al growth is polycrystalline with a grain size {approx}60 A and the preferred growth orientation ismore » (111), which may be textured in plane but oriented out of plane. The quality of the GaAs superlayer grown on top of Al by MEE is very sensitive to the growth temperature. The layer grown at 400 {degree}C has good structural and optical quality, but is accompanied by considerable outdiffusion of Al at the Al-GaAs heterointerface. At 200 {degree}C, where the interface has good structural integrity, the superlayer exhibits twinning and no luminescence is observed.« less

  3. Temperature Dependences of the Product of the Differential Resistance by the Area in MIS-Structures Based on Cd x Hg1- x Te Grown by Molecularbeam Epitaxy on Alternative Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Vasil'ev, V. V.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.

    2017-06-01

    In a temperature range of 9-200 K, temperature dependences of the differential resistance of space-charge region in the strong inversion mode are experimentally studied for MIS structures based on CdxHg1-xTe (x = 0.22-0.40) grown by molecular-beam epitaxy. The effect of various parameters of structures: the working layer composition, the type of a substrate, the type of insulator coating, and the presence of a near-surface graded-gap layer on the value of the product of differential resistance by the area is studied. It is shown that the values of the product RSCRA for MIS structures based on n-CdHgTe grown on a Si(013) substrate are smaller than those for structures based on the material grown on a GaAs(013) substrate. The values of the product RSCRA for MIS structures based on p-CdHgTe grown on a Si(013) substrate are comparable with the value of the analogous parameter for MIS structures based on p-CdHgTe grown on a GaAs(013) substrate.

  4. Interface structure and composition of MoO3/GaAs(0 0 1)

    NASA Astrophysics Data System (ADS)

    Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold

    2018-04-01

    We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+  oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a  ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.

  5. Photovoltaic effect of ferroelectric Pb(Zr0.52,Ti0.48)O3 deposited on SrTiO3 buffered n-GaAs by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Yunxia; Zhu, Jun; Liu, Xingpeng; Wu, Zhipeng

    Ferroelectric Pb(Zr0.52,Ti0.48)O3(PZT) thin film was grown on n-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) 〈100〉 PZT//(002) 〈100〉 STO//(001) 〈110〉 GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45∘ in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5G (100mW/cm2) illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.

  6. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  7. Formation and reconstruction of Se nanoislands at the surface of thin epitaxial ZnSe layers grown on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskiy, V. I.; Krivobok, V. S., E-mail: krivobok@lebedev.ru; Kuznetsov, P. I.

    2016-05-15

    Strained epitaxial ZnSe layers are grown on GaAs substrates by the method of vapor-phase epitaxy from metal-organic compounds. It is found that Se nanoislands with a density of 10{sup 8} to 10{sup 9} cm{sup –2} are formed at the surface of such layers. It is established that an increase in the size of Se islands and a decrease in their density take place after completion of growth. Annealing in a H{sub 2} atmosphere at a temperature higher than 260°C leads to the disappearance of Se islands and to a decrease in the surface roughness. It is shown that annealing doesmore » not lead to deterioration of the structural perfection of the epitaxial ZnSe films; rather, annealing gives rise to a decrease in the intensity of impurity–defect luminescence and to an increase in the intensity of intrinsic radiation near the bottom of the exciton band.« less

  8. Growth of quantum three-dimensional structure of InGaAs emitting at 1 μm applicable for a broadband near-infrared light source

    NASA Astrophysics Data System (ADS)

    Ozaki, Nobuhiko; Kanehira, Shingo; Hayashi, Yuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.

    2017-11-01

    We obtained a high-intensity and broadband emission centered at 1 μm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at 1 μm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography.

  9. Carbon reactivation kinetics in GaAs: Its dependence on dopant precursor, doping level, and layer thickness

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Bland, S.; Barbé, M.

    2002-05-01

    The reactivation kinetics of the acceptor behavior of carbon, its dependence on dopant precursors, doping level, layer thickness, and annealing temperature, as well as the behavior of carbon-hydrogen complexes in GaAs grown by metalorganic chemical vapor deposition are studied. Independent of the carbon source, in the "as grown" material, systematically carbon hydrogen complexes are present and the hole concentration is lower than the corresponding carbon concentration. The carbon reactivation kinetics was achieved by ex situ rapid thermal annealing through a series of multistage annealing experiments and assessed at each annealing stage by infrared absorption, hydrogen secondary ion mass spectroscopy profiling, and hole concentration measurements. Carbon reactivation occurs solely by the debonding of hydrogen from the isolated carbon acceptor and its out-diffusion from the sample. The carbon reactivation kinetics can be treated as a first order one with an activation energy, Ea=1.42±0.01 eV, independent of doping precursors, doping level, and layer thickness. The reactivation constant results to decrease as doping level and layer thickness increase. An empirical formula has been obtained that allows one to calculate the reactivation constant as a function of the carbon doping, layer thickness, and annealing temperature, allowing one to determine the optimal carbon reactivation conditions for any C:GaAs layer.

  10. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  11. Detection of picosecond electrical pulses using the intrinsic Franz{endash}Keldysh effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampin, J. F.; Desplanque, L.; Mollot, F.

    2001-06-25

    We report time-resolved measurements of ultrafast electrical pulses propagating on a coplanar transmission line using the intrinsic Franz{endash}Keldysh effect. A low-temperature-grown GaAs layer deposited on a GaAs substrate allows generation and also detection of ps pulses via electroabsorption sampling (EAS). This all-optical method does not require any external sampling probe. A typical rise time of 1.1 ps has been measured. EAS is a good candidate for use in THz characterization of ultrafast devices. {copyright} 2001 American Institute of Physics.

  12. Visible GaAs/0.7/P/0.3/ CW heterojunction lasers

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Olsen, G. H.; Nuese, C. J.

    1977-01-01

    The paper reports the first low-threshold red-light-emitting heterojunction laser diodes consisting of lattice-matched Ga(As,P)/(In,Ga)P heteroepitaxial layers. A room-temperature threshold current of 3400 A/sq cm was obtained at a wavelength of about 7000 A; this value is substantially lower than those achieved at this wavelength with (Al,Ga)As lasers. For the first time, continuous-wave laser operation at temperatures as high as 10 C has been obtained for GaAs(1-x)P(x).

  13. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  14. The Growth of Expitaxial GaAs and GaAlAs on Silicon Substrates by OMVPE

    DTIC Science & Technology

    1988-08-01

    structures have been grown on semi-insulating gallium arsenide substrates, and on high-resistivity silicon substrates using a two stage growth technique...fully in Quarter 9. 2. MATERIALS GROWTH 2.1 DOPING OF GALLIUM ARSENIDE FOR FETs As reported in quarter 7, doping levels for GaAs/SI 4ere found to be a...FET structures on both GaAs and Si substrates. A number of FET layers have been grown to the GAT4 specification on semi-insulating gallium arsenide

  15. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    DTIC Science & Technology

    2015-04-09

    out during 2013. A set of growth experiments to deposit CdTe and ZnTe thin films on GaAs and Si substrates was carried out to test the system...After several dummy runs, a few growth runs to deposit CdTe and ZnTe, both doped and undoped, were grown on 3-inch diameter Si substrates or part of...to deposit CdTe and ZnTe on Si and GaAs substrates for use in this project. Some layers have been processed to make solar cells. Project 3

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  17. Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G.

    2014-12-08

    An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at themore » buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.« less

  18. Study of thermal stability of spontaneously grown superlattice structures by metalorganic vapor phase epitaxy in AlxGa1-xAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.

    2018-04-01

    Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.

  19. Ultrathin type-II GaSb/GaAs quantum wells grown by OMVPE

    NASA Astrophysics Data System (ADS)

    Pitts, O. J.; Watkins, S. P.; Wang, C. X.; Stotz, J. A. H.; Meyer, T. A.; Thewalt, M. L. W.

    2004-09-01

    Heterostructures containing monolayer (ML) and submonolayer GaSb insertions in GaAs were grown using organometallic vapour phase epitaxy. At the GaAs-on-GaSb interface, strong intermixing occurs due to the surface segregation of Sb. To form structures with relatively abrupt interfaces, a flashoff growth sequence, in which growth interruptions are employed to desorb Sb from the surface, was introduced. Reflectance-difference spectroscopy and high-resolution X-ray diffraction data demonstrate that interfacial grading is strongly reduced by this procedure. For layer structures grown with the flashoff sequence, a GaSb coverage up to 1 ML can be obtained in the two-dimensional (2D) growth mode. For uncapped GaSb layers, on the other hand, atomic force microscope images show that the 2D-3D growth mode transition occurs at a submonolayer coverage between 0.3 and 0.5 ML. Low-temperature photoluminescence spectra of multiple quantum well samples grown using the flashoff sequence show a strong quantum well-related peak which shifts to lower energies as the amount of Sb incorporated increases. The PL peak energies are consistent with a type-II band lineup at the GaAs/GaSb interface.

  20. Integration of Multi-Functional Oxide Thin Film Heterostructures with III-V Semiconductors

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shafiqur

    Integration of multi-functional oxide thin films with semiconductors has attracted considerable attention in recent years due to their potential applications in sensing and logic functionalities that can be incorporated in future system-on-a-chip devices. III-V semiconductor, for example, GaAs, have higher saturated electron velocity and mobility allowing transistors based on GaAs to operate at a much higher frequency with less noise compared to Si. In addition, because of its direct bandgap a number of efficient optical devices are possible and by oxide integrating with other III-V semiconductors the wavelengths can be made tunable through hetero-engineering of the bandgap. This study, based on the use of SrTiO3 (STO) films grown on GaAs (001) substrates by molecular beam epitaxy (MBE) as an intermediate buffer layer for the hetero-epitaxial growth of ferromagnetic La0.7Sr 0.3MnO3 (LSMO) and room temperature multiferroic BiFeO 3 (BFO) thin films and superlattice structures using pulsed laser deposition (PLD). The properties of the multilayer thin films in terms of growth modes, lattice spacing/strain, interface structures and texture were characterized by the in-situ reflection high energy electron diffraction (RHEED). The crystalline quality and chemical composition of the complex oxide heterostructures were investigated by a combination of X-ray diffraction (XRD) and X-ray photoelectron absorption spectroscopy (XPS). Surface morphology, piezo-response with domain structure, and ferroelectric switching observations were carried out on the thin film samples using a scanning probe microscope operated as a piezoresponse force microscopy (PFM) in the contact mode. The magnetization measurements with field cooling exhibit a surprising increment in magnetic moment with enhanced magnetic hysteresis squareness. This is the effect of exchange interaction between the antiferromagnetic BFO and the ferromagnetic LSMO at the interface. The integration of BFO materials with LSMO on GaAs substrate also facilitated the demonstration of resistive random access memory (ReRAM) devices which can be faster with lower energy consumption compared to present commercial technologies. Ferroelectric switching observations using piezoresponse force microscopy show polarization switching demonstrating its potential for read-write operation in NVM devices. The ferroelectric and electrical characterization exhibit strong resistive switching with low SET/RESET voltages. Furthermore, a prototypical epitaxial field effect transistor based on multiferroic BFO as the gate dielectric and ferromagnetic LSMO as the conducting channel was also demonstrated. The device exhibits a modulation in channel conductance with high ON/OFF ratio. The measured nanostructure and physical-compositional results from the multilayer are correlated with their corresponding dielectric, piezoelectric, and ferroelectric properties. These results provide an understanding of the heteroepitaxial growth of ferroelectric (FE)-antiferromagnetic (AFM) BFO on ferromagnetic LSMO as a simple thin film or superlattice structure, integrated on STO buffered GaAs (001) with full control over the interface structure at the atomic-scale. This work also represents the first step toward the realization of magnetoelectronic devices integrated with GaAs (001).

  1. Research on Materials and Components for Opto-Electronic Signal Processing and Computing.

    DTIC Science & Technology

    1986-12-30

    structure consists of alternating layers of 100 A thick In 0 .12Ga 0 .88 As quan- tum wells and 150 A thick GaAs barriers, ten layers each. Nomarski optical...because it has six times as many quantum wells. 4 Electro-refraction was measured interferometrically as it was previously in bulk materials.(12) The

  2. In situ monitoring of liquid phase electroepitaxial growth

    NASA Technical Reports Server (NTRS)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  3. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less

  4. Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces.

    PubMed

    Song, Hyon Min; Ye, Peide D; Ivanisevic, Albena

    2007-08-28

    This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.

  5. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes,more » which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.« less

  6. Effect of gamma-ray irradiation on structural properties of GaAsN films grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Wattanawareekul, Atiwat; Suwanyangyaun, Pattana; Srepusharawoot, Pornjuk; Onabe, Kentaro

    2015-05-01

    The effects of gamma-ray irradiation on the structural properties of GaAs1-xNx films (N concentration=1.9 and 5.1 at%) grown by metal organic vapor phase epitaxy on GaAs (001) substrates were investigated. The GaAs1-xNx films were irradiated by gamma rays with irradiation strength of 0-2.0 MGy. Scanning electron microscopy and atomic force microscopy results showed that a gamma ray with a strength of 0, 0.5, 1.0, 1.5, and 2.0 MGy formed holes with a density of 0.0, 8.8, 9.4, 11.5, and 11.9 μm-2, respectively, on the surface of a GaAs0.981N0.019 film with low N content. On the other hand, the irradiated high-N-content GaAs0.949N0.051 film exhibited a cross-hatch pattern, which was induced by partial strain relaxation at high N levels, with a line density of 0.0, 0.21, 0.37, 0.67, and 0.26 μm-1 corresponding to an irradiation strength of 0, 0.5, 1.0, 1.5, and 2.0 MGy, respectively. The high-resolution X-ray diffraction and Raman scattering results revealed an increase in N incorporation and strain relaxation after irradiation. In addition, the GaAs0.949N0.051 films exhibited phase separation, which took place via N out-diffusion across the interface when the irradiation strength exceeded 1.0 MGy. Based on these results, the main cause of structural change was determined to be the irradiation effects including displacement damage and gamma-ray heating.

  7. Auger electron diffraction study of the growth of Fe(001) films on ZnSe(001)

    NASA Astrophysics Data System (ADS)

    Jonker, B. T.; Prinz, G. A.

    1991-03-01

    The growth of Fe films on ZnSe(001) epilayers and bulk GaAs(001) substrates has been studied to determine the mode of film growth, the formation of the interface, and the structure of the overlayer at the 1-10 monolayer level. Auger electron diffraction (AED), x-ray photoelectron spectroscopy (XPS), and reflection high-energy electron diffraction data are obtained for incremental deposition of the Fe(001) overlayer. The coverage dependence of the AED forward scattering peaks reveals a predominantly layer-by-layer mode of film growth at 175 °C on ZnSe, while a more three-dimensional growth mode occurs on the oxide-desorbed GaAs(001) substrate. XPS studies of the semiconductor 3d levels indicate that the Fe/ZnSe interface is less reactive than the Fe/GaAs interface.

  8. Mechanisms Determining the Structure of Gold-Catalyzed GaAs Nanowires Studied by in Situ X-ray Diffraction

    DOE PAGES

    Takahasi, Masamitu; Kozu, Miwa; Sasaki, Takuo; ...

    2015-09-02

    The evolution of polytypism during GaAs nanowire growth was investigated with in situ X-ray diffraction. The growth of nanowires was found to start with the formation of zincblende structure, followed by the growth of wurtzite structure. The growth process was well reproduced by a simulation based on a layer-by-layer nucleation model. The good agreement between the measured and simulated results confirms that nucleation costs higher energy for the stackings changing the crystal structure than for those conserving the preceding structure. The transition in prevalent structure can be accounted for by the change of local growth conditions related to the shapemore » of triple phase line rather than by the change in supersaturation level, which quickly reaches steady state after starting growth.« less

  9. Structure characterization of MHEMT heterostructure elements with In0.4Ga0.6As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2016-03-01

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  10. Oscillations of absorption of a probe picosecond light pulse caused by its interaction with stimulated picosecond emission of GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.

    2015-04-15

    The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where themore » emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.« less

  11. Process in manufacturing high efficiency AlGaAs/GaAs solar cells by MO-CVD

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Chang, K. I.; Tandon, J.

    1984-01-01

    Manufacturing technology for mass producing high efficiency GaAs solar cells is discussed. A progress using a high throughput MO-CVD reactor to produce high efficiency GaAs solar cells is discussed. Thickness and doping concentration uniformity of metal oxide chemical vapor deposition (MO-CVD) GaAs and AlGaAs layer growth are discussed. In addition, new tooling designs are given which increase the throughput of solar cell processing. To date, 2cm x 2cm AlGaAs/GaAs solar cells with efficiency up to 16.5% were produced. In order to meet throughput goals for mass producing GaAs solar cells, a large MO-CVD system (Cambridge Instrument Model MR-200) with a susceptor which was initially capable of processing 20 wafers (up to 75 mm diameter) during a single growth run was installed. In the MR-200, the sequencing of the gases and the heating power are controlled by a microprocessor-based programmable control console. Hence, operator errors can be reduced, leading to a more reproducible production sequence.

  12. Comparison of Ti/Pd/Ag, Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-type GaAs for electronic devices handling high current densities

    NASA Astrophysics Data System (ADS)

    Huo, Pengyun; Galiana, Beatriz; Rey-Stolle, Ignacio

    2017-04-01

    In the quest for metal contacts for electronic devices handling high current densities, we report the results of Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-GaAs and compare them to Ti/Pd/Ag and AuGe/Ni/Au. These metal systems have been designed with the goal of producing an electrical contact with (a) low metal-semiconductor specific contact resistance, (b) very high sheet conductance, (c) good bondability, (d) long-term durability and (e) cost-effectiveness. The structure of the contacts consists of an interfacial layer (either Pd or Pd/Ge) intended to produce a low metal-semiconductor specific contact resistance; a diffusion barrier (Ti/Pd) and a thick top layer of Ag to provide the desired high sheet conductance, limited cost and good bondability. The results show that both systems can achieve very low metal resistivity (ρ M ˜ 2 × 10-6 Ω cm), reaching values close to that of pure bulk silver. This fact is attributed to the Ti/Pd bilayer acting as an efficient diffusion barrier, and thus the metal sheet resistance can be controlled by the thickness of the deposited silver layer. Moreover, the use of Pd as interfacial layer produces contacts with moderate specific contact resistance (ρ C ˜ 10-4 Ω cm2) whilst the use of Pd/Ge decreases the specific contact resistance to ρ C ˜ 1.5 × 10-7 Ω cm2, as a result of the formation of a Pd4(GaAs, Ge2) compound at the GaAs interface.

  13. Investigation of the abnormal Zn diffusion phenomenon in III-V compound semiconductors induced by the surface self-diffusion of matrix atoms

    NASA Astrophysics Data System (ADS)

    Tang, Liangliang; Xu, Chang; Liu, Zhuming

    2017-01-01

    Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.

  14. Growing Gallium Arsenide On Silicon

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Gouri

    1989-01-01

    Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.

  15. Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.

  16. Quantum-size-induced phase transitions in quantum dots: Indirect-band gap GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Luo, Jun-Wei; Franceschetti, Alberto

    2008-03-01

    Quantum nanostructures are often advertised as having stronger absorption than the bulk material from which they are made, to the potential benefit of nanotechnology. However, nanostructures made of direct gap materials such as GaAs can convert to indirect-gap, weakly-aborbing systems when the quantum size becomes small. This is the case for spherical GaAs dots of radius 15 å or less (about 1000 atoms) embedded in a wide-gap matrix. The nature of the transition: γ-to-X or γ-to-L is however, controversial. The distinction can not be made on the basis of electronic structure techniques that misrepresent the magnitude of the various competing effective mass tensors (e.g, LDA or GGA) or wavefunction coupling (e.g, tight-binding). Using a carefully fit screened pseudopotential method we show that the transition occurs from γ to X, and, more importantly, that the transition involves a finite V (γ-X) interband coupling, manifested as an ``anti-crossing'' between the confined electron states of GaAs as the dot size crosses 15 å. The physics of this reciprocal-space γ-X transition, as well as the real-space (type II) transition in GaAs/AlGaAs will be briefly discussed.

  17. Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires

    NASA Astrophysics Data System (ADS)

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H+ irradiation with fluences ranging from 1 × 1011 to 5 × 1013 p cm‑2. It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  18. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.

    PubMed

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H + irradiation with fluences ranging from 1 × 10 11 to 5 × 10 13 p cm -2 . It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  19. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.

    PubMed

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O; Taylor, Aidan; Isaac, Brandon; Bowers, John E; Klamkin, Jonathan

    2018-02-26

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO₂) stripes and oriented along the [110] direction. Undercut at the Si/SiO₂ interface was used to reduce the propagation of defects into the III-V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 10⁸/cm² and 1.2 nm; respectively and 7.8 × 10⁷/cm² and 10.8 nm for the GaAs-on-Si layer.

  20. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  1. Study of subband electronic structure of Si δ-doped GaAs using magnetotransport measurements in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.

    1996-06-01

    Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.

  2. Dopant diffusion and segregation in semiconductor heterostructures: Part III, diffusion of Si into GaAs

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Gösele, U. M.; Tan, T. Y.

    We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa+ and as shallow acceptor species SiAs-. The solubility of SiAs- is much lower than that of SiGa+ except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa+ which will convert into SiAs- in accordance with their solubilities and that the point defect species governing the diffusion of SiGa+ are triply-negatively-charged Ga vacancies VGa3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently.

  3. Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    NASA Astrophysics Data System (ADS)

    Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani

    2017-02-01

    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.

  4. Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.

    2013-09-14

    We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60° dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of amore » dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.« less

  5. Materials, structures, and devices for high-speed electronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  6. High current density GaAs/Si rectifying heterojunction by defect free Epitaxial Lateral overgrowth on Tunnel Oxide from nano-seed.

    PubMed

    Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel

    2016-05-04

    Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

  7. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  8. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  9. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.

    2018-01-01

    We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.

  10. Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel.

    PubMed

    Miao, Xin; Zhang, Chen; Li, Xiuling

    2013-06-12

    High-quality growth of planar GaAs nanowires (NWs) with widths as small as 35 nm is realized by comprehensively mapping the parameter space of group III flow, V/III ratio, and temperature as the size of the NWs scales down. Using a growth mode modulation scheme for the NW and thin film barrier layers, monolithically integrated AlGaAs barrier-all-around planar GaAs NW high electron mobility transistors (NW-HEMTs) are achieved. The peak extrinsic transconductance, drive current, and effective electron velocity are 550 μS/μm, 435 μA/μm, and ~2.9 × 10(7) cm/s, respectively, at 2 V supply voltage with a gate length of 120 nm. The excellent DC performance demonstrated here shows the potential of this bottom-up planar NW technology for low-power high-speed very-large-scale-integration (VLSI) circuits.

  11. Self-ordering of InAs nanostructures on (631)A/B GaAs substrates

    NASA Astrophysics Data System (ADS)

    Eugenio-López, Eric; Alejandro Mercado-Ornelas, Christian; Kisan Patil, Pallavi; Cortes-Mestizo, Irving Eduardo; Ángel Espinoza-Figueroa, José; Gorbatchev, Andrei Yu; Shimomura, Satoshi; Ithsmel Espinosa-Vega, Leticia; Méndez-García, Víctor Hugo

    2018-02-01

    The high order self-organization of quantum dots is demonstrated in the growth of InAs on a GaAs(631)-oriented crystallographic plane. The unidimensional ordering of the quantum dots (QDs) strongly depends on the As flux beam equivalent pressure (P As) and the cation/anion terminated surface, i.e., A- or B-type GaAs(631). The self-organization of QDs occurs for both surface types along [\\bar{1}13], while the QD shape and size distribution were found to be different for the self-assembly on the A- and B-type surfaces. In addition, the experiments showed that any misorientation from the (631) plane, which results from the buffer layer waviness, does not allow a high order of unidimensional arrangements of QDs. The optical properties were studied by photoluminescence spectroscopy, where good correspondence was obtained between the energy transitions and the size of the QDs.

  12. Magnetotunneling spectroscopy of dilute Ga(AsN) quantum wells.

    PubMed

    Endicott, J; Patanè, A; Ibáñez, J; Eaves, L; Bissiri, M; Hopkinson, M; Airey, R; Hill, G

    2003-09-19

    We use magnetotunneling spectroscopy to explore the admixing of the extended GaAs conduction band states with the localized N-impurity states in dilute GaAs(1-y)N(y) quantum wells. In our resonant tunneling diodes, electrons can tunnel into the N-induced E- and E+ subbands in a GaAs(1-y)N(y) quantum well layer, leading to resonant peaks in the current-voltage characteristics. By varying the magnetic field applied perpendicular to the current direction, we can tune an electron to tunnel into a given k state of the well; since the applied voltage tunes the energy, we can map out the form of the energy-momentum dispersion curves of E- and E+. The data reveal that for a small N content (approximately 0.1%) the E- and E+ subbands are highly nonparabolic and that the heavy effective mass E+ states have a significant Gamma-conduction band character even at k=0.

  13. Non-volatile magnetic random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.

  14. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  15. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  16. Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele

    2018-01-01

    Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.

  17. Picosecond Dynamics Of The GaAs (110) Surface Studied With Laser Photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.; Lilie, M. I.

    1988-08-01

    A novel laser system and detection scheme is described which has been developed to investigate the transient dynamics of photoexcited electrons at material surfaces and interfaces with photoemission. The excited carrier population on the surface of GaAs (110) and the related Cr/GaAs (110) surface has been studied with 1-2 picosecond time resolution. Studies reveal a rapid rise and fall of the photexcited carrier population at the clean semiconductor surface within 15 picoseconds of excitation. For times greater than 15 picoseconds the carrier density decays slowly. Studies of the photoexcited surface after deposition of small numbers of Cr atoms reveal a remarkable decrease in the carrier density observed at the surface for a coverage as low as .006 monolayer.

  18. Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-07-01

    The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.

  19. High bandgap III-V alloys for high efficiency optoelectronics

    DOEpatents

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  20. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  1. Characterization and growth of epitaxial layers of Gs exhibiting high resistivity for ionic implantation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Either classical or low temperature epitaxial growth techniques can be used to control the deposition of buffer layers of GaAs on semiconducting substrates and to obtain the resistivity and purity desired. Techniques developed to study, as a function of thickness, the evolution of mobilities by photoHall, and the spectroscopy of shallow and deep centers by cathodoluminescence and current transients reveal one very pure layer of medium resistivity and high mobility, and another "dead layer" of elevated resistivity far from the surface. The highly resistive layer remains pure over several microns, which appears interesting for implantation.

  2. Structure characterization of MHEMT heterostructure elements with In{sub 0.4}Ga{sub 0.6}As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.

    2016-03-15

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for themore » 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.« less

  3. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  4. Space qualification of IR-reflecting coverslides for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, Andrew

    1995-01-01

    Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.

  5. Three dimensional atom probe imaging of GaAsSb quantum rings.

    PubMed

    Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I

    2011-07-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Scanning tunneling microscope study of GaAs(001) surfaces grown by migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; Gallagher, M.C.; Willis, R.F.

    We report an investigation of the morphology of p-type GaAs(001) surfaces using scanning tunneling microscopy (STM). The substrates were prepared using two methods: migration enhanced epitaxy (MEE) and standard molecular-beam epitaxy (MBE). The STM measurements were performed ex situ using As decapping. Analysis indicates that the overall step density of the MEE samples decreases as the growth temperature is increased. Nominally flat samples grown at 300{degrees}C exhibited step densities of 10.5 steps/1000 {Angstrom} along [ 110] dropping to 2.5 steps at 580{degrees}C. MEE samples exhibited a lower step density than MBE samples. However as-grown surfaces exhibited a larger distribution ofmore » step heights. Annealing the samples reduced the step height distribution exposing fewer atomic layers. Samples grown by MEE at 580{degrees}C and annealed for 2 min displayed the lowest step density and the narrowest step height distribution. All samples displayed an anisotropic step density. We found a ratio of A-type to B-type steps of between 2 and 3 which directly reflects the difference in the incorporation energy at steps. The aspect ratio increased slightly with growth temperature. We found a similar aspect ratio on samples grown by MBE. This indicates that anisotropic growth during MEE, like MBE, is dominated by incorporation kinetics. MEE samples grown at 580{degrees}C and capped immediately following growth exhibited a number of {open_quotes}holes{close_quotes} in the surface. The holes could be eliminated by annealing the surface prior to quenching. 20 refs., 3 figs., 1 tab.« less

  7. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates

    NASA Astrophysics Data System (ADS)

    Brammertz, Guy; Mols, Yves; Degroote, Stefan; Motsnyi, Vasyl; Leys, Maarten; Borghs, Gustaaf; Caymax, Matty

    2006-05-01

    Thin epitaxial GaAs films, with thickness varying from 140 to 1000 nm and different Si doping levels, were grown at 650 °C by organometallic vapor phase epitaxy on Ge substrates and analyzed by low-temperature photoluminescence (PL) spectroscopy. All spectra of thin GaAs on Ge show two different structures, one narrow band-to-band (B2B) structure at an energy of ~1.5 eV and a broad inner-band-gap (IB) structure at an energy of ~1.1 eV. Small strain in the thin GaAs films causes the B2B structure to be separated into a light-hole and a heavy-hole peak. At 2.5 K the good structural quality of the thin GaAs films on Ge can be observed from the narrow excitonic peaks. Peak widths of less than 1 meV are measured. GaAs films with thickness smaller than 200 nm show B2B PL spectra with characteristics of an n-type doping level of approximately 1018 at./cm3. This is caused by heavy Ge diffusion from the substrate into the GaAs at the heterointerface between the two materials. The IB structure observed in all films consists of two Gaussian peaks with energies of 1.04 and 1.17 eV. These deep trapping states arise from Ge-based complexes formed within the GaAs at the Ge-GaAs heterointerface, due to strong diffusion of Ge atoms into the GaAs. Because of similarities with Si-based complexes, the peak at 1.04 eV was identified to be due to a GeGa-GeAs complex, whereas the peak at 1.17 eV was attributed to the GeGa-VGa complex. The intensity of the IB structure decreases strongly as the GaAs film thickness is increased. PL intensity of undoped GaAs films containing antiphase domains (APDs) is four orders of magnitude lower than for similar films without APDs. This reduction in intensity is due to the electrically active Ga-Ga and As-As bonds at the boundaries between the different APDs. When the Si doping level is increased, the PL intensity of the APD-containing films is increased again as well. A film containing APDs with a Si doping level of ~1018 at./cm3 has only a factor 10 reduced intensity. We tentatively explain this observation by Si or Ge clustering at antiphase boundaries, which eliminates the effects of the Ga-Ga and As-As bonds. This assumption is confirmed by the fact that, at 77 K, the ratio between the intensity of the IB peak at 1.17 eV to the intensity of the peak at 1.04 eV is smaller than 1.4 for all films containing APDs, whereas it is larger than 1.4 for all films without APDs. This shows stronger clustering of Si or Ge in the material with APDs. For future electronic applications, Ge diffusion into the GaAs will have to be reduced. PL analysis will be a rapid tool for studying the Ge diffusion into the GaAs thin films.

  8. Analysis of the attainable efficiency of a direct-bandgap betavoltaic element

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.; Evstigneev, M.

    2015-11-01

    Conversion of energy of beta-particles into electric energy in a p-n junction based on direct-bandgap semiconductors, such as GaAs, is analyzed considering realistic semiconductor system parameters. An expression for the collection coefficient, Q, of the electron-hole pairs generated by beta-electrons is derived taking into account the existence of the dead layer. We show that the collection coefficient of beta-electrons emitted by a 3H-source to a GaAs p-n junction is close to 1 in a broad range of electron lifetimes in the junction, ranging from 10-9to 10-7 s. For the combination 147Pm/GaAs, Q is relatively large (≥slant 0.4) only for quite long lifetimes (about 10-7 s) and large thicknesses (about 100 μm) of GaAs p-n junctions. For realistic lifetimes of minority carriers and their diffusion coefficients, the open-circuit voltage realized due to the irradiation of a GaAs p-n junction by beta-particles is obtained. The attainable beta-conversion efficiency η in the case of a 3H/GaAs combination is found to exceed that of the 147Pm/GaAs combination.

  9. Thermal stability of gallium arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara

    2017-12-01

    This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.

  10. A modified gradient approach for the growth of low-density InAs quantum dot molecules by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, Nandlal; Reuter, Dirk

    2017-11-01

    Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.

  11. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  12. AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    NASA Astrophysics Data System (ADS)

    Irsigler, R.; Geppert, R.; Göppert, R.; Hornung, M.; Ludwig, J.; Rogalla, M.; Runge, K.; Schmid, Th.; Söldner-Rembold, A.; Webel, M.; Weber, C.

    1998-02-01

    Full-size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3″ substrate wafers. PECVD deposited SiO 2 and {SiO 2}/{Si 3N 4} layers were used to provide coupling capacitances of 32.5 and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kΩ/□ and the thermal coefficient of resistance of less than 4 × 10 -3/°C satisfy the demands of small area biasing resistors, working on a wide temperature range.

  13. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  14. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang

    2018-05-01

    In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.

  15. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.

    1984-01-01

    During the reporting period, InGaAs was grown on Fe-doped (semi-insulating) (100) InP substrates by current controlled liquid phase epitaxy (CCLPE) at 640 C and current densities of 2.5A sq/cm to 5 A/sq cm for periods from 5 to 30 minutes. Special efforts were made to reduce the background carrier concentration in the grown layers as much as possible. The best layers exhibited carrier concentrations in the mid-10 to the 15th power/cu cm range and up to 10,900 sq cm/V-sec room temperature mobility. InGaAsP quaternary layers of energy gap corresponding to wavelengths of approximately 1.5 microns and 1.3 microns were grown on (100) InP substrates by CCLPE. In the device fabrication area, work was directed toward processing MISFET's using InGaAs. SiO2, Si3N4 and Al2O3 were deposited by ion beam sputtering, electron beam evaporation and chemical vapor reaction on Si, GaAs, and InGaAs substrates. SiO2 and Si3N4 sputtered layers were found to possess a high density of pinhole defects that precluded capacitance-voltage analysis. Chemical vapor deposited Al2O3 layers on Si, GaAs and InGaAs substrates also exhibited a large number of pinhole defects. This prevented achieving good MIS devices over most of the substrate surface area.

  16. Avalanche Photoconductive Switching

    DTIC Science & Technology

    1989-06-01

    implantation and by MBE growth , and p-type material was created by MBE growth of a Be doped layer. Ion implantation creates a heavily doped layer...which is used commonly for GaAs integrated circuits. We plan to use Ti-Pt-Au for p-type contacts in the future. Experimental Results Test Confi...optical wavelenght does not significantly affect the switching process. Another feature of this mode of operation is that there is a threshold

  17. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis

    NASA Astrophysics Data System (ADS)

    Perl, E. E.; Kuciauskas, D.; Simon, J.; Friedman, D. J.; Steiner, M. A.

    2017-12-01

    We analyze the temperature-dependent dark saturation current density and open-circuit voltage (VOC) for GaAs, GaInP, and AlGaInP solar cells from 25 to 400 °C. As expected, the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents. However, at 400 °C, we measure VOC that is ˜50 mV higher for the GaAs solar cell and ˜60-110 mV lower for the GaInP and AlGaInP solar cells compared to what would be expected from commonly used solar cell models that consider only the ni2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-type GaAs, GaInP, and AlGaInP double heterostructures (DHs) from 25 to 400 °C using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 °C to 400 °C. In contrast, we find that thermionic emission dominates for the GaInP and AlGaInP DHs at elevated temperatures, leading to a 3-4× reduction in the effective lifetime and ˜40× increase in the surface recombination velocity as the temperature is increased from 25 °C to 400 °C. These observations suggest that optimization of the minority carrier confinement layers for the GaInP and AlGaInP solar cells could help to improve VOC and solar cell efficiency at elevated temperatures. We demonstrate VOC improvement at 200-400 °C in GaInP solar cells fabricated with modified AlGaInP window and back surface field layers.

  18. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis

    DOE PAGES

    Perl, E. E.; Kuciauskas, D.; Simon, J.; ...

    2017-12-21

    We analyze the temperature-dependent dark saturation current density and open-circuit voltage (VOC) for GaAs, GaInP, and AlGaInP solar cells from 25 to 400 degrees C. As expected, the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents. However, at 400 degrees C, we measure VOC that is ~50 mV higher for the GaAs solar cell and ~60-110 mV lower for the GaInP and AlGaInP solar cells compared to what would be expected from commonly used solar cell models that consider only the ni2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-typemore » GaAs, GaInP, and AlGaInP double heterostructures (DHs) from 25 to 400 degrees C using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 degrees C to 400 degrees C. In contrast, we find that thermionic emission dominates for the GaInP and AlGaInP DHs at elevated temperatures, leading to a 3-4x reduction in the effective lifetime and ~40x increase in the surface recombination velocity as the temperature is increased from 25 degrees C to 400 degrees C. These observations suggest that optimization of the minority carrier confinement layers for the GaInP and AlGaInP solar cells could help to improve VOC and solar cell efficiency at elevated temperatures. We demonstrate VOC improvement at 200-400 degrees C in GaInP solar cells fabricated with modified AlGaInP window and back surface field layers.« less

  19. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, E. E.; Kuciauskas, D.; Simon, J.

    We analyze the temperature-dependent dark saturation current density and open-circuit voltage (VOC) for GaAs, GaInP, and AlGaInP solar cells from 25 to 400 degrees C. As expected, the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents. However, at 400 degrees C, we measure VOC that is ~50 mV higher for the GaAs solar cell and ~60-110 mV lower for the GaInP and AlGaInP solar cells compared to what would be expected from commonly used solar cell models that consider only the ni2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-typemore » GaAs, GaInP, and AlGaInP double heterostructures (DHs) from 25 to 400 degrees C using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 degrees C to 400 degrees C. In contrast, we find that thermionic emission dominates for the GaInP and AlGaInP DHs at elevated temperatures, leading to a 3-4x reduction in the effective lifetime and ~40x increase in the surface recombination velocity as the temperature is increased from 25 degrees C to 400 degrees C. These observations suggest that optimization of the minority carrier confinement layers for the GaInP and AlGaInP solar cells could help to improve VOC and solar cell efficiency at elevated temperatures. We demonstrate VOC improvement at 200-400 degrees C in GaInP solar cells fabricated with modified AlGaInP window and back surface field layers.« less

  20. The growth of low band-gap InAs on (111)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1995-01-01

    The use of low band-gap materials is of interest for a number of photovoltaic and optoelectronic applications, such as bottom cells of optimized multijunction solar cell designs, long wavelength light sources, detectors, and thermophotovoltaics. However, low band-gap materials are generally mismatched with respect to lattice constant, thermal expansion coefficient, and chemical bonding to the most appropriate commercially available substrates (Si, Ge, and GaAs). For the specific case of III-V semiconductor heteroepitaxy, one must contend with the strain induced by both lattice constant mismatch at the growth temperature and differences in the rates of mechanical deformation during the cool down cycle. Several experimental techniques have been developed to minimize the impact of these phenomena (i.e., compositional grading, strained layer superlattices, and high-temperature annealing). However, in highly strained systems such as InAs-on-GaAs, three-dimensional island formation and large defect densities (greater than or equal to 10(exp 8)/ cm(exp -2)) tend to limit their applicability. In these particular cases, the surface morphology and defect density must be controlled during the initial stages of nucleation and growth. At the last SPRAT conference, we reported on a study of the evolution of InAs islands on (100) and (111)B GaAs substrates. Growth on the (111)B orientation exhibits a number of advantageous properties as compared to the (100) during these early stages of strained-layer epitaxy. In accordance with a developing model of nucleation and growth, we have deposited thin (60 A - 2500 A), fully relaxed InAs films on (111)B GaAs substrates. Although thicker InAs films are subject to the formation of twin defects common to epitaxy on the (111)B orientation, appropriate control of the growth parameters can greatly minimize their density. Using this knowledge base, InAs films up to 2 microns in thickness with improved morphology and structural quality have been grown on (111)B GaAs substrates, thereby enabling the measurement of electronic and optical properties.

  1. Thin Films and Interfaces of AN Organic Semiconductor: Perylenetetracarboxylic Dianhydride

    NASA Astrophysics Data System (ADS)

    Hirose, Yutaka

    Structural and electronic properties of thin films of an archetype organic molecular semiconductor, 3,4,9,10 -perylenetetracarboxylic dianhydride, (PTCDA) and of their interfaces are investigated. The first part of the thesis focuses on the growth of PTCDA thin films on graphite and GaAs. Molecular order in the direction parallel to the substrate is found to depend critically on the substrate surface properties, as revealed by marked differences in the crystallinity of films grown on graphite and Se-passivated GaAs surfaces (long range order), on the c(4 x 4) GaAs surface (medium range order), and on the (2 x 4)-c(2 x 8) GaAs surface (short range order). These results are discussed in terms of interface bonding between molecules and the substrate. The second part deals with the electronic and chemical structure of PTCDA thin films and the band lineup of the PTCDA/GaAs heterojunction investigated by Ultraviolet - and X-ray Photoemission Spectroscopies. A basic understanding of the valence band structure and chemical states is obtained with the help of a semi-empirical molecular orbital calculation. At the PTCDA/GaAs interface, the PTCDA highest occupied molecular orbital is found to be ~0.7 eV below the GaAs valence band maximum. This result is discussed in light of previous electrical measurements. Third, chemistry of metal deposition on PTCDA is investigated by synchrotron radiation photoemission spectroscopy. Al, Ti, In, and Sn are found to be highly reactive against PTCDA, yielding a considerable interfacial layer with a large density of states in the PTCDA gap. Ag and Au are found to be inert against PTCDA, producing abrupt interfaces. These results are found to be directly correlated with the electrical properties. Finally, chemistry of contacts formed by reversing the sequence of deposition, i.e. PTCDA on reactive metals (In, Sn, and Ti) is explored. The interfacial layers are found to be considerably smaller than for metals on PTCDA, in accordance with the reverse order of heats of adsorption of the two materials. The resulting interfaces are more abrupt presumably leading to more rectifying character of the electrical contacts.

  2. Electron transport through triangular potential barriers with doping-induced disorder

    NASA Astrophysics Data System (ADS)

    Elpelt, R.; Wolst, O.; Willenberg, H.; Malzer, S.; Döhler, G. H.

    2004-05-01

    Electron transport through single-, double-, and triple-barrier structures created by the insertion of suitably δ-doped layers in GaAs is investigated. The results are compared with experiments on barriers of similar shape, but obtained by linear grading of the Al fraction x in AlxGa1-xAs structures. In the case of the doping-induced space-charge potential it is found that the effective barrier height for transport is much lower than expected from a simple model, in which uniform distribution of the doping charge within the doped layers is assumed. This reduction is quantitatively explained by taking into account the random distribution of the acceptor atoms within the δp-doped layers, which results in large spatial fluctuations of the barrier potential. The transport turns out to be dominated by small regions around the energetically lowest saddle points of the random space-charge potential. Additionally, independent on the dimensionality of the transport [three-dimensional (3D) to 3D in the single barrier, from 3D through 2D to 3D in the double barrier, and from 3D through 2D through 2D to 3D in the triple-barrier structure], fingerprints of 2D subband resonances are neither experimentally observed nor theoretically expected in the doping-induced structures. This is attributed to the disorder-induced random spatial fluctuations of the subband energies in the n layers which are uncorrelated for neighboring layers. Our interpretations of the temperature-dependent current-voltage characteristics are corroborated by comparison with the experimental and theoretical results obtained from the corresponding fluctuation-free AlxGa1-xAs structures. Quantitative agreement between theory and experiment is observed in both cases.

  3. Imaging of the native inversion layer in Silicon-On-Insulator wafers via Scanning Surface Photovoltage: Implications for RF device performance

    NASA Astrophysics Data System (ADS)

    Dahanayaka, Daminda; Wong, Andrew; Kaszuba, Philip; Moszkowicz, Leon; Slinkman, James; IBM SPV Lab Team

    2014-03-01

    Silicon-On-Insulator (SOI) technology has proved beneficial for RF cell phone technologies, which have equivalent performance to GaAs technologies. However, there is evident parasitic inversion layer under the Buried Oxide (BOX) at the interface with the high resistivity Si substrate. The latter is inferred from capacitance-voltage measurements on MOSCAPs. The inversion layer has adverse effects on RF device performance. We present data which, for the first time, show the extent of the inversion layer in the underlying substrate. This knowledge has driven processing techniques to suppress the inversion.

  4. Anisotropic relaxation behavior of InGaAs/GaAs selectively grown in narrow trenches on (001) Si substrates

    NASA Astrophysics Data System (ADS)

    Guo, W.; Mols, Y.; Belz, J.; Beyer, A.; Volz, K.; Schulze, A.; Langer, R.; Kunert, B.

    2017-07-01

    Selective area growth of InGaAs inside highly confined trenches on a pre-patterned (001) Si substrate has the potential of achieving a high III-V crystal quality due to high aspect ratio trapping for improved device functionalities in Si microelectronics. If the trench width is in the range of the hetero-layer thickness, the relaxation mechanism of the mismatched III-V layer is no longer isotropic, which has a strong impact on the device fabrication and performance if not controlled well. The hetero-epitaxial nucleation of InxGa1-xAs on Si can be simplified by using a binary nucleation buffer such as GaAs. A pronounced anisotropy in strain release was observed for the growth of InxGa1-xAs on a fully relaxed GaAs buffer with a (001) surface inside 20 and 100 nm wide trenches, exploring the full composition range from GaAs to InAs. Perpendicular to the trench orientation (direction of high confinement), the strain release in InxGa1-xAs is very efficiently caused by elastic relaxation without defect formation, although a small compressive force is still induced by the trench side walls. In contrast, the strain release along the trenches is governed by plastic relaxation once the vertical film thickness has clearly exceeded the critical layer thickness. On the other hand, the monolithic deposition of mismatched InxGa1-xAs directly into a V-shaped trench bottom with {111} Si planes leads instantly to a pronounced nucleation of misfit dislocations along the {111} Si/III-V interfaces. In this case, elastic relaxation no longer plays a role as the strain release is ensured by plastic relaxation in both directions. Hence, using a ternary seed layer facilitates the integration of InxGa1-xAs covering the full composition range.

  5. He-Ion Microscopy as a High-Resolution Probe for Complex Quantum Heterostructures in Core-Shell Nanowires.

    PubMed

    Pöpsel, Christian; Becker, Jonathan; Jeon, Nari; Döblinger, Markus; Stettner, Thomas; Gottschalk, Yeanitza Trujillo; Loitsch, Bernhard; Matich, Sonja; Altzschner, Marcus; Holleitner, Alexander W; Finley, Jonathan J; Lauhon, Lincoln J; Koblmüller, Gregor

    2018-06-13

    Core-shell semiconductor nanowires (NW) with internal quantum heterostructures are amongst the most complex nanostructured materials to be explored for assessing the ultimate capabilities of diverse ultrahigh-resolution imaging techniques. To probe the structure and composition of these materials in their native environment with minimal damage and sample preparation calls for high-resolution electron or ion microscopy methods, which have not yet been tested on such classes of ultrasmall quantum nanostructures. Here, we demonstrate that scanning helium ion microscopy (SHeIM) provides a powerful and straightforward method to map quantum heterostructures embedded in complex III-V semiconductor NWs with unique material contrast at ∼1 nm resolution. By probing the cross sections of GaAs-Al(Ga)As core-shell NWs with coaxial GaAs quantum wells as well as short-period GaAs/AlAs superlattice (SL) structures in the shell, the Al-rich and Ga-rich layers are accurately discriminated by their image contrast in excellent agreement with correlated, yet destructive, scanning transmission electron microscopy and atom probe tomography analysis. Most interestingly, quantitative He-ion dose-dependent SHeIM analysis of the ternary AlGaAs shell layers and of compositionally nonuniform GaAs/AlAs SLs reveals distinct alloy composition fluctuations in the form of Al-rich clusters with size distributions between ∼1-10 nm. In the GaAs/AlAs SLs the alloy clustering vanishes with increasing SL-period (>5 nm-GaAs/4 nm-AlAs), providing insights into critical size dimensions for atomic intermixing effects in short-period SLs within a NW geometry. The straightforward SHeIM technique therefore provides unique benefits in imaging the tiniest nanoscale features in topography, structure and composition of a multitude of diverse complex semiconductor nanostructures.

  6. Growth and characterization of metamorphic InAs/GaSb tunnel heterojunction on GaAs by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jheng-Sin; Clavel, Michael B.; Hudait, Mantu K., E-mail: mantu.hudait@vt.edu

    The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fastmore » Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current–voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley–Read–Hall generation–recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.« less

  7. High Quality GaAs Growth by MBE on Si Using GeSi Buffers and Prospects for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.

    2005-01-01

    III-V solar cells on Si substrates are of interest for space photovoltaics since this would combine high performance space cells with a strong, lightweight and inexpensive substrate. However, the primary obstacles blocking III-V/Si cells from achieving high performance to date have been fundamental materials incompatabilities, namely the 4% lattice mismatch between GaAs and Si, and the large mismatch in thermal expansion coefficient. In this paper, we report on the molecular beam epitaxial (MBE) growth and properties of GaAs layers and single junction GaAs cells on Si wafers which utilize compositionally graded GeSi Intermediate buffers grown by ultra-high vacuum chemical vapor deposition (UHVCVD) to mitigate the large lattice mismatch between GaAs and Si. Ga As cell structures were found to incorporate a threading dislocation density of 0.9-1.5 x 10 (exp 6) per square centimeter, identical to the underlying relaxed Ge cap of the graded buffer, via a combination of transmission electron microscopy, electron beam induced current, and etch pit density measurements. AlGaAs/GaAs double heterostructures wre grown on the GeSi/Si substrates for time-resolved photoluminescence measurements, which revealed a bulk GaAs minority carrier lifetime in excess of 10 ns, the highest lifetime ever reported for GaAs on Si. A series of growth were performed to ass3ss the impact of a GaAs buffer to a thickness of only 0.1 micrometer. Secondary ion mass spectroscopy studies revealed that there is negligible cross diffusion of Ga, As and Ge at he III-V/Ge interface, identical to our earlier findings for GaAs grown on Ge wafers using MBE. This indicates that there is no need for a buffer to "bury" regions of high autodopjing,a nd that either pn or np configuration cells are easily accomodated by these substrates. Preliminary diodes and single junction Al Ga As heteroface cells were grown and fabricated on the Ge/GeSi/Si substrates for the first time. Diodes fabricated on GaAs, Ge and Ge/GeSi/Si substrate show nearly identical I-V characteristics in both forward and reverse bias regions. External quantum efficiencies of AlGaAs/GaAs cell structures grown on Ge/GeSi/Si and Ge substrates demonstrated nearly identical photoresponse, which indicates that high lifetimes, diffusion lengths and efficient minority carrier collection is maintained after complete cell processing.

  8. Application of galvanomagnetic measurements in temperature range 70-300 K to MBE GaAs layers characterization

    NASA Astrophysics Data System (ADS)

    Wolkenberg, Andrzej; Przeslawski, Tomasz

    1996-04-01

    Galvanomagnetic measurements were performed on the square shaped samples after Van der Pauw and on the Hall bar at low electric fields app. 1.5 V/cm and magnetic induction app. 6 kG in order to make a comparison between the theoretical and experimental results of the temperature dependence of mobility and resistivity from 70 K to 300 K. A calculation method was obtained of the drift mobility and the Hall mobility in which the scatterings are applied: on ionized impurities, on polar optical phonons, on acoustic phonons (deformation potential), on acoustic phonons (piezoelectric potential) and on dislocations. The elaborated method transformed to a computer program allows us to fit experimental values of the resistivity and the Hall mobility to those calculated. The fitting procedure makes it possible to characterize the quality of the n-type GaAs MBE layer, i.e. the net electron concentration, whole ionized impurities concentration and dislocation density after Read space charge cylinders model. The calculations together with the measurements allow us to obtain compensation ratio value in the layer, too. The influence of the epitaxial layer thickness on layers measurements accuracy in the case of Van der Pauw square probe was investigated. It was stated that in the layers under 3 micrometer the bulk properties are strongly influenced by both surfaces. The results of measurements of the same layer using the Van der Pauw and the Hall bar structure were compared. It was stated that the Hall bar structure only could be used to obtain proper measurements results.

  9. Growing High-Quality InAs Quantum Dots for Infrared Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David

    2004-01-01

    An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.

  10. Chlorine adsorption on the InAs (001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding withmore » In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.« less

  11. Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.

  12. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less

  13. GaAs Solar Cells Grown on Unpolished, Spalled Ge Substrates: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalli, Alessandro; Johnston, Steven; Sulas, Dana

    Decreasing the cost of single-crystal substrates by wafer reuse techniques has long been sought for III-V solar cells. Controlled spalling of III-V devices is a possible pathway for epitaxial liftoff, which would help reduce costs, but chemo- mechanical polishing after liftoff tends to limit the potential cost savings. Growth on an unpolished spalled surface would be an additional step toward lower costs, but it is crucial to show high efficiency solar cell devices on these unprocessed substrates. In this study, we spalled 2-inch Ge wafers using a Ni stressor layer, and then grew GaAs solar cells by HVPE on themore » spalled Ge surface without any other surface treatment. We show a 12.8% efficient single-junction device, without anti-reflection coating, with quantum efficiency very close to identical devices grown by HVPE on non-spalled GaAs substrates. Demonstrating a high carrier collection on unpolished spalled wafers is a step toward reducing substrate-related liftoff and reuse costs.« less

  14. Gallium arsenide single crystal solar cell structure and method of making

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  15. High-reliability GaAs image intensifier with unfilmed microchannel plate

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Estrera, Joseph P.; Ford, C. E.; Giordana, A.; Glesener, John W.; Lin, P. P.; Nico, A. J.; Sinor, Timothy W.; Smithson, R. H.

    1999-07-01

    Current GaAs image intensifier technology requires that the microchannel plate (MCP) have a thin dielectric film on the side facing the photocathode. This protective coating substantially reduces the amount of outgassing of ions and neutral species from the microchannels. The prevention of MCP outgassing is necessary in order to prevent the `poisoning' of the Cs:O surface on the GaAs photocathode. Many authors have experimented with omitting the MCP coating. The results of such experiments invariably lead to an intensifier with a reported useful life of less than 100 hours, due to contamination of the Cs:O layer on the photocathode. Unfortunately, the MCP film is also a barrier to electron transport within the intensifier. Substantial enhancement of the image intensifier operating parameters is the motivation for the removal of the MCP film. This paper presents results showing for the first time that it is possible to fabricate a long lifetime image intensifier with a single uncoated MCP.

  16. Evaluation of GaAs low noise and power MMIC technologies to neutron, ionizing dose and dose rate effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derewonko, H.; Bosella, A.; Pataut, G.

    1996-06-01

    An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less

  17. In-plane dielectric properties of epitaxial Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown on GaAs for tunable device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Zhibin; Hao Jianhua

    2012-09-01

    We have epitaxially deposited ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films grown on GaAs substrate via SrTiO{sub 3} buffer layer by laser molecular beam epitaxy. Structural characteristics of the heterostructure were measured by various techniques. The in-plane dielectric properties of the heteroepitaxial structure under different applying frequency were investigated from -190 to 90 Degree-Sign C, indicating Curie temperature of the BST film to be around 52 Degree-Sign C. At room temperature, the dielectric constant of the heterostructure under moderate dc bias field can be tuned by more than 30% and K factor used for frequency agile materials is foundmore » to be close to 8. Our results offer the possibility to combine frequency agile electronics of ferroelectric titanate with the high-performance microwave capabilities of GaAs for room temperature tunable device application.« less

  18. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    PubMed

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-17

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  19. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.

    PubMed

    Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane

    2017-11-08

    We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18  cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

  20. Anisotropy of magnetic interactions and spin filter behavior in hexagonal (Ga,Mn)As nanoribbons

    NASA Astrophysics Data System (ADS)

    Nie, Ya; Lan, Mu; Zhang, Xi; Xiang, Gang

    2017-09-01

    The electronic and magnetic properties of Mn doped hexagonal GaAs nanoribbons ((Ga,Mn)As NRs) have been investigated using spin-polarized density functional theory (DFT), and the spin-resolved transport behaviors of (Ga,Mn)As NRs have also been studied with non-equilibrium Green function theory. The calculations show that every Mn dopant brings 4 Bohr magneton (μB) magnetic moment and the ground states of (Ga,Mn)As NRs are ferromagnetic (FM). The investigation of magnetic anisotropies shows that magnetic interactions are dependent on both the distribution directions of Mn atoms and the edge effect of the NRs. The studies of electronic structures and transport properties show that incorporation of Mn atom turns GaAs NR from semiconducting to half-metallic, which significantly enhances the spin-up conductivity and strongly weakens the spin-down conductivity, resulting in non-monatomic variations of spin-dependent conductivities. The nearly 100% spin polarization shown in (Ga,Mn)As NR may be used for low dimensional spin filters, even with as large a bias as 0.9 V. Also, (Ga,Mn)As NR can be used to generate a relatively stable spin-polarized current in a wide bias interval.

  1. Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications.

    PubMed

    Mintairov, S A; Kalyuzhnyy, N A; Lantratov, V M; Maximov, M V; Nadtochiy, A M; Rouvimov, Sergei; Zhukov, A E

    2015-09-25

    Hybrid quantum well-dots (QWD) nanostructures have been formed by deposition of 7-10 monolayers of In0.4Ga0.6As on a vicinal GaAs surface using metal-organic chemical vapor deposition. Transmission electron microscopy, photoluminescence and photocurrent analysis have shown that such structures represent quantum wells comprising three-dimensional (quantum dot-like) regions of two kinds. At least 20 QWD layers can be deposited defect-free providing high gain/absorption in the 0.9-1.1 spectral interval. Use of QWD media in a GaAs solar cell resulted in a photocurrent increment of 3.7 mA cm(-2) for the terrestrial spectrum and by 4.1 mA cm(-2) for the space spectrum. Diode lasers based on QWD emitting around 1.1 μm revealed high saturated gain and low transparency current density of about 15 cm(-1) and 37 A cm(-2) per layer, respectively.

  2. Laser induced OMCVD growth of AlGaAs on GaAs

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Warner, Joseph D.; Aron, Paul R.; Pouch, John J.; Hoffman, Richard W., Jr.

    1987-01-01

    A major factor limiting the efficiency of the GaAs-GaAlAs solar cell is the rate of recombination at the GaAs-AlGaAs interface. Evidence has been previously reported which indicates that recombination at this interface can be greatly reduced if the AlGaAs layer is grown at lower than normal temperatures. The authors examine the epitaxial growth of AlGaAs on GaAs using a horizontal OMCVD reactor and an excimer laser operating in the UV (lambda = 193 nm) region. The growth temperatures were 450 and 500 C. The laser beam was utilized in two orientations: 75 deg angle of incidence and parallel to the substrate. Film composition and structure were determined by Auger electron spectroscopy (AES) and transmission electron microscopy (TEM). Auger analysis of epilayers grown at 500 C with the laser impinging show no carbon or oxygen contamination of the epitaxial layers or interfaces. TEM diffraction patterns of these same epilayers exhibit single crystal (100) zone axis patterns.

  3. Strain relaxation in convex-graded InxAl1-xAs (x = 0.05-0.79) metamorphic buffer layers grown by molecular beam epitaxy on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Solov'ev, V. A.; Chernov, M. Yu; Baidakova, M. V.; Kirilenko, D. A.; Yagovkina, M. A.; Sitnikova, A. A.; Komissarova, T. A.; Kop'ev, P. S.; Ivanov, S. V.

    2018-01-01

    This paper presents a study of structural properties of InGaAs/InAlAs quantum well (QW) heterostructures with convex-graded InxAl1-xAs (x = 0.05-0.79) metamorphic buffer layers (MBLs) grown by molecular beam epitaxy on GaAs substrates. Mechanisms of elastic strain relaxation in the convex-graded MBLs were studied by the X-ray reciprocal space mapping combined with the data of spatially-resolved selected area electron diffraction implemented in a transmission electron microscope. The strain relaxation degree was approximated for the structures with different values of an In step-back. Strong contribution of the strain relaxation via lattice tilt in addition to the formation of the misfit dislocations has been observed for the convex-graded InAlAs MBL, which results in a reduced threading dislocation density in the QW region as compared to a linear-graded MBL.

  4. Submonolayer Quantum Dot Infrared Photodetector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  5. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  6. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    PubMed

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As structures on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, V. A., E-mail: kulb@mig.phys.msu.ru; Oveshnikov, L. N.; Lunin, R. A.

    The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect aremore » studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.« less

  8. Photoelectric properties of the metamorphic InAs/InGaAs quantum dot structure at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovynskyi, S. L., E-mail: golovynskyi@isp.kiev.ua; Seravalli, L.; Trevisi, G.

    We present the study of optical and photoelectric properties of InAs quantum dots (QDs) grown on a metamorphic In{sub 0.15}Ga{sub 0.85}As buffer layer: such nanostructures show efficient light emission in the telecom window at 1.3 μm (0.95 eV) at room temperature. We prepared a sample with vertical geometry of contacts isolated from the GaAs substrate. The structure is found to be photosensitive in the spectral range above 0.9 eV at room temperature, showing distinctive features in the photovoltage and photocurrent spectra attributed to QDs, InAs wetting layer, and In{sub 0.15}Ga{sub 0.85}As metamorphic buffer, while a drop in the photoelectric signal above 1.36 eV ismore » related to the GaAs layer. No effect of defect centers on the photoelectrical properties is found, although they are observed in the absorption spectrum. We conclude that metamorphic QDs have a low amount of interface-related defects close to the optically active region and charge carriers can be effectively collected into InAs QDs.« less

  9. The Use of Selective Area Growth for the Reduction of Threading Dislocation Densities in Heteroepitaxy.

    DTIC Science & Technology

    1994-03-31

    Selective Area Growth, GaAs on Si3 1.SE Q.SWICATIQU10 IL. SEOJUFTY ISICTO 9 SEICUTY TUI& UNTATIM OF ABSTRACT OP SEP03 OF THIS PAGEI OF ABSTRACT...sides were produced by etching in a solution of 30 wt .% KOH in H20 at a temperature of -800 C using an Si0 2 pattern on the substrate to define the...energy which we associate with a bond between atoms i and j. The ni are the number of atoms of type i and the nij are the numbers of each type of bond

  10. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  11. Comparison of AlGaAs Oxidation in MBE and MOCVD Grown Samples

    DTIC Science & Technology

    2002-01-01

    vertical cavity surface emitting lasers ( VCSELs ) [1, 2, 3]. They are also being... molecular beam epitaxy ( MBE ) [5, 6] or metal organic chemical vapor deposition (MOCVD) [7, 8]. The MBE -grown A1GaAs layers are sometimes pseudo or digital...Simultaneous wet-thermal oxidation of MBE and MOCVD grown AlxGal_xAs layers (x = 0.1 to 1.0) showed that the epitaxial growth method does not

  12. Modeling and Simulation of Capacitance-Voltage Characteristics of a Nitride GaAs Schottky Diode

    NASA Astrophysics Data System (ADS)

    Ziane, Abderrezzaq; Amrani, Mohammed; Benamara, Zineb; Rabehi, Abdelaziz

    2018-06-01

    A nitride GaAs Schottky diode has been fabricated by the nitridation of GaAs substrates using a radio frequency discharge nitrogen plasma source with a layer thickness of approximately 0.7 nm of GaN. The capacitance-voltage (C-V) characteristics of the Au/GaN/GaAs structure were investigated at room temperature for different frequencies, ranging from 1 kHz to 1 MHz. The C-V measurements for the Au/GaN/GaAs Schottky diode were found to be strongly dependent on the bias voltage and the frequency. The capacitance curves depict an anomalous peak and a negative capacitance phenomenon, indicating the presence of continuous interface state density behavior. A numerical drift-diffusion model based on the Scharfetter-Gummel algorithm was elaborated to solve a system composed of the Poisson and continuities equations. In this model, we take into account the continuous interface state density, and we have considered exponential and Gaussian distributions of trap states in the band gap. The effects of the GaAs doping concentration and the trap state density are discussed. We deduce the shape and values of the trap states, then we validate the developed model by fitting the computed C-V curves with experimental measurements at low frequency.

  13. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    DOE PAGES

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; ...

    2016-10-13

    The growth of quaternary Ga 0.68In 0.32As 0.35P 0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 um-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. In order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys, the growth temperature and substrate miscut are varied. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering andmore » suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Our initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga 0.68In 0.32As 0.35P 0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.« less

  14. Optically pumped lasing in a rolled-up dot-in-a-well (DWELL) microtube via the support of Au pad

    NASA Astrophysics Data System (ADS)

    Chai, Zhaoer; Wang, Qi; Cao, Jiawei; Mao, Guoming; Liu, Hao; Ren, Xiaomin; Maleev, Nikolai A.; Vasil'ev, Alexey P.; Zhukov, Alexey E.; Ustinov, Victor M.

    2018-02-01

    We report the observation of optically pumped continuous wave lasing in a self-rolled-up InGaAs/GaAs quantum dot microtube at room temperature. Single layer of InAs quantum dots ( 2.6 ML coverage) in a GaAs well sandwiched by two AlGaAs barriers are incorporated into the tube wall as the gain media. As-fabricated microtube is supported by a 300-nm-thick Au pad, aiming to separate the tube from GaAs substrate and thus to decrease the substrate loss, which finally enables lasing with ultralow threshold power ( 4 µW) from an microtube ring resonator.

  15. Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, H.; Onomitsu, K.; Kato, K.

    2008-06-23

    Micromechanical-beam resonators were fabricated using a strained GaAs film grown on relaxed In{sub 0.1}Ga{sub 0.9}As/In{sub 0.1}Al{sub 0.9}As buffer layers. The natural frequency of the fundamental mode was increased 2.5-4 times by applying tensile strain, showing good agreement with the model calculation assuming strain of 0.35% along the beam. In addition, the Q factor of 19 000 was obtained for the best sample, which is one order of magnitude higher than that for the unstrained resonator. This technique can be widely applied for improving the performance of resonator-based micro-/nanoelectromechanical devices.

  16. Shubnikov-de Haas measurements of the 2-D electron gas in pseudomorphic In(0.1)Ga(0.9)As grown on GaAs

    NASA Technical Reports Server (NTRS)

    Szydlic, P. P.; Alterovitz, S. A.; Haugland, E. J.; Segall, B.; Henderson, T. S.

    1988-01-01

    Shubnikov-de Hass (SdH) measurements performed on a 200 A layer of pseudomorphic In(0.10)Ga(0.90)As grown by MBE on undoped GaAs with an overlayer of Al(0.15)Ga(0.85)As are presented. These measurements were performed in magnetic fields up to 1.4 tesla at T in the range of 1.4-10 K. It was found that only one subband was populated with a density of 5.8 x 10 to the 11/cm-squared and an effective mass at the Fermi level m(asterisk) = (0.060 + or - 0.001)m(0).

  17. Structural modifications of silicon-implanted GaAs induced by the athermal annealing technique

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Yousuf, M.; Kendziora, C. A.; Nachumi, B.; Fischer, R.; Grun, J.; Rao, M. V.; Tucker, J.; Siddiqui, S.; Ridgway, M. C.

    2004-12-01

    We have used high-resolution X-ray diffraction and Raman spectroscopy to investigate structural modifications inside and outside the focal region of Si-implanted GaAs samples that have been irradiated at high power by a focused short-pulse laser. Si atoms implanted into the GaAs matrix generate exciton-induced local lattice expansion, resulting in a satellite on the lower-angle side of the Bragg peak. After the laser pulse irradiation, surface features inside and outside the focal spot suggest the presence of Bernard convection cells, indicating that a rapid melting and re-crystallization has taken place. Moreover, the laser irradiation induces a compressive strain inside the focal spot, since the satellite appears on the higher-angle side of the Bragg peak. The stress maximizes at the center of the focal spot and extends far outside the irradiated area (approximately 2.5-mm away from the bull’s eye), suggesting the propagation of a laser-induced mechanical wave. The maximum compressive stress inside the focal spot corresponds to 2.7 GPa. Raman spectra inside the focal spot resemble that of pristine GaAs, indicating that rapid melting has introduced significant heterogeneity, with zones of high and low Si concentration. X-ray measurements indicate that areas inside the focal spot and annealed areas outside of the focal spot contain overtones of a minor tetragonal distortion of the lattice, consistent with the observed relaxation of Raman selection rules when compared with the parent zinc-blende structure.

  18. Formation of Size- and Position-Controlled Nanometer Size Pt Dots on GaAs and InP Substrates by Pulsed Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Sato, Taketomo; Kaneshiro, Chinami; HiroshiOkada, HiroshiOkada; Hasegawa, Hideki

    1999-04-01

    Attempts were made to form regular arrays of size- andposition-controlled Pt-dots on GaAs and InP by combining an insitu electrochemical process with the electron beam (EB)lithography. This utilizes the precipitation of Pt nano-particles atthe initial stage of electrodeposition. First, electrochemicalconditions were optimized in the mode of self-assembled dot arrayformation on unpatterned substrates. Minimum in-plane dot diameters of22 nm and 26 nm on GaAs and InP, respectively, were obtained underthe optimal pulsed mode. Then, Pt dots were selectively formed onpatterned substrates with open circular windows formed by EBlithography, thereby realizing dot-position control. The Pt dot wasfound to have been deposited at the center of each open window, andthe in-plane diameter of the dot could be controlled by the number,width and period of the pulse-waveform applied to substrates. Aminimum diameter of 20 nm was realized in windows with a diameter of100 nm, using a single pulse. Current-voltage (I-V)measurements using an atomic force microscopy (AFM) system with aconductive probe indicated that each Pt dot/n-GaAs contact possessed ahigh Schottky barrier height of about 1 eV.

  19. Removal of ion-implanted photoresists on GaAs using two organic solvents in sequence

    NASA Astrophysics Data System (ADS)

    Oh, Eunseok; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2016-07-01

    Organic solvents can effectively remove photoresists on III-V channels without damage or etching of the channel material during the process. In this study, a two-step sequential photoresist removal process using two different organic solvents was developed to remove implanted ArF and KrF photoresists at room temperature. The effects of organic solvents with either low molar volumes or high affinities for photoresists were evaluated to find a proper combination that can effectively remove high-dose implanted photoresists without damaging GaAs surfaces. The performance of formamide, acetonitrile, nitromethane, and monoethanolamine for the removal of ion-implanted ArF and KrF photoresists were compared using a two-step sequential photoresist removal process followed by treatment in dimethyl sulfoxide (DMSO). Among the various combinations, the acetonitrile + DMSO two-step sequence exhibited the best removal of photoresists that underwent ion implantation at doses of 5 × 1013-5 × 1015 atoms/cm2 on both flat and trench-structured GaAs surfaces. The ability of the two-step process using organic solvents to remove the photoresists can be explained by considering the affinities of solvents for a polymer and its permeability through the photoresist.

  20. First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001) - β2(2x4)

    NASA Astrophysics Data System (ADS)

    Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko

    2018-06-01

    We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.

  1. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  2. Structural ordering and interface morphology in symmetrically strained(GaIn)As/Ga(PAs) superlattices grown on off-oriented GaAs(100)

    NASA Astrophysics Data System (ADS)

    Giannini, C.; Tapfer, L.; Zhuang, Y.; de Caro, L.; Marschner, T.; Stolz, W.

    1997-02-01

    In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest <110> directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation. A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.

  3. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  4. Nonstoichiometric defects in GaAs and the EL2 bandwagon

    NASA Astrophysics Data System (ADS)

    Lagowski, J.; Gatos, H. C.

    1985-09-01

    In the present paper, an attempt is made to formulate a common framework for a discussion of nonstoichiometric defects, especially EL2 and dislocations. An outline is provided of the most important settled and unsettled issues, taking into account not only fundamental interests, but also urgent needs in advancing IC technology. Attention is given to stoichiometry-controlled compensation, the expected role of melt stoichiometry in electrical conductivity for the basic atomic disorders, defect equilibria-dislocations and EL2, and current issues pertaining to the identification of EL2. It is concluded that nonstoichiometric defects play a critical role in the electronic properties of GaAs and its electronic applications. Very significant progress has been recently made in learning how to adjust melt stoichiometry in order to maximize its beneficial effects and minimize its detrimental ones.

  5. Nonstoichiometric defects in GaAs and the EL2 bandwagon

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.

    1985-01-01

    In the present paper, an attempt is made to formulate a common framework for a discussion of nonstoichiometric defects, especially EL2 and dislocations. An outline is provided of the most important settled and unsettled issues, taking into account not only fundamental interests, but also urgent needs in advancing IC technology. Attention is given to stoichiometry-controlled compensation, the expected role of melt stoichiometry in electrical conductivity for the basic atomic disorders, defect equilibria-dislocations and EL2, and current issues pertaining to the identification of EL2. It is concluded that nonstoichiometric defects play a critical role in the electronic properties of GaAs and its electronic applications. Very significant progress has been recently made in learning how to adjust melt stoichiometry in order to maximize its beneficial effects and minimize its detrimental ones.

  6. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-02-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  7. Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)

    2005-01-01

    An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

  8. Multicolor Nanostructured High Efficiency Photovoltaic Devices

    DTIC Science & Technology

    2007-06-30

    the surface of strained buffer layer starts to form some nanoholes and nanogrooves. The depth of these nanoholes and nanogrooves is more than 3 nm...This indicates that the nanoholes and nanogrooves are formed not only just in the top GaAs (5 ML) layer, but also deep in the strained GaAsSb buffer...temperature during the InAs growth. As the InAs growth temperature decreases, the density of the nanoholes and nanogrooves is significantly reduced

  9. Linear thermal expansion coefficient determination using in situ curvature and temperature dependent X-ray diffraction measurements applied to metalorganic vapor phase epitaxy-grown AlGaAs

    NASA Astrophysics Data System (ADS)

    Maaßdorf, A.; Zeimer, U.; Grenzer, J.; Weyers, M.

    2013-07-01

    AlxGa1-xAs grown on GaAs is known to be almost perfectly lattice matched with a maximum lattice mismatch of 0.14% at room temperature and even less at temperatures of 700 °C-800 °C. However, as layer structures for edge-emitting diode lasers exhibit an increasing overall thickness of several microns of AlxGa1-xAs, e.g., diode lasers comprising a super-large optical cavity, the accumulated elastic strain energy increases as well. Depending on the growth temperature the formation energy of dislocations can be reached, which is limiting the pseudomorphic growth. In this regard, the thermal expansion coefficient difference between layer and substrate is an important parameter. We utilize in situ curvature measurements during growth of AlxGa1-xAs by metal-organic vapour phase epitaxy to determine the thermal expansion coefficient α. The curvature change with increasing layer thickness, as well as with wafer temperature at constant layer thickness is used to assess α. This is compared to ex situ temperature dependent X-ray diffraction measurements to obtain α. All determined values for α are in good agreement, yielding αAlAs=4.1×10-6 K-1 for a given GaAs linear thermal expansion coefficient of αGaAs=5.73×10-6 K-1.

  10. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    NASA Astrophysics Data System (ADS)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882 GHz beat-waves revealed an unexpected and rapid decrease in the FWM yield that was not predicted by the GNLSE model that accounts for third-order nonlinearities alone. These results suggest that the effective nonlinear refractive index of GaAs, having formidable second- and third-order susceptibilities, may be altered by quadratic nonlinearities.

  11. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.

    PubMed

    García Núñez, Carlos; Braña, Alejandro F; López, Nair; García, Basilio J

    2018-06-13

    The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices. Preventing the nucleation of parasitic species on the Si substrate is a matter of interest, because they could act as traps for gaseous precursors and/or chemical elements during VLS growth, drastically reducing the maximum length of grown NWs, affecting their morphology and structure, and reducing the NW density along the Si substrate surface. This work presents a novel and easy to develop growth method (i.e., without using advanced nanolithography techniques) to prevent the nucleation of parasitic species, while preserving the quality of GaAs NWs even for long duration growths. GaAs NWs are grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates using triethylgallium and tertiarybutylarsine precursors by a two-step-based growth method presented here; this method includes a growth interruption for an oxidation on air between both steps of growth, reducing the nucleation of parasitic crystals on the thicker SiO x capping layer during the second and longer growth step. VLS conditions are preserved overtime, resulting in a stable NW growth rate of around 6 μm/h for growth times up to 1 h. Resulting GaAs NWs have a high aspect ratio of 85 and average radius of 35 nm. We also report on the existence of characteristic reflection high-energy electron diffraction patterns associated with the epitaxial growth of GaAs NWs on Si(111) substrates, which have been analyzed and compared to the morphological characterization of GaAs NWs grown for different times under different conditions.

  12. Nucleation and growth of dielectric films on III-V semiconductors during atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Granados Alpizar, Bernal

    In order to continue with metal-oxide-semiconductors (CMOS) transistor scaling and to reduce the power density, the channel should be replaced with a material having a higher electron mobility, such as a III-V semiconductor. However, the integration of III-V's is a challenge because these materials oxidize rapidly when exposed to air and the native oxide produced is characterized by a high density of defects. Deposition of high-k materials on III-V semiconductors using Atomic Layer Deposition (ALD) reduces the thickness of these oxides, improving the semiconductor/oxide interface quality and the transistor electrical characteristics. In this work, ALD is used to deposit two dielectrics, Al 2O3 and TiO2, on two III-V materials, GaAs and InGaAs, and in-situ X-ray photoelectron spectroscopy (XPS) and in-situ thermal programmed desorption (TPD) are used for interface characterization. Hydrofluoric acid (HF) etching of GaAs(100) and brief reoxidation in air produces a 9.0 ±1.6 Å-thick oxide overlayer containing 86% As oxides. The oxides are removed by 1 s pulses of trimethylaluminum (TMA) or TiCl4. TMA removes the oxide overlayer while depositing a 7.5 ± 1.6 Å thick aluminum oxide. The reaction follows a ligand exchange mechanism producing nonvolatile Al-O species that remain on the surface. TiCl4 exposure removes the oxide overlayer in the temperature range 89°C to 300°C, depositing approximately 0.04 monolayer of titanium oxide for deposition temperatures from 89°C to 135°C, but no titanium oxide is present from 170 °C to 230 °C. TiCl4 forms a volatile oxychloride product and removes O from the surface while leaving Cl atoms adsorbed to an elemental As layer, chemically passivating the surface. The native oxide of In0.53Ga0.47As(100) is removed using liquid HF and gas phase HF before deposition of Al2O3 using TMA and H2O at 170 °C. An aluminium oxide film with a thickness of 7.2 ± 1.2 Å and 7.3 ± 1.2 Å is deposited during the first pulse of TMA on liquid and gas phase HF treated samples, respectively. After three complete ALD cycles the thickness of the aluminum oxide film is 10.0 ± 1.2 Å on liquid HF treated and 6.6 ± 1.2 Å on gas phase HF treated surfaces. Samples treated with gas phase HF inhibit growth. Inhibition is caused by residual F atoms that passivate the surface and by surface poisoning due to the thicker carbon film deposited during the first pulse of TMA. On InGaAs covered by native oxide, the first TMA pulse deposits 9 Å of aluminum oxide, and reaches saturation at 13 Å after 15 pulses of TMA. The film grows by scavenging oxygen from the substrate oxides. Substrate oxides are reduced by the first pulse of TMA even at 0°C. At 0°C, on a 9 Å thick Ga-rich oxide surface, 1 pulse of TMA mainly physisorbs and a limited amount of aluminum oxide is deposited. At 0°C, 110°C, and 170°C, more aluminum oxide is deposited on surfaces initially containing As oxide, and larger binding energy (BE) shifts of the O 1s peak are observed compared to surfaces that contain Ga oxides only, showing that As oxides improve the nucleation of Al2O 3.

  13. Optimization of metamorphic buffers for MBE growth of high quality AlInSb/InSb quantum structures: Suppression of hillock formation

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Gosselink, D.; Gharavi, K.; Baugh, J.; Wasilewski, Z. R.

    2017-11-01

    The optimization of metamorphic buffers for InSb/AlInSb QWs grown on GaAs (0 0 1) substrates is presented. With increasing surface offcut angle towards [ 1 1 bar 0 ] direction, the interaction of spiral growth around threading dislocations (TDs) with the offcut-induced atomic steps leads to a gradual change in the morphology of the AlSb buffer from one dominated by hillocks to that exhibiting near-parallel steps, and finally to a surface with increasing number of localized depressions. With the growth conditions used, the smoothest AlSb surface morphology was obtained for the offcut angles range of 0.8-1.3°. On substrates with 0° offcut, subsequent 3 repeats of Al0.24In0.76 Sb/Al0.12In0.88 Sb interlayers reduces the TD density of AlSb buffer by a factor of 10, while 70 times reduction in the surface density of TD-related hillocks is observed. The remaining hillocks have rectangular footprint and small facet angles with respect to GaAs (0 0 1) surface: 0.4° towards [ 1 1 bar 0 ] direction and 0.7° towards [1 1 0] direction. Their triangular-shaped sidewalls with regularly spaced atomic steps show occasional extra step insertion sites, characteristic of TD outcrops. Many of the observed sidewalls are dislocation free and offer atomically smooth areas of up to 1 μm2, already suitable for high-quality InSb growth and subsequent top-down fabrication of InSb nanowires. It is proposed that the sidewalls of the remaining hillocks offer local vicinal surfaces with atomic step density optimal for suppression of TD-induced spiral growth, thus providing the important information on the exact substrate offcut needed to achieve large hillock-free and atomically smooth areas on AlInSb metamorphic buffers.

  14. Magnetoelectric Effect in Gallium Arsenide-Nickel-Tin-Nickel Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Tikhonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-02-01

    Experimental data have been presented for the magnetoelectric effect in nickel-tin-nickel multilayer structures grown on a GaAs substrate by cathodic electrodeposition. The method of fabricating these structures has been described, and the frequency dependence of the effect has been demonstrated. It has been shown that tin used as an intermediate layer reduces mechanical stresses due to the phase mismatch at the Ni-GaAs interface and, thus, makes it possible to grow good structures with a 70-μm-thick Ni layer. The grown structures offer good adhesion between layers and a high Q factor.

  15. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    PubMed

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  16. An ab initio cluster study of the chemisorption of atomic cesium and hydrogen on reconstructed surfaces of gallium rich gallium arsenide

    NASA Astrophysics Data System (ADS)

    Schailey, Ronald

    1999-11-01

    Chemisorption properties of cesium and hydrogen atoms on the Ga-rich GaAs (100) (2 x 1), (2 x 2), and β(4 x 2) surfaces are investigated using ab initio self-consistent restricted open shell Hartree-Fock (ROHF) total energy calculations with Hay- Wadt effective core potentials. The effects of electron correlation have been included using many-body perturbation theory through second order, with the exception of β(4 x 2) symmetry due to computational limitations. The semiconductor surface is modeled by finite sized hydrogen saturated clusters. The effects of surface relaxation and reconstruction have been investigated in detail. Results are given for the energetics of chemisorption, charge population analysis, HOMO-LUMO gaps, and consequent possibilities of metallization for atomic cesium adsorption. For the chemisorption of atomic hydrogen, the experimentally verified mechanism of surface dimer bond breaking is investigated in detail.

  17. Anomalous x-ray diffraction on InAs/GaAs quantum dot systems

    NASA Astrophysics Data System (ADS)

    Schulli, T. U.; Sztucki, M.; Chamard, V.; Metzger, T. H.; Schuh, D.

    2002-07-01

    Free-standing InAs quantum dots on a GaAs (001) substrate have been investigated using grazing incidence x-ray diffraction. To suppress the strong scattering contribution from the GaAs substrate, we performed anomalous diffraction experiments at the superstructure (200) reflection, showing that the relative intensities from the dots and the substrate undergo a significant change with the x-ray energy below and above the As K edge. Since the signal from the substrate material can essentially be suppressed, this method is ideally suited for the investigation of strain, shape, and interdiffusion of buried quantum dots and quantum dots embedded in heteroepitaxial multilayers. In addition, we show that it can be used as a tool for studying wetting layers.

  18. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  19. New flange correction formula applied to interfacial resistance measurements of ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Hannaman, David J.

    1987-01-01

    A quasi-two-dimensional analytical model is developed to account for vertical and horizontal current flow in and adjacent to a square ohmic contact between a metal and a thin semiconducting strip which is wider than the contact. The model includes side taps to the contact area for voltage probing and relates the 'apparent' interfacial resistivity to the (true) interfacial resistivity, the sheet resistance of the semiconducting layer, the contact size, and the width of the 'flange' around the contact. This relation is checked against numerical simulations. With the help of the model, interfacial resistivities of ohmic contacts to GaAs were extracted and found independent of contact size in the range of 1.5-10 microns.

  20. Scanning tunneling microscopy studies of Si donors (Si[sub Ga]) in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, J.F.; Liu, X.; Newman, N.

    1994-03-07

    We report scanning tunneling microscopy (STM) studies of Si substitutional donors (Si[sub Ga]) in GaAs that reveal delocalized and localized electronic features corresponding to Si[sub Ga] in the top few layers of the (110) cleavage surface. The delocalized features appear as protrusions a few nm in size, superimposed on the background lattice. These features are attributed to enhanced tunneling due to the local perturbation of the band bending by the Coulomb potential of subsurface Si[sub Ga]. In contrast, STM images of surface Si[sub Ga] show very localized electronic structures, in good agreement with a recent theoretical prediction [J. Wang [italmore » et] [ital al]., Phys. Rev. B 47, 10 329 (1993)].« less

Top