Science.gov

Sample records for gaas bipolar transistor

  1. GaAs vapor-grown bipolar transistors.

    NASA Technical Reports Server (NTRS)

    Nuese, C. J.; Gannon, J. J.; Dean, R. H.; Gossenberger, H. F.; Enstrom, R. E.

    1972-01-01

    Discussion of an approach for the fabrication of high-temperature GaAs transistors which is centered on the preparation of n-p-n three-layered structures entirely by a vapor-phase growth technique, as described by Tietjen and Amick (1966). The low growth temperature of approximately 750 C is thought to reduce contamination during crystal growth and to contribute to the reasonably high minority-carrier lifetimes obtained for the vapor-grown p-n junctions. The fact that impurity concentrations and layer thicknesses can be precisely controlled for epitaxial layers as thin as 1 micrometer is an important feature of this growth technique.

  2. Fabrication and high temperature characteristics of ion-implanted GaAs bipolar transistors and ring-oscillators

    NASA Technical Reports Server (NTRS)

    Doerbeck, F. H.; Yuan, H. T.; Mclevige, W. V.

    1981-01-01

    Ion implantation techniques that permit the reproducible fabrication of bipolar GaAs integrated circuits are studied. A 15 stage ring oscillator and discrete transistor were characterized between 25 and 400 C. The current gain of the transistor was found to increase slightly with temperature. The diode leakage currents increase with an activation energy of approximately 1 eV and dominate the transistor leakage current 1 sub CEO above 200 C. Present devices fail catastrophically at about 400 C because of Au-metallization.

  3. Evaluation of GaAs Schottky gate bipolar transistor (SGBT) by electrothermal simulation

    NASA Astrophysics Data System (ADS)

    Hossin, M.; Johnson, C. M.; Wright, N. G.; O'Neill, A. G.

    2000-01-01

    A GaAs alternative to the Si IGBT, employing an implanted lateral channel in place of the usual MOSFET inversion channel, is proposed. A simplified analytical model shows that the relatively high ratio of electron to hole mobility in GaAs allows much lower anode emitter injection efficiencies to be used without compromising conductivity modulation of the base region. This, in turn, means that a higher proportion of the total device current is carried by electrons. Design strategies for the GaAs SGBT are investigated and applied in the design of an optimised unit cell. The optimised structure is compared with an equivalent Si IGBT structure by means of electrothermal and transient simulation. Electrothermal simulation shows the GaAs device to have useable performance at junction temperatures in excess of 300°C, a feature which is consistent with the wide band-gap of GaAs. Transient simulations show reduced minority carrier tailing effects at both turn-on and turn-off, with initial turn-off tail currents being reduced by a factor of 5 compared to the Si IGBT. The resulting reduction in turn-off loss allows switching frequencies to be increased by a factor of 4 for the same total losses. The excellent switching performance derives from the relatively low proportion of hole current needed to ensure effective conductivity modulation of the structure.

  4. Femtosecond energy relaxation of nonthermal electrons injected in p-doped GaAs base of a heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Prabhu, S. S.; Vengurlekar, A. S.

    2001-07-01

    We study femtosecond relaxation of minority carriers (electrons) injected into a heavily p-doped base of a heterojunction bipolar transistor (HBT). Here, we consider the case of p-doped GaAs, to be specific. The electrons are assumed to have a peaked energy distribution at t=0, with kinetic energies a few hundred meV above the conduction band threshold. We solve the time dependent Boltzmann equation governing the dynamics of these electrons. The main feature of this work is a detailed calculation of the time dependent nonthermal, nonequilibrium electron energy distribution, that relaxes due to single particle excitations via electron-hole scattering and interaction with coupled optical phonon-hole plasmon modes in the sub and picosecond time domains. We highlight the significant role that the electron-hole scattering plays in this relaxation. The majority carriers (holes) are assumed to remain in quasiequilibrium with the lattice, taken to be at room temperature (or at 77 K). We present calculations of electron energy relaxation with the hole density varied from 1×1018 to 1×1020cm-3. In the initial, subpicosecond stages of the relaxation, the energy distribution evolves into two major components: a quasiballistic but broad component, at energies near the injection energy, and an energy relaxed component near E=0. The latter becomes dominant in a picosecond or so. The electrons with an initial mean velocity of ˜1.5×108cm/s attain a cooler distribution with a mean velocity of ˜4×107 cm/s within about 1 ps for p doping in excess of 1×1019 cm-3. The temporal evolution of average velocity of the electrons should be useful in obtaining values of the base width suitable for effective operation of HBTs.

  5. Femtosecond energy relaxation of nonthermal electrons injected in p-doped GaAs base of a heterojunction bipolar transistor

    SciTech Connect

    Prabhu, S. S.; Vengurlekar, A. S.

    2001-07-01

    We study femtosecond relaxation of minority carriers (electrons) injected into a heavily p-doped base of a heterojunction bipolar transistor (HBT). Here, we consider the case of p-doped GaAs, to be specific. The electrons are assumed to have a peaked energy distribution at t=0, with kinetic energies a few hundred meV above the conduction band threshold. We solve the time dependent Boltzmann equation governing the dynamics of these electrons. The main feature of this work is a detailed calculation of the time dependent nonthermal, nonequilibrium electron energy distribution, that relaxes due to single particle excitations via electron{endash}hole scattering and interaction with coupled optical phonon-hole plasmon modes in the sub and picosecond time domains. We highlight the significant role that the electron-hole scattering plays in this relaxation. The majority carriers (holes) are assumed to remain in quasiequilibrium with the lattice, taken to be at room temperature (or at 77 K). We present calculations of electron energy relaxation with the hole density varied from 1{times}10{sup 18} to 1{times}10{sup 20}cm{sup {minus}3}. In the initial, subpicosecond stages of the relaxation, the energy distribution evolves into two major components: a quasiballistic but broad component, at energies near the injection energy, and an energy relaxed component near E=0. The latter becomes dominant in a picosecond or so. The electrons with an initial mean velocity of {similar_to}1.5{times}10{sup 8}cm/s attain a cooler distribution with a mean velocity of {similar_to}4{times}10{sup 7}cm/s within about 1 ps for p doping in excess of 1{times}10{sup 19}cm{sup {minus}3}. The temporal evolution of average velocity {l_angle}v{r_angle} of the electrons should be useful in obtaining values of the base width suitable for effective operation of HBTs. {copyright} 2001 American Institute of Physics.

  6. High power gain switched laser diodes using a novel compact picosecond switch based on a GaAs bipolar junction transistor structure for pumping

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha

    2006-04-01

    A number of up-to-date applications, including advanced optical radars with high single-shot resolution, precise 3 D imaging, laser tomography, time imaging spectroscopy, etc., require low-cost, compact, reliable sources enabling the generation of high-power (1-100 W) single optical pulses in the picosecond range. The well-known technique of using the gain-switching operation mode of laser diodes to generate single picosecond pulses in the mW range fails to generate high-power single picosecond pulses because of a lack of high-current switches operating in the picosecond range. We report here on the achieving of optical pulses of 45W / 70ps, or alternatively 5W / 40ps, with gain-switched commercial quantum well (QW) laser diodes having emitting areas of 250 × 200 μm and 75 × 2 μm, respectively. This was made possible by the use of a novel high-current avalanche switch based on a GaAs bipolar junction transistor (BJT) structure with a switching time (<200ps) comparable to the lasing delay. (The extremely fast transient in this switch is caused by the generation and spread of a comb of powerfully avalanching Gunn domains of ultra-high amplitude in the transistor structure.) A simulation code developed earlier but modified and carefully verified here allowed detailed comparison of the experimental and simulated laser responses and the transient spectrum.

  7. Carbon doping for the GaAs base layer of Heterojunction Bipolar Transistors in a production scale MOVPE reactor

    NASA Astrophysics Data System (ADS)

    Brunner, F.; Bergunde, T.; Richter, E.; Kurpas, P.; Achouche, M.; Maaßdorf, A.; Würfl, J.; Weyers, M.

    2000-12-01

    In this work different approaches for carbon doping of GaAs in MOVPE are compared with respect to their growth- and device-related material properties. Doping levels up to 6×10 19 cm -3 and smooth surface morphologies are achieved with either intrinsically (TMG and AsH 3 or TMAs) or extrinsically (CBr 4) doped layers. Despite comparable structural and majority carrier properties differences in GaInP/GaAs-HBT device performance depending on base doping conditions are obtained. Devices with an intrinsically doped base layer (TMG+AsH 3) show superior transistor performance with a current gain to base sheet resistance ratio ( β/ Rsb) exceeding 0.5 for base thicknesses as large as 120 nm. The use of either CBr 4 or TMAs as base growth precursors results in reduced current gains ( β/ Rsb⩽0.3). It is shown that the achieved HBT current gain is directly related to recombination centers in the heavily doped base layer depending on doping method.

  8. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  9. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  10. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  11. On the Emitter Resistance of High-Performance GaAs- and InP-Based Heterojunction Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yutaka; Ohkubo, Yukio; Matsumoto, Taisuke; Koji, Takashi; Amano, Yoshiaki; Takagi, Akio

    2008-06-01

    Emitter resistance REE and collector current ideality factor nC of InGaP/GaAs heterostructure bipolar transistors (HBTs) and InP/InGaAs double-HBTs (DHBTs) were investigated from the viewpoints of DC and RF characteristics. It was found that the apparent ideality factor of collector current nCapp increases with the collector current IC for all HBTs. The increase in nCapp is more conspicuous in the InP/InGaAs DHBTs than in the InGaP/GaAs HBTs. The most likely explanation is that the REE consists of two components: one is the well-known contact resistivity REE0 and the other is band-profile-dependent resistivity REi, which decreases as IC increases. In the InP/InGaAs DHBTs, the increase in nCapp with IC is made remarkable by the insertion of an InGaAs etching stop layer (ESL) that makes it easy to form a ledge structure indispensable for high-reliability and high-performance HBTs. However, with the increase of IC, the difference in REE between the InP/InGaAs DHBTs with and without the ESL becomes small. The insertion of an ESL is considered acceptable for high-speed IC applications. Using an emitter structure with an ESL, we developed self-aligned InP/InGaAs DHBTs with a ledge passivation structure that attained an fT of 302 GHz, fmax of 388 GHz, and BVCEO of 6.2 V.

  12. Bipolar Transistor Based on Graphane

    NASA Astrophysics Data System (ADS)

    Gharekhanlou, B.; Tousaki, S. B.; Khorasani, S.

    2010-11-01

    Graphane is a semiconductor with an energy gap, obtained from hydrogenation of the two-dimensional grapheme sheet. Together with the two-dimensional geometry, unique transport features of graphene, and possibility of doping graphane, p and n regions can be defined so that p-n junctions become feasible with small reverse currents. Our recent analysis has shown that an ideal I-V characteristic for this type of junctions may be expected. Here, we predict the behavior of bipolar juncrion transistors based on graphane. Profiles of carriers and intrinsic parameters of the graphane transistor are calculated and discussed.

  13. Nanofluidic diode and bipolar transistor.

    PubMed

    Daiguji, Hirofumi; Oka, Yukiko; Shirono, Katsuhiro

    2005-11-01

    Theoretical modeling of ionic distribution and transport in a nanochannel containing a surface charge on its wall, 30 nm high and 5 microm long, suggests that ionic current can be controlled by locally modifying the surface charge density through a gate electrode, even if the electrical double layers are not overlapped. When the surface charge densities at the right and left halves of a channel are the same absolute value but of different signs, this could form the basis of a nanofluidic diode. When the surface charge density at the middle part of a channel is modified, this could form the basis of a nanofluidic bipolar transistor.

  14. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  15. Vertical bipolar charge plasma transistor with buried metal layer.

    PubMed

    Nadda, Kanika; Kumar, M Jagadesh

    2015-01-19

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · f(T) product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities.

  16. Bipolar transistor in VESTIC technology: prototype

    NASA Astrophysics Data System (ADS)

    Mierzwiński, Piotr; Kuźmicz, Wiesław; Domański, Krzysztof; Tomaszewski, Daniel; Głuszko, Grzegorz

    2016-12-01

    VESTIC technology is an alternative for traditional CMOS technology. This paper presents first measurement data of prototypes of VES-BJT: bipolar transistors in VESTIC technology. The VES-BJT is a bipolar transistor on the SOI substrate with symmetric lateral structure and both emitter and collector made of polysilicon. The results indicate that VES-BJT can be a device with useful characteristics. Therefore, VESTIC technology has the potential to become a new BiCMOS-type technology with some unique properties.

  17. Voltage regulator for battery power source. [using a bipolar transistor

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1979-01-01

    A bipolar transistor in series with the battery as the control element also in series with a zener diode and a resistor is used to maintain a predetermined voltage until the battery voltage decays to very nearly the predetermined voltage. A field effect transistor between the base of the bipolar transistor and a junction between the zener diode and resistor regulates base current of the bipolar transistor, thereby regulating the conductivity of the bipolar transistor for control of the output voltage.

  18. Magnetoamplification in a bipolar magnetic junction transistor.

    PubMed

    Rangaraju, N; Peters, J A; Wessels, B W

    2010-09-10

    We have demonstrated the first bipolar magnetic junction transistor using a dilute magnetic semiconductor. For an InMnAs p-n-p transistor magnetoamplification is observed at room temperature. The observed magnetoamplification is attributed to the magnetoresistance of the magnetic semiconductor InMnAs heterojunction. The magnetic field dependence of the transistor characteristics confirm that the magnetoamplification results from the junction magnetoresistance. To describe the experimentally observed transistor characteristics, we propose a modified Ebers-Moll model that includes a series magnetoresistance attributed to spin-selective conduction. The capability of magnetic field control of the amplification in an all-semiconductor transistor at room temperature potentially enables the creation of new computer logic architecture where the spin of the carriers is utilized.

  19. Self-oscillating inverter with bipolar transistors

    NASA Astrophysics Data System (ADS)

    Baciu, I.; Cunţan, C. D.; Floruţa, M.

    2016-02-01

    The paper presents a self-oscillating inverter manufactured with bipolar transistors that supplies a high-amplitude alternating voltage to a fluorescent tube with a burned filament. The inverter is supplied from a low voltage accumulator that can be charged from a photovoltaic panel through a voltage regulator.

  20. Radiation Damage In Advanced Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Goben, Charles A.; Berndt, Dale F.

    1989-01-01

    Report describes measurements of common-emitter current gains (hFE) of advanced bipolar silicon transistors before, during, and after irradiation with 275-MeV bromine ions, 2.5-MeV electrons, and conductivity rays from cobalt-60 atoms.

  1. Bipolar-FET combinational power transistors for power conversion applications

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chin, S. A.

    1984-01-01

    Four bipolar-FET (field-effect transistor) combinational transistor configurations are compared from the application point of view. The configurations included are FET-Darlington (cascade), emitter-open switch (cascode), parallel configuration, and FET-gated bipolar transistors (FGT).

  2. Polyphosphonium-based ion bipolar junction transistors

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2014-01-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  3. Polyphosphonium-based ion bipolar junction transistors.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  4. Total Dose Effects in Conventional Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swift, G. W.; Rax, B. G.

    1994-01-01

    This paper examines various factors in bipolar device construction and design, and discusses their impact on radiation hardness. The intent of the paper is to improve understanding of the underlying mechanisms for practical devices without special test structures, and to provide (1) guidance in ways to select transistor designs that are more resistant to radiation damage, and (2) methods to estimate the maximum amount of damage that might be expected from a basic transistor design. The latter factor is extremely important in assessing the risk that future lots of devices will be substantially below design limits, which are usually based on test data for older devices.

  5. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  6. Perpendicular transport in superlattice bipolar transistors (SBT)

    NASA Astrophysics Data System (ADS)

    Sibille, A.; Palmier, J. F.; Minot, C.; Harmand, J. C.; Dubon-Chevallier, C.

    Diffusion-limited electron transport in superlattices is studied by gain measurements on heterojunction bipolar transistors with a {GaAs}/{GaAlAs} superlattice base. In the case of thin barriers, Bloch conduction is observed, while hopping between localized levels prevails for large barriers. A transition occurs between these two regimes, localization being achieved when the energy broadening induced by the electron-phonon coupling added to the disorder due to imperfect growth is of the order of the miniband width. This interpretation is supported by temperature dependence measurements of the perpendicular mobilities in relation with theoretical calculations of these mobilities.

  7. Review of Heterojunctin Bipolar Transistor Structure, Applications, and Reliability

    NASA Technical Reports Server (NTRS)

    Lee, C.; Kayali, S.

    1993-01-01

    Heterojunction Bipolar Transistors (HBTs) are increasingly employed in high frequency, high linerity, and high efficiency applications. As the utilization of these devices becomes more widespread, their operation will be viewed with more scrutiny.

  8. Advanced insulated gate bipolar transistor gate drive

    DOEpatents

    Short, James Evans; West, Shawn Michael; Fabean, Robert J.

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  9. Free electron gas primary thermometer: The bipolar junction transistor

    SciTech Connect

    Mimila-Arroyo, J.

    2013-11-04

    The temperature of a bipolar transistor is extracted probing its carrier energy distribution through its collector current, obtained under appropriate polarization conditions, following a rigorous mathematical method. The obtained temperature is independent of the transistor physical properties as current gain, structure (Homo-junction or hetero-junction), and geometrical parameters, resulting to be a primary thermometer. This proposition has been tested using off the shelf silicon transistors at thermal equilibrium with water at its triple point, the transistor temperature values obtained involve an uncertainty of a few milli-Kelvin. This proposition has been successfully tested in the temperature range of 77–450 K.

  10. Observation of negative differential transconductance in tunneling emitter bipolar transistors

    NASA Astrophysics Data System (ADS)

    van Veenhuizen, Marc J.; Locatelli, Nicolas; Moodera, Jagadeesh; Chang, Joonyeon

    2009-08-01

    We report on measurement of negative differential transconductance (NDTC) of iron (Fe)/magnesium-oxide (MgO)/silicon tunneling emitter NPN bipolar transistors. Device simulations reveal that the NDTC is a consequence of an inversion layer at the tunneling-oxide/P-silicon interface for low base voltages. Electrons travel laterally through the inversion layer into the base and give rise to an increase in collector current. The NDTC results from the recombination of those electrons at the interface between emitter and base contact which is dependent on the base voltage. For larger base voltages, the inversion layer disappears marking the onset of normal bipolar transistor behavior.

  11. Heterojunction bipolar transistor technology for data acquisition and communication

    NASA Technical Reports Server (NTRS)

    Wang, C.; Chang, M.; Beccue, S.; Nubling, R.; Zampardi, P.; Sheng, N.; Pierson, R.

    1992-01-01

    Heterojunction Bipolar Transistor (HBT) technology has emerged as one of the most promising technologies for ultrahigh-speed integrated circuits. HBT circuits for digital and analog applications, data conversion, and power amplification have been realized, with speed performance well above 20 GHz. At Rockwell, a baseline AlGaAs/GaAs HBT technology has been established in a manufacturing facility. This paper describes the HBT technology, transistor characteristics, and HBT circuits for data acquisition and communication.

  12. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  13. Toward complementary ionic circuits: the npn ion bipolar junction transistor.

    PubMed

    Tybrandt, Klas; Gabrielsson, Erik O; Berggren, Magnus

    2011-07-06

    Many biomolecules are charged and may therefore be transported with ionic currents. As a step toward addressable ionic delivery circuits, we report on the development of a npn ion bipolar junction transistor (npn-IBJT) as an active control element of anionic currents in general, and specifically, demonstrate actively modulated delivery of the neurotransmitter glutamic acid. The functional materials of this transistor are ion exchange layers and conjugated polymers. The npn-IBJT shows stable transistor characteristics over extensive time of operation and ion current switch times below 10 s. Our results promise complementary chemical circuits similar to the electronic equivalence, which has proven invaluable in conventional electronic applications.

  14. Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow

    NASA Astrophysics Data System (ADS)

    Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.

    1989-10-01

    The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.

  15. Early effect of SiGe heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Bo; Zhang, He-Ming; Hu, Hui-Yong; Qu, Jiang-Tao

    2012-06-01

    The standard Early voltage of the SGP model is generalized for SiGe NPN heterojunction bipolar transistors (HBTs). A new compact formulation of the Early voltage compatible with the SGP model is presented. The impact of the Ge profile on Early effect is shown and validated by experiments. The model can be applied to the SGP model for circuit simulation.

  16. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    ERIC Educational Resources Information Center

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  17. Modeling of the bipolar transistor under different pulse ionizing radiations

    NASA Astrophysics Data System (ADS)

    Antonova, A. M.; Skorobogatov, P. K.

    2017-01-01

    This paper describes a 2D model of the bipolar transistor 2T312 under gamma, X-ray and laser pulse ionizing radiations. Both the Finite Element Discretization and Semiconductor module of Comsol 5.1 are used. There is an analysis of energy deposition in this device under different radiations and the results of transient ionizing current response for some different conditions.

  18. Characterization and modeling of the power Insulated Gate Bipolar Transistor

    SciTech Connect

    Hefner, A.R.

    1987-01-01

    The power Insulated Gate Bipolar Transistor (IGBT) is a new switching device designed to overcome the high on-state loss of the power MOSFET. The IGBT behaves as a bipolar transistor which is supplied base current by a MOSFET. The bipolar transistor of the IBGT has a wide base with the base contact at the collector edge of the base and is operated with its base in high-level injection. Because of this, the traditional bipolar transistor models are not adequate for the IBGT and the new model developed in this dissertation must be used. The new model is developed using ambipolar transport and does not assume the quasi-static condition for the transient analysis. The new IBGT model is used to describe measurements for extracting the essential physical device parameters of the model. With these extracted parameters, the new IGBT model consistently describes the measured electrical characteristics of IGBTs with different base lifetimes. The important electrical characteristics of the IGBT are the on-state I-V characteristics, the steady-state saturation current, and the switching transient current and voltage waveforms. The transient waveforms are examined in detail for constant anode voltage switching, clamped inductive load switching, and series resistor, inductor load switching.

  19. Carrier tunneling in models of irradiated heterojunction bipolar transistors

    SciTech Connect

    Wampler, William R.; Myers, Samuel Maxwell

    2014-08-01

    As part of Sandia's program to simulate the effect of displacement damage on operation of heterojunction bipolar transistors (HBTs), we are examining the formulation in 1-D of band-to-band (bb) and band-to-trap (b-t) carrier tunneling.

  20. Experiments with Charge Indicator Based on Bipolar Transistors

    ERIC Educational Resources Information Center

    Dvorak, Leos; Planinsic, Gorazd

    2012-01-01

    A simple charge indicator with bipolar transistors described recently enables us to perform a number of experiments suitable for high-school physics. Several such experiments are presented and discussed in this paper as well as some features of the indicator important for its use in schools, namely its sensitivity and robustness, i.e. the…

  1. Computer simulation of the scaled power bipolar SHF transistor structures

    NASA Astrophysics Data System (ADS)

    Nelayev, V. V.; Efremov, V. A.; Snitovsky, Yu. P.

    2007-04-01

    New advanced technology for creation of the npn power silicon bipolar SHF transistor structure is proposed. Preferences of the advanced technology in comparison with standard technology are demonstrated. Simulation of both technology flows was performed with emphasis on scaling of the discussed device structure.

  2. The comparison of radiation hardness of heterojunction SiGe and conventional silicon bipolar transistors

    NASA Astrophysics Data System (ADS)

    Bakerenkov, A. S.; Felitsyn, V. A.; Rodin, A. S.

    2016-10-01

    The results of the X-ray radiation impact on heterojunction SiGe and conventional silicon bipolar transistors are presented. Oxide thickness over the emitter-base junction depletion region determines the radiation hardness of the bipolar transistors. In this article, the estimation of the rate of radiation degradation of electrical parameters for conventional silicon devices and SiGe-transistors is performed.

  3. Modeling of charge transport in ion bipolar junction transistors.

    PubMed

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  4. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  5. ST Rad-Hard Power Bipolar Transistors Product Portfolio

    NASA Astrophysics Data System (ADS)

    Camonita, Giuseppe; Pintacuda, Francesco

    2011-10-01

    This article describes the STMicroelectronics Rad-Hard Bipolar Transistors product range addressed specifically for space applications. Available up to 100krad Total Ionized Dose radiation level at LDRS (Low Dose Rate Sensitivity) conditions, they are qualified according to the ESCC specifications. Here follows the main features, the characterization curves including static and dynamic behaviours, and the radiation performances for some products. Also some application examples are given.

  6. Doping To Reduce Base Resistances Of Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Modified doping profile proposed to reduce base resistance of bipolar transistors. A p/p+ base-doping profile reduces base resistance without reducing current gain. Proposed low/high base-doping profile realized by such low-temperature deposition techniques as molecular-beam epitaxy, ultra-high-vacuum chemical-vapor deposition, and limited-reaction epitaxy. Produces desired doping profiles without excessive diffusion of dopant.

  7. Use of MOS structures for the investigation of low-dose-rate effects in bipolar transistors

    SciTech Connect

    Belyakov, V.V.; Pershenkov, V.S.; Shalnov, A.V.; Shvetzov-Shilovsky, I.N.

    1995-12-01

    A possible physical mechanism for bipolar transistor low-dose-rate irradiation response is discussed. This mechanism is described in terms of shallow electron traps in oxide. The experimental results on positive charge build-up at low dose-rates and small electric field in oxide are presented. The use of MOS transistor in bipolar mode for investigation of surface peripheral recombination current in bipolar transistor and extraction of MOS structure physical parameters is described.

  8. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Chang, P. C.; Baca, A. G.; Li, N. Y.; Xie, X. M.; Hou, H. Q.; Armour, E.

    2000-04-01

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In0.03Ga0.97As0.99N0.01/GaAs DHBT has a low VON of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In0.03Ga0.97As0.99N0.01 base layer. GaAs is used for the collector; thus the breakdown voltage (BVCEO) is 10 V, consistent with the BVCEO of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with δ doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics.

  9. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    SciTech Connect

    Chang, P. C.; Baca, A. G.; Li, N. Y.; Xie, X. M.; Hou, H. Q.; Armour, E.

    2000-04-17

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the breakdown voltage (BV{sub CEO}) is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with {delta} doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics.

  10. Thermal management to avoid the collapse of current gain in power heterojunction bipolar transistors

    SciTech Connect

    Liu, W.

    1995-12-31

    One undesirable thermal phenomenon occurring in power heterojunction bipolar transistor is the collapse of current gain. This paper presents the electrical, electrical-thermal, thermal, and material approaches to avoid the collapse, and thus to improve the transistor output power.

  11. AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

    SciTech Connect

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Sharps, P.R.; Hou, H.Q.; Laroche, J.R.; Ren, F.

    2000-01-04

    The authors demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub c} and negligible {triangle}E{sub v}, this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (E{sub g}=1.20eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs.

  12. A New Self-Heating Bipolar Transistor Spice Model

    NASA Astrophysics Data System (ADS)

    Pintacuda, Francesco; Cavallaro, Daniela; Bazzano, Gaetano

    2011-10-01

    Self-heating effects in Bipolar Junction Transistors have been incorporated into SPICE through sub-circuits including a thermal model. It contains a dynamic link between electrical and thermal components which allows a good prediction of DC and AC variation due to temperature in the range of the component (-55 C to 150C). It allows the estimation of the junction-temperature when the device is working in the power application. An example of thermal transient simulation is presented showing the thermal effects in a typical circuit configuration.

  13. GaAsP/InGaP heterojunction bipolar transistors grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2017-01-01

    Heterojunction bipolar transistors with GaAsxP1-x bases and collectors and InyGa1-yP emitters were grown on GaAs substrates via metalorganic chemical vapor deposition, fabricated using conventional techniques, and electrically tested. Four different GaAsxP1-x compositions were used, ranging from x = 0.825 to x = 1 (GaAs), while the InyGa1-yP composition was adjusted to remain lattice-matched to the GaAsP. DC gain close to or exceeding 100 is measured for 60 μm diameter devices of all compositions. Physical mechanisms governing base current and therefore current gain are investigated. The collector current is determined not to be affected by the barrier caused by the conduction band offset between the InGaP emitter and GaAsP base. While the collector current for the GaAs/InGaP devices is well-predicted by diffusion of electrons across the quasi-neutral base, the collector current of the GaAsP/InGaP devices exceeds this estimate by an order of magnitude. This results in higher transconductance for GaAsP/InGaP than would be estimated from known material properties.

  14. GaAs transistors formed by Be or Mg ion implantation

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Marsh, O. J.

    1974-01-01

    N-p-n transistor structures have been formed in GaAs by implanting n-type substrates with Be ions to form base regions and then implanting them with 20-keV Si ions to form emitters. P-type layers have been produced in GaAs by implantation of either Mg or Be ions, with substrate at room temperature, followed by annealing at higher temperatures.

  15. Accelerated tests for bounding the low dose rate radiation response of lateral PNP bipolar junction transistors

    SciTech Connect

    Witczak, S.C.; Schrimpf, R.D.; Galloway, K.F.; Schmidt, D.M.; Fleetwood, D.M.; Pease, R.L.; Coombs, W.E.; Suehle, J.S.

    1996-03-01

    Low dose rate gain degradation of lateral pnp bipolar transistors can be simulated by accelerated irradiations performed at approximately 135 degrees C. Degradation enhancement is explained by temperature- dependent radiation-induced interface trap formation above the transistor`s base.

  16. Theoretical values of various parameters in the Gummel-Poon model of a bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Benumof, R.; Zoutendyk, J.

    1986-01-01

    Various parameters in the Gummel-Poon model of a bipolar junction transistor are expressed in terms of the basic structure of a transistor. A consistent theoretical approach is used which facilitates an understanding of the foundations and limitations of the derived formulas. The results enable one to predict how changes in the geometry and composition of a transistor would affect performance.

  17. Inversion-mode GaAs wave-shaped field-effect transistor on GaAs (100) substrate

    SciTech Connect

    Zhang, Jingyun; Si, Mengwei; Wu, Heng; Ye, Peide D.; Lou, Xiabing; Gordon, Roy G.; Shao, Jiayi; Manfra, Michael J.

    2015-02-16

    Inversion-mode GaAs wave-shaped metal-oxide-semiconductor field-effect transistors (WaveFETs) are demonstrated using atomic-layer epitaxy of La{sub 2}O{sub 3} as gate dielectric on (111)A nano-facets formed on a GaAs (100) substrate. The wave-shaped nano-facets, which are desirable for the device on-state and off-state performance, are realized by lithographic patterning and anisotropic wet etching with optimized geometry. A well-behaved 1 μm gate length GaAs WaveFET shows a maximum drain current of 64 mA/mm, a subthreshold swing of 135 mV/dec, and an I{sub ON}/I{sub OFF} ratio of greater than 10{sup 7}.

  18. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Liu, Yan; Jin, Xiaoming; Yang, Shanchao; Qi, Chao

    2016-09-01

    The effects of gamma irradiation on neutron displacement sensitivity of four types of lateral PNP bipolar transistors (LPNPs) with different neutral base widths, emitter widths and the doping concentrations of the epitaxial base region are studied. The physical mechanisms of the effects are explored by defect analysis using deep level transient spectroscopy (DLTS) techniques and numerical simulations of recombination process in the base region of the lateral PNP bipolar transistors, and are verified by the experiments on gate-controlled lateral PNP bipolar transistors (GCLPNPs) manufactured in the identical commercial bipolar process with different gate bias voltage. The results indicate that gamma irradiation increases neutron displacement damage sensitivity of lateral PNP bipolar transistors and the mechanism of this phenomenon is that positive charge induced by gamma irradiation enhances the recombination process in the defects induced by neutrons in the base region, leading to larger recombination component of base current and greater gain degradation.

  19. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    SciTech Connect

    Kennedy, E.J. Oak Ridge National Lab., TN ); Alley, G.T.; Britton, C.L. Jr. ); Skubic, P.L. ); Gray, B.; Wu, A. )

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents {le}1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier.

  20. InAlAsSb/InGaSb Double Heterojunction Bipolar Transistor

    DTIC Science & Technology

    2005-03-01

    Papanicolaou An npn double heterojunction bipolar transistor has been made using In0.27Ga0.73Sb for the base and two different InxAl1-xAsySb1-y alloys...zSb base constitute a new group of semiconductors for making an npn double heterojunction bipolar transistor (DHBT). The group of alloys reported here...MAR 2005 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE InAlAsSb/InGaSb double heterojunction bipolar transistor

  1. Bipolar junction transistor models for circuit simulation of cosmic-ray-induced soft errors

    NASA Technical Reports Server (NTRS)

    Benumof, R.; Zoutendyk, J.

    1984-01-01

    This paper examines bipolar junction transistor models suitable for calculating the effects of large excursions of some of the variables determining the operation of a transistor. Both the Ebers-Moll and Gummel-Poon models are studied, and the junction and diffusion capacitances are evaluated on the basis of the latter model. The most interesting result of this analysis is that a bipolar junction transistor when struck by a cosmic particle may cause a single event upset in an electronic circuit if the transistor is operated at a low forward base-emitter bias.

  2. Comprehensive failure analysis of leakage faults in bipolar transistors

    NASA Astrophysics Data System (ADS)

    Domengès, B.; Murray, H.; Schwindenhammer, P.; Imbert, G.

    2004-02-01

    The origin of a leakage current in several failed NPN bipolar transistors has been identified by complementary advanced failure analysis techniques. After precise localization of the failing area by photon emission microscopy and optical beam induced resistance change investigations, a focus ion beam technique was used to prepare thin lamellae adequate for transmission electron microscopy (TEM) study. Characterization of the related microstructure was performed by TEM and energy-dispersive spectrometry nanobeam analyses. It was identified as Ti-W containing trickle-like residue located at the surface of the spacers. Current-voltage measurements could be related to such structure defects and the involved conduction mechanism was identified as the Poole-Frenkel effect.

  3. Simulations of InGaN-base heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Lee, K. P.; Ren, F.; Pearton, S. J.; Dabiran, A. M.; Chow, P. P.

    2003-06-01

    GaN/InGaN heterojunction bipolar transistors (HBTs) are very promising for high speed, high power density applications at elevated temperatures. In this paper we report on simulations of the dc performance of GaN/In 0.2Ga 0.8N HBTs as a function of the layer design and doping levels. The conductivity of p-InGaN is significantly lower than p-GaN, reducing the deleterious effects of high ohmic contact resistance. Predicted dc current gains are given as a function of base doping and thickness and are in excess of several hundred even for aggressive layer designs. Advantages with respect to GaN base HBTs are also discussed.

  4. Hardening measures for bipolar transistors against microwave-induced damage

    NASA Astrophysics Data System (ADS)

    Chai, Chang-Chun; Ma, Zhen-Yang; Ren, Xing-Rong; Yang, Yin-Tang; Zhao, Ying-Bo; Yu, Xin-Hai

    2013-06-01

    In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.

  5. Development of gallium nitride-based PNP heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Green, Daniel S.

    GaN-based electronics have progressed mightily in the last 15 years. The primary focus of this development has been the AlGaN/GaN heterostructure FET, with the commercialization of this device in progress. Bipolar transistors however offer a few key potential advantages over the FET device, including the primary advantage of normally off operation. Additionally, the pnp heterostructure bipolar transistor (HBT) in particular offers more attractive base performance relative to the npn HBT. The pnp HBT also serves as an excellent test vehicle for the several material parameters of p-Gan that remain poor defined. However, implementation of the pnp HBT has been limited by the difficulty contacting p-GaN collector material. This work was designed to demonstrate and understand the pnp HBT. The research served as both an engineering challenge as well as an investigation of physical parameters governing the transport in the device. In order to remedy the poor collector contact available with buried p-GaN, a transformation diode HBT structure was introduced that added an n-type subcollector the HBT structure. This allowed for good collector contact at the cost of introducing an offset voltage to the HBT performance due to the turn-on voltage of the transformation diode under normal operation. The first transformation diode HBT in GaN was successful demonstrated. In order to improve the transformation diode performance, successive design iterations were performed to isolate the performance limiting elements. Device designs were implemented to mitigate saturated hole velocity, as well as to decrease base transit time through aggressive base scaling and compositional grading. Physical simulations and modelling of device non-idealities were used to understand actual device performance. Hole lifetime and saturated hole velocity were identified as primary contributors to lower than expected performance device performance. Successive device iterations yielded HBT performance of

  6. Silicon Nanomembrane Bipolar Junction Transistors for Microwave Frequency Applications

    NASA Astrophysics Data System (ADS)

    Bavier, John; Ballarotto, Vince; Cumings, John

    2014-03-01

    Silicon nanomembranes (SiNMs) are a promising material for flexible semiconductor devices due to their high carrier mobility and compatibility with standard CMOS processing. Previous studies have reported SiNM field-effect transistors with operating frequencies as high as 12 GHz. In order to expand the utility of SiNM devices, a method for the fabrication of monocrystalline microwave frequency silicon bipolar junction transistors (BJTs) will be presented. High-temperature processing of SiNM BJT devices is performed on a Silicon-on-Insulator (SOI) wafer. Using angled ion implantation, conformal chemical vapor deposition and anisotropic reactive ion etching, a poly-silicon sidewall spacer is formed. This spacer defines a base region approximately 200nm wide without the use of electron beam lithography. Devices are then released using selective wet etching in HF and transferred to alternate flexible substrates. Microwave frequency data will be presented, and the effects of the transfer process on device performance will be discussed.

  7. Distinctive Features of the Temperature Sensitivity of a Transistor Structure in a Bipolar Mode of Measurement

    NASA Astrophysics Data System (ADS)

    Karimov, A. V.; Dzhuraev, D. P.; Kuliev, Sh. M.; Turaev, A. A.

    2016-03-01

    Results are presented of an experimental investigation of the temperature sensitivity of an individual base-to-collector junction of a bipolar transistor structure and of this same structure in the case of series connection of blocking emitter and collector junctions. It is shown that the temperature-sensitivity coefficient of the transistor structure operating in a bipolar mode of measurement is an order of magnitude larger than an analogous coefficient of the base-to-collector junction.

  8. Neutron effects on the electrical and switching characteristics of NPN bipolar power transistors

    NASA Technical Reports Server (NTRS)

    Frasca, Albert J.; Schwarze, Gene E.

    1988-01-01

    The use of nuclear reactors to generate electrical power for future space missions will require the electrical components used in the power conditioning, control, and transmission subsystem to operate in the associated radiation environments. An initial assessment of neutron irradiation on the electrical and switching characteristics of commercial high power NPN bipolar transistors was investigated. The results clearly show the detrimental effects caused by neutron irradiation on the electrical and switching characteristics of the NPN bipolar power transistor.

  9. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  10. InGaP/InGaAsN/GaAs NpN double heterojunction bipolar transistor

    SciTech Connect

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-10

    The authors have demonstrated a functional NpN double heterojunction bipolar transistor (DHBT) using InGaAsN for base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs HBT. The lower V{sub ON} is attributed to the smaller bandgap (E{sub g}=1.20eV) of MOCVD grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the BV{sub CEO} is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs Hbts of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger {triangle}E{sub C} between InGaAsN and GaAs, a graded InGaAs layer with {delta}-doping is inserted at the base-collector junction. The improved device has a peak current gain of 7 with ideal IV characteristics.

  11. InGaAsN/AlGaAs Pnp Heterojunction Bipolar Transistor

    SciTech Connect

    BACA,ALBERT G.; CHANG,PING-CHIH; HOU,H.Q.; LAROCHE,J.R.; LI,N.Y.; REN,F.; SHARPS,P.R.

    1999-11-03

    The authors have demonstrated a functional Pnp heterojunction bipolar transistor (HBT) using InGaAsN. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} HBT takes advantage of the narrower bandgap energy (E{sub g} = 1.25eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}, which is lattice matched to GaAs. Compared with the Al{sub 0.3}Ga{sub 0.7}As/GaAs material system, the Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} material system has a larger conduction band offset, while the valence band offset remains comparable. This characteristic band alignment is very suitable for Pnp HBT applications. The device's peak current gain is 23 and it has a turn on voltage of 0.77V, which is 0.25V lower than in a comparable Pnp Al{sub 0.3}Ga{sub 0.7}As/GaAs HBT.

  12. The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms

    DTIC Science & Technology

    2011-09-01

    The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms by Gregory A. Mitchell...Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...MD 20783-1197 ARL-TN-0459 September 2011 The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile

  13. A low-noise K-Ka band oscillator using AlGaAs/GaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Madihian, Mohammad; Takahashi, Hideki

    1991-01-01

    The design considerations, fabrication process, and performance of the first K-Ka-band oscillator implemented using a self-aligned AlGaAs/GaAs heterojunction bipolar transistor (HBT) are described. A large-signal time-domain-based design approach has been used which applies a SPICE-F simulator for optimization of the oscillator circuit parameters for maximum output power. The oscillator employs a 2 x 10 sq mm emitter AlGaAs/GaAs HBT that was fabricated using a pattern inversion technology. The HBT has a base current 1/f noise power density lower than 1 x 10 to the -20th sq A/Hz at 1 kHz and lower than 1 x 10 to the -22nd sq A/Hz at 100 kHz for a collector current of 1 mA. The oscillator, which is composed of only low-Q microstrip transmission lines, has a phase noise of -80 dBc/Hz at 100 kHz off carrier when operated at 26.6 GHz. These results indicate the applicability of the HBTs to low-phase-noise monolithic oscillators at microwave and millimeter-wave frequencies, where both Si bipolar transistors and GaAs FETs are absent.

  14. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-12-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  15. Design and fabrication of gallium nitride-based heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Pil

    A self-aligned fabrication process for small and large emitter contact area (2 x 4 mum2 and 1.96 x 103 mum 2 respectively) GaN-based heterojunction bipolar transistor and bipolar junction transistors is proposed. The process features dielectric-spacer sidewalls, low-damage dry etching and selected-area regrowth of GaAs(C) on the base contact, and self-aligned emitter base regrowth processes are provided. The junction current-voltage (I--V) characteristics were evaluated at various stages of the process sequence and provided an excellent diagnostic for monitoring the effect of plasma processes such as CVD or etching. A comparison is given with large emitter-area devices fabricated on the same material. The small-area devices are attractive for microwave power switching applications, provided that a high-yield process can be developed. Series resistance effects are still found to influence device performance. In the dc performance of small and large emitter contact area GaN-based heterojunction bipolar transistors, the do current gain of both types of device improves with temperature, which we ascribe to higher ionization efficiency of the Mg acceptor in the p-base region. The presence of a resistive base layer at room temperature forces base current to flow directly to the collector, reducing the current gain. However, to date, all of the reported GaN-based heterojunction bipolar transistors (HBTs) and bipolar junction transistors (BJTs) have had lots of problems to be solved even if there are many advantages to this technology. To predict the performance of GaN-based HBTs and BJTs, we simulated these structures with 2-dimensional device simulators. The effects of base doping and thickness on do current gain, collector-emitter saturation voltage, saturation current, collector-emitter breakdown voltage, rf characteristics (fT) and the effects of impurity ionization as a function of device operation temperature of GaN, AlGaN, InGaN-based heterojunction bipolar

  16. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    NASA Astrophysics Data System (ADS)

    Oo, Myo Min; Rashid, N. K. A. Md; Karim, J. Abdul; Zin, M. R. Mohamed; Hasbullah, N. F.

    2013-12-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region.

  17. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  18. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    PubMed Central

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor. PMID:28134275

  19. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors.

    PubMed

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-30

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  20. Device characteristics of the PnP AlGaAs/InGaAsN/GaAs double heterojunction bipolar transistor

    SciTech Connect

    CHANG,PING-CHIH; LI,N.Y.; LAROCHE,J.R.; BACA,ALBERT G.; HOU,H.Q.; REN,F.

    2000-02-09

    The authors have demonstrated a functional PnP double heterojunction bipolar transistor (DHBT) using AlGaAs, InGaAsN, and GaAs. The band alignment between InGaAsN and GaAs has a large {triangle}E{sub C} and a negligible {triangle}E{sub V}, and this unique characteristic is very suitable for PnP DHBT applications. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs PnP DHBT is lattice matched to GaAs and has a peak current gain of 25. Because of the smaller bandgap (Eg = 1.20 eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, which is 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. And because GaAs is used for the collector, its BV{sub CEO} is 12 V, consistent with BV{sub CEO} of AlGaAs/GaAs HBTs of comparable collector thickness and doping level.

  1. Current gain rolloff in graded-base SiGe heterojunction bipolar transistors

    SciTech Connect

    Crabbe, E.F.; Cressler, J.D.; Patton, G.L.; Stork, J.M.C.; Comfort, J.H.; Sun, J.Y.C. )

    1993-04-01

    The authors report the experimental observation of a novel effect in SiGe heterojunction bipolar transistors (HBT's) with graded bases which results in a significant emitter-base bias dependence of the current gain. The nonideal collector current is caused by the interaction of the bias dependence of the emitter-base space-charge region width and the exponential dependence of the collector current on the germanium concentration at the edge of the space-charge region. The resulting current gain rolloff must be taken into account for accurate modeling of bipolar transistors with bandgap grading in the base.

  2. Defect-driven gain bistability in neutron damaged, silicon bipolar transistors

    SciTech Connect

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Bielejec, E.; Campbell, J. M.

    2007-04-23

    Using deep level transient spectroscopy, the authors have measured the defect spectrum in the collector of a n-p-n bipolar transistor following fast neutron irradiation as well as the gain on the same device. They show that a slow change observed in both the gain and deep level traps in the n-type collector at 300 K are bistable. The transistor gain and the defects can be returned to the postirradiation condition by forward bias at room temperature, i.e., by operating the transistor (gain) or injection through the base-collector diode (defect spectrum)

  3. Silicon on insulator bipolar junction transistors for flexible microwave applications

    NASA Astrophysics Data System (ADS)

    Bavier, John McGoldrick

    Microwave frequency flexible electronic devices require a high quality semiconducting material and a set of fabrication techniques that are compatible with device integration onto flexible polymer substrates. Over the past ten years, monocrystalline silicon nanomembranes (SiNMs) have been studied as a flexible semiconducting material that is compatible with industrial Si processing. Fabricated from commercial silicon on insulator (SOI) wafers, SiNMs can be transferred to flexible substrates using a variety of techniques. Due to their high carrier mobilities, SiNMs are a promising candidate for flexible microwave frequency devices. This dissertation presents fabrication techniques for flexible SiNM devices in general, as well as the progress made towards the development of a microwave frequency SiNM bipolar junction transistor (BJT). In order to overcome previous limitations associated with adhesion, novel methods for transfer printing of metal films and SiNMs are presented. These techniques enable transfer printing of a range of metal films and improve the alignment of small transfer printed SiNM devices. Work towards the development of a microwave frequency BJT on SOI for SiNM devices is also described. Utilizing a self-aligned polysilicon sidewall spacer technique, a BJT with an ultra-narrow base region is fabricated and tested. Two regimes of operation are identified and characterized under DC conditions. At low base currents, devices exhibited forward current gain as high as betaF = 900. At higher base current values, a transconductance of 59 mS was observed. Microwave scattering parameters were obtained for the BJTs under both biasing conditions and compared to unbiased measurements. Microwave frequency gain was not observed. Instead, bias-dependent non-reciprocal behavior was observed and examined. Limitations associated with the microwave impedance-matched electrode configuration are presented. High current densities in the narrow electrodes cause localized

  4. Total dose radiation effects on hardened SOI bipolar transistors using the NPS LINAC

    NASA Astrophysics Data System (ADS)

    Brittain, Donald R., Jr.

    1995-03-01

    Silicon-on-insulator bipolar transistors fabricated using the Harris UHF-1 process, were irradiated at room temperature with 30 and 60 MeV electron beams. Some of the transistors on each die were configured and biased as a simple operational amplifier (opamp), one was placed in a common emitter type circuit and the remaining were biased to measure transistor parameter degradation. The purpose of this setup was to observe the total dose effects of the transistor and of an opamp on the same die in order to derive a more accurate model of an opamp under total dose conditions. This investigation was successful in conducting in-situ measurements of opamp gain and 3dB frequency while also measuring the current gain of similar transistors on the same die.

  5. A breakdown model for the bipolar transistor to be used with circuit simulators

    SciTech Connect

    Keshavarz, A.A.; Raney, C.W.; Campbell, D.C.

    1993-08-01

    A breakdown model for the output characteristics of the bipolar transistor (bjt) has been developed. The behavioral modeling capability of PSPICE, a popular SPICE program (with Emphasis on Integrated circuits) was used to implement the macromodel. The model predicts bjt output characteristics under breakdown conditions. Experimental data was obtained to verify the macromodel. Good agreement exits between the measured and the simulated results.

  6. Using Animation to Improve the Students' Academic Achievement on Bipolar Junction Transistor

    ERIC Educational Resources Information Center

    Zoabi, W.; Sabag, N.; Gero, A.

    2012-01-01

    Teaching abstract subjects to students studying towards a degree in electronics practical engineering (a degree between a technician and an engineer) requires didactic tools that enable understanding of issues without using advanced mathematics and physics. One basic issue is the BJT (Bipolar Junction Transistor) that requires preliminary…

  7. 300 Degree C GaN/AlGaN Heterojunction Bipolar Transistor

    SciTech Connect

    Abernathy, C.R.; Baca, A.G.; Cho, H.; Chow, P.P.; Han, J.; Hichman, R.A.; Jung, K.B.; Kopf, R.F.; La Roche, J.R.; Pearton, S.J.; Ren, F.; Shul, R.J.; Van Hove, J.M.; Wilson, R.G.

    1998-10-14

    A GaN/AIGaN heterojunction bipolar transistor has been fabricated using C12/Ar dry etching for mesa formation. As the hole concentration increases due to more efficient ionization of the Mg acceptors at elevated temperatures (> 250oC), the device shows improved gain. Future efforts which are briefly summarized. should focus on methods for reducing base resistance.

  8. Radiation defects studies on silicon bipolar junction transistor irradiated by Br ions and electrons

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-12-01

    Bipolar junction transistors are sensitive to both ionization and displacement damage due to charged particles from space radiation. Passivating oxides and the SiO2/Si interface are more sensitive to ionization damage whereas displacement damage may strongly influence the bulk properties of a device. Fast electrons with energies below a few MeV introduces exclusively target ionization while heavy ions at moderate energies (lower than 2 MeV/amu) results in displacement damage due to individual Frenkel-pairs generation. Although both kinds of radiation are basically independent an effective correlation was seen in the electronic characteristics of transistors. We report on the effects on current gain and current-voltage characteristics of bipolar junction transistors due to successive irradiation with 20 MeV Br ions and 110 keV electrons.

  9. Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers

    DTIC Science & Technology

    2007-05-14

    gain 4H-SiC NPN power bipolar junction transistor ,” IEEE Electron Device Letters, vol. 24, pp. 327-329, May 2003. [3] C.-F. Huang and J. A. Cooper...Jr., “High current gain 4H-SiC NPN Bipolar Junction Transistors ,” IEEE Electron Device Letters, vol. 24, pp. 396-398, Jun. 2003. [4] Sumi...Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers Jianhui Zhang, member, IEEE, Xueqing, Li, Petre Alexandrov

  10. Lateral PNP bipolar transistor with aiding field diffusions

    NASA Technical Reports Server (NTRS)

    Gallagher, R. C.; Mc Cann, D. H.

    1969-01-01

    Fabrication technique produces field aided lateral PNP transistors compatible with micropower switching circuits. The sub-collector diffusion is performed with phosphorus as the dopant and the epitaxy is grown using the higher temperature silicon tetrachloride process.

  11. Transferred substrate heterojunction bipolar transistors for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Fung, A.; Samoska, L.; Siegel, P.; Rodwell, M.; Urteaga, M.; Paidi, V.

    2003-01-01

    We present ongoing work towards the development of submillimeter wave transistors with goals of realizing advanced high frequency amplifiers, voltage controlled oscillators, active multipliers, and traditional high-speed digital circuits.

  12. Effects of Photowashing Treatment on Gate Leakage Current of GaAs Metal-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Jin; Moon, Jae Kyoung; Park, Min; Kim, Haechon; Lee, Jong-Lam

    2002-05-01

    Effects of photowashing treatment on gate leakage current (IGD) of a GaAs metal-semiconductor field-effect transistor were studied by observing changes in atomic composition and band bending at the surface of GaAs through X-ray photoemission spectroscopy. The photowashing treatment produces Ga2O3 on the surface of GaAs, leaving acceptor-type Ga antisites behind under the oxide. The Ga antisites played a role in reducing the maximum electric field at the drain edge of the gate, leading to the decrease of IGD. The longer photowashing time produced thicker oxide on the surface of GaAs, acting as a conducting pass for electrons, leading to the increase of IGD.

  13. Cryogenically cooled broad-band GaAs field-effect transistor preamplifier

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1983-10-01

    The antiproton source will be capable of accumulating a total of 4.3 x 10(11) antiprotons in 4 hours when a wideband feedback system for stochastic beam cooling is used. The feedback system detects and corrects at every revolution, the statistical fluctuations of the beam position and momentum. One of the essential components of such a system is a low noise broadband preamplifier. A cryogenically cooled 1 to 2 GHz low noise broadband prototype preamplifier utilizing GaAs field effect transistors is described for this application. The optimum preamplifier operating conditions for a minimum noise figure at temperatures of 2930K, 800K and 180K are given and are discussed. The phase shift characteristics, the input and output voltage standing wave ratio as a function of frequency and intermodulation products content as a function of the input power level are also measured.

  14. Bipolar Junction Transistors in Two-Dimensional WSe2 with Large Current and Photocurrent Gains.

    PubMed

    Agnihotri, Pratik; Dhakras, Prathamesh; Lee, Ji Ung

    2016-07-13

    In the development of semiconductor devices, the bipolar junction transistor (BJT) features prominently as being the first solid state transistor that helped to usher in the digital revolution. For any new semiconductor, therefore, the fabrication and characterization of the BJT are important for both technological importance and historical significance. Here, we demonstrate a BJT device in exfoliated TMD semiconductor WSe2. We use buried gates to electrostatically create doped regions with back-to-back p-n junctions. We demonstrate two central characteristics of a bipolar device: current gain when operated as a BJT and a photocurrent gain when operated as a phototransistor. We demonstrate a current gain of 1000 and photocurrent gain of 40 and describe features that enhance these properties due to the doping technique that we employ.

  15. Experimental DC extraction of the thermal resistance of bipolar transistors taking into account the Early effect

    NASA Astrophysics Data System (ADS)

    d'Alessandro, Vincenzo

    2017-01-01

    This paper presents three methods to experimentally extract the thermal resistance of bipolar transistors taking into account the Early effect. The approaches are improved variants of recently-proposed techniques relying on common-base DC measurements. The accuracy is numerically verified by making use of a compact model calibrated on I-V characteristics of state-of-the-art SOG BJTs and SiGe:C HBTs.

  16. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    NASA Astrophysics Data System (ADS)

    Thornton, R. L.; Mosby, W. J.; Chung, H. F.

    1988-12-01

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  17. Experimental Analysis of Proton-Induced Displacement and Ionization Damage Using Gate-Controlled Lateral PNP Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.

    2006-01-01

    The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.

  18. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    SciTech Connect

    Tsai, Jung-Hui

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which can be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.

  19. Bipolar transport in organic field-effect transistors: organic semiconductor blends versus contact modification

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas; Kraus, Michael; Bronner, Markus; Wagner, Julia; Brütting, Wolfgang

    2008-07-01

    The achievement of bipolar transport is an important feature of organic semiconductors, both for a fundamental understanding of transport properties and for applications such as complementary electronic devices. We have investigated two routes towards organic field-effect transistors exhibiting bipolar transport characteristics. As a first step, ambipolar field-effect transistors are realized by mixtures of p-conducting copper-phthalocyanine (CuPc) and n-conducting buckminsterfullerene (C60). As a second step, bipolar transport in copper-phthalocyanine is achieved by a modification of the gate dielectric in combination with a controlled variation of the electrode materials used for carrier injection. The analysis involves the determination of charge-carrier mobilities and contact resistances by a single curve analysis and by the transfer length method. Comparison of both types of samples indicates that percolation is a crucial feature in mixtures of both materials to achieve ambipolar carrier flow, whereas in neat films of one single material suitable contact modification allows for bipolar charge-carrier transport. In the latter case, the obtained electron and hole mobilities differ by less than one order of magnitude.

  20. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chenhui; Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao; Wang, Zhikuan

    2016-09-01

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation.

  1. High-performance K-band GaAs power field-effect transistors prepared by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Shih, H. D.

    1983-01-01

    The maturity of the molecular beam epitaxy (MBE) technique for preparing device quality GaAs material for microwave applications is demonstrated by the excellent performance characteristics of K-band GaAs power field-effect transistors (FETs) fabricated on the MBE wafers. An output power of 710 mW with 4.5-dB gain and 17.7 percent power-added efficiency was achieved at 21 GHz with a 1.26-mm gate width pi-gate device. A similar device with a 0.56-mm gate width produced an output power of 320 mW with 5.0-dB gain and 26.6 percent power-added efficiency at 21 GHz. These are the best results yet reported to date for GaAs power FETs operated in the K-band frequency range.

  2. Electrical determination of the bandgap energies of the emitter and base regions of bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.

    2016-10-01

    A pure electrical method is presented to extract emitter and base bandgaps of a bipolar junction transistor (BJT) at the locations where the minority carrier injection takes place. It is based on the simultaneous measurement of the collector and base currents as a function of the emitter-base forward bias (Gummer plot) and the corresponding current gain. From the obtained saturation currents as a function of temperature, we extract the bandgap energies. The accuracy of the method is demonstrated for InGaP-GaAs, Si, and Ge commercial devices. For InGaP-GaAs transistors, the results can be understood if the emitter-base heterojunction is not an abrupt but a gradual one. The presented method is a reliable tool that can aid in the development of new compound semiconductor based BJTs whose bandgap energies are highly sensitive to their composition.

  3. Efficient far-infrared thermal bremsstrahlung radiation from a heterojunction bipolar transistor

    SciTech Connect

    Chung, Pei-Kang; Yen, Shun-Tung

    2015-08-28

    We investigate the far-infrared thermal radiation properties of a heterojunction bipolar transistor. The device conveniently provides a high electric field for electrons to heat the lattice and the electron gas in a background with ions embedded. Because of very high effective temperature of the electron gas in the collector, the electron-ion bremsstrahlung makes efficient the thermal radiation in the far-infrared region. The transistor can yield a radiation power of 0.1 mW with the spectral region between 2 and 75 THz and a power conversion efficiency of 6 × 10{sup −4}. Such output contains a power of 20 μW in the low-frequency part (2–20 THz) of the spectrum.

  4. Radiation effects on bipolar junction transistors and integrated circuits produced by different energy Br ions

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Geng, Hongbin; Liu, Chaoming; Zhao, Zhiming; Lan, Mujie; Yang, Dezhuang; He, Shiyu

    2009-12-01

    The radiation responses of the NPN bipolar junction transistors (BJTs) and the TTL bipolar integrated circuits (ICs) have been examined using 20, 40 and 60 MeV Br ions. Key electric parameter was measured and compared after each energy irradiation. Experimental results demonstrate that the degradation in electric parameters caused by the Br ions shows a common feature for the NPN BJTs and TTL ICs, in which the degradation is strengthened with decreasing the Br ions energy. The ionizing dose ( D i) and displacement dose ( D d) as a function of the chip depth in the bipolar devices were calculated using the SRIM code, in order to analyze the radiation effects on the NPN BJTs and the Bipolar ICs. From the experiment and calculation results, it could be deduced that the Br ions mainly cause displacement damage to both the NPN BJTs and the TTL ICs, and the higher the ratio of D d/( D d+D i), the larger the degradation in electric parameters at a given total dose.

  5. Tunnel diode collector contact in InP based PNP heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Shamir, N.; Ritter, D.; Cytermann, C.

    2002-06-01

    A tunnel diode collector contact to InP based PNP heterojunction bipolar transistors (HBTs) is suggested and demonstrated. The additional heavily doped n-type contact layer replaces the thick p-type contact layer required in conventional structures. The thermal and electrical properties of the collector contact layer thus become similar to those of NPN HBTs. A secondary ion mass spectroscopy study explores the maximum tin doping level that can be obtained in the base. Finally, the temperature dependence of the current gain is presented and interpreted.

  6. Bias dependence of synergistic radiation effects induced by electrons and protons on silicon bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi

    2015-06-01

    Bias dependence on synergistic radiation effects caused by 110 keV electrons and 170 keV protons on the current gain of 3DG130 NPN bipolar junction transistors (BJTs) is studied in this paper. Experimental results indicate that the influence induced by 170 keV protons is always enhancement effect during the sequential irradiation. However, the influence induced by 110 keV electrons on the BJT under various bias cases is different during the sequential irradiation. The transition fluence of 110 keV electrons is dependent on the bias case on the emitter-base junction of BJT.

  7. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  8. Laser Pulse Tests of Bipolar Junction Transistors (BJTs) for SET Analysis

    NASA Astrophysics Data System (ADS)

    Daniel, C.; Plettner, C.; Poivey, C.; Schuttauf, A.; Tonicello, F.; Triggianese, M.

    2014-08-01

    In order to study the Single Event Transient (SET) sensitivity of discrete bipolar junction transistors, laser tests conducted at EADS Innovation Works in Sureness are presented and discussed. A number of different BJT samples have been tested in different operating conditions. The tests demonstrate that: discrete BJTs are indeed sensitive to collected charge; the most sensitive region is the collector/base junctions and that the different internal structure gives different SET shapes. We present measurements, simulation and comparison for SET modeled in PSPICE and tested with a laser.

  9. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  10. Large-scale transient sensitivity analysis of a radiation damaged bipolar junction transistor.

    SciTech Connect

    Hoekstra, Robert John; Gay, David M.; Bartlett, Roscoe Ainsworth; Phipps, Eric Todd

    2007-11-01

    Automatic differentiation (AD) is useful in transient sensitivity analysis of a computational simulation of a bipolar junction transistor subject to radiation damage. We used forward-mode AD, implemented in a new Trilinos package called Sacado, to compute analytic derivatives for implicit time integration and forward sensitivity analysis. Sacado addresses element-based simulation codes written in C++ and works well with forward sensitivity analysis as implemented in the Trilinos time-integration package Rythmos. The forward sensitivity calculation is significantly more efficient and robust than finite differencing.

  11. Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor.

    PubMed

    Vainshtein, Sergey; Kostamovaara, Juha; Yuferev, Valentin; Knap, Wojciech; Fatimy, Abdel; Diakonova, Nina

    2007-10-26

    Broadband pulsed THz emission with peak power in the sub-mW range has been observed experimentally during avalanche switching in a gallium arsenide bipolar junction transistor at room temperature, while significantly higher total generated power is predicted in simulations. The emission is attributed to very fast oscillations in the conductivity current across the switching channels, which appear as a result of temporal evolution of the field domains generated in highly dense electron-hole plasma. This plasma is formed in turn by powerful impact ionization in multiple field domains of ultrahigh amplitude.

  12. 1/f noise in positive-negative-positive (PNP) polycrystalline silicon-emitter bipolar transistors

    NASA Astrophysics Data System (ADS)

    Hoque, Md Mazhar Ul; Celik-Butler, Zeynep; Trogolo, Joe; Weiser, Douglas; Green, Keith

    2005-04-01

    The origin of 1/f fluctuations in positive-negative-positive (PNP) polycrystalline silicon-emitter bipolar-junction transistors is described. The interfacial oxide (IFO) at the monosilicon-polycrystalline silicon interface is found to significantly affect the noise behavior. The low-frequency noise originates from two independent fluctuation mechanisms: in the diffusion and tunneling components of the base current noise power spectral density (SI_B) and from the diffusion current and carrier number fluctuations in the collector current noise power spectral density (SI_C). The Hooge noise parameters for electrons and holes are calculated from the diffusion fluctuation models for SI_B and SI_C, respectively. Noise measurements on devices with different sizes and different IFO thicknesses indicate that the fluctuations occur in the minority-carrier (electron) tunneling current component of SI_B through the IFO. The thickness of the IFO is estimated using this noise model. The tunneling fluctuations dominate over the diffusion fluctuations for the smaller (0.7×0.7μm2) transistors, while the opposite is the case for the larger (0.7×100μm2) ones. The scaling effect on the noise performance of these transistors is discussed. The effect of the IFO on the dc characteristics and the noise behavior of the PNP transistors is compared to that of the negative-positive-negative (NPN) counterparts on the same wafer.

  13. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  14. Origin of 1/f PM and AM noise in bipolar junction transistor amplifiers.

    PubMed

    Walls, F L; Ferre-Pikal, E S; Jefferts, S R

    1997-01-01

    In this paper we report the results of extensive research on phase modulation (PM) and amplitude modulation (AM) noise in linear bipolar junction transistor (BJT) amplifiers. BJT amplifiers exhibit 1/f PM and AM noise about a carrier signal that is much larger than the amplifiers thermal noise at those frequencies in the absence of the carrier signal. Our work shows that the 1/f PM noise of a BJT based amplifier is accompanied by 1/f AM noise which can be higher, lower, or nearly equal, depending on the circuit implementation. The 1/f AM and PM noise in BJTs is primarily the result of 1/f fluctuations in transistor current, transistor capacitance, circuit supply voltages, circuit impedances, and circuit configuration. We discuss the theory and present experimental data in reference to common emitter amplifiers, but the analysis can be applied to other configurations as well. This study provides the functional dependence of 1/f AM and PM noise on transistor parameters, circuit parameters, and signal frequency, thereby laying the groundwork for a comprehensive theory of 1/f AM and PM noise in BJT amplifiers. We show that in many cases the 1/f PM and AM noise can be reduced below the thermal noise of the amplifier.

  15. Thermodynamic Field Theory of the Dynamic Behavior of Bipolar Junction Transistors.

    NASA Astrophysics Data System (ADS)

    Aboulwafa, Mohamed El-Sayed

    Bipolar junction transistors play an important role in integrated-circuits, whether monolithic, or hybrid. Integrated circuit designers are obliged to use as many transistors as they can in their design, since this entails very little increase in cost. More importantly, a bipolar transistor in an integrated circuit can be connected to substitute for other components that are hard to be integrated in the same substrate. The thermodynamic field theory of generalized fields (TTGF) has had success for predicting the voltage current relationship in p-n junctions and solar cells in d-c cases. The primary object of this thesis is to apply the thermodynamic field theory to an interfacial problem which has time-varying fields. Specifically, we shall apply the concepts of TTGF to investigate the dynamic response of p-n junction devices when fed a small a-c signal. In previous applications of the TTGF, single junction devices have been considered. In this study, we apply the TTGF to a multijunction device: the bipolar transistor. In Chapter I, a brief introduction and literature review are given. In Chapter II, an introduction to the TTGF is given. Included also is a recently derived TTGF equation which governs the interaction of time varying fields in a system involving interfaces and carriers which may recombine and accumulate. Chapter III is a review for the one dimensional solution of the continuity equation. Both the d-c and a-c solutions are reviewed. In Chapter IV, the reverse biased junction is covered from the point of view of the TTGF. Force fields are identified, evaluated and the work done on the composite carrier in the respective regions is calculated. Chapter V covers the forward biased junction. Work done by force fields has been calculated. Energy due to carrier accumulation and recombination has been calculated. The law of conservation energy has been applied over the emitter-base and the emitter-base-collector loops. From the resulting equations, the input

  16. Bipolar redox behaviour, field-effect mobility and transistor switching of the low-molecular azo glass AZOPD.

    PubMed

    Arlt, Michael; Scheffler, Ayna; Suske, Irina; Eschner, Michael; Saragi, Tobat P I; Salbeck, Josef; Fuhrmann-Lieker, Thomas

    2010-11-07

    We present electrochemical and spectroelectrochemical data for the bipolar azo compound N,N'-diphenyl-N,N'-bis[4-(phenylazo)phenyl]-4,4'diaminobiphenyl (AZOPD) demonstrating reversible bipolar redox behaviour with a bandgap of 2.1 eV. The reduced species formed upon two-electron transfer can be described as bis(radical anion) as was confirmed by comparison with a reference compound with only one azo chromophore. Hole and electron transport behaviour in amorphous films was demonstrated by the fabrication of organic field-effect transistors using gold and magnesium contacts, respectively. The transistors are sensitive to light due to E-Z photoisomerization.

  17. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    DOE PAGES

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; ...

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to withoutmore » the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less

  18. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    SciTech Connect

    Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carroll, M. S.; Carr, S. M.

    2015-05-18

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  19. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    SciTech Connect

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Carr, Stephen M; Carroll, Malcolm S.

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  20. A high performance charge plasma based lateral bipolar transistor on selective buried oxide

    NASA Astrophysics Data System (ADS)

    Loan, Sajad A.; Bashir, Faisal; Rafat, M.; Rehman Alamoud, Abdul; Abbasi, Shuja A.

    2014-01-01

    In this paper, we present a new structure of lateral bipolar transistor on selective buried oxide. The device does not use highly doped regions; however, it employs the concept of creating n and p type charge plasma in undoped silicon by using metal electrodes of different work functions. The proposed device is named as the selective buried oxide based bipolar charge plasma transistor (SELBOX-BCPT). An extensive 2D simulation study has revealed that the proposed SELBOX-BCPT device not only possesses all the advantages of the conventional BCPT device, but it also addresses various severe problems of the BCPT device. A significant improvement in major issues of poor cutoff frequency (fT), low breakdown voltage and thermal efficiency has been achieved. It has been observed that the fT has increased by ∼94.6%, the breakdown voltage by 23.47% and the device is much cooler than the conventional BCPT device. A large current gain is obtained in the proposed device and is on a par with the conventional BCPT device. Further, by using mixed-mode simulation feature of the Atlas simulator, inverting amplifiers based on SELBOX-BCPT and the conventional BCPT have been realized. A significant improvement of 15% in switching-on transient time and 25.8% in switching-off transient time has been achieved in the proposed device in comparison to the conventional BCPT device.

  1. The 6.5 kV clustered insulated gate bipolar transistor in homogeneous base technology

    NASA Astrophysics Data System (ADS)

    Luther-King, N.; Sweet, M.; Spulber, O.; Vershinin, K.; Ngw, C. K.; Bose, S. C.; De Souza, M. M.; Sankara Narayanan, E. M.

    2001-01-01

    The aim of this paper is to evaluate the performance of a new power semiconductor device called the clustered insulated gate bipolar transistor (CIGBT) in the homogeneous base (HB) technology for high power applications. The CIGBT belongs to a new family of MOS controlled power devices with thyristor mode of operation in the on-state and current saturation characteristics even at high gate biases. The saturation characteristics are achieved through a unique 'self-clamping' phenomenon at a predetermined anode voltage. This inherent feature enables a wide FBSOA and low loss during switching. Our detailed analysis of the CIGBT using a 2-D mixed device-circuit simulation tool indicates that 525 μm of lightly doped silicon is adequate to block 6.5 kV in the HB technology. The thin substrate improves the trade-off between conduction and switching losses even further. With an on-state voltage drop as low as 2 V at 30 A cm -2 and 3.1 V at 100 A cm -2 the device is able to turn off under inductive switching conditions at a 3 kV line voltage, with significantly low energy losses in comparison to an optimised homogeneous base insulated gate bipolar transistor (HB-IGBT). Further, the device shows good short circuit withstand capability and its positive temperature coefficient of the forward voltage drop eases parallel integration.

  2. Effect of doping and stoichiometric profile on transport in SiGe heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Halilov, S.

    2016-09-01

    Based on analytical consideration and numerical simulations, it is shown how the mutually adjusted doping and stoichiometric profile results in improved frequency response and current gain in Si1-x Ge x -based heterojunction bipolar transistor. The closed-form expressions are derived for the dopant distribution within a certain mobility model which is parametrized in terms of the impurity concentration and stoichiometric grading on the same footing. With proper parametrization of the mobility, the method is suitable in both limits of high alloy scattering/low crystal ordering and low alloy scattering/highly ordered stoichiometrically graded structure. The work is corroborated by device simulations of a single-side HBT 30% stoichiometrically graded base, with detailed IV-curve, Gummel and AC analysis. It is shown that the distinct impurity distribution results in a reduced space-charge region, contributes to an effective electric field assisting the diffusion of the minority carriers and results in the saturation current density increased by 50%, the AC gain increased by 90%, the four-fold increase of the DC current gain, and improves the transition frequency from 274 to 358 GHz as compared to the case of the uniformly distributed acceptors. The obtained results may serve as a practical guide in design of highly-graded heterojunction bipolar transistors with efficient frequency response, high gain and enhanced power.

  3. Urea biosensor based on an extended-base bipolar junction transistor.

    PubMed

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  4. The influence of a doping profile on the characteristics of an ion-implanted GaAs field-effect transistor with a Schottky barrier

    SciTech Connect

    Shestakov, A. K. Zhuravlev, K. S.

    2011-12-15

    A GaAs field-effect ion-implanted transistor with a Schottky barrier is simulated. The doping profile obtained when doping through an insulator mask is determined and the dependences of the static transistor characteristics on the parameters of the doping profile are calculated and analyzed. The physical processes controlling the transistor characteristics in the case of a variation in the parameters of its doping profile and the coefficient of compensation of the substrate are studied. Based on calculations, the optimal doping-profile parameters ensuring the best characteristics for transistors are predicted.

  5. Comparison of 1/f noise in complementary NPN and PNP polysilicon emitter bipolar transistors

    NASA Astrophysics Data System (ADS)

    Ul Hoque, Md M.; Celik-Butler, Zeynep; Trogolo, Joe; Weiser, Douglas; Green, Keith

    2005-05-01

    1/f noise was investigated in a complementary polysilicon emitter bipolar process. Noise measurements were carried out for variable base bias resistance (RS) to analyze how the contribution of each noise source changes as RS is varied. Two noise measurement setups were used to identify different noise sources in the transistors: noise from the base current (SIB), collector current (SIC), and internal resistances (SVr). The coherence for transistors measured in both measurement setups were close to unity, implying a single dominant noise source. SIB had the dominant contribution at lower bias currents. In this case, RS was relatively larger than the input resistance of the transistor. Higher current measurements with a smaller RS showed a dominant contribution from SVr. SIB was modeled as a combination of the minority carrier diffusion fluctuations in the monosilicon and polysilicon emitter, and tunneling fluctuations through the interfacial oxide. A combination of the number and diffusion fluctuations of the minority carriers in the base was used to model SIC. It was concluded that mainly originates from the fluctuations in the internal emitter resistance, which was ascribed to the tunneling fluctuations of the majority carriers through the interfacial oxide.

  6. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    PubMed

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.

  7. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    PubMed Central

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  8. Transient Velocity Assessment in Gallium Arsenide, and of Other GaAs Characteristics Related to Device Functions

    DTIC Science & Technology

    2012-03-29

    GaAs, two-terminal devices such as N+N-N+ diodes, and three-terminal devices (such as MESFETs and bipolar transistors ) are treated. We have chosen...Cornell group is no longer working on the standard MESFET. Their planar-doped barrier transistor is a vertically oriented device that uses a barrier...made a few hundred angstroms thick. Figure 7 shows an energy diagram of the planar doped barrier transistor mentioned above. A second possibility

  9. 4H-SiC Power Bipolar Junction Transistor with a Very Low Specific On-resistance of 2.9 mOmega.cm2

    DTIC Science & Technology

    2006-04-12

    pp1381-1382, 2004. [2] C.-F. Huang and J. A. Cooper, Jr., “High current gain 4H-SiC NPN Bipolar Junction Transistors ,” IEEE Electron Device Lett...4H-SiC Power Bipolar Junction Transistor with a Very Low Specific On-resistance of 2.9 mΩ.cm2 Jianhui Zhang, member, IEEE, Petre Alexandrov...specific on-resistance (Rsp,on) of power 4H-SiC bipolar junction transistors (BJT). A 4H-SiC BJT based on a 12 um drift-layer shows a record low

  10. Analysis of the thin-film SOI lateral bipolar transistor and optimization of its output characteristics for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Adriaensen, S.; Flandre, D.

    2002-09-01

    In this paper, we investigate and optimize the static characteristics of NPN lateral bipolar transistors implemented in a thin-film fully-depleted SOI CMOS process for high-temperature analog applications. The basic lateral SOI bipolar device, which shows good behaviour in high-temperature circuits in spite of its relatively poor performances, is firstly described regarding its process and layout parameters. Then the concept of the graded-base bipolar transistor is introduced. This device presents significantly improved output characteristics while preserving standard current gain and CMOS process compatibility. Measurements and simulations are used to demonstrate the improvements of the breakdown voltage and the Early voltage of the bipolar device.

  11. SiGe:C Heterojunction Bipolar Transistors: From Materials Research to Chip Fabrication

    NASA Astrophysics Data System (ADS)

    Ruecker, H.; Heinemann, B.; Knoll, D.; Ehwald, K.-E.

    Incorporation of substitutional carbon ( ~10^20 cm^-3) into the SiGe region of a heterojunction bipolar transistor (HBT) strongly reduces boron diffusion during device processing. We describe the physical mechanism behind the suppression of B diffusion in C-rich Si and SiGe, and explain how the increased thermal stability of doping profiles in SiGe:C HBTs can be used to improve device performance. Manufacturability of SiGe:C HBTs with transit frequencies of 100 GHz and maximum oscillation frequencies of 130 GHz is demonstrated in a BiCMOS technology capable of fabricating integrated circuits for radio frequencies with high yield.

  12. A high-conductivity insulated gate bipolar transistor with Schottky hole barrier contact

    NASA Astrophysics Data System (ADS)

    Mengxuan, Jiang; John, Shen Z.; Jun, Wang; Xin, Yin; Zhikang, Shuai; Jiang, Lu

    2016-02-01

    This letter proposes a high-conductivity insulated gate bipolar transistor (HC-IGBT) with Schottky contact formed on the p-base, which forms a hole barrier at the p-base side to enhance the conductivity modulation effect. TCAD simulation shows that the HC-IGBT provides a current density increase by 53% and turn-off losses decrease by 27% when compared to a conventional field-stop IGBT (FS-IGBT). Hence, the proposed IGBT exhibits superior electrical performance for high-efficiency power electronic systems. Project supported by the National High Technology Research and Development Program of China (No. 2014AA052601) and the National Natural Science Foundation of China (No. 51277060).

  13. High-performance InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor

    SciTech Connect

    Tsai, J.-H. Chiu, S.-Y.; Lour, W.-S.; Guo, D.-F.

    2009-07-15

    In this article, a novel InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a {delta}-doped sheet between two spacer layers at the emitter-base (E-B) junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and a relatively low E-B offset voltage of 60 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.

  14. Characterization of insulated-gate bipolar transistor temperature on insulating, heat-spreading polycrystalline diamond substrate

    NASA Astrophysics Data System (ADS)

    Umezawa, Hitoshi; Shikata, Shin-ichi; Kato, Yukako; Mokuno, Yoshiaki; Seki, Akinori; Suzuki, Hiroshi; Bessho, Takeshi

    2017-01-01

    Polycrystalline diamond films have been utilized as direct bonding aluminum (DBA) substrates to improve cooling efficiency. A diamond film with a high quality factor was characterized by Raman spectroscopy and showed a high thermal conductivity of more than 1800 W m-1 K-1 and a low leakage current, even at an applied bias of 3 kV, because of the suppression of electrical conduction through the grain boundaries. The operating temperatures of Insulated-gate bipolar transistors (IGBTs) on diamond DBAs were 20-28% lower than those on AlN DBAs. The thermal resistivity of the diamond DBA module was 0.32 °C/W. The uniformity of the temperature distribution on a diamond DBA was excellent.

  15. Electrical properties of the InP/InGaAs pnp heterostructure-emitter bipolar transistor

    SciTech Connect

    Tsai, J. H. Liu, W. Ch.; Guo, D. F.; Kang, Y. Ch.; Chiu, Sh. Y.; Lour, W. Sh.

    2008-03-15

    The dc performances of an InP/InGaAs pnp heterostructure-emitter bipolar transistor are investigated by theoretical analysis and experimental results. Though the valence band discontinuity at the InP/InGaAs heterojunction is relatively large, the addition of a heavily-doped as well as thin p{sup +}-InGaAs emitter layer between p-InP confinement and n{sup +}-InGaAs base layers effectively eliminates the potential spike at emitter-base junction and simultaneously lowers the emitter-collector offset voltage and increases the potential barrier for electrons. Experimentally, a high current gain of 88 and a low offset voltage of 54 mV have been achieved.

  16. Analysis of long-term ionizing radiation effects in bipolar transistors

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.

    1978-01-01

    The ionizing radiation effects of electrons on bipolar transistors have been analyzed using the data base from the Voyager project. The data were subjected to statistical analysis, leading to a quantitative characterization of the product and to data on confidence limits which will be useful for circuit design purposes. These newly-developed methods may form the basis for a radiation hardness assurance system. In addition, an attempt was made to identify the causes of the large variations in the sensitivity observed on different product lines. This included a limited construction analysis and a determination of significant design and processes variables, as well as suggested remedies for improving the tolerance of the devices to radiation.

  17. Microwave characterization and modeling of GaAs/AlGaAs heterojunction bipolar transistors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Romanofsky, Robert R.

    1987-01-01

    The characterization and modeling of a microwave GaAs/AlGaAs heterojunction Bipolar Transistor (HBT) are discussed. The de-embedded scattering parameters are used to derive a small signal lumped element equivalent circuit model using EEsof's Touchstone software package. Each element in the equivalent circuit model is shown to have its origin within the device. The model shows good agreement between the measured and modeled scattering parameters over a wide range of bias currents. Further, the MAG (maximum available power gain) and the h sub 21 (current gain) calculated from the measured data and those predicted by the model are also in good agreement. Consequently, the model should also be capable of predicting the f sub max and the f sub T of other HBTs.

  18. Implementation of total dose effects in the bipolar junction transistor Gummel-Poon model

    SciTech Connect

    Montagner, X.; Fouillat, P.; Briand, R.; Touboul, A.; Schrimpf, R.D.; Galloway, K.F.; Calvet, M.C.; Calvel, P.

    1997-12-01

    The effects of total dose on the SPICE model of bipolar junction transistors are investigated. The limitations of the standard Gummel-Poon model for simulating the radiation-induced excess base current are analyzed, and a new model based on an empirical approach is proposed. Four new SPICE rad-parameters are presented, and investigated for different dose rates. The relevant parameters are extracted using a new algorithmic procedure, combining a genetic approach and the standard optimization technique which minimizes the RMS error between measured and simulated excess base current. It is shown that the excess base current is accurately described by the same formula whatever the device type is. An empirical fitting of the rad-parameters as a function of total dose is proposed to use in hardening electronic circuits for space-like environments.

  19. Microwave damage susceptibility trend of a bipolar transistor as a function of frequency

    NASA Astrophysics Data System (ADS)

    Ma, Zhen-Yang; Chai, Chang-Chun; Ren, Xing-Rong; Yang, Yin-Tang; Chen, Bin; Song, Kun; Zhao, Ying-Bo

    2012-09-01

    We conduct a theoretical study of the damage susceptibility trend of a typical bipolar transistor induced by a high-power microwave (HPM) as a function of frequency. The dependences of the burnout time and the damage power on the signal frequency are obtained. Studies of the internal damage process and the mechanism of the device are carried out from the variation analysis of the distribution of the electric field, current density, and temperature. The investigation shows that the burnout time linearly depends on the signal frequency. The current density and the electric field at the damage position decrease with increasing frequency. Meanwhile, the temperature elevation occurs in the area between the p-n junction and the n-n+ interface due to the increase of the electric field. Adopting the data analysis software, the relationship between the damage power and frequency is obtained. Moreover, the thickness of the substrate has a significant effect on the burnout time.

  20. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Rui, Erming

    2014-01-01

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) remains invariable. The current gain varies slightly, when the annealing temperature (TA) is lower than 400 K, while varies rapidly at TA<450 K, and the current gain of the 3DG112 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(-/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(-/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  1. Incident particle range dependence of radiation damage in a power bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Ming; Li, Xing-Ji; Geng, Hong-Bin; Rui, Er-Ming; Guo, Li-Xin; Yang, Jian-Qun

    2012-10-01

    The characteristic degradations in silicon NPN bipolar junction transistors (BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon (C), 40-MeV silicon (Si), and 40-MeV chlorine (Cl) ions respectively. Different electrical parameters are measured in-situ during the exposure of heavy ions. The experimental data shows that the changes in the reciprocal of the gain variation (Δ(1/β)) of 3DD155 transistors irradiated respectively by 25-MeV C, 40-MeV Si, and 40-MeV Cl ions each present a nonlinear behaviour at a low fluence and a linear response at a high fluence. The Δ(1/β) of 3DD155 BJT irradiated by 25-MeV C ions is greatest at a given fluence, a little smaller when the device is irradiated by 40-MeV Si ions, and smallest in the case of the 40-MeV Cl ions irradiation. The measured and calculated results clearly show that the range of heavy ions in the base region of BJT affects the level of radiation damage.

  2. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  3. Radiative recombination in GaN/InGaN heterojunction bipolar transistors

    SciTech Connect

    Kao, Tsung-Ting; Lee, Yi-Che; Kim, Hee-Jin; Ryou, Jae-Hyun; Kim, Jeomoh; Detchprohm, Theeradetch; Dupuis, Russell D.; Shen, Shyh-Chiang

    2015-12-14

    We report an electroluminescence (EL) study on npn GaN/InGaN heterojunction bipolar transistors (HBTs). Three radiative recombination paths are resolved in the HBTs, corresponding to the band-to-band transition (3.3 eV), conduction-band-to-acceptor-level transition (3.15 eV), and yellow luminescence (YL) with the emission peak at 2.2 eV. We further study possible light emission paths by operating the HBTs under different biasing conditions. The band-to-band and the conduction-band-to-acceptor-level transitions mostly arise from the intrinsic base region, while a defect-related YL band could likely originate from the quasi-neutral base region of a GaN/InGaN HBT. The I{sub B}-dependent EL intensities for these three recombination paths are discussed. The results also show the radiative emission under the forward-active transistor mode operation is more effective than that using a diode-based emitter due to the enhanced excess electron concentration in the base region as increasing the collector current increases.

  4. Soft-switching performance analysis of the clustered insulated gate bipolar transistor (CIGBT)

    NASA Astrophysics Data System (ADS)

    Nicholls, Jonathan Christopher

    The use of Insulated Gate Bipolar Transistors (IGBT) have enabled better switching performance than the Metal Oxide Semiconductor Field effect Transistor (MOSFET) in medium to high power applications due to their lower on-state power loss and higher current densities. This current research focuses on the Clustered Insulated Gate Bipolar Transistor (CIGBT) whilst being operated under soft-switching regimes. The CIGBT is a MOS gated thyristor device that exhibits a unique self-clamping feature that protects cathode cells from high anode voltages under all operating conditions. The self-clamping feature also enables current saturation at high gate biases and provides low switching losses. Its low on-state voltage and high voltage blocking capabilities make the CIGBT suitable as a contender to the IGBT in medium to high power switching applications. For the first time, the CIGBT has been operated under soft-switching regimes and transient over-voltages at turn-on have been witnessed which have been found to be associated with a number of factors.. The internal dynamics of the CIGBT have been analysed using 2D numerical simulations and it has been shown that a major influence on the peak voltage is the P well spacing within the CIGBT structure. For example, Small adjacent P well spacings within the device results in an inability for the CIGBT to switch iv on correctly. Further to this, implant concentrations of the n well region during device fabrication can also affect the turn-on transients. Despite this, the CIGBT has been experimental analysed under soft-switching conditions and found to outperform the IGBT by 12% and 27% for on-state voltage drop and total energy losses respectively. Turn off current bumps have been seen whilst switching the device in zero voltage and zero current switching mode of operation and the internal dynamics have been analysed to show the influence upon the current at turn off. Preliminary results on the Trench CIGBT (TCIGBT) under soft

  5. Investigation and Application of Neutron Damage to Bipolar Transistors in Light Water Reactor Dosimetry.

    NASA Astrophysics Data System (ADS)

    Roknizadeh, Mansour

    A method of fast neutron metrology and a basis for prediction of changes in performance parameters of semiconductor devices in power plant radiation environments has been established using Cf-252 sources. Three general purpose NPN bipolar transistors (PN2222A, ECG-196, and ECG-184) were chosen as the neutron damage monitors and the change in inverse d.c. current gain before and after irradiation was chosen as the damage parameter for the measurement. The ECG-196 and ECG-184 transistors have been calibrated for neutron fluences ranging from 1.0E10 n(1MeV)/ {rm cm}^2 to 1.0E12 n(1MeV)/{rm cm}^2. PN2222A transistors have been calibrated for neutron fluences ranging from 1.0E12 to 2.0E15 n(1MeV)/cm^2 . The main findings of the investigation were as follows:. The change in inverse d.c. current gain for PN2222A transistors was approximately a linear function of the neutron fluence up to 2.0E15 n(1MeV)/{rm cm}^2. The departure from linearity has been represented by a quadratic function. The concept of 1-MeV equivalent neutron fluence which characterizes an incident energy-fluence spectrum in terms of the fluence of monoenergetic neutrons at 1 MeV, is in error for application to common transistors in a typical power plant environment. This has been proven to be due to the fact that low energy neutron effects are not correctly accounted for when using the silicon displacement kerma to calculate 1-MeV equivalent neutron fluence. Therefore, a model has been developed by which the damage response is corrected in order to account for the low energy neutron effects. The normalized damage coefficient which is the ratio of damage to 1-MeV equivalent neutron fluence divided by the measured base transit time of individual transistors, for all three types of transistors is nearly the same with an average value of 1.27E - 7 +/- 15.0% {rm cm}^2 /m(1MeV).Sec. This supports the theory that base transit time is a parameter from which the neutron vulnerability in a nuclear radiation

  6. Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab

    2003-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.

  7. Effect of temperature on the performance of a bipolar transistor carrier-injected optical waveguide modulator/switch.

    PubMed

    Okada, Y

    1991-05-15

    The effect of ambient temperature on the performance of a GaAs/AlGaAs heterojunction bipolar transistor waveguide structure carrier-injected optical intensity modulator/switch is discussed. An increase in the temperature increases the achievable optical modulation ratio at the expense of increased absorption loss, and vice versa. Analysis also shows that for practical use a tolerable temperature change should be no more than approximately 10 degrees C.

  8. Characterization of leakage current related to a selectively grown collector in SiGeC heterojunction bipolar transistor structure

    NASA Astrophysics Data System (ADS)

    Suvar, E.; Haralson, E.; Radamson, H. H.; Wang, Y.-B.; Grahn, J. V.; Malm, B. G.; Östling, M.

    2004-03-01

    Sources of base-collector and base-emitter leakage current in a SiGeC-based heterojunction bipolar transistor (HBT) with a selectively grown and chemical-mechanical polished (CMP) collector are discussed. Transmission electron microscopy and electrical measurement have been applied to investigate the leakage current. It has been demonstrated that the edge-located defects generated by selective epitaxy process are the origin of the junction leakage.

  9. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  10. Monte Carlo particle simulation of radiation-induced heating in GaAs field-effect transistors

    NASA Astrophysics Data System (ADS)

    Moglestue, C.; Buot, F. A.; Anderson, W. T.

    1991-07-01

    Exposure of GaAs field-effect transistors to alpha-particle radiation has resulted in burnout paths from under the gate to both the source and the drain. Monte Carlo calculations show that the current response from an alpha-particle penetrating the center of the gate electrode at normal incidence lasts for 60 ps, about five times longer than predicted by previous hydrodynamic modeling. The thermalization of the induced electrons causes a maximum subsurface heating of the epilayer near the source and the drain when both are held at ground with a negative bias on the gate. A possible melting of the semiconductor will take place at these locations. The paper presents a more accurate simulation of the actual lattice heating rates obtained from electron-phonon exchanges inside the device. Although the qualitative results support the previous hydrodynamic analysis, some important quantitative differences are noted.

  11. An Evaluation of Bipolar Junction Transistors as Dosimeter for Megavoltage Electron Beams

    SciTech Connect

    Passos, Renan Garcia de; Vidal da Silva, Rogerio Matias; Silva, Malana Marcelina Almeida; Souza, Divanizia do Nascimento; Pereira dos Santos, Luiz Antonio

    2015-07-01

    Dosimetry is an extremely important field in medical applications of radiation and nowadays, electron beam is a good option for superficial tumor radiotherapy. Normally, the applied dose to the patient both in diagnostic and therapy must be monitored to prevent injuries and ensure the success of the treatment, therefore, we should always look for improving of the dosimetric methods. Accordingly, the aim of this work is about the use of a bipolar junction transistor (BJT) for electron beam dosimetry. After previous studies, such an electronic device can work as a dosimeter when submitted to ionizing radiation of photon beam. Actually, a typical BJT consists of two PN semiconductor junctions resulting in the NPN structure device, for while, and each semiconductor is named as collector (C), base (B) and emitter (E), respectively. Although the transistor effect, which corresponds to the current amplification, be accurately described by the quantum physics, one can utilize a simple concept from the circuit theory: the base current IB (input signal) is amplified by a factor of β resulting in the collector current IC (output signal) at least one hundred times greater the IB. In fact, the BJT is commonly used as a current amplifier with gain β=I{sub C}/I{sub B}, therefore, it was noticed that this parameter is altered when the device is exposed to ionizing radiation. The current gain alteration can be explained by the trap creation and the positive charges build up, beside the degradation of the lattice structure. Then, variations of the gain of irradiated transistors may justify their use as a dosimeter. Actually, the methodology is based on the measurements of the I{sub C} variations whereas I{sub B} is maintained constant. BC846 BJT type was used for dose monitoring from passive-mode measurements: evaluation of its electrical characteristic before and after irradiation procedure. Thus, IC readings were plotted as a function of the applied dose in 6 MeV electron beam

  12. Theoretical comparison of Si, Ge, and GaAs ultrathin p-type double-gate metal oxide semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Dib, Elias; Bescond, Marc; Cavassilas, Nicolas; Michelini, Fabienne; Raymond, Laurent; Lannoo, Michel

    2013-08-01

    Based on a self-consistent multi-band quantum transport code including hole-phonon scattering, we compare current characteristics of Si, Ge, and GaAs p-type double-gate transistors. Electronic properties are analyzed as a function of (i) transport orientation, (ii) channel material, and (iii) gate length. We first show that ⟨100⟩-oriented devices offer better characteristics than their ⟨110⟩-counterparts independently of the material choice. Our results also point out that the weaker impact of scattering in Ge produces better electrical performances in long devices, while the moderate tunneling effect makes Si more advantageous in ultimately scaled transistors. Moreover, GaAs-based devices are less advantageous for shorter lengths and do not offer a high enough ON current for longer gate lengths. According to our simulations, the performance switching between Si and Ge occurs for a gate length of 12 nm. The conclusions of the study invite then to consider ⟨100⟩-oriented double-gate devices with Si for gate length shorter than 12 nm and Ge otherwise.

  13. Multi-level interconnects for heterojunction bipolar transistor integrated circuit technologies

    SciTech Connect

    Patrizi, G.A.; Lovejoy, M.L.; Schneider, R.P. Jr.; Hou, H.Q.; Enquist, P.M.

    1995-12-31

    Heterojunction bipolar transistors (HBTs) are mesa structures which present difficult planarization problems in integrated circuit fabrication. The authors report a multilevel metal interconnect technology using Benzocyclobutene (BCB) to implement high-speed, low-power photoreceivers based on InGaAs/InP HBTs. Processes for patterning and dry etching BCB to achieve smooth via holes with sloped sidewalls are presented. Excellent planarization of 1.9 {micro}m mesa topographies on InGaAs/InP device structures is demonstrated using scanning electron microscopy (SEM). Additionally, SEM cross sections of both the multi-level metal interconnect via holes and the base emitter via holes required in the HBT IC process are presented. All via holes exhibit sloped sidewalls with slopes of 0.4 {micro}m/{micro}m to 2 {micro}m/{micro}m which are needed to realize a robust interconnect process. Specific contact resistances of the interconnects are found to be less than 6 {times} 10{sup {minus}8} {Omega}cm{sup 2}. Integrated circuits utilizing InGaAs/InP HBTs are fabricated to demonstrate the applicability and compatibility of the multi-level interconnect technology with integrated circuit processing.

  14. Hot-carrier induced degradation and recovery in polysilicon-emitter bipolar transistors

    NASA Astrophysics Data System (ADS)

    Sheng, S. R.; McAlister, S. P.; Storey, C.; Lee, L.-S.; Hwang, H. P.

    2002-10-01

    The hot-carrier induced degradation in submicron polysilicon-emitter NPN bipolar transistors with different emitter geometries and its post-stress reversibility have been investigated in detail. We show that the hot-carrier induced degradation during reverse emitter-base (EB) bias stressing can alter the EB junction, as well as the collector-base junction region. Oxide/silicon interface traps and positive charged defects are generated by the hot-carrier injection, both of which cause an increase in the low bias base current, and consequently degradation in the current gain. Our results confirm that the oxide/silicon interface traps generated by electrical stressing are located in the same region as those present in unstressed devices--around the emitter perimeter. The hot-carrier induced changes are not stable even at room temperature, and are partially reversed by annealing at 300 °C, indicating the existence of both a reversible component, with a broad distribution of annealing activation energies, and an irreversible component. We suggest that more than one microscopic process determines the hot-carrier induced degradation in devices. Which process plays a dominant role in a given device may be dependent on device technologies employed and stressing conditions.

  15. Radiation effects on bipolar junction transistors induced by 25 MeV carbon ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Geng, Hongbin; Zhao, Zhiming; Yang, Dezhuang; He, Shiyu

    2010-12-01

    The characteristic degradation in silicon NPN bipolar junction transistors (BJTs) of 3DG112 type is examined under the irradiation with 25 MeV carbon (C) ions and various bias conditions. Different electrical parameters were measured in-situ during the exposure under each bias condition. From the experimental data, larger variation of base current ( IB) is observed after irradiation at a given value of base-emitter voltage ( VBE), while the collector current is only slightly affected by irradiation at a given VBE. The gain degradation is mostly affected by the behavior of the base current. The change in the reciprocal of current gain (Δ(1/ β)) increases linearly with increasing the C ions fluence. The degradation of the NPN BJTs under various bias conditions during irradiation was studied. Compared to the case where the terminals are grounded, at a given fluence, the change in the reciprocal of current gain varies slightly less when the base-emitter junction is forward biased. On the other hand, there is no distinction for the change in the reciprocal of current gain between the case of reverse-biased base-emitter junction and that of all terminals grounded for the NPN BJTs at a given fluence.

  16. Model of radiation-induced gain degradation of NPN bipolar junction transistor at different dose rates

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2015-06-01

    Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  17. Effect of bias condition on heavy ion radiation in bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Ming; Li, Xing-Ji; Geng, Hong-Bin; Yang, De-Zhuang; He, Shi-Yu

    2012-08-01

    The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (Cl) ions under forward, grounded, and reverse bias conditions, respectively. Different electrical parameters are in-situ measured during the exposure under each bias condition. From the experimental data, a larger variation of base current (IB) is observed after irradiation at a given value of base-emitter voltage (VBE), while the collector current is slightly affected by irradiation at a given VBE. The gain degradation is affected mostly by the behaviour of the base current. From the experimental data, the variation of current gain in the case of forward bias is much smaller than that in the other conditions. Moreover, for 3DG142 BJT, the current gain degradation in the case of reverse bias is more severe than that in the grounded case at low fluence, while at high fluence, the gain degradation in the reverse bias case becomes smaller than that in the grounded case.

  18. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems

    PubMed Central

    Choi, Hojong; Yang, Hao-Chung; Shung, K. Kirk

    2013-01-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (–7.7 dB), THD (–74.6 dB) and lower RT (43 ns) at 100MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22 % and 140 %, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. PMID:24199954

  19. Improved performance of bipolar charge plasma transistor by reducing the horizontal electric field

    NASA Astrophysics Data System (ADS)

    Bramhane, Lokesh Kumar; Singh, Jawar

    2017-04-01

    In this paper, we have proposed a modified lateral bipolar charge plasma transistor (BCPT). The appropriate work function engineering is used to induce the electron-hole concentrations under different regions. The reduced work function difference and absence of oxide layer (tox) in the proposed lateral BCPT reduce the horizontal electric field (EX) at the emitter. Also, reduced work function difference at base metal contact decreases the electric field at base-emitter and base-collector junctions. 2-D TCAD simulations of the proposed device reveal that there are evenly spaced output characteristic curves, improved cut-off frequency and breakdown voltage. The reduction in horizontal electric field about one-fourth compared to the conventional lateral BCPT results in realistic current gain (β) and reduced on-set voltage makes proposed device suitable for low power applications. The proposed device exhibits improved cut-off frequency (fT = 7.5 GHz) compared to the lateral BCPT (3.7 GHz) and improved current gain (37.67) and same cut-off frequency (= 7.5 GHz) compared to the conventional BJT (β = 26.5 &fT = 7.5 GHz).

  20. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  1. Solution-processible organic-inorganic hybrid bipolar field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chae, Gil Jo; Kim, Kang Dae; Cho, Shinuk; Walker, Bright; Seo, Jung Hwa

    2016-04-01

    Organic-inorganic hybrid bipolar field-effect transistors (HBFETs) comprising a layer of p-type organic poly(3-hexylthiophene) (P3HT) separated from a parallel layer of n-type inorganic zinc oxide (ZnO) were demonstrated by solution processing. In order to achieve balanced hole and electron mobilities, we initially optimized the hole-transporting P3HT channel by the addition of the polar non-solvent acetonitrile (AN) to P3HT solutions in chloroform, which induced a selfassembled nano-fibril morphology and an enhancement of hole mobilities. For the electron channel, a wet-chemically-prepared ZnO layer was optimized by thermal annealing. Unipolar P3HT FET with 5% AN exhibited the highest hole mobility of 7.20 × 10-2 cm2V-1s-1 while the highest electron mobility (3.64 × 10-2 cm2V-1s-1) was observed in unipolar ZnO FETs annealed at 200°C. The organic-inorganic HBFETs consisting of the P3HT layer with 5% AN and ZnO annealed at 200°C exhibited well-balanced hole and electron mobilities of 1.94 × 10-2 cm2V-1s-1 and 1.98 × 10-2 cm2V-1s-1, respectively.

  2. Junction-to-Case Thermal Resistance of a Silicon Carbide Bipolar Junction Transistor Measured

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Junction temperature of a prototype SiC-based bipolar junction transistor (BJT) was estimated by using the base-emitter voltage (V(sub BE)) characteristic for thermometry. The V(sub BE) was measured as a function of the base current (I(sub B)) at selected temperatures (T), all at a fixed collector current (I(sub C)) and under very low duty cycle pulse conditions. Under such conditions, the average temperature of the chip was taken to be the same as that of the temperature-controlled case. At increased duty cycle such as to substantially heat the chip, but same I(sub C) pulse height, the chip temperature was identified by matching the V(sub BE) to the thermometry curves. From the measured average power, the chip-to-case thermal resistance could be estimated, giving a reasonable value. A tentative explanation for an observed bunching with increasing temperature of the calibration curves may relate to an increasing dopant atom ionization. A first-cut analysis, however, does not support this.

  3. Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures.

    PubMed

    Nemec, Patrik; Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made.

  4. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  5. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    PubMed

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications.

  6. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    PubMed Central

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  7. Tunneling Current of Electron in Armchair Graphene Nanoribbon Bipolar Transistor Model Using Transfer Matrix Method

    NASA Astrophysics Data System (ADS)

    Fahmi, A. K.; Hasanah, L.; Rusdiana, D.; Aminudin, A.; Suhendi, E.

    2017-03-01

    The tunneling current of n-p-n bipolar junction transistor AGNR-based is modeled with semi-numerical method. The exponential solution from Schrödinger equation is used and solved analytically. The potential profile of n-p-n BJT divided into several segments in the numerical method. Then, the solved analytical result is used in the numerical method to compute the electron transmittance. Transfer Matrix Method (TMM) is the numerical method used to compute the electron transmittance. From the calculated transmittance the tunneling current can be computed by using Landauer formula with aid of Gauss-Legendre Quadrature (GLQ). Next, the tunneling current is computed with several change of variables which are base-emitter voltage (VBE), base-collector voltage (VBC), temperature and the AGNR’s width. The computed tunneling current shows that the larger value of applied voltage for both VBE and VBC results in larger value of tunneling current. At the lower temperature, the current is larger. The computed tunneling current shows that at wider width of AGNR, the current is also larger. This is due to the decreased band-gap energy (Eg) because of the wider width of AGNR.

  8. Ultra-High Voltage 4H-SiC Bi-Directional Insulated Gate Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sauvik

    4H- Silicon Carbide (4H-SiC) is an attractive material for power semiconductor devices due to its large bandgap, high critical electric field and high thermal conductivity compared to Silicon (Si). For ultra-high voltage applications (BV > 10 kV), 4H-SiC Insulated Gate Bipolar Transistors (IGBTs) are favored over unipolar transistors due to lower conduction losses. With improvements in SiC materials and processing technology, promising results have been demonstrated in the area of conventional unidirectional 4H-SiC IGBTs, with breakdown voltage ratings up to 27 kV. This research presents the experimental demonstration of the world's first high voltage bi-directional power transistors in 4H-SiC. Traditionally, four (two IGBTs and two diodes) or two (two reverse blocking IGBTs) semiconductor devices are necessary to yield a bidirectional switch. With a monolithically integrated bidirectional switch as presented here, the number of semiconductor devices is reduced to only one, which results in increased reliability and reduced cost of the overall system. Additionally, by using the unique dual gate operation of BD-IGBTs, switching losses can be reduced to a small fraction of that in conventional IGBTs, resulting in increased efficiency. First, the performance limits of SiC IGBTs are calculated by using analytical methods. The performance benefits of SiC IGBTs over SiC unipolar devices and Si IGBTs are quantified. Numerical simulations are used to optimize the unit cell and edge termination structures for a 15 kV SiC BD-IGBT. The effect of different device parameters on BD-IGBT static and switching performance are quantified. Second, the process technology necessary for the fabrication of high voltage SiC BD-IGBTs is optimized. The effect of different process steps on parameters such as breakdown voltage, carrier lifetime, gate oxide reliability, SiO2-SiC interface charge density is quantified. A carrier lifetime enhancement process has been optimized for lightly doped

  9. Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.

  10. Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure

    NASA Technical Reports Server (NTRS)

    Das, Kalyan; Hall, Harvey

    1999-01-01

    Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.

  11. DLTS Studies of bias dependence of defects in silicon NPN bipolar junction transistor irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Geng, Hongbin; Rui, Erming; Yang, Jianqun; Xiao, Liyi

    2012-10-01

    The characteristic degradation in silicon NPN bipolar junction transistors (BJTs) of 3DG130 type is examined under the irradiation with 35 MeV silicon (Si) ions under forward, grounded and reverse bias conditions, respectively. Different electrical parameters were in-situ measured during the exposure under each bias condition. Using deep level transient spectroscopy (DLTS), deep level defects in the base-collector junction of 3DG130 transistors under various bias conditions are measured after irradiation. The activation energy, capture cross section and concentration of observed deep level defects are measured using DLTS technique. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions could affect the concentration of deep level defects, and the displacement damage induced by heavy ions.

  12. Triple implant (In,Ga)As/InP n-p-n heterojunction bipolar transistors for integrated circuit applications

    NASA Astrophysics Data System (ADS)

    Masum Choudhury, A. N. M.; Tabatabaie-Alavi, K.; Fonstad, C. G.

    1984-07-01

    For the first time (In,Ga)As/InP n-p-n heterojunction bipolar transistors (HJBT's) applicable to integrated circuits have been fabricated by triple ion implantation. The base has been formed by beryllium ion implantation and the collector by silicon ion implantation. The implants were made into an LPE-grown n-n (In,Ga)As/InP heterostructure on an n(+)-InP substrate. This inverted mode emitter-down heterojunction transistor structure demonstrates to a maximum current gain of 7 with no hysteresis in the characteristics. The ideality factors of the I(B) versus V(BE) and I(C) versus V(BE) characteristics with V(CB) = 0, are 1.25 and 1.08, respectively, indicating that the defect level in the heterojunction is low and that minority-carrier injection and diffusion is the dominant current flow mechanism.

  13. Effect of parasitic series resistances and spurious currents on the extracted temperature of a bipolar junction transistor.

    PubMed

    Mimila-Arroyo, J

    2013-12-01

    Verster's proposition to directly extract the temperature of a bipolar junction transistor using its collector current is widely used. However, the resulting temperature is low accurate even when calibrated. Here, it is demonstrated that the misuse of the emitter current instead of the collector one, because of the presence of spurious currents other than the injection-diffusion one and transistor parasitic series resistances both contribute to the observed inaccuracy. Particularly parasitic series resistances increase the inaccuracy and introduce a strong dependence of the extracted temperature on the collector currents used to extract the temperature; the higher those resistances the higher the inaccuracy. A proposition is made to reduce the effect of those resistances on the inaccuracy of this thermometric element, which allows obtaining a more accurate value on a wider range of the collector probe currents.

  14. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  15. A device model for thin silicon-on-insulator SiGe heterojunction bipolar transistors with saturation effects

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Bo; Xu, Kai-Xuan; Zhang, He-Ming; Qin, Shan-Shan

    2011-09-01

    In this paper, we describe the saturation effect of a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) fabricated on a thin silicon-on-insulator (SOI) with a step-by-step derivation of the model formulation. The collector injection width, the internal base—collector bias, and the hole density at the base—collector junction interface are analysed by considering the unique features of the internal and the external parts of the collector, as they are different from those of a bulk counterpart.

  16. Impact ionization in the base of a hot-electron AlSb/InAs bipolar transistor

    NASA Technical Reports Server (NTRS)

    Vengurlekar, Arvind S.; Capasso, Federico; Chiu, T. Heng

    1990-01-01

    The operation of a new AlSb/InAs heterojunction bipolar transistor is studied. The electrons are injected into a p-InAs base across the AlSb/InAs heterojunction. The conduction-band discontinuity at this heterojunction is sufficiently large so that energy of the electrons injected into InAs exceeds the threshold for generating electron-hole pairs by impact ionization. The observed incremental common base current at zero collector-base bias decreases and becomes negative as the emitter current is increased, thus providing direct evidence for impact ionization entirely by band-edge discontinuities.

  17. New RAD-Hard STRH3260L6 Bipolar And STRH100N10 Mosfet Power Transistors

    NASA Astrophysics Data System (ADS)

    Camonita, Giuseppe; Pintacuda, Francesco

    2011-10-01

    This article describes two new power discrete components from STMicroelectronics, specifically offered for Space applications. The STRH3260L6 is a double bipolar rad-hard transistor in an SMD package that houses two complementary devices, one NPN and one PNP. The STRH100N10 is an N-channel rad-hard power MOSFET, the first that is ESCC qualified and available in Europe without procurement restrictions. The purpose of this writing is to give details about the devices' main features, characterization for static, dynamic and radiation performances.

  18. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  19. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  20. Two-zone SiGe base heterojunction bipolar charge plasma transistor for next generation analog and RF applications

    NASA Astrophysics Data System (ADS)

    Bramhane, Lokesh Kumar; Singh, Jawar

    2017-01-01

    For next generation terahertz applications, heterojunction bipolar transistor (HBT) with reduced dimensions and charge plasma (CP) can be a potential candidate due to simplified and inexpensive process. In this paper, a symmetric lateral two-zone SiGe base heterojunction bipolar charge plasma transistor (HBCPT) with an extruded (extended) base is proposed and its performance at circuit level is studied. The linearly graded electric field in the proposed HBCPT provides improved self gain (β) and cut-off frequency (fT). Two-dimensional (2-D) TCAD and small-signal model based simulations of the proposed HBCPT demonstrates high self gain β 35-172.93 and fT of 1-4 THz for different device parameters. Moreover, fT of 1104.9 GHz and β of 35 can be achieved by decreasing Nb up to 8.2 ×1017cm-3 . Although, fT of 2 THz and 4 THz can also be achieved by reducing the base resistance up to 10 Ω and increasing the emitter/collector length up to 63 nm, respectively. The small-signal analysis of common-emitter amplifier based on the proposed HBCPT demonstrate high voltage gain of 50.11 as compared to conventional HBT (18.1).

  1. Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Bin; Fu, Jun; Xu, Jun; Wang, Yu-Dong; Zhou, Wei; Zhang, Wei; Cui, Jie; Li, Gao-Qing; Liu, Zhi-Hong

    2014-11-01

    The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV Cl, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in IC was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.

  2. Compact Modeling of Floating-Base Effect in Injection-Enhanced Insulated-Gate Bipolar Transistor Based on Potential Modification by Accumulated Charge

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takao; Miyake, Masataka; Miura-Mattausch, Mitiko

    2013-04-01

    We have developed a compact model of the injection-enhanced insulated-gate bipolar transistor (IGBT) applicable for circuit optimization. The main development is modeling the hole accumulation in the floating-base region. It is demonstrated that the observed negative gate capacitance is well reproduced with the developed model.

  3. Characteristics of cylindrical surrounding-gate GaAs x Sb1-x /In y Ga1-y As heterojunction tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Guan, Yun-He; Li, Zun-Chao; Luo, Dong-Xu; Meng, Qing-Zhi; Zhang, Ye-Fei

    2016-10-01

    A III-V heterojunction tunneling field-effect transistor (TFET) can enhance the on-state current effectively, and GaAs x Sb1-x /In y Ga1-y As heterojunction exhibits better performance with the adjustable band alignment by modulating the alloy composition. In this paper, the performance of the cylindrical surrounding-gate GaAs x Sb1-x /In y Ga1-y As heterojunction TFET with gate-drain underlap is investigated by numerical simulation. We validate that reducing drain doping concentration and increasing gate-drain underlap could be effective ways to reduce the off-state current and subthreshold swing (SS), while increasing source doping concentration and adjusting the composition of GaAs x Sb1-x /In y Ga1-y As can improve the on-state current. In addition, the resonant TFET based on GaAs x Sb1-x /In y Ga1-y As is also studied, and the result shows that the minimum and average of SS reach 11 mV/decade and 20 mV/decade for five decades of drain current, respectively, and is much superior to the conventional TFET. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176038 and 61474093), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015A010103002), and the Technology Development Program of Shaanxi Province, China (Grant No. 2016GY-075).

  4. Gate voltage dependent characteristics of p-n diodes and bipolar transistors based on multiwall CN(x)/carbon nanotube intramolecular junctions.

    PubMed

    Zhang, W J; Zhang, Q F; Chai, Y; Shen, X; Wu, J L

    2007-10-03

    The electrical transport characteristics of multiwall CN(x)/carbon nanotube intramolecular junctions were studied. The junctions could be used as diodes. We found that the rectification resulted from p-n junctions, not from metal-semiconductor junctions. The gate effect was very weak when the diodes were reverse biased. At forward bias, however, some of the p-n diodes could be n-type transistors. Experimental results supported the opinion that the gate voltage dependent property is derived from the Schottky barrier between the CN(x) part and the electrode. Using p-n diodes, a bipolar transistor with nanoscale components was built, whose behavior was very similar to that of a conventional planar bipolar transistor.

  5. Improved methods of forming monolithic integrated circuits having complementary bipolar transistors

    NASA Technical Reports Server (NTRS)

    Bohannon, R. O., Jr.; Cashion, W. F.; Stehlin, R. A.

    1971-01-01

    Two new processes form complementary transistors in monolithic semiconductor circuits, require fewer steps /infusions/ than previous methods, and eliminate such problems as nonuniform h sub FE distribution, low yield, and large device formation.

  6. Type-II InP/GaAsSb double-heterojunction bipolar transistors with fMAX > 700 GHz

    NASA Astrophysics Data System (ADS)

    Flückiger, Ralf; Lövblom, Rickard; Alexandrova, Maria; Ostinelli, Olivier; Bolognesi, Colombo R.

    2014-03-01

    The “type-II” staggered band lineup at the base-collector junction of InP/GaAsSb double-heterojunction bipolar transistors (DHBTs) eliminates the current blocking effect observed in InP/GaInAs DHBTs and allows the use of a pure binary InP collector that provides a high breakdown voltage and good thermal conductivity. Improvement of the power gain cutoff frequency fMAX requires a reduction in base resistance and/or base-collector capacitance. We have decreased the base contact resistivity by in situ Ar sputtering immediately prior to the base contact deposition. The resulting DHBTs simultaneously feature fT = 429 GHz and fMAX = 715 GHz. To the best of the authors’ knowledge, this is the highest reported fMAX for InP/GaAsSb-based DHBTs to date.

  7. First- and second-order electrical modelling and experiment on very high speed SiGeC heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Nunez-Perez, José Cruz; Lakhdara, Maya; Bouhouche, Manel; Verdier, Jacques; Latreche, Saïda; Gontrand, Christian

    2009-04-01

    We present in this paper an electrical study centred on NPN heterojunction bipolar transistors (HBTs), realized in an industrial BiCMOS SiGe:C process, featuring high attractive performances (ft > 200 GHz) in terms of microwave behaviour and low-frequency noise; reaching this level of performance with good dc characteristics could be however a difficult challenge. Electrical modelling is investigated, using our 2D simulator, based on the drift-diffusion model (DDM). The simulations were very efficient for optimizing the devices. The dc and ac results obtained in this work are efficiently compared with electrical characteristics coming from measurements and SPICE-like parameter extractions, from simulations via a compact model (HICUM) implemented in the so-called commercial simulator ADS (advanced design system). This work was a first step for designing RF circuits like oscillators in a simple way.

  8. Technology and First Electrical Characteristics of Complementary NPN and PNP InAlAs/InGaAs Heterojunction Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Cui, Delong; Pavlidis, Dimitris; Sawdai, Donald; Chin, Patrick; Block, Tom

    2002-02-01

    A selective molecular beam epitaxy (MBE) regrowth approach is presented and applied in the demonstration of complementary InP heterojunction bipolar transistor (HBT) technology for monolithic integration of NPN and PNP HBTs. State-of-art performance has been observed: The DC gain was 35 for both integrated NPN and PNP HBTs. fT of 79.6 GHz and fmax of 109 GHz were achieved for NPN devices while fT of 11.6 GHz and fmax of 22.6 GHz were achieved for PNP devices. Little performance degradation has been observed compared with same design NPN or PNP HBT layers grown on individual substrates. Monolithic microwave integrated circuits (MMICs) based on complementary InP HBT technology have been studied for the first time using this technology and their electrical characteristics are presented.

  9. New isolated gate bipolar transistor two-quadrant chopper power supply for a fast field cycling nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Sousa, D. M.; Marques, G. D.; Sebastião, P. J.; Ribeiro, A. C.

    2003-10-01

    This work, presents, for the first time, an Isolated Gate Bipolar Transistor (IGBT) two-quadrant chopper power supply for a fast field cycling (FFC) nuclear magnetic resonance spectrometer. This power supply was designed to achieve a maximum current of 200 A with good efficiency, low semiconductor losses, low cost, and easy maintenance. Both energy storage circuits and dumping circuits are used to obtain switching times less than 2 ms between field levels in agreement with the FFC technique specifications. The current ripple at high currents is better than 1×10-4 and presents a specific shape which can be used for additional compensation using auxiliary circuits. The implemented power supply was tested and been continuously operating with a home-built FFC solenoidal magnet, associated cooling system, and rf units for fields between 0 and 0.2 T.

  10. A new InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT)

    SciTech Connect

    Tsai, Jung-Hui; Lee, Ching-Sung; Lour, Wen-Shiung; Ma, Yung-Chun; Ye, Sheng-Shiun

    2011-05-15

    Excellent characteristics of an InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT) are first demonstrated. The insertion of a thin n-GaAs emitter layer between tynneling confinement and base layers effectivelty eliminates the potential spike at base-emitter junction and reduces the collector-emitter offset voltage, while the thin InGaP tunneling confinement layer is employed to reduce the transporting time across emitter region for electrons and maintain the good confinement effect for holes. Experimentally, the studied T-HEBN exhibits a maximum current gain of 285, a relatively low offset voltage of 40 mW, and a current-gain cutoff frequency of 26.4 GHz.

  11. SEMICONDUCTOR DEVICES: EMP injection damage effects of a bipolar transistor and its relationship between the injecting voltage and energy

    NASA Astrophysics Data System (ADS)

    Xiaowen, Xi; Changchun, Chai; Xingrong, Ren; Yintang, Yang; Bing, Zhang; Xiao, Hong

    2010-04-01

    The response of a bipolar transistor (BJT) under a square-wave electromagnetic pulse (EMP) with different injecting voltages is investigated. Adopting the curve fitting method, the relationship between the burnout time, the damage energy and the injecting voltage is obtained. Research shows that the damage energy is not a constant value, but changes with the injecting voltage level. By use of the device simulator Medici, the internal behavior of the burned device is analyzed. Simulation results indicate that the variation of the damage energy with injecting voltage is caused by the distribution change of hot spot position under different injection levels. Therefore, the traditional way to evaluate the trade-off between the burnout time and the injecting voltage is not comprehensive due to the variation of the damage energy.

  12. Influence of the external component on the damage of the bipolar transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiaowen, Xi; Changchun, Chai; Xingrong, Ren; Yintang, Yang; Zhenyang, Ma; Jing, Wang

    2010-07-01

    A study on the influence of the external resistor and the external voltage source during the injection of the electromagnetic pulse (EMP) into the bipolar transistor (BJT) is carried out. Research shows that the increase of the external resistor Rb at base makes the burnout time of the device decrease slightly, the increase of the external voltage source Vbe at base can aid the damage of the device when the magnitude of the injecting voltage is relatively low and has little influence when the magnitude is sufficiently high causing the device appearing the PIN structure damage, and the increase of the external resistor Re can remarkably reduce the voltage drops added to the device and improve the durability of the device. In the final analysis, the effect of the external circuit component on the BJT damage is the influence on the condition which makes the device appear current-mode second breakdown.

  13. Annealing effects and DLTS study on PNP silicon bipolar junction transistors irradiated by 20 MeV Br ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Bollmann, Joachim

    2014-01-01

    Isochronal anneal sequences have been carried out on 3CG130 silicon PNP bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve was utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. The results show that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) keeps invariably. The current gain varies slightly, when the annealing temperature (TA) is lower than 500 K, while varies rapidly at TA>550 K, and the current gain of the 3CG130 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. The deep level transient spectroscopy (DLTS) data was used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(+/0) trap is the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(+/0) peak has many characteristics expected for the current gain degradation.

  14. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection.

    PubMed

    Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won

    2011-10-15

    In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor.

  15. DLTS study of deep level defects in Li-ion irradiated bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Madhu, K. V.; Kulkarni, S. R.; Ravindra, M.; Damle, R.

    2007-01-01

    Commercial npn transistor (2N 2219A) irradiated with 50 MeV Li 3+-ions with fluences ranging from 3.1 × 10 13 ions cm -2 to 12.5 × 10 13 ions cm -2, is studied for radiation induced gain degradation and minority carrier trap levels or recombination centers. The properties such as activation energy, trap concentration and capture cross section of induced deep levels are studied by deep level transient spectroscopy (DLTS) technique. Minority carrier trap levels with energies ranging from 0.237 eV to 0.591 eV were observed in the base-collector junction of the transistor. In situ I- V measurements were made to study the gain degradation as a function of ion fluence. Ion induced energy levels result in increase in the base current through Shockley Read Hall (SRH) or multi-phonon recombination and subsequent transistor gain degradation.

  16. A Physics-Based Heterojunction Bipolar Transistor Model for Integrated Circuit Simulation

    DTIC Science & Technology

    1993-12-01

    base-emitter capacitance; C, is the total base-collector capacitance; g, is the dynamic base-emitter junction conductance; go is the dynamic base...Large-signal junction transistor equivalent circuit (21:61]. gp (’ ’ gE -w CU gm’’ go RE Figure 1.8 Hybrid-if small-signal junction transistor...Forward Base Conductance: ( 3.28 8Ig (3.29) Output (Collector) Conductance: go I V W cow .. S.ax, J(3.30) Transconductance: ga- I V-y• ca- . Both

  17. Comments on determination of bandgap narrowing from activation plots. [for bipolar transistors

    NASA Technical Reports Server (NTRS)

    Park, J.-S.; Neugroschel, A.; Lindholm, F. A.

    1986-01-01

    A determination is made of the temperature-dependence of emitter saturation current in bipolar devices which allows the derivation of a value for bandgap narrowing that is in better agreement with other determinations than previous results based on ohmic contact measurements of temperature dependence. The new values were obtained by varying the surface recombination velocity at the emitter surface. This improves accuracy by varying the minority carrier surface recombination velocity at the emitter contacts of otherwise indistinguishable emitters.

  18. Nondestructive characterization of RBSOA of high-power bipolar transistors. [Reverse-bias safe operating area

    NASA Technical Reports Server (NTRS)

    Jovanovic, M. M.; Lee, F. C.; Chen, D. Y.

    1986-01-01

    Reverse-bias safe operating area (RBSOA) of high-power Darlington transistors is characterized using a 120 A/1000 V nondestructive reverse-bias second breakdown tester designed and fabricated at Virginia Polytechnic Institute and State University. Elaborate RBSOA characteristics are generated with different forward/reverse base drives and collector current levels. The effects of elevated case temperature and second-base drive on RBSOA of four-terminal Darlington devices are also discussed.

  19. Characterization, simulation and optimization of type-II gallium arsenic antimonide-based double heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Tao, Nick Gengming

    In recent years, GaAsSb/InP double heterojunction bipolar transistors (DHBTs) have been demonstrated to be promising alternatives to InP/InGaAs HBTs, for next generation microwave/millimeter wave applications and optoelectronic integrated circuits (OEICs). However, GaAsSb-based DHBTs featuring the novel base material and type-II band alignment have not been well studied. This thesis investigated type-II GaAsSb DHBTs in the following aspects: periphery surface recombination current, Kirk effect, two dimensional (2D) simulation and device optimization. The present work provided insights into device operation, and guidances for further device development. A series of physical models and parameters was implemented in 2D device simulations using ISE TCAD. Band gap narrowing (BGN) in the bases was characterized by comparing experimental and simulated results. Excellent agreements between the measured and simulated DC and RF results were achieved. Emitter size effects associated with the surface recombination current were experimentally characterized for emitter sizes of 0.5 by 6 to 80 by 80 square micrometer. The 2D simulations by implementing surface state models revealed the mechanism for the surface recombination current. Two device structures were proposed to diminish surface recombination current. Numerical simulations for type-II GaAsSb-InP base-collector (BC) junctions showed that conventional base "push-out" does not occur at high injection levels, and instead the electric field at the BC junction is reversed and an electron barrier at the base side evolves. The electron barrier was found to play an important role in the Kirk effect, and the electron tunnelling through the barrier delays the onset of the Kirk effect. This novel mechanism was supported by the measurement for GaAsSb/InP DHBTs with two base doping levels. The study also showed that the magnitude of the electric field at the BC junction at zero collector current directly affects onset of the Kirk

  20. A high voltage silicon-on-insulator lateral insulated gate bipolar transistor with a reduced cell-pitch

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Rong; Wang, Qi; Yao, Guo-Liang; Wang, Yuan-Gang; Lei, Tian-Fei; Wang, Pei; Jiang, Yong-Heng; Zhou, Kun; Zhang, Bo

    2013-02-01

    A high voltage (> 600 V) integrable silicon-on-insulator (SOI) trench-type lateral insulated gate bipolar transistor (LIGBT) with a reduced cell-pitch is proposed. The LIGBT features multiple trenches (MTs): two oxide trenches in the drift region and a trench gate extended to the buried oxide (BOX). Firstly, the oxide trenches enhance electric field strength because of the lower permittivity of oxide than that of Si. Secondly, oxide trenches bring in multi-directional depletion, leading to a reshaped electric field distribution and an enhanced reduced-surface electric-field (RESURF) effect. Both increase the breakdown voltage (BV). Thirdly, oxide trenches fold the drift region around the oxide trenches, leading to a reduced cell-pitch. Finally, the oxide trenches enhance the conductivity modulation, resulting in a high electron/hole concentration in the drift region as well as a low forward voltage drop (Von). The oxide trenches cause a low anode—cathode capacitance, which increases the switching speed and reduces the turn-off energy loss (Eoff). The MT SOI LIGBT exhibits a BV of 603 V at a small cell-pitch of 24 μm, a Von of 1.03 V at 100 A/cm-2, a turn-off time of 250 ns and Eoff of 4.1×10-3 mJ. The trench gate extended to BOX synchronously acts as dielectric isolation between high voltage LIGBT and low voltage circuits, simplifying the fabrication processes.

  1. Simulation of energy and fluence dependence of heavy ion induced displacement damage factor in bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Ravindra, M.; Joshi, G. R.; Damle, R.

    2004-05-01

    This article presents the theoretical calculation of the variation of displacement damage factors as a function of energy and rad equivalent fluence in bipolar junction transistor for various particulate radiation viz ., He, Si, Cl, Ti, Ni, Br, Ag, I, and Au. The calculation is based on the experimental data on gamma-ray induced gain degradation in a commercial space borne BJT (2N3019). The method involves the calculation of gamma-ray dose (rad(Si)) equivalent of effective particle fluence. The linear energy transfer (LET) in silicon for different particle radiation obtained from TRIM calculation has been used for the conversion of gamma-dose into fluence of various particles. The estimation predicts a smooth increase in the displacement damage factor as the mass of the ion increases. Further, the displacement damage factor reaches a maximum at the same value of energy, which corresponds to maximum LET for all heavy ions. The maximum value of damage factor marginally decreases with increasing ion fluence for an ion of given energy. The results are compared with the data available in the literature for proton, deuteron, and helium induced displacement damage.

  2. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  3. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Ma, G. M.; Luo, D. P.; Li, C. R.; Li, Q. M.; Wang, W.

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  4. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion

    PubMed Central

    Martí, A.; Luque, A.

    2015-01-01

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374

  5. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    PubMed

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  6. Pure valley- and spin-entangled states in a MoS2-based bipolar transistor

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Zou, Yonglian; Lou, Wen-Kai; Chang, Kai

    2014-11-01

    In this study, we show that the local Andreev reflection not only can be tuned largely by the type of the normal metal electrode, it also is related to the electrostatic potential in the superconductor region in a MoS2-based n (p ) -type metal/superconductor junction. In a MoS2-based n -type metal/n (p ) -type superconductor/p -type metal (n Sp ) transistor, nonlocal pure valley- and spin-entangled current can be tuned by the length and local gate voltage of a superconductor region. In particular, switching the quasiparticle type in both structures results in a series of intriguing features. Such an effect is not attainable in a graphene-based junction where the electron-hole symmetry enables the symmetry results to be observed. Besides, we have shown that the crossed Andreev reflection exhibits a maximum around ξ /2 instead of the exponential decay behavior in conventional superconductors and a maximum around ξ in the graphene material. The proposed straightforward experimental design and pure valley- and spin-entangled state can pave the way for a wider use in the entanglement based on material group-VI dichalcogenides.

  7. Effect of ultrathin AlN spacer on electronic properties of GaN/SiC heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyake, Hiroki; Kimoto, Tsunenobu; Suda, Jun

    2014-03-01

    GaN/SiC heterojunction bipolar transistors (HBTs) with an ultrathin AlN spacer layer at the n-GaN/p-SiC emitter junction are proposed for the control of the electronic properties of GaN/SiC heterojunctions. The insertion of an AlN spacer is found to be promising in terms of improving electron injection efficiency owing to the reduced potential barrier (0.54 eV) to electron injection and reduced recombination via interface traps. We also investigated the effect of pre-irradiation of active nitrogen atoms (N*) prior to AlN growth for the control of the electronic properties of GaN/AlN/SiC heterojunctions. We found that the potential barrier was further reduced to 0.46 eV by N* pre-irradiation. The HBT structure was successfully fabricated using our newly developed process featuring ion implantation and Pd ohmic contacts to obtain a low contact resistivity to a p-SiC base at a temperature as low as 600 °C. A fabricated HBT without an AlN layer showed a low current gain (α ˜ 0.001), whereas the GaN/AlN/SiC HBT showed improved current gains of 0.1 in the case of using a 1-nm-thick AlN spacer without N* pre-irradiation and 0.2 in the case of using a 2-nm-thick AlN spacer with N* pre-irradiation.

  8. Collector-up aluminum gallium arsenide/gallium arsenide heterojunction bipolar transistors using oxidized aluminum arsenide for current confinement

    NASA Astrophysics Data System (ADS)

    Massengale, Alan Ross

    1998-12-01

    The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.

  9. Picosecond Optoelectronic Measurement of the High Frequency Scattering Parameters of a GaAs FET (Field Effect Transistor).

    DTIC Science & Technology

    1986-06-15

    Scattering Parameters of a GaAs FET D. E. COOPER and S. C. MOSS Chemistry and Physics Laboratory Laboratory Operations The Aerospace Corporation El...Center Los Angels, CA 90009-2960 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNUMITED This report was submitted by The Aerospace Corporation , El Segundo, CA...and approved for The Aerospace Corporation by S. Feuerstein, Director, Chemistry and Physics Laboratory. Lt Richard J. Young/CGXr was the project

  10. Compact model for non-local avalanche effect in advanced bipolar transistors: An assessment of the relaxation length and its temperature dependence

    NASA Astrophysics Data System (ADS)

    Setekera, Robert; van der Toorn, Ramses

    2016-05-01

    We present a physics based compact model formulation for non-local avalanche effects. It is explicit and in terms of elementary functions, hence suitable for implementation in existing compact transistor models. The formulation has only two material coefficients as parameters: the energy relaxation length and its temperature coefficient. We present a detailed verification of our model against measured avalanche characteristics, as a function of both bias and temperature, for Si and SiGe industrial bipolar transistors. We demonstrate that the model is complete and accurate enough for the parameter extraction to be taken as an in situ measurement for both the electron energy relaxation length and its temperature coefficient: values obtained correspond to the values published earlier in the semiconductor literature.

  11. Reply to ``Comments on `Effects of using the more accurate intrinsic concentration on bipolar transistor modeling' '' [J. Appl. Phys. 68, 5911 (1990)

    NASA Astrophysics Data System (ADS)

    Liou, J. J.

    1991-10-01

    This reply addresses the issues raised by Rode and Rosenbaum regarding the bipolar junction transistor model developed in the subject paper [J. Appl. Phys. 68, 5911(1990)]. The error associated with Eq. (4) in the subject paper is discussed and corrected, the value of the space-charge-region recombination time used is specified, and the results are recalculated. It is shown that the error in Eq. (4) does not alter notably the trends of the current gain calculated using the two different intrinsic concentrations.

  12. Influence of doping dependent bandgap grading on electrical performance and design criteria of npn Al zGa 1-zAs/GaAs abrupt heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    1990-03-01

    Current-voltage characteristics of npn Al zGa 1- zAs/GaAs abrupt heterojunction bipolar transistors (HBTs) with nonuniform doping in the emitter and the base has been studied in some details. For the calculation of these characteristics the effects of both conduction band potential spike ΔEb and valence band discontinuity ΔEv have been taken into account. The extra electric field generated due to nonuniform base doping accelerates the flow of electrons, and minimizes the effect of ΔEv on the electron current density Jc.

  13. Effect of Si interface surface roughness to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor

    SciTech Connect

    Hasanah, Lilik Suhendi, Endi; Tayubi, Yuyu Rahmat; Yuwono, Heru; Nandiyanto, Asep Bayu Dani; Murakami, Hideki; Khairrurijal

    2016-02-08

    In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.

  14. Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20 um SiGe heterojunction bipolar transistors and circuits.

    SciTech Connect

    Fritz, Karl; Irwin, Timothy J.; Niu, Guofu; Fodness, Bryan; Carts, Martin A.; Marshall, Paul W.; Reed, Robert A.; Gilbert, Barry; Randall, Barbara; Prairie, Jason; Riggs, Pam; Pickel, James C.; LaBel, Kenneth; Cressler, John D.; Krithivasan, Ramkumar; Dodd, Paul Emerson; Vizkelethy, Gyorgy

    2003-09-01

    Combining broad-beam circuit level single-event upset (SEU) response with heavy ion microprobe charge collection measurements on single silicon-germanium heterojunction bipolar transistors improves understanding of the charge collection mechanisms responsible for SEU response of digital SiGe HBT technology. This new understanding of the SEU mechanisms shows that the right rectangular parallele-piped model for the sensitive volume is not applicable to this technology. A new first-order physical model is proposed and calibrated with moderate success.

  15. Dependence of low frequency noise in SiGe heterojunction bipolar transistors on the dimensional and structural features of extrinsic regions

    NASA Astrophysics Data System (ADS)

    Ul Hoque, Md Mazhar; Çelik-Butler, Zeynep; Martin, Samuel; Knorr, Chris; Bulucea, Constantin

    2006-07-01

    In this paper, the effects of different transistor design aspects on the noise behavior of SiGe heterojunction bipolar transistors have been investigated. Selectively implanted collector, although retards the base push-out, does not deteriorate the noise characteristics. Moreover, a higher dopant implant in the extrinsic base region intended for a smaller base resistance does not deteriorate the noise characteristics. While the interface between the SiGe epitaxial and polycrystalline layers does not have any detrimental impact, the emitter-poly overlap significantly influences both the DC and the noise characteristics. Smaller emitter-poly overlap results in an increased non-ideal base current at lower bias voltages and produces appreciable generation-recombination noise. For all the transistors, except for the ones with smaller emitter-poly overlap, the base current noise power spectral density shows a near quadratic dependence on the base current, where the noise is believed to originate mostly from the superposition of the generation-recombination noise in the intrinsic emitter-base junction. The base current noise power spectral density for the transistors with a smaller emitter-poly overlap shows a near linear dependence on the base current, which results from an increased contribution from the trap-assisted tunneling fluctuations of the minority carriers at the surface of the emitter-base junction.

  16. Analytical description of the injection ratio of self-biased bipolar transistors under the very high injection conditions of ESD events

    NASA Astrophysics Data System (ADS)

    Gendron, A.; Renaud, P.; Bafleur, M.; Nolhier, N.

    2008-05-01

    This paper proposes a 1D-analytical description of the injection ratio of a self-biased bipolar transistor under very high current injection conditions. Starting from an expression of the current gain based on the stored charge into the emitter and base regions, we derive a new analytical expression of the current injection ratio. This analytical description demonstrates the presence of an asymptotic limit for the injection ratio at very high current densities, as the ratio of electron/hole mobilities in the case of an NPN transistor and to the ratio of hole/electron saturation velocities for a PNP. Moreover, for the first time, a base narrowing effect is demonstrated and explained in the case of a self-biased PNP, in contrast with the base widening effect (Kirk effect [Kirk CT, A theory of transistor cutoff frequency (fT) falloff at high current densities, IRE Trans Electr Dev 1961: p. 164-73]) reported for lower current density. These results are validated by numerical simulation and show a good agreement with experimental characterizations of transistors especially designed to operate under extreme condition such as electrostatic discharge (ESD) events.

  17. I-V and DLTS study of generation and annihilation of deep-level defects in an oxygen-ion irradiated bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Madhu, K. V.; Kulkarni, S. R.; Ravindra, M.; Damle, R.

    A commercial bipolar junction transistor (2N 2219A, npn) irradiated with 84 MeV O6+-ions with fluence of the order of 1013 ions cm-2 is studied for radiation-induced gain degradation and deep-level defects or recombination centers. I-V measurements are made to study the gain degradation as a function of ion fluence. Properties such as activation energy, trap concentration and capture cross section of deep levels are studied by deep-level transient spectroscopy. Minority carrier trap energy levels with energies ranging from EC -0.17 eV to EC -0.55 eV are observed in the base-collector junction of the transistor. Majority carrier defect levels are also observed with energies ranging from EV +0.26 eV to EV +0.44 eV. The irradiated device is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 250 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for an increase in base current through Shockley-Read-Hall or multi-phonon recombination and consequent transistor gain degradation.

  18. Evolution of the MOS transistor - From conception to VLSI

    NASA Astrophysics Data System (ADS)

    Sah, Chih-Tang

    1988-10-01

    Historical developments of the MOSFET during the last 60 years are reviewed, from the 1928 patent disclosures of the field-effect conductivity modulation concept and the semiconductor triode structures proposed by Lilienfeld to the 1947 Shockley-originated efforts which led to the laboratory demonstration of the modern silicon MOSFET in 1960. A survey is then made of the milestones of the past 30 years leading to the latest submicron silicon logic CMOS and BICMOS (bipolar-junction transistor CMOS combined) arrays and the three-dimensional and ferroelectric extensions of Dennard's one-transistor DRAM cell. The status of the submicron lithographic technologies is summarized. Future trends of memory cell density and logic gate speed are projected. Comparisons of the switching speed of the silicon MOSFET with that of silicon bipolar and GaAs FETs are reviewed.

  19. Investigation on phonon scattering in a GaAs nanowire field effect transistor using the non-equilibrium Green's function formalism

    SciTech Connect

    Price, A. Martinez, A.

    2015-04-28

    Using quantum transport simulations, the impact of electron-phonon scattering on the transfer characteristic of a gate-all-around nanowire (GaAs) field effect transistor (NWFET) has been thoroughly investigated. The Non-Equilibrium Green's Function formalism in the effective mass approximation using a decoupled mode decomposition has been deployed. NWFETs of different dimensions have been considered, and scattering mechanisms including acoustic, optical and polar optical phonons have been included. The effective masses were extracted from tight binding simulations. High and low drain bias have been considered. We found substantial source to drain tunnelling current and significant impact of phonon scattering on the performance of the NWFET. At low drain bias, for a 2.2 × 2.2 nm{sup 2} cross-section transistor, scattering caused a 72%, 77%, and 81% decrease in the on-current for a 6 nm, 10 nm, and 20 nm channel length, respectively. This reduction in the current due to scattering is influenced by the increase in the tunnelling current. We include the percentage tunnelling for each valley at low and high drain bias. It was also found that the strong quantisation caused the relative position of the valleys to vary with the cross-section. This had a large effect on the overall tunnelling current. The phonon-limited mobility was also calculated, finding a mobility of 950 cm{sup 2}/V s at an inversion charge density of 10{sup 12 }cm{sup −2} for a 4.2 × 4.2 nm{sup 2} cross-section device.

  20. Ultrahigh Performance Staggered Lineup (“Type-II”) InP/GaAsSb/InP NpN Double Heterojunction Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Bolognesi, Colombo R.; Dvorak, Martin W.; Matine, Noureddine; Pitts, Oliver J.; Watkins, Simon P.

    2002-02-01

    We study the performance of staggered lineup NpN InP/GaAsSb/InP abrupt double heterojunction bipolar transistors (DHBTs) intended for ultrahigh speed applications. With a peak fT of 305 GHz (and fMAX=300 GHz), InP/GaAsSb/InP DHBTs are currently the fastest bipolar transistors ever implemented, and as such may challenge sub-100 nm gate InP HEMTs for > 40 Gb/s applications: previously published criteria suggest current device performance should be suitable for 80-100 Gb/s OEICs. InP/GaAsSb/InP DHBTs feature high breakdown voltages and low offset and knee voltages, and extremely high current drive levels enabled by the lack of collector current blocking at the staggered base/collector junction. InP/GaAsSb/InP DHBTs also feature important manufacturability advantages because the structure is entirely made up of uniform composition binary and ternary alloy layers.

  1. Efficient light output power for InGaP/GaAs heterojunction bipolar transistors incorporated with InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Hsuan; Wu, Meng-Chyi

    2016-07-01

    In this work, the current gain and optical frequency response of the heterojunction bipolar transistor (HBT) and heterojunction bipolar light-emitting transistor (HBLET) are investigated. Compared to the conventional HBT, two-pair quantum wells are embedded in the base region of the HBLET. The current gain of HBLET increases with temperature, which shows dissimilar electrical properties to the HBT. Although the current gain of HBLET is much smaller than that of HBT, the decrement of current gain is converted to enhance the light output power. The light output power of HBLET can reach 0.96 mW at 90 mA. The HBLET exhibits the 3-dB bandwidths (f3dB) of 554 and 559 MHz at 30 and 50 mA, respectively. It is found that the 3-dB frequency is proportional to the square root of base current density, while the minority carrier lifetime is inversely proportional to the square root of base current density. Therefore, our results suggest that HBLET with the high light output power shows a great potential in the short range optical data communications.

  2. Control of sidegating effects in AlGaAs/GaAs heterostructure field-effect transistors by modification of GaAs wafer surfaces

    NASA Astrophysics Data System (ADS)

    Gray, M. L.; Reynolds, C. L.; Parsey, J. M., Jr.

    1990-07-01

    Sidegating characteristics of AlGaAs/GaAs heterostructure field-effect transistors, fabricated on molecular-beam epitaxially grown layers, were investigated with emphasis on the material properties. A systematic analyses of the epitaxial layers concluded with the identification of the substrate-superlattice-buffer-layer interface as the predominant cause of the sidegating effect. Remnant carbon contamination on the GaAs surface was found to produce a p-type, conducting interfacial region. Controlled oxidation of the carbon on the wafers was accomplished using ultraviolet radiation. This oxide was desorbed in situ before epitaxial growth. Secondary-ion-mass spectroscopy was employed to estimate the carbon concentration at the substrate-epitaxial-layer interface for standard cleaned and ultraviolet-ozone-treated wafers. The carbon concentration of the interfacial region decreased by two orders of magnitude for the wafers exposed to the ultraviolet radiation. Hall-effect measurements of standard cleaned and ultraviolet-ozone-treated heterostructure wafers, prepared with various buffer layer thicknesses, demonstrated the dominant influence of the interfacial p-type region on the electronic properties of the material. A comparison of sidegating characteristics for devices fabricated on the two types of wafers is presented and discussed. A dramatic improvement in sidegating was observed for the wafers subjected to the ultraviolet-ozone cleaning procedure.

  3. Common-base multi-finger submicron InGaAs/InP double heterojunction bipolar transistor with fmax of 305 GHz

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Su, Y.; Cheng, W.; Liu, X.; Xu, A.; Qi, M.

    2008-11-01

    A layout of a common-base four-finger InGaAs/InP double heterostructure bipolar transistor (DHBT) has been designed and the corresponding DHBT has been fabricated successfully by using planarization technology. The area of each emitter finger was 1 × 15 μm2. The breakdown voltage was more than 7 V, the current could be more than 100 mA. The maximum output power can be more than 80 mW derived from the DC characteristics. The maximum oscillation frequency was as high as 305 GHz at IC = 50 mA and VCB = 1.5 V. The DHBT is thus promising for the medium power amplifier and voltage controlled oscillator (VCO) applications at W band and higher frequencies.

  4. NpN-GaN/InxGa1-xN/GaN heterojunction bipolar transistor on free-standing GaN substrate

    NASA Astrophysics Data System (ADS)

    Lochner, Zachary; Jin Kim, Hee; Lee, Yi-Che; Zhang, Yun; Choi, Suk; Shen, Shyh-Chiang; Doug Yoder, P.; Ryou, Jae-Hyun; Dupuis, Russell D.

    2011-11-01

    Data and analysis are presented for NpN-GaN/InGaN/GaN double-heterojunction bipolar transistors (HBTs) grown and fabricated on a free-standing GaN (FS-GaN) substrate in comparison to that on a sapphire substrate to investigate the effect of dislocations in III-nitride HBT epitaxial structures. The performance characteristics of HBTs on FS-GaN exhibit a maximum collector current density of ˜12.3 kA/cm2, dc current gain of ˜90, and maximum differential gain of ˜120 without surface passivation, representing a substantial improvement over similar devices grown on sapphire. This is attributed to the reduction in threading dislocation density afforded by using a homoepitaxial growth on a high-crystalline-quality substrate. The minority carrier diffusion length increases significantly owing to not only a mitigated carrier trap effect via fewer dislocations, but also possibly reduced microscopic localized states.

  5. Effects of base doping and carrier lifetime on differential current gain and temperature coefficient of 4H-SiC power bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Niu, X.; Fardi, H.

    2012-04-01

    4H-SiC NPN bipolar junction transistor (BJT) is studied systematically by performing two-dimensional numerical simulations. Several design issues are discussed. Depending on the doping concentration of the base and the carrier lifetimes, both positive and negative temperature coefficients in the common emitter current gain could exist in 4H-SiC NPN BJTs with aluminium-doped base. The temperature coefficients of the current gain at different base doping concentrations and different carrier lifetimes have been determined. A high base doping concentration can reduce the requirement for the carrier lifetime in order to obtain negative temperature coefficient in current gain. Device simulations are performed to evaluate the carrier lifetimes by fitting the measured output IC -VCE curves. An excellent fitting is obtained and the base electron lifetime and the emitter hole lifetime are extracted to be about 22 and 5.7 ns, respectively.

  6. A New 600 V Punch Through-Insulated Gate Bipolar Transistor with the Monolithic Fault Protection Circuit Using the Floating p-Well Voltage Detection

    NASA Astrophysics Data System (ADS)

    Ji, In-Hwan; Jeon, Byung-Chul; Choi, Young-Hwan; Ha, Min-Woo; Han, Min-Koo

    2006-10-01

    A new fault sensing scheme of the insulated gate bipolar transistor (IGBT) employing the floating p-well, which detects the over-voltage of the floating p-well under the short circuit fault condition, is proposed and implemented by fabricating the main IGBT and gate voltage pull-down circuit using the widely used planar IGBT process. The floating p-well structure also improves the avalanche energy of IGBT in addition to detecting the fault signal. The detection of fault and gate voltage pull-down operation is achieved by the proposed fault protection scheme employing the floating p-well voltage detection. The proposed fault protection circuit was measured under the hard switching fault (HSF) and fault under load (FUL) conditions. The normal switching behavior of the main IGBT with the proposed protection circuit was also investigated under inductive load switching conditions.

  7. Enhanced Miller plateau characteristics of a 4H-SiC insulated-gate bipolar transistor in the presence of interface traps

    NASA Astrophysics Data System (ADS)

    Navarro, Dondee; Tone, Akihiro; Kikuchihara, Hideyuki; Morikawa, Yoji; Miura-Mattausch, Mitiko

    2017-04-01

    Miller plateau characteristics of a 4H-SiC insulated-gate bipolar transistor (IGBT) is investigated during a gate voltage turn-on under the presence of interface carrier traps at the MOSFET gate oxide. The plateau, which is observed in the device gate-emitter voltage, increased with respect to both height and length. The plateau height is mainly determined by the density increase of trap states, which also causes slow charging of the gate capacitance in the overlap region that results in a longer plateau length. The shallow trap states contribute mainly to the plateau increase. It is observed that the switching loss at turn-on can increase by more than 60% due mainly to the carrier traps at the shallow trap states.

  8. Investigation of 4H-SiC insulated-gate bipolar transistor turn-off performance for achieving low power loss

    NASA Astrophysics Data System (ADS)

    Navarro, Dondee; Pesic, Iliya; Morikawa, Yoji; Furui, Yoshiharu; Miura-Mattausch, Mitiko

    2016-04-01

    The dynamic characteristics of a 4H-SiC insulated-gate bipolar transistor (IGBT) at pulse switching is investigated by incorporating reported measurements of the interface defect density to device simulation. Different trap features such as energy states and trap time constants are investigated to determine the influence of traps on circuit performance. The capture cross-section parameter used in the simulation depicts the probability of traps to trap/detrap carriers which relates to the carrier trap time constant. It is demonstrated that trapped carriers from the on-state condition cause enhanced generation current during the off-state condition, which give rise to undesired leakage current in addition to the threshold voltage shift previously reported. The device power dissipation is increased by a factor of 100 due to the defects.

  9. Surface roughness in sulfur ion-implanted InP with molecular beam epitaxy regrown double-heterojunction bipolar transistor layers

    SciTech Connect

    Hu, T.-C.; Chang, M.F.; Weimann, Nils; Chen Jianxin; Chen, Y.-K.

    2005-04-04

    We report on deep ion-implantation of sulfur into InP substrates to replace the epitaxial subcollector layer of double-heterojunction bipolar transistors. Using optimized implantation conditions of 350 keV energy and 1x10{sup 15} cm{sup -2} dose, we achieved a subcollector sheet resistance of 15 {omega}/square. Under well-controlled regrowth conditions a root-mean-square roughness of 12 A is measured from DHBT epitaxial layers grown on implanted InP substrates, comparable to DHBT epitaxial layers grown on n{sup +} epiready unimplanted substrates. We observe a pronounced increase in surface roughness of epitaxial layer beyond a threshold ion dose, depending on implantation energy. Large-area DHBT devices result with sulfur-ion implanted subcollector shows similar characteristics compared to devices fabricated on n{sup +}-doped InP substrates.

  10. Numerical investigation of temperature field Induced by dual wavelength lasers in sub-microsecond laser annealing technology for insulated gate bipolar transistor

    NASA Astrophysics Data System (ADS)

    Cui, GuoDong; Ma, Mingying; Wang, Fan; Sun, Gang; Lan, Yanping; Xu, Wen

    2015-07-01

    To enhance the performance of the Insulated Gate Bipolar Transistor (IGBT), sub-microsecond laser annealing (LA) is propitious to achieve maximal dopant activation with minimal diffusion. In this work, two different lasers are used as annealing resource: a continuous 808 nm laser with larger spot is applied to preheat the wafer and another sub-microsecond pulsed 527 nm laser is responsible to activate the dopant. To optimize the system's performance, a physical model is presented to predict the thermal effect of two laser fields interacting on wafer. Using the Finite-Element method (FEM), we numerically investigate the temperature field induced by lasers in detail. The process window corresponding to the lasers is also acquired which can satisfy the requirements of the IGBT's annealing.

  11. Switching characteristics of a 4H-SiC insulated-gate bipolar transistor with interface defects up to the nonquasi-static regime

    NASA Astrophysics Data System (ADS)

    Pesic, Iliya; Navarro, Dondee; Fujinaga, Masato; Furui, Yoshiharu; Miura-Mattausch, Mitiko

    2015-04-01

    The switching characteristics of a trench-type 4H-SiC insulated-gate bipolar transistor (IGBT) device with interface defects are analyzed up to the nonquasi-static (NQS) switching regime using reported interface density measurements and device simulation. Collector current degradation characterized by threshold voltage shift to higher gate voltages and reduction of current magnitude due to carrier trapping are observed under quasi-static (QS) simulation condition. At slow switching of the gate voltage, carrier trapping causes a hump in the transient current at the start of conduction. At very fast switching, the current hump is limited by the NQS effect which results to a reduced switching efficiency and increased on-resistance.

  12. DC and High Frequency Characterization of Metalorganic Chemical Vapor Deposition (MOCVD) Grown InP/InGaAs PNP Heterojunction Bipolar Transistor

    NASA Astrophysics Data System (ADS)

    Cui, Delong; Hsu, Shawn S. H.; Pavlidis, Dimitris

    2002-02-01

    InP/InGaAs PNP heterojunction bipolar transistor (HBT) layers have been grown by metalorganic chemical vapor deposition (MOCVD) and devices have been fabricated using a self-aligned processing technology. A zinc-doped InP layer has been employed as the wide-bandgap emitter layer for the PNP HBT. The base layer used a 500 Å thick n-type InGaAs layer doped at 5× 1018 cm-3. Successful high frequency operation of these devices has been demonstrated. A single-emitter 1× 20 μm2 MOCVD-grown PNP InP/InGaAs HBT achieved current gain cutoff frequency (fT) of more than 11 GHz at a current density (JC) of 8.25× 104 A/cm2.

  13. Silicon/silicon germanium heterostructures: Materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Chung, Sung-Yong

    With the advent of the first transistor in 1947, the integrated circuit (IC) industry has rapidly expanded with the tremendous advances in the development of IC technology. The driving force in the evolution of IC technology is the reduction of transistor sizes. Without a doubt, transistor miniaturization will face fundamental physical limitations imposed by further dimensional scaling of silicon transistors in the near future. According to the 2004 International Technology Roadmap for Semiconductors (ITRS), the width of a gate electrode for complementary metal-oxide-semiconductor (CMOS) is projected to be a mere 7 nm by the end of 2018. No further solutions have been found. Since the 2001 ITRS, tunneling devices have been evaluated as an emerging technology to augment silicon CMOS. Transistor circuitry incorporating tunneling devices realized using III-V semiconductors has exhibited superior performance over its transistor-only counterparts. However, due to fundamental differences in material properties, such technology is not readily compatible with the mainstream platforms (>95% market share of semiconductors) of CMOS and HBT technologies. Recently, we demonstrated the successful monolithic integration of Si-based resonant interband tunnel diodes (RITDs) with CMOS and SiGe HBT, which makes them more attractive than III-V based tunnel diodes for system level integration. This dissertation is concerned with the development of quantum functional tunneling devices, RITDs, and high-speed transistors, HBTs, using Si/SiGe heterostructures as well as material growth and electrical properties of Si/SiGe heterostructures. Emphasis is placed on the development of Si/SiGe-based RITDs, HBTs, and their monolithic integration for 3-terminal negative differential resistance (NDR) devices. The operating principles of Si-based RITDs and the integration of RITD with HBT are also discussed.

  14. Design of a 2.7-GHz linear OTA and a 250-MHz elliptic filter in bipolar transistor-array technology

    NASA Astrophysics Data System (ADS)

    Wyszynski, Adam; Schaumann, Rolf; Szczepanski, Stanislaw; van Halen, Paul

    1993-01-01

    The design of a tunable high-frequency fully differential bipolar operational transconductance amplifier (OTA) is presented. Techniques resulting in tunability and broadbanding are discussed, as well as unavoidable tradeoffs resulting from the lack of a vertical pnp device. Using an 8 GHz bipolar transistor array process, the simulated -3 dB frequency of the OTA is over 2.7 GHz, the maximum linear input range is +/- 2.5 V, and the power dissipation is 28 mW for a power supply of +/- 5 V. The OTA can also operate at a low power supply of +/- 2.5 V. Applying the OTA as a building block, the design of a third-order elliptic OTA-C filter with cutoff frequency of 250 MHz and tuning range from 200 to 290 MHz is presented. Analysis of filter nonidealities, as well as predistortion and compensation techniques, are discussed. Detailed SPICE simulations verify the results of hand calculations and show that temperature variations from -30 to +100 C and supply variations from +/- 4.5 to +/- 7.5 V change the cutoff frequency of the filter by less than 10 percent. The Q-factor can be electronically adjusted for all frequencies in the tuning range.

  15. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    DOEpatents

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  16. Novel Metal-Sulfur-Based Air-Stable Passivation of GaAs with Very Low Surface State Densities

    SciTech Connect

    Ashby, Carol I.H.; Baca, Albert G.; Chang, P.-C; Hafich, M.J.; Hammons, B.E.; Zavadil, Kevin R.

    1999-08-09

    A new air-stable electronic surface passivation for GaAs and other III-V compound semiconductors that employs sulfur and a suitable metal ion, e.g., Zn, and that is robust towards plasma dielectric deposition has been developed. Initial improvements in photoluminescence are twice that of S-only treatments and have been preserved for >11 months with SiO{sub x}N{sub y} dielectric encapsulation. Photoluminescence and X-ray photoelectron spectroscopies indicate that the passivation consists of two major components with one being stable for >2 years in air. This process improves heterojunction bipolar transistor current gain for both large and small area devices.

  17. Influence of the emitter-base junction depth on the low frequency noise of Si/SiGeC heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Benoit, Patrice; Chay, Cyril; Delseny, Colette; Pascal, Fabien; Llinares, Pierre; Vildeuil, Jean-Charles; Baudry, Helene

    2004-05-01

    This work presents low frequency noise results in high-speed Si/SiGeC heterojunction bipolar transistors (HBTs). In this new generation of HBTs carbon doping is processed during of the deposit of the epitaxial SiGe base layer in order to suppress boron out-diffusion. Low frequency noise study is performed on three type of transistors that differ by the thickness of the Si cap layer. The Si Cap layer is a non intentional doped Si layer deposit after the SiGeC base layer and prior the contact emitter structure. Thus, the results on the three different Si Cap HBTs allow us to study the influence of the Emitter-Base junction depth on the low frequency noise of these HBTs. Measurements of the equivalent input noise spectral density (SiB) showed that spectra are composed of a 1/f component and the white noise is always reached at low bias. For the smallest transistors we observed the presence of Lorentzian(s) component(s). The excess noise sources are mainly located at the intrinsic emitter-base junction. Concerning the 1/f noise level, a quadratic dependence on base current bias and an inverse dependence on the emitter area are found. The normalized figure of merit, Kb = KfxAE, is ranging between 1.7 and 2.1 10-9 μm2 and is among the best results published concerning SiGe HBTs, this shows that the incorporation of carbon do not have any consequence for the 1/f noise level and more generally for the LF noise characteristics. In the Si Cap thickness range used in this work, no noise degradation is observed when the electrical emitter-base junction is getting closer to the poly/mono emitter interface. Hence DC and AC characteristics could be optimized without changing the LF noise performances. Finally, from measurements at the input and at the output, the emitter series resistance is extracted and is found to be proportional to the Si Cap thickness.

  18. A dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor on a silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhang, Bo; Luo, Xiao-Rong; Li, Zhao-Ji

    2013-07-01

    In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift region, is proposed and discussed. The device can not only decrease the specific on-resistance Ron,sp, but also simultaneously improve the temperature performance. Simulation results show that the proposed LTIGBT achieves an ultra-low on-state voltage drop of 1.31 V at 700 A·cm-2 with a small half-cell pitch of 10.5 μm, a specific on-resistance Ron,sp of 187 mΩ·mm2, and a high breakdown voltage of 250 V. The on-state voltage drop of the DGDI LTIGBT is 18% less than that of the DI LTIGBT and 30.3% less than that of the conventional LTIGBT. The proposed LTIGBT exhibits a good positive temperature coefficient for safety paralleling to handling larger currents and enhances the short-circuit capability while maintaining a low self-heating effect. Furthermore, it also shows a better tradeoff between the specific on-resistance and the turnoff loss, although it has a longer turnoff delay time.

  19. A study of the effects of the base doping profile on SiGe heterojunction bipolar transistor performance for all levels of injection

    NASA Astrophysics Data System (ADS)

    Khanduri, Gagan; Panwar, Brishbhan

    2006-04-01

    The effects of two different base doping profiles on the current gain and cut-off frequency for all levels of current injection have been studied for NPN Si/SiGe/Si double heterojunction bipolar transistors (SiGe DHBTs). The two-dimensional simulation results for a SiGe DHBT with uniform base doping and a fixed base Gummel number are compared with a non-uniform base doping profile SiGe drift-DHBT device. The study explains the performance of SiGe HBTs at different injection levels by analysing the electron and hole mobility, drift velocity, electric field, junction capacitances and intrinsic and extrinsic base region conductivities. The base doping profile in the SiGe drift-DHBT is controlled in such a way that it creates a net accelerating drift field in the quasi-neutral base for minority electrons. This accelerating field subsequently improves the current gain and cut-off frequency for the SiGe drift-DHBT in comparison with the SiGe DHBT for all levels of injection.

  20. Radiation effects on silicon bipolar transistors caused by 3-10 MeV protons and 20-60 MeV bromine ions

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Geng, Hongbin; Lan, Mujie; Liu, Chaoming; Yang, Dezhuang; He, Shiyu

    2010-03-01

    The current gain degradation in silicon NPN bipolar junction transistors (BJTs) was examined under irradiation with 3-10 MeV protons and 20-60 MeV bromine (Br) ions with various dose levels. To characterize the radiation damage of the NPN BJTs, the ionizing dose D i and displacement dose D d as a function of chip depth in the NPN BJTs were calculated for both the protons and Br ions with different energies. Based on the irradiation testing and calculated results, it is shown that the current gain degradation of NPN BJTs is sensitive to the ratio of D d/( D d+ D i) in the sensitive region given by protons and Br ions. The irradiation particles (protons and Br ions), which give larger D d/( D d+ D i) at a given total dose, would generate more severe damage to the NPN BJTs. The reciprocal of the gain variation as a function of the displacement dose was compared, showing that the Messenger-Spratt equation becomes relevant to describe the experimental data, when the ratio of the D d/( D d+ D i) are larger and the displacement dose are higher than a certain value.

  1. Comparative investigation of InGaP/GaAs/GaAsBi and InGaP/GaAs heterojunction bipolar transistors

    SciTech Connect

    Wu, Yi-Chen; Tsai, Jung-Hui; Chiang, Te-Kuang; Wang, Fu-Min

    2015-10-15

    In this article the characteristics of In{sub 0.49}Ga{sub 0.51}P/GaAs/GaAs{sub 0.975}Bi{sub 0.025} and In{sub 0.49}Ga{sub 0.51}P/GaAs heterojunction bipolar transistor (HBTs) are demonstrated and compared by two-dimensional simulated analysis. As compared to the traditional InGaP/GaAs HBT, the studied InGaP/GaAs/GaAsBi HBT exhibits a higher collector current, a lower base-emitter (B–E) turn-on voltage, and a relatively lower collector-emitter offset voltage of only 7 mV. Because the more electrons stored in the base is further increased in the InGaP/GaAs/GaAsBi HBT, it introduces the collector current to increase and the B–E turn-on voltage to decrease for low input power applications. However, the current gain is slightly smaller than the traditional InGaP/GaAs HBT attributed to the increase of base current for the minority carriers stored in the GaAsBi base.

  2. High-Speed Uni-Traveling-Carrier Photodiodes Monolithically Integrated with InP Heterojunction Bipolar Transistors using Be Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kashio, Norihide; Yamahata, Shoji; Ida, Minoru; Kurishima, Kenji; Sano, Kimikazu

    2006-10-01

    Uni-traveling-carrier photodiodes (UTC-PDs) can be monolithically integrated with InP heterojunction bipolar transistors (HBTs) using Be ion implantation and rapid thermal annealing (RTA) for an activation of implanted Be. UTC-PDs share the base and collector layers of the HBTs; the photoabsorption layer of the UTC-PD is formed by selectively doping the collector with Be. The fabricated UTC-PDs exhibit an output voltage of over 0.5 V and a 3-dB bandwidth of 100 GHz. The HBTs fabricated on the same wafer provide a peak ft of 150 GHz and a peak fmax of 250 GHz at a collector current density of 1 mA/μm2. The RTA used to fabricate the UTC-PDs does not seriously degrade the current gain of the HBTs. These results indicate that Be ion implantation is a promising technique for integrating UTC-PDs and InP HBTs on the same wafer.

  3. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    NASA Astrophysics Data System (ADS)

    Ou-Peng, Li; Yong, Zhang; Rui-Min, Xu; Wei, Cheng; Yuan, Wang; Bing, Niu; Hai-Yan, Lu

    2016-05-01

    Design and characterization of a G-band (140-220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140-190 GHz respectively. The saturation output powers are -2.688 dBm at 210 GHz and -2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501091) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2014J003 and ZYGX2013J020).

  4. Epitaxial growth and characterization of thick multi-layer 4H-SiC for very high-voltage insulated gate bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tetsuya; Nakayama, Koji; Tanaka, Atsushi; Asano, Katsunori; Ji, Shi-yang; Kojima, Kazutoshi; Ishida, Yuuki; Tsuchida, Hidekazu

    2015-08-01

    Techniques to fabricate thick multi-layer 4H-SiC epitaxial wafers were studied for very high-voltage p- and n-channel insulated gate bipolar transistors (IGBTs). Multi-layer epitaxial growth, including a thick p- drift layer (˜180 μm), was performed on a 4H-SiC n+ substrate to form a p-IGBT structure. For an n-IGBT structure, an inverted growth process was employed, in which a thick n- drift layer (˜180 μm) and a thick p++ injector layer (>55 μm) were epitaxially grown. The epitaxial growth conditions were modified to attain a low defect density, a low doping concentration, and a long carrier lifetime in the drift layers. Reduction of the forward voltage drop was attempted by using carrier lifetime enhancement processes, specifically, carbon ion implantation/annealing and thermal oxidation/annealing or hydrogen annealing. Simple PiN diodes were fabricated to demonstrate the effective conductivity modulation in the thick drift layers. The forward voltage drops of the PiN diodes with the p- and n-IGBT structures promise to obtain the extremely low-loss and very high-voltage IGBTs. The change in wafer shape during the processing of the very thick multi-layer 4H-SiC is also discussed.

  5. Vertical Hole Transport and Carrier Localization in InAs /InAs1 -xSbx Type-II Superlattice Heterojunction Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Olson, B. V.; Klem, J. F.; Kadlec, E. A.; Kim, J. K.; Goldflam, M. D.; Hawkins, S. D.; Tauke-Pedretti, A.; Coon, W. T.; Fortune, T. R.; Shaner, E. A.; Flatté, M. E.

    2017-02-01

    Heterojunction bipolar transistors are used to measure vertical hole transport in narrow-band-gap InAs /InAs1 -xSbx type-II superlattices (T2SLs). Vertical hole mobilities (μh) are reported and found to decrease rapidly from 360 cm2/V s at 120 K to approximately 2 cm2/V s at 30 K, providing evidence that holes are confined to localized states near the T2SL valence-miniband edge at low temperatures. Four distinct transport regimes are identified: (1) pure miniband transport, (2) miniband transport degraded by temporary capture of holes in localized states, (3) hopping transport between localized states in a mobility edge, and (4) hopping transport through defect states near the T2SL valence-miniband edge. Region (2) is found to have a thermal activation energy of ɛ2=36 meV corresponding to the energy range of a mobility edge. Region (3) is found to have a thermal activation energy of ɛ3=16 meV corresponding to the hopping transport activation energy. This description of vertical hole transport is analogous to electronic transport observed in disordered amorphous semiconductors displaying Anderson localization. For the T2SL, we postulate that localized states are created by disorder in the group-V alloy of the InAs1 -xSbx hole well causing fluctuations in the T2SL valence-band energy.

  6. Simulated optimum gate and encapsulant properties for a refractory gate GaAs metal-semiconductor field effect transistor during annealing

    SciTech Connect

    Kitajo, S.; Kanamori, M.

    1993-03-01

    The stress distribution in a refractory gate GaAs substrate during annealing was calculated by computer simulation, using the finite element method. Simulations were used to investigate the correlation between the thermal expansion coefficient of the gate and the encapsulant internal stress. The condition in which minimum or no dislocations were induced into the GaAs substrate were studied. It was demonstrate that the best thermal expansion coefficient value of the gate was close to the value that was reported for tungsten. It was concluded that, by controlling the encapsulant thermal stress of SiO{sub 2} or SiN encapsulant, during high temperature annealing, a dislocation-free GaAs substrate could be obtained. 6 refs., 6 figs., 1 tab.

  7. Characterization of Minority Carrier Transport and Heavy Doping Effects in N-SILICON/P-SILICON(1-X) Germanium(x)/n - Heterojunction Bipolar Transistors.

    NASA Astrophysics Data System (ADS)

    Ghani, Tahir

    1995-01-01

    The n-Si/p-Si_{rm 1 -x}Ge_{rm x} /n-Si heterojunction bipolar transistor (HBT) is one of the most promising devices for manufacturing Si -based ultra-fast circuits. The Si_{ rm 1-x}Ge_{rm x} layer is used as the base of the transistor and can be grown by a slight modification of Si technology. The purpose of this work is to experimentally characterize the effects of heavy doping on electron transport in p -type strained Si_{rm 1-x} Ge_{rm x}. The device and process design issues specific to the fabrication of heavily doped n-Si/p^+ -Si_{rm 1-x}Ge _{rm x}n-Si HBTs are outlined. Boron out-diffusion from the p^+ -Si_{rm 1-x}Ge _{rm x} base is significantly enhanced during 850^circC, 10 sec. rapid thermal annealing, following emitter contact implantation. Techniques which dramatically reduce boron out-diffusion during emitter contact implant activation are introduced. HBTs incorporating these techniques were fabricated to characterize the minority carrier transport parameters in p^+-Si_ {rm 1-x}Ge_{ rm x}. A.C. and D.C. measurements were used to independently extract the doping dependence of minority electron diffusivity (D_{ rm n}) and apparent dopant induced bandgap narrowing (DeltaE_ {rm g-app}) for p-type, strained Si_{rm 1-x}Ge _{rm x} layers ( ~10^{17} -10^{20} cm^ {-3}). The results indicate that DeltaE_{rm g-app } in Si_{rm 1-x} Ge_{rm x} is similar to that in Si for dopings <10 ^{19} cm^ {-3} but is smaller in Si_{1-x}Ge_{ rm x} at higher doping concentrations. This is attributed to the lower valence band density of states in Si_{1-x}Ge _{rm x}, which makes the effect of Fermi-Dirac statistics more pronounced. The dopant induced bandgap narrowing values, obtained after correcting for Fermi-Dirac statistics, are in good agreement with theoretical predictions. These results are important for modeling the current characteristics of high performance Si/Si_{rm 1-x}Ge _{rm x} HBTs.

  8. Probing plasma-surface interactions with the transmission electron microscope or the Si-collector interface of the plasma bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Houlahan, T. J., Jr.; Li, B.; Xu, Z.; Jiang, J.; Liu, G. L.; Ruzic, D. N.; Eden, J. G.

    2013-11-01

    Two platforms developed to probe the plasma-solid interface are briefly reviewed here. A sensitive diagnostic of the interaction between a low-temperature plasma and a silicon surface is provided by the plasma bipolar junction transistor (PBJT) in which e--h+ (semiconductor) and e--ion (gas phase) plasmas are separated by a nanoscale potential barrier but coupled by a strong (>1 V µm-1) electric field. Electrical properties of the Si base-collector plasma interface are controlled by the bias applied to the PBJT emitter-base junction, as well as the morphology and electronic structure of the base surface facing the collector plasma. Recent experiments are described in which the Si(100) surface of the PBJT base is transformed into black Si, a nanostructured array comprising ˜3 × 109 nanocones. Each cone is ˜100 nm in height and has a radius of curvature at its tip of <1 nm. Altering the base surface so as to intentionally enhance field emission results in burst-mode operation of the PBJT in which the collector current oscillates as a result of the periodic contraction (or collapse) and revival of the plasma sheath. The observed oscillation frequencies (3.6-13 kHz) are consistent with the transit time of ions across the sheath. Integration of a microplasma device with a transmission electron microscope has also been realized recently (Tai et al 2013 Sci. Rep. 3 1325). This diagnostic tool allows plasma-surface interactions to be observed in real-time with a spatial resolution <100 nm. Although initial experiments concerned the growth of Au islands in a dc plasma, the extension of this probe to nanostructured and spatially modulated surfaces is proposed.

  9. Gallium arsenide-gallium nitride wafer fusion and the n-aluminum gallium arsenide/p-gallium arsenide/n-gallium nitride double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Estrada, Sarah M.

    This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta

  10. Interpreting Transistor Noise

    NASA Astrophysics Data System (ADS)

    Pospieszalski, M. W.

    2010-10-01

    The simple noise models of field effect and bipolar transistors reviewed in this article are quite useful in engineering practice, as illustrated by measured and modeled results. The exact and approximate expressions for the noise parameters of FETs and bipolar transistors reveal certain common noise properties and some general noise properties of both devices. The usefulness of these expressions in interpreting the dependence of measured noise parameters on frequency, bias, and temperature and, consequently, in checking of consistency of measured data has been demonstrated.

  11. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  12. Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Bhasin, Kul. B.

    1987-01-01

    Direct current and also the microwave characteristics of optically illuminated AlGaAs/GaAs HEMT are experimentally measured for the first time and compared with that of GaAs MESFET. The results showed that the average increase in the gain is 2.89 dB under 1.7 nW/sq cm optical intensity at 0.83 microns. Further, the effect of illumination on S-parameters is more pronounced when the devices are biased close to pinch off. Novel applications of optically illuminated HEMT as a variable gain amplifier, high speed high frequency photo detector, and mixer are demonstrated.

  13. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  14. Ka-band IQ vector modulator employing GaAs HBTs

    NASA Astrophysics Data System (ADS)

    Yuxiong, Cao; Danyu, Wu; Gaopeng, Chen; Zhi, Jin; Xinyu, Liu

    2011-06-01

    The importance of high-performance, low-cost and millimeter-wave transmitters for digital communications and radar applications is increasing. The design and performance of a Ka-band balanced in-phase and quadrature-phase (I-Q) type vector modulator, using GaAs heterojunction bipolar transistors (HBTs) as switching elements, are presented. The balanced technique is used to remove the parasitics of the HBTs to result in near perfect constellations. Measurements of the monolithic microwave integrated circuit (MMIC) chip with a size of 1.89 × 2.26 mm2 demonstrate an amplitude error below 1.5 dB and the phase error within 3° between 26 and 40 GHz except for a singular point at 35.6 GHz. The results show that the technique is suitable for millimeter-wave digital communications.

  15. Low phase noise GaAs HBT VCO in Ka-band

    NASA Astrophysics Data System (ADS)

    Ting, Yan; Yuming, Zhang; Hongliang, Lü; Yimen, Zhang; Yue, Wu; Yifeng, Liu

    2015-02-01

    Design and fabrication of a Ka-band voltage-controlled oscillator (VCO) using commercially available 1-μm GaAs heterojunction bipolar transistor technology is presented. A fully differential common-emitter configuration with a symmetric capacitance with a symmetric inductance tank structure is employed to reduce the phase noise of the VCO, and a novel π-feedback network is applied to compensate for the 180° phase shift. The on-wafer test shows that the VCO exhibits a phase noise of -96.47 dBc/Hz at a 1 MHz offset and presents a tuning range from 28.312 to 28.695 GHz. The overall dc current consumption of the VCO is 18 mA with a supply voltage of -6 V The chip area of the VCO is 0.7 × 0.7 mm2.

  16. High Temperature Heterojunction Bipolar Transistors

    DTIC Science & Technology

    1994-04-15

    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  17. A review of InP/InAlAs/InGaAs based transistors for high frequency applications

    NASA Astrophysics Data System (ADS)

    Ajayan, J.; Nirmal, D.

    2015-10-01

    This paper presents an overview of the rapid progress being made in the development of InP based devices for high speed applications. Over the past few decades, major aero space industries have been developing InP based hetero structure devices like hetero junction bipolar transistors (HBTs) and high electron mobility transistors (HEMT) because of their low DC power due to excellent low voltage operation and milli-meter wave frequency performance even though its widespread use has been limited by high cost. InP based HBTs, MOSFETs and HEMTs have also been developed by commercial companies for applications in high speed fiber optic communications because InP based device technologies takes advantage of the intrinsic material properties such as high thermal conductivity, high electron mobility and low energy band gap for low voltage operation compared to silicon, silicon-germenium, and GaAs based semiconductor devices.

  18. Investigation of carbon profiles for enhanced boron confinement and improved carrier transport in strained silicon germanium nanolayers for heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Enicks, Darwin Gene

    This research covers a breadth of topics, in Chapters 1 through 7, ranging from the crystal lattice, to dopant diffusion in SiGe, to SiGe and SiGeC chemical vapor deposition, to the Si/SiGe and Si/SiGeC energy band structure, and NPN SiGeC HBT AC and DC characteristics. Chapters 8 and 9 contain the results of the research, which relates the film growth and carbon positioning to boron diffusion, sheet resistance, and device performance; specifically current gain, fmax, and noise figures of merit. The first objective of the dissertation was to investigate carbon doping profiles in nano-layers (≤32 nm) of silicon germanium (Si1-xGe x), and provide an understanding of "remote carbon boron confinement" (RCBC), which is demonstrated to exploit the advantages of carbon to increase NPN HBT (heterojunction bipolar transistor) performance, reduce base resistance, and improve overall noise figures of merit. The second objective was to investigate the noise characteristics of this method compared to the standard method of placing carbon throughout the lattice, which is known as "uniform carbon boron confinement" (UCBC). The current technological development towards smaller and faster devices has forced engineers and scientists to look into materials other than silicon, but which are highly compatible. A natural choice is the Si1-xGe x alloy, since Ge is also a Group IV. Si1-xGex has the same lattice structure as Si, but its lattice constant is 4.2% larger (aSi = 0.543nm, aGe = 0.567nm), and the bandgap is less than that of Si (Eg_Si = 1.11eV, Eg_Ge = 0.67eV). This opens the possibility of bandgap, strain, and dopant diffusion engineering, all of which affect the material and electronic properties of devices. The primary benefit of carbon is to reduce the diffusion of boron in Si1-xGex thus keeping the base narrow for significantly reduced electron transit times and increased unity gain cutoff frequencies (fT). However the utilization of carbon reduces base conductivity and

  19. Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Cui, Delong; Hubbard, Seth M.; Pavlidis, Dimitris; Eisenbach, Andreas; Chelli, Cyril

    2002-06-01

    The impact of doping and metalorganic chemical vapour deposition growth conditions on the minority carrier lifetime of zinc- and carbon-doped InGaAs is reported. Room temperature photoluminescence measurements have been employed to obtain direct information on the non-radiative lifetime of the materials. Low growth temperature and low V/III ratio lead to the lower carrier lifetime of the carbon-doped InGaAs samples. InP/InGaAs heterostructure bipolar transistors were grown and fabricated using both zinc- and carbon-doped InGaAs layers as the base regions. The current gain values measured for these devices agree well with the values calculated from the carrier lifetime and mobility/diffusion coefficient measurements.

  20. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  1. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  2. Ultra-stable oscillator with complementary transistors

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1974-01-01

    A high frequency oscillator, having both good short and long term stability, is formed by including a piezoelectric crystal in the base circuit of a first bi-polar transistor circuit, the bi-polar transistor itself operated below its transitional frequency and having its emitter load chosen so that the input impedance, looking into the base thereof, exhibits a negative resistance in parallel with a capacitive reactance. Combined with this basic circuit is an auxiliary, complementary, second bi-polar transistor circuit of the same form with the piezoelectric crystal being common to both circuits. By this configuration small changes in quiescent current are substantially cancelled by opposite variations in the second bi-polar transistor circuit, thereby achieving from the oscillator a signal having its frequency of oscillation stable over long time periods as well as short time periods.

  3. N p n bipolar-junction-transistor detector with integrated p n p biasing transistor—feasibility study, design and first experimental results

    NASA Astrophysics Data System (ADS)

    Verzellesi, Giovanni; Bergamini, Davide; Dalla Betta, Gian-Franco; Piemonte, Claudio; Boscardin, Maurizio; Bosisio, Luciano; Bettarini, Stefano; Batignani, Giovanni

    2006-02-01

    We propose a novel n-p-n BJT radiation detector on high-resistivity silicon with integrated p-n-p transistor providing the quiescent base current of the detector. The dc operational limits of the proposed detector are analysed by means of numerical device simulations, pointing out that, by properly distancing the base of the p-n-p transistor from the emitter of the n-p-n detector, the latch-up of the parasitic thyristor embedded within the detector-plus-biasing-transistor structure takes place at relatively high current levels, where detector operation should anyway be avoided in order to prevent the associated current-gain loss. Numerical simulations provides insight about the bias dependence of charge-collection waveforms, indicating that minimization of the collecting time requires the detector quiescent current to be adjusted at the highest value still allowing high-injection effects to be avoided. A small-signal equivalent circuit of the proposed structure is also derived, allowing the impact of p-n-p biasing transistor and load resistance on the charge-collecting time constant to be evaluated. First experimental results show that fabricated structures are immune from the latch-up of the parasitic thyristor throughout their high-current-gain operating region and feature a minimum charge-collecting time constant of 35 µs, as tested by pulsed laser illumination.

  4. Bipolar disorder

    MedlinePlus

    Manic depression; Bipolar affective disorder; Mood disorder - bipolar; Manic depressive disorder ... happiness and high activity or energy (mania) or depression and low activity or energy (depression). The following ...

  5. Metamorphosis of the transistor into a laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Holonyak, N., Jr.

    2015-01-01

    Based on the invention and operation of the transistor, the alloy diode laser, the quantum-well diode laser and the high-speed heterojunction bipolar transistor (HBT), we have invented and realized now a transistor laser (TL). The transistor laser is a three-terminal technology providing coupling and the coherent light emission in the transistor. The quantum-well (QW) heterojunction bipolar transistor laser, inherently a fast switching device, operates by transporting a small minority base charge density ˜1016 \\text{cm}-3 over a nanoscale base thickness (<900 \\text{A}) in picoseconds. The TL, owing to its fast recombination speed, its unique three-terminal configuration, and complementary nature of its optical and electrical collector output signals, enables resonance-free base current and collector voltage modulation. It is a compact source of electro-optical applications such as nonlinear signal mixing, frequency multiplication, negative feedback, and optoelectronics logic gates.

  6. Bipolar Disorder.

    PubMed

    Miller, Thomas H

    2016-06-01

    Bipolar disorder is a chronic mental health disorder that is frequently encountered in primary care. Many patients with depression may actually have bipolar disorder. The management of bipolar disorder requires proper diagnosis and awareness or referral for appropriate pharmacologic therapy. Patients with bipolar disorder require primary care management for comorbidities such as cardiovascular and metabolic disorders.

  7. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  8. Advances in Discrete GaAs JFETs and Simple Amplifiers for Deep Cryogenic Readouts

    NASA Technical Reports Server (NTRS)

    Cunningham, T. J.; Fitzsimmons, M.

    1998-01-01

    The progress of the Jet Propulsion Laboratory in developing gallium arsenide junction field-effect transistors (GaAs JFETs) for application in infrared readout electronics operating below 10 Kelvin is discussed.

  9. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  10. Quantum Thermal Transistor

    NASA Astrophysics Data System (ADS)

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-01

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  11. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  12. Performance Limiting Defects in SiC Based Transistors

    DTIC Science & Technology

    2006-11-01

    1 PERFORMANCE LIMITING DEFECTS IN SIC BASED TRANSISTORS P.M. Lenahan*, M.S. Dautrich, C.J. Cochrane, Pennsylvania State University University...oxide semiconductor field effect transistors (MOSFETs) and SiC based bipolar junction transistors (BJTs). The focus has been upon those defects which...of transistors (Lenahan, Jupina, 1990). SDR exploits the fact that recombination in semiconductors is spin dependent (Lepine, 1972; Kaplan et al

  13. Bipolar Disorder

    MedlinePlus

    Bipolar disorder Overview By Mayo Clinic Staff Bipolar disorder, formerly called manic depression, is a mental health condition that causes extreme mood swings that include emotional highs (mania or hypomania) and lows ( ...

  14. Bipolar Disorder

    MedlinePlus

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  15. A Q-band Low Phase Noise Voltage Controlled Oscillator Using Balanced π-Feedback in 2-μm GaAs HBT Process

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hsein; Liang, Kung-Hao; Chang, Hong-Yeh; Chan, Yi-Jen; Chiong, Chau-Ching; Bryerton, E.

    A Q-band low phase noise voltage controlled oscillator (VCO) using balanced π-feedback with 2-μm GaAs heterojunction bipolar transistor (HBT) process is reported in this paper. The VCO features a phase noise of -105.5 dBc/Hz at 1-MHz offset, and a tuning frequency of from 41.2 to 42.1 GHz with a maximum output power of -9 dBm. The differential outputs are also provided from the VCO due to the use of balanced π-feedback. The overall dc power consumption of the VCO is only 20 mW with a supply voltage of 2.5 V. The chip size of the VCO is 1 times 1 mm2. To the best of the authors' knowledge, this work demonstrates the lowest FOM among all the reported VCOs except the InP-based HBT VCOs around 40 GHz.

  16. Simulating Single-Event Upsets in Bipolar RAM's

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1986-01-01

    Simulation technique saves testing. Uses interactive version of SPICE (Simulation Program with Integrated Circuit Emphasis). Device and subcircuit models available in software used to construct macromodel for an integrated bipolar transistor. Time-dependent current generators placed inside transistor macromodel to simulate charge collection from ion track. Significant finding of experiments is standard design practice of reducing power in unaddressed bipolar RAM cell increases sensitivity of cell to single-event upsets.

  17. Low-noise gallium-arsenide field-effect transistor preamplifiers for stochastic beam-cooling systems

    NASA Astrophysics Data System (ADS)

    Leskovar, B.; Lo, C. C.

    1983-03-01

    The present noise performance, bandwidth capability and gain stability of bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser are summarized and compared in the 100 MHz to 40 CHz frequency range for stochastic beam cooling systems. Stability factor of GaAs FET's as a function of ambient temperature is presented and discussed. Performance data of several low-noise wide-band cryogenically cooled preamplifiers are presented including one with a noise figure of 0.35 dB over a bandwidth range of 150 to 500 MHz operating at ambient temperature of 200K. Also, data are given on a broadband 1 to 2 GHz preamplifier having a noise figure of approximately 0.2 dB. The gain, operating noise temperature, stability, gain nonuniformity and phase-shift as function of frequency of interest for beam cooling systems are discussed.

  18. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  19. Design considerations for FET-gated power transistors

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chin, S. A.

    1983-01-01

    An FET-bipolar combinational power transistor configuration (tested up to 300 V, 20 A at 100 kHz) is described. The critical parameters for integrating the chips in hybrid form are examined, and an effort to optimize the overall characteristics of the configuration is discussed. Chip considerations are examined with respect to the voltage and current rating of individual chips, the FET surge capability, the choice of triple diffused transistor or epitaxial transistor for the bipolar element, the current tailing effect, and the implementation of the bipolar transistor and an FET as single chip or separate chips. Package considerations are discussed with respect to package material and geometry, surge current capability of bipolar base terminal bonding, and power losses distribution.

  20. Prospects of bipolar diamond devices

    NASA Astrophysics Data System (ADS)

    Aleksov, A.; Denisenko, A.; Kohn, E.

    2000-02-01

    The prospects of diamond bipolar devices are analysed theoretically and experimentally in respect to the problem of deep doping, especially the deep donor in diamond. For this purpose a set of p- n- p bipolar junction transistors (BJTs) is fabricated on p-type diamond substrates by epitaxial growth using boron ( EA=0.4 eV) and nitrogen ( ED=1.7 eV) as the p- and n-type dopants respectively. It is shown that at the boron/nitrogen junction a p- n junction is formed. The built-in potential of the junction is determined by the ionised boron/nitrogen impurities. The specific features of the fabricated devices are the high resistivity of the nitrogen doped base (10 GΩ·cm at 20°C) and a significant leakage current of the reverse biased p- n junctions. These factors limit the transistor action to d.c.-operation in the nA-current range and to temperatures below 200°C where leakage starts to dominate. The values of the static current gain IC/ IB are measured in the common base mode 200 and in the common emitter mode 1.1. The theoretical section of the paper deals with the calculation of the static current gain of diamond pnp transistor structures in dependence of the donor energy level, temperature and frequency. Both the theoretical and the experimental results indicate that diamond bipolar transistors with a nitrogen doped n-type base can exhibit a current gain β of up to 30,000 in the d.c.-regime provided the leakage of the p- n junctions is sufficiently low. High-gain diamond transistors operating in GHz-frequency can be expected as soon as n-doping by shallow donor like phosphorous ( ED<0.5 eV) becomes available.

  1. Refined Transistor Model For Simulation Of SEU

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Benumof, Reuben

    1988-01-01

    Equivalent base resistance added. Theoretical study develops equations for parameters of Gummel-Poon model of bipolar junction transistor: includes saturation current, amplification factors, charging times, knee currents, capacitances, and resistances. Portion of study concerned with base region goes beyond Gummel-Poon analysis to provide more complete understanding of transistor behavior. Extended theory useful in simulation of single-event upset (SEU) caused in logic circuits by cosmic rays or other ionizing radiation.

  2. Bipolar Disorder.

    ERIC Educational Resources Information Center

    Spearing, Melissa

    Bipolar disorder, a brain disorder that causes unusual shifts in a person's mood, affects approximately one percent of the population. It commonly occurs in late adolescence and is often unrecognized. The diagnosis of bipolar disorder is made on the basis of symptoms, course of illness, and when possible, family history. Thoughts of suicide are…

  3. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  4. Bipolar Treatment: Are Bipolar I and Bipolar II Treated Differently?

    MedlinePlus

    ... Daniel K. Hall-Flavin, M.D. Treatment for bipolar disorder, formerly called manic depression, generally involves medications and ... bipolar I disorder. In addition to medication for bipolar disorder, other treatment approaches include: Psychotherapy. As a key ...

  5. Carbon doping of GaAs NWs

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Nanowires (NWs) have been proposed and demonstrated as the building blocks for nanoscale electronic and photonic devices such as NW field effect transistors and NW solar cells which rely on doping and trap-free carrier transport. Controlled doping of NWs and a high degree of structure and morphology control are required for device applications. However, doping of III-V nanowires such as GaAs nanowires has not been reported extensively in the literature. Carbon is a well known p-type dopant in planar GaAs due to its low diffusivity and high solubility in bulk GaAs; however its use as an intentional dopant in NW growth has not yet been investigated. In this work we studied the carbon doping of GaAs nanowires using CBr4 as the dopant source. Gold nanoparticles (NP) at the tip ofthe NWs have been used to drive the NW growth. We show that carbon doping suppresses the migration ofthe gold NPs from the tip of the NWs. In addition, we show that the carbon doping of GaAs NWs is accompanied by an increase of the axial growth rate and decrease of the lateral growth rate ofthe NWs. Carbon-doped GaAs NWs, unlike the undoped ones which are highly tapered, are rod-like. The origin of the observed morphological changes is attributed to the carbon adsorbates on the sidewalls ofthe nanowires which suppress the lateral growth of the nanowires and increase the diffusion length of the gallium adatoms on the sidewalls. Stacking fault formation consisting of alternating regIOns of zincblende and wurtzite structures has been commonly observed in NWs grown along the (111) direction. In this work, based on transmission electron microscopy (TEM) analysis, we show that carbon doping ofGaAs NWs eliminates the stacking fault formation. Raman spectroscopy was used to investigate the effects of carbon doping on the vibrational properties of the carbon-doped GaAs nanowires. Carbon doping shows a strong impact on the intrinsic longitudinal and transverse optical (La and TO) modes of the GaAs

  6. Bipolar battery

    DOEpatents

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  7. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  8. Magnetic vortex based transistor operations.

    PubMed

    Kumar, D; Barman, S; Barman, A

    2014-02-17

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  9. Modeling of single-event upset in bipolar integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1983-01-01

    The results of work done on the quantitative characterization of single-event upset (SEU) in bipolar random-access memories (RAMs) have been obtained through computer simulation of SEU in RAM cells that contain circuit models for bipolar transistors. The models include current generators that emulate the charge collected from ion tracks. The computer simulation results are compared with test data obtained from a RAM in a bipolar microprocessor chip. This methodology is applicable to other bipolar integrated circuit constructions in addition to RAM cells.

  10. New dynamic FET logic and serial memory circuits for VLSI GaAs technology

    NASA Technical Reports Server (NTRS)

    Eldin, A. G.

    1991-01-01

    The complexity of GaAs field effect transistor (FET) very large scale integration (VLSI) circuits is limited by the maximum power dissipation while the uniformity of the device parameters determines the functional yield. In this work, digital GaAs FET circuits are presented that eliminate the DC power dissipation and reduce the area to 50% of that of the conventional static circuits. Its larger tolerance to device parameter variations results in higher functional yield.

  11. Bipolar Disorder (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Bipolar Disorder KidsHealth > For Teens > Bipolar Disorder A A A ... Bipolar Disorder en español Trastorno bipolar What Is Bipolar Disorder? Bipolar disorders are one of several medical conditions ...

  12. Bipolar disorder

    PubMed Central

    Goodwin, Frederick K.; Ghaemi, S. Nassir

    1999-01-01

    Bipolar disorder's unique combination of three characteristics - clear genetic diathesis, distinctive clinical features, early availability of an effective treatment (lithium) - explains its special place in the history of psychiatry and its contribution to the current explosive growth of neuroscience. This article looks at the state of the art in bipolar disorder from the vantage point of: (i) genetics (possible linkages on chromosomes 18 and 21q, polygenic hypothesis, research into genetic markers); (ii) diagnosis (new focus on the subjective aspects of bipolar disorder to offset the current trend of underdiagnosis due to overreliance on standardized interviews and rating scales); (iii) outcome (increase in treatment-resistant forms signaling a change in the natural history of bipolar disorder); (iv) pathophysiology (research into circadian biological rhythms and the kindling hypothesis to explain recurrence); (v) treatment (emergence of the anticonvulsants, suggested role of chronic antidepressant treatment in the development of treatment resistance); (vi) neurobiology (evaluation of regulatory function in relation to affective disturbances, role of postsynaptic second-messenger mechanisms, advances in functional neuroimaging); and (vii) psychosocial research (shedding overly dualistic theories of the past to understand the mind and brain as an entity, thus emphasizing the importance of balancing the psychopharmacological and psychotherapeutic approaches). Future progress in the understanding and treatment of bipolar disorder will rely on successful integration of the biological and psychosocial lines of investigation. PMID:22033232

  13. GaAs Optoelectronic Integrated-Circuit Neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H.; Kim, Jae H.; Psaltis, Demetri

    1992-01-01

    Monolithic GaAs optoelectronic integrated circuits developed for use as artificial neurons. Neural-network computer contains planar arrays of optoelectronic neurons, and variable synaptic connections between neurons effected by diffraction of light from volume hologram in photorefractive material. Basic principles of neural-network computers explained more fully in "Optoelectronic Integrated Circuits For Neural Networks" (NPO-17652). In present circuits, devices replaced by metal/semiconductor field effect transistors (MESFET's), which consume less power.

  14. Forward-bias tunneling - A limitation to bipolar device scaling

    NASA Technical Reports Server (NTRS)

    Del Alamo, Jesus A.; Swanson, Richard M.

    1986-01-01

    Forward-bias tunneling is observed in heavily doped p-n junctions of bipolar transistors. A simple phenomenological model suitable to incorporation in device codes is developed. The model identifies as key parameters the space-charge-region (SCR) thickness at zero bias and the reduced doping level at its edges which can both be obtained from CV characteristics. This tunneling mechanism may limit the maximum gain achievable from scaled bipolar devices.

  15. Logic gates based on ion transistors.

    PubMed

    Tybrandt, Klas; Forchheimer, Robert; Berggren, Magnus

    2012-05-29

    Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and NAND gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and NAND gates lay the groundwork for further development of solid-state chemical delivery circuits.

  16. Graphene transistors.

    PubMed

    Schwierz, Frank

    2010-07-01

    Graphene has changed from being the exclusive domain of condensed-matter physicists to being explored by those in the electron-device community. In particular, graphene-based transistors have developed rapidly and are now considered an option for post-silicon electronics. However, many details about the potential performance of graphene transistors in real applications remain unclear. Here I review the properties of graphene that are relevant to electron devices, discuss the trade-offs among these properties and examine their effects on the performance of graphene transistors in both logic and radiofrequency applications. I conclude that the excellent mobility of graphene may not, as is often assumed, be its most compelling feature from a device perspective. Rather, it may be the possibility of making devices with channels that are extremely thin that will allow graphene field-effect transistors to be scaled to shorter channel lengths and higher speeds without encountering the adverse short-channel effects that restrict the performance of existing devices. Outstanding challenges for graphene transistors include opening a sizeable and well-defined bandgap in graphene, making large-area graphene transistors that operate in the current-saturation regime and fabricating graphene nanoribbons with well-defined widths and clean edges.

  17. Transistor Effect in Improperly Connected Transistors.

    ERIC Educational Resources Information Center

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  18. What is Bipolar Disorder?

    MedlinePlus

    ... affect friends and family? For More Information Share Bipolar Disorder Download PDF Download ePub Order a free hardcopy ... brochure will give you more information. What is bipolar disorder? Bipolar disorder is a serious brain illness. It ...

  19. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    SciTech Connect

    Takano, H.; Hosogi, K.; Kato, T.

    1995-05-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.

  20. Genetics Home Reference: bipolar disorder

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions bipolar disorder bipolar disorder Enable Javascript to view the expand/collapse boxes. ... bipolar affective psychosis bipolar spectrum disorder depression, bipolar manic depressive illness Related Information How are genetic conditions and genes ...

  1. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  2. Comparison of the degradation effects of heavy ion, electron, and cobalt-60 irradiation in an advanced bipolar process

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Goben, Charles A.; Berndt, Dale F.

    1988-01-01

    Experimental measurements are reported of the degradation effects of high-energy particles (heavy Br ions and electrons) and Co-60 gamma-rays on the current gain of minimum-geometry bipolar transistors made from an advanced process. The data clearly illustrate the total-ionizing-dose vs particle-fluence behavior of this bipolar transistor produced by an advanced process. In particular, bulk damage from Co-60 gamma rays in bipolar transistors (base transport factor degradation) and surface damage in bipolar transistors from ionizing radiation (emitter-efficiency degradation) have been observed. The true equivalence between various types of radiation for this process technology has been determined on the basis of damage from the log K1 intercepts.

  3. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy.

    PubMed

    Ohno, Takeo; Oyama, Yutaka

    2012-02-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm(-2). They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor.

  4. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  5. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    PubMed

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform.

  6. High-Frequency Transistors and High-Frequency ICs: Technologies and Applications (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-06

    160 Gb/s wireless, mm-wave sensor networks monolithic arrays for radar & communications mm--wave MIMO III-V CMOS for Si VLSI III-V channel MOSFETs...nm CMOS vast #s of near-THz transistors what NEW mm-wave applications will this enable ? massive monolithic mm-wave arrays → 1 Gb/s over ~1...km mm-wave MIMO mm-wave imagingsensor networks Let’s look at InP and CMOS prospects & applications... InP Bipolar Transistors InP Bipolar Transistors

  7. A Heteroepitaxial Perovskite Metal-Base Transistor

    SciTech Connect

    Yajima, T.; Hikita, Y.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  8. A heteroepitaxial perovskite metal-base transistor.

    PubMed

    Yajima, Takeaki; Hikita, Yasuyuki; Hwang, Harold Y

    2011-03-01

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  9. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  10. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  11. Near Full-Composition-Range High-Quality GaAs1-xSbx Nanowires Grown by Molecular-Beam Epitaxy.

    PubMed

    Li, Lixia; Pan, Dong; Xue, Yongzhou; Wang, Xiaolei; Lin, Miaoling; Su, Dan; Zhang, Qinglin; Yu, Xuezhe; So, Hyok; Wei, Dahai; Sun, Baoquan; Tan, Pingheng; Pan, Anlian; Zhao, Jianhua

    2017-02-08

    Here we report on the Ga self-catalyzed growth of near full-composition-range energy-gap-tunable GaAs1-xSbx nanowires by molecular-beam epitaxy. GaAs1-xSbx nanowires with different Sb content are systematically grown by tuning the Sb and As fluxes, and the As background. We find that GaAs1-xSbx nanowires with low Sb content can be grown directly on Si(111) substrates (0 ≤ x ≤ 0.60) and GaAs nanowire stems (0 ≤ x ≤ 0.50) by tuning the Sb and As fluxes. To obtain GaAs1-xSbx nanowires with x ranging from 0.60 to 0.93, we grow the GaAs1-xSbx nanowires on GaAs nanowire stems by tuning the As background. Photoluminescence measurements confirm that the emission wavelength of the GaAs1-xSbx nanowires is tunable from 844 nm (GaAs) to 1760 nm (GaAs0.07Sb0.93). High-resolution transmission electron microscopy images show that the grown GaAs1-xSbx nanowires have pure zinc-blende crystal structure. Room-temperature Raman spectra reveal a redshift of the optical phonons in the GaAs1-xSbx nanowires with x increasing from 0 to 0.93. Field-effect transistors based on individual GaAs1-xSbx nanowires are fabricated, and rectifying behavior is observed in devices with low Sb content, which disappears in devices with high Sb content. The successful growth of high-quality GaAs1-xSbx nanowires with near full-range bandgap tuning may speed up the development of high-performance nanowire devices based on such ternaries.

  12. Parasitic bipolar effect in ultra-thin FD SOI MOSFETs

    NASA Astrophysics Data System (ADS)

    Liu, F. Y.; Ionica, I.; Bawedin, M.; Cristoloveanu, S.

    2015-10-01

    The parasitic bipolar effect is investigated in fully-depleted silicon-on-insulator (FD SOI) n-type MOSFETs with ultra-thin films (5-10 nm). Our measurements show that at low drain bias the drain leakage current is governed by the gate current. Beyond VD > 1.0 V, leakage current amplification is observed in short-channel 10-nm thick devices. With film thickness shrinking, the current amplification is suppressed. We explain this amplification by the turn-on of the lateral parasitic bipolar transistor. TCAD simulations confirm that the parasitic bipolar is activated due to holes generated by band-to-band tunneling at the drain side and accumulated in the floating body. An effective method for the extraction of bipolar gain is proposed based on the comparison of leakage current in short- and long-channel devices. The experimental method is validated through simulations.

  13. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Wei, Chen; Shanchao, Yang; Xiaoming, Jin; Chaohui, He

    2016-09-01

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  14. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  15. Identify bipolar spectrum disorders.

    PubMed

    Mynatt, Sarah; Cunningham, Patricia; Manning, J Sloan

    2002-06-01

    Patients with bipolar spectrum disorders commonly present with depressive symptoms to primary care clinicians. This article details bipolar spectrum disorder assessment, treatment, and treatment response. By intervening early in the course of depressive and hypomanic episodes, you can help decrease the morbidity and suffering associated with bipolar spectrum disorders.

  16. The HP 85192B EEFet3 GaAs FET Nonlinear Model Used in the High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Most nonlinear circuit analysis programs that exist today were designed primarily for transient analysis. By incorporating more accurate models in simulation programs, accurate predictions of GaAs field effect transistors (FET) behavior can be accomplished. However, should the designer need to simulate GaAs FETs that operate at high DC-to-RF conversion efficiencies, a more sophisticated model is needed. A relevant and appropriate method is called harmonic-balance, as described by Quere et al.

  17. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    PubMed

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

  18. Integration of front-end electronics with GaAs pixel detectors: Experimental and feasibility analysis

    SciTech Connect

    Bertuccio, G.; Longoni, A.; De Geronimo, G.; Canali, C.; Lanzieri, C.; Nava, F.

    1999-08-01

    This work aims to study the feasibility of the integration, on the same chip, of GaAs pixel detectors and frontend electronics employing GaAs metal semiconductor FET`s (MESFET`s) or high electron mobility transistors (HEMT`s). The interest of fully integrated GaAs systems lies in X and {gamma}-ray spectroscopy and Imaging for scientific, industrial, and medical applications. The system design criteria and the prediction of the performance have been derived on the basis of recent experimental results on semi-insulating GaAs pixel detectors. Measurements of the relevant parameters of GaAs FET`s suitable for the stringent requirements of a specroscopy-grade frontend amplifier are analyzed. It is shown that an optimized GaAs integrated system can reach an electronic noise level below 100 electrons rms (<1 keV FWHM) even at room temperature. Some open problems regarding the detector-electronics integration are highlighted and discussed.

  19. Oxide bipolar electronics: materials, devices and circuits

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; von Wenckstern, Holger

    2016-06-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo2O4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization.

  20. Nutrition and Bipolar Depression.

    PubMed

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder.

  1. Computer-aided prediction of high-frequency performance limits in silicon bipolar integrated circuits

    NASA Technical Reports Server (NTRS)

    Burns, J. L.; Choma, J., Jr.

    1982-01-01

    A circuit model for an existing silicon integrated bipolar junction transistor (IBJT) is used to evaluate presently achievable high frequency circuit performance. The relationship between circuit model and processing parameters are semi-quantitatively explored to make predictions on the frequency response, which can be achieved through realistic device fabrication modifications. A new figure of merit is introduced, which is defined as the signal frequency at which an integrated bipolar junction transistor can deliver a power gain of G. The most sensitive parameter influencing attainable high frequency IBJT performance is base resistance.

  2. Toward a very low-power integrated charge preamplifier by using III-V field effect transistors

    SciTech Connect

    Geronimo, G. de; Longoni, A.

    1998-06-01

    The future high-energy physics experiments, based on the new high-luminosity accelerators, will require a new generation of front-end monolithic electronics characterized, in particular, by high speed and low-power dissipation. In this perspective, the performances of Si and GaAs field effect transistors (FETs) are compared here in conditions of low-power dissipation. The advantages of solutions based on GaAs FETs, in applications requiring fast shaping times, are presented and experimental results are reported. The criteria for the optimum choice of the input transistor dimension and of its bias point are discussed.

  3. Neutron damage equivalence for silicon, silicon dioxide, and GaAs

    NASA Astrophysics Data System (ADS)

    Luera, Theodore F.; Kelly, John G.; Stein, Herman J.; Lazo, Maximo S.; Lee, Clarence E.

    1987-12-01

    Displacement-energy and ionization-energy transfers to Si, SiO2, and GaAs as functions of incident neutron energy were calculated using cross-section data and fine group structure in the NJOY code system. Neutron spectra determinations for several reactor neutron environments were made using activation cross sections and a novel technique with the SAND II code. Measurements of carrier-removal rates in GaAs and of Si transistor gain degradation were made in representative neutron environments. Experimental results are compared to damage ratios predicted with the spectra and NJOY displacement functions. For fission-like spectra, calculated Si damage ratios are in good agreement with those determined with ASTM E722-85 and with measured transistor damage ratios. Significant differences are found between Si NJOY and ASTM E722-85 for 14-MeV-to-reactor neutron damage ratios; NJOY gives better agreement with experimental data reported in the literature. In GaAs, 14-MeV-to-reactor experimental damage ratios are smaller than predicted by calculated displacement ratios. This suggests that a more complex model of damage for majority carrier removal in GaAs is required. The use of incorrect damage functions is shown to adversely affect simulation fidelity in some representative neutron environments.

  4. Experimental determination of single-event upset (SEU) as a function of collected charge in bipolar integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Malone, C. J.; Smith, L. S.

    1984-01-01

    Single-Event Upset (SEU) in bipolar integrated circuits (ICs) is caused by charge collection from ion tracks in various regions of a bipolar transistor. This paper presents experimental data which have been obtained wherein the range-energy characteristics of heavy ions (Br) have been utilized to determine the cross section for soft-error generation as a function of charge collected from single-particle tracks which penetrate a bipolar static RAM. The results of this work provide a basis for the experimental verification of circuit-simulation SEU modeling in bipolar ICs.

  5. A silicon nanocrystal tunnel field effect transistor

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Drouin, Dominique; Pioro-Ladrière, Michel

    2014-05-01

    In this work, we demonstrate a silicon nanocrystal Field Effect Transistor (ncFET). Its operation is similar to that of a Tunnelling Field Effect Transistor (TFET) with two barriers in series. The tunnelling barriers are fabricated in very thin silicon dioxide and the channel in intrinsic polycrystalline silicon. The absence of doping eliminates the problem of achieving sharp doping profiles at the junctions, which has proven a challenge for large-scale integration and, in principle, allows scaling down the atomic level. The demonstrated ncFET features a 104 on/off current ratio at room temperature, a low 30 pA/μm leakage current at a 0.5 V bias, an on-state current on a par with typical all-Si TFETs and bipolar operation with high symmetry. Quantum dot transport spectroscopy is used to assess the band structure and energy levels of the silicon island.

  6. A silicon nanocrystal tunnel field effect transistor

    SciTech Connect

    Harvey-Collard, Patrick; Drouin, Dominique; Pioro-Ladrière, Michel

    2014-05-12

    In this work, we demonstrate a silicon nanocrystal Field Effect Transistor (ncFET). Its operation is similar to that of a Tunnelling Field Effect Transistor (TFET) with two barriers in series. The tunnelling barriers are fabricated in very thin silicon dioxide and the channel in intrinsic polycrystalline silicon. The absence of doping eliminates the problem of achieving sharp doping profiles at the junctions, which has proven a challenge for large-scale integration and, in principle, allows scaling down the atomic level. The demonstrated ncFET features a 10{sup 4} on/off current ratio at room temperature, a low 30 pA/μm leakage current at a 0.5 V bias, an on-state current on a par with typical all-Si TFETs and bipolar operation with high symmetry. Quantum dot transport spectroscopy is used to assess the band structure and energy levels of the silicon island.

  7. STABILIZED TRANSISTOR AMPLIFIER

    DOEpatents

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  8. Outlook and emerging semiconducting materials for ambipolar transistors.

    PubMed

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    2014-02-26

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection.

  9. Study of bipolar batteries

    NASA Astrophysics Data System (ADS)

    Clifford, J. E.

    1984-06-01

    The status of development of bipolar batteries with an aqueous electrolyte was determined. Included in the study were lead-acid, nickel-cadmium, nickel-zinc, nickel-iron, and nickel-hydrogen batteries. The technical and patent literature is reviewed and a bibliography covering the past 15 years is presented. Literature data are supplemented by a survey of organizations. The principal interest was in bipolar lead-acid batteries and more recently in bipolar nickel-hydrogen batteries for space applications.

  10. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  11. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  12. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  13. Effects of orientation of substrate on the enhanced low-dose-rate sensitivity (ELDRS) in NPN transistors

    NASA Astrophysics Data System (ADS)

    Lu, Wu; Zheng, Yu-Zhan; Wang, Yi-Yuan; Ren, Di-Yuan; Guo, Qi; Wang, Zhi-Kuan; Wang, Jian-An

    2011-02-01

    The radiation effects and annealing characteristics of two types of domestic NPN bipolar junction transistors, fabricated with different orientations, were investigated under different dose-rate irradiation. The experimental results show that both types of the NPN transistors exhibit remarkable Enhanced Low-Dose-Rate Sensitivity (ELDRS). After irradiation at high or low dose rate, the excess base current of NPN transistors obviously increased, and the current gain would degrade rapidly. Moreover, the decrease of collector current was also observed. The NPN transistor with <111> orientation was more sensitive to ionizing radiation than that with <100> orientation. The underlying mechanisms of various experimental phenomena are discussed in detail in this paper.

  14. The photodetected function of silicon photoelectronic lambda negative resistance transistor (PLBT)

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-lin; Zhang, Bo; Guo, Wei-lian; Mao, Lu-hong; Zhang, Pei-ning

    2005-01-01

    In this paper, the photo-detected and controlled functions based on silicon photo-electronic Lambda transistor (PLBT) are reported. PLBT is composed of a npn vertical bipolar transistor as main device and a enhancement-mode MOSFET transistor as feedback device which connected in parallel across the base and collector terminals of bipolar transistor. Photo-electronic-lambda bipolar transistor (PLBT) is one important member of Si-photo electronic negative resistance devices. It has wide applications in photo-electronic coupler, light detector, light sensor and other photo-electronic circuit modules, which is significant for the further study of photo-electronic devices and circuits. When the Si-photo-electronic negative transistor device works as a load, it has two stable output states (bistability characteristics) with the change of the input light signals. Using the photo-bistable and self-locking characteristics of the PLBT, a photo-controlled Bistable Logic Circuit Element has been set up successfully. Through detail studying and analyzing to the operation feature and load feature of the photo-controlled bistable circuit, the nonlinear characteristic of the circuit is demonstrated. Furthermore the applications of this circuit element have been studied and verified.

  15. Types of Bipolar Disorder

    MedlinePlus

    ... problems, or perform poorly in school or at work. Family, friends and people experiencing symptoms may not recognize these problems as signs of a major mental illness such as bipolar disorder. Risk Factors Scientists are studying the possible causes of bipolar disorder. Most agree ...

  16. Towards low-dimensional hole systems in Be-doped GaAs nanowires.

    PubMed

    Ullah, A R; Gluschke, J G; Krogstrup, P; Sørensen, C B; Nygård, J; Micolich, A P

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio [Formula: see text], and sub-threshold slope 50 mV/dec at [Formula: see text] K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  17. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Gluschke, J. G.; Krogstrup, P.; Sørensen, C. B.; Nygård, J.; Micolich, A. P.

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ∼ {10}4, and sub-threshold slope 50 mV/dec at T=4 K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  18. Bipolar Disorder, Bipolar Depression and Comorbid Illness.

    PubMed

    Manning, J Sloan

    2015-06-01

    There is a substantial need for the early recognition and treatment of the psychiatric and medical comorbidities of bipolar disorder in primary care. If comorbid conditions are recognized and treated, serious adverse health outcomes may be averted, including substantial morbidity and mortality.

  19. Bipolar fuel cell

    DOEpatents

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  20. Low-frequency switching in a transistor amplifier.

    PubMed

    Carroll, T L

    2003-04-01

    It is known from extensive work with the diode resonator that the nonlinear properties of a P-N junction can lead to period doubling, chaos, and other complicated behaviors in a driven circuit. There has been very little work on what happens when more than one P-N junction is present. In this work, the first step towards multiple P-N junction circuits is taken by doing both experiments and simulations with a single-transistor amplifier using a bipolar transistor. Period doubling and chaos are seen when the amplifier is driven with signals between 100 kHz and 1 MHz, and they coincide with a very low frequency switching between different period doubled (or chaotic) wave forms. The switching frequencies are between 5 and 10 Hz. The switching behavior was confirmed in a simplified model of the transistor amplifier.

  1. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    NASA Astrophysics Data System (ADS)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  2. Specifics of Pulsed Arc Welding Power Supply Performance Based On A Transistor Switch

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Kust, T. S.; Krampit, M. A.

    2016-08-01

    Specifics of designing a pulsed arc welding power supply device are presented in the paper. Electronic components for managing large current was analyzed. Strengths and shortcomings of power supply circuits based on thyristor, bipolar transistor and MOSFET are outlined. As a base unit for pulsed arc welding was chosen MOSFET transistor, which is easy to manage. Measures to protect a transistor are given. As for the transistor control device is a microcontroller Arduino which has a low cost and adequate performance of the work. Bead transfer principle is to change the voltage on the arc in the formation of beads on the wire end. Microcontroller controls transistor when the arc voltage reaches the threshold voltage. Thus there is a separation and transfer of beads without splashing. Control strategies tested on a real device and presented. The error in the operation of the device is less than 25 us, it can be used controlling drop transfer at high frequencies (up to 1300 Hz).

  3. Method and apparatus for increasing resistance of bipolar buried layer integrated circuit devices to single-event upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A. (Inventor)

    1991-01-01

    Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.

  4. A dc model for power switching transistors suitable for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; George, R. T., Jr.; Owen, H. A.; Wilson, T. G.

    1979-01-01

    A model for bipolar junction power switching transistors whose parameters can be readily obtained by the circuit design engineer, and which can be conveniently incorporated into standard computer-based circuit analysis programs is presented. This formulation results from measurements which may be made with standard laboratory equipment. Measurement procedures, as well as a comparison between actual and computed results, are presented.

  5. Bipolar disorder (image)

    MedlinePlus

    Bipolar disorder is a mood disorder characterized by episodes of mania and major depression. Treatment with lithium or mood stabilizers may be effective, but medication regimens are sometimes difficult to tolerate ...

  6. Genetics of bipolar disorder.

    PubMed

    Escamilla, Michael A; Zavala, Juan M

    2008-01-01

    Bipolar disorder especially the most severe type (type I), has a strong genetic component. Family studies suggest that a small number of genes of modest effect are involved in this disorder. Family-based studies have identified a number of chromosomal regions linked to bipolar disorder, and progress is currently being made in identifying positional candidate genes within those regions. A number of candidate genes have also shown evidence of association with bipolar disorder, and genome-wide association studies are now under way, using dense genetic maps. Replication studies in larger or combined datasets are needed to definitively assign a role for specific genes in this disorder. This review covers our current knowledge of the genetics of bipolar disorder, and provides a commentary on current approaches used to identify the genes involved in this complex behavioral disorder.

  7. Bipolar clavicular injury.

    PubMed

    Pang, K P; Yung, S W; Lee, T S; Pang, C E

    2003-10-01

    While clavicular injuries are fairly common, bipolar clavicular injuries are not. They may involve dislocations at both ends of the clavicle, or a fracture at one end and a dislocation at the other. We present two cases; a patient with a bipolar clavicular dislocation, and another with a fracture in both medial and lateral ends of the clavicle with anterior dislocation of the sternoclavicular joint. Both were treated conservatively, with fairly good range of motion and return to normal activity.

  8. Growth and magnetic properties of MnAs/InAs hybrid structure on GaAs(1 1 1)B

    NASA Astrophysics Data System (ADS)

    Islam, Md. Earul; Akabori, Masashi

    2017-04-01

    We carried out molecular beam epitaxial (MBE) growth of MnAs/InAs hybrid structure on GaAs(1 1 1)B for spin field effect transistor (spin-FET) applications. We observed good alignment of hexagonal MnAs and cubic InAs epitaxial layers with GaAs(1 1 1)B by X-ray diffraction (XRD) measurement. We observed smooth surface morphology of MnAs/InAs by atomic force microscopy (AFM), and also observed maze-like magnetic structure by magnetic force microscopy (MFM). We observed easy and hard magnetizations in-plane and out-of-plane directions similar to MnAs/GaAs(1 1 1)B using superconducting quantum interference device (SQUID) magnetometer. We believe that the MnAs/InAs hybrid structure on GaAs(1 1 1)B can be a base structure for spin-FETs.

  9. Sn nanothreads in GaAs: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  10. Soft switch-avalanche IGBT convertor. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Chen, K.; Stuart, T. A.

    1990-01-01

    A full bridge dc-dc converter using a zero voltage and zero current switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than those previously reported for this device. Experimental results are included for a 1.5 kW, 100 kHz converter with 94 percent efficiency.

  11. Fabrication of a Silicon MOSFET Device with Bipolar Transistor Source,

    DTIC Science & Technology

    1980-07-01

    orange •" 0.426 Carnation pink ;’•• 0.443 0.465 Violet-red Red-violet «4 • B 0.476 Violet ,’A B 0.480...8217_/ light creamy grey or metallic.) ! 1 ft "•r 0.585 Light- orange or yellow to pink borderline ",- ’•" 0.600 Carnation pink ia 0.63Q Violet-red...Dull yellow-green 0.97 Yellow to "yellowish" 0.99 Orange 1.00 Carnation pink 1.02 Violet-red 1.05 Red-violet 1.06 Violet 1.07 Blue-violet

  12. Crossed Andreev reflection in a graphene bipolar transistor.

    PubMed

    Cayssol, J

    2008-04-11

    We investigate the crossed Andreev reflections between two graphene leads connected by a narrow superconductor. When the leads are, respectively, of the n and p type, we find that electron elastic cotunneling and local Andreev reflection are both eliminated even in the absence of any valley-isospin or spin polarizations. We further predict oscillations of both diagonal and cross conductances as a function of the distance between the graphene-superconductor interfaces.

  13. Single transistor latch phenomenon in junctionless transistors

    NASA Astrophysics Data System (ADS)

    Singh Parihar, Mukta; Ghosh, Dipankar; Kranti, Abhinav

    2013-05-01

    In this work, we report on the single transistor latch phenomenon in junctionless transistors. In the latch condition, the device is unable to turn-off despite a reduction in gate bias. It is shown that impact ionization induced latch condition can occur due to an increase in drain bias, silicon film thickness, gate oxide thickness, and doping concentration. The latch phenomenon is explained in terms of generation-recombination rates, electrostatic potential, electric field distribution and product of current density and electric field (J.E). As latch condition is undesirable for dynamic memory applications, the work highlights the significance of (J.E) as a performance metric to avoid the junctionless transistor being driven into the latch mode.

  14. Effect of temperature on (TV) statics characteristics of GaAs Mesfet

    NASA Astrophysics Data System (ADS)

    Fares, Z.; Saidi, Y.; Aliouat, W.

    2016-10-01

    The GaAs metal semiconductor field effect transistors called mesfets are the most active components used in microwave applications. To better exploit the performance of these components circuits, it is necessary to develop techniques for sophisticated numerical computation based on physical mechanisms that govern the operation of these devices. The static properties of GaAs MESFET could be determined from an original analytical study based on the resolution of the semiconductor fundamental equations. Then we will study the equation of thermal resistance as a function of the physical parameters of MESFETs by analogy electric thermal resistance RTH will be determined as the ratio of the difference of temperature on the thermal dissipation. The model took into account the difference between the temperature of the component and the ambient temperature and the effect of temperature on the parameters of the component.

  15. Molecular-beam epitaxial regrowth on oxygen-implanted GaAs substrates for device integration

    NASA Astrophysics Data System (ADS)

    Chen, C. L.; Mahoney, L. J.; Calawa, S. D.; Molvar, K. M.; Maki, P. A.; Mathews, R. H.; Sage, J. P.; Sollner, T. C. L. G.

    1999-06-01

    Device-quality layers were regrown on GaAs wafers by molecular-beam epitaxy over conductive pregrown areas and on selectively patterned high-resistivity areas formed by oxygen implantation. The regrowth over both areas resulted in comparable device-quality GaAs. The high resistivity of the oxygen-implanted area was maintained after the regrowth and no oxygen incorporation was observed in the regrown layer. The cutoff frequency of a 1.5-μm-gate metal-semiconductor field-effect transistor fabricated on the regrown layer over the high-resistivity areas is 7 GHz. This demonstration shows that planar technology can be used in epitaxial regrowth, simplifying the integration of vastly different devices into monolithic circuits.

  16. Growth and properties of crystalline barium oxide on the GaAs(100) substrate

    SciTech Connect

    Yasir, M.; Dahl, J.; Lång, J.; Tuominen, M.; Punkkinen, M. P. J.; Laukkanen, P. Kokko, K.; Kuzmin, M.; Korpijärvi, V.-M.; Polojärvi, V.; Guina, M.

    2013-11-04

    Growing a crystalline oxide film on III-V semiconductor renders possible approaches to improve operation of electronics and optoelectronics heterostructures such as oxide/semiconductor junctions for transistors and window layers for solar cells. We demonstrate the growth of crystalline barium oxide (BaO) on GaAs(100) at low temperatures, even down to room temperature. Photoluminescence (PL) measurements reveal that the amount of interface defects is reduced for BaO/GaAs, compared to Al{sub 2}O{sub 3}/GaAs, suggesting that BaO is a useful buffer layer to passivate the surface of the III-V device material. PL and photoemission data show that the produced junction tolerates the post heating around 600 °C.

  17. A highly selective, chlorofluorocarbon-free GaAs on AlGaAs etch

    SciTech Connect

    Smith, L.E. . Solid State Technology Center)

    1993-07-01

    A highly selective reactive ion etching process using SiCl[sub 4], CF[sub 4], O[sub 2], and He is reported. The selectivity of the etch, which is adjustable, ranges from 308:1 to 428:1 for GaAs to Al[sub 0.11]Ga[sub 0.89]As. This variability in selectivity is achieved by adjusting the helium flow rate. One very attractive feature of this etch is that it uses no chlorofluorocarbons and therefore complies with future bans on these substances imposed at both federal and corporate levels. The etch is demonstrated on a GaAs field effect transistor structure with an underlying Al[sub 0.11]Ga[sub 0.89]As stop-etch layer. The etch can be used for both anisotropic and isotropic applications.

  18. Spectroscopic constants and potential energy curves of GaAs, GaAs +, and GaAs -

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1990-02-01

    Twenty electronic states of GaAs, 12 electronic states of GaAs +, and 13 electronic states of GaAs - are investigated using relativistic ab initio complete active space MCSCF (CASSCF) followed by large-scale configuration interaction calculations which included up to 700 000 configurations. Potential energy curves and spectroscopic constants of all these states of three radicals are obtained. Spectroscopic constants of low-lying states of GaAs are in very good agreement with both experiment and all-electron results. Two nearly-degenerate states of 2Σ +, 2Π ( 2Σ + lower) symmetries are found as candidates for the ground state of GaAs -. The GaAs - negative ion is found to be more stable compared to the neutral GaAs ( De(GaAs -) = 3 eV). The electron affinity of GaAs is computed as 0.89 and 1.3 eV at the FOCI and SOCI levels of theory, respectively. Calculated potential energy curves of GaAs are in accord with the experimentally observed predissociation in the 3Π( III) - X3Σ- system.

  19. Lightweight bipolar storage battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  20. Bipolar Medications and Weight Gain

    MedlinePlus

    Bipolar medications and weight gain Do all bipolar medications cause weight gain? Answers from Daniel K. Hall-Flavin, M. ... disorder can be treated with a number of medications. Some of these medications can increase your appetite ...

  1. Depression and Bipolar Support Alliance

    MedlinePlus

    Depression and Bipolar Support Alliance Crisis Hotline Information Coping with a Crisis Suicide Prevention Information Psychiatric Hospitalization ... sign-up Education info, training, events Mood Disorders Depression Bipolar Disorder Anxiety Screening Center Co-occurring Illnesses/ ...

  2. GaAs microcrystals selectively grown on silicon: Intrinsic carbon doping during chemical beam epitaxy with trimethylgallium

    NASA Astrophysics Data System (ADS)

    Molière, T.; Jaffré, A.; Alvarez, J.; Mencaraglia, D.; Connolly, J. P.; Vincent, L.; Hallais, G.; Mangelinck, D.; Descoins, M.; Bouchier, D.; Renard, C.

    2017-01-01

    The monolithic integration of III-V semiconductors on silicon and particularly of GaAs has aroused great interest since the 1980s. Potential applications are legion, ranging from photovoltaics to high mobility channel transistors. By using a novel integration method, we have shown that it is possible to achieve heteroepitaxial integration of GaAs crystals (typical size 1 μ m) on silicon without any structural defect such as antiphase domains, dislocations, or stress, usually reported for direct GaAs heteroepitaxy on silicon. However, concerning their electronic properties, conventional free carrier characterization methods are impractical due to the micrometric size of GaAs crystals. In order to evaluate the GaAs material quality for optoelectronic applications, a series of indirect analyses such as atom probe tomography, Raman spectroscopy, and micro-photoluminescence as a function of temperature were performed. These revealed a high content of partially electrically active carbon originating from the trimethylgallium used as the Ga precursor. Nevertheless, the very good homogeneity observed by this doping mechanism and the attractive properties of carbon as a dopant once controlled to a sufficient degree are a promising route to device doping.

  3. Development of a HgCdTe photomixer and impedance matched GaAs FET amplifier

    NASA Technical Reports Server (NTRS)

    Shanley, J. F.; Paulauskas, W. A.; Taylor, D. R.

    1982-01-01

    A research program for the development of a 10.6 micron HgCdTe photodiode/GaAs field effect transistor amplifier package for use at cryogenic temperatures (77k). The photodiode/amplifier module achieved a noise equivalent power per unit bandwidth of 5.7 times 10 to the 20th power W/Hz at 2.0 GHz. The heterodyne sensitivity of the HgCdTe photodiode was improved by designing and building a low noise GaAs field effect transistor amplifier operating at 77K. The Johnson noise of the amplifier was reduced at 77K, and thus resulted in an increased photodiode heterodyne sensitivity.

  4. Design considerations and emerging challenges for nanotube-, nanowire-, and negative capacitor-field effect transistors

    NASA Astrophysics Data System (ADS)

    Wahab, Md. Abdul

    As the era of classical planar metal-oxide-semiconductor field-effect transistors (MOSFETs) comes to an end, the semiconductor industry is beginning to adopt 3D device architectures, such as FinFETs, starting at the 22 nm technology node. Since physical limits such as short channel effect (SCE) and self-heating may dominate, it may be difficult to scale Si FinFET below 10 nm. In this regard, transistors with different materials, geometries, or operating principles may help. For example, gate has excellent electrostatic control over 2D thin film channel with planar geometry, and 1D nanowire (NW) channel with gate-all-around (GAA) geometry to reduce SCE. High carrier mobility of single wall carbon nanotube (SWNT) or III-V channels may reduce VDD to reduce power consumption. Therefore, as channel of transistor, 2D thin film of array SWNTs and 1D III-V multi NWs are promising for sub 10 nm technology nodes. In this thesis, we analyze the potential of these transistors from process, performance, and reliability perspectives. For SWNT FETs, we discuss a set of challenges (such as how to (i) characterize diameter distribution, (ii) remove metallic (m)-SWNTs, and (iii) avoid electrostatic cross-talk among the neighboring SWNTs), and demonstrate solution strategies both theoretically and experimentally. Regarding self-heating in these new class of devices (SWNT FET and GAA NW FET including state-of-the-art FinFET), higher thermal resistance from poor thermal conducting oxides results significant temperature rise, and reduces the IC life-time. For GAA NW FETs, we discuss accurate self-heating evaluation with good spatial, temporal, and thermal resolutions. The introduction of negative capacitor (NC), as gate dielectric stack of transistor, allows sub 60 mV/dec operation to reduce power consumption significantly. Taken together, our work provides a comprehensive perspective regarding the challenges and opportunities of sub 10 nm technology nodes.

  5. Is Cognitive Style Bipolar?

    ERIC Educational Resources Information Center

    Schroeder, David H.

    This study assessed the bipolarity of cognitive style for 970 clients of the Johnson O'Connor Research Foundation, a vocational guidance service. The 462 male and 508 female examinees were aged 14 to 65 years, with a median age of 24 years. Three cognitive style tests were investigated: (1) the Kagan Matching Familiar Figures Test (KMFFT); (2) the…

  6. Study of improved reverse recovery in power transistor incorporating universal contact

    NASA Astrophysics Data System (ADS)

    Anand, R. S.; Mazhari, B.; Narain, J.

    2004-05-01

    The improvement in reverse recovery of power NPN bipolar transistor (BJT) through incorporation of "universal contact" in the base is studied in detail. It is shown that use of universal contact allows redistribution of base current in saturation from collector region where recombination lifetime is high to extrinsic base region where effective recombination lifetime is low. The reverse recovery time decreases as collector current density increases but increases as collector breakdown voltage increases. The improvement in reverse recovery is accompanied with an increase in collector-emitter voltage in the ON state. For low voltage transistors and high voltage transistors at low collector current densities, the increase is primarily due to reduction in reverse current gain. For high breakdown voltage transistors, the use of universal contact results in early onset of quasi-saturation effect and results in degradation in ON state voltage at high collector current densities.

  7. High Power Switching Transistor

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  8. A TRANSISTORIZED RELAY SERVO.

    DTIC Science & Technology

    DC motor is achieved with standard power transistors and a simple transistorized preamplifier, A permanent magnet, DC motor is used as the test vehicle to illustrate the feasibility of control without an amplidyne or mechanical relay. The ’bang-bang’, capability of the controller to operate as a near-ideal ’relay’ is emphasized. The inherent flexibility allowed in selecting the switching characteristics is also demonstrated. The discussion points toward practical application and stresses the analysis of the switching

  9. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    SciTech Connect

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  10. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S.

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  11. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S.

    2004-02-24

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  12. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Knechtli, R. C.; Kamath, S.; Loo, R.

    1977-01-01

    The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

  13. Preventing Simultaneous Conduction In Switching Transistors

    NASA Technical Reports Server (NTRS)

    Mclyman, William T.

    1990-01-01

    High voltage spikes and electromagnetic interference suppressed. Power-supply circuit including two switching transistors easily modified to prevent simultaneous conduction by both transistors during switching intervals. Diode connected between collector of each transistor and driving circuit for opposite transistor suppresses driving signal to transistor being turned on until transistor being turned off ceases to carry current.

  14. A comparison of radiation damage in transistors from cobalt-60 gamma rays and 2.2 MeV electrons

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Gauthier, M. K.

    1982-01-01

    The total ionizing dose response of ten bipolar transistor types has been measured using Co-60 gamma rays and 2.2 MeV electrons from exposure levels of 750, 1500, and 3000 Gy(Si). Gain measurements were made for a range of collector-emitter voltages and collector currents.

  15. GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1982-01-01

    The major thrusts proposed for GaAs were increased efficiency and improved radiation damage data. Current laboratory production cells consistently achieve 16 percent AMO one-Sun efficiency. The user community wants 18-percent efficient cells as soon as possible, and such a goal is though to be achievable in 2 years with sufficient research funds. A 20-percent research cell is considered the efficiency limit with current technology, and such a cell seems realizable in approximately 4 years. Future efficiency improvements await improved substrates and materials. For still higher efficiencies, concentrator cells and multijunction cells are proposed as near-term directions.

  16. Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.

    2009-01-01

    This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.

  17. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction.

    PubMed

    Coquillat, Dominique; Marczewski, Jacek; Kopyt, Pawel; Dyakonova, Nina; Giffard, Benoit; Knap, Wojciech

    2016-01-11

    Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies.

  18. Electronic conduction in a model three-terminal molecular transistor.

    PubMed

    He, Haiying; Pandey, Ravindra; Karna, Shashi P

    2008-12-17

    The electronic conduction of a novel, three-terminal molecular architecture, analogous to a heterojunction bipolar transistor, is studied. In this architecture, two diode arms consisting of donor-acceptor molecular wires fuse through a ring, while a gate modulating wire is a pi-conjugated wire. The calculated results show the enhancement or depletion mode of a transistor on applying a gate field along the positive or negative direction. A small gate field is required to switch on the current in the proposed architecture. The changes in the electronic conduction can be attributed to the intrinsic dipolar molecular architecture in terms of the evolution of molecular wavefunctions, specifically the one associated with the terphenyl group of the modulating wire in the presence of the gate field.

  19. Electroluminescence from single-wall carbon nanotube network transistors.

    PubMed

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  20. Optimisation of add-on NPN Transistor for a CMOS Process

    NASA Astrophysics Data System (ADS)

    Aurola, Artto; Ronkainen, Hannu; Mellin, Joni

    2004-01-01

    The objective of this research was to add an npn-bipolar transistor for a CMOS process. This was to be done with minimal additional process steps and without changing any existing CMOS parameters. The minimum line width of the process was 1.2µm, the wafers were p-type and 100mm in diameter and no epitaxial or polysilicon layers were used. To minimise the additional process steps a triple diffused transistor was selected as the basis of the research. The emitter was formed from a diffusion contacting NMOSFET source and drain to aluminium. As collector diffusion two approaches were investigated the pnpbipolar transistors isolation nwell and the PMOSFET n-well. The only additional step to the CMOS process due to the npn-transistor fabrication resulted from the formation of base diffusion. The specifications for the npn-transistor were 80 for the current gain, 100V for the early voltage and 60MHz for the transition frequency at 1µA collector current. Four different transistor structures were investigated two octagonal transistors having either emitter or base in the centre and two minimum area rectangular transistors having either base or emitter in the middle. The octagonal transistor having the emitter in the centre was chosen as the basis of simulations. It was first simulated with a device simulator. Next combined process and device simulations were done. Based on simulation results different processes were tested on wafers. Only the octagonal transistor having the emitter in the middle satisfied the specifications when a pnp isolation n-well was used as a collector.

  1. Pleated metal bipolar assembly

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.

  2. Epilepsy and bipolar disorder.

    PubMed

    Knott, Sarah; Forty, Liz; Craddock, Nick; Thomas, Rhys H

    2015-11-01

    It is well recognized that mood disorders and epilepsy commonly co-occur. Despite this, our knowledge regarding the relationship between epilepsy and bipolar disorder is limited. Several shared features between the two disorders, such as their episodic nature and potential to run a chronic course, and the efficacy of some antiepileptic medications in the prophylaxis of both disorders, are often cited as evidence of possible shared underlying pathophysiology. The present paper aims to review the bidirectional associations between epilepsy and bipolar disorder, with a focus on epidemiological links, evidence for shared etiology, and the impact of these disorders on both the individual and wider society. Better recognition and understanding of these two complex disorders, along with an integrated clinical approach, are crucial for improved evaluation and management of comorbid epilepsy and mood disorders.

  3. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    NASA Astrophysics Data System (ADS)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-01

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O7+ ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O7+ ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  4. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    SciTech Connect

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-05

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O{sup 7+} ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O{sup 7+} ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  5. New high-performance complementary bipolar technology featuring 45-GHz NPN and 20-GHz PNP devices

    NASA Astrophysics Data System (ADS)

    Wilson, Martin C.; Osborne, Peter H.; Thomas, Simon; Cook, Trevor

    1999-09-01

    A new high performance silicon complementary bipolar technology is introduced. In addition a novel process 'enhancement' technique based on a local oxidation is described and demonstrated and NPN devices with cut-off frequencies up to 45GHz and PNP devices of 20GHz have been fabricate. We propose that the technique we have used will allow specific transistors within a circuit to be optimized, as required.

  6. Hot-electron injection into GaAs and related materials

    NASA Astrophysics Data System (ADS)

    Adler, D.

    1982-10-01

    A wide array of phenomena involving chalcogenide glasses, amorphous silicon alloys, and III-V semiconductors were investigated. Chalcogenide glass/GaAs heterojunctions, finding an accumulation region near the anode of the GaAs which pins the field below threshold in forward bias were studied; in reverse bias, a depletion region is induced near the cathode of the GaAs. Similar results were found for InP heterojunctions. A model was developed for threshold switching in chalcogenides, including the mechanism for the switching and recovery events and the nature of the ON-state. A narrow band electroluminescence was detected at room temperature during the pulsed ON-state, and evidence for its coherence was found. Thin film transistors were fabricated using a chalcogenide glass as the active material resulted in a microfilm product of approximately 2 sq cm/V-s, more than a factor of 10 to the 6th power greater than those previously reported. The field effect was found to be transient and a detailed model was developed. The effect is controlled by a potential barrier which retards neutral defect interconversion. Similar results were invoked to explain the Staebler-Wronski effect in amorphous silicon alloys and fatigue in MNOS transistors. Switching in amorphous silicon alloys was investigated.

  7. [Creativity and bipolar disorder].

    PubMed

    Maçkalı, Zeynep; Gülöksüz, Sinan; Oral, Timuçin

    2014-01-01

    The relationship between creativity and bipolar disorder has been an intriguing topic since ancient times. Early studies focused on describing characteristics of creative people. From the last quarter of the twentieth century, researchers began to focus on the relationship between mood disorders and creativity. Initially, the studies were based on biographical texts and the obtained results indicated a relationship between these two concepts. The limitations of the retrospective studies led the researchers to develop systematic investigations into this area. The systematic studies that have focused on artistic creativity have examined both the prevalence of mood disorders and the creative process. In addition, a group of researchers addressed the relationship in terms of affective temperaments. Through the end of the 90's, the scope of creativity was widened and the notion of everyday creativity was proposed. The emergence of this notion led researchers to investigate the associations of the creative process in ordinary (non-artist) individuals. In this review, the descriptions of creativity and creative process are mentioned. Also, the creative process is addressed with regards to bipolar disorder. Then, the relationship between creativity and bipolar disorder are evaluated in terms of aforementioned studies (biographical, systematic, psychobiographical, affective temperaments). In addition, a new model, the "Shared Vulnerability Model" which was developed to explain the relationship between creativity and psychopathology is introduced. Finally, the methodological limitations and the suggestions for resolving these limitations are included.

  8. Bipolar Disorder in Children and Teens

    MedlinePlus

    ... is in crisis. What do I do? Share Bipolar Disorder in Children and Teens Download PDF Download ePub ... brochure will give you more information. What is bipolar disorder? Bipolar disorder is a serious brain illness. It ...

  9. Metallic field effect transistors

    NASA Astrophysics Data System (ADS)

    Farooq, Hassan

    This thesis investigates the principle of operation behind metallic-field effect transistors (METFETs) through a systematic study of atomistic simulations performed on metallic bulk, nanowire and transistor structures. In particular, density functional theory (DFT) and non-equilibrium green's function (NEGF) based models were used to study the effect on the bandstructure and density of states of highly scaled metallic nanowires with varying parameters such as crystal orientation, cross-sectional area, and applied external bias. Similarly, the effect of varying similar parameters on the transfer and output characteristics of highly scaled metallic transistors was studied. Furthermore, oxide interfaces with metallic channels were investigated. The simulation results show that a gold METFET in the [100] crystal orientation has an I ON /IOFF ratio of 41, ION of 29.5microA and fT of 6.7THz, outperforming similarly sized MOSFETs as a promising alternative for use in high-frequency circuits.

  10. Multiple Applications of GaAs semiconductors

    NASA Astrophysics Data System (ADS)

    Martel, Jenrené; Wonka, Willy

    2003-03-01

    The object of this discussion will be to explore the many facets of Gallium Arsenide(GaAs) semiconductors. The session will begin with a brief overview of the basic properties of semiconductors in general(band gap, doping, charge mobility etc.). It will then follow with a closer look at the properties of GaAs and how these properties could potentially translate into some very exciting applications. Furthermore, current applications of GaAs semiconductors will be dicussed and analyzed. Finally, physical limits and advantages/disadvantages of GaAs will be considered.

  11. Schottky bipolar I-MOS: An I-MOS with Schottky electrodes and an open-base BJT configuration for reduced operating voltage

    NASA Astrophysics Data System (ADS)

    Kannan, N.; Kumar, M. Jagadesh

    2017-04-01

    In this paper, we have proposed a novel impact ionization MOS (I-MOS) structure, called the Schottky bipolar I-MOS, with Schottky source and drain electrodes and utilizing the open-base bipolar junction transistor (BJT) configuration for achieving reduction in the operating voltage of the I-MOS transistor. We report, using 2-D simulations, a low operating voltage (∼1.1 V) and a low subthreshold swing (∼3.6 mV/Decade). For the corresponding p-i-n I-MOS, the operating voltage is ∼5.5 V. The operating voltage of the Schottky bipolar I-MOS is the lowest reported operating voltage for silicon based I-MOS transistors. The nearly 80% reduction in the operating voltage of the Schottky bipolar I-MOS makes it suitable for applications requiring low operating voltages. The Schottky bipolar I-MOS is also expected to have an improved reliability over the p-i-n I-MOS since high energy carriers, induced by impact ionization near the drain, do not have to pass under the gate region in the channel. The use of Schottky contacts instead of heavily doped source and drain regions and the low channel doping level reduces the required thermal budget for device fabrication. The low operating voltage, low subthreshold swing and possibly improved reliability of the Schottky bipolar I-MOS, makes it a potential solution for applications where steep subthreshold slope transistors are being explored as alternative to the conventional MOS transistor.

  12. VOLTAGE-CONTROLLED TRANSISTOR OSCILLATOR

    DOEpatents

    Scheele, P.F.

    1958-09-16

    This patent relates to transistor oscillators and in particular to those transistor oscillators whose frequencies vary according to controlling voltages. A principal feature of the disclosed transistor oscillator circuit resides in the temperature compensation of the frequency modulating stage by the use of a resistorthermistor network. The resistor-thermistor network components are selected to have the network resistance, which is in series with the modulator transistor emitter circuit, vary with temperature to compensate for variation in the parameters of the transistor due to temperature change.

  13. Dual-Side Wafer Processing and Resonant Tunneling Transistor Applications

    SciTech Connect

    Moon, J.S.; Simmons, J.A.; Wendt, J.R.; Hietala, V.M.; Reno, J.L.; Baca, W.E.; Blount, M.A.

    1999-07-20

    We describe dual-side wafer processing and its application to resonant tunneling transistors in a planar configuration. The fabrication technique utilizes a novel flip-chip, wafer thinning process called epoxy-bond and stop-etch (EBASE) process, where the substrate material is removed by selective wet etching and stopped at an etch-stop layer. This EBASE method results in a semiconductor epitaxial layer that is typically less than a micron thick and has a mirror-finish, allowing backside gates to be placed in close proximity to frontside gates. Utilizing this technique, a resonant tunneling transistor--the double electron layer tunneling transistor (DELTT)--can be fabricated in a fully planar configuration, where the tunneling between two selectively-contacted 2DEGs in GaAs or InGaAs quantum wells is modulated by surface Schottky gate. Low temperature electrical characterization yields source-drain I-V curves with a gate-tunable negative differential resistance.

  14. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔVth ˜ 15 V) and a long retention time (>105 s). The magnitude of ΔVth depended on both P/E voltages and the bias voltage (VDS): ΔVth was a cubic function to VP/E and linearly depended on VDS. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  15. Accelerating the life of transistors

    NASA Astrophysics Data System (ADS)

    Haochun, Qi; Changzhi, Lü; Xiaoling, Zhang; Xuesong, Xie

    2013-06-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 104 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 103. Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation.

  16. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  17. GaAs homojunction solar cell development

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Swartz, C. K.; Hart, R. E., Jr.

    1980-01-01

    The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells.

  18. Ohmic contact to GaAs semiconductor

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    Multimetallic layers produce stable, low-resistance contacts for p-type GaAs and p-type GaAlAs devices. Contacts present no leakage problems, and their series resistance is too small to measure at 1 Sun intensity. Ohmic contacts are stable and should meet 20-year-life requirement at 150 C for GaAs combined photothermal/photovoltaic concentrators.

  19. Laser Annealing of GaAs

    DTIC Science & Technology

    1978-12-01

    annealing implanted layers. Sheet resistance measurements made on the irradiated semi- insulating GaAs samples indicate no significant change in the... sheet resistance after laser irradiation (typical decrease in the sheet resistance after laser irradiation was found to be less than a factor of two...OF THE SHEET - RESISTANCE (P ) THE EFFECTIVE SHEET ELECTRON CONCENTRATION (N ), AND THE EFFECTIVE MOBILITY _u)FOR SEMIb- INSULATING GaAs IMPLANTED WITH

  20. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  1. Bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  2. Bipolar disorder in women

    PubMed Central

    Parial, Sonia

    2015-01-01

    Bipolar affective disorder in women is a challenging disorder to treat. It is unique in its presentation in women and characterized by later age of onset, seasonality, atypical presentation, and a higher degree of mixed episodes. Medical and psychiatric co-morbidity adversely affects recovery from the bipolar disorder (BD) more often in women. Co-morbidity, particularly thyroid disease, migraine, obesity, and anxiety disorders occur more frequently in women while substance use disorders are more common in men. Treatment of women during pregnancy and lactation is challenging. Pregnancy neither protects nor exacerbates BD, and many women require continuation of medication during the pregnancy. The postpartum period is a time of high risk for onset and recurrence of BD in women. Prophylaxis with mood stabilizers might be needed. Individualized risk/benefits assessments of pregnant and postpartum women with BD are required to promote the health of the women and to avoid or limit exposure of the fetus or infant to potential adverse effects of medication. PMID:26330643

  3. A Vertically Integrated Junctionless Nanowire Transistor.

    PubMed

    Lee, Byung-Hyun; Hur, Jae; Kang, Min-Ho; Bang, Tewook; Ahn, Dae-Chul; Lee, Dongil; Kim, Kwang-Hee; Choi, Yang-Kyu

    2016-03-09

    A vertically integrated junctionless field-effect transistor (VJ-FET), which is composed of vertically stacked multiple silicon nanowires (SiNWs) with a gate-all-around (GAA) structure, is demonstrated on a bulk silicon wafer for the first time. The proposed VJ-FET mitigates the issues of variability and fabrication complexity that are encountered in the vertically integrated multi-NW FET (VM-FET) based on an identical structure in which the VM-FET, as recently reported, harnesses a source and drain (S/D) junction for its operation and is thus based on the inversion mode. Variability is alleviated by bulk conduction in a junctionless FET (JL-FET), where current flows through the core of the SiNW, whereas it is not mitigated by surface conduction in an inversion mode FET (IM-FET), where current flows via the surface of the SiNW. The fabrication complexity is reduced by the inherent JL structure of the JL-FET because S/D formation is not required. In contrast, it is very difficult to dope the S/D when it is positioned at each floor of a tall SiNW with greater uniformity and with less damage to the crystalline structure of the SiNW in a VM-FET. Moreover, when the proposed VJ-FET is used as nonvolatile flash memory, the endurance and retention characteristics are improved due to the above-mentioned bulk conduction.

  4. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    SciTech Connect

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun; Wu, Chao-Hsin

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  5. Radiation damage testing of transistors for SSC front-end electronics

    SciTech Connect

    Dawson, J.; Ekenberg, T.; Stevens, A. ); Kraner, H.; Radeka, V.; Rescia, S. ); Kerns, S. . Dept. of Electrical Engineering)

    1990-01-01

    Over the ten year expected lifetime of a typical SSC detector operating at the design luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1}, the front-end electronics at large pseudorapidities may receive total doses as high as 20 MRad(Si) of ionizing radiation and 10{sup 16} neutrons/cm{sup 2}. Discrete JFETs and monolithic MOS and bipolar transistors have been irradiated at 10 MRad(Si) and 10{sup 14} neutrons/cm{sup 2}, and the effect on transfer characteristics and noise performance have been measured. All transistors were still functional after irradiation but suffered increased noise and the MOS transistors showed significant threshold shifts and increased leakage currents. 4 refs., 2 figs.

  6. Transistor voltage comparator performs own sensing

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.

    1965-01-01

    Detection of the highest voltage input among a group of varying voltage inputs is accomplished by a transistorized voltage comparison circuit. The collector circuits of the transistors perform the sensing function. Input voltage levels are governed by the transistors.

  7. Improved chopper circuit uses parallel transistors

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Parallel transistor chopper circuit operates with one transistor in the forward mode and the other in the inverse mode. By using this method, it acts as a single, symmetrical, bidirectional transistor, and reduces and stabilizes the offset voltage.

  8. Gyrator employing field effect transistors

    NASA Technical Reports Server (NTRS)

    Hochmair, E. S. (Inventor)

    1973-01-01

    A gyrator circuit of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 deg phase reversal is examined. All active elements are MOS field effect transistors. Each amplifier comprises a differential amplifier configuration with current limiting transistor, followed by an output transistor in cascode configuration, and two load transistors of opposite conductivity type from the other transistors. A voltage divider control circuit comprises a series string of transistors with a central voltage input to provide control, with locations on the amplifiers receiving reference voltages by connection to appropriate points on the divider. The circuit produces excellent response and is well suited for fabrication by integrated circuits.

  9. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  10. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  11. Junctionless Cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu.; Lehtinen, J. S.

    2017-02-01

    Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  12. Polarization induced doped transistor

    SciTech Connect

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  13. Pharmacogenomics of bipolar disorder.

    PubMed

    Severino, Giovanni; Squassina, Alessio; Costa, Marta; Pisanu, Claudia; Calza, Stefano; Alda, Martin; Del Zompo, Maria; Manchia, Mirko

    2013-04-01

    Bipolar disorder (BD) is a lifelong severe psychiatric condition with high morbidity, disability and excess mortality. The longitudinal clinical trajectory of BD is significantly modified by pharmacological treatment(s), both in acute and in long-term stages. However, a large proportion of BD patients have inadequate response to pharmacological treatments. Pharmacogenomic research may lead to the identification of molecular predictors of treatment response. When integrated with clinical information, pharmacogenomic findings may be used in the future to determine the probability of response/nonresponse to treatment on an individual basis. Here we present a selective review of pharmacogenomic findings in BD. In light of the evidence suggesting a genetic effect of lithium reponse in BD, we focused particularly on the pharmacogenomic literature relevant to this trait. The article contributes a detailed overview of the current status of pharmacogenomics in BD and offers a perspective on the challenges that can hinder its transition to personalized healthcare.

  14. Asenapine for bipolar disorder

    PubMed Central

    Scheidemantel, Thomas; Korobkova, Irina; Rej, Soham; Sajatovic, Martha

    2015-01-01

    Asenapine (Saphris®) is an atypical antipsychotic drug which has been approved by the US Food and Drug Administration for the treatment of schizophrenia in adults, as well as the treatment of acute manic or mixed episodes of bipolar I in both adult and pediatric populations. Asenapine is a tetracyclic drug with antidopaminergic and antiserotonergic activity with a unique sublingual route of administration. In this review, we examine and summarize the available literature on the safety, efficacy, and tolerability of asenapine in the treatment of bipolar disorder (BD). Data from randomized, double-blind trials comparing asenapine to placebo or olanzapine in the treatment of acute manic or mixed episodes showed asenapine to be an effective monotherapy treatment in clinical settings; asenapine outperformed placebo and showed noninferior performance to olanzapine based on improvement in the Young Mania Rating Scale scores. There are limited data available on the use of asenapine in the treatment of depressive symptoms of BD, or in the maintenance phase of BD. The available data are inconclusive, suggesting the need for more robust data from prospective trials in these clinical domains. The most commonly reported adverse effect associated with use of asenapine is somnolence. However, the somnolence associated with asenapine use did not cause significant rates of discontinuation. While asenapine was associated with weight gain when compared to placebo, it appeared to be modest when compared to other atypical antipsychotics, and its propensity to cause increases in hemoglobin A1c or serum lipid levels appeared to be similarly modest. Asenapine does not appear to cause any clinically significant QTc prolongation. The most commonly reported extra-pyramidal symptom associated with asenapine was akathisia. Overall, asenapine appears to be a relatively well-tolerated atypical antipsychotic, effective in the treatment of acute manic and mixed episodes of BD. PMID:26674884

  15. Late-onset bipolar illness: the geriatric bipolar type VI.

    PubMed

    Azorin, Jean-Michel; Kaladjian, Arthur; Adida, Marc; Fakra, Eric

    2012-03-01

    In parallel to considerable progress in understanding and treatment of bipolarity and despite growing interest in old age psychiatry, late-onset bipolar illness (LOBI) has remained relatively understudied so far, probably in reason of its complexity. To update available data, a systematic review was conducted, focusing on the main issues addressed in literature in regard to this topic. In addition to data on epidemiology, clinical features and treatment, five main issues could be identified: LOBI as secondary disorder, LOBI as expression of a lower vulnerability to the disease, LOBI as subform of pseudodementia, LOBI as risk factor for developing dementia, and LOBI as bipolar type VI (bipolarity in the context of dementia like processes). Levels of available evidence were found to vary according to the addressed issue. Although the concept of bipolar type VI could be criticized for subsuming under one single heading all the four other issues, this concept may be of pragmatic value in helping clinicians to orientate both diagnosis process and treatment decisions. Among others, the question as to whether some forms of bipolar type VI could constitute a special risk factor for developing dementia deserves further investigation. More studies are also needed to better disentangle the effects of age at onset from those of age itself.

  16. [High-frequency transistor tract for UHF therapy device].

    PubMed

    Tamarchak, D Ia

    1998-01-01

    The paper deals with the specific features of construction of a common circuit and individual units of high-frequency transistor tracts for physiotherapeutic UHF apparatuses whose design is a possible way of conversion of radioelectron equipment. The design of UHF tracts gives rise to some radio engineering problems due to the low output resistance of bipolar transistors and to the operational characteristics of physiotherapeutic equipment and, as a result, the load of the tract is a two-conductor long line loaded with complex resistance whose active part changes slightly and the reactive one varies very greatly. The structure of a high-frequency, which transfers power from the generator with external excitement to the active part of complex load by changing its reactive part in the wide range, was analyzed. It is shown that for reliable operation of the UHF apparatus, its tract should have a multichannel structure with subsequent summation of the power and automatic compensation of the reactive component of alternating load. This provides a measuring mode for the power connected to the patient. The tract structure in question may serve the basis for the designing transistor physiotherapy apparatuses of average and high power (Poutput = 50-400 W).

  17. Bipolar-rogue-wave structures

    NASA Astrophysics Data System (ADS)

    Ding, Yingchun; Zhang, Bin; Feng, Qi; Tang, Xin; Liu, Zhongxuan; Chen, Zhaoyang; Lin, Chengyou

    2017-01-01

    The formation of extreme localization structures in nonlinear dispersive media (water or optical fibres) can be explained and described by the focusing nonlinear Schrödinger equation (NLSE). The NLSE is especially important in understanding how solitons on a condensate background (SCB) appear from a small perturbation through modulation instability. We have studied theoretically SCB solutions solved with the dressing method. A class of bipolar-rogue-wave structures that are constructed by collisions between elementary SCB or bipolar solitonic solutions was found. Besides, we have also found a new class of regular bright solitonic rogue waves that are originated from the collision between two bipolar-rogue-wave structures. The bipolar-rogue-wave structures can be considered to provide a new prototype for rogue-waves dynamics modeling. Our results extend previous studies in the area of rogue waves and may be important in the study of oceanography and optics.

  18. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  19. Cathodoluminescence Characterization of Ion Implanted GaAs.

    DTIC Science & Technology

    1980-03-01

    into GaAs. In their experi- ment, GaAs thin films were grown on MgA12 4 spinel substrates. When the electrons had sufficient energy they caused the...sections. Growing The epi-layers were grown on a chromium doped GaAs substrate using a vapor phase epitaxial growth technique. They were grown by G

  20. Bipolar disorder and multiple sclerosis.

    PubMed

    Ybarra, Mariana Inés; Moreira, Marcos Aurélio; Araújo, Carolina Reis; Lana-Peixoto, Marco Aurélio; Teixeira, Antonio Lucio

    2007-12-01

    Bipolar disorder may be overrepresented in multiple sclerosis (MS) patients. Although research in this area is limited, studies assessing the nature of this association have focused on genetic aspects, adverse reaction to drugs and brain demyelinating lesions. Herein we report three patients with MS that also presented bipolar disorder. The coexistence of neurological and psychiatric symptoms in most MS relapses highlights the relevance of biological factors in the emergence of mood disorders in these patients.

  1. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  2. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  3. GaAs solar cell test facility

    NASA Astrophysics Data System (ADS)

    Kawashima, M.; Hosoda, Y.; Suzawa, C.; Shimada, T.; Motoyoshi, K.; Sasatani, Y.

    1982-01-01

    A hybrid type (electricity and heat) GaAs solar cell test facility has been made to evaluate total characteristics of GaAs cell and to study the energy conversion system. The size of a solar collector is 3.4 m x 2.1 m and 60 GaAs cells with Fresnel lenses are attached on it. The solar collector is controlled by a microcomputer to track the sun. Electric energy produced by the cells is stored in a lead-acid battery and then supplied to the load through a DC-AC inverter. The microcomputer also controls the data acquisition in parallel with tracking. This paper presents an overview of the facility and the experimental results of power generation obtained to date.

  4. Impacts of crystal orientation of GaAs on the interfacial structures and electrical properties of Hf{sub 0.6}La{sub 0.4}O{sub x} films

    SciTech Connect

    Jia, Tingting; Kimura, Hideo; Zhao, Hongyang; Yao, Qiwen; Cheng, Zhenxiang; Cheng, Xinghong; Yu, Yuehui

    2014-04-07

    One of the major challenges in realizing the GaAs channel in the metal oxide semiconductor field effect transistor is the degrading in electron transport properties at the interface between GaAs and the gate oxide. In this study, Hf{sub 0.6}La{sub 0.4}O{sub x} gate oxide films were deposited at a low temperature (200 °C) on GaAs(111)A and GaAs(100) substrates by plasma enhanced atomic layer deposition. Microstructure analysis indicates that residuals of gallium oxide, arsenic oxide, and As element remained at the interface of Hf{sub 0.6}La{sub 0.4}O{sub x}/GaAs(100). On contrast, a smoother interface is observed between Hf{sub 0.6}La{sub 0.4}O{sub x} thin film and GaAs(111)A substrate. Furthermore, a reduction of interfacial layer is observed in Hf{sub 0.6}La{sub 0.4}O{sub x}/GaAs(111)A. Electrical characterization of the metal-insulator-semiconductor Pt/Hf{sub 0.6}La{sub 0.4}O{sub x}/n-GaAs(111)A capacitor indicated a reduction of D{sub it} and leakage current compared with the capacitor fabricated on GaAs(100)

  5. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  6. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  7. Organic thin-film transistors.

    PubMed

    Klauk, Hagen

    2010-07-01

    Over the past 20 years, organic transistors have developed from a laboratory curiosity to a commercially viable technology. This critical review provides a short summary of several important aspects of organic transistors, including materials, microstructure, carrier transport, manufacturing, electrical properties, and performance limitations (200 references).

  8. Nonlinear Noise in SiGe Bipolar Devices and its Impact on Radio-Frequency Amplifier Phase Noise

    NASA Astrophysics Data System (ADS)

    Gribaldo, S.; Cibiel, G.; Llopis, O.; Graffeuil, J.

    2005-08-01

    The nonlinear behavior of different microwave SiGe bipolar transistors has been studied and models have been extracted. The phase noise of an amplifier is computed, taking into account the microwave additive noise floor and the up-converted 1/f noise. The simulation technique is a combination of different approaches available in a commercial CAD software. Theoretical results are then compared to the experiment.

  9. Ion Implanted GaAs I.C. Process Technology

    DTIC Science & Technology

    1981-07-01

    in ion implantation in GaAs, coupled with better control of the substrate material. 1 Once ion implantation became a reliable processing technology it... Processing Technology for Planar GaAs Integrated Circuits," GaAs IC Symposium, Lake Tahoe, CA., Sept. 1979. 20. R.C. Eden, "GaAs Integrated Circuit Device...1980. 25. B.M. Welch, "Advances in GaAs LSI!VLSI Processing Technology ," Sol. St. Tech., Feb. 1980, pp. 95-101. 27. R. Zucca, B.M. Welch, P.M

  10. Transparent metal oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-01

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  11. Transparent metal oxide nanowire transistors.

    PubMed

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-21

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  12. New Gate Dielectric Oxides for GaAs and Other Semiconductors*

    NASA Astrophysics Data System (ADS)

    Hong, M.

    2000-03-01

    It is well known that electrons move much faster in GaAs than in Si, and this attribute makes the GaAs-based metal oxide semiconductor field effect transistors (MOSFETs) very attractive for high-frequency, high-speed circuits applications. However, identifying a proper insulating oxide for GaAs has been a problem puzzling researchers over 35 years. Recently we discovered that the use of a mixed oxide dielectric Ga_2O_3(Gd_2O_3)^1 formed inversion and accumulation channels on GaAs surfaces, with a low interfacial density of states (D_it) of mid-10^10 cm-2eV-1. Subsequently, we have demonstrated the p- and n- inversion channel MOSFETs^2 and CMOS circuits^3. All oxides in this work were prepared by ultrahigh vacuum deposition from e-beam sources. The initial growth ( 10 Åof Ga_2O_3(Gd_2O_3) film on GaAs takes place from nucleating a thin epitaxial layer of pure Gd_2O_3. In fact, mono-domain, single crystalline Gd_2O3 films (ɛ =12) can be grown on GaAs (100) surface in the (110) Mn_2O3 structure, and that show leakage currents as low as 10-4 A/cm^2 at 10 MV/cm for a film only 25 Åthick^4. We have extended our studies to other rare earth oxides and other semiconductors. For example, low-D_it GaN MOS diodes and GaN MOSFETs operated at 400^circC were obtained. The GaN MOSFET has potential applications in high power switching and high temperature device operation. More remarkably, we have found recently that another rare earth oxide, Y_2O3 (ɛ = 18) showed excellent electrical properties as a gate dielectric for Si, to replace the current SiO_2, where the thickness is now approaching the quantum limit^5. *In collaboration with J. Kwo, A. R. Kortan, J. N. Baillargeon, J. P. Mannaerts, F. Ren, Y. C. Wang, T. S. Lay, H. Ng, R. Opila, K. L. Queeney, Y. J. Chabal, T. Boone, J. J. Krajewski, A. M. Sergent, J. M. Rosamilia, M. Passlack, D. W. Murphy, and A. Y. Cho. 1. M. Hong, et al, J. Vac. Sci. Technol. B14, 2297, (1996). 2. F. Ren et al, IEDM Technical Digest, p.943, (1996

  13. [Unipolar versus bipolar depression: clues toward predicting bipolarity disorder].

    PubMed

    Ben Abla, T; Ellouze, F; Amri, H; Krid, G; Zouari, A; M'Rad, M F

    2006-01-01

    Bipolar and unipolar disorders share a common depressive clinical manifestation. It is important to distinguish between these two forms of depression for several reasons. First, prescribing antidepressors in monotherapy indubitably worsens the prognosis of bipolarity disorders. Second, postponing the prescription of a mood stabilizer reduces the efficacy of the treatment and multiplies the suicidal risks by two. The object of this study is to reveal the factors that distinguish between unipolar and bipolar depression. This is a retrospective study on patients' files. It includes 186 patients divided according to DSM IV criteria into two groups: patients with bipolar disorder type I or II with a recent depressive episode (123 patients) and patients with recurrent depressive disorder (63 patients). A medical record card was filled-in for every patient. It included socio-demographic data, information about the disorder, family antecedents, CGI score (global clinical impressions), physical comorbidity, substance abuse and personality disorder. In order to sort out the categorization variables, the two groups were compared using chi2 test or Fischer's test. With regard to the quantitative variables, the two groups were compared using Krostal Wallis's test or Ancova. Our study has revealed that bipolar disorder differs significantly from unipolar disorder in the following respects: bipolar disorder is prevalent among men (sex-ratio 2) while unipolar disorder is prevailing among women (sex-ratio 0.8); patients with bipolar disorder are younger than patients with unipolar disorder (38.1 +/- 5 years vs. 49.7 +/- years); the age at the onset of bipolar disorder is earlier than that of unipolar disorder (20.8 +/- 2 years vs. 38.7 +/- 5 years); family antecedents are more important in bipolar patients than in unipolar patients (51.1% vs. 33%). More importantly, bipolar disorder differs from unipolar disorder in the following aspects: The number of suicidal attempts (25.3% vs

  14. The coupled atom transistor

    NASA Astrophysics Data System (ADS)

    Jehl, X.; Voisin, B.; Roche, B.; Dupont-Ferrier, E.; De Franceschi, S.; Sanquer, M.; Cobian, M.; Niquet, Y.-M.; Sklénard, B.; Cueto, O.; Wacquez, R.; Vinet, M.

    2015-04-01

    We describe the first implementation of a coupled atom transistor where two shallow donors (P or As) are implanted in a nanoscale silicon nanowire and their electronic levels are controlled with three gate voltages. Transport spectroscopy through these donors placed in series is performed both at zero and microwave frequencies. The coherence of the charge transfer between the two donors is probed by Landau-Zener-Stückelberg interferometry. Single-charge transfer at zero bias (electron pumping) has been performed and the crossover between the adiabatic and non-adiabatic regimes is studied.

  15. Power transistor switching characterization

    NASA Technical Reports Server (NTRS)

    Blackburn, D. L.

    1981-01-01

    The switching properties of power transistors are investigated. The devices studied were housed in IO-3 cases and were of an n(+)-p-n(-)-n(+) vertical dopant structure. The effects of the magnitude of the reverse-base current and temperature on the reverse-bias second breakdown characteristics are discussed. Brief discussions of device degradation due to second breakdown and of a constant voltage turn-off circuit are included. A description of a vacuum tube voltage clamp circuit which reduces clamped collector voltage overshoot is given.

  16. REGENERATIVE TRANSISTOR AMPLIFIER

    DOEpatents

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  17. A Cryogenic GaAs PHEMT/ Ferroelectric Ku-Band Tunable Oscillator

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.; VanKeuls, Fred W.

    1998-01-01

    A Ku-band tunable oscillator operated at and below 77 K is described. The oscillator is based on two separate technologies: a 0.25 mm GaAs pseudomorphic high electron mobility transistor (PHEMT) circuit optimized for cryogenic operation, and a gold microstrip ring resonator patterned on a thin ferroelectric (SrTiO3) film which was laser ablated onto a LaAlO3 substrate. A tuning range of up to 3% of the center frequency was achieved by applying dc bias between the ring resonator and ground plane. To the best of our knowledge, this is the first tunable oscillator based on a thin film ferroelectric structure demonstrated in the microwave frequency range. The design methodology of the oscillator and the performance characteristics of the tunable resonator are described.

  18. Hole Injection from Schottky Gate in Ion-Implanted GaAs Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Shulman, Dima D.; Young, Lawrence

    1992-05-01

    Measurements of currents for a GaAs metal-semiconductor field-effect transistor (MESFET) when a negative bias was applied to a nearby ohmic contact (sidegate) showed that significant hole injection from the gate occurs for large negative sidegate voltages. This is in agreement with a proposed model, in which the presence of an inversion layer under the Schottky gate due to the pinning of the Fermi level at the channel surface causes hole injection into the channel when the gate is positively biased with respect to the sidegate. Upon increasing negative sidegate voltage the substrate-channel depletion region is expanded, and consequently, the neutral region of the channel is shrunk. This results in more holes being injected into the substrate from the gate.

  19. Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors.

    PubMed

    Földesy, Péter

    2013-08-01

    An antenna-coupled field effect transistor (FET) as a plasma wave terahertz detector is used with the current steering to record separately the gate-source and gate-drain photoresponses and their phase sensitive combination. This method is based on the observation that the plasmon-terminal coupling is cut off in saturation, resulting in only one-sided sensitivity. A polarimetric example is presented with intensity and polarization angle reconstruction using a single three-terminal antenna-coupled Si-metal-oxide semiconductor FET (MOSFET). The technique is applicable to various detection schemes and technologies (high electron mobility transistors and GaAs-, GaN-, and Si-MOSFETs), and other application possibilities are discussed.

  20. Treatment of bipolar disorder

    PubMed Central

    2013-01-01

    We review recent developments in the acute and long-term treatment of bipolar disorder and identify promising future routes to therapeutic innovation. Overall, advances in drug treatment remain quite modest. Antipsychotic drugs are effective in the acute treatment of mania; their efficacy in the treatment of depression is variable with the clearest evidence for quetiapine. Despite their widespread use, considerable uncertainty and controversy remains about the use of antidepressant drugs in the management of depressive episodes. Lithium has the strongest evidence for long-term relapse prevention; the evidence for anticonvulsants such as divalproex and lamotrigine is less robust and there is much uncertainty about the longer term benefits of antipsychotics. Substantial progress has been made in the development and assessment of adjunctive psychosocial interventions. Long-term maintenance and possibly acute stabilisation of depression can be enhanced by the combination of psychosocial treatments with drugs. The development of future treatments should consider both the neurobiological and psychosocial mechanisms underlying the disorder. We should continue to repurpose treatments and to recognise the role of serendipity. We should also investigate optimum combinations of pharmacological and psychotherapeutic treatments at different stages of the illness. Clarification of the mechanisms by which different treatments affect sleep and circadian rhythms and their relation with daily mood fluctuations is likely to help with the treatment selection for individual patients. To be economically viable, existing psychotherapy protocols need to be made briefer and more efficient for improved scalability and sustainability in widespread implementation. PMID:23663953

  1. Bipolar cells of the ground squirrel retina.

    PubMed

    Puller, Christian; Ondreka, Katharina; Haverkamp, Silke

    2011-03-01

    Parallel processing of an image projected onto the retina starts at the first synapse, the cone pedicle, and each cone feeds its light signal into a minimum of eight different bipolar cell types. Hence, the morphological classification of bipolar cells is a prerequisite for analyzing retinal circuitry. Here we applied common bipolar cell markers to the cone-dominated ground squirrel retina, studied the labeling by confocal microscopy and electron microscopy, and compared the resulting bipolar cell types with those of the mouse (rod dominated) and primate retina. Eight different cone bipolar cell types (three OFF and five ON) and one rod bipolar cell were distinguished. The major criteria for classifying the cells were their immunocytochemical identity, their dendritic branching pattern, and the shape and stratification level of their axons in the inner plexiform layer (IPL). Immunostaining with antibodies against Gγ13, a marker for ON bipolar cells, made it possible to separate OFF and ON bipolars. Recoverin-positive OFF bipolar cells partly overlapped with ON bipolar axon terminals at the ON/OFF border of the IPL. Antibodies against HCN4 labeled the S-cone selective (bb) bipolar cell. The calcium-binding protein CaB5 was expressed in two OFF and two ON cone bipolar cell types, and CD15 labeled a widefield ON cone bipolar cell comparable to the DB6 in primate.

  2. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  3. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  4. Image transfer in photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Gheen, Gregory; Rau, Mann-Fu; Wang, Faa-Ching

    1987-01-01

    Image transfer from one beam to the other using counterpropagation beam coupling in GaAs was demonstrated. Good image quality was achieved. The results also reveal that local birefringence due to the residual stress/strain field in the crystal can degrade the image quality.

  5. A Matterwave Transistor Oscillator

    NASA Astrophysics Data System (ADS)

    Caliga, Seth; Straatsma, Cameron; Anderson, Dana

    2013-05-01

    We perform experiments with an Rb87 Bose-condensed gas in a magnetic trap separated into three regions by a pair of blue-detuned optical barriers, forming a transistor-like structure having large ``source'' and ``drain'' regions separated by a narrow ``gate'' region. A condensate is produced in the source by forced RF evaporative cooling. While atom number and chemical potential of the source atoms are determined by traditional time of flight methods, we observe the flux and energy of the drain atoms emerging from the gate-drain barrier with a high resolution (NA = 0.6) in-trap absorption imaging system. Asymmetric cooling of the trap causes a thermo-mechanically induced superfluid current to flow from the source to the gate over the source-gate barrier. Feedback through superfluid coupling between the source and the gate maintains near equality of the source and gate chemical potentials while superfluid flow continues to cause atoms to emerge from the gate into the drain. A resonant ``terminator'' beam illuminating the drain region effectively couples emerging gate atoms to the vacuum. By turning off the terminator beam shortly before snapping an absorption image we determine both the atom flux and the atom energy. With an appropriate choice of cooling schedule, barrier heights, and separations, the gate emits a monoenergetic beam of atoms. We establish that this system is a superfluid analog of an antenna-coupled transistor-oscillator circuit in which the dual of the electromagnetic wave is a matterwave.

  6. Brainstorm: occupational choice, bipolar illness and creativity.

    PubMed

    Tremblay, Carol Horton; Grosskopf, Shawna; Yang, Ke

    2010-07-01

    Although economists have analyzed earnings, unemployment, and labor force participation for those with bipolar illness, occupational choice has yet to be explored. Psychological and medical studies often suggest an association between bipolar illness and creative achievement, but they tend to focus on eminent figures, case studies, or small samples. We seek to examine occupational creativity of non-eminent individuals with bipolar disorder. We use Epidemiologic Catchment Area data to estimate a multinomial logit model matched to an index of occupational creativity. Those with bipolar illness appear to be disproportionately concentrated in the most creative occupational category. Nonparametric kernel density estimates reveal that the densities of the occupational creativity variable for the bipolar and non-bipolar individuals significantly differ in the ECA data, and suggest that the probability of engaging in creative activities on the job is higher for bipolar than non-bipolar workers.

  7. Bipolar Disorder and Alcoholism: Are They Related?

    MedlinePlus

    ... Are they related? Is there a connection between bipolar disorder and alcoholism? Answers from Daniel K. Hall-Flavin, M.D. Bipolar disorder and alcoholism often occur together. Although the association ...

  8. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  9. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen.

    PubMed

    Han, Ning; Yang, Zaixing; Wang, Fengyun; Yip, SenPo; Dong, Guofa; Liang, Xiaoguang; Hung, TakFu; Chen, Yunfa; Ho, Johnny C

    2015-03-11

    Nowadays, III-V compound semiconductor nanowires (NWs) have attracted extensive research interest because of their high carrier mobility favorable for next-generation electronics. However, it is still a great challenge for the large-scale synthesis of III-V NWs with well-controlled and uniform morphology as well as reliable electrical properties, especially on the low-cost noncrystalline substrates for practical utilization. In this study, high-density GaAs NWs with lengths >10 μm and uniform diameter distribution (relative standard deviation σ ∼ 20%) have been successfully prepared by annealing the Au catalyst films (4-12 nm) in air right before GaAs NW growth, which is in distinct contrast to the ones of 2-3 μm length and widely distributed of σ ∼ 20-60% of the conventional NWs grown by the H2-annealed film. This air-annealing process is found to stabilize the Au nanoparticle seeds and to minimize Ostwald ripening during NW growth. Importantly, the obtained GaAs NWs exhibit uniform p-type conductivity when fabricated into NW-arrayed thin-film field-effect transistors (FETs). Moreover, they can be integrated with an n-type InP NW FET into effective complementary metal oxide semiconductor inverters, capable of working at low voltages of 0.5-1.5 V. All of these results explicitly demonstrate the promise of these NW morphology and electrical property controls through the catalyst engineering for next-generation electronics.

  10. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices

    PubMed Central

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines. PMID:25763152

  11. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    PubMed

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  12. Copper atomic-scale transistors

    PubMed Central

    Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242

  13. Interference-based molecular transistors

    PubMed Central

    Li, Ying; Mol, Jan A.; Benjamin, Simon C.; Briggs, G. Andrew D.

    2016-01-01

    Molecular transistors have the potential for switching with lower gate voltages than conventional field-effect transistors. We have calculated the performance of a single-molecule device in which there is interference between electron transport through the highest occupied molecular orbital and the lowest unoccupied molecular orbital of a single molecule. Quantum interference results in a subthreshold slope that is independent of temperature. For realistic parameters the change in gate potential required for a change in source-drain current of two decades is 20 mV, which is a factor of six smaller than the theoretical limit for a metal-oxide-semiconductor field-effect transistor. PMID:27646692

  14. Anticonvulsant drugs in bipolar disorder

    PubMed Central

    Grunze, Heinz; Schlösser, Sandra; Amann, Benedikt; Walden, Jörg

    1999-01-01

    Although much progress has been made in successfully treating bipolar disorder, there is increasing awareness of the limitations of traditional treatment regimens such as lithium and neuroleptics. The large family of anticonvulsant drugs, however, appears to be capable of providing new treatment options, not only as medication of second choice in patients refractory to treatment, but often as a treatment standard with high efficacy and low incidence of side effects. Besides established mood stabilizers such as carbamazepine and valproate, new antiepileptic drugs are entering the field with promising initial results in the treatment of bipolar patients. Furthermore, bringing to light the mechanisms of action of anticonvulsants and the similarities between anticonvulsants effective in bipolar disorder may also deepen our understanding of the pathophysiological basis of the disorder. PMID:22033602

  15. Bipolar illness, creativity, and treatment.

    PubMed

    Rothenberg, A

    2001-01-01

    There have been in recent years increasing claims in both popular and professional literature for a connection between bipolar illness and creativity. A review of studies supporting this claim reveals serious flaws in sampling, methodology, presentation of results, and conclusions. Although there is therefore no evidence for etiological or genetic linkages, it is still necessary to explain interrelationships in those creative persons suffering from the illness. Examples of the work in progress of artists with bipolar disorder, Jackson Pollock and Edvard Munch, illustrate the use of healthy and adaptive creative cognition--janusian and homospatial processes--in the former's breakthrough conception during an improvement phase in treatment leading to the development of the Abstract Expressionist Movement and in the latter's transformation of an hallucination into his famous artwork "The Scream." Treatment options that do not produce cognitive effects are important for creative persons with bipolar disorder.

  16. Mathematical models of bipolar disorder

    NASA Astrophysics Data System (ADS)

    Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.

    2009-07-01

    We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.

  17. Cognitive therapy in bipolar disorder.

    PubMed

    Scott, Jan

    2002-07-01

    Stress-vulnerability models are increasingly viewed as plausible explanations of recurrence in severe affective disorders. This has promoted greater interest in the application of evidence-based psychological treatments, such as cognitive therapy, as an adjunct to medication for patients with bipolar disorder. This paper reviews the results from outcome studies of combined treatment approaches. Preliminary findings indicate that cognitive therapy reduces symptoms, enhances social adjustment and functioning and reduces relapses and hospitalizations in patients with bipolar disorder. However, the lack of published data from large scale randomized controlled trials and the absence of an adequate psychological model of manic relapse means that the role of cognitive therapy in bipolar disorders will be the subject of intense debate for some time to come.

  18. Effects of Sulfide Passivation on the Performance of GaAs MISFETs with Photo-CVD Grown P3N5 Gate Insulators

    NASA Astrophysics Data System (ADS)

    Jeong, Yoon-Ha; Choi, Ki-Hwan; Jo, Seong-Kue; Kang, Bongkoo

    1995-02-01

    Accumulation-mode and depletion-mode GaAs metal-insulator-semiconductor field-effect transistors (MISEETs), with sulfur-treatment and a photochemical vapor-deposited- P3N5 gate insulator, have been successfully fabricated. The devices have good linearity, low hysteresis in current-voltage characteristics, and the instability of the current less than 22 percent for the period of 1.0-1.0×104 s. The effective electron mobility and extrinsic transconductance of the FETs at room temperature are about 1300 cm2/V·s and 1.41 mS/mm for the accumulation-mode, and about 4500 cm2/V·s and 4 mS/mm for the depletion-mode, respectively. Capacitance-voltage (C-V) characteristics and Auger electron spectroscopy (AES) analysis for different sulfur-treatment conditions are discussed. The atomic concentration ratios of sulfur and oxygen to arsenide on GaAs surfaces and GaAs metal-insulator-semiconductor (MIS) interface properties are critically dependent on sulfur pretreatment conditions, and the optimum sulfur-treatment temperature is determined to be about 40° C. The minimum density of interface trap states for an Al/P3N5/GaAs MIS diode with the optimized surface treatment is about 4.3×1010 cm-2 eV-1.

  19. Accelerator-based electron beam technologies for modification of bipolar semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pavlov, Y. S.; Surma, A. M.; Lagov, P. B.; Fomenko, Y. L.; Geifman, E. M.

    2016-09-01

    Radiation processing technologies for static and dynamic parameters modification of silicon bipolar semiconductor devices implemented. Devices of different classes with wide range of operating currents (from a few mA to tens kA) and voltages (from a few volts to 8 kV) were processed in large scale including power diodes and thyristors, high-frequency bipolar and IGBT transistors, fast recovery diodes, pulsed switching diodes, precise temperature- compensated Zener diodes (in general more than fifty 50 device types), produced by different enterprises. The necessary changes in electrical parameters and characteristics of devices caused by formation in the device structures of electrically active and stable in the operating temperature range sub-nanoscale recombination centres. Technologies implemented in the air with high efficiency and controllability, and are an alternative to diffusion doping of Au or Pt, γ-ray, proton and low-Z ion irradiation.

  20. Radiation-induced 1/f noise degradation of bipolar linear voltage regulator

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2016-03-01

    Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference subcircuit is the critical component which leads to the 1/f noise degradation of the LM117. The radiation makes the base surface current of the bipolar junction transistors of the band-gap reference subcircuit increase, which leads to an increase in the output 1/f noise of the LM117. Compared to the output voltage, the 1/f noise parameter is more sensitive, it may be used to evaluate the radiation resistance capability of LM117. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  1. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A.

    2012-02-01

    An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness. Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier. They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively. Such devices have potential for high-frequency operation and large-scale integration.

  2. Field-effect tunneling transistor based on vertical graphene heterostructures.

    PubMed

    Britnell, L; Gorbachev, R V; Jalil, R; Belle, B D; Schedin, F; Mishchenko, A; Georgiou, T; Katsnelson, M I; Eaves, L; Morozov, S V; Peres, N M R; Leist, J; Geim, A K; Novoselov, K S; Ponomarenko, L A

    2012-02-24

    An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness. Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier. They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively. Such devices have potential for high-frequency operation and large-scale integration.

  3. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

  4. From DNA to transistors

    NASA Astrophysics Data System (ADS)

    Braun, Erez; Keren, Kinneret

    2004-06-01

    The rapid advance in molecular biology and nanotechnology opens up the possibility to explore the interface between biology and electronics at the single-molecule level. We focus on the organization of molecular electronic circuits. Interconnecting an immense number of molecular devices into a functional circuit and constructing a framework for integrated molecular electronics requires new concepts. A promising avenue relies on bottom-up assembly where the information for the circuit connectivity and functionality is embedded in the molecular building blocks. Biology can provide concepts and mechanisms for advancing this approach, but there is no straightforward way to apply them to electronics since biological molecules are essentially electrically insulating. Bridging the chasm between biology and electronics therefore presents great challenges. Circuit organization on the molecular scale is considered and contrasted with the levels of organization presented by the living world. The discussion then focuses on our proposal to harness DNA and molecular biology to construct the scaffold for integrated molecular electronics. DNA metallization is used to convert the DNA scaffold into a conductive one. We present the framework of sequence-specific molecular lithography based on the biological mechanism of homologous genetic recombination and carried out by the bacterial protein RecA. Molecular lithography enables us to use the information encoded in the scaffold DNA molecules for directing the construction of an electronic circuit. We show that it can lead all the way from DNA molecules to working transistors in a test-tube. Carbon nanotubes are incorporated as the active electronic components in the DNA-templated transistors. Our approach can, in principle, be applied to the fabrication of larger-scale electronic circuits. The realization of complex DNA-based circuits will, however, require new concepts and additional biological machinery allowing, for example

  5. Design criteria of low-power low-noise charge amplifiers in VLSI bipolar technology

    SciTech Connect

    Bertuccio, G.; Fasoli, L.; Sampietro, M.

    1997-10-01

    The criteria underlying the design of low-noise front-end integrated electronics for radiation and particle detectors have been determined, taking into account the limits in the allowable power dissipation. The analysis specifically treats integrated amplifiers employing silicon bipolar transistors, whose performance has been studied to highlight the ultimate noise limit and the roles of the front-end device parameters such as the current gain, the base spreading resistance, the junction and diffusion capacitances, the transition frequency, and the device geometry. The relationships existing among the power dissipated in the front-end stage, the noise performance, and the characteristic of signal processing are derived.

  6. Solder Bonding for Power Transistors

    NASA Technical Reports Server (NTRS)

    Snytsheuvel, H. A.; Mandel, H.

    1985-01-01

    Indium solder boosts power rating and facilitates circuit changes. Efficient heat conduction from power transistor to heat sink provided by layer of indium solder. Low melting point of indium solder (141 degrees C) allows power transistor to be removed, if circuit must be reworked, without disturbing other components mounted with ordinary solder that melts at 181 degrees C. Solder allows devices operated at higher power levels than does conventional attachment by screws.

  7. Use of ultraviolet/ozone cleaning to remove C and O from GaAs prior to metalorganic molecular beam epitaxy and metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Ren, F.; Abernathy, C. R.; Hobson, W. S.; Luftman, H. S.

    1991-04-01

    Ultraviolet/ozone cleaning of GaAs substrates prior to metalorganic molecular beam epitaxy at 500 °C is shown to reduce the interfacial C and O concentrations by more than two orders of magnitude. Metal-semiconductor field-effect transistors (MESFETs) utilizing this cleaning prior to growth of the component epitaxial layers display superior current voltage (I-V) saturation characteristics compared to identical devices grown without the cleaning step. By contrast, provided the GaAs surface is not contaminated with silicates, the atomic hydrogen generated at the growth surface during growth by metalorganic chemical vapor deposition (MOCVD) leads to lower O and C interfacial concentrations, thereby circumventing the need for ozone cleaning. MESFETs grown by MOCVD with or without this cleaning have excellent I-V characteristics.

  8. Reactive-ion etching of WSi{sub {ital x}} in CF{sub 4}+O{sub 2} and the associated damage in GaAs

    SciTech Connect

    Chan, Y.; Su, C.; Sung, K.

    1996-07-01

    Assessments of WSi{sub {ital x}} reactive-ion etching in terms of the different CF{sub 4} to O{sub 2} flow rate ratio were characterized. Based upon the evaluations from etching rates, side-wall profiles, surface roughness, and damages, we observed that the optimum etching condition was at a ratio of 10:1. The recovery of reactive-ion-etching-treated GaAs damaged layers through the thermal treatment was also investigated as a function of the annealing temperatures and duration times. These parameter evaluations were for the purpose of achieving a high performance GaAs metal{endash}semiconductor field-effect transistor. {copyright} {ital 1996 American Vacuum Society}

  9. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  10. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  11. John Bardeen and transistor physics

    NASA Astrophysics Data System (ADS)

    Huff, Howard R.

    2001-01-01

    John Bardeen and Walter Brattain invented the point-contact semiconductor amplifier (transistor action) in polycrystalline germanium (also observed in polycrystalline silicon) on Dec. 15, 1947, for which they received a patent on Oct. 3, 1950. Bill Shockley was not a co-patent holder on Bardeen and Brattain's point-contact semiconductor amplifier patent since Julius Lilienfeld had already received a patent in 1930 for what would have been Shockley's contribution; namely, the field-effect methodology. Shockley received patents for both his minority-carrier injection concept and junction transistor theory, however, and deservedly shared the Nobel prize with Bardeen and Brattain for his seminal contributions of injection, p-n junction theory and junction transistor theory. We will review the events leading up to the invention of Bardeen and Brattain's point-contact semiconductor amplifier during the magic month of November 17-December 16, 1947 and the invention of Shockley's junction semiconductor amplifier during his magic month of December 24, 1947-January 23, 1948. It was during the course of Bardeen and Brattain's research in November, 1947 that Bardeen also patented the essence of the MOS transistor, wherein the induced minority carriers were confined to the inversion layer enroute to the collector. C. T. Sah has described this device as a sourceless MOS transistor. Indeed, John Bardeen, co-inventor of the point-contact semiconductor amplifier and inventor of the MOS transistor, may rightly be called the father of modern electronics.

  12. Single Event Transients Induced by Picosecond Pulsed X-Ray Absorption in III-V Heterojunction Transistors

    SciTech Connect

    Cardoza, David M; LaLumondiere, Stephen D; Tockstein, Michael A; Witczak, Steven C; Sin, Yongkun; Foran, Brendan J; Lotshaw, William T; Moss, Steven C

    2013-01-17

    We perform measurements which show that focused, picosecond pulses of x-rays can be used to generate single event transients (SET) in a GaAs heterostructure field effect transistor (HFET) and a GaN high electron mobility transistor. X-ray pulses with photon energies of 8, 10 and 12 keV from the Advanced Photon Source at Argonne National Laboratory were used to excite transients. SETs are observed when x-ray pulses are incident upon metal layers above sensitive areas on the transistors. We use focused ion beam (FIB) cross-sectioning and scanning transmission electron microscopy energy dispersive x-ray spectroscopy (STEM-EDXS) to determine the compositional structure of the devices. We present a first order analysis of energy deposition in the devices and correlate it to the transient response to make preliminary interpretations of the results. We compare the x-ray transients from the GaAs HFET with transients generated by 750 nm and 870 nm femtosecond laser pulses. We also present results on the total dose susceptibility of the GaN HEMTs.

  13. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  14. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  15. Suicidality in Bipolar I Disorder

    ERIC Educational Resources Information Center

    Johnson, Sheri L.; McMurrich, Stephanie L.; Yates, Marisa

    2005-01-01

    People with bipolar disorder are at high suicide risk. The literature suggests that suicidality is predicted by higher symptom severity and less use of pharmacological agents, but few studies have examined the joint contributions of these variables. The present study examines the conjoint contribution of symptom severity and pharmacological…

  16. Mixed features in bipolar disorder.

    PubMed

    Solé, Eva; Garriga, Marina; Valentí, Marc; Vieta, Eduard

    2016-12-29

    Mixed affective states, defined as the coexistence of depressive and manic symptoms, are complex presentations of manic-depressive illness that represent a challenge for clinicians at the levels of diagnosis, classification, and pharmacological treatment. The evidence shows that patients with bipolar disorder who have manic/hypomanic or depressive episodes with mixed features tend to have a more severe form of bipolar disorder along with a worse course of illness and higher rates of comorbid conditions than those with non-mixed presentations. In the updated Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5), the definition of "mixed episode" has been removed, and subthreshold nonoverlapping symptoms of the opposite pole are captured using a "with mixed features" specifier applied to manic, hypomanic, and major depressive episodes. However, the list of symptoms proposed in the DSM-5 specifier has been widely criticized, because it includes typical manic symptoms (such as elevated mood and grandiosity) that are rare among patients with mixed depression, while excluding symptoms (such as irritability, psychomotor agitation, and distractibility) that are frequently reported in these patients. With the new classification, mixed depressive episodes are three times more common in bipolar II compared with unipolar depression, which partly contributes to the increased risk of suicide observed in bipolar depression compared to unipolar depression. Therefore, a specific diagnostic category would imply an increased diagnostic sensitivity, would help to foster early identification of symptoms and ensure specific treatment, as well as play a role in suicide prevention in this population.

  17. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  18. LSI/VLSI Ion Implanted GaAs IC Processing

    DTIC Science & Technology

    1982-02-10

    insulating High Speed Logic Ion Implantation GaAs IC FET Integrated Circuits MESFET 20. ABSTRACT (Coalki. on.. roersie if oookay and IdoeI by WOOe tw**, This...The goal of this program is to realize the full potential of GaAs digital integrated circuits employing depletion mode MESFETs by developing the...Processing. The main objective of this program is to realize the full potential of GaAs digital integrated circuits by expanding and improving

  19. Evolvable circuit with transistor-level reconfigurability

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2004-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  20. Passivation of GaAs Surfaces.

    DTIC Science & Technology

    1980-08-15

    hour at indicated temperatures. Each symbol indicates one of four pieces of the same starting crystal . Three of the pieces were treated four times. The...Each symbol indicates one of four pieces of the same starting crystal . Three of the pieces were treated three times ................................ 9... crystal 11 11. Luminescence intensity of GaAs treated in ammonia plasma at 575*C as a function of treatment time. Each symbol represents one of five

  1. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-06-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (˜80 mV/decade), whereas "dummy" RNA induced a small positive VP shift (˜0.3 V) without a significant change in subthreshold slopes (˜330 mV/decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules.

  2. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors.

    PubMed

    Lee, Kangho; Nair, Pradeep R; Alam, Muhammad A; Janes, David B; Wampler, Heeyeon P; Zemlyanov, Dmitry Y; Ivanisevic, Albena

    2008-06-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (V(P)) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive V(P) shift (>1 V) and a steeper subthreshold slope ( approximately 80 mVdecade), whereas "dummy" RNA induced a small positive V(P) shift ( approximately 0.3 V) without a significant change in subthreshold slopes ( approximately 330 mVdecade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules.

  3. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  4. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  5. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  6. Degradation mechanisms of current gain in NPN transistors

    NASA Astrophysics Data System (ADS)

    Li, Xing-Ji; Geng, Hong-Bin; Lan, Mu-Jie; Yang, De-Zhuang; He, Shi-Yu; Liu, Chao-Ming

    2010-06-01

    An investigation of ionization and displacement damage in silicon NPN bipolar junction transistors (BJTs) is presented. The transistors were irradiated separately with 90-keV electrons, 3-MeV protons and 40-MeV Br ions. Key parameters were measured in-situ and the change in current gain of the NPN BJTS was obtained at a fixed collector current (Ic = 1 mA). To characterise the radiation damage of NPN BJTs, the ionizing dose Di and displacement dose Dd as functions of chip depth in the NPN BJTs were calculated using the SRIM and Geant4 code for protons, electrons and Br ions, respectively. Based on the discussion of the radiation damage equation for current gain, it is clear that the current gain degradation of the NPN BJTs is sensitive to both ionization and displacement damage. The degradation mechanism of the current gain is related to the ratio of Dd/(Dd + Di) in the sensitive region given by charged particles. The irradiation particles leading to lower Dd/(Dd + Di) within the same chip depth at a given total dose would mainly produce ionization damage to the NPN BJTs. On the other hand, the charged particles causing larger Dd/(Dd + Di) at a given total dose would tend to generate displacement damage to the NPN BJTs. The Messenger-Spratt equation could be used to describe the experimental data for the latter case.

  7. Monolithically integrated GaAs thyristor-transistor as a hardened optically-triggered switch

    SciTech Connect

    Carson, R.F.; Hughes, R.C.; Weaver, H.T.; Brennan, T.M.; Hammons, B.E.

    1990-01-01

    Optically-triggered thyristors are hardened to high x-ray dose rates by the addition of a monolithically integrated compensating phototransistor. Tests of these devices show that sensitivity to radiation-induced switching is reduced by a factor of ten compared to conventional two-terminal thyristors (to 2 {times} 10{sup 9} Rad (Si)/sec). 3 refs., 5 figs.

  8. Diagnosis and treatment of postpartum bipolar depression.

    PubMed

    Kelly, Erin; Sharma, Verinder

    2010-07-01

    The postpartum period is a time of increased risk of new-onset psychiatric illness, hospital admissions and out-patient psychiatric care for new mothers. Research into postpartum mood disorders has focused primarily on major depressive disorder, and has overlooked the study of bipolar disorder, particularly bipolar II disorder and bipolar disorder not otherwise specified. Failure to properly diagnose postpartum bipolar disorder may delay the initiation of appropriate treatment, lead to inappropriate treatment - thereby precipitating (hypo)mania, rapid cycling or a mixed episode - or result in polypharmacy and treatment refractoriness. The most serious consequence, however, is the high risk of infanticide and suicide among women with postpartum bipolar disorder. While no specific screening tools have been validated for postpartum mania or bipolar depression, symptoms of hypomania, atypical depression, a family history of bipolar disorder and a rapid onset of depressive symptoms following delivery may suggest a bipolar diathesis. In the absence of any pharmacological or psychotherapeutic treatments to guide clinical decision-making, it is recommended that the treatment of postpartum bipolar depression follow the same guidelines as the treatment of non-postpartum bipolar depression, using medications that are compatible with lactation.

  9. A novel Tunneling Graphene Nano Ribbon Field Effect Transistor with dual material gate: Numerical studies

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Saghafi, Kamyar; Yousefi, Reza; Moravvej-farshi, Mohammad Kazem

    2016-09-01

    In this work, we present Dual Material Gate Tunneling Graphene Nano-Ribbon Field Effect Transistors (DMG-T-GNRFET) mainly to suppress the am-bipolar current with assumption that sub-threshold swing which is one of the important characteristics of tunneling transistors must not be degraded. In the proposed structure, dual material gates with different work functions are used. Our investigations are based on numerical simulations which self-consistently solves the 2D Poisson based on an atomistic mode-space approach and Schrodinger equations, within the Non-Equilibrium Green's (NEGF). The proposed device shows lower off-current and on-off ratio becomes 5order of magnitude greater than the conventional device. Also two different short channel effects: Drain Induced Barrier Shortening (DIBS) and hot-electron effect are improved in the proposed device compare to the main structure.

  10. Nanofluidic Transistor Circuits

    NASA Astrophysics Data System (ADS)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  11. Paper field effect transistor

    NASA Astrophysics Data System (ADS)

    Fortunato, E.; Correia, Nuno; Barquinha, Pedro; Costa, Cláudia; Pereira, Luís; Gonçalves, Gonçalo; Martins, Rodrigo

    2009-02-01

    In this paper we report the use of a sheet of cellulose fiber-based paper as the dielectric layer used in oxide based semiconductor thin film field-effect transistors (FETs). In this new approach we are using the cellulose fiber-based paper in an "interstrate" structure since the device is build on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (>30 cm2/Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation and sub-threshold gate voltage swing of 0.8 V/decade. The cellulose fiber-based paper FETs characteristics have been measured in air ambient conditions and present good stability. The obtained results outpace those of amorphous Si TFTs and rival with the same oxide based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID and point-of-care systems for self analysis in bio-applications, among others.

  12. Passivated ambipolar black phosphorus transistors

    NASA Astrophysics Data System (ADS)

    Yue, Dewu; Lee, Daeyeong; Jang, Young Dae; Choi, Min Sup; Nam, Hye Jin; Jung, Duk-Young; Yoo, Won Jong

    2016-06-01

    We report the first air-passivated ambipolar BP transistor formed by applying benzyl viologen, which serves as a surface charge transfer donor for BP flakes. The passivated BP devices exhibit excellent stability under both an ambient atmosphere and vacuum; their transistor performance is maintained semi-permanently. Unlike their intrinsic p-type properties, passivated BP devices present advantageous ambipolar properties with much higher electron mobility up to ~83 cm2 V-1 s-1 from 2-terminal measurement at 300 K, compared to other reported studies on n-type BP transistors. On the basis of the n-type doping effect that originated from benzyl viologen, we also systematically investigated the BP thickness dependence of our devices on electrical properties, in which we found the best electron transport performance to be attained when an ~10 nm thick BP flake was used.We report the first air-passivated ambipolar BP transistor formed by applying benzyl viologen, which serves as a surface charge transfer donor for BP flakes. The passivated BP devices exhibit excellent stability under both an ambient atmosphere and vacuum; their transistor performance is maintained semi-permanently. Unlike their intrinsic p-type properties, passivated BP devices present advantageous ambipolar properties with much higher electron mobility up to ~83 cm2 V-1 s-1 from 2-terminal measurement at 300 K, compared to other reported studies on n-type BP transistors. On the basis of the n-type doping effect that originated from benzyl viologen, we also systematically investigated the BP thickness dependence of our devices on electrical properties, in which we found the best electron transport performance to be attained when an ~10 nm thick BP flake was used. Electronic supplementary information (ESI) available: Transfer characteristics of BP field effect transistors (BV1-BV4) (Fig. S1 and S2 and Table S1); output characteristics of BP field effect transistors in different directions (Fig. S3

  13. Simple circuit reduces transistor switching time

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Silicon-Controlled Rectifier /SCR/, gated by a voltage divider, controls the potentiometer in transistorized switching circuits. The SCR acts as a gate to trigger the switching transistor only when the input signal reaches an amplitude that will switch the transistor rapidly.

  14. Unsplit bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  15. [Major depression: features indicative of bipolarity?].

    PubMed

    Azorin, J-M

    2011-12-01

    Several recent studies have shown that bipolar disorder is underdiagnosed in patients with major depression. Missing the diagnosis of a bipolar disorder may have serious and even occasionally fatal consequences for a patient with the disease. Moreover misdiagnosis may lead to inappropriate treatment and therefore contribute to worsening medical and functional prognosis. Although there are no pathognomonic characteristics of bipolar depression compared to unipolar depression, evidence-based findings suggest that some features may be indicative of bipolarity, in patients with depression. These features are related to clinical picture of depressive state, course of episode and illness, response to treatment, family history, comorbid conditions, as well as demographic and temperamental characteristics. Based on such features, some authors have proposed operationalized criteria or a diagnostic specific for bipolarity, to identify bipolar depression. Screening instruments may also be used, to facilitate early recognition. Validation studies of these diagnostic features and instruments are underway.

  16. GaAs IMPATT diodes for microstrip circuit applications.

    NASA Technical Reports Server (NTRS)

    Wisseman, W. R.; Tserng, H. Q.; Shaw, D. W.; Mcquiddy, D. N.

    1972-01-01

    GaAs IMPATT diodes with plated heat sinks are shown to be particularly well suited for microstrip circuit applications. Details of materials growth and device fabrication procedures are given, and experimental results are presented for a GaAs IMPATT microstrip oscillator operating at X band.

  17. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  18. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  19. Course of Subthreshold Bipolar Disorder in Youth: Diagnostic Progression from Bipolar Disorder Not Otherwise Specified

    ERIC Educational Resources Information Center

    Axelson, David A.; Birmaher, Boris; Strober, Michael A.; Goldstein, Benjamin I.; Ha, Wonho; Gill, Mary Kay; Goldstein, Tina R.; Yen, Shirley; Hower, Heather; Hunt, Jeffrey I.; Liao, Fangzi; Iyengar, Satish; Dickstein, Daniel; Kim, Eunice; Ryan, Neal D.; Frankel, Erica; Keller, Martin B.

    2011-01-01

    Objective: To determine the rate of diagnostic conversion from an operationalized diagnosis of bipolar disorder not otherwise specified (BP-NOS) to bipolar I disorder (BP-I) or bipolar II disorder (BP-II) in youth over prospective follow-up and to identify factors associated with conversion. Method: Subjects were 140 children and adolescents…

  20. Peeled film GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    1990-01-01

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.