Sample records for gaas blocked-impurity-band detectors

  1. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  2. Germanium Blocked Impurity Band (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Baumann, H.; Beeman, J. W.; Hansen, W. L.; Luke, P. N.; Lutz, M.; Rossington, C. S.; Wu, I. C.

    1989-01-01

    Information is given in viewgraph form. The advantages of the Si blocked impurity band (BIB) detector invented by M. D. Petroff and M. G. Stabelbroek are noted: smaller detection volume leading to a reduction of cosmic ray interference, extended wavelength response because of dopant wavefunction overlap, and photoconductive gain of unity. It is argued that the stated advantages of Si BIB detectors should be realizable for Ge BIB detectors. Information is given on detector development, subtrate choice and preparation, wafer polising, epitaxy, characterization of epi layers, and preliminary Ge BIB detector test results.

  3. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  4. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  5. E+ Transition in GaAs1-xNx and GaAs1-xBix Due to Isoelectronic-Impurity-Induced Perturbation of the Conduction Band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Mascarenhas, A.; Ptak, A. J.

    2007-01-01

    An above-band-gap transition E{sub +} is experimentally observed in the dilute GaAs{sub 1-x}Bi{sub x} alloy. Precise measurements at very low dilutions are made of the above-band-gap transition E{sub +} that is observed in GaAs{sub 1-x}N{sub x}, making it possible to compare the behavior of the different isoelectronic traps Bi and N in the common host GaAs with respect to their perturbation to the host electronic structure. We suggest that the origin of the E{sub +} level observed in GaAs is not the isolated isoelectronic impurity level N{sub x}, as is presumed in the band-anticrossing model, but rather the isoelectronic-impurity-induced perturbationmore » of the conduction band L{sub 6}{sup c}.« less

  6. Photoreflectance measurements of unintentional impurity concentrations in undoped GaAs

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Angelo, James; Mitchel, William; Haas, T. W.; Yen, Ming-Yuan

    1989-07-01

    Modulated photoreflectance is used to measure the unintentional impurity concentrations in undoped epitaxial GaAs. A photoreflectance signal above the band gap spreads with the unintentional impurity concentrations and shows well-defined Franz-Keldysh peaks whose separation provide a good measure of the current carrier concentrations. In samples less than 3-micron thick, a photoreflectance signal at the band edge contains a substrate-epilayer interface effect which precludes the analysis of the data by using the customary third derivative functional fits for low electric fields.

  7. Si:As BIB detector arrays

    NASA Technical Reports Server (NTRS)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  8. Band crossing in isovalent semiconductor alloys with large size mismatch

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Wei, Su-Huai

    2012-02-01

    Mixing isovalent compounds AC with BC to form alloys A1-xBxC has been an effective way in band structure engineering to enhance the availability of material properties. In most cases, the mixed isovalent atoms A and B, such as Al and Ga in Al1-xGaxAs or As and Sb in GaAs1-xSbx are similar in their atomic sizes and chemical potentials; therefore, the physical properties of A1-xBxC change smoothly from AC to BC. However, in some cases when the chemical and size differences between the isovalent atoms A and B are large, adding a small amount of B to AC or vice versa can lead to a discontinuous change in the electronic band structure. These large size- and chemicalmismatched (LSCM) systems often show unusual and abrupt changes in the alloys' material properties, which provide great potential in material design for novel device applications. In this report, based on first-principles band-structure calculations we show that for LSCM GaAs1-xNx and GaAs1-xBix alloys at the impurity limit the N (Bi)-induced impurity level is above (below) the conduction-(valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

  9. Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.

    2017-06-01

    The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.

  10. Radiation hard blocked tunneling band {GaAs}/{AlGaAs} superlattice long wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Wen, C. P.; Reiner, P.; Tu, C. W.; Hou, H. Q.

    1996-09-01

    We have developed a novel multiple quantum well (MQW) long wavelength infrared (LWIR) detector which can operate in a photovoltaic detection mode with an intrinsic event discrimination (IED) capability. The detector was constructed using the {GaAs}/{AlGaAs} MQW technology to form a blocked tunneling band superlattice structure with a 10.2 micron wavelength and 2.2 micron bandwidth. The detector exhibited Schottky junction and photovoltaic detection characteristics with extremely low dark current and low noise as a result of a built-in tunneling current blocking layer structure. In order to enhance quantum efficiency, a built-in electric field was created by grading the doping concentration of each quantum well in the MQW region. The peak responsivity of the detector was 0.4 amps/W with a measured detectivity of 6.0 × 10 11 Jones. The external quantum efficiency was measured to be 4.4%. The detector demonstrated an excellent intrinsic event discrimination capability due to the presence of a p-type GaAs hole collector layer, which was grown on top of the n-type electron emitter region of the MQW detector. The best results show that an infrared signal which is as much as 100 times smaller than coincident nuclear radiation induced current can be distinguished and extracted from the noise signal. With this hole collector structure, our detector also demonstrated two-color detection.

  11. Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots

    NASA Astrophysics Data System (ADS)

    Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The donor-impurity-related optical absorption, relative refractive index changes, and Raman scattering in GaAs cone-like quantum dots are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The study involves 1 s -like, 2px-like, and 2pz-like states. The conical structure is chosen in such a way that the cone height is large enough in comparison with the base radius thus allowing the use a quasi-analytic solution of the uncorrelated Schrödinger-like electron states.

  12. Influence of the local environment on Mn acceptors in GaAs

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Gohlke, David; Benjamin, Anne; Gupta, Jay A.

    2015-04-01

    As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending.

  13. Photoreflectance from GaAs and GaAs/GaAs interfaces

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Angelo, James; Wilson, Jerome J.; Mitchel, W. C.; Yen, M. Y.

    1989-10-01

    Photoreflectance from semi-insulating GaAs, and GaAs/GaAs interfaces, is discussed in terms of its behavior with temperature, doping, epilayer thickness, and laser intensity. Semi-insulating substrates show an exciton-related band-edge signal below 200 K and an impurity-related photoreflectance above 400 K. At intermediate temperatures the band-edge signal from thin GaAs epilayers contains a contribution from the epilayer-substrate interface. The interface effect depends on the epilayer's thickness, doping, and carrier mobility. The effect broadens the band-edge photoreflectance by 5-10 meV, and artifically lowers the estimates for the critical-point energy, ECP, obtained through the customary third-derivative functional fit to the data.

  14. Compilation of Theses Abstracts

    DTIC Science & Technology

    2004-12-01

    Lieutenant, United States Navy Master of Business Administration–December 2004 Jonathan C. Byrom–Captain, United States Army Master of Business...Hyperspectral Imagery, Principal Components Analysis, Minimum Noise Transform ALTERNATE CONFIGURATIONS FOR BLOCKED-IMPURITY-BAND DETECTORS Jonathan C...Yew Sing Quek –Captain, Republic of Singapore Armed Forces B.E., Nanyang Technological University-Singapore, 1999 Master of Science in Combat

  15. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  16. Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs

    NASA Technical Reports Server (NTRS)

    Ning, C. Z.; Wu, M. W.

    2003-01-01

    A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.

  17. Hot Electron Emission in Semiconductors.

    DTIC Science & Technology

    1988-03-25

    applied electric field and calculated for each detector according to U = fIRMA I(, (1)U R(w)A(w)IBB(wTe) "dw I0 BB e where R() = R0 r(w) and A(w) = A a...the spectrum of the stimulated emis- magnetic field tunable GaAs detector was used for the de - ,’i. sion from p-Ge by means of an extremely narrowband...crossed electric and magnetic fields is studied by means of a tunable narrow- band GaAs- detector . A multimode spectrum is observed from polished high

  18. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  19. Magnetotunneling spectroscopy of dilute Ga(AsN) quantum wells.

    PubMed

    Endicott, J; Patanè, A; Ibáñez, J; Eaves, L; Bissiri, M; Hopkinson, M; Airey, R; Hill, G

    2003-09-19

    We use magnetotunneling spectroscopy to explore the admixing of the extended GaAs conduction band states with the localized N-impurity states in dilute GaAs(1-y)N(y) quantum wells. In our resonant tunneling diodes, electrons can tunnel into the N-induced E- and E+ subbands in a GaAs(1-y)N(y) quantum well layer, leading to resonant peaks in the current-voltage characteristics. By varying the magnetic field applied perpendicular to the current direction, we can tune an electron to tunnel into a given k state of the well; since the applied voltage tunes the energy, we can map out the form of the energy-momentum dispersion curves of E- and E+. The data reveal that for a small N content (approximately 0.1%) the E- and E+ subbands are highly nonparabolic and that the heavy effective mass E+ states have a significant Gamma-conduction band character even at k=0.

  20. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-07-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  1. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  2. Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation

    NASA Astrophysics Data System (ADS)

    Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.

    2004-09-01

    The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.

  3. Dynamic quadrupole interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner

    2018-04-01

    The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.

  4. Structural and electronic properties of isovalent boron atoms in GaAs

    NASA Astrophysics Data System (ADS)

    Krammel, C. M.; Nattermann, L.; Sterzer, E.; Volz, K.; Koenraad, P. M.

    2018-04-01

    Boron containing GaAs, which is grown by metal organic vapour phase epitaxy, is studied at the atomic level by cross-sectional scanning tunneling microscopy (X-STM) and spectroscopy (STS). In topographic X-STM images, three classes of B related features are identified, which are attributed to individual B atoms on substitutional Ga sites down to the second layer below the natural {110} cleavage planes. The X-STM contrast of B atoms below the surface reflects primarily the structural modification of the GaAs matrix by the small B atoms. However, B atoms in the cleavage plane have in contrast to conventional isovalent impurities, such as Al and In, a strong influence on the local electronic structure similar to donors or acceptors. STS measurements show that B in the GaAs {110} surfaces gives rise to a localized state short below the conduction band (CB) edge while in bulk GaAs, the B impurity state is resonant with the CB. The analysis of BxGa1-xAs/GaAs quantum wells reveals a good crystal quality and shows that the incorporation of B atoms in GaAs can be controlled along the [001] growth direction at the atomic level. Surprisingly, the formation of the first and fourth nearest neighbor B pairs, which are oriented along the <110 > directions, is strongly suppressed at a B concentration of 1% while the third nearest neighbor B pairs are found more than twice as often than expected for a completely spatially random pattern.

  5. Tests of the Rockwell Si:As Back-Illuminated Blocked-Impurity Band (BIBIB) detectors

    NASA Technical Reports Server (NTRS)

    Wolf, J.; Groezinger, U.; Burgdorf, M.; Salama, A.

    1989-01-01

    Two arrays of Rockwell's Si:As back-illuminated blocked-impurity-band detectors were tested at the Max-Planck-Institute for Astronomy (MPIA) at low background and low temperature for possible use in the astronomical space experiment ISOPHOT. For these measurements special test equipment was put together. A cryostat was mechanically modified to accommodate the arrays and special peripheral electronics was added to a microprocessor system to drive the cold multiplexer and to acquire the output data. The first device, a 16x50 element array on a fan-out board was used to test individual pixels with a trans-impedance-amplifier at a photon background of 10(exp 8) Ph s(-1)cm(-2) and at temperatures of 2.7 to 4.4 K. The noise-equivalent-power NEP is in the range 5 - 7 x 10(exp -18) WHz(exp -1/2), the responsivity is less than or equal to 100 AW(exp -1)(f = 10 Hz). The second device was a 10x50 array including a cold readout electronics of switched FETs (SWIFET). Measurements of this array were done in a background range of 5 x 10(exp 5) to 5 x 10(exp 11) Ph s(exp-1)cm(exp-2) and at operating temperatures between 3.0 and 4.8 K. The NEP ranges from less than 10(exp -18) at the lowest background to 2 x 10(exp -16) WHz(exp -1/2) at the highest flux.

  6. Native hole trap in bulk GaAs and its association with the double-charge state of the arsenic antisite defect

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.

    1985-01-01

    A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.

  7. LaF3 insulators for MIS structures

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.; Seiber, B. A.

    1979-01-01

    Thin films of LaF3 deposited on Si or GaAs substrates have been observed to form blocking contacts with very high capacitances. This results in comparatively hysteresis-free and sharp C-V (capacitance-voltage) characteristics for MIS structures. Such structures have been used to study the interface states of GaAs with increased resolution and to construct improved photocapacitive infrared detectors.

  8. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.

    PubMed

    Proctor, J E; Smith, A W; Jung, T M; Woods, S I

    2015-07-01

    We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.

  9. Test Equipment and Method to Characterize a SWIR Digital Imaging System

    DTIC Science & Technology

    2014-06-01

    based on Gallium Arsenide (GaAs) detectors are sensitive in the visible and near infrared (NIR) bands, and used only at night. They produce images from... current from the silicon sensor located on the sphere. The irradiance responsivity, Rn, is the ratio of the silicon detector current and the absolute...silicon detector currents , in accordance with equation 1: ( , ,)[ 2⁄ ] = [] ( ,

  10. Deep levels in osmium doped p-type GaAs grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Zafar; Majid, A.; Dadgar, A.; Bimberg, D.

    2005-06-01

    Results of a preliminary study on deep level transient spectroscopy (DLTS) investigations of osmium (Os) impurity in p-type GaAs, introduced in situ during MOCVD crystal growth, are reported for the first time. Os is clearly shown to introduce two prominent deep levels in the lower half-bandgap of GaAs at energy positions Ev + 0.42 eV (OsA) and Ev + 0.72 eV (OsB). A minority-carrier emitting defect feature observed in the upper half-bandgap is shown to consist of a band of Os-related deep levels with a concentration significantly higher than that of the majority carrier emitting deep levels. Detailed data on the emission rate signatures and related parameters of the Os-related deep levels are reported.

  11. Germanium blocked impurity band far infrared detectors

    NASA Astrophysics Data System (ADS)

    Rossington, Carolyn Sally

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the Star Wars nuclear defense scheme proposed by the Reagan administration.

  12. A new low-cost 10 ns pulsed K(a)-band radar.

    PubMed

    Eskelinen, Pekka; Ylinen, Juhana

    2011-07-01

    Two Gunn oscillators, conventional intermediate frequency building blocks, and a modified GaAs diode detector are combined to form a portable monostatic 10 ns instrumentation radar for outdoor K(a)-band radar cross section measurements. At 37.8 GHz the radar gives +20 dBm output power and its tangential sensitivity is -76 dBm. Processing bandwidth is 125 MHz, which also allows for some frequency drift in the Gunn devices. Intra-pulse frequency chirp is less than 15 MHz. All functions are steered by a microcontroller. First measurements convince that the construction has a reasonable ability to reduce close-to-ground surface clutter and gives an effective way of resolving target detail. This is beneficial especially when amplitude fluctuations disturb measurements with longer pulses. The new unit operates on 12 V dc, draws a current of less than 3 A, and weighs 5 kg.

  13. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  14. Characterisation of semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Pawlowicz, L.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Hole and electron mobilities as functions of temperature and ionised impurity concentration are calculated for GaAs. It is shown that these calculations, when used to analyse electrical properties of semi-insulating GaAs, enable an assessment of the Fermi energy position and ionised impurity concentration to be made. In contrast to previous work, the analysis does not require any phenomenological assumptions.

  15. A new concept for a cryogenic amplifier stage

    NASA Astrophysics Data System (ADS)

    Fedl, V.; Barl, L.; Lutz, G.; Richter, R.; Strüder, L.

    2010-12-01

    The observation of astrophysical objects in the mid-infrared requires Blocked Impurity Band (BIB) detectors based on n-doped Silicon. It is desirable to observe faint astronomical objects with such a detector, which can be achieved with a high signal to noise ratio. These detectors operate at a temperature range from 6 to 12 K. We foresee a new detector concept for the readout of the generated signal charge. Our aim is to implement a Depleted P-channel Field Effect Transistor (DEPFET) Active Pixel Sensor (APS) on the BIB detector in order to have a high sensitivity. We successfully operated the DEPFET under cryogenic conditions and investigated the reset mechanism of the collected signal charge. We identified uncomplete clear with freeze-out of the signal charge into ionized shallow donor states in the heavily doped internal Gate of the DEPFET due to low thermal energy. Therefore, we found a solution to emit these localized signal charges into the conduction band in order to ensure the transport from the internal Gate to the Clear contact. It is possible to apply electric fields higher than 17 kV/cm at the position of the collected signal charge to emit the electrons from the shallow donor states. The electric field enhanced emission is equivalent to the tunneling effect.

  16. Semiconductor millimeter wavelength electronics

    NASA Astrophysics Data System (ADS)

    Rosenbaum, F. J.

    1985-12-01

    This final report summarizes the results of research carried out on topics in millimeter wavelength semiconductor electronics under an ONR Selected Research Opportunity program. Study areas included III-V compound semiconductor growth and characterization, microwave and millimeter wave device modeling, fabrication and testing, and the development of new device concepts. A new millimeter wave mixer and detector, the Gap diode was invented. Topics reported on include ballistic transport, Zener oscillations, impurities in GaAs, electron velocity-electric field calculation and measurements, etc., calculations.

  17. Electronic structure of the dilute magnetic semiconductor G a1 -xM nxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.

    2018-04-01

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  18. Epitaxial lateral overgrowth of GaAs: effect of doping on LPE growth behaviour

    NASA Astrophysics Data System (ADS)

    Zytkiewicz, Z. R.; Dobosz, D.; Pawlowska, M.

    1999-05-01

    Results of epitaxial lateral overgrowth (ELO) of GaAs on (001) GaAs substrates by liquid phase epitaxy are reported. We show that by introducing Si, Sn or Te impurities to the Ga-As solution the vertical growth rate is reduced while the lateral growth rate is significantly enhanced, which leads to a growth habit modification. Furthermore, the impurity incorporation into the growing layer is different on the upper and side surfaces of the ELO, reflecting the fundamental differences between the lateral and vertical growth modes. This phenomenon can be applied for studying the temporal development of ELO layers.

  19. Hydrogen-impurity complexes in III V semiconductors

    NASA Astrophysics Data System (ADS)

    Ulrici, W.

    2004-12-01

    This review summarizes the presently available knowledge concerning hydrogen-impurity complexes in III-V compounds. The impurities form shallow acceptors on group III sites (Be, Zn, Cd) and on group V sites (C, Si, Ge) as well as shallow donors on group V sites (S, Se, Te) and on group III sites (Si, Sn). These complexes are mainly revealed by their hydrogen stretching modes. Therefore, nearly all information about their structure and dynamic properties is derived from vibrational spectroscopy. The complexes of shallow impurities with hydrogen have been most extensively investigated in GaAs, GaP and InP. This holds also for Mg-H in GaN. The complexes exhibit a different microscopic structure, which is discussed in detail. The isoelectronic impurity nitrogen, complexed with one hydrogen atom, is investigated in detail in GaAs and GaP. Those complexes can exist in different charge states. The experimental results such as vibrational frequencies, the microscopic structure and the activation energy for reorientation for many of these complexes are in very good agreement with results of ab initio calculations. Different types of oxygen-hydrogen complexes in GaAs and GaP are described, with one hydrogen atom or two hydrogen atoms bonded to oxygen. Three of these complexes in GaAs were found to be electrically active.

  20. Dynamics of the cascade capture of electrons by charged donors in GaAs and InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshkin, V. Ya., E-mail: aleshkin@ipmras.ru; Gavrilenko, L. V.

    2016-08-15

    The times for the cascade capture of an electron by a charged impurity have been calculated for pulsed and stationary excitations of impurity photoconductivity in GaAs and InP. The characteristic capture times under pulsed and continuous excitations are shown to differ noticeably both from each other and from the value given by the Abakumov–Perel–Yassievich formula for a charged impurity concentration greater than 10{sup 10} cm{sup –3}. The cause of this difference has been established. The Abakumov–Perel–Yassievich formula for the cascade capture cross section in the case of stationary excitation has been generalized. The dependences of the cascade capture rate onmore » the charged impurity concentration in GaAs and InP have been found for three temperatures in the case of pulsed excitation.« less

  1. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  2. First tests of Timepix detectors based on semi-insulating GaAs matrix of different pixel size

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Kubanda, D.; Žemlička, J.; Šagátová, A.; Zápražný, Z.; Boháček, P.; Nečas, V.; Mora, Y.; Pichotka, M.; Dudák, J.

    2018-02-01

    In this work, we have focused on Timepix detectors coupled with the semi-insulating GaAs material sensor. We used undoped bulk GaAs material with the thickness of 350 μm. We prepared and tested four pixelated detectors with 165 μm and 220 μm pixel size with two versions of technology preparation, without and with wet chemically etched trenches around each pixel. We have carried out adjustment of GaAs Timepix detectors to optimize their performance. The energy calibration of one GaAs Timepix detector in Time-over-threshold mode was performed with the use of 241Am and 133Ba radioisotopes. We were able to detect γ-photons with the energy up to 160 keV. The X-ray imaging quality of GaAs Timepix detector was tested with X-ray source using various samples. After flat field we obtained very promising imaging performance of tested GaAs Timepix detectors.

  3. The development of infrared detectors and mechanisms for use in future infrared space missions

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1995-01-01

    The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.

  4. QWIP status and future trends at Thales

    NASA Astrophysics Data System (ADS)

    Bois, P.; Guériaux, V.; Briere de l'Isle, N.; Manissadjian, A.; Facoetti, H.; Marcadet, X.; Costard, E.; Nedelcu, A.

    2012-01-01

    Since 2005, Thales is successfully manufacturing QWIPs in high rate production through III-V Lab. All the early claimed advantages of QWIPs are now demonstrated. The versatility of the band-gap engineering allows the custom design of detectors to fulfill specific application requirements in MWIR, LWIR or VLWIR ranges. The maturity of the III-V microelectronics based on GaAs substrates gives uniformity, stability and high production rate. In this presentation we will discuss the specific advantages of this type of detector. An overview of the available performances and production status will be presented including under-development products such as dual band and polarimetric sensors.

  5. Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter

    NASA Astrophysics Data System (ADS)

    Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G.

    2018-03-01

    This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm), and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2.

  6. Development of a 4-15 μm infrared GaAs hyperspectral QWIP imager

    NASA Astrophysics Data System (ADS)

    Jhabvala, M.; Gunapala, S.; Reuter, D.; Choi, K. K.; Bandara, S.; Liu, J.; La, A.; Banks, S.; Cho, J.; Hwang, T.; Tsay, S.; Rafol, D.; Huet, H.; Chauvet, N.; Huss, T.

    2003-10-01

    In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4-15.4 μm wavelength region. This effort was a collaboration between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5-5.7 μm, Band 2; 8.5-10 μm, Band 3; 10-12 μm and Band 4; 13.3-14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four "broad" bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.

  7. Photoluminescence spectroscopy and the effective mass theory of strained (In,Ga)As/GaAs heterostructures grown on (112)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Henderson, R. H.; Sun, D.; Towe, E.

    1995-01-01

    The photoluminescence characteristics of pseudomorphic In(0.19)Ga(0.81)As/GaAs quantum well structures grown on both the conventional (001) and the unconventional (112)B GaAs substrate are investigated. It is found that the emission spectra of the structures grown on the (112)B surface exhibit some spectral characteristics not observed on similar structures grown on the (001) surface. A spectral blue shift of the e yields hh1 transition with increasing optical pump intensity is observed for the quantum wells on the (112) surface. This shift is interpreted to be evidence of a strain-induced piezoelectric field. A second spectral feature located within the band gap of the In(0.19)Ga(0.81)As layer is also observed for the (112) structure; this feature is thought to be an impurity-related emission. The expected transition energies of the quantum well structures are calculated using the effective mass theory based on the 4 x 4 Luttinger valence band Hamiltonian, and related strain Hamiltonian.

  8. Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Florentin; Sen, Cengiz; Dagotto, Elbio R

    2007-01-01

    The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in a model for diluted magnetic semiconductors (DMSs) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a spin-fermion model applied to DMSs are evaluated using dynamical mean-field theory and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping x for values of the p-d exchangemore » J that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xc where xc is a function of J and the Coulomb strength V. Using MC simulations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, which has been used in previous numerical simulations, effectively renormalizes J for all values of x, an unphysical result, a nearest-neighbor range attraction renormalizes J only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn-doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn-doped GaN, which is expected to be in the IB regime.« less

  9. Development of low optical cross talk filters for VIIRS (JPSS)

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  10. Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals

    NASA Technical Reports Server (NTRS)

    Ko, K. Y.; Lagowski, J.; Gatos, H. C.

    1989-01-01

    Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.

  11. Impurity-induced deep centers in Tl 6SI 4

    DOE PAGES

    Shi, Hongliang; Lin, Wenwen; Kanatzidis, Mercouri G.; ...

    2017-04-13

    Tl 6SI 4 is a promising material for room-temperature semiconductor radiation detection applications. The history of the development of semiconductor radiation detection materials has demonstrated that impurities strongly affect the carrier transport and that material purification is a critically important step in improving the carrier transport and thereby the detector performance. Here, we report combined experimental and theoretical studies of impurities in Tl 6SI 4. Impurity concentrations in Tl 6SI 4 were analyzed by glow discharge mass spectrometry. Purification of the raw material by multi-pass vertical narrow zone refining was found to be effective in reducing the concentrations of mostmore » impurities. Density functional theory calculations were also performed to study the trapping levels introduced by the main impurities detected in experiments. We show that, among dozens of detected impurities, most are either electrically inactive or shallow. In the purified Tl 6SI 4 sample, only Bi has a significant concentration (0.2 ppm wt) and introduces deep electron trapping levels in the band gap. Lastly, improvement of the purification processes is expected to further reduce the impurity concentrations and their impact on carrier transport in Tl 6SI 4, leading to improved detector performance.« less

  12. GaAs High Breakdown Voltage Front and Back Side Processed Schottky Detectors for X-Ray Detection

    DTIC Science & Technology

    2007-11-01

    front and back side processed, unintentionally doped bulk gallium -arsenic (GaAs) Schottky detectors and determined that GaAs detectors with a large...a few materials that fulfill these requirements are gallium -arsenic (GaAs) and cadmium-zinc-tellurium (CdZnTe or CZT). They are viable alternative...Whitehill, C.; Pospíšil, S.; Wilhem, I.; Doležal, Z.; Juergensen, H.; Heuken, M. Development of low-pressure vapour -phase epitaxial GaAs for medical imaging

  13. A study of the nature of the emission centres and mechanisms of radiative recombination in semi-insulating GaAs crystals (in English)

    NASA Astrophysics Data System (ADS)

    Komarov, V. G.; Motsnyi, F. V.; Motsnyi, V. F.; Zinets, O. S.

    The low temperature photoluminescence spectra of semi-insulating GaAs crystals grown by Czochralski method at different technological conditions have been studied. One of the main background impurities in such materials is carbon. The traditional high temperature annealing of semi-insulating GaAs wafers significantly aggravates their structure perfection because near the surface the creation of conductive layers with the thickness of several microns takes place. The fine structure of the bands of 1.514 and 1.490 eV has been registered. This structure caused by a) polariton emission from upper and low polariton branches; b) radiative recombination of free holes on shallow neutral donors (D^0, h); c) radiative recombination of excitons bound to shallow neutral donors (D^0, X) and to shallow carbon acceptors (C^0_{As}, X); d) excitons bound to the point structure defects (d, X); e) electron transitions between the conduction band and shallow neutral carbon acceptor; f) the electron transitions between donor-acceptor pairs in which carbon and possibly zinc are acceptors in the ground 1S_{3/2} state. The lux-intensity dependencies of the polariton emission from upper polariton branch and photoluminescence of (D^0, h), (C^0_{As}, X), (d, X) complexes are in good agreement with the theory. It is shown that one of the best available semi-insulating GaAs materials is a new commercial AGCP-5V material which differs from others by considerable concentration of shallow donors and new acceptors alongside of the known shallow C^0_{As} acceptor centres.

  14. The effects of a geometrical size, external electric fields and impurity on the optical gain of a quantum dot laser with a semi-parabolic spherical well potential

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2017-03-01

    In this paper, a GaAs / Alx Ga1-x As quantum dot laser with a semi-parabolic spherical well potential is assumed. By using Runge-Kutta method the eigenenergies and the eigenstates of valence and conduct bands are obtained. The effects of geometrical sizes, external electric fields and hydrogen impurity on the different electronic transitions of the optical gain are studied. The results show that the optical gain peak increases and red-shifts, by increasing the width of well or barrier, while more increasing of the width causes blue-shift and decreases it. The hydrogen impurity decreases the optical gain peak and blue-shifts it. Also, the increasing of the external electric fields cause to increase the peak of the optical gain, and (blue) red shift it. Finally, the optical gain for 1s-1s and 2s-1s transitions is prominent, while it is so weak for other transitions.

  15. Mn Impurity in Bulk GaAs Crystals

    NASA Astrophysics Data System (ADS)

    Pawłowski, M.; Piersa, M.; Wołoś, A.; Palczewska, M.; Strzelecka, G.; Hruban, A.; Gosk, J.; Kamińska, M.; Twardowski, A.

    2006-11-01

    Magnetic and electron transport properties of GaAs:Mn crystals grown by Czochralski method were studied. Electron spin resonance showed the presence of Mn acceptor A in two charge states: singly ionized A- in the form of Mn2+(d5), and neutral A0 in the form of Mn2+(d5) plus a bound hole (h). It was possible to determine the relative concentration of both types of centers from intensity of the corresponding electron spin resonance lines. Magnetization measured as a function of magnetic field (up to 6 T) in the temperature range of 2-300 K revealed overall paramagnetic behavior of the samples. Effective spin was found to be about 1.5 value, which was consistent with the presence of two types of Mn configurations. In most of the studied samples the dominance of Mn2+(d5)+h configuration was established and it increased after annealing of native donors. The total value of Mn content was obtained from fitting of magnetization curves with the use of parameters obtained from electron spin resonance. In electron transport, two mechanisms of conductivity were observed: valence band transport dominated above 70 K, and hopping conductivity within Mn impurity band at lower temperatures. From the analysis of the hopping conductivity and using the obtained values of the total Mn content, the effective radius of Mn acceptor in GaAs was estimated as a = 11 ± 3 Å.

  16. Uncooled infrared photon detection concepts and devices

    NASA Astrophysics Data System (ADS)

    Piyankarage, Viraj Vishwakantha Jayaweera

    This work describes infrared (IR) photon detector techniques based on novel semiconductor device concepts and detector designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR detectors such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine detector parameters: (i) Near-infrared (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. A far-infrared detector based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, detector structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) detector structures consisting of n-TiO 2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific-detectivity (D*) was 9.5x1010 cm Hz-1/2 W-1 at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3x108 cm Hz 1/2 W-1 at ˜540 nm at ambient temperature. A typical HEIWIP/HIWIP detector structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR detection in the 2--5 microm wavelength range with a peak D* of 6.8x105 cm Hz1/2 W-1. A HIWIP detector based on p-GaSb/GaSb showed a free carrier response threshold wavelength at 97 microm (˜3 THz) with a peak D* of 5.7x1011 cm Hz1/2 W-1 at 36 microm and 4.9 K. In this detector, a bolometric type response in the 97--200 microm (3--1.5 THz) range was also observed. INDEX WORDS: Infrared detectors, Photon detection, NIR detectors, THz detectors, Uncooled detectors, Dye-sensitized, IR dye, Quantum dot, Split-off band, GaSb, GaAs, AlGaAs, TiO2, CuSCN, PbS, Homojunction, Heterojunction, Workfunction, Photoemission, Displacement currents, 1/f noise.

  17. Influence of Bi-related impurity states on the bandgap and spin-orbit splitting energy of dilute III-V-Bi alloys: InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix

    NASA Astrophysics Data System (ADS)

    Samajdar, D. P.; Dhar, S.

    2016-01-01

    Valence Band Anticrossing (VBAC) Model is used to calculate the changes in band structure of Bi containing alloys such as InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix due to the incorporation of dilute concentrations of bismuth. The coupling parameter CBi which gives the magnitude of interaction of Bi impurity states with the LH, HH and SO sub bands in VBAC depends on the increase in the HH/LH related energy level EHH/LH+, location of the Bi related impurity level EBi and valence band offset ΔEVBM between the endpoint compounds in the corresponding III-V-Bi. The reduction in band gap as well as the enhancement of the spin-orbit splitting energy is well explained using this model and the calculated results are compared with the results of Virtual Crystal Approximation (VCA) and Density Functional Theory (DFT) calculations, as well as with the available experimental data and are found to have good agreement. The incorporation of Bi mainly perturbs the valence band due to the interaction of the Bi impurity states with the HH, LH and SO bands. The lowering of the conduction band minimum (CBM) due to VCA is added with the upward movement of the HH/LH bands to get the total reduction in band gap for the bismides. The valence band shifts of 31.9, 32.5, 20.8 and 12.4 meV/at%Bi for InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix respectively constitute 65, 76, 59 and 31% of the total band gap reduction and the rest is the contribution of the conduction band shift. The spin-orbit splitting energy also shows significant increase with the maximum change in InPBi and the minimum in InSbBi. The same is true for Ga containing bismides if we make a comparison with the available values for GaAsBi and GaPBi with that of GaSbBi. It has also been observed that the increase in splitting energy is greater in case of the bismides such as InAsBi, InPBi and GaAsBi than the bismides such as InSbBi and GaSbBi with the parent substrates having higher values of splitting energy. This may be due to the proximity of the Bi related impurity level EBi with the SO bands of InAs, InP and GaAs.

  18. Preparation of Large-Diameter GaAs Crystals.

    DTIC Science & Technology

    1981-09-18

    ionized impurity content for 40 n-type semi-insulating GaAs. Figure 17 Analysis (in wt %) of impurities in B203 after crystal growth 41 from PBN and quartz...encapsulant to the generation of defect clusters in LEC InP. (15 ) Statistics relative to the incidence of twinning for growth with dry ( ppm wt OH...and wet (> 1000 ppm wt OH) B203 are given in Fig. 5 for growths from fused-SiO 2 and PBN crucibles. A crystal is defined as having twinned if it

  19. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou

    2018-04-01

    The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

  20. The presence of isolated hydrogen donors in heavily carbon-doped GaAs

    NASA Astrophysics Data System (ADS)

    Fushimi, Hiroshi; Wada, Kazumi

    1994-12-01

    The deactivation mechanism of carbon acceptors in GaAs has systematically been studied by measuring the annealing behavior and depth profiles of the carrier concentration. It is found that hydrogen impurities dominate carbon deactivation. Their deactivation undergoes two different ways: Hydrogen donors isolated from carbon acceptors compensate carbon and hydrogen impurities neutralize the carbon by forming neutral carbon-hydrogen complexes. The compensating hydrogen donors diffuse out extremely fast at relatively low temperatures. This is, to the best of our knowledge, the first report on the presence of isolated hydrogen donors in heavily carbon-doped GaAs. The dissociation of carbon-hydrogen complexes is much slower than reported. The mechanism is discussed in terms of a hydrogen retrapping effect by carbon.

  1. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  2. Electronic transport properties of Ti-impurity band in Si

    NASA Astrophysics Data System (ADS)

    Olea, J.; González-Díaz, G.; Pastor, D.; Mártil, I.

    2009-04-01

    In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.

  3. Impurity and Defect Interactions in GaAs.

    DTIC Science & Technology

    1984-02-29

    3 VPE a X X ASW 3 vIE 33 34 35 36"M-cVO Wawwmba (CM - Z TS 32 -~ - .35T 2II i I MS . 34 35 3 , b Wovor%~~e (€cm -) X3 FiS.l Characteristic donor peaks ...2). Far infrared photoconductivity measurements on Si doped GaAs grown by molecular beam epitaxy (MBE) indicated that the impurity peak previously...difference is donor species dependent, each hydrogenic transition in a photothermal ionization spectrum contains several closely spaced peaks . Each peak cor

  4. Determination of carrier concentration and compensation microprofiles in GaAs

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.; Lagowski, J.; Walukiewicz, W.; Gatos, H. C.

    1980-01-01

    Simultaneous microprofiling of semiconductor free carrier, donor, and acceptor concentrations was achieved for the first time from the absolute value of the free carrier absorption coefficient and its wavelength dependence determined by IR absorption in a scanning mode. Employing Ge- and Si-doped melt-grown GaAs, striking differences were found between the variations of electron concentration and those of ionized impurity concentrations. These results showed clearly that the electronic characteristics of this material are controlled by amphoteric doping and deviations from stoichiometry rather than by impurity segregation.

  5. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  6. Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Grayson, Matthew

    Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.

  7. A new high-speed IR camera system

    NASA Technical Reports Server (NTRS)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  8. Measurements with Si and GaAs pixel detectors bonded to photon counting readout chips

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Runge, K.; Smith, K. M.; Snoeys, W.

    2001-06-01

    Detectors fabricated with SI-GaAs and Si bulk material were bonded to Photon Counting Chips (PCC), developed in the framework of the MEDIPIX Collaboration. The PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube at room temperature. The image homogeneity and the mean count rate were determined via flood exposure images and compared. Exposures for GaAs detectors exhibit a 3 times larger spread in count rate per image in comparison to Si detectors. This also results in a 3 times worse signal to noise ratio. IV-characteristics and X-ray images at different values of the detectors bias voltage were also taken and show a 30 times higher leakage current for GaAs. The Si detector is fully active beginning from 70 V, whereas the GaAs detector does not reach full charge collection. The presampling modulation transfer function of both assembly types was measured via slit images and gives a spatial resolution of 4.3 lp/mm for both detector systems.

  9. Development of the GaAs-based THz Photoconductor and Balloon-borne Experiment Module TG-ZERO

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Kataza, Hirokazu; Wada, Takehiko; Murakami, Hiroshi; Kamizuka, Takafumi; Makitsubo, Hironobu; Yamashita, Kyohei; Wakaki, Moriaki; Abe, Osamu

    2009-08-01

    The far-infrared (around 1 terahertz (THz)) extrinsic photoconductor is fabricated by a LPE-grown GaAs semiconductor. This GaAs detector can detect longer wavelength photons than the stressed Ge:Ga conventionally used for astronomical infrared observation. We applied the liquid phase epitaxy to obtain a suitable purity of GaAs crystals, and the test N-GaAs photoconductor device shows spectroscopic response over a wide wavelength range of 150-300 micron. The best sample shows 30 A/W of responsivity and 10-16 W/Hz0.5 of NEP is expected at 295 micron of wavelength and T = 1.6 K. In addition, we constructed the terahertz photometer module (TG-ZERO) using our N-GaAs photoconductors. TG-ZERO has four channel bands with N-GaAs and Ge:Ga photoconductors. The development process, the result of experiments, and the basic specifications of TG-ZERO are all reported in this paper.

  10. Chirped-Superlattice, Blocked-Intersubband QWIP

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Ting, David; Bandara, Sumith

    2004-01-01

    An Al(x)Ga(1-x)As/GaAs quantum-well infrared photodetector (QWIP) of the blocked-intersubband-detector (BID) type, now undergoing development, features a chirped (that is, aperiodic) superlattice. The purpose of the chirped superlattice is to increase the quantum efficiency of the device. A somewhat lengthy background discussion is necessary to give meaning to a brief description of the present developmental QWIP. A BID QWIP was described in "MQW Based Block Intersubband Detector for Low-Background Operation" (NPO-21073), NASA Tech Briefs Vol. 25, No. 7 (July 2001), page 46. To recapitulate: The BID design was conceived in response to the deleterious effects of operation of a QWIP at low temperature under low background radiation. These effects can be summarized as a buildup of space charge and an associated high impedance and diminution of responsivity with increasing modulation frequency. The BID design, which reduces these deleterious effects, calls for a heavily doped multiple-quantum-well (MQW) emitter section with barriers that are thinner than in prior MQW devices. The thinning of the barriers results in a large overlap of sublevel wave functions, thereby creating a miniband. Because of sequential resonant quantum-mechanical tunneling of electrons from the negative ohmic contact to and between wells, any space charge is quickly neutralized. At the same time, what would otherwise be a large component of dark current attributable to tunneling current through the whole device is suppressed by placing a relatively thick, undoped, impurity-free AlxGa1 x As blocking barrier layer between the MQW emitter section and the positive ohmic contact. [This layer is similar to the thick, undoped Al(x)Ga(1-x)As layers used in photodetectors of the blocked-impurity-band (BIB) type.] Notwithstanding the aforementioned advantage afforded by the BID design, the responsivity of a BID QWIP is very low because of low collection efficiency, which, in turn, is a result of low electrostatic- potential drop across the superlattice emitter. Because the emitter must be electrically conductive to prevent the buildup of space charge in depleted quantum wells, most of the externally applied bias voltage drop occurs across the blocking-barrier layer. This completes the background discussion. In the developmental QWIP, the periodic superlattice of the prior BID design is to be replaced with the chirped superlattice, which is expected to provide a built-in electric field. As a result, the efficiency of collection of photoexcited charge carriers (and, hence, the net quantum efficiency and thus responsivity) should increase significantly.

  11. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  12. Electric field-induced coherent control in GaAs: polarization dependence and electrical measurement [Invited].

    PubMed

    Wahlstrand, J K; Zhang, H; Choi, S B; Sipe, J E; Cundiff, S T

    2011-11-07

    A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.

  13. Photon counting microstrip X-ray detectors with GaAs sensors

    NASA Astrophysics Data System (ADS)

    Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.

    2018-01-01

    High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.

  14. Review—hexagonal boron nitride epilayers: Growth, optical properties and device applications

    DOE PAGES

    Jiang, H. X.; Lin, Jing Yu

    2016-09-07

    This paper provides a brief overview on recent advances made in authors’ laboratory in epitaxial growth and optical studies of hexagonal boron nitride (h-BN) epilayers and heterostructures. Photoluminescence spectroscopy has been employed to probe the optical properties of h-BN. It was observed that the near band edge emission of h-BN is unusually high and is more than two orders of magnitude higher than that of high quality AlN epilayers. It was shown that the unique quasi-2D nature induced by the layered structure of h-BN results in high optical absorption and emission. The impurity related and near band-edge transitions in h-BNmore » epilayers were probed for materials synthesized under varying ammonia flow rates. Our results have identified that the most dominant impurities and deep level defects in h-BN epilayers are related to nitrogen vacancies. By growing h-BN under high ammonia flow rates, nitrogen vacancy related defects can be eliminated and epilayers exhibiting pure free exciton emission have been obtained. Deep UV and thermal neutron detectors based on h-BN epilayers were shown to possess unique features. Lastly, it is our belief that h-BN will lead to many potential applications from deep UV emitters and detectors, radiation detectors, to novel 2D photonic and electronic devices.« less

  15. Review—hexagonal boron nitride epilayers: Growth, optical properties and device applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H. X.; Lin, Jing Yu

    This paper provides a brief overview on recent advances made in authors’ laboratory in epitaxial growth and optical studies of hexagonal boron nitride (h-BN) epilayers and heterostructures. Photoluminescence spectroscopy has been employed to probe the optical properties of h-BN. It was observed that the near band edge emission of h-BN is unusually high and is more than two orders of magnitude higher than that of high quality AlN epilayers. It was shown that the unique quasi-2D nature induced by the layered structure of h-BN results in high optical absorption and emission. The impurity related and near band-edge transitions in h-BNmore » epilayers were probed for materials synthesized under varying ammonia flow rates. Our results have identified that the most dominant impurities and deep level defects in h-BN epilayers are related to nitrogen vacancies. By growing h-BN under high ammonia flow rates, nitrogen vacancy related defects can be eliminated and epilayers exhibiting pure free exciton emission have been obtained. Deep UV and thermal neutron detectors based on h-BN epilayers were shown to possess unique features. Lastly, it is our belief that h-BN will lead to many potential applications from deep UV emitters and detectors, radiation detectors, to novel 2D photonic and electronic devices.« less

  16. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  17. The growth of low band-gap InAs on (111)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1995-01-01

    The use of low band-gap materials is of interest for a number of photovoltaic and optoelectronic applications, such as bottom cells of optimized multijunction solar cell designs, long wavelength light sources, detectors, and thermophotovoltaics. However, low band-gap materials are generally mismatched with respect to lattice constant, thermal expansion coefficient, and chemical bonding to the most appropriate commercially available substrates (Si, Ge, and GaAs). For the specific case of III-V semiconductor heteroepitaxy, one must contend with the strain induced by both lattice constant mismatch at the growth temperature and differences in the rates of mechanical deformation during the cool down cycle. Several experimental techniques have been developed to minimize the impact of these phenomena (i.e., compositional grading, strained layer superlattices, and high-temperature annealing). However, in highly strained systems such as InAs-on-GaAs, three-dimensional island formation and large defect densities (greater than or equal to 10(exp 8)/ cm(exp -2)) tend to limit their applicability. In these particular cases, the surface morphology and defect density must be controlled during the initial stages of nucleation and growth. At the last SPRAT conference, we reported on a study of the evolution of InAs islands on (100) and (111)B GaAs substrates. Growth on the (111)B orientation exhibits a number of advantageous properties as compared to the (100) during these early stages of strained-layer epitaxy. In accordance with a developing model of nucleation and growth, we have deposited thin (60 A - 2500 A), fully relaxed InAs films on (111)B GaAs substrates. Although thicker InAs films are subject to the formation of twin defects common to epitaxy on the (111)B orientation, appropriate control of the growth parameters can greatly minimize their density. Using this knowledge base, InAs films up to 2 microns in thickness with improved morphology and structural quality have been grown on (111)B GaAs substrates, thereby enabling the measurement of electronic and optical properties.

  18. Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072; Wei, M. J.

    2015-09-14

    The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19}more » core and the GaAs shell and identifies it as a type I band alignment.« less

  19. Chemical trend of acceptor levels of Be, Mg, Zn, and Cd in GaAs, GaP, InP and GaN

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, An-Ban

    2000-03-01

    We are investigating the “shallow” acceptor levels in the III-nitride semiconductors theoretically. The k·p Hamiltonians and a model central-cell impurity potential have been used to evaluate the ordering of the ionization energies of impurities Be, Mg, Zn, and Cd in GaN. The impurity potential parameters were obtained from studying the same set of impurities in GaAs. These parameters were then transferred to the calculation for other hosts, leaving only one adjustable screening parameter for each host. This procedure was tested in GaP and InP and remarkably good results were obtained. When applied to GaN, this procedure produced a consistent set of acceptor levels with different k·p Hamiltonians. The calculated ionization energies for Be, Mg, Zn and Cd acceptors in GaN are respectively145, 156, 192, and 312 meV for the zincblende structure, and 229, 250, 320, and 510 meV for the wurtzite structure. These and other results will be discussed.

  20. Nanostructuring-induced modification of optical properties of p-GaAs (1 0 0)

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2009-10-01

    A pulsed anodic etching method has been utilized for nanostructuring of p-type GaAs (1 0 0) surface, using HCl-based solution as electrolyte. The resulting porous GaAs layer is characterized by atomic force microscopy (AFM), room temperature photoluminescence (PL), Raman spectroscopy and optical reflectance measurements. AFM imaging reveals that the porous GaAs layer is consisted of a pillar-like of few nm in width distributed between more-reduced size nanostructures. In addition to the “infrared” PL band of un-etched GaAs, a strong “green” PL band is observed in the etched sample. The broad visible PL band of a high-energy (3.82 eV) excitation is found to compose of two PL band attributed to excitons confinement in two different sizes distribution of GaAs nanocrystals. The quantum confinement effects in GaAs nanocrystallites is also evidenced from Raman spectroscopy through the pronounced appearance of the transverse optical (TO) phonon line in the spectra of the porous sample. Porosity-induced a significant reduction of the specular reflection, in the spectral range (400-800 nm), is also demonstrated.

  1. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the primary photocurrent and related to the phonon absorption time, predicts the same trend of the gain increasing with temperature and decreasing with increasing primary photocurrent.

  2. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  3. Spectrally resolved localized states in GaAs 1– xBi x

    DOE PAGES

    Christian, Theresa M.; Alberi, Kirstin; Beaton, Daniel A.; ...

    2017-02-01

    In this study, the role of localized states and their influence on the broader band structure remains a crucial question in understanding the band structure evolution in GaAs 1-xBi x. Here in this work, we present clear spectroscopic observations of recombination at several localized states in GaAs 1-xBi x. Sharp and recognizable photoluminescence features appear in multiple samples and redshift as a function of GaBi fraction between x = 0.16% and 0.4% at a linearized rate of 34 meV per % Bi, weaker than the redshift associated with band-to-band recombination. Interpreting these results in terms of radiative recombination between localizedmore » holes and free electrons sheds light on the relative movement of the conduction band minimum and the characteristics of localized bismuth-related trap states in GaAs 1-xBi x alloys.« less

  4. Imaging performance of a Timepix detector based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Zápražný, Z.; Jakůbek, J.; Šagátová, A.; Boháček, P.; Sekáčová, M.; Korytár, D.; Nečas, V.; Žemlička, J.; Mora, Y.; Pichotka, M.

    2018-01-01

    This work focused on a Timepix chip [1] coupled with a bulk semi-insulating GaAs sensor. The sensor consisted of a matrix of 256 × 256 pixels with a pitch of 55 μm bump-bonded to a Timepix ASIC. The sensor was processed on a 350 μm-thick SI GaAs wafer. We carried out detector adjustment to optimize its performance. This included threshold equalization with setting up parameters of the Timepix chip, such as Ikrum, Pream, Vfbk, and so on. The energy calibration of the GaAs Timepix detector was realized using a 241Am radioisotope in two Timepix detector modes: time-over-threshold and threshold scan. An energy resolution of 4.4 keV in FWHM (Full Width at Half Maximum) was observed for 59.5 keV γ-photons using threshold scan mode. The X-ray imaging quality of the GaAs Timepix detector was tested using various samples irradiated by an X-ray source with a focal spot size smaller than 8 μm and accelerating voltage up to 80 kV. A 700 μm × 700 μm gold testing object (X-500-200-16Au with Siemens star) fabricated with high precision was used for the spatial resolution testing at different values of X-ray image magnification (up to 45). The measured spatial resolution of our X-ray imaging system was about 4 μm.

  5. Quantum-confinement effects on conduction band structure of rectangular cross-sectional GaAs nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Morioka, N.; Mori, S.

    2014-02-07

    The conduction band structure and electron effective mass of GaAs nanowires with various cross-sectional shapes and orientations were calculated by two methods, a tight-binding method and an effective mass equation taking the bulk full-band structure into account. The effective mass of nanowires increases as the cross-sectional size decreases, and this increase in effective mass depends on the orientations and substrate faces of nanowires. Among [001], [110], and [111]-oriented rectangular cross-sectional GaAs nanowires, [110]-oriented nanowires with wider width along the [001] direction showed the lightest effective mass. This dependence originates from the anisotropy of the Γ valley of bulk GaAs. Themore » relationship between effective mass and bulk band structure is discussed.« less

  6. Terahertz photoluminescence from S.I.-GaAs by below gap excitation via EL2 level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Yutaka, E-mail: oyama@material.tohoku.ac.jp; Dezaki, Hikari; Shimizu, Yusaku

    2015-01-12

    Terahertz emission by radiative transitions in semi-conductors via shallow impurity states is investigated. We report on the observation of terahertz photoluminescence from S.I.-GaAs by below gap excitation via EL2 level which is located at the center of band gap. In order to investigate the terahertz wave emission mechanisms, the emission spectra and temperature dependence of the emission intensity are evaluated. It is shown that intense terahertz emission from S.I.-GaAs over 120 K is observed due to the thermal recovery of photo-quenched EL2 meta-stable state, and that the emission peak frequency looks to be attributed to the shallow level energy in GaAs.

  7. QWIP products and building blocks for high performance systems

    NASA Astrophysics Data System (ADS)

    Costard, E.; Bois, Ph.; Marcadet, X.; Nedelcu, A.

    2005-10-01

    Standard GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are coming out from the laboratory. In this paper we demonstrate that production and research cannot be dissociated in order to make the new generation of thermal imagers benefit as fast as possible from the building blocks developed by researchers. Since 2002, the THALES group has been manufacturing sensitive arrays using QWIP technology based on GaAs techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for thermal imagers (TI) working in the IR band III (8-12 μm). A review of the current QWIP products is presented. In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and was the key parameter for the production initiation. Another advantage widely claimed also for QWIPs was the so-called band-gap engineering, allowing the custom design of quantum structure to fulfill the requirements of specific applications like very long wavelength or multispectral detection. In this paper, we present the performances for Middle Wavelength InfraRed (MWIR) detections and demonstrate the ability of QWIP's to cover the two spectral ranges (3-5 μm and 8-20 μm). Last but not least, the versatility of the GaAs processing appeared for QWIPs as an important gift. This assumption was well founded. We give here some results achieved on building blocks for two color QWIP pixels. We also report the expected performances of focal plane arrays that we are currently developing with the CEA-LETI-SLIR.

  8. First results from GaAs double-sided detectors

    NASA Astrophysics Data System (ADS)

    Beaumont, S. P.; Bertin, R.; Booth, C. N.; Buttar, C.; Carraresi, L.; Cindolo, F.; Colocci, M.; Combley, F. H.; D'Auria, S.; del Papa, C.; Dogru, M.; Edwards, M.; Foster, F.; Francescato, A.; Gowdy, S.; Gray, R.; Hill, G.; Hou, Y.; Houston, P.; Hughes, G.; Jones, B. K.; Lynch, J. G.; Lisowski, B.; Matheson, J.; Nava, F.; Nuti, M.; O'Shea, V.; Pelfer, P. G.; Raine, C.; Santana, J.; Saunders, I. J.; Seller, P. H.; Shankar, K.; Sharp, P. H.; Skillicorn, I. O.; Sloan, T.; Smith, K. M.; ten Have, I.; Turnbull, R. M.; Vanni, U.; Zichichi, A.

    1994-09-01

    Preliminary results are presented on the performance of double-sided microstrip detectors using Schottky contacts on both sides of a semi-insulating (SI) GaAs substrate wafer, after exposure to 10 14 neutrons cm -2 at the ISIS facility. A qualitative explanation of the device behaviour is given.

  9. Carrier-induced ferromagnetism in the insulating Mn-doped III-V semiconductor InP

    NASA Astrophysics Data System (ADS)

    Bouzerar, Richard; May, Daniel; Löw, Ute; Machon, Denis; Melinon, Patrice; Zhou, Shengqiang; Bouzerar, Georges

    2016-09-01

    Although InP and GaAs have very similar band structure their magnetic properties appear to drastically differ. Critical temperatures in (In,Mn)P are much smaller than those of (Ga,Mn)As and scale linearly with Mn concentration. This is in contrast to the square-root behavior found in (Ga,Mn)As. Moreover the magnetization curve exhibits an unconventional shape in (In,Mn)P contrasting with the conventional one of well-annealed (Ga,Mn)As. By combining several theoretical approaches, the nature of ferromagnetism in Mn-doped InP is investigated. It appears that the magnetic properties are essentially controlled by the position of the Mn acceptor level. Our calculations are in excellent agreement with recent measurements for both critical temperatures and magnetizations. The results are only consistent with a Fermi level lying in an impurity band, ruling out the possibility to understand the physical properties of Mn-doped InP within the valence band scenario. The quantitative success found here reveals a predictive tool of choice that should open interesting pathways to address magnetic properties in other compounds.

  10. Image quality of a pixellated GaAs X-ray detector

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Makham, S.; Bourgoin, J. C.; Mauger, A.

    2007-02-01

    X-ray detection requires materials with large atomic numbers Z in order to absorb the radiation efficiently. In case of X-ray imaging, fluorescence is a limiting factor for the spatial resolution and contrast at energies above the kα threshold. Since both the energy and yield of the fluorescence of a given material increase with the atomic number, there is an optimum value of Z. GaAs, which can now be epitaxially grown as self-supported thick layers to fulfil the requirements for imaging (good homogeneity of the electronic properties) corresponds to this optimum. Image performances obtained with this material are evaluated in terms of line spread function and modulation transfer function, and a comparison with CsI is made. We evaluate the image contrast obtained for a given object contrast with GaAs and CsI detectors, in the photon energy range of medical applications. Finally, we discuss the minimum object size, which can be detected by these detectors in of mammography conditions. This demonstrates that an object of a given size can be detected using a GaAs detector with a dose at least 100 times lower than using a CsI detector.

  11. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  12. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    NASA Astrophysics Data System (ADS)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  13. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is fed through the hollow probe body. The detector's signal goes to an externally mounted preamplifier. The detector assembly, along with a preamplifier, is calibrated as a function of the surface temperature for various detector temperatures. The output voltage is a function of both the detector and object temperatures.

  14. Impurity and Defect Interactions in GaAs.

    DTIC Science & Technology

    1982-09-30

    motivated :* 1. The actual transport of Cr occurs interstitially. The * diffusion and drift of the substitutional and complexed Cr are negligible. This is...of impurity 3 for the growth I case listed in Table 1, after 1, 5, and 10 minutes. Ps4 C 2- U I3 Nmil I Figur ~0i . . , 0 O20 30 4 5 O 60 080 90

  15. Digital X-ray portable scanner based on monolithic semi-insulating GaAs detectors: General description and first “quantum” images

    NASA Astrophysics Data System (ADS)

    Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.

    2005-07-01

    The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.

  16. Compound semiconductor detectors for X-ray astronomy: Spectroscopic measurements and material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavdaz, M.; Kraft, S.; Peacock, A.

    1998-12-31

    The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less

  17. Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.

  18. A High Efficiency Multiple-Anode 260-340 GHz Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran

    2006-01-01

    We report on the fabrication at the Jet Propulsion Laboratory of a fixed-tuned split-block waveguide balanced frequency tripler working in the 260-340 GHz band. This tripler will be the first stage of a x3x3x3 multiplier chain to 2.7 THz (the last stages of which are being fabricated at JPL) and is therefore optimized for high power operation. The multiplier features six GaAs Schottky planar diodes in a balanced configuration integrated on a GaAs membrane. Special attention was put on splitting the input power as evenly as possible among the diodes in order to ensure that no diode is overdriven. Preliminary RF tests indicate that the multiplier covers the expected bandwidth and that the efficiency is in the range 1.5-7.5 % with 100 mW of input power.

  19. Negative differential velocity in ultradilute GaAs1-xNx alloys

    NASA Astrophysics Data System (ADS)

    Vogiatzis, N.; Rorison, J. M.

    2011-04-01

    We present theoretical results on steady state characteristics in bulk GaAs1-xNx alloys (x ≤ 0.2) using the single electron Monte-Carlo method. Two approaches have been used; the first assumes a GaAs band with a strong nitrogen scattering resonance and the second uses the band anti-crossing model, in which the localized N level interacts with the GaAs band strongly perturbing the conduction band. In the first model we observe two negative differential velocity peaks, the lower one associated with nitrogen scattering while the higher one with polar optical phonon emission accounting for the nonparabolicity effect. In the second model one negative differential velocity peak is observed associated with polar optical phonon emission. Good agreement with experimental low field mobility is obtained from the first model. We also comment on the results from both Models when the intervalley Г → L transfer is accounted for.

  20. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  1. Recent Developments in Quantum-Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, K. M. S. V.

    1995-01-01

    Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.

  2. Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2012-02-01

    Band structures of GaAs1-xNx and GaSb1-xNx alloys are studied in the framework of the density functional theory within the hybrid functional scheme (HSE06). We find that the scheme gives a clear improvement over the traditional (semi)local functionals in describing, in a qualitative agreement with experiments, the bowing of electron energy band gap in GaAs1-xNx alloys. In the case of GaSb1-xNx alloys, the hybrid functional used makes the study of band structures possible ab initio without any empirical parameter fitting. We explain the trends in the band gap reductions in the two materials that result mainly from the positions of the nitrogen-induced states with respect to the bottoms of the bulk conduction bands.

  3. Doping assessment in GaAs nanowires.

    PubMed

    Goktas, N Isik; Fiordaliso, E M; LaPierre, R R

    2018-06-08

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p-n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  4. Doping assessment in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Isik Goktas, N.; Fiordaliso, E. M.; LaPierre, R. R.

    2018-06-01

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p–n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  5. Room temperature operation of mid-infrared InAs0.81Sb0.19 based photovoltaic detectors with an In0.2Al0.8Sb barrier layer grown on GaAs substrates.

    PubMed

    Geum, Dae-Myeong; Kim, SangHyeon; Kang, SooSeok; Kim, Hosung; Park, Hwanyeol; Rho, Il Pyo; Ahn, Seung Yeop; Song, Jindong; Choi, Won Jun; Yoon, Euijoon

    2018-03-05

    In this paper, InAs 0.81 Sb 0.19 -based hetero-junction photovoltaic detector (HJPD) with an In 0.2 Al 0.8 Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs 0.81 Sb 0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm 2 /V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.

  6. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  7. The infrared spectrograph during the SIRTF pre-definition phase

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1988-01-01

    A test facility was set up to evaluate back-illuminated impurity band detectors constructed for an infrared spectrograph to be used on the Space Infrared Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the detector development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the detector evaluation facility.

  8. Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs1-xNx by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about ximp1 = 0.38% and ximp2 = 0.76%. The GaAs1-xNx layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs1-xNx samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice by FLA for ximp1 = 0.38% and ximp2 = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.

  9. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  10. Growth and photoluminescence study of several single crystal segments relevant to monolithic semiconductor cascade solar cells

    NASA Astrophysics Data System (ADS)

    Sillmon, Roger S.; Schreiner, Anton F.; Timmons, Michael

    1983-09-01

    Several representative single crystal stacked layers of III-V compound and alloy semiconductors were grown which are spatial regions relevant to a monolithic cascade solar cell, including the substrate, n-GaAs(Si), which was pre-growth heat treated in H 2(g) prior to its use. These structures were then studied by cryogenic laser excited photoluminescence (PL), and the substrate portion was explored in a depth profiling mode. Within the forbidden band gap region up to seven recombinations were observed and identified for undoped GaAs layers or the GaAs(Si) substrate, and several other PL recombinations were observed for undoped Al xGa 1- xAs and Al yGa 1- ySb zAs 1- z layers. In addition to the valence and conduction bands, these optical bands are also associa ted with the presence of C Ga, Si Ga, Si As, Cu Ga, V As, V Ga and vacancy-impurity complexes involving several of these defect types even in the absence of intentional doping. The findings also relate to problems of self-compensation and type inversion, so that the need for growth modifications is indicated.

  11. LANDSAT-4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E. (Principal Investigator)

    1982-01-01

    Work done on evaluating the geometric and radiometric quality of early LANDSAT-4 sensor data is described. Band to band and channel to channel registration evaluations were carried out using a line correlator. Visual blink comparisons were run on an image display to observe band to band registration over 512 x 512 pixel blocks. The results indicate a .5 pixel line misregistration between the 1.55 to 1.75, 2.08 to 2.35 micrometer bands and the first four bands. Also a four 30M line and column misregistration of the thermal IR band was observed. Radiometric evaluation included mean and variance analysis of individual detectors and principal components analysis. Results indicate that detector bias for all bands is very close or within tolerance. Bright spots were observed in the thermal IR band on an 18 line by 128 pixel grid. No explanation for this was pursued. The general overall quality of the TM was judged to be very high.

  12. A thermochemical model of radiation damage and annealing applied to GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.; Heinbockel, J. H.

    1981-01-01

    Calculations of the equilibrium conditions for continuous radiation damage and thermal annealing are reported. The calculations are based on a thermochemical model developed to analyze the incorporation of point imperfections in GaAs, and modified by introducing the radiation to produce native lattice defects rather than high-temperature and arsenic atmospheric pressure. The concentration of a set of defects, including vacancies, divacancies, and impurity vacancy complexes, are calculated as a function of temperature. Minority carrier lifetimes, short circuit current, and efficiency are deduced for a range of equilibrium temperatures. The results indicate that GaAs solar cells could have a mission life which is not greatly limited by radiation damage.

  13. Raman Scattering Signature of a Localized-to-Delocalized Transition at the Inception of a Dilute Abnormal GaAs1-xNx Alloy

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej V.; Mascarenhas, Angelo

    2013-05-01

    We identify the signature of a localized-to-delocalized transition in the resonant Raman scattering spectra from GaAs1-xNx. Our measurements in the ultradilute nitrogen doping concentrations demonstrate an energy shift in the line width resonance of the LO phonon. With decreasing nitrogen concentration, the EW line width resonance energy reduces abruptly by ca. 47 meV at x≈0.35%. This value corresponds to the concentration at which GaAs1-xNx has been recently shown to transition from an impurity regime to an alloy regime. Our study elucidates the evolution of dilute abnormal alloys and their Raman response.

  14. Cathodoluminescence on the Effects of Te Implantation and Laser Annealing in Gallium Arsenide.

    DTIC Science & Technology

    1978-12-01

    With the intentional addition of impurity ions (doping) into the lattice of a crystal , the semiconductor gallium arse- nide (GaAs ) should have... lattice structure with respect to Te ion positions and the presence of native defects. The experimental technique of cathodoluminescence is used to...the band—gap are caused by excitons , impurity atoms , or lattice imperfections. The first transition in Figure 1 is the recombination of a free

  15. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  16. An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Kirak, M.

    2018-05-01

    In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.

  17. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  18. MEDIPIX: a VLSI chip for a GaAs pixel detector for digital radiology

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Bertolucci, E.; Bisogni, M. G.; Bottigli, U.; Ceccopieri, A.; Ciocci, M. A.; Conti, M.; Delogu, P.; Fantacci, M. E.; Maestro, P.; Marzulli, V.; Pernigotti, E.; Romeo, N.; Rosso, V.; Rosso, P.; Stefanini, A.; Stumbo, S.

    1999-02-01

    A GaAs pixel detector designed for digital mammography, equipped with a 36-channel single photon counting discrete read-out electronics, was tested using a test object developed for quality control purposes in mammography. Each pixel was 200×200 μm 2 large, and 200 μm deep. The choice of GaAs with respect to silicon (largely used in other applications and with a more established technique) has been made because of the much better detection efficiency at mammographic energies, combined with a very good charge collection efficiency achieved thanks to new ohmic contacts. This GaAs detector is able to perform a measurement of low-contrast details, with minimum contrast lower (nearly a factor two) than that typically achievable with standard mammographic film+screen systems in the same conditions of clinical routine. This should allow for an earlier diagnosis of breast tumour masses. Due to these encouraging results, the next step in the evolution of our imaging system based on GaAs detectors has been the development of a VLSI front-end prototype chip (MEDIPIX ) in order to cover a much larger diagnostic area. The chip reads 64×64 channels in single photon counting mode, each one 170 μm wide. Each channel contains also a test input where a signal can be simulated, injecting a known charge through a 16 f F capacitor. Fake signals have been injected via the test input measuring and equalizing minimum thresholds for all the channels. On an average, in most of the performing chips available up to now, we have found that it is possible to set a threshold as low as 1800 electrons with an RMS of 150 electrons (10 standard deviations lower than the 20 keV photon signal roughly equivalent to 4500 electrons). The detector, bump-bonded to the chip, will be tested and a ladder of detectors will be prepared to be able to scan large surface objects.

  19. Hydrodynamic electronic fluid instability in GaAs MESFETs at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Li, Kang; Hao, Yue; Jin, Xiaoqi; Lu, Wu

    2018-01-01

    III-V compound semiconductor field effect transistors (FETs) are potential candidates as solid state THz emitters and detectors due to plasma wave instability in these devices. Using a 2D hydrodynamic model, here we present the numerical studies of electron fluid instability in a FET structure. The model is implemented in a GaAs MESFET structure with a gate length of 0.2 µm as a testbed by taking into account the non-equilibrium transport and multi-valley non-parabolicity energy bands. The results show that the electronic density instability in the channel can produce stable periodic oscillations at THz frequencies. Along with stable oscillations, negative differential resistance in output characteristics is observed. The THz emission energy density increases monotonically with the drain bias. The emission frequency of electron density oscillations can be tuned by both gate and drain biases. The results suggest that III-V FETs can be a kind of versatile THz devices with good tunability on both radiative power and emission frequency.

  20. Toward Directly-Deposited Optical Blocking Filters for High-performance, Back-illuminated Imaging X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Bautz, Mark W.; Kissel, S. E.; Ryu, K.; Suntharalingam, V.

    2014-01-01

    Silicon X-ray detectors require optical blocking filters to prevent out-of-band (UV, visible and near-IR) radiation from corrupting the X-ray signal. Traditionally, blocking filters have been deposited on thin, free-standing membranes suspended over the detector. Free-standing filters are fragile, however, and in past instruments have required heavy and complex vacuum housings to protect them from acoustic loads during ground operations and launch. A directly-deposited blocking filter greatly simplifies the instrument and in principle permits better soft X-ray detection efficiency than a traditional free-standing filter. Directly-deposited filters have flown in previous generation instruments (e.g. the XMM/Newton Reflection Grating Spectrometer) but none has yet been demonstrated on a modern, high-performance back-illuminated X-ray CCD. We report here on the status of our NASA-funded Strategic Astrophysics Technology program to demonstrate such filters.

  1. Rare-earth gate oxides for GaAs MOSFET application

    NASA Astrophysics Data System (ADS)

    Kwon, Kwang-Ho; Yang, Jun-Kyu; Park, Hyung-Ho; Kim, Jongdae; Roh, Tae Moon

    2006-08-01

    Rare-earth oxide films for gate dielectric on n-GaAs have been investigated. The oxide films were e-beam evaporated on S-passivated GaAs, considering interfacial chemical bonding state and energy band structure. Rare-earth oxides such as Gd 2O 3, (Gd xLa 1- x) 2O 3, and Gd-silicate were employed due to high resistivity and no chemical reaction with GaAs. Structural and bonding properties were characterized by X-ray photoemission, absorption, and diffraction. The electrical characteristics of metal-oxide-semiconductor (MOS) diodes were correlated with material properties and energy band structures to guarantee the feasibility for MOS field effect transistor (FET) application. Gd 2O 3 films were grown epitaxially on S-passivated GaAs (0 0 1) at 400 °C. The passivation induced a lowering of crystallization temperature with an epitaxial relationship of Gd 2O 3 (4 4 0) and GaAs (0 0 1). A better lattice matching relation between Gd 2O 3 and GaAs substrate was accomplished by the substitution of Gd with La, which has larger ionic radius. The in-plane relationship of (Gd xLa 1- x) 2O 3 (4 4 0) with GaAs (0 0 1) was found and the epitaxial films showed an improved crystalline quality. Amorphous Gd-silicate film was synthesized by the incorporation of SiO 2 into Gd 2O 3. These amorphous Gd-silicate films excluded defect traps or current flow path due to grain boundaries and showed a relatively larger energy band gap dependent on the contents of SiO 2. Energy band parameters such as Δ EC, Δ EV, and Eg were effectively controlled by the film composition.

  2. Investigation of the interface characteristics of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan

    2016-09-01

    We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.

  3. Fabrication and characterization of GaAs Schottky barrier photodetectors for microwave fiber optic links

    NASA Astrophysics Data System (ADS)

    Blauvelt, H.; Thurmond, G.; Parsons, J.; Lewis, D.; Yen, H.

    1984-08-01

    High-speed GaAs Schottky barrier photodiodes have been fabricated and characterized. These detectors have 3-dB bandwidths of 20 GHz and quantum efficiencies as high as 70 percent. The response of the detectors to light modulated at 1-18 GHz has been directly measured. Microwave modulated optical signals were obtained by using a LiNbO3 traveling wave modulator and by heterodyning two laser diodes.

  4. First principles calculations of La2O3/GaAs interface properties under biaxial strain and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan

    2017-04-01

    La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.

  5. Photoemission study of CaF2- and SrF2-GaAs(110) interfaces formed at room temperature

    NASA Astrophysics Data System (ADS)

    Mao, D.; Young, K.; Kahn, A.; Zanoni, R.; McKinley, J.; Margaritondo, G.

    1989-06-01

    Interfaces formed by evaporating CaF2 or SrF2 on room-temperature GaAs(110) are studied with synchrotron-radiation photoemission spectroscopy. The fluoride films grow uniformly on the GaAs surface. The deposition of CaF2 and SrF2 induces a large initial band bending on p-type GaAs (~0.9 eV) and a small initial band bending on n-type GaAs (~0.25 eV). The valence band is dominated by the F 2p peak which shifts toward high binding energies by ~1.5 eV after the deposition of >=16 Å fluoride. This shift reflects an increase in the valence-band offset between the two materials as the film forms. The final band offsets are estimated at 7.7 and 8.0 eV for CaF2 and SrF2, respectively, and are in qualitative agreement with those expected from the fluoride-Si data. Core-level measurements indicate that no reaction or decomposition of the MF2 molecule takes place at the interface. The F 2s core-level line shape and the increase in the binding-energy separation of F 2s and Ca 3p with increasing coverage suggest the presence of an interface F component. Contrary to the CaF2/Si case, no measurable Ca-substrate bonding effect is observed. The dissociative effect of uv irradiation on the CaF2 film is also investigated.

  6. Review of terahertz semiconductor sources

    NASA Astrophysics Data System (ADS)

    Wei, Feng

    2012-03-01

    Terahertz (THz) technology can be used in information science, biology, medicine, astronomy, and environmental science. THz sources are the key devices in THz applications. The author gives a brief review of THz semiconductor sources, such as GaAs1-xNx Gunn-like diodes, quantum wells (QWs) negative-effective-mass (NEM) THz oscillators, and the THz quantum cascade lasers (QCLs). THz current self-oscillation in doped GaAs1-xNx diodes driven by a DC electric field was investigated. The current self-oscillation is associated with the negative differential velocity effect in the highly nonparabolic conduction band of this unique material system. The current self-oscillations and spatiotemporal current patterns in QW NEM p+pp+ diodes was studied by considering scattering contributions from impurities, acoustic phonons, and optic phonons. It is indicated that both the applied bias and the doping concentration strongly influence the patterns and self-oscillating frequencies. The NEM p+pp+ diode may be used as an electrically tunable THz source. Meanwhile, by using the Monte Carlo method, the device parameters of resonant-phonon THz QCLs were optimized. The results show that the calculated gain is more sensitive to the injection barrier width, the doping concentration, and the phonon extraction level separation, which is consistent with the experiments.

  7. Diffusive Propagation of Exciton-Polaritons through Thin Crystal Slabs

    PubMed Central

    Zaitsev, D. A.; Il’ynskaya, N. D.; Koudinov, A. V.; Poletaev, N. K.; Nikitina, E. V.; Egorov, A. Yu.; Kavokin, A. V.; Seisyan, R. P.

    2015-01-01

    If light beam propagates through matter containing point impurity centers, the amount of energy absorbed by the media is expected to be either independent of the impurity concentration N or proportional to N, corresponding to the intrinsic absorption or impurity absorption, respectively. Comparative studies of the resonant transmission of light in the vicinity of exciton resonances measured for 15 few-micron GaAs crystal slabs with different values of N, reveal a surprising tendency. While N spans almost five decimal orders of magnitude, the normalized spectrally-integrated absorption of light scales with the impurity concentration as N1/6. We show analytically that this dependence is a signature of the diffusive mechanism of propagation of exciton-polaritons in a semiconductor. PMID:26088555

  8. A Theoretical Study of Self Assembled InAs/GaAs and InAs/GaP/GaAs Quantum Dots: Effects of Strain Balancing

    NASA Astrophysics Data System (ADS)

    Lin, Yih-Yin; Singh, Jasprit

    2002-03-01

    The past few years have been considerable efforts in growth and device application of self-assembled quantum dots. Quantum dots based on the InAs/GaAs system have been widely studied for lasers and detectors. In these structures InAs is under a large compressive strain making it difficult to have a large number stacked InAs/GaAs dots. In this paper we examine self assembled dots based on using GaAs as a substrate but using a GaAsP region to counterbalance the compressive strain in the InAs region allowing for a lower overall strain energy. We will present a comparison of the InAs/GaAs and InAs/GaAsP/GaAs self assembled dots by examining the strain energy per unit volume and the electronic spectra. The strain energy is calculated using the valence force field method and the electronic spectra is calculated using the 8 band k -- p method. The effective energy bandgap of the same size InAs dot in GaAs matrice is found 0.952 eV and is 0.928 eV in GaAs_0.8P_0.2 matrice.

  9. Fermi level pinning at epitaxial Si on GaAs(100) interfaces

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-12-01

    GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.

  10. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Fedyukin, A. V.; Arsentyev, I. N.

    The aim of this study is to explore the structural and optical properties of single-crystal GaAs(100) doped with Cr atoms by burning them into the substrate at high temperatures. The diffusion of chromium into single-crystal GaAs(100) substrates brings about the formation of a thin (~20–40 μm) GaAs:Cr transition layer. In this case, chromium atoms are incorporated into the gallium-arsenide crystal lattice and occupy the regular atomic sites of the metal sublattice. As the chromium diffusion time is increased, such behavior of the dopant impurity yields changes in the energy structure of GaAs, a decrease in the absorption at free chargemore » carriers, and a lowering of the surface recombination rate. As a result, the photoluminescence signal from the sample is significantly enhanced.« less

  11. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  12. Alternative connection scheme for PMTs in large, low energy LXe detectors

    NASA Astrophysics Data System (ADS)

    Elsied, A. M. M.; Giboni, K. L.; Ji, X.

    2015-01-01

    In particle-astrophysics large liquid xenon detectors are used for Dark Matter Search, and these detectors seem continuously to grow in target mass. Specially developed PMTs fulfill all the requirements for an efficient light read out, however, as the number of PMTs increases the connection of the signal and HV lines to the outside world becomes more problematic; feedthroughs and connectors are difficult to realize within the limited space of a detector, and coaxial cables can trap many impurities afterwards to be released into the clean liquid. We propose the use of flexible Kapton strip lines combining the signals and anode HV from 32 PMTs in one 2" wide, 0.004" thick band. We compared a 1.5 m long, unshielded strip line with coaxial cable of the same length. Minimal changes to the base are required without any risk of additional impurities or radio activity. The quality of the signal is compatible. The HV connections can be easily realized without additional capacitors on the base by grounding the second but last dynode. This reduces the voltage on the anode to less than 300 V, compatible with the strip line specifications. All the cathodes are connected to one common negative HV. Such a scheme does not cause cross talk and preserves the possibility to adjust the gain of each PMT separately.

  13. Effects of gold diffusion on n-type doping of GaAs nanowires.

    PubMed

    Tambe, Michael J; Ren, Shenqiang; Gradecak, Silvija

    2010-11-10

    The deposition of n-GaAs shells is explored as a method of n-type doping in GaAs nanowires grown by the Au-mediated metal-organic chemical vapor deposition. Core-shell GaAs/n-GaAs nanowires exhibit an unintended rectifying behavior that is attributed to the Au diffusion during the shell deposition based on studies using energy dispersive X-ray spectroscopy, current-voltage, capacitance-voltage, and Kelvin probe force measurements. Removing the gold prior to n-type shell deposition results in the realization of n-type GaAs nanowires without rectification. We directly correlate the presence of gold impurities to nanowire electrical properties and provide an insight into the role of seed particles on the properties of nanowires and nanowire heterostructures.

  14. Electric field effects on the optical properties of buckled GaAs monolayer

    NASA Astrophysics Data System (ADS)

    Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.

    2018-04-01

    Buckled GaAs monolayer has a direct band gap semiconductor with energy gap of 1.31 eV in the absence of electric field. When we applied transverse electric field, the value of band gap decreases with increasing of electric field strength. In our previous work [1], it is observed that the buckled GaAs monolayer becomes metallic at 1.3 V/Å. In the present work, we investigate the optical properties such as photon energy-dependent dielectric functions, extinction coefficient, refractive index, absorption spectrum and reflectivity of buckled GaAs monolayer in the semiconducting phase i.e. absence of external electric field and metallic phase i.e. presence of external electric field using density functional theory.

  15. Joint services electronics program

    NASA Astrophysics Data System (ADS)

    Flynn, George W.; Osgood, Richard M., Jr.

    1988-05-01

    Several milestones have been reached in GaAs research. The first active GaAs device, a 1 micrometer channel width MESFET, has been made at Columbia. This device is a basic building block in the GaAs CCD program. GaAs surface studies have also born fruit. UV light has been found to oxidize rapidly the surface of GaAs in an UHV environment containing traces of water vapor and O2. The mechanism appears to be related to the generation of hot photocarriers.

  16. Synthesis, purification and bulk crystal growth of radiation detector materials using melt growth technique

    NASA Astrophysics Data System (ADS)

    Surabhi, Raja Rahul Reddy

    In the past decade, there has been new and increased usage of radiation-detection technologies for applications in homeland security, non-proliferation, and national defense. Most of these applications require a portable device with high gamma-ray energy resolution and detection efficiency, compact size, room-temperature operation, and low cost. Consequently, there is a renewed understanding of the material limitations for these technologies and a great demand to develop next-generation radiation-detection materials that can operate at room temperature. Mercuric iodide (HgI2), Lead iodide (PbI2), and CdZnTe (CZT) are the current leading candidates for radiation detector applications. This is because of their high atomic number and large band gap that makes them particularly well suited for fabrication of high resolution and high efficiency compact devices. PbI2 is a promising material for room temperature nuclear radiation detectors, characterized by its wide band gap (EG=2.32eV) and high-density (rho=6.2g/cm3). It has been reported that PbI2 crystal detectors are able to detect gamma-ray in the range of 1KeV-1MeV, with good energy resolution. However, PbI 2 detectors have not been studied in detail because of non-availability of high quality single crystals. This study presents the synthesis, purification, growth and characterization of PbI2 single crystals grown. In this research, solid-state synthesis technique has been utilized for obtaining PbI2 as a starting material. For the first time, a unique low-temperature purification technique has been developed to obtain high-purity starting material. The crystals were grown using 2-zone Bridgman-Stockbarger (B.S) technique wherein growth rate and temperature gradient at the solid-liquid interface were optimized. Single crystals of PbI2 were successfully grown in quartz glass ampoule under different growth conditions. Material purity was determined by measuring the elemental concentration using the Inductively coupled plasma-optical emission spectroscopy (ICP-OES). ICP-OES is utilized for estimating impurities present in the low-temperature purified material, zone refined material and melt grown PbI2 crystals. The zone-refined material contains no traceable amounts of impurities, whereas the low-temperature purified material and melt grown PbI2 crystals show very low concentration of K (potassium) and Na (sodium) impurities. Crystal characterization has been performed for determining optical properties by UV-VIS spectroscopy. The energy band gap (EG) is an important parameter for materials used for room temperature gamma-ray detector applications. The absorption peak at 530nm is a characteristic of PbI2 and corresponds to the onset of the transitions from the valence band to the exciton level. From this absorption spectrum the calculated indirect band gap of PbI 2 was 2.33+/-0.025 eV at room temperature. For measuring the electrical properties (Dielectric and I-V characteristics) of the crystal, Ag (silver) contacts are applied to both sides of the sample. Dielectric analysis on melt grown PbI2 showed that space charge polarization was dominant at lower frequencies but stabilizes at higher frequencies over different operating temperatures. On the other hand, dielectric analysis for zone-refined material space charge polarization was constant over the operating range resulting in fewer lattice defects. Therefore the low temperature purified material followed by zone-refined purification provides detector grade material with fewer lattice defects. The measured electrical resistivity for melt grown PbI2 and zone-refined material are 3.185 x 10 10 O-cm and 0.754 x 109 O-cm at room temperature along (001) plane respectively.

  17. Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.

    2018-01-01

    A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.

  18. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    NASA Astrophysics Data System (ADS)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  19. Antibonding Holes Induce Good Thermoelectric Properties of p-type Ca5Ga2As6

    NASA Astrophysics Data System (ADS)

    Yu, Qingxiu; Wang, Yuan Xu; Shao, Hehong

    2017-07-01

    The arrangement of anionic tetrahedra in Zintl compounds plays a key role in determining their thermoelectric properties. We manifest this idea by investigating the crystal structure, electronic structure, and thermoelectric properties of the Zintl compounds Ca3GaAs3 and Ca5Ga2As6. By comparing various properties of Ca3GaAs3 and Ca5Ga2As6, we found that with decreasing calcium content from Ca3GaAs3 to Ca5Ga2As6, the two adjacent covalent chains formed by GaAs4 tetrahedra are connected by As-As bonds. In Ca5Ga2As6, the appearance of such As-As bonds not only supports the charge balance but also provides two nearly degenerate bands at the top of its valence bands. These two bands determine the thermoelectric behavior of p-type Ca5Ga2As6. The calculated band-decomposed charge density shows that the two bands have a π* antibonding feature of the As pz orbital. Our calculations also reveal that the formation or non-formation of As-As bonds plays an important role in the difference in the thermoelectric properties between Ca3GaAs3 and Ca5Ga2As6. The optimal carrier concentration for achieving the highest thermoelectric performance was explored by calculating the trends in their thermoelectric properties with the carrier concentration. Our work may stimulate further experimental and theoretical work to increase understanding of Zintl chemistry and improve the thermoelectric performance of Zintl compounds.

  20. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  1. Annealing studies of heteroepitaxial InSbN on GaAs grown by molecular beam epitaxy for long-wavelength infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Nimai C.; Bharatan, Sudhakar; Li Jia

    2012-10-15

    We report the effect of annealing on the structural, vibrational, electrical, and optical properties of heteropepitaxially grown InSbN epilayers on GaAs substrate by molecular beam epitaxy for long-wavelength infrared detector applications. As-grown epilayers exhibited high N incorporation in the both substitutional and interstitial sites, with N induced defects as evidenced from high resolution x-ray diffraction, secondary ion mass spectroscopy, and room temperature (RT) micro-Raman studies. The as-grown optical band gap was observed at 0.132 eV ({approx}9.4 {mu}m) and the epilayer exhibited high background carrier concentration at {approx}10{sup 18} cm{sup -3} range with corresponding mobility of {approx}10{sup 3} cm{sup 2}/Vs. Exmore » situ and in situ annealing at 430 Degree-Sign C though led to the loss of N but improved InSb quality due to effective annihilation of N related defects and other lattice defects attested to enhanced InSb LO phonon modes in the corresponding Raman spectra. Further, annealing resulted in the optical absorption edge red shifting to 0.12 eV ({approx}10.3 {mu}m) and the layers were characterized by reduced background carrier concentration in the {approx}10{sup 16} cm{sup -3} range with enhanced mobility in {approx}10{sup 4} cm{sup 2}/Vs range.« less

  2. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation

  3. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  4. Dirty two-band superconductivity with interband pairing order

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhiro; Sasaki, Akihiro; Golubov, Alexander A.

    2018-04-01

    We study theoretically the effects of random nonmagnetic impurities on the superconducting transition temperature T c in a two-band superconductor characterized by an equal-time s-wave interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define a spin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity symmetry class. In a spin-singlet superconductor, T c is insensitive to the impurity concentration when we estimate the self-energy due to the random impurity potential within the Born approximation. On the other hand in a spin-triplet superconductor, T c decreases with the increase of the impurity concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential even though they have s-wave pairing symmetry.

  5. Physics and performances of III-V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations.

    PubMed

    Afzalian, A; Vasen, T; Ramvall, P; Shen, T-M; Wu, J; Passlack, M

    2018-06-27

    We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000  ×  faster) but accurate (error  <  1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III-V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III-V GAA nanowire HTFETs including the effect of electron-phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.

  6. Physics and performances of III–V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations

    NASA Astrophysics Data System (ADS)

    Afzalian, A.; Vasen, T.; Ramvall, P.; Shen, T.-M.; Wu, J.; Passlack, M.

    2018-06-01

    We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000  ×  faster) but accurate (error  <  1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III–V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III–V GAA nanowire HTFETs including the effect of electron–phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.

  7. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, E. S.; Chang, A. S.; Martin, A. J.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  8. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  9. A comparative study of the influence of buoyancy driven fluid flow on GaAs crystal growth

    NASA Technical Reports Server (NTRS)

    Kafalas, J. A.; Bellows, A. H.

    1988-01-01

    A systematic investigation of the effect of gravity driven fluid flow on GaAs crystal growth was performed. It includes GaAs crystal growth in the microgravity environment aboard the Space Shuttle. The program involves a controlled comparative study of crystal growth under a variety of earth based conditions with variable orientation and applied magnetic field in addition to the microgravity growth. Earth based growth will be performed under stabilizing as well as destabilizing temperature gradients. The boules grown in space and on earth will be fully characterized to correlate the degree of convection with the distribution of impurities. Both macro- and micro-segregation will be determined. The space growth experiment will be flown in a self-contained payload container through NASA's Get Away Special program.

  10. Performance Enhancement of a GaAs Detector with a Vertical Field and an Embedded Thin Low-Temperature Grown Layer

    PubMed Central

    Currie, Marc; Dianat, Pouya; Persano, Anna; Martucci, Maria Concetta; Quaranta, Fabio; Cola, Adriano; Nabet, Bahram

    2013-01-01

    Low temperature growth of GaAs (LT-GaAs) near 200 °C results in a recombination lifetime of nearly 1 ps, compared with approximately 1 ns for regular temperature ∼600 °C grown GaAs (RT-GaAs), making it suitable for ultra high speed detection applications. However, LT-GaAs detectors usually suffer from low responsivity due to low carrier mobility. Here we report electro-optic sampling time response measurements of a detector that employs an AlGaAs heterojunction, a thin layer of LT-GaAs, a channel of RT-GaAs, and a vertical electric field that together facilitate collection of optically generated electrons while suppressing collection of lower mobility holes. Consequently, these devices have detection efficiency near that of RT-GaAs yet provide pulse widths nearly an order of magnitude faster—∼6 ps for a cathode-anode separation of 1.3 μm and ∼12 ps for distances more than 3 μm. PMID:23429510

  11. The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Jhabvala, M; Choi, K.; Reuter, D.; Sundaram, M.; Jhabvala, C; La, Anh; Waczynski, Augustyn; Bundas, Jason

    2010-01-01

    The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8[mu]m and 12.0[mu]m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.

  12. The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Reuter, D.; Choi, K.; Sundaram, M.; Jhabvala, C.; La, A.; Waczynski, A.; Bundas, J.

    2011-01-01

    The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8 m and 12.0 m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.

  13. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    PubMed

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  14. The 20 GHz spacecraft FET solid state transmitter

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.

  15. Wide band gap gallium arsenide nanoparticles fabricated using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, D., E-mail: dvjainnov@gmail.com; Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007

    2016-05-23

    In this paper, we have reported the fabrication of gallium arsenide (GaAs) nanoparticles on quartz placed at distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively from top of anode. The fabrication has been carried out by highly energetic and high fluence ions of GaAs produced by hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. GaAs nanoparticles have mean size of about 23 nm, 16 nm and 14 nm for deposition at a distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively. The nanoparticles are crystalline in nature as evident from X-ray diffraction patterns. The band gap of nanoparticles is found tomore » increase from 1.425 eV to 5.37 eV at 4.0 cm distance, which further increases as distance increases. The wide band gap observed for fabricated GaAs nanoparticles suggest the possible applications of nanoparticles in laser systems.« less

  16. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  17. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In-alloyed GaAs. It is found that the PL intensity contrast between bright and dark areas correlates with the ratio of the lifetimes measured using PECS in these areas. Thus, the PL intensity contrast is due to the difference in the carrier lifetimes in the different regions. The carrier lifetimes in the bright and dark regions have different temperature dependences. (Abstract shortened with permission of author.).

  18. High-efficiency V-band GaAs IMPATT diodes

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Benko, E.; Trinh, T.; Erickson, L. P.; Mattord, T. J.

    1984-01-01

    Double-drift GaAs IMPATT diodes were designed for V-band frequency operations and fabricated using molecular-beam epitaxy. The diodes were fabricated in two configurations: (1) circular mesa diodes with silver-plated (integrated) heat sinks: (2) pill-type diodes bonded to diamond heat sinks. Both configurations utilized a miniature quartz-ring package. Output power greater than 1 W CW was achieved at V-band frequencies from diodes on diamond heat sinks. The best conversion efficiency was 13.3 percent at 55.5 GHz with 1 W output power.

  19. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  20. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    1998-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.

  1. Alternatives to Arsine: The Atmospheric Pressure Organometallic Chemical Vapor Deposition Growth of GaAs Using Triethylarsenic.

    DTIC Science & Technology

    1987-08-15

    SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Corinue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Epitaxy GaAs 9...Zr leiK m I141’ FIGURES 1 . Effect of Growth Parameters on Residual Doping Type ................... 7 2. Photoluminescence Spectrum of a GaAs Epilayer... 1 3 Successful homoepitaxial growth of high purity, unintentionally doped GaAs epilayers by organometallic chemical vapor deposition (OMCVD) has

  2. Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot

    NASA Astrophysics Data System (ADS)

    Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.

    2018-07-01

    Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.

  3. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  4. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  5. Design of a Wideband 900 GHz Balanced Frequency Tripler for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Tripon-Canseliet, Charlotte; Maestrini, Alain; Mehdi, Imran

    2004-01-01

    We report on the design of a fix-tuned split-block waveguide balanced frequency tripler working nominally at 900GHz. It uses a GaAs Schottky planar diode pair in a balanced configuration. The circuit will be fabricated with JPL membrane technology in order to minimize dielectric loading. The multiplier is bias-less to dramatically ease the mounting and the operating procedure. At room temperature, the expected output power is 50- 130 (micro)W in the band 800-970 GHz when the tripler is pumped with 4mW. By modifying the waveguide input and output matching circuit, the multiplier can be tuned to operate at lower frequencies.

  6. New infrared detectors and solar cells

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1979-01-01

    The inventions and published papers related to the project are listed. The research with thin films of LaF3 deposited on GaAs substrates is reported along with improvements in photocapacitative MIS infrared detectors.

  7. Fabrication, testing and reliability modeling of copper/titanium-metallized GaAs MESFETs and HEMTs for low-noise applications

    NASA Astrophysics Data System (ADS)

    Feng, Ting

    Today, GaAs based field effect transistors (FETs) have been used in a broad range of high-speed electronic military and commercial applications. However, their reliability still needs to be improved. Particularly the hydrogen induced degradation is a large remaining issue in the reliability of GaAs FETs, because hydrogen can easily be incorporated into devices during the crystal growth and virtually every device processing step. The main objective of this research work is to develop a new gate metallization system in order to reduce the hydrogen induced degradation from the gate region for GaAs based MESFETs and HEMTs. Cu/Ti gate metallization has been introduced into the GaAs MESFETs and HEMTs in our work in order to solve the hydrogen problem. The purpose of the use of copper is to tie up the hydrogen atoms and prevent hydrogen penetration into the device active region as well as to keep a low gate resistance for low noise applications. In this work, the fabrication technology of GaAs MESFETs and AlGaAs/GaAs HEMTs with Cu/Ti metallized gates have been successfully developed and the fabricated Cu/Ti FETs have shown comparable DC performance with similar Au-based GaAs FETs. The Cu/Ti FETs were subjected to temperature accelerated testing at NOT under 5% hydrogen forming gas and the experimental results show the hydrogen induced degradation has been reduced for the Cu/Ti FETs compared to commonly used AuPtTi based GaAs FETs. A long-term reliability testing for Cu/Ti FETs has also been carried out at 200°C and up to 1000hours and testing results show Cu/Ti FETs performed with adequate reliability. The failure modes were found to consist of a decrease in drain saturation current and pinch-off voltage and an increase in source ohmic contact resistance. Material characterization tools including Rutherford backscattering spectroscopy and a back etching technique were used in Cu/Ti GaAs FETs, and pronounced gate metal copper in-diffusion and intermixing compounds at the interface between the gate and GaAs channel layer were found. A quantifying gate sinking degradation model was developed in order to extend device physics models to reliability testing results of Cu/Ti GaAs FETs. The gate sinking degradation model includes the gate metal and hydrogen in-diffusion effect, decrease of effective channel due to the formation of interfacial compounds, decrease of electron mobility due to the increase of in-diffused impurities, and donor compensation from in-diffused metal impurity acceptors or hydrogen passivation. A variational charge control model was applied to simulate and understand the degradation mechanisms of Cu/Ti HEMTs, including hydrogen induced degradation due to the neutralization of donors. The degradation model established in this study is also applicable to other Au or Al metallized GaAs FETs for understanding the failure mechanisms induced by gate sinking and hydrogen neutralization of donors and con-elating the device physics model with reliability testing results.

  8. Real-time detection of laser-GaAs interaction process

    NASA Astrophysics Data System (ADS)

    Jia, Zhichao; Li, Zewen; Lv, Xueming; Ni, Xiaowu

    2017-05-01

    A real-time method based on laser scattering technology was used to detect the interaction process of GaAs with a 1080 nm laser. The detector collected the scattered laser beam from the GaAs wafer. The main scattering sources were back surface at first, later turn into front surface and vapor, so scattering signal contained much information of the interaction process. The surface morphologies of GaAs with different irradiation times were observed using an optical microscope to confirm occurrence of various phenomena. The proposed method is shown to be effective for the real-time detection of GaAs. By choosing a proper wavelength, the scattering technology can be promoted in detection of thicker GaAs wafer or other materials.

  9. Modeling Bi-induced changes in the electronic structure of GaAs1-xBix alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-12-01

    We suggested recently [V. Virkkala , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.88.035204 88, 035204 (2013)] that the band-gap narrowing in dilute GaAs1-xNx alloys can be explained to result from the broadening of the localized N states due to the N-N interaction along the zigzag chains in the <110> directions. In that study our tight-binding modeling based on first-principles density-functional calculations took into account the random distribution of N atoms in a natural way. In this work we extend our modeling to GaAs1-xBix alloys. Our results indicate that Bi states mix with host material states. However, the states near the valence-band edge agglomerate along the zigzag chains originating from individual Bi atoms. This leads to Bi-Bi interactions in a random alloy broadening these states in energy and causing the band-gap narrowing.

  10. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  11. Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-07-01

    The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.

  12. Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.

    PubMed

    Theocharous, E; Engtrakul, C; Dillon, A C; Lehman, J

    2008-08-01

    The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 microm wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 microm thick LiTaO(3) crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10(-9) A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.

  13. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  14. Abnormal broadening of the optical transitions in (Ga,As)N/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Turcotte, S.; Beaudry, J.-N.; Masut, R. A.; Desjardins, P.; Bentoumi, G.; Leonelli, R.

    2012-01-01

    We have measured the near band-gap absorption of structurally well characterized GaAs1-xNx quantum wells grown on GaAs(001) with x<0.014. The spectra were reproduced by a model that includes electron-hole correlations. We find that the width of the excitonic and band-to-band optical transitions are more than twice larger than what is found in conventional III-V alloy heterostructures. This confirms the presence of strong nitrogen-configuration induced band-gap fluctuations reported previously by Bentoumi [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.70.035315 70, 035315 (2004)] for bulk dilute GaAsN alloys.

  15. GaAs Spectrometer for Electron Spectroscopy at Europa

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-12-01

    We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.

  16. Alternating gradient photodetector

    NASA Technical Reports Server (NTRS)

    Overhauser, Albert W. (Inventor); Maserjian, Joseph (Inventor)

    1989-01-01

    A far infrared (FIR) range responsive photodetector is disclosed. There is a substrate of degenerate germanium. A plurality of alternating impurity-band and high resistivity layers of germanium are disposed on the substrate. The impurity-band layers have a doping concentration therein sufficiently high to include donor bands which can release electrons upon impingement by FIR photons of energy hv greater than an energy gap epsilon. The high resistivity layers have a doping concentration therein sufficiently low as to not include conducting donor bands and are depleted of electrons. Metal contacts are provided for applying an electrical field across the substrate and the plurality of layers. In the preferred embodiment as shown, the substrate is degenerate n-type (N++) germanium; the impurity-band layers are n+ layers of germanium doped to approximately the low 10(exp 16)/cu cm range; and, the high resistivity layers are n-layers of germanium doped to a maximum of approximately 10(exp)/cu cm. Additionally, the impurity-band layers have a thickness less than a conduction-electron diffusion length in germanium and likely to be in the range of 0.1 to 1.0 micron, the plurality of impurity-bands is of a number such that the flux of FIR photons passing therethrough will be substantially totally absorbed therein, the thickness of the high resistivity layers is such compared to the voltage applied that the voltage drop in each the high resistivity layers controls the occurence of impact ionization in the impurity-band layers to a desired level.

  17. The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-07-01

    In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.

  18. W-band GaAs camel-cathode Gunn devices produced by MBE

    NASA Astrophysics Data System (ADS)

    Beall, R. B.; Battersby, S. J.; Grecian, P. J.; Jones, S.; Smith, G.

    1989-06-01

    The dc and microwave performance of a novel second-harmonic W-band GaAs Gunn device incorporating a camel barrier are reported. Comparison with conventional Gunn devices shows significant improvement in power output and dc to RF conversion efficiency for the new structure. The frequency at which the maximum power is produced is lower for the camel cathode Gunn device, an observation attributed to a reduction in the length of the acceleration zone.

  19. Dual-gate GaAs FET switches

    NASA Astrophysics Data System (ADS)

    Vorhaus, J. L.; Fabian, W.; Ng, P. B.; Tajima, Y.

    1981-02-01

    A set of multi-pole, multi-throw switch devices consisting of dual-gate GaAs FET's is described. Included are single-pole, single-throw (SPST), double-pole, double-throw (DPDT), and single-pole four-throw (SP4T) switches. Device fabrication and measurement techniques are discussed. The device models for these switches were based on an equivalent circuit of a dual-gate FET. The devices were found to have substantial gain in X-band and low Ku-band.

  20. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  1. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  2. Electrical and band structural analyses of Ti1-x Al x O y films grown by atomic layer deposition on p-type GaAs

    NASA Astrophysics Data System (ADS)

    An, Youngseo; Mahata, Chandreswar; Lee, Changmin; Choi, Sungho; Byun, Young-Chul; Kang, Yu-Seon; Lee, Taeyoon; Kim, Jiyoung; Cho, Mann-Ho; Kim, Hyoungsub

    2015-10-01

    Amorphous Ti1-x Al x O y films in the Ti-oxide-rich regime (x  <  0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1-x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1-x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1-x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.

  3. Theory of intermediate- and high-field mobility in dilute nitride alloys

    NASA Astrophysics Data System (ADS)

    Seifikar, Masoud; O'Reilly, Eoin P.; Fahy, Stephen

    2011-10-01

    We have solved the steady-state Boltzmann transport equation in bulk GaAs1-xNx. Two different models of the conduction band structure have been studied to investigate the behavior of electrons with increasing electric field in these alloys: (1) carriers in parabolic Γ and L bands are scattered by resonant nitrogen substitutional defect states, polar optic and acoustic phonons, and intervalley optical phonons; (2) carriers, constrained in the lower band of the band-anticrossing (BAC) model, are scattered by phonons and by nitrogen states. We consider scattering both by isolated N atoms and also by a full distribution of N states. We find that it is necessary to include the full distribution of levels in order to account for the small low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Model 2 breaks down at intermediate and high field, due to the unphysical constraint of limiting carriers to the lower BAC band. For model 1, carrier scattering into the L bands is reduced at intermediate electric fields but is comparable at high fields to that observed in GaAs, with the calculated high-field mobility and carrier distribution then also being comparable to GaAs. Overall the results account well for a wide range of experimental data.

  4. Synthesis and optical properties of (GaAs)yGe5-2y alloys assembled from molecular building blocks

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Wallace, P. M.; Xu, Chi; Poweleit, C. D.; Claflin, B.; Kouvetakis, J.; Menéndez, J.

    2017-09-01

    Monocrystalline alloys of GaAs and Ge with compositions (GaAs)yGe5-2y have been synthesized following a chemical vapor deposition approach that promotes the incorporation of Ga and As atoms as isolated donor-acceptor pairs. The structural and optical properties show distinct behavior relative to (GaAs)1-xGe2x counterparts produced by conventional routes. Strong band gap photoluminescence is observed in the 0.5-0.6 eV range for samples whose compositions approach the GaAsGe3 limit for isolated Ga-As pairs. In such samples, the Ge-like Raman modes appear at higher frequencies and are considerably narrower than those observed in samples with higher Ge concentrations. These results suggest that the growth mechanism may favor the formation of ordered phases comprising Ga-As-Ge3 tetrahedra. In contrast with the diamond-to-zincblende ordering transition previously reported for III-V-IV alloys, ordered structures built from Ga-As-Ge3 tetrahedra feature III-III and V-V pairs as third-nearest neighbors, and therefore both the III- and V-components are equally present in each of two fcc sublattices of the average diamond-like structure. These bonding arrangements likely lead to the observed optical response, indicating potential applications of these materials in mid-IR technologies integrated on Si.

  5. HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.

    2007-09-28

    The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopymore » cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.« less

  6. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  7. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  8. Electronic structure and dynamics of thin Ge/GaAs(110) heterostructures

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1990-10-01

    Using angle-resolved picosecond laser photoemission we have investigated both occupied and transiently excited empty states at the surface of Ge grown epitaxially on GaAs(110). We observe a normally unoccupied, Ge layer derived state whose separation from the valence-band maximum of the system is 700±50 meV at six monolayers Ge coverage. The evolution of the electronic structure is followed as a function of coverage and correlated with low-energy electron diffraction. The time dependence of the transiently occupied Ge signal is compared with that of the clean GaAs(110) surface and shows that electrons are prevented from diffusing into the GaAs bulk by the conduction-band offset of 330±40 meV.

  9. The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Lewis, R. A.

    2012-06-01

    It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.

  10. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  11. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  12. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    NASA Astrophysics Data System (ADS)

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  13. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  14. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  15. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  16. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  17. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  18. AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    NASA Astrophysics Data System (ADS)

    Irsigler, R.; Geppert, R.; Göppert, R.; Hornung, M.; Ludwig, J.; Rogalla, M.; Runge, K.; Schmid, Th.; Söldner-Rembold, A.; Webel, M.; Weber, C.

    1998-02-01

    Full-size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3″ substrate wafers. PECVD deposited SiO 2 and {SiO 2}/{Si 3N 4} layers were used to provide coupling capacitances of 32.5 and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kΩ/□ and the thermal coefficient of resistance of less than 4 × 10 -3/°C satisfy the demands of small area biasing resistors, working on a wide temperature range.

  19. Microwave characteristics of GaAs MMIC integratable optical detectors

    NASA Technical Reports Server (NTRS)

    Claspy, Paul C.; Hill, Scott M.; Bhasin, Kul B.

    1989-01-01

    Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed.

  20. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  1. Gas chromatographic analysis of trace impurities in chlorine trifluoride.

    PubMed

    Laurens, J B; Swinley, J M; de Coning, J P

    2000-03-24

    The gas chromatographic determination of trace gaseous impurities in highly reactive fluorinated gaseous matrices presents unique requirements to both equipment and techniques. Especially problematic are the gases normally present in ambient air namely oxygen and nitrogen. Analysing these gases at the low microl/l (ppm) level requires special equipment and this publication describes a custom-designed system utilising backflush column switching to protect the columns and detectors. A thermal conductivity detector with nickel filaments was used to determine ppm levels of impurities in ClF3.

  2. Third Working Meeting on Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H. (Compiler)

    1976-01-01

    Research results are reported for GaAs Schottky barrier solar cells, GaAlAs/GaAs heteroface solar cells, and GaAlAs graded band gap solar cells. Related materials studies are presented. A systems study for GaAs and Si solar concentrator systems is given.

  3. GaAs-based optoelectronic neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H. (Inventor); Kim, Jae H. (Inventor); Psaltis, Demetri (Inventor)

    1993-01-01

    An integrated, optoelectronic, variable thresholding neuron implemented monolithically in GaAs integrated circuit and exhibiting high differential optical gain and low power consumption is presented. Two alternative embodiments each comprise an LED monolithically integrated with a detector and two transistors. One of the transistors is responsive to a bias voltage applied to its gate for varying the threshold of the neuron. One embodiment is implemented as an LED monolithically integrated with a double heterojunction bipolar phototransistor (detector) and two metal semiconductor field effect transistors (MESFET's) on a single GaAs substrate and another embodiment is implemented as an LED monolithically integrated with three MESFET's (one of which is an optical FET detector) on a single GaAs substrate. The first noted embodiment exhibits a differential optical gain of 6 and an optical switching energy of 10 pJ. The second embodiment has a differential optical gain of 80 and an optical switching energy of 38 pJ. Power consumption is 2.4 and 1.8 mW, respectively. Input 'light' power needed to turn on the LED is 2 micro-W and 54 nW, respectively. In both embodiments the detector is in series with a biasing MESFET and saturates the other MESFET upon detecting light above a threshold level. The saturated MESFET turns on the LED. Voltage applied to the biasing MESFET gate controls the threshold.

  4. Two-band analysis of hole mobility and Hall factor for heavily carbon-doped p-type GaAs

    NASA Astrophysics Data System (ADS)

    Kim, B. W.; Majerfeld, A.

    1996-02-01

    We solve a pair of Boltzmann transport equations based on an interacting two-isotropic-band model in a general way first to get transport parameters corresponding to the relaxation time. We present a simple method to calculate effective relaxation times, separately for each band, which compensate for the inherent deficiencies in using the relaxation time concept for polar optical-phonon scattering. Formulas for calculating momentum relaxation times in the two-band model are presented for all the major scattering mechanisms of p-type GaAs for simple, practical mobility calculations. In the newly proposed theoretical framework, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain direct comparisons between the theory and recently available experimental results. In the calculations, the light-hole-band nonparabolicity is taken into account on the average by the use of energy-dependent effective mass obtained from the kṡp method and valence-band anisotropy is taken partly into account by the use the Wiley's overlap function.. The calculated Hall mobilities show a good agreement with our experimental data for carbon-doped p-GaAs samples in the range of degenerate hole densities. The calculated Hall factors show rH=1.25-1.75 over hole densities of 2×1017-1×1020 cm-3.

  5. Transition temperature from band to hopping direct current conduction in crystalline semiconductors with hydrogen-like impurities: Heat versus Coulomb attraction

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Zabrodskii, A. G.

    2011-12-01

    For nondegenerate bulk semiconductors, we have used the virial theorem to derive an expression for the temperature Tj of the transition from the regime of "free" motion of electrons in the c-band (or holes in the υ-band) to their hopping motion between donors (or acceptors). Distribution of impurities over the crystal was assumed to be of the Poisson type, while distribution of their energy levels was assumed to be of the Gaussian type. Our conception of the virial theorem implementation is that the transition from the band-like conduction to hopping conduction occurs when the average kinetic energy of an electron in the c-band (hole in the υ-band) is equal to the half of the absolute value of the average energy of the Coulomb interaction of an electron (hole) with the nearest neighbor ionized donor (acceptor). Calculations of Tj according to our model agree with experimental data for crystals of Ge, Si, diamond, etc. up to the concentrations of a hydrogen-like impurity, at which the phase insulator-metal transition (Mott transition) occurs. Under the temperature Th ≈ Tj /3, when the nearest neighbor hopping conduction via impurity atoms dominates, we obtained expressions for the electrostatic field screening length Λh in the Debye-Hückel approximation, taking into account a nonzero width of the impurity energy band. It is shown that the measurements of quasistatic capacitance of the semiconductor in a metal-insulator-semiconductor structure in the regime of the flat bands at the temperature Th allow to determine the concentration of doping impurity or its compensation ratio by knowing Λh.

  6. Resonant tunneling IR detectors

    NASA Technical Reports Server (NTRS)

    Woodall, Jerry M.; Smith, T. P., III

    1990-01-01

    Researchers propose a novel semiconductor heterojunction photodetector which would have a very low dark current and would be voltage tunable. A schematic diagram of the device and its band structure are shown. The two crucial components of the device are a cathode (InGaAs) whose condition band edge is below the conduction band edge of the quantum wells and a resonant tunneling filter (GaAs-AlGaAs). In a standard resonant tunneling device the electrodes are made of the same material as the quantum wells, and this device becomes highly conducting when the quantum levels in the wells are aligned with the Fermi level in the negatively biased electrode. In contrast, the researchers device is essentially non-conducting under the same bias conditions. This is because the Fermi Level of the cathode (InGaAs) is still well below the quantum levels so that no resonant transport occurs and the barriers (AlGaAs) effectively block current flow through the device. However, if light with the same photon energy as the conduction-band discontinuity between the cathode and the quantum wells, E sub c3-E sub c1, is shone on the sample, free carriers will be excited to an energy corresponding to the lowest quantum level in the well closest to the cathode (hv plue E sub c1 = E sub o). These electrons will resonantly tunnel through the quantum wells and be collected as a photocurrent in the anode (GaAs). To improve the quantum efficiency, the cathode (InGaAs) should be very heavily doped and capped with a highly reflective metal ohmic contact. The thickness of the device should be tailored to optimize thin film interference effects and afford the maximum absorption of light. Because the device relies on resonant tunneling, its response should be very fast, and the small voltages needed to change the responsivity should allow for very high frequency modulation of the photocurrent. In addition, the device is tuned to a specific photon energy so that it can be designed to detect a fairly narrow range of wavelengths. This selectivity is important for reducing the photocurrent due to spurious light sources.

  7. Calibration and deployment of a new NIST transfer radiometer for broadband and spectral calibration of space chambers (MDXR)

    NASA Astrophysics Data System (ADS)

    Jung, Timothy M.; Carter, Adriaan C.; Woods, Solomon I.; Kaplan, Simon G.

    2011-06-01

    The Low-Background Infrared (LBIR) facility at NIST has performed on-site calibration and initial off-site deployments of a new infrared transfer radiometer with an integrated cryogenic Fourier transform spectrometer (Cryo- FTS). This mobile radiometer can be deployed to customer sites for broadband and spectral calibrations of space chambers and low-background hardware-in-the-loop testbeds. The Missile Defense Transfer Radiometer (MDXR) has many of the capabilities of a complete IR calibration facility and replaces our existing filter-based transfer radiometer (BXR) as the NIST standard detector deployed to customer facilities. The MDXR features numerous improvements over the BXR, including: a cryogenic Fourier transform spectrometer, an on-board absolute cryogenic radiometer (ACR) and an internal blackbody reference source with an integrated collimator. The Cryo-FTS can be used to measure high resolution spectra from 3 to 28 micrometers, using a Si:As blocked-impurity-band (BIB) detector. The on-board ACR can be used for self-calibration of the MDXR BIB as well as for absolute measurements of external infrared sources. A set of filter wheels and a rotating polarizer within the MDXR allow for filter-based and polarization-sensitive measurements. The optical design of the MDXR makes both radiance and irradiance measurements possible and enables calibration of both divergent and collimated sources. Results of on-site calibration of the MDXR using its internal blackbody source and an external reference source will be discussed, as well as the performance of the new radiometer in its initial deployments to customer sites.

  8. Thin-film optical pass band filters based on new photo-lithographic process for CaSSIS FPA detector on Exomars TGO mission: development, integration, and test

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Piazza, D.; Gerber, M.; Pommerol, A.; Roloff, V.; Ziethe, R.; Zimmermann, C.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Marinai, M.; Di Carmine, E.; Bauer, T.; Moebius, P.; Thomas, N.

    2016-08-01

    A new technique based on photolithographic processes of thin-film optical pass band coatings on a monolithic substrate has been applied to the filters of the Focal Plane Assembly (FPA) of the Colour and Stereo Surface Imaging System (CaSSIS) that will fly onboard of the ExoMars Trace Gas Orbiter to be launched in March 2016 by ESA. The FPA including is one of the spare components of the Simbio-Sys instrument of the Italian Space Agency (ASI) that will fly on ESA's Bepi Colombo mission to Mercury. The detector, developed by Raytheon Vision Systems, is a 2kx2k hybrid Si-PIN array with a 10 μm pixel. The detector is housed within a block and has filters deposited directly on the entrance window. The window is a 1 mm thick monolithic plate of fused silica. The Filter Strip Assembly (FSA) is produced by Optics Balzers Jena GmbH and integrated on the focal plane by Leonardo-Finmeccanica SpA (under TAS-I responsibility). It is based on dielectric multilayer interference coatings, 4 colour bands selected with average in-band transmission greater than 95 percent within wavelength range (400-1100 nm), giving multispectral images on the same detector and thus allows CaSSIS to operate in push-frame mode. The Field of View (FOV) of each colour band on the detector is surrounded by a mask of low reflective chromium (LRC), which also provides with the straylight suppression required (an out-of-band transmission of less than 10-5/nm). The mask has been shown to deal effectively with cross-talk from multiple reflections between the detector surface and the filter. This paper shows the manufacturing and optical properties of the FSA filters and the FPA preliminary on-ground calibration results.

  9. First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001) - β2(2x4)

    NASA Astrophysics Data System (ADS)

    Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko

    2018-06-01

    We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.

  10. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Su, L. Q.; Kon, J.

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in amore » spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.« less

  11. Green's-function theory of dirty two-band superconductivity

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhiro; Golubov, Alexander A.

    2018-06-01

    We study the effects of random nonmagnetic impurities on the superconducting transition temperature Tc in a two-band superconductor, where we assume an equal-time spin-singlet s -wave pair potential in each conduction band and the hybridization between the two bands as well as the band asymmetry. In the clean limit, the phase of hybridization determines the stability of two states, called s++ and s+-. The interband impurity scatterings decrease Tc of the two states exactly in the same manner when time-reversal symmetry is preserved in the Hamiltonian. We find that a superconductor with larger hybridization shows more moderate suppression of Tc. This effect can be explained by the presence of odd-frequency Cooper pairs, which are generated by the band hybridization in the clean limit and are broken by impurities.

  12. Technological development of spectral filters for Sentinel-2

    NASA Astrophysics Data System (ADS)

    Schröter, Karin; Schallenberg, Uwe; Mohaupt, Matthias

    2017-11-01

    In the frame of the initiative for Global Monitoring for Environment and Security (GMES), jointly undertaken by the European Commission and the European Space Agency a technological development of two filter assemblies was performed for the Multi- Spectral Instrument (MSI) for Sentinel-2. The multispectral pushbroom imaging of the Earth will be performed in 10 VNIR bands (from 443 nm to 945nm) and 3 SWIR bands (from 1375 nm to 2190 nm). Possible filter coating techniques and masking concepts were considered in the frame of trade-off studies. The selected deposition concept is based on self-blocked all-dielectric multilayer band pass filter. Band pass and blocking characteristic is deposited on the space side of a single filter substrate whereas the detector side of the substrate has an antireflective coating. The space- and detector side masking design is realized by blades integrated in the mechanical parts including the mechanical interface to the filter assembly support on the MSI focal plane. The feasibility and required performance of the VNIR Filter Assembly and SWIR Filter Assembly were successfully demonstrated by breadboarding. Extensive performance tests of spectral and optical parameters and environmental tests (radiation, vibration, shock, thermal vacuum cycling, humidity) were performed on filter stripe- and filter assembly level. The presentation will contain a detailed description of the filter assembly design and the results of the performance and environmental tests.

  13. Electron transport near the Mott transition in n-GaAs and n-GaN

    NASA Astrophysics Data System (ADS)

    Romanets, P. N.; Sachenko, A. V.

    2016-01-01

    In this paper, we study the temperature dependence of the conductivity and the Hall coefficient near the metal-insulator phase transition. A theoretical investigation is performed within the effective mass approximation. The variational method is used to calculate the eigenvalues and eigenfunctions of the impurity states. Unlike previous studies, we have included nonlinear corrections to the screened impurity potential, because the Thomas-Fermi approximation is incorrect for the insulator phase. It is also shown that near the phase transition the exchange interaction is essential. The obtained temperature dependencies explain several experimental measurements in gallium arsenide (GaAs) and gallium nitride (GaN).

  14. Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors

    NASA Astrophysics Data System (ADS)

    Nolde, J. A.; Jackson, E. M.; Bennett, M. F.; Affouda, C. A.; Cleveland, E. R.; Canedy, C. L.; Vurgaftman, I.; Jernigan, G. G.; Meyer, J. R.; Aifer, E. H.

    2017-07-01

    Longwave infrared detectors using p-type absorbers composed of InAs-rich type-II superlattices (T2SLs) nearly always suffer from high surface currents due to carrier inversion on the etched sidewalls. Here, we demonstrate reticulated shallow etch mesa isolation (RSEMI): a structural method of reducing surface currents in longwave single-band and midwave/longwave dual-band detectors with p-type T2SL absorbers. By introducing a lateral shoulder to increase the separation between the n+ cathode and the inverted absorber surface, a substantial barrier to surface electron flow is formed. We demonstrate experimentally that the RSEMI process results in lower surface current, lower net dark current, much weaker dependence of the current on bias, and higher uniformity compared to mesas processed with a single deep etch. For the structure used, a shoulder width of 2 μm is sufficient to block surface currents.

  15. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires.

    PubMed

    Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling

    2017-02-28

    Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.

  16. Optical implementation of a parallel out-of-band controller for large broadband ATM switch applications

    NASA Astrophysics Data System (ADS)

    Cloonan, Thomas J.; Richards, Gaylord W.; Lentine, Anthony L.

    1996-03-01

    Asynchronous transfer mode (ATM) is rapidly becoming the transport mechanism of choice for the information superhighway, because it promises the bandwidth and flexibility needed for many voice, video and data service offerings. Some industry experts project that the required sizes for ATM switching equipment in the public-switched environment will reach the Tbps range by the beginning of the next decade. This paper analyzes the problems associated with controlling the flow of packets within a broadband ATM switch of this size. The analysis is based on the requirements of the growable packet switch architecture. The paper proposes a novel solution to the problem of hunting paths within an ATM packet switch network. The resulting control scheme is unconventional in two ways. First, it uses an out-of-band control algorithm instead of the more common self-routing approach. In particular, we explore the benefits of using a parallel processor as an out-of-band controller for a growable packet switch distribution network. The processor permits additional levels of parallelism to be added to the out-of-band control function so that path hunts can be performed for all N of the input ports within a single cell interval. The proposed approach is also unconventional because it uses free-space digital optics to guide signals between successive stages of the controller. The paper describes the underlying motivations for implementing an optical out-of-band controller for an ATM switch, and it also describes the logic within a controller node that has been fabricated using a hybrid Si CMOS/GaAs SEED technology. The node uses optical detectors (in GaAs), amplifiers and digital control logic (in Si), and optical modulators (in GaAs). Free-space optical connections between successive device arrays can be provided using either bulk optical elements or micro-optics, but the optical interconnects must provide massive fanout capability. An architectural analysis studying the feasibility of applying free-space optics in this proposed ATM switch controller also is presented.

  17. Advanced GaAs Process Modeling. Volume 1

    DTIC Science & Technology

    1989-05-01

    COSATI CODES 18 . SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Gallium Arsenide, MESFET, Process...Background 9 3.2 Model Calculations 10 3.3 Conclusions 17 IV. ION-IMPLANTATION INTO GaAs PROFILE DETERMINATION 18 4.1 Ion Implantation Profile...Determination in GaAs 18 4.1.1. Background 18 4.1.2. Experimental Measurements 20 4.1.3. Results 22 4.1.3.1 Ion-Energy Dependence 22 4.1.3.2. Tilt and Rotation

  18. Multiband corrections for the semi-classical simulation of interband tunneling in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2017-09-01

    The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.

  19. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  20. Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence

    NASA Astrophysics Data System (ADS)

    Kang, M.; Jeon, S.; Jen, T.; Lee, J.-E.; Sih, V.; Goldman, R. S.

    2017-07-01

    We introduce a novel approach to the seamless integration of plasmonic nanoparticle (NP) arrays into semiconductor layers and demonstrate their enhanced photoluminescence (PL) efficiency. Our approach utilizes focused ion beam-induced self-assembly of close-packed arrays of Ga NPs with tailorable NP diameters, followed by overgrowth of GaAs layers using molecular beam epitaxy. Using a combination of PL spectroscopy and electromagnetic computations, we identify a regime of Ga NP diameter and overgrown GaAs layer thickness where NP-array-enhanced absorption in GaAs leads to enhanced GaAs near-band-edge (NBE) PL efficiency, surpassing that of high-quality epitaxial GaAs layers. As the NP array depth and size are increased, the reduction in spontaneous emission rate overwhelms the NP-array-enhanced absorption, leading to a reduced NBE PL efficiency. This approach provides an opportunity to enhance the PL efficiency of a wide variety of semiconductor heterostructures.

  1. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    NASA Astrophysics Data System (ADS)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  2. High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Ramer, O. Glenn; Sierak, Paul

    Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.

  3. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  4. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    2018-05-01

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. The difference in the two materials may be due to the occupation of the substrate acceptor states in the presence of the midgap state EL2.

  5. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    NASA Astrophysics Data System (ADS)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  6. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  7. The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems

    NASA Astrophysics Data System (ADS)

    Martyniuk, Piotr; Gawron, Waldemar; Mikołajczyk, Janusz

    2017-10-01

    There are many room temperature applications to include free space optics (FSO) communication system combining quantum cascade lasers sources where HgCdTe long-wave (8-12 micrometer) infrared radiation (LWIR) detector reaching ultrafast response time < 1 ns and nearly background limited infrared photodetection (BLIP) condition are implemented. Both nearly BLIP detectivity and ultra-response time stay in contradiction in detector's optimization process. That issue could be circumvented by implementation of the hyperhemispherical GaAs immersion lens into structure to increase optical to electrical area ratio giving flexibility in terms of response time optimization. The optimization approach depends on voltage condition. The generation - recombination (GR) mechanism within active layer was found to be important for forward and weak reverse conditions while photogenerated carrier transport is significant for higher reverse bias. Except of applied voltage, the drift time strongly depends on thickness of the absorption region. Reducing the thickness of the active region, the short drift times could be reached, but that solution significantly reduces quantum efficiency and lowers detectivity. Taking that into consideration a special multilayer heterostructure designs are developed. The p-type absorber is promising due to both high ambipolar mobility and low thermal GR driven by the Auger 7 mechanism. Theoretical simulations indicate that depending on bias condition and T = 300 K the multilayer barrier LWIR HgCdTe structure could reach response time below < 100 ps while biased and <= 1 ns while unbiased. Immersed detectivity reaches > 109 cmHz1/2/W. Since commercially available FSO could operate separately in SWIR, MWIR and LWIR range - the dual band detectors should be implemented into FSO. This paper shows theoretical performance of the dual band back-to-back MWIR and LWIR HgCdTe detector operating at 300 K pointing out the MWIR active layer influence on LWIR operating regime.

  8. Ab initio simulation study of defect assisted Zener tunneling in GaAs diode

    NASA Astrophysics Data System (ADS)

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Jiang, Xiang-Wei

    2017-06-01

    The band to band tunneling of defective GaAs nano-junction is studied by using the non-equilibrium Green's function formalism with density functional theory. Aiming at performance improvement, two types of defect-induced transport behaviors are reported in this work. By examining the partial density of states of the system, we find the substitutional defect OAs that locates in the middle of tunneling region will introduce band-gap states, which can be used as stepping stones to increase the tunneling current nearly 3 times higher at large bias voltage (Vb≥0.3V). Another type of defects SeAs and VGa (Ga vacancy) create donor and acceptor states at the edge of conduction band (CB) and valence band (VB)respectively, which can change the band bending of the junction as well as increase the tunneling field obtaining a 1.5 times higher ON current. This provides an effective defect engineering approach for next generation TFET device design.

  9. Nonradiative recombination centers in GaAs:N δ-doped superlattice revealed by two-wavelength-excited photoluminescence

    NASA Astrophysics Data System (ADS)

    Dulal Haque, Md.; Kamata, Norihiko; Fukuda, Takeshi; Honda, Zentaro; Yagi, Shuhei; Yaguchi, Hiroyuki; Okada, Yoshitaka

    2018-04-01

    We use two-wavelength-excited photoluminescence (PL) to investigate nonradiative recombination (NRR) centers in GaAs:N δ-doped superlattice (SL) structures grown by molecular beam epitaxy. The change in photoluminescence (PL) intensity due to the superposition of below-gap excitation at energies of 0.75, 0.80, 0.92, and 0.95 eV and above-gap excitation at energies of 1.69 or 1.45 eV into the GaAs conduction band and the E- band implies the presence of NRR centers inside the GaAs:N δ-doped SL and/or GaAs layers. The change in PL intensity as a function of the photon number density of below-gap excitation is examined for both bands, which enables us to determine the distribution of NRR centers inside the GaAs:N δ-doped SL and GaAs layers. We propose recombination models to explain the experimental results. Defect-related parameters that give a qualitative insight into the samples are investigated systematically by fitting the rate equations to the experimental data.

  10. Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs

    PubMed Central

    Sadofyev, Yuri G.; Samal, Nigamananda

    2010-01-01

    An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.

  11. Design and Performance of a 2.7 THz Waveguide Tripler

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.

    2001-01-01

    The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.

  12. Quantum Well Infrared Photodetectors (QWIP)

    NASA Technical Reports Server (NTRS)

    Levine, B. F.

    1990-01-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  13. Quantum Well Infrared Photodetectors (QWIP)

    NASA Astrophysics Data System (ADS)

    Levine, B. F.

    1990-07-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  14. Carbon acceptor incorporation in GaAs grown by metalorganic chemical vapor deposition: Arsine versus tertiarybutylarsine

    NASA Astrophysics Data System (ADS)

    Watkins, S. P.; Haacke, G.

    1991-10-01

    Undoped p-type GaAs epilayers were grown by low-pressure metalorganic chemical vapor deposition (MOCVD) at 650 °C and 76 Torr using either arsine or tertiarybutylarsine (TBA), and trimethylgallium (TMG). Extremely high-purity precursors were used in order to eliminate extrinsic doping effects. Carbon acceptors from the TMG were the dominant residual electrical impurities under all growth conditions. Temperature-dependent Hall measurements were used to make a quantitative comparison of the carbon acceptor concentrations for arsine- and TBA-grown epilayers over a range of As partial pressures. For a given group V partial pressure, we report a significant reduction in carbon acceptor incorporation using TBA compared with arsine under identical growth conditions.

  15. Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Wang, L.; Pawlowicz, L. M.; Lagowski, J.; Gatos, H. C.

    1986-01-01

    It is shown that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 sq cm/V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.

  16. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  17. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates

    NASA Astrophysics Data System (ADS)

    Brammertz, Guy; Mols, Yves; Degroote, Stefan; Motsnyi, Vasyl; Leys, Maarten; Borghs, Gustaaf; Caymax, Matty

    2006-05-01

    Thin epitaxial GaAs films, with thickness varying from 140 to 1000 nm and different Si doping levels, were grown at 650 °C by organometallic vapor phase epitaxy on Ge substrates and analyzed by low-temperature photoluminescence (PL) spectroscopy. All spectra of thin GaAs on Ge show two different structures, one narrow band-to-band (B2B) structure at an energy of ~1.5 eV and a broad inner-band-gap (IB) structure at an energy of ~1.1 eV. Small strain in the thin GaAs films causes the B2B structure to be separated into a light-hole and a heavy-hole peak. At 2.5 K the good structural quality of the thin GaAs films on Ge can be observed from the narrow excitonic peaks. Peak widths of less than 1 meV are measured. GaAs films with thickness smaller than 200 nm show B2B PL spectra with characteristics of an n-type doping level of approximately 1018 at./cm3. This is caused by heavy Ge diffusion from the substrate into the GaAs at the heterointerface between the two materials. The IB structure observed in all films consists of two Gaussian peaks with energies of 1.04 and 1.17 eV. These deep trapping states arise from Ge-based complexes formed within the GaAs at the Ge-GaAs heterointerface, due to strong diffusion of Ge atoms into the GaAs. Because of similarities with Si-based complexes, the peak at 1.04 eV was identified to be due to a GeGa-GeAs complex, whereas the peak at 1.17 eV was attributed to the GeGa-VGa complex. The intensity of the IB structure decreases strongly as the GaAs film thickness is increased. PL intensity of undoped GaAs films containing antiphase domains (APDs) is four orders of magnitude lower than for similar films without APDs. This reduction in intensity is due to the electrically active Ga-Ga and As-As bonds at the boundaries between the different APDs. When the Si doping level is increased, the PL intensity of the APD-containing films is increased again as well. A film containing APDs with a Si doping level of ~1018 at./cm3 has only a factor 10 reduced intensity. We tentatively explain this observation by Si or Ge clustering at antiphase boundaries, which eliminates the effects of the Ga-Ga and As-As bonds. This assumption is confirmed by the fact that, at 77 K, the ratio between the intensity of the IB peak at 1.17 eV to the intensity of the peak at 1.04 eV is smaller than 1.4 for all films containing APDs, whereas it is larger than 1.4 for all films without APDs. This shows stronger clustering of Si or Ge in the material with APDs. For future electronic applications, Ge diffusion into the GaAs will have to be reduced. PL analysis will be a rapid tool for studying the Ge diffusion into the GaAs thin films.

  18. Linear variable narrow bandpass optical filters in the far infrared (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rahmlow, Thomas D.

    2017-06-01

    We are currently developing linear variable filters (LVF) with very high wavelength gradients. In the visible, these filters have a wavelength gradient of 50 to 100 nm/mm. In the infrared, the wavelength gradient covers the range of 500 to 900 microns/mm. Filter designs include band pass, long pass and ulta-high performance anti-reflection coatings. The active area of the filters is on the order of 5 to 30 mm along the wavelength gradient and up to 30 mm in the orthogonal, constant wavelength direction. Variation in performance along the constant direction is less than 1%. Repeatable performance from filter to filter, absolute placement of the filter relative to a substrate fiducial and, high in-band transmission across the full spectral band is demonstrated. Applications include order sorting filters, direct replacement of the spectrometer and hyper-spectral imaging. Off-band rejection with an optical density of greater than 3 allows use of the filter as an order sorting filter. The linear variable order sorting filters replaces other filter types such as block filters. The disadvantage of block filters is the loss of pixels due to the transition between filter blocks. The LVF is a continuous gradient without a discrete transition between filter wavelength regions. If the LVF is designed as a narrow band pass filter, it can be used in place of a spectrometer thus reducing overall sensor weight and cost while improving the robustness of the sensor. By controlling the orthogonal performance (smile) the LVF can be sized to the dimensions of the detector. When imaging on to a 2 dimensional array and operating the sensor in a push broom configuration, the LVF spectrometer performs as a hyper-spectral imager. This paper presents performance of LVF fabricated in the far infrared on substrates sized to available detectors. The impact of spot size, F-number and filter characterization are presented. Results are also compared to extended visible LVF filters.

  19. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  20. Probing semiconductor gap states with resonant tunneling.

    PubMed

    Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H

    2006-02-17

    Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.

  1. Magnetic field effect on photoionization cross-section of hydrogen-like impurity in cylindrical quantum wire

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.

    2008-01-01

    We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.

  2. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    PubMed

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  3. Composite Reflective Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    NASA Technical Reports Server (NTRS)

    Munson, C. D.; Choi, S. K.; Coughlin, K. P.; McMahon, J. J.; Miller, K. H.; Page, L. A.; Wollack, E. J.

    2017-01-01

    Infrared (IR)-blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency-selective structures on silicon and a thin (2575 micron thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects approximately 50% of the incoming light and blocks greater than.99.8% of the total power with negligible thermal gradients and excellent low-frequency transmission. This allows a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates, which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.

  4. Band offset and electron affinity of MBE-grown SnSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Li, Mingda Oscar; Lochocki, Edward B.; Vishwanath, Suresh; Liu, Xinyu; Yan, Rusen; Lien, Huai-Hsun; Dobrowolska, Malgorzata; Furdyna, Jacek; Shen, Kyle M.; Cheng, Guangjun; Hight Walker, Angela R.; Gundlach, David J.; Xing, Huili G.; Nguyen, N. V.

    2018-01-01

    SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.

  5. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  6. LWIR HgCdTe: Innovative detectors in an incumbent technology

    NASA Technical Reports Server (NTRS)

    Tennant, William E.

    1990-01-01

    HgCdTe is the current material of choice for high performance imagers operating at relatively high temperatures. Its lack of technological maturity compared with silicon and wide-band gap III-V compounds is more than offset by its outstanding IR sensitivity and by the relatively benign effect of its materials defects. This latter property has allowed non-equilibrium growth techniques, metal oxide chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), to produce device quality long wavelength infrared (LWIR) HgCdTe even on common substrates like GaAs and GaAs/Si. Detector performance in these exotic materials structures is comparable in many ways with devices in equilibrium-grown material. Lifetimes are similar. RoA values at 77K as high as several hundred have been seen in HgCdTe/GaAs/Si with 9.5 micron cut-off wavelength. HgCdTe/GaAs layers with approx. 15 micron cut-off wavelengths have given average 77K RoAs of greater than 2. Hybrid focal plane arrays have been evaluated with excellent operability.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and shouldmore » be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.« less

  8. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  9. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  10. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. Furthermore, the difference in the two materials may be due to the occupation of the substrate acceptormore » states in the presence of the midgap state EL2.« less

  11. BIB mixers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    We have determined that the multi-pin 'microprocessor style' packages in which current Blocked Impurity Band (BIB) devices are mounted will not meet our IF bandwidth spec of greater than 2 GHz for a practical mixer. Hence we have started to repackage the Ga:Ge BIB devices in new microwave compatible packages. The smaller size of the microwave package mount necessitates cutting the BIB array down to include only the 3 smallest detectors: 0.2, 0.4, and 0.6 mm sq. A FIR beam incident at f/1.5 can be focussed on the smallest element for wavelengths shorter than 100 microns. A more typical (easier) beam convergence of f/3 will require 0.4 mm elements at 100 microns and 0.6 mm elements at 170 microns wavelength. Since the device capacitance (parasitic loss) scales with detector size, there is a tradeoff of speed of response and optical convenience. Our existing optics produce only the slower convergence beam, so we need to redesign the optical layout and are looking at long focal length all-reflective microscope objectives. BIB detectors and the edge-coupled microbolometers have restricted IF bandwidths, an order of magnitude less than what is possible with the Schottky-diode mixers we currently use for astronomical observations. Consequently the frequencies of the FIR laser lines must be close to the astronomical line of interest to be an effective Local Oscillator (LO). We have therefore begun a coordinated effort to discover and measure new FIR laser transition lines in close frequency coincidence with important astrophysical lines. Most of this effort involves pumping isotopic variants of known good laser molecules with laser lines from isotopic variants of CO2. We have been most successful in detecting new FIR lines in deuterated ammonia. One line in particular is very close to the frequency of HD rotational line at 2675 GHz.

  12. Development of orientation-patterned GaP grown on foreign substrates for QPM frequency conversion devices

    NASA Astrophysics Data System (ADS)

    Vangala, Shivashankar; Peterson, Rita; Snure, Michael; Tassev, Vladimir

    2017-02-01

    Thick hydride vapor phase epitaxially grown orientation-patterned gallium phosphide (OPGaP) is a leading material for quasi-phase matching (QPM) frequency conversion in the mid- and longwave infrared (IR). This is due to its negligible two-photon absorption (2PA) in the convenient pumping range 1 - 1.7 μm, compared with the 2PA of some traditional QPM materials, such as GaAs. In this paper, we describe homo- and heteroepitaxial growth techniques aimed to produce hundreds of microns thick OPGaP on: 1) OPGaAs templates fabricated using an improved wafer-fusion process; 2) OPGaAs templates fabricated by using a molecular beam epitaxy (MBE) for sublattice polarity inversion, but one with and one without MBE regrowth after the inversion. Some of the advantages of the heteroepitaxial growth of OPGaP on OPGaAs templates include: 1) achieving good domain fidelity as a result of the significantly higher OPGaAs template quality; 2) eliminating the needs of using the poor quality commercially available GaP in the production of thick OPGaP material, and 3) suppression of the additional absorption band between 2 - 4 μm (which is due to incorporation of n-type impurities) and, in general, improvement of the IR transmittance in the entire IR region. Combining the advantages of the two most promising nonlinear materials, GaAs and GaP, will accelerate the development of high power, broadly tunable laser sources in the IR which, in addition, will be offered with higher device quality and at a reasonably lower unit cost.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdrogina, M. M., E-mail: Margaret.m@mail.ioffe.ru; Vinogradov, A. Ya.; Kuzmin, R. V.

    For ZnO films, nanorods, and bulk single crystals doped with Er{sup +} ions, it is shown that the effect of codopants introduced into the cation and ion sublattices and the observation of a high-intensity emission band at the wavelength λ{sub max} = 1535 nm are defined by the local environment of the Er{sup +} ion. Doping of the films and single crystals with Er{sup +} ions by diffusion brings about an infrared (IR) emission band with a low intensity because of an inadequate concentration of impurity ions. The emission intensity of this band can be raised by introducing additional Ag,more » Au, or N{sup +} impurities into the ZnO films. The UV-emission intensity of the Er-doped films and single crystals at λ{sub max} = 368–372 nm is identical to that of the undoped films. ZnO nanorods doped with Er only or together with Al or Ga codopants exhibit only one IR band (at λ{sub max} = 1535 nm), whose intensity decreases upon the introduction of codopants. Doping of the nanorods with the N{sup +} gaseous impurity during growth (930 < T < 960°C) and then with the Er{sup +} impurity by diffusion does not yield a substantial increase in the IR-emission intensity compared to the that of the corresponding band for nanorods not doped with the N{sup +} impurity. In the Er-doped nanorods, whose photoluminescence spectra exhibit a high-intensity band at λ{sub max} = 1535 nm, the UV emission band at λ{sub max} = 372 nm is practically lacking.« less

  14. Determining the band alignment of TbAs:GaAs and TbAs:In 0.53Ga 0.47As

    DOE PAGES

    Bomberger, Cory C.; Vanderhoef, Laura R.; Rahman, Abdur; ...

    2015-09-10

    Here, we propose and systematically justify a band structure for TbAs nanoparticles in GaAs and In 0.53Ga 0.47As host matrices. Moreover, fluence-dependent optical-pump terahertz-probe measurements suggest the TbAs nanoparticles have a band gap and provide information on the carrier dynamics, which are determined by the band alignment. Spectrophotometry measurements provide the energy of optical transitions in the nanocomposite systems and reveal a large blue shift in the absorption energy when the host matrix is changed from In 0.53Ga 0.47As to GaAs. Finally, Hall data provides the approximate Fermi level in each system. From this data, we deduce that the TbAs:GaAsmore » system forms a type I (straddling) heterojunction and the TbAs:In 0.53Ga 0.47As system forms a type II (staggered) heterojunction.« less

  15. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  16. Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabauy, P.; Darici, Y.; Furton, K.G.

    1995-12-01

    In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less

  17. Hole mobilities and the effective Hall factor in p-type GaAs

    NASA Astrophysics Data System (ADS)

    Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.

    1997-06-01

    We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.

  18. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  19. A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar

    NASA Technical Reports Server (NTRS)

    LaBelle, Remi C.; Girard, Ralph; Arbery, Graham

    2003-01-01

    The CloudSat spacecraft, scheduled for launch in 2004, will carry the 94 GHz Cloud Profiling Radar (CPR) instrument. The design, assembly and test of the flight Radio Frequency Electronics Subsystem (RFES) for this instrument has been completed and is presented here. The RFES consists of an Upconverter (which includes an Exciter and two Drive Amplifiers (DA's)), a Receiver, and a Transmitter Calibrator assembly. Some key performance parameters of the RFES are as follows: dual 100 mW pulse-modulated drive outputs at 94 GHz, overall Receiver noise figure < 5.0 dB, a highly stable W-band noise source to provide knowledge accuracy of Receiver gain of < 0.4 dB over the 2 year mission life, and a W-band peak power detector to monitor the transmitter output power to within 0.5 dB over life. Some recent monolithic microwave integrated circuit (MMIC) designs were utilized which implement the DA's in 0.1 micron GaAs high electron-mobility transistor (HEMT) technology and the Receiver low-noise amplifier (LNA) in 0.1 micron InP HEMT technology.

  20. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface mightmore » produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.« less

  1. A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.

    2016-03-15

    A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less

  2. First principle study of electronic structures and optical properties of Ce-doped SiO2

    NASA Astrophysics Data System (ADS)

    Cong, Wei-Yan; Lu, Ying-Bo; Zhang, Peng; Guan, Cheng-Bo

    2018-05-01

    Electronic structures and optical properties of Silicon dioxide (SiO2) systems with and without cerium(Ce) dopant were calculated using the density functional theory. We find that after the Ce incorporation, a new localized impurity band appears between the valance band maximum (VBM) and the conduction band minimum (CBM) of SiO2 system, which is induced mainly by the Ce-4f orbitals. The localized impurity band constructs a bridge between the valence band and the conduction band, making the electronic transition much easier. The calculated optical properties show that in contrast from the pure SiO2 sample, absorption in the visible-light region is found in Ce-doped SiO2 system, which originates from the transition between the valence band and Ce-4f dominated impurity band, as well as the electronic transition from Ce-4f states to Ce-5d states. All calculated results indicate that Ce doping is an effective strategy to improve the optical performance of SiO2 sample, which is in agreement with the experimental results.

  3. Poole-Frenkel effect and phonon-assisted tunneling in GaAs nanowires.

    PubMed

    Katzenmeyer, Aaron M; Léonard, François; Talin, A Alec; Wong, Ping-Show; Huffaker, Diana L

    2010-12-08

    We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poole-Frenkel transport that crosses over to phonon-assisted tunneling at higher fields, with a tunneling time found to depend predominantly on fundamental physical constants as predicted by theory. By using in situ electron beam irradiation of individual nanowires, we probe the nanowire electronic transport when free carriers are made available, thus revealing the nature of the contacts.

  4. Large signal design - Performance and simulation of a 3 W C-band GaAs power MMIC

    NASA Astrophysics Data System (ADS)

    White, Paul M.; Hendrickson, Mary A.; Chang, Wayne H.; Curtice, Walter R.

    1990-04-01

    This paper describes a C-band GaAs power MMIC amplifier that achieved a gain of 17 dB and 1 dB compressed CW power output of 34 dBm across a 4.5-6.25-GHz frequency range, without design iteration. The first-pass design success was achieved due to the application of a harmonic balance simulator to define the optimum output load, using a large-signal FET model determined statistically on a well controlled foundry-ready process line. The measured performance was close to that predicted by a full harmonic balance circuit analysis.

  5. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  6. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGES

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 10 15 cm -3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication ofmore » a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm 3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  7. Purification of Germanium Crystals by Zone Refining

    NASA Astrophysics Data System (ADS)

    Kooi, Kyler; Yang, Gang; Mei, Dongming

    2016-09-01

    Germanium zone refining is one of the most important techniques used to produce high purity germanium (HPGe) single crystals for the fabrication of nuclear radiation detectors. During zone refining the impurities are isolated to different parts of the ingot. In practice, the effective isolation of an impurity is dependent on many parameters, including molten zone travel speed, the ratio of ingot length to molten zone width, and number of passes. By studying the theory of these influential factors, perfecting our cleaning and preparation procedures, and analyzing the origin and distribution of our impurities (aluminum, boron, gallium, and phosphorous) identified using photothermal ionization spectroscopy (PTIS), we have optimized these parameters to produce HPGe. We have achieved a net impurity level of 1010 /cm3 for our zone-refined ingots, measured with van der Pauw and Hall-effect methods. Zone-refined ingots of this purity can be processed into a detector grade HPGe single crystal, which can be used to fabricate detectors for dark matter and neutrinoless double beta decay detection. This project was financially supported by DOE Grant (DE-FG02-10ER46709) and the State Governor's Research Center.

  8. Impurity and Defect Characterization in Epitaxial GaAs, InP and the Ternary and Quaternary Compound Semiconductors.

    DTIC Science & Technology

    1982-11-02

    Wolfe, Phys. Rev. Lett. 27, 988 (1971). 5. H.R. Fetterman , D.M. Larsen, G.E. Stillman, P.E. Tannenwald, and J. Waldman, Phys.Rev. Lett. 26. 975(1971). 6...Kirkman, P.E. Simmonds, and R.A. Stradling, J. Phys. C., Solid State Phys. 8, 530 (1975). 18. H.R. Fetterman , J. Waldman and C.M. Wolfe, Solid State Commun

  9. Compact Solid State Terahertz Detectors

    DTIC Science & Technology

    2007-07-09

    We think that the noise in our Be doped GaAs quantum well structures is of the shot noise origin as in conventional GaAs QWIPs designed for mid...University of Leeds as follows: Within the frame of this project attention will be focussed on the low-frequency noise of the proposed devices. More...specifically, the Johnson and shot noise , as well as 1/f noise spectra, will be measured at various temperatures from 4 K up to 300 K. The figure

  10. Silicon spikes and impurity accumulation at interrupted growth interfaces during molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SpringThorpe, A.J.; Moore, W.T.; Majeed, A.

    1993-07-01

    Recent proposals by Wood and Wilson, to explain the formation of impurity spikes at substrate/epitaxial layer interfaces in GaAs prepared by molecular-beam epitaxy (MBE), have been experimentally investigated. Their suggestion that the spikes form due to suboxide transport via reactions that involve the As{sub 2}O{sub 3} released from the substrate during oxide desorption and hot Knudsen cells, is not supported by the experimental data. The same authors have also speculated that there may be significant flux leakage from nominally closed cells. For this to occur, reflection and scattering of flux by inadequately cooled cryoshroud baffle surfaces are necessary. Secondary ionmore » mass spectrometry analyses of interfaces, at which the growth of GaAs and AlAs was interrupted for times up to 30 min, confirm that this takes place. However, flux leakage is only found to be significant for the high vapor pressure group III elements. For these elements, incorporation levels in the range 0.02%-0.1% are found under normal deposition conditions. These results suggest that careful attention should be given to increasing the internal MBE system baffling in order to eliminate cross contamination problems. 14 refs., 2 figs., 1 tab.« less

  11. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    PubMed

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy for Pompe disease.

  12. GEM detectors for WEST and potential application for heavy impurity transport studies

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Jardin, A.; Coston, C.; Faisse, F.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.

    2016-08-01

    In tokamaks equipped with metallic walls and in particular tungsten, the interplay between particle transport and MagnetoHydroDynamic (MHD) activity might lead to impurities accumulation and finally to sudden plasma termination called disruption. Studying such transport phenomena is thus essential if stationary discharges are to be achieved. On WEST a new SXR diagnostic is developed in collaboration with IPPLM (Poland) and the Warsaw University of Technology, based on a triple Gas Electron Multiplier (GEM) detector. Potential application of the WEST GEM detectors for tomographic reconstruction and subsequent transport analysis is presented.

  13. Glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  14. Characterization of chromium compensated GaAs as an X-ray sensor material for charge-integrating pixel array detectors

    NASA Astrophysics Data System (ADS)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.

    2018-01-01

    We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.

  15. Investigation of new semiinsulating behavior of III-V compounds

    NASA Technical Reports Server (NTRS)

    Lagowski, Jacek

    1990-01-01

    The investigation of defect interactions and properties related to semiinsulating behavior of III-V semiconductors resulted in about twenty original publications, six doctoral thesis, one masters thesis and numerous conference presentations. The studies of new compensation mechanisms involving transition metal impurities have defined direct effects associated with deep donor/acceptor levels acting as compensating centers. Electrical and optical properties of vanadium and titanium levels were determined in GaAs, InP and also in ternary compounds InGaAs. The experimental data provided basis for the verification of chemical trends and the VRBE method. They also defined compositional range for III-V mixed crystals whereby semiinsulating behavior can be achieved using transition elements deep levels and a suitable codoping with shallow donor/acceptor impurities.

  16. Mobile spin impurity in an optical lattice

    NASA Astrophysics Data System (ADS)

    Duncan, C. W.; Bellotti, F. F.; Öhberg, P.; Zinner, N. T.; Valiente, M.

    2017-07-01

    We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impurity’s spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.

  17. Bound-to-bound midinfrared intersubband absorption in carbon-doped GaAs /AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Malis, Oana; Pfeiffer, Loren N.; West, Kenneth W.; Sergent, A. Michael; Gmachl, Claire

    2005-08-01

    Bound-to-bound intersubband absorption in the valence band of modulation-doped GaAs quantum wells with digitally alloyed AlGaAs barriers was studied in the midinfrared wavelength range. A high-purity solid carbon source was used for the p-type doping. Strong narrow absorption peaks due to heavy-to-heavy hole transitions are observed with out-of-plane polarized light, and weaker broader features with in-plane polarized light. The heavy-to-heavy hole transition energy spans the spectral range between 206 to 126 meV as the quantum well width is increased from 25 to 45 Å. The experimental results are found to be in agreement with calculations of a six-band k •p model taking into account the full band structure of the digital alloy.

  18. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.

    PubMed

    Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane

    2017-11-08

    We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18  cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

  19. Dynamical signatures of bound states in waveguide QED

    NASA Astrophysics Data System (ADS)

    Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J.

    2017-08-01

    We study the spontaneous decay of an impurity coupled to a linear array of bosonic cavities forming a single-band photonic waveguide. The average frequency of the emitted photon is different from the frequency for single-photon resonant scattering, which perfectly matches the bare frequency of the excited state of the impurity. We study how the energy of the excited state of the impurity influences the spatial profile of the emitted photon. The farther the energy is from the middle of the photonic band, the farther the wave packet is from the causal limit. In particular, if the energy lies in the middle of the band, the wave packet is localized around the causal limit. Besides, the occupation of the excited state of the impurity presents a rich dynamics: it shows an exponential decay up to intermediate times, this is followed by a power-law tail in the long-time regime, and it finally reaches an oscillatory stationary regime. Finally, we show that this phenomenology is robust under the presence of losses, both in the impurity and in the cavities.

  20. Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field

    NASA Astrophysics Data System (ADS)

    Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo

    2017-04-01

    The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.

  1. Evolution of superclusters and delocalized states in GaAs1-xNx

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.

    2012-11-01

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs1-xNx was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster is fully developed by 0.32% N.

  2. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band

    NASA Astrophysics Data System (ADS)

    Schlaepfer, F.; Lucchini, M.; Sato, S. A.; Volkov, M.; Kasmi, L.; Hartmann, N.; Rubio, A.; Gallmann, L.; Keller, U.

    2018-06-01

    Resolving the fundamental carrier dynamics induced in solids by strong electric fields is essential for future applications, ranging from nanoscale transistors1,2 to high-speed electro-optical switches3. How fast and at what rate can electrons be injected into the conduction band of a solid? Here, we investigate the sub-femtosecond response of GaAs induced by resonant intense near-infrared laser pulses using attosecond transient absorption spectroscopy. In particular, we unravel the distinct role of intra- versus interband transitions. Surprisingly, we found that despite the resonant driving laser, the optical response during the light-matter interaction is dominated by intraband motion. Furthermore, we observed that the coupling between the two mechanisms results in a significant enhancement of the carrier injection from the valence into the conduction band. This is especially unexpected as the intraband mechanism itself can accelerate carriers only within the same band. This physical phenomenon could be used to control ultrafast carrier excitation and boost injection rates in electronic switches in the petahertz regime.

  3. High-spin states in 103,105Mo, 103Nb, and the νh11/2 alignment

    NASA Astrophysics Data System (ADS)

    Hua, H.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Vetter, K.

    2002-06-01

    High-spin states in neutron-rich nuclei 103,105Mo,103Nb have been studied using the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. The measured fission kinematics were used to deduce the masses and velocity vectors for both fission fragments. This allowed Doppler-shift corrections to be applied to the observed γ rays on an event-by-event basis and the origin of γ rays from either fission fragment to be established. With such advantages, the yrast sequences for these nuclei have been extended to the band crossing region. This band crossing is ascribed to the alignment of a pair of h11/2 neutrons, which is supported by the observed blocking effect for the νh11/2 band in 105Mo while there is no evidence for blocking in the alignment measured for either the νd5/2 band in 103Mo or the πg9/2 band in 103Nb. The observed upbend, rather than the sharp backbend seen in the Ru-Pd region, indicates a strong interaction between the ground-state and the aligned h11/2 bands.

  4. Tunneling effect on double potential barriers GaAs and PbS

    NASA Astrophysics Data System (ADS)

    Prastowo, S. H. B.; Supriadi, B.; Ridlo, Z. R.; Prihandono, T.

    2018-04-01

    A simple model of transport phenomenon tunnelling effect through double barrier structure was developed. In this research we concentrate on the variation of electron energy which entering double potential barriers to transmission coefficient. The barriers using semiconductor materials GaAs (Galium Arsenide) with band-gap energy 1.424 eV, distance of lattice 0.565 nm, and PbS (Lead Sulphide) with band gap energy 0.41 eV distance of lattice is 18 nm. The Analysisof tunnelling effect on double potentials GaAs and PbS using Schrodinger’s equation, continuity, and matrix propagation to get transmission coefficient. The maximum energy of electron that we use is 1.0 eV, and observable from 0.0025 eV- 1.0 eV. The shows the highest transmission coefficient is0.9982 from electron energy 0.5123eV means electron can pass the barriers with probability 99.82%. Semiconductor from materials GaAs and PbS is one of selected material to design semiconductor device because of transmission coefficient directly proportional to bias the voltage of semiconductor device. Application of the theoretical analysis of resonant tunnelling effect on double barriers was used to design and develop new structure and combination of materials for semiconductor device (diode, transistor, and integrated circuit).

  5. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  6. First-principles studies of a photovoltaic material based on silicon heavily codoped with sulfur and nitrogen

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Wang, Yongyong; Song, Xiaohui; Yang, Feng

    2018-03-01

    In silicon co-hyperdoped with nitrogen and sulfur, dopant atoms tend to form dimers in the near-equilibrium process. The dimer that contains substitutional N and S atoms has the lowest formation energy and can form an impurity band that overlaps with the conduction band (CB). When separating the two atoms far apart from each other, the impurity band is clearly isolated from the CB and becomes an intermediate band (IB). The sub-band-gap absorption decreases with the decrease in the substitutional atom distance. The sub-band-gap absorption of the material is the combined effect of the configurations with different N-S distances.

  7. Effects of Thickness of a Low-Temperature Buffer and Impurity Incorporation on the Characteristics of Nitrogen-polar GaN.

    PubMed

    Yang, Fann-Wei; Chen, Yu-Yu; Feng, Shih-Wei; Sun, Qian; Han, Jung

    2016-12-01

    In this study, effects of the thickness of a low temperature (LT) buffer and impurity incorporation on the characteristics of Nitrogen (N)-polar GaN are investigated. By using either a nitridation or thermal annealing step before the deposition of a LT buffer, three N-polar GaN samples with different thicknesses of LT buffer and different impurity incorporations are prepared. It is found that the sample with the thinnest LT buffer and a nitridation step proves to be the best in terms of a fewer impurity incorporations, strong PL intensity, fast mobility, small biaxial strain, and smooth surface. As the temperature increases at ~10 K, the apparent donor-acceptor-pair band is responsible for the decreasing integral intensity of the band-to-band emission peak. In addition, the thermal annealing of the sapphire substrates may cause more impurity incorporation around the HT-GaN/LT-GaN/sapphire interfacial regions, which in turn may result in a lower carrier mobility, larger biaxial strain, larger bandgap shift, and stronger yellow luminescence. By using a nitridation step, both a thinner LT buffer and less impurity incorporation are beneficial to obtaining a high quality N-polar GaN.

  8. Growth features and spectroscopic structure investigations of nanoprofiled AlN films formed on misoriented GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Goloshchapov, D. L.; Lenshin, A. S.

    Nanostructured aluminum-nitride films are formed by reactive ion-plasma sputtering onto GaAs substrates with different orientations. The properties of the films are studied via structural analysis, atomic force microscopy, and infrared and visible–ultraviolet spectroscopy. The aluminum-nitride films can have a refractive index in the range of 1.6–4.0 at a wavelength of ~250 nm and an optical band gap of ~5 eV. It is shown that the morphology, surface composition, and optical characteristics of AlN/GaAs heterophase systems can be controlled using misoriented GaAs substrates.

  9. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ram Sevak, E-mail: singh915@gmail.com

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to havemore » metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.« less

  10. Molecular Kondo effect in flat-band lattices

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Thuy Thi

    2018-04-01

    The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.

  11. Freely Suspended Two-Dimensional Electron Gases.

    NASA Astrophysics Data System (ADS)

    Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank

    1998-03-01

    We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.

  12. Analysis of trace impurities in neon by a customized gas chromatography.

    PubMed

    Yin, Min Kyo; Lim, Jeong Sik; Moon, Dong Min; Lee, Gae Ho; Lee, Jeongsoon

    2016-09-09

    Excimer lasers, widely used in the semiconductor industry, are crucial for analyzing the purity of premix laser gases for the purpose of controlling stable laser output power. In this study, we designed a system for analyzing impurities in pure neon (Ne) base gas by customized GC. Impurities in pure neon (H2 and He), which cannot be analyzed at the sub-μmol/mol level using commercial GC detectors, were analyzed by a customized pulsed-discharge Ne ionization detector (PDNeD) and a pressurized injection thermal conductivity detector using Ne as the carrier gas (Pres. Inj. Ne-TCD). From the results, trace species in Ne were identified with the following detection limits: H2, 0.378μmol/mol; O2, 0.119μmol/mol; CH4, 0.880μmol/mol; CO, 0.263μmol/mol; CO2, 0.162μmol/mol (PDNeD); and He, 0.190μmol/mol (Pres. Inj. Ne-TCD). This PDNeD and pressurized injection Ne-TCD technique thus developed permit the quantification of trace impurities present in high-purity Ne. Copyright © 2016. Published by Elsevier B.V.

  13. An efficient separation and method development for the quantifying of two basic impurities of Nicergoline by reversed-phase high performance liquid chromatography using ion-pairing counter ions.

    PubMed

    Yalçin, Güler; Yüktaş, Nüray

    2006-10-11

    A quantification method was developed for the two basic impurities, one of which is also a metabolite, of Nicergoline (NIC), by using reversed-phase high performance liquid chromatography (RP-HPLC) and diode array detector (DAD). One of these compounds,10-methoxy-6-methylergoline-8beta-methanol-5-bromo-3-pyridinecarboxylate (1-DN) is the metabolite as well as the impurity whereas, the other 10-methoxy-1,6-dimethylergoline-8beta-methanol-5-chloro-3-pyridinecarboxylate (5-CN) is only an impurity. The chromatographic column was Phenomenex, Luna, 5 microm, C18 (2), 250 mm x 4.6 mm. Mobile phase was 0.1 M ammonium acetate (NH4Ac) solution containing 4 mM 1-octanesulfonicacid sodium salt (OSASS) and 6 mM tetrabutylammonium hydrogen sulphate (TBAHS) (pH: 5.9)/acetonitrile (ACN) (62:38) for 1-DN and (64:36) for 5-CN. Flow rate was 1.0 mL min-1. The diode array detector was operated at 285 nm, band width: 4 nm. Linearity was obtained in the concentration range of 0.032 x 10-5 to 3.828 x 10-5 M, y = 116.88x + 0.2773 (r2 = 0.99989); the limit of detection (LOD) and limit of quantification (LOQ) were determined as 0.012 x 10-5 and 0.041 x 10-5 M for 1-DN, respectively. Linearity was obtained in the concentration range of 0.034 x 10-5 to 4.092 x 10-5 M, y = 104.24x + 0.7486 (r2 = 0.99996); (LOD) and (LOQ) were determined as 0.014 x 10-5 and 0.046 x 10-5 M for 5-CN, respectively. The recovery was 100.65% for 1-DN and 100.32% for 5-CN. The amount of 1-DN in 30 mg NIC was found as 209.65 microg (0.70%) and the amount of 5-CN in 30 mg NIC was found as 27.62 microg (0.09%).

  14. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  15. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  16. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors

    NASA Astrophysics Data System (ADS)

    Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad

    2018-06-01

    Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.

  17. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    NASA Astrophysics Data System (ADS)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  18. Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction

    NASA Astrophysics Data System (ADS)

    Wang, Yibo; Liu, Yan; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-06-01

    We investigate GaAsBi/GaAsN system for the design of type-II staggered hetero tunneling field-effect transistor (hetero-TFET). Strain-symmetrized GaAsBi/GaAsN with effective lattice match to GaAs exhibits a type-II band lineup, and the effective bandgap EG,eff at interface is significantly reduced with the incorporation of Bi and N elements. The band-to-band tunneling (BTBT) rate and drive current of GaAsBi/GaAsN hetero-TFETs are boosted due to the utilizing of the type-II staggered tunneling junction with the reduced EG,eff. Numerical simulation shows that the drive current and subthreshold swing (SS) characteristics of GaAsBi/GaAsN hetero-TFETs are remarkably improved by increasing Bi and N compositions. The dilute content GaAs0.85Bi0.15/GaAs0.92N0.08 staggered hetero-nTFET achieves 7.8 and 550 times higher ION compared to InAs and In0.53Ga0.47As homo-TFETs, respectively, at the supply voltage of 0.3 V. GaAsBi/GaAsN heterostructure is a potential candidate for high performance TFET.

  19. Microscopic Distributions of Defect Luminescence From Subgrain Boundaries in Multicrystalline Silicon Wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hieu T.; Jensen, Mallory A.; Li, Li

    We investigate the microscopic distributions of sub-band-gap luminescence emission (the so-called D-lines D1/D2/D3/D4) and the band-to-band luminescence intensity, near recombination-active sub-grain boundaries in multicrystalline silicon wafers for solar cells. We find that the sub-band-gap luminescence from decorating defects/impurities (D1/D2) and from intrinsic dislocations (D3/D4) have distinctly different spatial distributions, and are asymmetric across the sub-grain boundaries. The presence of D1/D2 is correlated with a strong reduction in the band-to-band luminescence, indicating a higher recombination activity. In contrast, D3/D4 emissions are not strongly correlated with the band-to-band intensity. Based on spatially-resolved, synchrotron-based micro-X-ray fluorescence measurements of metal impurities, we confirm thatmore » high densities of metal impurities are present at locations with strong D1/D2 emission but low D3/D4 emission. Finally, we show that the observed asymmetry of the sub-band-gap luminescence across the sub-grain boundaries is due to their inclination below the wafer surface. Based on the luminescence asymmetries, the sub-grain boundaries are shown to share a common inclination locally, rather than be orientated randomly.« less

  20. Phase noise measurements of the 400-kW, 2.115-GHz (S-band) transmitter

    NASA Technical Reports Server (NTRS)

    Boss, P.; Hoppe, D.; Bhanji, A.

    1987-01-01

    The measurement theory is described and a test method to perform phase noise verification using off-the-shelf components and instruments is presented. The measurement technique described consists of a double-balanced mixer used as phase detector, followed by a low noise amplifier. An FFT spectrum analyzer is then used to view the modulation components. A simple calibration procedure is outlined that ensures accurate measurements. A block diagram of the configuration is presented as well as actual phase noise data from the 400 kW, 2.115 GHz (S-band) klystron transmitter.

  1. Multi-band analysis of temperature-dependent transport coefficients (conductivity, Hall, Seebeck, and Nernst) of Ni-doped CoSb3

    NASA Astrophysics Data System (ADS)

    Kajikawa, Y.

    2016-02-01

    The experimental data on the temperature dependence of the four transport coefficients, i.e., the electrical conductivity (σ), Hall coefficient (RH), Seebeck coefficient (S), and Nernst coefficient (Q), of n-type Co0.999Ni0.001Sb3 reported by Sun et al. [Nat. Commun. 6, 7475 (2015)] have been analyzed in a multi-band model, especially focusing on the low temperature data. The multi-band model includes not only the lowest valley of the conduction band at the Γ point but also satellite valleys at the second minima together with an impurity band. The lowest valley at the Γ point is assumed to split into the c1 band and the spin-orbit split-off (so) band. For the analysis, the general expression of the Nernst coefficient in the multi-band model is derived. At such low temperatures that the other bands than the c1 and the impurity band can be neglected, this expression is shown to be approximated as the sum of three terms: the intrinsic terms due to the Nernst coefficients in the two bands themselves and a cross term proportional to the difference of Seebeck coefficients between the two bands. As a result of the analysis, it is proved that the anomalous positive peak of S(T) observed around T = 20 K as well as the sharp rise of the Hall mobility observed from 15 K to 40 K are due to the transition from hopping conduction in the impurity band to conduction in the c1 band. On the other hand, the pronounced peak of Q(T) observed slightly below 40 K is proved to be due to the cross term between the impurity band and the c1 band. In addition, a shoulder of Q(T) appeared around T = 80 K lends clear evidence of the existence of the so band, while the increase in both of σ(T) and | S ( T ) | above 150 K suggests the existence of the satellite valleys.

  2. Non-Implanted Gallium-Arsenide and its Subsequent Annealing Effects.

    NASA Astrophysics Data System (ADS)

    Liou, Lih-Yeh

    Infrared spectroscopy is used to study ion-implanted GaAs and its subsequent annealing effects. The damage in the implantation region causes a change in dielectric constant resulting in an infrared reflection spectrum which shows the interference pattern of a multilayer structure. Reflection data are fitted by values calculated from a physically realistic model by using computer codes. The first part in this work studies the solid state regrowth of amorphous GaAs made by Be implantation at -100(DEGREES)C. The regrowth temperature is around 200(DEGREES)C. The regrowth starts with a narrowing of the transition region and the transformation of the implanted layer from as-implanted amorphous (a-l) state to thermally-stablized amorphous (a-ll) state. The non-epitaxial recrystallization from both the surface and the interfacial region follows. The final regrown layer has a slightly higher refractive index than the crystalline value, indicating a high residual defect concentration. The temperature dependent regrowth velocity and the activation energy for this process are determined. The second part studies the free carrier activation in Be-implanted GaAs. Free holes are activated with prolonged annealing at 400(DEGREES)C ((TURN)50 hours) or a shorter time at higher temperature. The carrier contribution to the dielectric constant is calculated from the classical model and best fit to the reflection results show that the carrier profile can be approximated by a two half-Gaussians joined smoothly at their peaks. The peak position for the profile occurs deeper than that for the Be impurity profile measured by SIMS. The carrier distribution is speculated to be the result of the Be impurity, Ga vacancy and possible compensating defect distributions. The final part studies the free carrier removal by proton implantation in heavily doped, high carrier density, n-type GaAs. The as-implantation region is highly compensated until annealed at 550(DEGREES)C. After annealing between 300 and 400(DEGREES)C, the infrared results show a partially compensated region diffused deeply into substrate from the as-implanted region. The SIMS measurements show a well correlated hydrogen diffusion layer which suggests that the compensation defect is hydrogen related. After 500(DEGREES)C, the hydrogen diffusion layer is still observed, but the compensation layer has disappeared. The diffusion coefficient of the compensating defect and the activation energy for this process are determined. Carbon -implanted GaAs having a high carrier density substrate is also measured and compared with the H-implanted cases. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  3. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

    DOE PAGES

    Wright, A. F.; Modine, N. A.

    2015-01-23

    The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained usingmore » a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.« less

  4. Scattering of waves by impurities in precompressed granular chains.

    PubMed

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  5. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary port impedance allows matching the output impedance of the MMIC PA directly to the waveguide impedance without transitioning first into a transmission line with characteristic impedance of 50 ohms. Thus, by eliminating the losses associated with a transition, the overall SSPA efficiency is enhanced. For reducing the cost and weight when required in very large quantities, such as in the beam-forming networks of phased-array antenna systems, the combiner can be manufactured using metal-plated plastic. Two hybrid unequal power combiners can be cascaded to realize a non-binary combiner (for e.g., a three-way) and can be synergistically optimized for low VSWR (voltage standing wave ratio), low insertion loss, high isolation, and wide bandwidth using commercial off-the-shelf electromagnetic software design tools.

  6. Impurity-Band Model for GaP1-xNx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Zhang, Y.; Geisz, J. F.

    2005-11-01

    Low-temperature absorption studies on free-standing GaP1-xNx films provide direct experimental evidence that the host conduction-band minimum (CBM) near X1C does not plunge downward with increased nitrogen doping, contrary to what has been suggested recently; rather, it remains stationary for x up to 0.1%. This fact, combined with the results of earlier studies of the CBM at ..GAMMA.. and conduction-band edge near L, confirms that the giant bandgap lowering observed in GaP1-xNx results from a CBM that evolves purely from nitrogen impurity bands.

  7. Conference on Semi-Insulating III-V Materials (2nd), held 19-21 Apr 82, Evian (France),

    DTIC Science & Technology

    1983-02-28

    Dist Special 19. KEY WORDS (Continue on reverse side If neceary mud Identity by block numb ) Semiconductor devices Field effect transitors Integrated...doped GaAs sub- 4 strates. The results showed no The catalog of defects includes statistically significant differ- vacancies, interstitials, anti...orientation also had high level profiles of GaAs active transconductance. In addition,the statistical scatter-uni-layers and their correlation to o m

  8. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  9. Purification of CdZnTe by electromigration

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-01

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10-2 cm2/V, compared with that of 1.4 × 10-3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  10. Purification of CdZnTe by Electromigration

    DOE PAGES

    Kim, K.; Kim, Sangsu; Hong, Jinki; ...

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore » electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10 -2 cm 2 /V, compared to that of 1.4 10 -3 cm 2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  11. Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.

    1996-03-01

    LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.

  12. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    DTIC Science & Technology

    2015-04-09

    out during 2013. A set of growth experiments to deposit CdTe and ZnTe thin films on GaAs and Si substrates was carried out to test the system...After several dummy runs, a few growth runs to deposit CdTe and ZnTe, both doped and undoped, were grown on 3-inch diameter Si substrates or part of...to deposit CdTe and ZnTe on Si and GaAs substrates for use in this project. Some layers have been processed to make solar cells. Project 3

  13. Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kot, R. A.; Oliver, J. D.; Wilson, S. G.

    1984-01-01

    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver.

  14. Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele

    2018-01-01

    Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.

  15. Miniature X-band GaAs MMIC analog and bi-phase modulators for spaceborne communications applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1992-01-01

    The design concepts, analyses, and the development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of spaceborne communications systems are summarized. The design approach uses a very compact lumped-element, quadrature hybrid, and MESFET-varactors to provide low-loss and well-controlled phase performance for deep-space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters have been modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/-2.5 radians of peak phase deviation.

  16. Stable glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  17. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    NASA Astrophysics Data System (ADS)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  18. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben

    2016-04-11

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zybert, M.; Marchweka, M.; Sheregii, E. M.

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at mega-gauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6 to 300 K. The 14 x 14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magneto-donor states in the GaAs wells and possibly in the AlGaAs barriers. The magneto-donor energies are calculated using a variationalmore » procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed mengeto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.« less

  20. Fabrication and characterization of the noble metal nanostructures on the GaAs surface

    NASA Astrophysics Data System (ADS)

    Gladskikh, Polina V.; Gladskikh, Igor A.; Toropov, Nikita A.; Vartanyan, Tigran A.

    2016-04-01

    Self-assembled silver, gold, and copper nanostructures on the monocrystalline GaAs (100) wafer surface were obtained via physical vapor deposition and characterized by optical reflection spectroscopy, scanning electron microscopy, and current-voltage curve measurements. Reflection spectra of the samples with Ag equivalent thicknesses of 2, 5, 7.5, and 10 nm demonstrated wide plasmonic bands in the visible range of spectra. Thermal annealing of the nanostructures led to narrowing of the plasmonic bands of Au and Ag nanostructures caused by major transformations of the film morphology. While the as prepared films predominantly had a small scale labyrinth structure, after annealing well-separated nanoislands are formed on the gallium arsenide surface. A clear correlation between films morphology and their optical and electrical properties is elucidated. Annealing of the GaAs substrate with Ag nanostructures at 100 °C under control of the resistivity allowed us to obtain and fix the structure at the percolation threshold. It is established that the samples at the percolation threshold possess the properties of resistance switching and hysteresis.

  1. Many-Body Effect in Spin Dephasing in n-Type GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Weng, Ming-Qi; Wu, Ming-Wei

    2005-03-01

    By constructing and numerically solving the kinetic Bloch equations we perform a many-body study of the spin dephasing due to the D'yakonov-Perel' effect in n-type GaAs (100) quantum wells for high temperatures. In our study, we include the spin-conserving scattering such as the electron-phonon, the electron-nonmagnetic impurity as well as the electron-electron Coulomb scattering into consideration. The dephasing obtained from our theory contains both the single-particle and the many-body contributions with the latter originating from the inhomogeneous broadening introduced by the DP term [J. Supercond.: Incorp. Novel Magn. 14 (2001) 245 Eur. Phys. J. B 18 (2000) 373]. Our result agrees very well with the experimental data [Phys. Rev. B 62 (2000) 13034] of Malinowski et al. We further show that in the case we study, the spin dephasing is dominated by the many-body effect.

  2. Specific features of the spectra and relaxation kinetics of long-wavelength photoconductivity in narrow-gap HgCdTe epitaxial films and heterostructures with quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Ikonnikov, A. V.; Antonov, A. V.

    2013-11-15

    The spectra and relaxation kinetics of interband photoconductivity are investigated in narrow-gap Hg{sub 1-x}Cd{sub x}Te epitaxial films with x = 0.19-0.23 and in structures with HgCdTe-based quantum wells (QWs), having an interband-transition energy in the range of 30-90 meV, grown by molecular-beam epitaxy on GaAs (013) substrates. A long-wavelength sensitivity band caused by impurities or defects is found in the spectra of the structures with quantum wells in addition to the interband photoconductivity. It is shown that the lifetimes of nonequilibrium carriers in the structures with QWs is less than in bulk samples at the same optical-transition energy. From themore » measured carrier lifetimes, the ampere-watt responsivity and the equivalent noise power for a film with x = 0.19 at a wavelength of 19 {mu}m are estimated. When investigating the relaxation kinetics of the photoconductivity at 4.2 K in high excitation regime, it is revealed that radiative recombination is dominant over other mechanisms of nonequilibrium-carrier recombination.« less

  3. DFT+U Study of Chemical Impurities in PuO 2

    DOE PAGES

    Hernandez, Sarah C.; Holby, Edward F.

    2016-05-24

    In this paper, we employ density functional theory to explore the effects of impurities in the fluorite crystal structure of PuO 2. The impurities that were considered are known impurities that exist in metallic δ-phase Pu, including H, C, Fe, and Ga. These impurities were placed at various high-symmetry sites within the PuO 2 structure including an octahedral interstitial site, an interstitial site with coordination to two neighboring O atoms, an O substitutional site, and a Pu substitutional site. Incorporation energies were calculated to be energetically unfavorable for all sites except the Pu substitutional site. When impurities were placed inmore » a Pu substitutional site, complexes incorporating the impurities and O formed within the PuO 2 structure. The observed defect-oxygen structures were OH, CO 3, FeO 5, and GaO 3. The presence of these defects led to distortion of the surrounding O atoms within the structure, producing long-range disorder of O atoms. In contrast, perturbations of Pu atoms had a relatively short-range effect on the relaxed structures. These effects are demonstrated via radial distribution functions for O and Pu vacancies. Calculated electronic structure revealed hybridization of the impurity atom with the O valence states and a relative decrease in the Pu 5f states. Minor differences in band gaps were observed for the defected PuO 2 structures containing H, C, and Ga. Finally, Fe-containing structures, however, were calculated to have a significantly decreased band gap, where the implementation of a Hubbard U parameter on the Fe 3d orbitals will maintain the calculated PuO 2 band gap.« less

  4. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al2O3/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-01

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al2O3. This AlN passivation incorporated nitrogen at the Al2O3/GaAs interface, improving the capacitance-voltage (C-V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C-V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (Dit). The Dit was reduced over the entire GaAs band gap. In particular, these devices exhibited Dit around the midgap of less than 4 × 1012 cm-2eV-1, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  5. Focusing effect of bent GaAs crystals for γ-ray Laue lenses: Monte Carlo and experimental results

    NASA Astrophysics Data System (ADS)

    Virgilli, E.; Frontera, F.; Rosati, P.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Stephen, J. B.; Caroli, E.; Auricchio, N.; Basili, A.; Silvestri, S.

    2016-02-01

    We report on results of observation of the focusing effect from the planes (220) of Gallium Arsenide (GaAs) crystals. We have compared the experimental results with the Monte Carlo simulations of the focusing capability of GaAs tiles performed with a dedicated ray-tracer. The GaAs tiles were bent using a lapping process developed at the cnr/imem - Parma (Italy) in the framework of the laue project, funded by ASI, dedicated to build a broad band Laue lens prototype for astrophysical applications in the hard X-/soft γ-ray energy range (80-600 keV). We present and discuss the results obtained from their characterization, mainly in terms of focusing capability. Bent crystals will significantly increase the signal to noise ratio of a telescope based on a Laue lens, consequently leading to an unprecedented enhancement of sensitivity with respect to the present non focusing instrumentation.

  6. Wide-Band Monolithic Acoustoelectric Memory Correlators.

    DTIC Science & Technology

    1982-11-01

    piezoelectric and non- earlier analysis of thin- oxide varactors . The new analysis ex- conducting. Tapped structures which satisfy this criterion are plains...for tapped LiNbO3/metal- oxide - important realization. The logical consequence is that only silicon [26] structures is, in fact, not applicable here. It...Clarke, "The GaAs SAW depletion layer of’ the diode array. A more complex structure, diode storage correlalor," in 1980 Ultrasonics Synp. Proc., pp a GaAs

  7. Simulation and optimization performance of GaAs/GaAs0.5Sb0.5/GaSb mechanically stacked tandem solar cells

    NASA Astrophysics Data System (ADS)

    Tayubi, Y. R.; Suhandi, A.; Samsudin, A.; Arifin, P.; Supriyatman

    2018-05-01

    Different approaches have been made in order to reach higher solar cells efficiencies. Concepts for multilayer solar cells have been developed. This can be realised if multiple individual single junction solar cells with different suitably chosen band gaps are connected in series in multi-junction solar cells. In our work, we have simulated and optimized solar cells based on the system mechanically stacked using computer simulation and predict their maximum performance. The structures of solar cells are based on the single junction GaAs, GaAs0.5Sb0.5 and GaSb cells. We have simulated each cell individually and extracted their optimal parameters (layer thickness, carrier concentration, the recombination velocity, etc), also, we calculated the efficiency of each cells optimized by separation of the solar spectrum in bands where the cell is sensible for the absorption. The optimal values of conversion efficiency have obtained for the three individual solar cells and the GaAs/GaAs0.5Sb0.5/GaSb tandem solar cells, that are: η = 19,76% for GaAs solar cell, η = 8,42% for GaAs0,5Sb0,5 solar cell, η = 4, 84% for GaSb solar cell and η = 33,02% for GaAs/GaAs0.5Sb0.5/GaSb tandem solar cell.

  8. A first-principles study of impurity effects on monolayer MoS2: bandgap dominated by donor impurities

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zhou, Wenzhe; Yang, Zhixiong; Wu, Shoujian; Ouyang, Fangping; Xu, Hui

    2017-12-01

    Based on the first principles calculation, the electrical properties and optical properties of monolayer molybdenum disulfide (MoS2) substitutionally doped by the VB and VIIB transition metal atoms (V, Nb, Ta, Mn, Tc, Re) were investigated. It is found that n-type doping or p-type doping tunes the Fermi level into the conduction band or the valence band respectively, leading to the degenerate semiconductor, while the compensatorily doped systems where the number of valence electrons is not alerted remain direct band gap ranging from 0.958 eV to 1.414 eV. According to the analysis on densities of states, the LUMO orbitals of donor impurities play the crucial role in band gap tuning. Hence, the band gap and optical properties of doped MoS2 are dominated by the species of the donor. Due to the reduction of the band gap, doped MoS2 have a lower threshold energy of photon absorption and an enhanced absorption in near infrared region. These results provide a significant guidance for the design of new 2D optoelectronic materials based on transition metal disulfide.

  9. Purification, crystal growth and characterization of CdSe single crystals

    NASA Astrophysics Data System (ADS)

    Burger, A.; Henderson, D. O.; Morgan, S. H.; Silberman, E.

    1991-02-01

    CdSe single crystals have been grown from the stoichiometric melt and from Se rich solutions. Here we report the first mid and far infrared spectra of CdSe crystals free of any known impurity bands. Previous studies of the lattice vibrational properties of CdSe crystals have shown the presence of two bands at 538 and 270 cm -1. Modifications in the purification and crystal growth conditions lead us to assign these two bands to a sulfur impurity. Low temperature photoluminescence spectra are also presented and discussed.

  10. State-of-the-art MCT photodiodes for cutting-edge sensor applications by AIM

    NASA Astrophysics Data System (ADS)

    Figgemeier, H.; Hanna, S.; Eich, D.; Fries, P.; Mahlein, K.-M.; Wenisch, J.; Schirmacher, W.; Beetz, J.; Breiter, R.

    2017-02-01

    For about 30 years, AIM has been ranking among the leading global suppliers for high-performance MCT infrared detectors, with its portfolio spanning the photosensitivity cut-off range from the SWIR to the VLWIR and from 1st generation to 3rd generation FPA devices. To meet the market demands for SWaP-C- and IR-detectors with additional functionalities such as multicolor detection, AIM employs both LPE and MBE technology. From AIḾs line of highest-performance single color detectors fabricated by LPE, we will present our latest excellent results of 5.3 μm cut-off MWIR MCT detectors with 1024x768 pixels and a 10 μm pixel pitch. AIM's powerful low dark current LWIR and VLWIR p-on-n device technology on LPE-grown MCT has now been extended to the MWIR spectral range. A comparison of results from n-on-p and p-on-n MWIR MCT planar photodiode arrays is presented. Operating temperatures of 160 K and higher, in conjunction with low defect density and excellent thermal sensitivity (NETD) are attained. The results achieved for LPE MWIR are compared to MBE MWIR data. For both the cost-efficient production of MWIR single color MCT detectors, as well as 3rd generation multicolor MCT detectors, AIM makes use of MBE growth of MCT on large-area GaAs substrates. The now-available AIM MWIR single color MBE MCT detectors grown on GaAs are qualified, delivered, and have reached a maturity fully meeting customers' requirements. Representing AIM's multicolor detector development, latest test results on a 640x512 pixels with a 20 μm pitch design will be presented. The MWIR/MWIR diodes demonstrate high QE, very low color cross talk, and excellent NETD in conjunction with low defect densities.

  11. Defense Industrial Base Assessment: U.S. Imaging and Sensors Industry

    DTIC Science & Technology

    2006-10-01

    uncooled devices, but provide much higher resolution. The semiconductor material used in the detector is typically mercury cadmium telluride (HgCdTe...The material principally used in the arrays was mercury cadmium telluride (HgCdTe). Generation 2 detectors significantly improved the signal-to...Silicide (PtSi), Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), Mercury Cadmium Telluride (HgCdTe), Indium Gallium Arsenide (InGaAs

  12. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    PubMed

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  13. Activation of an intense near band edge emission from ZnTe/ZnMgTe core/shell nanowires grown on silicon.

    PubMed

    Wojnar, P; Szymura, M; Zaleszczyk, W; Kłopotowski, L; Janik, E; Wiater, M; Baczewski, L T; Kret, S; Karczewski, G; Kossut, J; Wojtowicz, T

    2013-09-13

    The absence of luminescence in the near band edge energy region of Te-anion based semiconductor nanowires grown by gold catalyst assisted molecular beam epitaxy has strongly limited their applications in the field of photonics. In this paper, an enhancement of the near band edge emission intensity from ZnTe/ZnMgTe core/shell nanowires grown on Si substrates is reported. A special role of the use of Si substrates instead of GaAs substrates is emphasized, which results in an increase of the near band edge emission intensity by at least one order of magnitude accompanied by a simultaneous reduction of the defect related luminescence. A possible explanation of this effect relies on the presence of Ga-related deep level defects in structures grown on GaAs substrates, which are absent when Si substrates are used. Monochromatic mapping of the cathodoluminescence clearly confirms that the observed emission originates, indeed, from the ZnTe/ZnMgTe core/shell nanowires, whereas individual objects are studied by means of microphotoluminescence.

  14. Theoretical analysis of nBn infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Gunapala, Sarath D.

    2017-09-01

    The depletion and surface leakage dark current suppression properties of unipolar barrier device architectures such as the nBn have been highly beneficial for III-V semiconductor-based infrared detectors. Using a one-dimensional drift-diffusion model, we theoretically examine the effects of contact doping, minority carrier lifetime, and absorber doping on the dark current characteristics of nBn detectors to explore some basic aspects of their operation. We found that in a properly designed nBn detector with highly doped excluding contacts the minority carriers are extracted to nonequilibrium levels under reverse bias in the same manner as the high operating temperature (HOT) detector structure. Longer absorber Shockley-Read-Hall (SRH) lifetimes result in lower diffusion and depletion dark currents. Higher absorber doping can also lead to lower diffusion and depletion dark currents, but the benefit should be weighted against the possibility of reduced diffusion length due to shortened SRH lifetime. We also briefly examined nBn structures with unintended minority carrier blocking barriers due to excessive n-doping in the unipolar electron barrier, or due to a positive valence band offset between the barrier and the absorber. Both types of hole blocking structures lead to higher turn-on bias, although barrier n-doping could help suppress depletion dark current.

  15. Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

    2012-09-04

    In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

  16. Heat treatment of bulk gallium arsenide using a phosphosilicate glass cap

    NASA Technical Reports Server (NTRS)

    Mathur, G.; Wheaton, M. L.; Borrego, J. M.; Ghandhi, S. K.

    1985-01-01

    n-type bulk GaAs crystals, capped with chemically vapor-deposited phosphosilicate glass, were heat treated at temperatures in the range of 600 to 950 C. Measurements on Schottky diodes and solar cells fabricated on the heat-treated material, after removal of a damaged surface layer, show an increase in free-carrier concentration, in minority-carrier-diffusion length, and in solar-cell short-circuit current. The observed changes are attributed to a removal of lifetime-reducing acceptorlike impurities, defects, or their complexes.

  17. Microscopic Optical Characterization of Free Standing III-Nitride Substrates, ZnO Bulk Crystals, and III-V Structures for Non-Linear Optics

    DTIC Science & Technology

    2013-03-01

    necessary. Therefore, a study of the main defects involved in these materials is essential to the understanding of their main properties and to...working with various strains, growth conditions, temperature variation, and impurities, and studies crystal growth parameters necessary to improve the...Sirtl applied with Light), and the stress distribution around the domain walls. This study shows how to improve the crystal quality of the OP GaAs

  18. First-Principles Study of Impurities in TlBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Mao-Hua

    2012-01-01

    TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.

  19. First-principles study of impurities in TlBr

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2012-04-01

    TlBr is a promising semiconductor material for room-temperature radiation detection. Material purification has been the driver for the recent improvement in the TlBr detector performance, mainly reflected by the significant increase in the carrier mobility-lifetime product. This suggests that impurities have significant impact on the carrier transport in TlBr. In this paper, first-principles calculations are used to study the properties of a number of commonly observed impurities in TlBr. The impurity-induced gap states are presented and their effects on the carrier trapping are discussed.

  20. Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Park, Han Jin

    2013-03-01

    Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.

  1. Early stages of Cs adsorption mechanism for GaAs nanowire surface

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu

    2018-03-01

    In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.

  2. Additive manufacturing and analysis of high frequency interconnects for microwave devices

    NASA Astrophysics Data System (ADS)

    Harper, Elicia K.

    Wire bond interconnects have been the main approach to interconnecting microelectronic devices within a package. Conventional wirebonding however offers little control of the impedance of the interconnect and also introduces parasitic inductance that can degrade performance at microwave frequencies. The size and compactness of microchips is often an issue when it comes to attaching wirebonds to the microchip or other components within a microwave module. This work demonstrates the use of additive manufacturing for printing interconnects directly between bare die microchips and other components within a microwave module. A test structure was developed consisting of a GaAs microchip sandwiched between two alumina blocks patterned with coplanar waveguides (CPW). A printed dielectric ink is used to fill the gap between the alumina CPW blocks and the GaAs chip. Conductive interconnects are printed on top of the dielectric bridge material to connect the CPW traces to the bonding pads on the GaAs microchip. Simulations of these structures were modeled in the electromagnetics simulation tool by ANSYS, high frequency structure simulation (HFSS), to optimize the printed interconnects at 1-40 GHz (ANSYS Inc., Canonsburg, PA). The dielectric constant and loss tangent of the simulated dielectric was varied along with the dimensions of the conductive interconnects. The best combination of dielectric properties and interconnect dimensions was chosen for impedance matching by analyzing the insertion losses and return losses. A dielectric ink, which was chosen based on the simulated results, was experimentally printed between the two CPW blocks and the GaAs chip and subsequently cured. The conductive interconnects were then printed with an aerosol jet printer, connecting the CPW traces to the bonding pads on the GaAs microchip. The experimental prototype was then measured with a network analyzer and the measured data were compared to simulations. Results show good agreement between the simulated and measured S-parameters. This work demonstrates the potential for using additive manufacturing technology to create impedance- matched interconnects between high frequency ICs and other module components such as high frequency CPW transmission lines.

  3. Efficient photoconductive terahertz detector with all-dielectric optical metasurface

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Oleg; Siday, Thomas; Thompson, Robert J.; Luk, Ting Shan; Brener, Igal; Reno, John L.

    2018-05-01

    We designed an optically thin photoconductive channel as an all-dielectric metasurface comprising an array of low-temperature grown GaAs nanobeams and a sub-surface distributed Bragg reflector. The metasurface exhibited enhanced optical absorption, and it was integrated into a photoconductive THz detector, which showed high efficiency and sensitivity as a result. The detector produced photocurrents over one order of magnitude higher compared to a similar detector with an unstructured surface with only 0.5 mW of optical excitation while exhibiting high dark resistance required for low-noise detection in THz time-domain spectroscopy and imaging. At that level of optical excitation, the metasurface detector showed a high signal to noise ratio of 106. The detector showed saturation above that level.

  4. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  5. Electronic structure of Fe, Co, and Ni impurities in Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Acker, J.F.; Weijs, P.W.J.; Fuggle, J.C.

    1988-11-15

    A photoemission study of the valence bands of the dilute alloys PdFe, PdCo, and PdNi is presented. We use the Cooper minimum effect to estimate the local density of states on the impurity site. The behavior of transition-metal impurities in a transition-metal matrix is shown to be very different from their behavior in s-p metals. Our conclusion is that the Fe and Co 3d states are mixed with states throughout the Pd 4d band, while the Ni contribution to the spectra is dominated by a peak of (minority) 3d states near the Fermi level.

  6. Effects of hydrostatic pressure on the donor impurity in a cylindrical quantum dot with Morse confining potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.

    2016-12-01

    The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.

  7. Process-induced defects in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Li, S. S.; Sah, C. T.

    1975-01-01

    Experimental and theoretical work on low resistivity, high efficiency solar cells indicates the dominant role that defects take in determining performance. High doping mechanisms produce gap shrinkage by band tailing, impurity band widening and impurity misfit; altered interband transmission rates result from Auger impact, SRH processes, or from electronic tunneling via defects. Characterizations of cell materials for their defects and their relations to the chosen fabrication processes are proposed.

  8. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  9. Thin Films and Interfaces of AN Organic Semiconductor: Perylenetetracarboxylic Dianhydride

    NASA Astrophysics Data System (ADS)

    Hirose, Yutaka

    Structural and electronic properties of thin films of an archetype organic molecular semiconductor, 3,4,9,10 -perylenetetracarboxylic dianhydride, (PTCDA) and of their interfaces are investigated. The first part of the thesis focuses on the growth of PTCDA thin films on graphite and GaAs. Molecular order in the direction parallel to the substrate is found to depend critically on the substrate surface properties, as revealed by marked differences in the crystallinity of films grown on graphite and Se-passivated GaAs surfaces (long range order), on the c(4 x 4) GaAs surface (medium range order), and on the (2 x 4)-c(2 x 8) GaAs surface (short range order). These results are discussed in terms of interface bonding between molecules and the substrate. The second part deals with the electronic and chemical structure of PTCDA thin films and the band lineup of the PTCDA/GaAs heterojunction investigated by Ultraviolet - and X-ray Photoemission Spectroscopies. A basic understanding of the valence band structure and chemical states is obtained with the help of a semi-empirical molecular orbital calculation. At the PTCDA/GaAs interface, the PTCDA highest occupied molecular orbital is found to be ~0.7 eV below the GaAs valence band maximum. This result is discussed in light of previous electrical measurements. Third, chemistry of metal deposition on PTCDA is investigated by synchrotron radiation photoemission spectroscopy. Al, Ti, In, and Sn are found to be highly reactive against PTCDA, yielding a considerable interfacial layer with a large density of states in the PTCDA gap. Ag and Au are found to be inert against PTCDA, producing abrupt interfaces. These results are found to be directly correlated with the electrical properties. Finally, chemistry of contacts formed by reversing the sequence of deposition, i.e. PTCDA on reactive metals (In, Sn, and Ti) is explored. The interfacial layers are found to be considerably smaller than for metals on PTCDA, in accordance with the reverse order of heats of adsorption of the two materials. The resulting interfaces are more abrupt presumably leading to more rectifying character of the electrical contacts.

  10. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2010-11-01

    There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.

  11. Signal velocity and group velocity for an optical pulse propagating through a GaAs cavity.

    PubMed

    Centini, Marco; Bloemer, Mark; Myneni, Krishna; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; D'Aguanno, Giuseppe

    2003-07-01

    We present measurements of the signal and group velocities for chirped optical pulses propagating through a GaAs cavity. The signal velocity is based on a specified signal-to-noise ratio at the detector. Under our experimental conditions, the chirp substantially modifies the group velocity of the pulse, but leaves the signal velocity unaltered. At unity transmittance, the velocities are equal. In general, when the transmittance is less than unity, the group velocity is faster than the signal velocity. While the group velocity can be negative, the signal velocity is always less than c/n, where c is the speed of light in vacuum and n is the refractive index of GaAs. To our knowledge, this is the first measurement of both the group velocity and the signal velocity in any system.

  12. Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2011-04-01

    We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.

  13. Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields.

    PubMed

    Akimov, I A; Dzhioev, R I; Korenev, V L; Kusrayev, Yu G; Sapega, V F; Yakovlev, D R; Bayer, M

    2011-04-08

    We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100  mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.

  14. Evolution of superclusters and delocalized states in GaAs 1–xN x

    DOE PAGES

    Fluegel, B.; Alberi, K.; Beaton, D. A.; ...

    2012-11-21

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs 1–xN x was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinitemore » supercluster is fully developed by 0.32% N.« less

  15. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  16. Monte Carlo simulation to calculate the rate of 137Cs gamma rays dispersion in gallium arsenide compound

    NASA Astrophysics Data System (ADS)

    Haider, F. A.; Chee, F. P.; Abu Hassan, H.; Saafie, S.

    2017-01-01

    Radiation effects on Gallium Arsenide (GaAs) have been tested by exposing samples to Cesium-137 (137Cs) gamma rays. Gallium Arsenide is a basic photonic material for most of the space technology communication, and, therefore, lends itself for applications where this is of concern. Monte Carlo simulations of interaction between direct ionizing radiation and GaAs structure have been performed in TRIM software, being part of SRIM 2011 programming package. An adverse results shows that energy dose does not govern the displacement of atoms and is dependent on the changes of incident angles and thickness of the GaAs target element. At certain thickness of GaAs and incident angle of 137Cs ion, the displacement damage is at its highest value. From the simulation result, it is found that if the thickness of the GaAs semiconductor material is small compared to the projected range at that particular incident energy, the energy loss in the target GaAs will be small. Hence, when the depth of semiconductor material is reduced, the range of damage in the target also decreased. However, the other factors such as quantum size effect, the energy gap between the conduction and valence band must also be taken into consideration when the dimension of the device is diminished.

  17. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Pithan, F.; Sarajlic, M.; Rothkirch, A.; Yu, Y.; Liermann, H. P.; Morgenroth, W.; Winkler, B.; Jenei, Z.; Stawitz, H.; Becker, J.; Graafsma, H.

    2018-01-01

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature.

  18. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  19. Optical and Electrical Characterization of Single Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Wickramasuriya, Nadeeka Thejanie

    Strain distribution in the core and the shell of a semiconductor nanowire (NW) and its effect on band structures including carrier recombination dynamics of individual Wurtzite (WZ) In1- xGxAs/InP and Zincblende (ZB) GaAs1-xSbx/InP strained core-shell NWs are investigated using room temperature Raman scattering and transient Rayleigh scattering (TRS) optical spectroscopy techniques. In addition, the electrical transport properties of individual ZB InP NWs are explored using gate-dependent current-voltage (I-V) measurements. Micro-Raman scattering from individual In1-xGaxAs NWs show InAs like TO and GaAs like TO modes with frequencies which are consistent with the 35% Ga concentration determined from the growth parameters. Calculations showed that the In0.65Ga0.35As core is under compressive strain of 0.26% while the InP shell is in tensile strain of 0.42% in In 0.65Ga0.35As/InP NWs. TRS measurements of single NWs show clear evidence for a strong band resonance in the WZ In0.65Ga 0.35As NW at 0.819 eV which is estimated to be a 186 meV blue-shift with respect to bulk ZB In0.65Ga0.35As. Furthermore, both Raman scattering and TRS measurements are on excellent agreement with the band gap shift of In0.65Ga0.35As/InP core-shell NWs with respect to the core only NW by 46 48 meV which experimentally confirmed the InP shell induced compression of the core. The time decays of the resonance are observed to be long ( 125 ps) for core-shell NWs while it is short ( 31 ps) for core only NWs consistent with a larger nonradiative recombination rate. Optical phonon modes of GaAs1-xSbx are observed to be red-shifted with increasing Antimony fraction in GaAs1-xSb x NWs which can be expected in an alloy with increasing concentration of a heavier atom in the lattice. Using TRS measurements, the GaAs0.71 Sb0.29 band gap for the coreshell NW is observed to be reduced by 0.04 eV with respect to the core only NW because of the tensile strain in the core. Raman experiments show a blue-shift of the InP phonons and a redshift of the GaAs1-xSbx phonons in individual GaAs 0.71Sb0.29/InP NWs, which is consistent with the tensile core strain inferred from TRS results. The recombination life times in GaAs 0.71Sb0.29, GaAs0.71Sb0.29/InP NWs are found to be 31 ps and 127 ps respectively reflecting the effectiveness of the InP shell surface passivation. Individual InP NW field effect transistors are fabricated using photolithography to investigate the electrical transport properties of InP NWs. Gate-dependent I-V plots showed that the InP NWs are n-type and displayed typical non-Ohmic behavior due to the contact resistance between NW and metal electrodes. Carrier mobility determined for the InP NWs is as high as 655 cm2/(V.s) for the carrier density of 4.08 x 1017 cm-3 which is comparable to n-type InP thin film materials with similar carrier densities and thus demonstrates the high quality of the NWs. An equivalent circuit model of the metal-semiconductor-metal structure is used to extract the carrier density and mobility of the NW as 1.00 x 1017 cm -3 and 511 cm2/(V.s), This model makes it possible to determine the barrier heights of the NW device while providing a good agreement with the experimental results.

  20. GaAs1-xBix/GaNyAs1-y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics.

    PubMed

    Broderick, Christopher A; Jin, Shirong; Marko, Igor P; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L; Stolz, Wolfgang; Rorison, Judy M; O'Reilly, Eoin P; Volz, Kerstin; Sweeney, Stephen J

    2017-04-19

    The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs 1-x Bi x /GaN y As 1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs 0.967 Bi 0.033 /GaN 0.062 As 0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.

  1. GaAs1-xBix/GaNyAs1-y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics

    NASA Astrophysics Data System (ADS)

    Broderick, Christopher A.; Jin, Shirong; Marko, Igor P.; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L.; Stolz, Wolfgang; Rorison, Judy M.; O'Reilly, Eoin P.; Volz, Kerstin; Sweeney, Stephen J.

    2017-04-01

    The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1-xBix/GaNyAs1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.

  2. GaAs1−xBix/GaNyAs1−y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics

    PubMed Central

    Broderick, Christopher A.; Jin, Shirong; Marko, Igor P.; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L.; Stolz, Wolfgang; Rorison, Judy M.; O’Reilly, Eoin P.; Volz, Kerstin; Sweeney, Stephen J.

    2017-01-01

    The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1−xBix/GaNyAs1−y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications. PMID:28422129

  3. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  4. High-Temperature Characteristics of an InAsSb/AlAsSb n+Bn Detector

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Höglund, Linda; Hill, Cory J.; Keo, Sam A.; Fisher, Anita; Gunapala, Sarath D.

    2016-09-01

    The high-temperature characteristics of a mid-wavelength infrared (MWIR) detector based on the Maimon-Wicks InAsSb/AlAsSb nBn architecture was analyzed. The dark current characteristics are examined in reference to recent minority carrier lifetime results. The difference between the responsivity and absorption quantum efficiency (QE) at shorter wavelengths is clarified in terms of preferential absorption of higher-energy photons in the top contact layer, which cannot provide reverse-bias photo-response due to the AlAsSb electron blocking layer and strong recombination. Although the QE does not degrade when the operating temperature increases to 325 K, the turn-on bias becomes larger at higher temperatures. This behavior was originally attributed to the change in the valence band alignment between the absorber and top contact layers caused by the shift in Fermi level with temperature. In this work, we demonstrated the inadequacy of the original description, and offer a more likely explanation based on temperature-dependent band-bending effects.

  5. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.

  6. Formation and photoluminescence of GaAs{sub 1−x}N{sub x} dilute nitride achieved by N-implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kun, E-mail: k.gao@hzdr.de; Helm, M.; Technische Universität Dresden, 01062 Dresden

    2014-07-07

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs{sub 1−x}N{sub x} by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about x{sub imp1} = 0.38% and x{sub imp2} = 0.76%. The GaAs{sub 1−x}N{sub x} layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs{sub 1−x}N{sub x} samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice bymore » FLA for x{sub imp1} = 0.38% and x{sub imp2} = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.« less

  7. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at megagauss magnetic fields

    NASA Astrophysics Data System (ADS)

    Zybert, M.; Marchewka, M.; Sheregii, E. M.; Rickel, D. G.; Betts, J. B.; Balakirev, F. F.; Gordon, M.; Stier, A. V.; Mielke, C. H.; Pfeffer, P.; Zawadzki, W.

    2017-03-01

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at megagauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6-300 K. The 14 ×14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magnetodonor states in the GaAs wells and possibly in the AlGaAs barriers. The magnetodonor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed magneto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  8. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xu, J. P.; Zhu, S. Y.; Huang, Y.; Lai, P. T.

    2013-08-01

    The interfacial and electrical properties of sputtered HfTiON on sulfur-passivated GaAs with or without TaON as interfacial passivation layer (IPL) are investigated. Experimental results show that the GaAs metal-oxide-semiconductor capacitor with HfTiON/TaON stacked gate dielectric annealed at 600 °C exhibits low interface-state density (1.0 × 1012 cm-2 eV-1), small gate leakage current (7.3 × 10-5 A cm-2 at Vg = Vfb + 1 V), small capacitance equivalent thickness (1.65 nm), and large equivalent dielectric constant (26.2). The involved mechanisms lie in the fact that the TaON IPL can effectively block the diffusions of Hf, Ti, and O towards GaAs surface and suppress the formation of interfacial As-As bonds, Ga-/As-oxides, thus unpinning the Femi level at the TaON/GaAs interface and improving the interface quality and electrical properties of the device.

  9. Electronic and optical properties of MoSe2 monolayer in the presence of Nb impurity: A first principle study

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sharma, Munish; Ahluwalia, P. K.

    2018-04-01

    The study of electronic and optical properties of Molybdenum diselenide monolayer (1H-MoSe2) in the presence of Niobium impurity (Nb), has been calculated and compared with available experimental and other calculated results in the literature. The electronic and optical properties of this system are investigated in the two cases.i) when MoS2 monolayer is doped suitably with Nb ii) when Nb is added (intercalated in the interstitial sites) suitably. The presence of even 2.08% Nb as an impurity reflects strong bonding with the host and results in semiconducting to metallic transition, which is also reflected in the overlap of σ valence band and п plasmon band in EELS. Thus, Molybdenum diselenide monolayer in the presence of Nb impurity appears to be a potential a candidate for applications in electrical and optical devices.

  10. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.

    2002-05-01

    Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

  11. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  12. Potential variations around grain boundaries in impurity-doped BaSi₂ epitaxial films evaluated by Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, D.; Baba, M.; Honda, S.

    2014-09-28

    Potential variations around the grain boundaries (GBs) in antimony (Sb)-doped n-type and boron (B)-doped p-type BaSi₂ epitaxial films on Si(111) were evaluated by Kelvin probe force microscopy. Sb-doped n-BaSi₂ films exhibited positively charged GBs with a downward band bending at the GBs. The average barrier height for holes was approximately 10 meV for an electron concentration n ≈ 10¹⁷ cm⁻³. This downward band bending changed to upward band bending when n was increased to n = 1.8 × 10¹⁸cm⁻³. In the B-doped p-BaSi₂ films, the upward band bending was observed for a hole concentration p ≈ 10¹⁸cm⁻³. The average barriermore » height for electrons decreased from approximately 25 to 15 meV when p was increased from p = 2.7 × 10¹⁸ to p = 4.0 × 10¹⁸ cm⁻³. These results are explained under the assumption that the position of the Fermi level E{sub f} at GBs depends on the degree of occupancy of defect states at the GBs, while E{sub f} approached the bottom of the conduction band or the top of the valence band in the BaSi₂ grain interiors with increasing impurity concentrations. In both cases, such small barrier heights may not deteriorate the carrier transport properties. The electronic structures of impurity-doped BaSi₂ are also discussed using first-principles pseudopotential method to discuss the insertion sites of impurity atoms and clarify the reason for the observed n-type conduction in the Sb-doped BaSi₂ and p-type conduction in the B-doped BaSi₂.« less

  13. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO{sub 2}: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song

    2016-03-15

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less

  14. Archeological Monitoring Plan for Four Floodwall Projects in the City of New Orleans.

    DTIC Science & Technology

    1985-05-29

    DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from Report) III. SUPPLEMENTARY NOTES Is. KEY WORDS (C.utnu. an ,evere adds, t n...ceeGAa end Idemti by block nmbr) Archeology History New Orleans Sugar Commerce Industry Nineteenth Century Cotton Land use Port of New Orleans...Demography Mississippi River Railroads Eighteenth Century National Register Settlement Patterns 20L ANTUAC?’ (Cawtham em v.wuw eb N ainerm tdatfp by block

  15. Liquid xenon purification, de-radonation (and de-kryptonation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less

  16. Theoretical performance of mid wavelength HgCdTe(1 0 0) heterostructure infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.

    2017-11-01

    The paper presents a theoretical study of the p+BpnN+ design based on HgCdTe(1 0 0) layers, which significantly improves the performance of detectors optimized for the mid-wave infrared spectral range. p+BpnN+ design combines the concept of a high impedance photoconductor with double layer hetero-junction device. Zero valence band offset approximation throughout the p+Bpn heterostructure allows flow of only minority holes generated in the absorber, what in a combination with n-N+ exclusion junction provides the Auger suppression. Modeling shows that by applying a low doping active layer, it is possible to achieve an order of magnitude lower dark current densities than those determined by ;Rule 07;. A key to its success is a reduction of Shockley-Read-Hall centers associated with native defects, residual impurities and misfit dislocations. Reduction of metal site vacancies below 1012 cm-3 and dislocation density to 105 cm-2 allow to achieve a background limited performance at 250 K. If the background radiation can be reduced, operation with a three- or four-stage thermo-electric-cooler may be possible.

  17. Investigation of depth-of-interaction (DOI) effects in single- and dual-layer block detectors by the use of light sharing in scintillators.

    PubMed

    Yamamoto, Seiichi

    2012-01-01

    In block detectors for PET scanners that use different lengths of slits in scintillators to share light among photomultiplier tubes (PMTs), a position histogram is distorted when the depth of interaction (DOI) of the gamma photons is near the PMTs (DOI effect). However, it remains unclear whether a DOI effect is observed for block detectors that use light sharing in scintillators. To investigate the effect, I tested the effect for single- and dual-layer block detectors. In the single-layer block detector, Ce doped Gd₂SiO₅ (GSO) crystals of 1.9 × 1.9 × 15 mm³ (0.5 mol% Ce) were used. In the dual-layer block detector, GSO crystals of a 1.9 × 1.9 × 6 mm³ (1.5 mol% Ce) were used for the front layer and GSO crystals of 1.9 × 1.9 × 9 mm³ (0.5 mol% Ce) for the back layer. These scintillators were arranged to form an 8 × 8 matrix with multi-layer optical film inserted partly between the scintillators for obtaining an optimized position response with use of two dual-PMTs. Position histograms and energy responses were measured for these block detectors at three different DOI positions, and the flood histograms were obtained. The results indicated that DOI effects are observed in both block detectors, but the dual-layer block showed more severe distortion in the position histogram as well as larger energy variations. We conclude that, in the block detectors that use light sharing in the scintillators, the DOI effect is an important factor for the performance of the detectors, especially for DOI block detectors.

  18. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  19. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  20. Substrate structures for InP-based devices

    DOEpatents

    Wanlass, Mark W.; Sheldon, Peter

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  1. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products.

    PubMed

    Córdova-Noboa, H A; Oviedo-Rondón, E O; Sarsour, A H; Barnes, J; Sapcota, D; López, D; Gross, L; Rademacher-Heilshorn, M; Braun, U

    2018-04-13

    Creatine is a nitrogenous compound naturally occurring in animal tissues and is obtained from dietary animal protein or de novo synthesis from guanidinoacetic acid (GAA). The dietary supply of this semi-essential nutrient could be adversely compromised when feeding purely vegetable-based diets. The objective of this experiment was to evaluate the effects of GAA supplementation in broilers fed corn-based diets with or without the inclusion of poultry by-products (PBP) on live performance, carcass and cut up yields, meat quality, pectoral muscle myopathies, differential blood count, blood clinical chemistry, serum GAA and its metabolites. The treatments consisted of PBP inclusion in the diets at 0 and 5%, with or without GAA supplementation (0 or 0.06%). A total of 1,280 one-d-old male Ross 708 broiler chicks were randomly placed in 64 floor pens with 16 replicates per treatment combination. At 0, 14, 35, 48, and 55 d, pen BW and feed intake were recorded. BW gain and FCR were calculated at the end of each phase. Individual BW was obtained at 55 d and one broiler per pen was selected for blood collection. Additionally, four broilers per pen were selected (including the chicken for blood collection) for processing. Data were analyzed as a randomized complete block design in a 2 × 2 factorial arrangement with PBP and GAA supplementation as main effects. An improvement (P < 0.05) on FCR of 0.019 (g:g) was detected at 55 d due to GAA supplementation. The probability of having breast meat with low severity of wooden breast (score 2) was increased (P < 0.05) by GAA inclusion in diets without PBP. An interaction effect (P < 0.05) was detected on GAA concentration in blood. The supplementation with GAA and PBP inclusion resulted in higher (P < 0.05) GAA serum concentration. Generally, meat quality parameters were not affected by GAA. In conclusion, GAA supplementation improved FCR regardless of dietary PBP and reduced wooden breast severity by increasing score 2 in diets without PBP.

  2. Visual Confirmation of Voice Takeoff Clearance (VICON) Operational Evaluation. Volume 2. Operations and Maintenance Manual

    DTIC Science & Technology

    1981-02-01

    cabinet and the field. The momentary contacts from the switches of the control panel trigger the respective circuits in module I. This circuit then... module (approximately 40 milliamperes at 70-100 detector, filter, threshold circuit and alarm relay. A block volts) Into microwave energy at X-band...advantageous to use different N.C. Terminals. NOTE: If open circuit tamper switch is modulation frequencies on links operating within close prox

  3. Electro-migration of impurities in TlBr

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hyun; Kim, Eunlim; Kim, H.; Tappero, R.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Cirignano, L.; James, R. B.

    2013-10-01

    We observed the electro-migration of Cu, Ag, and Au impurities that exist in positive-ion states in TlBr detectors under electric field strengths typically used for device operation. The migration occurred predominantly through bulk- and specific-channels, which are presumed to be a network of grain and sub-grain boundaries. The electro-migration velocity of Cu, Ag, and Au in TlBr is about 4-8 × 10-8 cm/s at room temperature under an electric field of 500-800 V/mm. The instability and polarization effects of TlBr detectors might well be correlated with the electro-migration of residual impurities in TlBr, which alters the internal electric field over time. The effect may also have been due to migration of the electrode material itself, which would allow for the possibility of a better choice for contact material and for depositing an effective diffusion barrier. From our findings, we suggest that applying our electro-migration technique for purifying material is a promising new way to remove electrically active metallic impurities in TlBr crystals, as well as other materials.

  4. Enhancement of photoluminescence intensity of GaAs with cubic GaS chemical vapor deposited using a structurally designed single-source precursor

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster /(t-Bu)GaS/4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  5. Photoluminescence intensity enhancement of GaAs by vapor-deposited GaS - A rational approach to surface passivation

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip P.; Hepp, Aloysius F.; Power, Michael B.; Macinnes, Andrew N.; Barron, Andrew R.

    1993-01-01

    A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster (/t-Bu/GaS)4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally-characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

  6. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  7. Localization behavior at bound Bi complex states in GaA s 1 - x B i x

    DOE PAGES

    Alberi, K.; Christian, T. M.; Fluegel, B.; ...

    2017-07-01

    While bismuth-related states are known to localize carriers in GaAs 1-xBi x alloys, the localization behavior of distinct Bi pair, triplet and cluster states bound above the valence band is less well understood. We probe localization at three different Bi complex states in dilute GaAs 1-xBi x alloys using magneto-photoluminescence and time-resolved photoluminescence spectroscopy. The mass of electrons Coulomb-bound to holes trapped at Bi pair states is found to increase relative to the average electron mass in the alloy. This increase is attributed to enhanced local compressive strain in the immediate vicinity of the pairs. The dependence of energy transfermore » between these states on composition is also explored.« less

  8. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  9. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  10. Performance of the QWIP Focal Plane Arrays for NASA's Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Waczynski, A.; La, A.; Sundaram, M.; Costard, E.; Jhabvala, C.; Kan, E.; Kahle, D.; Foltz, R.; hide

    2011-01-01

    The focal plane assembly for the Thermal Infrared Sensor (TIRS) instrument on NASA's Landsat Data Continuity Mission (LDCM) consists of three 512 x 640 GaAs Quantum Well Infrared Photodetector (QWIP) arrays. The three arrays are precisely mounted and aligned on a silicon carrier substrate to provide a continuous viewing swath of 1850 pixels in two spectral bands defined by filters placed in close proximity to the detector surfaces. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). QWIP arrays were evaluated from four laboratories; QmagiQ, (Nashua, NH), Army Research Laboratory, (Adelphi, MD}, NASA/ Goddard Space Flight Center, (Greenbelt, MD) and Thales, (Palaiseau, France). All were found to be suitable. The final discriminating parameter was the spectral uniformity of individual pixels relative to each other. The performance of the QWIP arrays and the fully assembled, NASA flight-qualified, focal plane assembly will be reviewed. An overview of the focal plane assembly including the construction and test requirements of the focal plane will also be described.

  11. Highly tunable quantum Hall far-infrared photodetector by use of GaAs/Al{sub x}Ga{sub 1−x}As-graphene composite material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chiu-Chun; Ling, D. C.; Chi, C. C.

    2014-11-03

    We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1−x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27–102 cm{sup −1} with a bias voltage less than −1 V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse.more » Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.« less

  12. Tunnel injection transit-time diodes for W-band power generation

    NASA Technical Reports Server (NTRS)

    Kidner, C.; Eisele, H.; Haddad, G. I.

    1992-01-01

    GaAs p(+ +)n(+)n(-)n(+) single-drift tunnel injection transit-time (TUNNETT) diodes for W-band operation have been successfully designed and tested. An output power of 32 mW at 93.5 GHz with a dc to RF conversion efficiency of 2.6 percent was obtained. The oscillations have a clean spectrum in a conventional waveguide cavity.

  13. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  14. Infrared-sensitive photocathode

    DOEpatents

    Mariella, Jr., Raymond P.; Cooper, Gregory A.

    1995-01-01

    A single-crystal, multi-layer device incorporating an IR absorbing layer that is compositionally different from the Ga.sub.x Al.sub.1-x Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga.sub.w In.sub.y Al.sub.1-y-w Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga.sub.x Al.sub.1-x Sb, from which they are ejected into vacuum. Because the band alignments of Ga.sub.x Al.sub.1-x Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 .mu.m to at least 10 .mu.m.

  15. Energy band-gap calculations of short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Yi-hong; Fujita, Shizuo; Fujita, Shigeo

    1990-01-01

    We report on the calculations of energy band gaps based on the semiempirical tight-binding model for short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices (SLSs). During the calculation, much attention has been paid to the modeling of strain effect. It is found that (ZnTe)m(ZnSe)n superlattices grown on InAs, InP, and GaAs substrates show very different electronic properties from each other, which is consistent with experimental results now available. Assuming that the emission observed for (ZnTe)m(ZnSe)n SLS originates from intrinsic luminescence, we obtain an unstrained valence-band offset of 1.136±0.1 eV for this superlattice. On the other hand, the band gap of (ZnS)m(ZnSe)n superlattice grown coherently on GaP is found to exhibit a much stronger structure dependence than that grown coherently on GaAs. The difference of energy gap between superlattice with equal monolayers (m=n) and the corresponding alloy with equal chalcogenide composition is also discussed.

  16. Infrared-sensitive photocathode

    DOEpatents

    Mariella, R.P. Jr.; Cooper, G.A.

    1995-04-04

    A single-crystal, multi-layer device is described incorporating an IR absorbing layer that is compositionally different from the Ga{sub x}Al{sub 1{minus}x}Sb layer which acts as the electron emitter. Many different IR absorbing layers can be envisioned for use in this embodiment, limited only by the ability to grow quality material on a chosen substrate. A non-exclusive list of possible IR absorbing layers would include GaSb, InAs and InAs/Ga{sub w}In{sub y}Al{sub 1{minus}y{minus}w}Sb superlattices. The absorption of the IR photon excites an electron into the conduction band of the IR absorber. An externally applied electric field then transports electrons from the conduction band of the absorber into the conduction band of the Ga{sub x}Al{sub 1{minus}x}Sb, from which they are ejected into vacuum. Because the band alignments of Ga{sub x}Al{sub 1{minus}x}Sb can be made the same as that of GaAs, emitting efficiencies comparable to GaAs photocathodes are obtainable. The present invention provides a photocathode that is responsive to wavelengths within the range of 0.9 {mu}m to at least 10 {mu}m. 9 figures.

  17. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol.

    PubMed

    Xu, Qun; Tan, Shane; Petrova, Katya

    2016-01-25

    The European Pharmacopeia (EP) metoprolol impurities M and N are polar, nonchromophoric α-hydroxyamines, which are poorly retained in a conventional reversed-phase chromatographic system and are invisible for UV detection. Impurities M and N are currently analyzed by TLC methods in the EP as specified impurities and in the United States Pharmacopeia-National Formulary (USP-NF) as unspecified impurities. In order to modernize the USP monographs of metoprolol drug substances and related drug products, a hydrophilic interaction chromatography (HILIC) method coupled with a charged aerosol detector (CAD) was explored for the analysis of the two impurities. A comprehensive column screening that covers a variety of HILIC stationary phases (underivatized silica, amide, diol, amino, zwitterionic, polysuccinimide, cyclodextrin, and mixed-mode) and optimization of HPLC conditions led to the identification of a Halo Penta HILIC column (4.6 × 150 mm, 5 μm) and a mobile phase comprising 85% acetonitrile and 15% ammonium formate buffer (100 mM, pH 3.2). Efficient separations of metoprolol, succinic acid, and EP metoprolol impurities M and N were achieved within a short time frame (<8 min). The HILIC-CAD method was subsequently validated per USP validation guidelines with respect to specificity, robustness, linearity, accuracy, and precision, and could be incorporated into the current USP-NF monographs to replace the outdated TLC methods. Furthermore, the developed method was successfully applied to determine organic impurities in metoprolol drug substance (metoprolol succinate) and drug products (metoprolol tartrate injection and metoprolol succinate extended release tablets). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.

    2015-09-01

    Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.

  19. Surface intervalley scattering on GaAs(110): Direct observation with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1989-02-01

    Angle-resolved laser photoemission investigations of the laser excited GaAs(110) surface have revealed a previously unobserved valley of the C3 unoccupied surface band whose minimum is at X¯ in the surface Brillouin zone. Electron population in this valley increases only as a result of scattering from the directly photoexcited valley at Γ¯. With high momentum resolution, we have isolated the dynamic electron population changes at both Γ¯ and X¯ and deduced the scattering time between the two valleys.

  20. The dependence of the wavelength on MBE growth parameters of GaAs quantum dot in AlGaAs NWs on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.

    2017-11-01

    The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.

  1. Narrow energy band gap gallium arsenide nitride semi-conductors and an ion-cut-synthesis method for producing the same

    DOEpatents

    Weng, Xiaojun; Goldman, Rachel S.

    2006-06-06

    A method for forming a semi-conductor material is provided that comprises forming a donor substrate constructed of GaAs, providing a receiver substrate, implanting nitrogen into the donor substrate to form an implanted layer comprising GaAs and nitrogen. The implanted layer is bonded to the receiver substrate and annealed to form GaAsN and nitrogen micro-blisters in the implanted layer. The micro-blisters allow the implanted layer to be cleaved from the donor substrate.

  2. Oxidation of GaAs substrates to enable β-Ga2O3 films for sensors and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Mao, Howard; Alhalaili, Badriyah; Kaya, Ahmet; Dryden, Daniel M.; Woodall, Jerry M.; Islam, M. Saif

    2017-08-01

    A very simple and inexpensive method for growing β-Ga2O3 films by heating GaAs wafers at high temperature in a furnace was found to contribute to large-area, high-quality β-Ga2O3 nanoscale thin films as well as nanowires depending on the growth conditions. We present the material characterization results including the optical band gap, Schottky barrier height with metal (gold), field ionization and photoconductance of β-Ga2O3 film and nanowires.

  3. Effects of impurity adsorption on topological surface states of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Shati, Khaqan; Arshad Farhan, M.; Selva Chandrasekaran, S.; Shim, Ji Hoon; Lee, Geunsik

    2017-08-01

    Electronic structures of Bi2Te3 with adsorption of Rb, In, Ga and Au atoms are studied by using the first-principle method, focusing on the effect of non-magnetic impurities on the topologically protected surface states. Upon monolayer formation, the bulk conduction band is moved down to the Fermi level with a significant Rashba splitting due to n-doping behavior with band modification details depending on the adatom chemistry. Our study shows the robustness of the intrinsic spin-momentum coupled surface band and emergence of a new similar one, which could provide helpful insight for developing novel spintronic devices.

  4. On a direct connection of the transition metal impurity levels to the band edge discontinuities in semiconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy M.; Heinrich, Helmut

    1985-11-01

    Our recent proposal of using the transition metal impurity levels to predict the isovalent heterojunction (HJ) band-edge discontinuities is further discussed. It is shown that for Ga 1-xAl xAs/GaAs heterojunctions most of the recent discontinuity data follow within experimental error the prediction of the ΔE cb: ΔE vb= 0.64:0.36 discontinuity ratio derived from the Fe 2+ level position in Ga 1-xAl xAs compound. Predictions of valence-band discontinuities for the other III-V and II-VI HJ systems are also given.

  5. Energy states, transport, and magnetotransport in diluted magnetic semiconductor (Ga, Mn)As with quantum well InGaAs.

    PubMed

    Shchurova, L Yu; Kulbachinskii, V A

    2011-03-01

    We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.

  6. Multidisciplinary Approach to the Science and Technology of Sub-Micron Electronics.

    DTIC Science & Technology

    1987-03-10

    19densities as high as 3x1O1 2 electrons cm- 2 could be obtained with GaAs doping densities on the order of 3x1O18 cm-3 . Many-body effects are shown to be...heterinterfaces include studies of the effects of paramagnetic impurities and structural disorder at the interface of mismatched Mo-Ni superlattices in Dr...inverted mecelles. The ’caoing’ effect of the inverted micelles ensures a narrow distribution of particle size, and a uniform composition. This

  7. Optoelectronic Devices and Materials

    NASA Astrophysics Data System (ADS)

    Sweeney, Stephen; Adams, Alfred

    Unlike the majority of electronic devices, which are silicon based, optoelectronic devices are predominantly made using III-V semiconductor compounds such as GaAs, InP, GaN and GaSb and their alloys due to their direct band gap. Understanding the properties of these materials has been of vital importance in the development of optoelectronic devices. Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic devices have been produced in their millions, pervading our everyday lives in communications, computing, entertainment, lighting and medicine. It is perhaps their use in optical-fibre communications that has had the greatest impact on humankind, enabling high-quality and inexpensive voice and data transmission across the globe. Optical communications spawned a number of developments in optoelectronics, leading to devices such as vertical-cavity surface-emitting lasers, semiconductor optical amplifiers, optical modulators and avalanche photodiodes. In this chapter we discuss the underlying theory of operation of the most important optoelectronic devices. The influence of carrier-photon interactions is discussed in the context of producing efficient emitters and detectors. Finally we discuss how the semiconductor band structure can be manipulated to enhance device properties using quantum confinement and strain effects, and how the addition of dilute amounts of elements such as nitrogen is having a profound effect on the next generation of optoelectronic devices.

  8. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debehets, J.; Homm, P.; Menghini, M.

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate detector and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-level. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs. This work has been funded by J.D.'s PhD fellowship of the Fund of Scientific Research-Flanders (FWO-V) (Dossier No. 11U4516N). P.H. acknowledges support from Becas Chile-CONICYT. This research was also supported by the FWO Odysseus Program, the Belgian Hercules Stichting with the Project No. Her/08/25 and AKUL/13/19 and the KU Leuven project GOA "Fundamental challenges in Semiconductor Research". The authors would also like to thank Bastiaan Opperdoes and Ludwig Henderix for technical support. The work was supported by the U.S. Department of Energy (USDOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the USDOE under contract DE-AC05-76RL01830.« less

  9. Status of the NOAO evaluation of the Hughes 20x64 Si:As impurity band conduction array. [for ground and space-based astronomy

    NASA Technical Reports Server (NTRS)

    Fowler, A. M.; Joyce, R. R.

    1990-01-01

    The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.

  10. GaAs QWIP Array Containing More Than a Million Pixels

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Choi, K. K.; Gunapala, Sarath

    2005-01-01

    A 1,024 x 1,024-pixel array of quantum-well infrared photodetectors (QWIPs) has been built on a 1.8 x 1.8- cm GaAs chip. In tests, the array was found to perform well in detecting images at wavelengths from 8 to 9 m in operation at temperatures between 60 and 70 K. The largest-format QWIP prior array that performed successfully in tests contained 512 x 640 pixels. There is continuing development effort directed toward satisfying actual and anticipated demands to increase numbers of pixels and pixel sizes in order to increase the imaging resolution of infrared photodetector arrays. A 1,024 x 1,024-pixel and even larger formats have been achieved in the InSb and HgCdTe material systems, but photodetector arrays in these material systems are very expensive and manufactured by fewer than half a dozen large companies. In contrast, GaAs-photodetector-array technology is very mature, and photodetectors in the GaAs material system can be readily manufactured by a wide range of industrial technologists, by universities, and government laboratories. There is much similarity between processing in the GaAs industry and processing in the pervasive silicon industry. With respect to yield and cost, the performance of GaAs technology substantially exceeds that of InSb and HgCdTe technologies. In addition, GaAs detectors can be designed to respond to any portion of the wavelength range from 3 to about 16 micrometers - a feature that is very desirable for infrared imaging. GaAs QWIP arrays, like the present one, have potential for use as imaging sensors in infrared measuring instruments, infrared medical imaging systems, and infrared cameras.

  11. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Adams, J. S.; Arsenovic, P.; Ayers, T.; Chiao, M. P.; DiPirro, M. J.; Eckart, M. E.; Fujimoto, R.; Kazeva, J. D.; Kelley, R. L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that make the SXS a powerful x-ray spectrometer also make it sensitive to the entire electromagnetic band. If characterized as a bolometer, it would have a noise equivalent power (NEP) of < 4x10(exp -18) W/(Hz)0.5. Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs are addressed by a series of five thin-film radiation blocking filters that block long-wavelength radiation while minimizing x-ray attenuation. The SXS aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three warmer filters also were equipped with thermometers and heaters for decontamination.

  12. Bismuth interstitial impurities and the optical properties of GaP 1- x - yBi xN y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Theresa M.; Beaton, Daniel A.; Perkins, John D.

    Two distinctive regimes of behavior are observed from GaP 1-x-y Bi x N y alloys with x < 2.4%, y < 3.4% grown by molecular beam epitaxy. These regimes are correlated with abundant bismuth interstitial impurities that are encouraged or suppressed according to the sample growth temperature, with up to 55% of incorporated bismuth located interstitially. When bismuth interstitials are present, radiative recombination arises at near-band-edge localized states rather than from impurity bands and deep state luminescence. Finally, this change demonstrates a novel strategy for controlling luminescence in isoelectronic semiconductor alloys and is attributed to a disruption of carrier transfermore » processes.« less

  13. Bismuth interstitial impurities and the optical properties of GaP 1- x - yBi xN y

    DOE PAGES

    Christian, Theresa M.; Beaton, Daniel A.; Perkins, John D.; ...

    2017-10-10

    Two distinctive regimes of behavior are observed from GaP 1-x-y Bi x N y alloys with x < 2.4%, y < 3.4% grown by molecular beam epitaxy. These regimes are correlated with abundant bismuth interstitial impurities that are encouraged or suppressed according to the sample growth temperature, with up to 55% of incorporated bismuth located interstitially. When bismuth interstitials are present, radiative recombination arises at near-band-edge localized states rather than from impurity bands and deep state luminescence. Finally, this change demonstrates a novel strategy for controlling luminescence in isoelectronic semiconductor alloys and is attributed to a disruption of carrier transfermore » processes.« less

  14. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of other impurities, such as C, Si, H, O, Be, Mn, Cd, etc., on the luminescence properties of GaN are also reviewed. Further, atypical luminescence lines which are tentatively attributed to the surface and structural defects are discussed. The effect of surfaces and surface preparation, particularly wet and dry etching, exposure to UV light in vacuum or controlled gas ambient, annealing, and ion implantation on the characteristics of the defect-related emissions is described.

  15. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  16. Anomalous structural disorder and distortion in metal-to-insulator-transition Ti{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, In-Hui; Jin, Zhenlan; Park, Chang-In

    2016-01-07

    Mott proposed that impurity bands in corundum-symmetry Ti{sub 2}O{sub 3} at high temperatures caused a collapse in the bandgap. However, the origin of the impurity bands has not yet been clarified. We examine the local structural properties of metal-to-insulator-transition Ti{sub 2}O{sub 3} using in-situ x-ray absorption fine structure (XAFS) measurements at the Ti K edge in the temperature range from 288 to 739 K. The Ti{sub 2}O{sub 3} powder is synthesized by using a chemical reaction method. X-ray diffraction (XRD) measurements from Ti{sub 2}O{sub 3} with a Rietveld refinement demonstrate a single-phased R-3c symmetry without additional distortion. Extended-XAFS combined with XRDmore » reveals a zigzag patterned Ti position and an anomalous structural disorder in Ti-Ti pairs, accompanied by a bond length expansion of the Ti-Ti pairs along the c-axis for T > 450 K. The local structural distortion and disorder of the Ti atoms would induce impurity levels in the band gap between the Ti 3d a{sub 1g} and e{sub g}{sup π} bands, resulting in a collapse of the band gap for T > 450 K.« less

  17. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  18. Temperature dependence of the band gap of GaAsSb epilayers

    NASA Astrophysics Data System (ADS)

    Lukic-Zrnic, R.; Gorman, B. P.; Cottier, R. J.; Golding, T. D.; Littler, C. L.; Norman, A. G.

    2002-12-01

    We have optically characterized a series of GaAs1-xSbx epilayers (0.19

  19. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  20. Orientation and temperature dependent adsorption of H 2S on GaAs: Valence band photoemission

    NASA Astrophysics Data System (ADS)

    Ranke, W.; Kuhr, H. J.; Finster, J.

    A cylindrically shaped GaAs single crystal was used to study the adsorption of H 2S on the six inequivalent orientations (001), (113), (111), (110), (111) and (113) by angle resolved valence band photoelectron spectroscopy and surface dipole measurements. Adsorption at 150 K on the surface prepared by molecular beam epitaxy (MBE) yields similar adsorbate induced emission on all orientations which were ascribed to SH radicals. On (110), where preferential adsorption occurs additional features from molecular H 2S are observed. The adsorbate spectra at 720 K are ascribed to atomic sulphur. On the surface prepared by ion bombardment and annealing, defect enhanced adsorption occurs in the range (111)-(113). The adsorbate spectra are very similar to those on the MBE surface at 720 K. Thus, no new species are adsorbed on defects but only sticking probability and penetration capability are increased.

  1. Design and evaluation of a GaAs MMIC X-band active RC quadrature power divider

    NASA Astrophysics Data System (ADS)

    Henkus, J. C.

    1991-03-01

    The design and evaluation of a GaAs MMIC (Microwave Monolithic Integrated Circuit) X-band active RC Quadrature Power Divider (QPD) is addressed. This QPD can be used as part of a vector modulator. The chosen QPD topology consists of two active first order RC all pass networks and was converted into an MMIC design. The design is completely symmetrical except for two key resistors. On-wafer S parameter measurements were carried out; a special probe head configuration was composed in order to avoid measurement accuracy degradation associated with the reversal of the active output of the QPD. The measured nominal RF behavior of the chips complies with the simulated behavior to a very high degree. The optical, DC, and RF yield is very large (97, 83, and 74 percent respectively). A modification to Takashi's all pass network was proposed which offers gain/frequency slope control and compensation ability.

  2. Growth and Characterisation of GaAs/AlGaAs Core-shell Nanowires for Optoelectronic Device Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nian

    III-V semiconductor nanowires have been investigated as key components for future electronic and optoelectronic devices and systems due to their direct band gap and high electron mobility. Amongst the III-V semiconductors, the planar GaAs material system has been extensively studied and used in industries. Accordingly, GaAs nanowires are the prime candidates for nano-scale devices. However, the electronic performance of GaAs nanowires has yet to match that of state-of-the-art planar GaAs devices. The present deficiency of GaAs nanowires is typically attributed to the large surface-to- volume ratio and the tendency for non-radiative recombination centres to form at the surface. The favoured solution of this problem is by coating GaAs nanowires with AlGaAs shells, which replaces the GaAs surface with GaAs/AlGaAs interface. This thesis presents a systematic study of GaAs/AlGaAs core-shell nanowires grown by metal organic chemical vapour deposition (MOCVD), including understanding the growth, and characterisation of their structural and optical properties. The structures of the nanowires were mainly studied by scanning electron microscopy and transmis- sion electron microscopy (TEM). A procedure of microtomy was developed to prepare the cross-sectional samples for the TEM studies. The optical properties were charac- terised by photoluminescence (PL) spectroscopy. Carrier lifetimes were measured by time-resolved PL. The growth of AlGaAs shell was optimised to obtain the best optical properties, e.g. the strongest PL emission and the longest minority carrier lifetimes. (Abstract shortened by ProQuest.).

  3. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-04-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  4. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-06-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  5. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces.

    PubMed

    Aizawa, Masato; Buriak, Jillian M

    2005-06-29

    Patterning of semiconductor surfaces is an area of intense interest, not only for technological applications, such as molecular electronics, sensing, cellular recognition, and others, but also for fundamental understanding of surface reactivity, general control over surface properties, and development of new surface reactivity. In this communication, we describe the use of self-assembling block copolymers to direct semiconductor surface chemistry in a spatially defined manner, on the nanoscale. The proof-of-principle class of reactions evaluated here is galvanic displacement, in which a metal ion, M+, is reduced to M0 by the semiconductor, including Si, Ge, InP, and GaAs. The block copolymer chosen has a polypyridine block which binds to the metal ions and brings them into close proximity with the surface, at which point they undergo reaction; the pattern of resulting surface chemistry, therefore, mirrors the nanoscale structure of the parent block copolymer. This chemistry has the added advantage of forming metal nanostructures that result in an alloy or intermetallic at the interface, leading to strongly bound metal nanoparticles that may have interesting electronic properties. This approach has been shown to be very general, functioning on a variety of semiconductor substrates for both silver and gold deposition, and is being extended to organic and inorganic reactions on a variety of conducting, semiconducting, and insulating substrates.

  6. The barrier to misfit dislocation glide in continuous, strained, epitaxial layers on patterned substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, G.P.; Ast, D.G.; Anderson, T.J.

    1993-09-01

    In a previous report [G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett. [bold 58], 2517 (1991)] we demonstrated that the motion of misfit dislocations in InGaAs, grown by organometallic vapor phase epitaxy on patterned GaAs substrates, can be impeded even if the strained epitaxial layer is continuous. Trenches etched into GaAs before growth are known to act as a barrier to misfit dislocation propagation [E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. [bold 65], 2220 (1989)]more » when those trenches create discontinuities in the epitaxial layers; but even shallow trenches, with continuous strained layers following the surface features, can act as barriers. By considering the strain energy required to change the length of the dislocation glide segments that stretch from the interface to the free surface, a simple model is developed that explains the major features of the unique blocking action observed at the trench edges. The trench wall angle is found to be an important parameter in determining whether or not a trench will block dislocation glide. The predicted blocking angles are consistent with observations made on continuous 300 and 600 nm thick In[sub 0.04]Ga[sub 0.96]As films on patterned GaAs. Based on the model, a structure is proposed that may be used as a filter to yield misfit dislocations with identical Burgers vectors or dislocations which slip in only one glide plane.« less

  7. Spin relaxation in n-type GaAs quantum wells from a fully microscopic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, M. W.; Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2007-01-15

    We perform a full microscopic investigation on the spin relaxation in n-type (001) GaAs quantum wells with an Al{sub 0.4}Ga{sub 0.6}As barrier due to the D'yakonov-Perel' mechanism from nearly 20 K to room temperature by constructing and numerically solving the kinetic spin Bloch equations. We consider all the relevant scattering such as the electron-acoustic-phonon, the electron-longitudinal-optical-phonon, the electron-nonmagnetic-impurity, and the electron-electron Coulomb scattering to the spin relaxation. The spin relaxation times calculated from our theory with a fitting spin splitting parameter are in good agreement with the experimental data by Ohno et al. [Physica E (Amsterdam) 6, 817 (2000)] overmore » the whole temperature regime (from 20 to 300 K). The value of the fitted spin splitting parameter agrees with many experiments and theoretical calculations. We further show the temperature dependence of the spin relaxation time under various conditions such as electron density, impurity density, and well width. We predict a peak solely due to the Coulomb scattering in the spin relaxation time at low temperature (<50 K) in samples with low electron density (e.g., density less than 1x10{sup 11} cm{sup -2}) but high mobility. This peak disappears in samples with high electron density (e.g., 2x10{sup 11} cm{sup -2}) and/or low mobility. The hot-electron spin kinetics at low temperature is also addressed with many features quite different from the high-temperature case predicted.« less

  8. Application of galvanomagnetic measurements in temperature range 70-300 K to MBE GaAs layers characterization

    NASA Astrophysics Data System (ADS)

    Wolkenberg, Andrzej; Przeslawski, Tomasz

    1996-04-01

    Galvanomagnetic measurements were performed on the square shaped samples after Van der Pauw and on the Hall bar at low electric fields app. 1.5 V/cm and magnetic induction app. 6 kG in order to make a comparison between the theoretical and experimental results of the temperature dependence of mobility and resistivity from 70 K to 300 K. A calculation method was obtained of the drift mobility and the Hall mobility in which the scatterings are applied: on ionized impurities, on polar optical phonons, on acoustic phonons (deformation potential), on acoustic phonons (piezoelectric potential) and on dislocations. The elaborated method transformed to a computer program allows us to fit experimental values of the resistivity and the Hall mobility to those calculated. The fitting procedure makes it possible to characterize the quality of the n-type GaAs MBE layer, i.e. the net electron concentration, whole ionized impurities concentration and dislocation density after Read space charge cylinders model. The calculations together with the measurements allow us to obtain compensation ratio value in the layer, too. The influence of the epitaxial layer thickness on layers measurements accuracy in the case of Van der Pauw square probe was investigated. It was stated that in the layers under 3 micrometer the bulk properties are strongly influenced by both surfaces. The results of measurements of the same layer using the Van der Pauw and the Hall bar structure were compared. It was stated that the Hall bar structure only could be used to obtain proper measurements results.

  9. Operation and performance of new NIR detectors from SELEX

    NASA Astrophysics Data System (ADS)

    Atkinson, D.; Bezawada, N.; Hipwood, L. G.; Shorrocks, N.; Milne, H.

    2012-07-01

    The European Space Agency (ESA) has funded SELEX Galileo, Southampton, UK to develop large format near infrared (NIR) detectors for its future space and ground based programmes. The UKATC has worked in collaboration with SELEX Galileo to test and characterise the new detectors produced during phase-1 of the development. In order to demonstrate the detector material performance, the HgCdTe (MCT) detector diodes (grown on GaAs substrate through MOVPE process in small 320×256, 24μm pixel format) are hybridised to the existing SELEX Galileo SWALLOW CMOS readout chip. The substrate removed and MCT thinned detector arrays were then tested and evaluated at the UKATC following screening tests at SELEX. This paper briefly describes the test setup, the operational aspects of the readout multiplexer and presents the performance parameters of the detector arrays including: conversion gain, detector dark current, read noise, linearity, quantum efficiency and persistence for various detector temperatures between 80K and 140K.

  10. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.

  11. Deep level defects in dilute GaAsBi alloys grown under intense UV illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Tarun, Marianne; Beaton, D. A.

    2016-07-21

    Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less

  12. Magnetic interactions at Ce impurities in REMn2Ge2 (RE = La, Ce, Pr, Nd) compounds

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Burimova, A. N.; Carbonari, A. W.

    2018-05-01

    In the work reported in this paper, the temperature dependence of the magnetic hyperfine field (Bh f) at 140Ce nuclei replacing Pr atoms in PrMn2Ge2 compound was measured by the perturbed angular correlation technique to complete the sequence of measurements in REMn2Ge2 (RE = La, Ce, Pr, Nd). Results show an anomalous behavior different from the expected Brillouin curve. A model was used to fit the data showing that the Ce impurity contribution (Bhfimp) to Bhf is negative for NdMn2Ge2 below 210 K. The impurity contribution (Bhfimp) at 0 K for all compounds is much smaller than that for the free Ce3+, showing that the 4f band of Ce is more likely highly hybridized with 5d band of the host. Results show that direction of the localized magnetic moment at Mn atoms strongly affects the exchange interaction at Ce impurities.

  13. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  14. Characterization of PVT Grown ZnSe by Low Temperature Photoluminescence

    NASA Technical Reports Server (NTRS)

    Wang, Ling Jun

    1998-01-01

    ZnSe, a II-VI semiconductor with a large direct band gap of 2.7 eV at room temperature and 2.82 eV at 10 K, is considered a promising material for optoelectric applications in the blue-green region of the spectrum. Photoemitting devices and diode laser action has been demonstrated as a result of decades of research. A key issue in the development of II-VI semiconductors is the control of the concentration of the various impurities. The II-VI semiconductors seem to defy the effort of high level doping due to the well known self compensation of the donors and the acceptors. A good understanding of roles of the impurities and the behavior of the various intrinsic defects such as vacancies, interstitials and their complexes with impurities is necessary in the development and application of these materials. Persistent impurities such as Li and Cu have long played a central role in the photoelectronic properties of many II-VI compounds, particularly ZnSe. The shallow centers which may promote useful electrical conductivity are of particular interest. They contribute the richly structured near gap edge luminescence, containing weak to moderate phonon coupling and therefore very accessible information about the energy states of the different centers. Significance of those residual impurities which may contribute such centers in II-VI semiconductors must be fully appreciated before improved control of their electrical properties may be possible. Low temperature photoluminescence spectroscopy is an important source of information and a useful tool of characterization of II-VI semiconductors such as ZnSe. The low temperature photoluminescence spectrum of a ZnSe single crystal typically consists of a broad band emission peaking at 2.34 eV, known as the Cu-green band, and some very sharp lines near the band gap. These bands and lines are used to identify the impurity ingredients and the defects. The assessment of the quality of the crystal based on the photoluminescence analysis is then possible. In this report we present the characterization of a ZnSe single crystal as grown by the physical vapor transport method, with special intention paid to the possible effects of the gravitational field to the growth of the crystal.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Benjamin; Stuart, David; Nelson, Harry

    The R&D efforts of the UCSB Detector R&D program in the 2015--2017 period are reported. These were to develop a liquid scintillator based detector to be used for characterizing radioactive impurities in samples for rapid and effective screening of low background materials for direct dark matter detection experiments; complete engineering and simulation work investigating the feasibility of constructing large detectors in salt caverns; and provide engineering innovation for development of new ideas.

  16. Effect of 60Co γ-irradiation on the nature of electronic transport in heavily doped n-type GaN based Schottky photodetectors

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Porwal, S.; Kher, S.; Sharma, T. K.

    2018-04-01

    GaN Schottky photodetectors are fabricated on heavily doped n-type GaN epitaxial layers grown by the hydride vapour phase epitaxy technique. The effect of 60Co γ-radiation on the electronic transport in GaN epilayers and Schottky detectors is studied. In contrast to earlier observations, a steady rise in the carrier concentration with increasing irradiation dose is clearly seen. By considering a two layer model, the contribution of interfacial dislocations in carrier transport is isolated from that of the bulk layer for both the pristine and irradiated samples. The bulk carrier concentration is fitted by using the charge balance equation which indicates that no new electrically active defects are generated by γ-radiation even at 500 kGy dose. The irradiation induced rise in the bulk carrier concentration is attributed to the activation of native Si impurities that are already present in an electrically inert form in the pristine sample. Further, the rise in interfacial contribution in the carrier concentration is governed by the enhanced rate of formation of nitrogen vacancies by irradiation, which leads to a larger diffusion of oxygen impurities. A large value of the characteristic tunnelling energy for both the pristine and irradiated Au/Ni/GaN Schottky devices confirms that the dislocation-assisted tunnelling dominates the low temperature current transport even after irradiation. The advantage of higher displacement energy and larger bandgap of GaN as compared to GaAs is evident from the change in leakage current after irradiation. Further, a fast recovery of the photoresponse of GaN photodetectors after irradiation signifies their compatibility to operate in high radiation zones. The results presented here are found to be crucial in understanding the interaction of 60Co γ-irradiation with n+-GaN epilayers.

  17. Direct detection of sub-GeV dark matter with scintillating targets

    DOE PAGES

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea; ...

    2017-07-28

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  18. Direct detection of sub-GeV dark matter with scintillating targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  19. GaAs VLSI technology and circuit elements for DSP

    NASA Astrophysics Data System (ADS)

    Mikkelson, James M.

    1990-10-01

    Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs

  20. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  1. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al{sub 2}O{sub 3}/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, T., E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, N.; Osada, T.

    2014-07-21

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap ofmore » less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.« less

  2. GaAsSb bandgap, surface fermi level, and surface state density studied by photoreflectance modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Tsai, J. T.; Su, I. C.; Lin, H. C.; Lu, Y. T.; Chiu, P. C.; Chyi, J. I.

    2012-05-01

    The bandgap, surface Fermi level, and surface state density of a series of GaAs1-xSbx surface intrinsic-n+ structures with GaAs as substrate are determined for various Sb mole fractions x by the photoreflectance modulation spectroscopy. The dependence of the bandgap on the mole composition x is in good agreement with previous measurements as well as predictions calculated using the dielectric model of Van Vechten and Bergstresser in Phys. Rev. B 1, 3551 (1970). For a particular composition x, the surface Fermi level is always strongly pinned within the bandgap of GaAs1-xSbx and we find its variation with composition x is well described by a function EF = 0.70 - 0.192 x for 0 ≦ x ≦ 0.35, a result which is notably different from that reported by Chouaib et al. [Appl. Phys. Lett. 93, 041913 (2008)]. Our results suggest that the surface Fermi level is pinned at the midgap of GaAs and near the valence band of the GaSb.

  3. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kelley, Richard L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The properties that make the SXS array a powerful x-ray spectrometer also make it sensitive to photons from the entire electromagnetic band, and particles as well. If characterized as a bolometer, it would have a noise equivalent power (NEP) of less than 4x10(exp -18) W/(Hz)0.5(exp 0.5). Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. Both of these needs are addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that block long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three outer filters also have been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  4. Design, implementation, and performance of the Astro-H soft x-ray spectrometer aperture assembly and blocking filters

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  5. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  6. Gallium arsenide (GaAs) (001) after sublimation of arsenic (As) thin-film cap, by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Lyubinetsky, Andre; Baer, Don R.

    2016-12-01

    Survey and high energy resolution spectra are reported for MBE grown GaAs (001) that had been capped with As. The As cap was removed by heating in situ prior to analysis. The current data expands upon the spectral regions previously reported in Surface Science Spectra. High energy resolution spectral features reported include: 2p, 3s, 3p, 3d, and L3M45M45 peaks for As; 2p, 3s, 3p, 3d, and L3M45M45 peaks for Ga; and the valance band region.

  7. Electron mass in dilute nitrides and its anomalous dependence on hydrostatic pressure.

    PubMed

    Pettinari, G; Polimeni, A; Masia, F; Trotta, R; Felici, M; Capizzi, M; Niebling, T; Stolz, W; Klar, P J

    2007-04-06

    The dependence of the electron mass on hydrostatic pressure P in N-diluted GaAs1-xNx (x=0.10% and 0.21%) is investigated by magnetophotoluminescence. Exceedingly large fluctuations (up to 60%/kbar) in the electron mass with increasing P are found. These originate from a pressure-driven tuning of the hybridization degree between the conduction band minimum and specific nitrogen-related states. Present results suggest a hierarchy between different nitrogen complexes as regards the extent of the perturbation these complexes exert on the electronic properties of the GaAs host.

  8. Ultra-Low-Noise W-Band MMIC Detector Modules

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Van Vinkle, Dan; Tantawi, Sami; Fox, John; Church, Sarah E.; Lau, Jusy M.; Sieth, Matthew M.; Voll, Patricia E.; hide

    2010-01-01

    A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes.

  9. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L.; Ambrose, W. Patrick; Demas, James N.; Goodwin, Peter M.; Johnson, Mitchell E.; Keller, Richard A.; Petty, Jeffrey T.; Schecker, Jay A.; Wu, Ming

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  10. Native point defects in MoS2 and their influences on optical properties by first principles calculations

    NASA Astrophysics Data System (ADS)

    Saha, Ashim Kumar; Yoshiya, Masato

    2018-03-01

    Stability of native point defect species and optical properties are quantitatively examined through first principles calculations in order to identify possible native point defect species in MoS2 and its influences on electronic structures and resultant optical properties. Possible native point defect species are identified as functions of thermodynamic environment and location of Fermi-level in MoS2. It is found that sulphur vacancies can be introduced more easily than other point defect species which will create impurity levels both in bandgap and in valence band. Additionally, antisite Mo and/or Mo vacancies can be created depending on chemical potential of sulphur, both of which will create impurity levels in bandgap and in valence band. Those impurity levels result in pronounced photon absorption in visible light region, though each of these point defects alone has limited impact on the optical properties unless their concentration remained low. Thus, attention must be paid when intentional impurity doping is made to MoS2 to avoid unwanted modification of optical properties of MoS2. Those impurity may enable further exploitation of photovoltaic energy conversion at longer wavelength.

  11. RF subsystem design for microwave communication receivers

    NASA Astrophysics Data System (ADS)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  12. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  13. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid.

    PubMed

    Córdova-Noboa, H A; Oviedo-Rondón, E O; Sarsour, A H; Barnes, J; Ferzola, P; Rademacher-Heilshorn, M; Braun, U

    2018-04-13

    One experiment was conducted to evaluate the effects of guanidinoacetic acid (GAA) supplementation in broilers fed corn or sorghum-based diets on live performance, carcass and cut up yields, meat quality, and pectoral myopathies. The treatments consisted of corn or sorghum-based diets with or without the addition of GAA (600 g/ton). A total of 800 one-d-old male Ross 708 broiler chicks were randomly placed in 40 floor pens with 10 replicates (20 birds per pen) per each of the four treatments. At hatch, 14, 35, and 50 d, BW and feed intake were recorded. BW gain and FCR were calculated at the end of each phase. Four broilers per pen were selected and slaughtered at 51d and 55d of age to determine carcass and cut up yields, meat quality and myopathies (spaghetti muscle, white striping, and wooden breast) severity in the Pectoralis major. Data were analyzed as a randomized complete block design in a 2 × 2 factorial arrangement with grain type and GAA supplementation as main effects. At 50 d, diets containing GAA improved (P < 0.01) FCR (1.682 vs. 1.724 g: g) independently of grain type. At 55 d, broilers fed corn diets with GAA had higher breast meat yield (P < 0.05) compared to corn without GAA. Drip and cook loss, and shear force (Warner-Bratzler) were not affected (P > 0.05) by GAA supplementation at any slaughter ages. However, GAA decreased (P < 0.05) the ultimate pH at 51 and 55 d in breast meat samples compared to unsupplemented diets. At 51 d, broilers supplemented with GAA had double (P < 0.05) breast meat fillets without wooden breast (score 1) compared with broilers fed non-supplemented diets, therefore reducing the severity of this myopathy. In conclusion, GAA supplementation improved broiler live performance in broilers raised up to 50 d independently of grain source, increased breast meat yield in corn-based diets and reduced the severity of wooden breast myopathy.

  14. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  15. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2013-11-01

    In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.

  17. Superconductivity in compensated and uncompensated semiconductors.

    PubMed

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature T c around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  18. Superconductivity in compensated and uncompensated semiconductors

    PubMed Central

    Yanase, Youichi; Yorozu, Naoyuki

    2008-01-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si. PMID:27878018

  19. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  20. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less

  1. Recent Developments and Applications of Quantum Well Infrared Photodetector Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2000-01-01

    There are many applications that require long wavelength, large, uniform, reproducible, low cost, stable, and radiation-hard infrared (IR) focal plane arrays (FPAs). For example, the absorption lines of many gas molecules, such as ozone, water, carbon monoxide, carbon dioxide, and nitrous oxide occur in the wavelength region from 3 to 18 micron. Thus, IR imaging systems that operate in the long wavelength IR (LWIR) region (6 - 18 micron) are required in many space borne applications such as monitoring the global atmospheric temperature profiles, relative humidity profiles, cloud characteristics, and the distribution of minor constituents in the atmosphere which are being planned for future NASA Earth and planetary remote sensing systems. Due to higher radiation hardness, lower 1/f noise, and larger array size the GaAs based Quantum Well Infrared Photodetector (QWIP) FPAs are very attractive for such space borne applications compared to intrinsic narrow band gap detector arrays. In this presentation we will discuss the optimization of the detector design, material growth and processing that has culminated in realization of large format long-wavelength QWIP FPAs, portable and miniature LWIR cameras, holding forth great promise for myriad applications in 6-18 micron wavelength range in science, medicine, defense and industry. In addition, we will present some system demonstrations using broadband, two-color, and high quantum efficiency long-wavelength QWIP FPAs.

  2. Analysis of Mesa Dislocation Gettering in HgCdTe/CdTe/Si(211) by Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Stoltz, A. J.; Benson, J. D.; Smith, P.; Lennon, C. M.; Almeida, L. A.; Farrell, S.; Wijewarnasuriya, P. S.; Brill, G.; Chen, Y.; Salmon, M.; Zu, J.

    2013-11-01

    Due to its strong infrared absorption and variable band-gap, HgCdTe is the ideal detector material for high-performance infrared focal-plane arrays (IRFPAs). Next-generation IRFPAs will utilize dual-color high-definition formats on large-area substrates such as Si or GaAs. However, heteroepitaxial growth on these substrates is plagued by high densities of lattice-mismatch-induced threading dislocations (TDs) that ultimately reduce IRFPA operability. Previously we demonstrated a postgrowth technique with the potential to eliminate or move TDs such that they have less impact on detector operability. In this technique, highly reticulated mesa structures are produced in as-grown HgCdTe epilayers, and then subjected to thermal cycle annealing. To fully exploit this technique, better understanding of the inherent mechanism is required. In this work, we employ scanning transmission electron microscopy (STEM) analysis of HgCdTe/CdTe/Si(211) samples prepared by focused ion beam milling. A key factor is the use of defect-decorated samples, which allows for a correlation of etch pits observed on the surface with underlying dislocation segments viewed in cross-section STEM images. We perform an analysis of these dislocations in terms of the general distribution, density, and mobility at various locations within the mesa structures. Based on our observations, we suggest factors that contribute to the underlying mechanism for dislocation gettering.

  3. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  4. Observation of spin-polarized photoconductivity in (Ga,Mn)As/GaAs heterojunction without magnetic field

    PubMed Central

    Wu, Qing; Liu, Yu; Wang, Hailong; Li, Yuan; Huang, Wei; Zhao, Jianhua; Chen, Yonghai

    2017-01-01

    In the absent of magnetic field, we have observed the anisotropic spin polarization degree of photoconduction (SPD-PC) in (Ga,Mn)As/GaAs heterojunction. We think three kinds of mechanisms contribute to the magnetic related signal, (i) (Ga,Mn)As self-producing due to the valence band polarization, (ii) unequal intensity of left and right circularly polarized light reaching to GaAs layer to excite unequal spin polarized carriers in GaAs layer, and (iii) (Ga,Mn)As as the spin filter layer for spin transport from GaAs to (Ga,Mn)As. Different from the previous experiments, the influence coming from the Zeeman splitting induced by an external magnetic field can be avoided here. While temperature dependence experiment indicates that the SPD-PC is mixed with the magnetic uncorrelated signals, which may come from current induced spin polarization. PMID:28084437

  5. Method and apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-10-27

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  6. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-11-10

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  7. Method and apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L.; Ambrose, W. Patrick; Demas, James N.; Goodwin, Peter M.; Johnson, Mitchell E.; Keller, Richard A.; Petty, Jeffrey T.; Schecker, Jay A.; Wu, Ming

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  8. The threshold sensitivity of the molecular condensation nuclei detector

    NASA Astrophysics Data System (ADS)

    Kuptsov, Vladimir D.; Katelevsky, Vadim Y.; Valyukhov, Vladimir P.

    2015-05-01

    Molecular condensation nuclei (MCN) method is used in production engineering and process monitoring and relates to optical metrology methods of measuring the concentrations of various contaminants in the environment. Ultra high sensitivity of MCN method to a class of substances is determined by measuring the optical scattering aerosol particles, at the centers of which are located the detectable impurities molecules. This article investigates the influence of MCN manifestations coefficient (ratio of the concentration of aerosol particles to the concentration of molecules detectable impurities) on the sensitivity of the MCN detector. The MCN method is based on the application of various physicochemical processes to the flow of a gas containing impurities. As a result of these processes aerosol particle that are about 106 times larger than the original molecule of the impurity are produced. The ability of the aerosol particle to scatter incident light also increases ~1014 ÷1016 times compared with the original molecule and the aerosol particle with the molecule of the impurity in the center is easily detected by light scattering inside a photometer. By measuring of the light scattering intensity is determined concentration of chemical impurities in the air. An application nephelometric optical metrology scheme of light scattering by aerosol particles ensures stable operation of reliable and flexible measuring systems. Light scattering by aerosol particles is calculated on the basis of the Mie's theory as aerosol particle sizes comparable to the wavelength of the optical radiation. The experimental results are shown for detectable impurities of metal carbonyls. Gas analyzers based on the MCN method find application in industries with the possibility of highly toxic emissions into the atmosphere (carbonyl technology of metal coatings and products, destruction of chemical weapons, etc.), during storage and transportation of toxic substances, as well as in the inspection of large-scale objects. There are some perspective areas of use MCN detector: prevention of illegal use of dangerous substances, revealing of their origin and leakage paths by means of marking with special non-radioactive chemical compounds; investigation of large-scale atmospheric circulation with the help of marking substances; nondestructive inspection for highly efficient filters with indicating agent concentration and for the inspection of the devices of high level tightness (heat-exchangers of fast nuclear reactors).

  9. Design of a Voltage Tunable Broadband Quantum Well Infrared Photodetector

    DTIC Science & Technology

    2002-06-01

    1 B. PROGRESS OF QWIPS ...converting some of the incident photons to an electric signal. A Quantum Well Infrared Photodetector ( QWIP ) consists of a stack of quantum wells...arsenide (GaAs ) and aluminum gallium arsenide ( AsGaAl xx −1 ) with different aluminum compositions allowed the fabrication of novel QWIP detectors

  10. Demonstration of First 9 Micron cutoff 640 x 486 GaAs Based Quantum Well Infrared PhotoDetector (QWIP) Snap-Shot Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S. V.; Liu, J. K.; Hong, W.; Sundaram, M.; Maker, P. D.; Muller, R. E.

    1997-01-01

    In this paper, we discuss the development of this very sensitive long waelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in quantum efficiency, NEAT, uniformity, and operability.

  11. Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nava, F.; Vanni, P.; Canali, C.

    1998-06-01

    SI (semi-insulating) LEC (Liquid Encapsulated Czochralsky) GaAs (gallium arsenide) Schottky barrier detectors have been irradiated with high energy protons (24 GeV/c, fluence up to 16.45 {times} 10{sup 13} p/cm{sup 2}). The detectors have been characterized in terms of I/V curves, charge collection efficiency (cce) for incident 5.48 MeV {alpha}-, 2 MeV proton and minimum ionizing {beta}-particles and of cce maps by microprobe technique IBIC (Ion Beam Induced Charge). At the highest fluence a significant degradation of the electron and hole collection efficiencies and a remarkable improvement of the Full Width Half Maximum (FWHM) energy resolution have been measured with {alpha}-more » and proton particles. Furthermore, the reduction in the cce is greater than the one measured with {beta}-particles and the energy resolution worsens with increasing the applied bias, V{sub a}, above the voltage V{sub d} necessary to extend the electric field al the way to the ohmic contact. On the contrary, in the unirradiated detectors the charge collection efficiencies with {alpha}-, {beta}- and proton particles are quite similar and the energy resolution improves with increasing V{sub a} > V{sub d}. IBIC spectra and IBIC space maps obtained by scanning a focused (8 {micro}m{sup 2}) 2 MeV proton microbeam on front (Schottky) and back (ohmic) contacts, support the observed electric field dependence of the energy resolution both in unirradiated and most irradiated detectors. The results obtained let them explain the effect of the electric field strength and the plasma on the collection of the charge carriers and the FWHM energy resolution.« less

  12. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less

  13. Formation of dust grains with impurities in red giant winds

    NASA Technical Reports Server (NTRS)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  14. Valency configuration of transition metal impurities in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Leon; Schulthess, Thomas C; Svane, Axel

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less

  15. A Lower-Cost High-Resolution LYSO Detector Development for Positron Emission Mammography (PEM)

    PubMed Central

    Ramirez, Rocio A.; Zhang, Yuxuan; Liu, Shitao; Li, Hongdi; Baghaei, Hossain; An, Shaohui; Wang, Chao; Jan, Meei-Ling; Wong, Wai-Hoi

    2010-01-01

    In photomultiplier-quadrant-sharing (PQS) geometry for positron emission tomography applications, each PMT is shared by four blocks and each detector block is optically coupled to four round PMTs. Although this design reduces the cost of high-resolution PET systems, when the camera consists of detector panels that are made up of square blocks, half of the PMT’s sensitive window remains unused at the detector panel edge. Our goal was to develop a LYSO detector panel which minimizes the unused portion of the PMTs for a low-cost, high-resolution, and high-sensitivity positron emission mammography (PEM) camera. We modified the PQS design by using elongated blocks at panel edges and square blocks in the inner area. For elongated blocks, symmetric and asymmetrical reflector patterns were developed and PQS and PMT-half-sharing (PHS) arrangements were implemented in order to obtain a suitable decoding. The packing fraction was 96.3% for asymmetric block and 95.5% for symmetric block. Both of the blocks have excellent decoding capability with all crystals clearly identified, 156 for asymmetric and 144 for symmetric and peak-to-valley ratio of 3.0 and 2.3 respectively. The average energy resolution was 14.2% for the asymmetric block and 13.1% for the symmetric block. Using a modified PQS geometry and asymmetric block design, we reduced the unused PMT region at detector panel edges, thereby increased the field-of-view and the overall detection sensitivity and minimized the undetected breast region near the chest wall. This detector design and using regular round PMT allowed building a lower-cost, high-resolution and high-sensitivity PEM camera. PMID:20485510

  16. Liquid-purity monitor for the LUX-ZEPLIN dark matter search

    NASA Astrophysics Data System (ADS)

    Manalaysay, Aaron; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) experiment will be the first liquid-xenon (LXe) dark matter search to feature a multi-tonne fiducial target. Drawing on the lessons learned in the LUX and ZEPLIN experiments, this next step will probe dark-matter candidates with unprecedented sensitivity. As these LXe detectors have grown larger, so too has the distance over which ionization electrons (from particle interactions) must be drifted through the liquid. Because of this, even minute levels of electronegative impurities can significantly attenuate the ionization signal, and must therefore be closely monitored. I will present the concept of a liquid-purity monitor which uses new and novel techniques, including state-of-the-art UV LEDs and low-work-function materials, and will measure levels of impurities in LZ's liquid circulation line in real time. This device will provide vital supplemental data to the roughly weekly in-situ purity measurements carried out within the detector's active volume, will greatly improve the resolution of the ionization channel in this detector, and will yield instant feedback in response to changing detector conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of Almost-Equal-To 1 cm, an energy resolution of Almost-Equal-To 1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009)] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Developmentmore » of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.« less

  18. Novel energy resolving x-ray pinhole camera on Alcator C-Mod.

    PubMed

    Pablant, N A; Delgado-Aparicio, L; Bitter, M; Brandstetter, S; Eikenberry, E; Ellis, R; Hill, K W; Hofer, P; Schneebeli, M

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009)] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  19. Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition

    PubMed Central

    2012-01-01

    Doping an impure element with a larger atomic volume into crystalline structure of buck crystals is normally blocked because the rigid crystalline structure could not tolerate a larger distortion. However, this difficulty may be weakened for nanocrystalline structures. Diamonds, as well as many semiconductors, have a difficulty in effective doping. Theoretical calculations carried out by DFT indicate that vanadium (V) is a dopant element for the n-type diamond semiconductor, and their several donor state levels are distributed between the conduction band and middle bandgap position in the V-doped band structure of diamond. Experimental investigation of doping vanadium into nanocrystalline diamond films (NDFs) was first attempted by hot filament chemical vapor deposition technique. Acetone/H2 gas mixtures and vanadium oxytripropoxide (VO(OCH2CH2CH3)3) solutions of acetone with V and C elemental ratios of 1:5,000, 1:2,000, and 1:1,000 were used as carbon and vanadium sources, respectively. The resistivity of the V-doped NDFs decreased two orders with the increasing V/C ratios. PMID:22873631

  20. Dipole moment and polarizability of impurity doped quantum dots under anisotropy, spatially-varying effective mass and dielectric screening function: Interplay with noise

    NASA Astrophysics Data System (ADS)

    Ghosh, Anuja; Ghosh, Manas

    2018-01-01

    Present work explores the profiles of polarizability (αp) and electric dipole moment (μ) of impurity doped GaAs quantum dot (QD) under the aegis of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy of the system. Presence of noise has also been invoked to examine how its intervention further tunes αp and μ. Noise term maintains a Gaussian white feature and it has been incorporated to the system through two different roadways; additive and multiplicative. The various facets of influence of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy on αp and μ depend quite delicately on presence/absence of noise and also on the mode through which noise has been administered. The outcomes of the study manifest viable routes to harness the dipole moment and polarizability of doped QD system through the interplay between noise, anisotropy and variable effective mass and dielectric constant of the system.

  1. Controlled atmosphere annealing of ion implanted gallium arsenide. Final report 1 Jul 76-30 Nov 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.L.; Eu, V.; Feng, M.

    1980-08-01

    Controlled atmosphere techniques were developed as an alternative to dielectric encapsulation for the high temperature anneal of ion implanted layers in GaAs. Two approaches: (1) the controlled atmosphere technique (CAT), and (2) the melt controlled ambient technique (MCAT) have been investigated. Using the CAT procedure, which involves annealing in flowing hydrogen with an arsenic overpressure, annealing without detectable surface erosion, has been performed at temperatures as high as 950 C, with or without encapsulants. Impurity diffusion, damage recovery, and electrical activity were investigated as a function of anneal parameters. Range studies of technologically important impurities such as S, Si, Se,more » Be and Mg were carried out. For the first time the role of the encapsulant on implanted profile degradation and the importance of Cr redistribution during the anneal cycle were determined. An improved CAT anneal system capable of production quantity throughput was developed and is in current use for device processing.« less

  2. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  3. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1984-01-01

    The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.

  4. Transition-metal impurities in semiconductors and heterojunction band lineups

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy M.; Delerue, C.; Lannoo, M.; Heinrich, Helmut

    1988-10-01

    The validity of a recent proposal that transition-metal impurity levels in semiconductors may serve as a reference in band alignment in semiconductor heterojunctions is positively verified by using the most recent data on band offsets in the following lattice-matched heterojunctions: Ga1-xAlxAs/GaAs, In1-xGaxAsyP1-y/InP, In1-xGaxP/GaAs, and Cd1-xHgxTe/CdTe. The alignment procedure is justified theoretically by showing that transition-metal energy levels are effectively pinned to the average dangling-bond energy level, which serves as the reference level for the heterojunction band alignment. Experimental and theoretical arguments showing that an increasingly popular notion on transition-metal energy-level pinning to the vacuum level is unjustified and must be abandoned in favor of the internal-reference rule proposed recently [J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)] are presented.

  5. Conduction Band-Edge Non-Parabolicity Effects on Impurity States in (In,Ga)N/GaN Cylindrical QWWs

    NASA Astrophysics Data System (ADS)

    Haddou El, Ghazi; Anouar, Jorio

    2014-02-01

    In this paper, the conduction band-edge non-parabolicity (NP) and the circular cross-section radius effects on hydrogenic shallow-donor impurity ground-state binding energy in zinc-blende (ZB) InGaN/GaN cylindrical QWWs are reported. The finite potential barrier between (In,Ga)N well and GaN environment is considered. Two models of the conduction band-edge non-parabolicity are taking into account. The variational approach is used within the framework of single band effective-mass approximation with one-parametric 1S-hydrogenic trial wave-function. It is found that NP effect is more pronounced in the wire of radius equal to effective Bohr radius than in large and narrow wires. Moreover, the binding energy peak shifts to narrow wire under NP effect. A good agreement is shown compared to the findings results.

  6. Infrared focal plane performance in the South Atlantic anomaly

    NASA Technical Reports Server (NTRS)

    Junga, Frank A.

    1989-01-01

    Proton-induced pulse height distributions (PHD's) in Si:XX detectors were studied analytically and experimentally. In addition, a preliminary design for a flight experiment to characterize the response of Si:XX detectors to the trapped proton environment and verify PHD models was developed. PHD's were computed for two orbit altitudes for a variety of shielding configurations. Most of the proton-induced pulses have amplitudes less that about 3.5 x 10(exp 5) e-h pairs. Shielding has a small effect on the shape of the PHD's. The primary effect of shielding is to reduce the total number of pulses produced. Proton-induced PHD's in a Si:Sb focal plane array bombarded by a unidirectional 67-MeV beam were measured. The maximum pulse height recorded was 6 x 10(exp 5) pairs. The distribution had two peaks: the larger peak corresponded to 3.8 x 10(exp 5) pairs and the smaller peak to 1.2 x 10(exp 5) pairs. The maximum pulse height and the larger peak are within a factor of two of predicted values. The low-energy peak was not expected, but is believed to be an artifact of inefficient charge collection in the detector. The planned flight experiment will be conducted on a Space Shuttle flight. Lockheed's helium extended life dewar (HELD) will be used to provide the required cryogenic environment for the detector. Two bulk Si:Sb arrays and two Si:As impurity band conduction arrays will be tested. The tests will be conducted while the Space Shuttle passes through the South Atlantic Anomaly. PHD's will be recorded and responsivity changes tracked. This experiment will provide a new database on proton-induced PHD's, compare two infrared detector technologies in a space environment, and provide the data necessary to validate PHD modeling.

  7. VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen

    2016-01-01

    This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality

  8. Spin-dependent electron many-body effects in GaAs

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  9. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara; Nojima, S.

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables themore » efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a PhC, which are made of GaAs.« less

  10. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  11. Growth and characterization of metamorphic InAs/GaSb tunnel heterojunction on GaAs by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jheng-Sin; Clavel, Michael B.; Hudait, Mantu K., E-mail: mantu.hudait@vt.edu

    The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fastmore » Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current–voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley–Read–Hall generation–recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.« less

  12. Enhanced Born Charge and Proximity to Ferroelectricity in Thallium Halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Mao-Hua; Singh, David J

    2010-01-01

    Electronic structure and lattice dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tl-p and halogen-p states. The large Born charges cause giant splitting between longitudinal and transverse optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show spontaneous lattice polarization upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can bemore » very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.« less

  13. Enhanced Born charge and proximity to ferroelectricity in thallium halides

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua; Singh, David J.

    2010-04-01

    Electronic-structure and lattice-dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tlp and halogen- p states. The large Born charges cause giant splitting between longitudinal and transverse-optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show that cubic TlBr develops ferroelectric instabilities upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.

  14. Temperature-Dependent Compensation and Optical Quenching by Thermal Oxygen Donors in Germanium

    NASA Technical Reports Server (NTRS)

    Watson, D.; Guptill, M.; Huffman, J.; Krabach, T.; Raines, S.

    1994-01-01

    Photothermal ionization spectroscopy of germanium, doped in the impurity-band conduction range with gallium acceptors and with thermal oxygen donors, reveals that the donors and acceptors compensate each other at temperatures higher than about 5K, but that the impurities coexist as neutral donors and acceptors at lower temperatures.

  15. Structural and Optical Studies of ZnCdSe/ZnSe/ZnMgSSe Separate Confinement Heterostructures with Different Buffer Layers

    NASA Astrophysics Data System (ADS)

    Tu, Ru-Chin; Su, Yan-Kuin; Huang, Ying-Sheng; Chen, Giin-Sang; Chou, Shu-Tsun

    1998-09-01

    Detailed structural and optical studies of ZnCdSe/ZnSe/ZnMgSSe separate confinementheterostructures (SCH) grown on ZnSe, ZnSe/ZnSSe strained-layer superlattices (SLS),and GaAs buffer layers at the II VI/GaAs interface have been carried out by employingtransmission electron microscopy, variable temperature photoluminescence (PL), andcontactless electroreflectance (CER) measurements. A significant improvement onthe defect reduction and the optical quality has been observed by using either theZnSe/ZnSSe SLS or GaAs as the buffer layers when compared to that of the sample usingonly ZnSe as the buffer layer. However, the sample grown with the SLS buffer layersreveals a room temperature PL intensity higher than that of the sample grown witha GaAs buffer layer, which may still suffer from the great ionic differences betweenthe II V and III V atoms. Using 15 K CER spectra, we have also studied variousexcitonic transitions originating from strained Zn0.80Cd0.20Se/ZnSe single quantumwell in SCH with different buffer layers. An analysis of the CER spectra has ledto the identification of various excitonic transitions, mnH (L), between the mthconduction band state and the nth heavy (light)-hole band state. An excellentagreement between experiments and theoretical calculations based on the envelopefunction approximation model has been achieved.

  16. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  17. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  18. Surface intervalley scattering on GaAs(110) studied with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1990-01-01

    Laser-based photoemission sources provide the unique opportunity to study dynamic electronic processes at surfaces and interfaces. Using angle-resolved, laser photoemission with < 1 ps time resolution, we have directly observed a new surface band at the X¯ point in the GaAs(110) surface Brillouin zone. The appearance of electron population in this valley occurs only as a result of scattering from the directly photoexcited valley at overlineГ. The momentum resolution of our experiment has permitted us to isolate the dynamic electron population changes at both overlineГ and X¯ and to deduce the scattering time between the two valleys.

  19. Generation-recombination noise in extrinsic photoconductive detectors

    NASA Technical Reports Server (NTRS)

    Brukilacchio, T. J.; Skeldon, M. D.; Boyd, R. W.

    1984-01-01

    A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that relate the detector response time, responsivity, and noise equivalent power to the material properties of the photoconductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as its temperature and the presence of background radiation. The detector's performance is shown to degrade at high background levels because of saturation effects.

  20. Architecture and design of a 500-MHz gallium-arsenide processing element for a parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.; Butner, Steven E.

    1991-01-01

    The design of the processing element of GASP, a GaAs supercomputer with a 500-MHz instruction issue rate and 1-GHz subsystem clocks, is presented. The novel, functionally modular, block data flow architecture of GASP is described. The architecture and design of a GASP processing element is then presented. The processing element (PE) is implemented in a hybrid semiconductor module with 152 custom GaAs ICs of eight different types. The effects of the implementation technology on both the system-level architecture and the PE design are discussed. SPICE simulations indicate that parts of the PE are capable of being clocked at 1 GHz, while the rest of the PE uses a 500-MHz clock. The architecture utilizes data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture indicates that an instruction execution rate of over 30,000 MIPS can be attained with 65 PEs.

Top