Science.gov

Sample records for gaas monolithic surface

  1. Monolithic GaAs surface acoustic wave chemical microsensor array

    SciTech Connect

    HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-03-09

    A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

  2. Development of a GaAs Monolithic Surface Acoustic Wave Integrated Circuit

    SciTech Connect

    Baca, A.G.; Casalnuovo, S.C.; Drummond, T.J.; Frye, G.C.; Heller, E.J.; Hietala, V.M.; Klem, J.F.

    1999-03-08

    An oscillator technology using surface acoustic wave delay lines integrated with GaAs MESFET electronics has been developed for GaAs-based integrated microsensor applications. The oscillator consists of a two-port SAW delay line in a feedback loop with a four-stage GaAs MESFET amplifier. Oscillators with frequencies of 470, 350, and 200 MHz have been designed and fabricated. These oscillators are also promising for other RF applications.

  3. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  4. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  5. GaAs monolithic R.F. modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  6. A Ka-band GaAs monolithic phase shifter

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J. J.; Contolatis, A.; Bauhahn, P. E.; Chao, C.

    1983-01-01

    The design and performance of a GaAs monolithic 180-degree one-bit switched line phase shifter test circuit for Ka-band operation is presented. A self-aligned gate (SAG) fabrication technique is also described that reduces resistive parasitics in the switching FET's. Over the 27.5-30 GHz band, typical measured differential insertion phase is within 10-20 deg of the ideal time delay characteristic. Over the same band, the insertion loss for the SAG phase shifter is about 2.5-3 dB per bit. The SAG fabrication technique holds promise in reducing phase shifter insertion loss to about 1.5 dB/bit for 30-GHz operation.

  7. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  8. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  9. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    NASA Technical Reports Server (NTRS)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  10. Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Siu, D. P.; Cook, H. F.

    1991-01-01

    Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.

  11. Monolithic Series-Interconnected GaInAsSb/AlGaAsSb Thermophotovoltaic Devices Wafer Bonded to GaAs

    NASA Astrophysics Data System (ADS)

    Wang, C. A.; Huang, R. K.; Connors, M. K.; Shiau, D. A.; Murphy, P. G.; O'Brien, P. W.; Anderson, A. C.; Donetsky, D.; Anikeev, S.; Belenky, G.; Luryi, S.; Nichols, G.

    2004-11-01

    GaInAsSb/AlGaAsSb/GaSb epitaxial layers were wafer bonded to semi-insulating GaAs wafers for monolithic series interconnection of thermophotovoltaic (TPV) devices. SiOx/Ti/Au was used as a bonding layer to provide electrical isolation and to serve as an internal back-surface reflector (BSR). The minority-carrier lifetime in WB BSR structures is more than two times longer than that of control structures without a BSR. WB GaInAsSb/AlGaAsSb TPV cells were fabricated and monolithically interconnected in series. These cells exhibit nearly linear voltage building. At a short-circuit current density of 0.4 A/cm2, Voc of a single TPV cell is 0.2 V, compared to 0.37 and 1.8 V for 2- and 10-junction series-interconnected TPV cells, respectively.

  12. Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kot, R. A.; Oliver, J. D.; Wilson, S. G.

    1984-01-01

    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver.

  13. Ka-Band GaAs FET Monolithic Power Amplifier Development

    NASA Technical Reports Server (NTRS)

    Saunier, Paul; Tserng, Hua Quen

    1997-01-01

    Over the course of this program, very extensive progress was made in Ka-band GaAs technology. At the beginning of the program, odd-shaped VPE MESFET wafers were used. A breakthrough in power and efficiency was achieved with highly doped (8 x 10(exp 17) cm(exp -3) MBE grown MESFET material. We obtained power of 112 mW with 16 dB gain and 21.6% efficiency at 34 GHz with a monolithic 50-100-250 micron amplifier. The next breakthrough came with the use of heterostructures grown by MBE (AlGaAs/InGaAs where the InGaAs is highly doped). This allowed us to achieve high power density with high efficiency. A benchmark 40% efficiency was achieved with a single-stage 100 micron MMIC at 32.5 GHz. The corresponding three-stage 50-100-250 micron amplifier achieved 180 mW with 23 dB gain and 30.3% efficiency. The next breakthrough came with 3-inch MBE grown PHEMT wafers incorporating an etch-stop layer for the gate recess (using RIE). Again, state-of-the-art performances were achieved: 40% efficiency with 235 mW output power and 20.7 dB gain. The single-stage 2 x 600 micron chip demonstrated 794 mW output power with 5 dB gain and 38.2% power-added efficiency (PAE). The Ka-band technology developed under this program has promise for extensive use: JPL demonstrated 32 GHz phased arrays with a three-stage amplifier developed under this contract. A variation of the three-stage amplifier was used successfully in a 4 x 4 phased array transmitter developed under another NASA contract.

  14. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  15. Monolithic integration of optical grade GaAs on Si (001) substrates deeply patterned at a micron scale

    SciTech Connect

    Bietti, Sergio; Scaccabarozzi, Andrea; Bonera, Emiliano; Miglio, Leo; Sanguinetti, Stefano; Frigeri, Cesare; Falub, Claudiu V.; Känel, Hans von

    2013-12-23

    Dense arrays of micrometric crystals, with areal filling up to 93%, are obtained by depositing GaAs in a mask-less molecular beam epitaxy process onto Si substrates. The substrates are patterned into tall, micron sized pillars. Faceted high aspect ratio GaAs crystals are achieved by tuning the Ga adatom for short surface diffusion lengths. The crystals exhibit bulk-like optical quality due to defect termination at the sidewalls. Simultaneously, the thermal strain induced by different thermal expansion parameters of GaAs and Si is fully relieved. This opens the route to thick film applications without crack formation and wafer bowing.

  16. Atomic Structure of the Stoichiometric GaAs(114) Surface.

    PubMed

    Márquez; Kratzer; Geelhaar; Jacobi; Scheffler

    2001-01-01

    The stoichiometric GaAs(114) surface has been prepared using molecular beam epitaxy followed by annealing in ultrahigh vacuum. Based on in situ scanning tunneling microscopy measurements and first-principles electronic-structure calculations, we determine the surface reconstruction which we call alpha2(2x1). Contrary to what is expected for a high-index surface, it is surprisingly elementary. The (2x1) unit cell contains two As dimers and two rebonded Ga atoms. The surface energy is calculated as 53 meV/Å(2), which falls well within the range of low-index GaAs surface energies.

  17. Wafer Bonding and Epitaxial Transfer of GaSb-based Epitaxy to GaAs for Monolithic Interconnection of Thermophotovoltaic Devices

    SciTech Connect

    C.A. Wang; D.A. Shiau; P.G. Murphy; P.W. O'brien; R.K. Huang; M.K. Connors; A.C. Anderson; D. Donetsky; S. Anikeev; G. Belenky; D.M. Depoy; G. Nichols

    2003-06-16

    GaInAsSb/AlGaAsSb/InAsSb/GaSb epitaxial layers were bonded to semi-insulating GaAs handle wafers with SiO{sub x}/Ti/Au as the adhesion layer for monolithic interconnection of thermophotovoltaic (TPV) devices. Epitaxial transfer was completed by removal of the GaSb substrate, GaSb buffer, and InAsSb etch-stop layer by selective chemical etching. The SiO{sub x}/TiAu provides not only electrical isolation, but also high reflectivity and is used as an internal back-surface reflector. Characterization of wafer-bonded epitaxy by high-resolution x-ray diffraction and time-decay photoluminescence indicates minimal residual stress and enhancement in optical quality. 0.54-eV GaInAsSb cells were fabricated and monolithically interconnected in series. A 10-junction device exhibited linear voltage building with an open-circuit voltage of 1.8 V.

  18. Structure of high-index GaAs surfaces - the discovery of the stable GaAs(2511) surface

    NASA Astrophysics Data System (ADS)

    Jacobi, K.; Geelhaar, L.; Márquez, J.

    We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( {1} {1} {3})B(8 ×1), (114)Aα2(2×1), (137), (3715), and (2511) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs(2511) surface.

  19. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  20. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual

  1. Velocity surface measurements for ZnO films over /001/-cut GaAs

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Liu, Yongsheng; Jen, Cheng-Kuei

    1994-01-01

    A potential application for a piezoelectic film deposited on a GaAs substrate is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the filmed structure is critical for the optimum design of such devices. In this article, the measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metallized ZnO/SiO2 or Si3N4/GaAs /001/-cut samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. Comparisons, such as measurement accuracy and tradeoffs, between the former (dry) and the latter (wet) method are given. It is found that near the group of zone axes (110) propagation direction the autocollimating SAW property of the bare GaAs changes into a noncollimating one for the layered structure, but a reversed phenomenon exists near the group of zone axes (100) direction. The passivation layer of SiO2 or Si3N4 (less than 0.2 micrometer thick) and the metallization layer change the relative velocity but do not significantly affect the velocity surface. On the other hand, the passivation layer reduces the propagation loss by 0.5-1.3 dB/microseconds at 240 MHz depending upon the ZnO film thickness. Our SAW propagation measurements agree well with theorectical calculations. We have also obtained the anisotropy factors for samples with ZnO films of 1.6, 2.8, and 4.0 micrometer thickness. Comparisons concerning the piezoelectric coupling and acoustic loss between dc triode and rf magnetron sputtered ZnO films are provided.

  2. Passivation of GaAs Surfaces.

    DTIC Science & Technology

    1980-08-15

    hour at indicated temperatures. Each symbol indicates one of four pieces of the same starting crystal . Three of the pieces were treated four times. The...Each symbol indicates one of four pieces of the same starting crystal . Three of the pieces were treated three times ................................ 9... crystal 11 11. Luminescence intensity of GaAs treated in ammonia plasma at 575*C as a function of treatment time. Each symbol represents one of five

  3. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  4. Localized corrosion of GaAs surfaces and formation of porous GaAs

    SciTech Connect

    Schmuki, P.; Vitus, C.M.; Isaacs, H.S.; Fraser, J.; Graham, M.J.

    1995-12-01

    The present work deals with pitting corrosion of p- and n-type GaAs (100). Pit growth can be electrochemically initiated on both conduction types in chloride-containing solutions and leads after extended periods of time to the formation of a porous GaAs structure. In the case of p-type material, localized corrosion is only observed if a passivating film is present on the surface, otherwise -- e.g. in acidic solutions -- the material suffers from a uniform attack (electropolishing) which is independent of the anion present. In contrast, pitting corrosion of n-type material can be triggered independent of the presence of an oxide film. This is explained in terms of the different current limiting factor for the differently doped materials (oxide film in the case of the p- and a space charge layer in the case of the n-GaAs). The porous structure was characterized by SEM, EDX and AES, and consists mainly of GaAs. From scratch experiments it is clear that the pit initiation process is strongly influenced by surface defects. For n-type material, AFM investigations show that light induced roughening of the order of several hundred nm occurs under non-passivating conditions. This nm- scale roughening however does not affect the pitting process.

  5. Monolithically integrated GaAs thyristor-transistor as a hardened optically-triggered switch

    SciTech Connect

    Carson, R.F.; Hughes, R.C.; Weaver, H.T.; Brennan, T.M.; Hammons, B.E.

    1990-01-01

    Optically-triggered thyristors are hardened to high x-ray dose rates by the addition of a monolithically integrated compensating phototransistor. Tests of these devices show that sensitivity to radiation-induced switching is reduced by a factor of ten compared to conventional two-terminal thyristors (to 2 {times} 10{sup 9} Rad (Si)/sec). 3 refs., 5 figs.

  6. Monolithic GaAs digitizer for space-based laser pulse spreading effect

    NASA Astrophysics Data System (ADS)

    Lao, Bennig; Staples, Edward

    A 6-bit 1-GHz digitizer was designed to analyze the 1-ns pulse spreading effects in a space based altimeter. The digitizer consisted of four 4-bit flash A/D converters and a 6-bit encoder. Also, the converter utilized four 4-bit converters and a 4-to-6 bit encoder to achieve 6 bit resolution at the 1 GHz sample rate. The design was unique because it utilized only the inverters and NOR gates for the converters and encoder, hence it could be fabricated using the existing state-of-the-art GaAs processing techniques. This GHz digitizer has many commercial applications. It could be applicable to: (1) digital microwave transmission system for the telecommunication industries, (2) pulse monitoring in high kinetic chemical reactions, (3) transient signals in the medical field, and (4) microwave signals in astronomy.

  7. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  8. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  9. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  10. Electrophilic surface sites as precondition for the chemisorption of pyrrole on GaAs(001) surfaces

    SciTech Connect

    Bruhn, Thomas; Fimland, Bjørn-Ove; Vogt, Patrick

    2015-03-14

    We report how the presence of electrophilic surface sites influences the adsorption mechanism of pyrrole on GaAs(001) surfaces. For this purpose, we have investigated the adsorption behavior of pyrrole on different GaAs(001) reconstructions with different stoichiometries and thus different surface chemistries. The interfaces were characterized by x-ray photoelectron spectroscopy, scanning tunneling microscopy, and by reflectance anisotropy spectroscopy in a spectral range between 1.5 and 5 eV. On the As-rich c(4 × 4) reconstruction that exhibits only nucleophilic surface sites, pyrrole was found to physisorb on the surface without any significant modification of the structural and electronic properties of the surface. On the Ga-rich GaAs(001)-(4 × 2)/(6 × 6) reconstructions which exhibit nucleophilic as well as electrophilic surface sites, pyrrole was found to form stable covalent bonds mainly to the electrophilic (charge deficient) Ga atoms of the surface. These results clearly demonstrate that the existence of electrophilic surface sites is a crucial precondition for the chemisorption of pyrrole on GaAs(001) surfaces.

  11. Development of GaAs-Based Monolithic Surface Acoustic Wave Devices for Chemical Sensing and RF Filter Applications

    SciTech Connect

    Baca, A.G.; Casalnuovo, S.A.; Drummond, T.J.; Frye, G.C.; Heller, E.J.; Hietala, V.M.; Klem, J.F.

    1998-12-24

    Since their invention in the mid-1960's, surface acoustic wave (SAW) devices have become popular for a wide variety of applications. SAW devices represent a low-cost and compact method of achieving a variety of electronic signal processing functions at high frequencies, such as RF filters for TV or mobile wireless communications [1]. SAW devices also provide a convenient platform in chemical sensing applications, achieving extremely high sensitivity to vapor phase analytes in part-per-billion concentrations [2]. Although the SAW acoustic mode can be created on virtually any crystalline substrate, the development of SAW technology has historically focused on the use of piezoelectric materials, such as various orientations of either quartz or lithium niobate, allowing the devices to be fabricated simply and inexpensively. However, the III-V compound semiconductors, and GaAs in particular, are also piezoelectric as a result of their partially covalent bonding and support the SAW acoustic mode, allowing for the convenient fabrication of SAW devices. In addition, GaAs microelectronics has, in the past decade, matured commercially in numerous RF wireless technologies. In fact, GaAs was recognized long ago as a potential candidate for the monolithic integration of SAW devices with microelectronics, to achieve compact RF signal processing functions [3]. The details of design and fabrication of SAW devices can be found in a variety of references [1].

  12. Surface and coordination chemistry related to GaAs

    NASA Astrophysics Data System (ADS)

    Keys, Andrea

    The vapor phase structures of Al(tBU)3 and Ga(tBU)3 have been investigated by gas phase electron diffraction and consist of planar three-coordinate monomers. Salient structural parameters (ra) include: Al-C = 2.005(3) A, Ga-C = 2.034(2) A. The geometries are controlled by inter-ligand interactions. The electron diffraction structures are compared to those determined by ab initio calculations for M(tBU)3 (M = Al, Ga, In). To understand the most suitable linkages for the surface of GaAs, model compounds were synthesized by reacting Ga(tBU)3 and [tBu2Ga(mu-Cl]2 with one molar equivalent of varying ligands. The synthesized compounds include chlorides, benzenethiolate, dithiocarbamates, carboxylates, amides, benzohydroxamate, and phenylphosphonate. The Ga ⋯ Ga and Ga-ligand interatomic distances for these compounds, as well as Group 15 and 16 donor bridging ligands, are compared to the values for the surface of GaAs and cubic-GaS in order to determine their suitability as linkage groups for self-assembled monolayers. The most suitable linkages were determined to be benzenethiol and phenylphophonic acid, and these were used to grow self-assembled monolayers on {100} GaAs. Carboxylic acid was also used, to determine the success of the organometallic model compounds in predicting the suitability of ligands for surface reaction. Self-assembled monolayers were also grown on Al2O3, using carboxylic acids and phenylphosphonic acids as the surface linkages. Metallo-organic chemical vapor deposition was performed using single-source precursors ( tBU)2Ga(S2CNR2). The tert -butyl gallium bis-dialkyl-dithiocarbamate compounds, (tBu)Ga(S2CNR2)2, are formed as minor products via ligand disproportionation reactions. Gallium sulfide (GaS) thin films have been grown at 375-425°C by atmospheric pressure metal-organic chemical vapor deposition using compounds (tBu) 2Ga(S2CNMe2) and (tBu)2Ga(S 2CNEt2) as single source precursors. Polycrystalline samples of the chalcogenides InSe, In2Se3

  13. Surface photovoltage due to photo-thermo-ionization of surface states - GaAs

    NASA Technical Reports Server (NTRS)

    Morawski, A.; Slusarczuk, M. M. G.; Gatos, H. C.; Lagowski, J.

    1977-01-01

    Surface photovoltage spectroscopy was employed for studying the mechanism of subbandgap photoionization transitions from surface states in GaAs surfaces. It was found that the photoionization cross-section exhibits a maximum for a photon energy of about 0.9 eV. This finding indicates a photo-thermal mechanism of photovoltage, i.e., photo-induced transitions between surface state levels and the subsequent thermal ejection of electrons from the upper level into the conduction band.

  14. Micro structuration of gaas surface by wet etching: towards a specific surface behavior.

    PubMed

    Bienaime, Alex; Elie-Caille, Celine; Leblois, Therese

    2012-08-01

    Resonant microelectromechanical systems are promising devices for real time and highly sensitive measurements. The sensitivity of such sensors to additional mass loadings which can be increased thanks to the miniaturisation of devices is of prime importance for biological applications. The miniaturisation of structures passes through a photolithographic process and wet chemical etching. So, this paper presents new results on the anisotropic chemical etching of the gallium arsenide (GaAs) crystal used for this application, in several solutions. This paper focuses on the micro/nanostructuration of the sensing surface to increase the sensor sensitivity. Indeed, this active surface will be biofunctionalized to operate in biological liquid media in view of biomolecules detection. Several experimental conditions of etching bath composition, concentration and temperature were examined to obtain a large variety of geometrical surfaces topographies and roughness. According to the orientation dependence of the chemical etching process, the experiments were also performed on various GaAs crystal plates. The bath 1 H3PO4:9 H2O2:1 H2O appeared to be particularly adapted to the fabrication of the GaAs microstructured membrane: indeed, the bath is highly stable, anisotropic, and, as a function of temperature, it allows the production of a large variety of GaAs surface topographies.

  15. Effect of nitride chemical passivation of the surface of GaAs photodiodes on their characteristics

    NASA Astrophysics Data System (ADS)

    Kontrosh, E. V.; Lebedeva, N. M.; Kalinovskiy, V. S.; Soldatenkov, F. Yu; Ulin, V. P.

    2016-11-01

    Characteristics of GaAs photodiodes have been studied before and after the chemical nitridation of their surface in hydrazine sulfide solutions, which leads to substitution of surface As atoms with N atoms to give a GaN monolayer. The resulting nitride coatings hinder the oxidation of GaAs in air and provide a decrease in the density of surface states involved in recombination processes. The device characteristics improved by nitridation are preserved during a long time.

  16. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect

    Bietti, Sergio Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D₀=0.53(×2.1±1) cm² s⁻¹ that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  17. Arsenic ambient conditions preventing surface degradation of GaAs during capless annealing at high temperatures

    NASA Technical Reports Server (NTRS)

    Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.

  18. GaAs Surface Passivation for Device Applications.

    DTIC Science & Technology

    1982-07-01

    Protective Layers AlAs GaAs InAs As III-V AlSb GaSb InSb Sb AIP GaP InP P ZnS CdS HgS S II-Vi ZnSe CdSe HgSe Se ZnTe CdTe HgTe Te Ternaries and Quaternaries...D 4- 4- C 0331 IUMe ’xO. C .- 0. Z 00 919 . 23 3. Bulk GaAs Samples Several Bridgman grown bulk GaAs (100) samples were utilized for MIS and XPS

  19. Behavior of Cu and Zn Impurities on GaAs Wafer Surfaces

    NASA Astrophysics Data System (ADS)

    Shibaya, Hiroshi

    1995-08-01

    Surface Cu and Zn contamination levels of intentionally contaminated GaAs wafers were measured by total reflection X-ray fluorescence (TXRF). Cu and Zn are both major metallic impurities on GaAs wafer surfaces, but their adsorption behaviors in an organic base solution were quite different. Surface concentration of Cu was much higher than that of Zn when concentrations of Cu and Zn in the organic base solution were the same. Cleaning effects of running deionized water rinse in an ultrasonic bath (U-RDIW) were also studied. Surface concentrations of Cu and Zn were drastically reduced by U-RDIW rinse.

  20. Nanoscale footprints of self-running gallium droplets on GaAs surface.

    PubMed

    Wu, Jiang; Wang, Zhiming M; Li, Alvason Z; Benamara, Mourad; Li, Shibin; Salamo, Gregory J

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems.

  1. Evolution of ion-induced nanoparticle arrays on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kang, M.; Beskin, I.; Al-Heji, A. A.; Shende, O.; Huang, S.; Jeon, S.; Goldman, R. S.

    2014-05-01

    We have examined the evolution of irradiation-induced Ga nanoparticle (NP) arrays on GaAs surfaces. Focused-ion-beam irradiation of pre-patterned GaAs surfaces induces monotonic increases in the NP volume and aspect ratio up to a saturation ion dose, independent of NP location within the array. Beyond the saturation ion dose, the NP volume continues to increase monotonically while the NP aspect ratio decreases monotonically. In addition, the NP volumes (aspect ratios) are highest (lowest) for the corner NPs. We discuss the relative influences of bulk and surface diffusion on the evolution of Ga NP arrays.

  2. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  3. Sulfur passivation of GaAs surfaces: A model for reduced surface recombination without band flattening

    NASA Astrophysics Data System (ADS)

    Spindt, C. J.; Spicer, W. E.

    1989-10-01

    It has been shown by several workers that the passivation of GaAs surfaces using sulfides results in a large reduction in the surface recombination velocity accompanied by an increase in the band bending on n-type samples. This apparently contradictory pair of results leads to the suggestion that the responsible electronic states are a midgap donor compensated by an acceptor near the valence-band maximum. We explore the consequences of such a model, particularly when the midgap state is assumed to be a double donor. In the double donor case, simple qualitative arguments indicate that the surface recombination velocity can be reduced by a factor much greater than the reduction in surface-state density. The model is consistent with observations made using a variety of experimental techniques. A correlation between the electronic states and surface chemistry is made, and the As and Ga antisite defects are discussed as candidates for the donor and acceptor states.

  4. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Brown, Evan; Sheng, Chunyang; Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro

    2015-02-01

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  5. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    SciTech Connect

    Brown, Evan; Sheng, Chunyang; Nakano, Aiichiro; Shimamura, Kohei; Shimojo, Fuyuki

    2015-02-07

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  6. Structural studies of sulfur passivated GaAs(001) surfaces with LEED and AFM

    NASA Astrophysics Data System (ADS)

    Wang, Xuewen; Ke, Yenjin; Milano, Steve; Tao, Nongjian; Darici, Yesim

    1997-03-01

    We present the results of auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and atomic force microscopy (AFM) analysis of sulfur passivating layers on the GaAs(001) surface. The GaAs surfaces were passivated with both inorganic ((NH_4)_2S) and organic (ODT) S-based compounds. We prepared the inorganic sulfur-passivated GaAs(001) surfaces with a wet chemical treatment using (NH_4)_2S solution. This was followed by thermal annealing of the treated sample in ultra high vacuum. After ex-situ and in-situ treatments the surface resulted in a (2X1) LEED pattern. The LEED data (I-V curves) was recorded and compared with dynamical LEED calculations for different structural models for the sulfur passivated GaAs(110) surface. The results showed that sulfur passivated (2X1) surface structure is an arsenic-sulfur dimer on gallium terminated substrate. The ex-situ AFM results also showed a (2X1) structure for the inorganic passivation and a very smooth surface for the organic ODT in ethanal treated sample.

  7. A new structure for comparing surface passivation materials of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  8. Maskless micro/nanofabrication on GaAs surface by friction-induced selective etching

    PubMed Central

    2014-01-01

    In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostructure increased with the normal load or the etching period. XPS and Raman detection demonstrated that residual compressive stress and lattice densification were probably the main reason for selective etching, which eventually led to the protrusive nanostructures from the scratched area on the GaAs surface. Through a homemade multi-probe instrument, the capability of this fabrication method was demonstrated by producing various nanostructures on the GaAs surface, such as linear array, intersecting parallel, surface mesas, and special letters. In summary, the proposed method provided a straightforward and more maneuverable micro/nanofabrication method on the GaAs surface. PMID:24495647

  9. Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces

    SciTech Connect

    Wu, J. H.; Ye, W.; Cardozo, B. L.; Saltzman, D.; Sun, K.; Sun, H.; Mansfield, J. F.; Goldman, R. S.

    2009-10-12

    We have investigated the formation and coarsening of Ga droplets on focused-ion-beam (FIB) irradiated GaAs surfaces. To separately examine formation and coarsening, Ga droplets were fabricated by Ga{sup +} FIB irradiation of GaAs substrates with and without pre-patterned holes. We determined the droplet growth rate and size distribution as a function of FIB energy following irradiation. The data suggest a droplet formation mechanism that involves Ga precipitation from a Ga-rich layer, followed by droplet coarsening via a combination of diffusion and Ostwald ripening or coalescence via droplet migration (dynamic coalescence)

  10. Use of a corrugated surface to enhance radiation tolerance in a GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Leon, Rosa P.; Piszczor, Michael F., Jr.

    1985-01-01

    The use of a corrugated surface on a GaAs solar cell and its effects on radiation resistance were studied. A compute code was developed to determine the performance of the cell for various geometric parameters. The large optical absorption coefficient of GaAs allows grooves to be only 4-5 micrometers deep. Using accepted material parameters for GaAs solar cells the theoretical performances were compared for various corrugated cells before and after minority carrier diffusion length degradation. The total power output was maximized for both n(+)/p and p(+)/n cells. Optimum values of 1.0-1.5 and 5.0 micrometers for groove and ridge widths respectively were determined.

  11. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    SciTech Connect

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  12. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  13. Effects of surface passivation on twin-free GaAs nanosheets.

    PubMed

    Arab, Shermin; Chi, Chun-Yung; Shi, Teng; Wang, Yuda; Dapkus, Daniel P; Jackson, Howard E; Smith, Leigh M; Cronin, Stephen B

    2015-02-24

    Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.

  14. Highly bioactive polysiloxane modified bioactive glass-poly(ethylene glycol) hybrids monoliths with controlled surface structure for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Que, Wenxiu; Xing, Yonglei; Lei, Bo

    2015-03-01

    Crack-free monoliths with controllable surface microstructure have high bioactivities and therefore potential applications in bone tissue regeneration. In this paper, crack-free polydimethylsiloxane-modified bioactive glass-poly (ethylene glycol) (PDMS-BG-PEG) hybrids monoliths were fabricated via using a modified sol-gel process. Results show that the addition of PEG plays an important part in the formation of crack-free and gelation of the monoliths, and surface microstructures of the as-prepared hybrid monoliths were significantly influenced by the concentration and molecular weight of PEG. The samples obtained from PEG 300 had porous surface result in higher bioactivity (apatite formation) in simulated body fluid (SBF), while the samples obtained from PEG 600 had the smooth surface and inhibited the formation of apatite layer in SBF. These as-prepared hybrid monoliths can be used as a good candidate of implant and scaffold for highly efficient bone tissue regeneration.

  15. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  16. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  17. GaAs(2 5 11): a new stable surface within the stereographic triangle.

    PubMed

    Geelhaar, L; Márquez, J; Kratzer, P; Jacobi, K

    2001-04-23

    The atomic structure of GaAs(2 5 11), a hitherto unknown stable surface, has been determined by in situ scanning tunneling microscopy and first-principles electronic structure calculations. This orientation is located within the stereographic triangle, i.e., far away from all low-index surfaces. A low-energy ( 1x1) reconstruction containing arsenic dimers forms on the surface. The analysis of the surface structure shows that, for semiconductor surfaces, the gain in stability due to minimization of the number of dangling bonds is more important than the gain from rendering a semiconducting ground state.

  18. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    PubMed

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications.

  19. Twin superlattice-induced large surface recombination velocity in GaAs nanostructures

    SciTech Connect

    Sheng, Chunyang; Brown, Evan; Nakano, Aiichiro; Shimojo, Fuyuki

    2014-12-08

    Semiconductor nanowires (NWs) often contain a high density of twin defects that form a twin superlattice, but its effects on electronic properties are largely unknown. Here, nonadiabatic quantum molecular dynamics simulation shows unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective charge-recombination centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying surface-recombination processes.

  20. Micro-Reactions on Metal Contacts on Various Types of GaAs Surfaces.

    DTIC Science & Technology

    1986-02-01

    GaAs surfaces as generally employed for the manufacture of MeSFETs and their IC’s, particularly _- . - in view of device-life-time optimization...electrodes (points A(v) and (vii) of Section C-I, Award Dec.); in particular here the formation of ._ narrow, short circuiting metal filaments by field... MeSFETs has beco . -’.. a field of wide current interest particularly from the device aging point of view /9/. : - . -. . p. . Here, we describe the

  1. Surface kinetics study of metal-organic vapor phase epitaxy of GaAs1-yBiy on offcut and mesa-patterned GaAs substrates

    NASA Astrophysics Data System (ADS)

    Guan, Yingxin; Forghani, Kamran; Kim, Honghyuk; Babcock, Susan E.; Mawst, Luke J.; Kuech, Thomas F.

    2017-04-01

    The influence of the surface step termination on the metal-organic vapor phase epitaxy of GaAs1-yBiy was explored by examining the epitaxial layer growth rate, composition, and morphology characteristics on the offcut and mesa-patterned (001) GaAs substrates. Vicinal surfaces offcut to (111)B with a high density of As-terminated steps ('B-steps') increased the GaAs1-yBiy layer growth rate as well as possessed the fastest lateral growth rate on mesa-patterned substrates at a growth temperature of 420 °C, indicating that B-steps enhanced the Ga incorporation. With Bi accumulation on the surface, the Ga incorporation rate was reduced by the Bi preferential presence at B-steps blocking the Ga incorporation. Vicinal surfaces offcut to (111)A, which generated Ga-terminated steps ('A-steps') enhanced the Bi incorporation rate during growth at 380 °C. This work reveals that the surface step termination plays an important role in the growth of the metastable alloy. Appropriate choices of both the substrate surface-step structure and other growth parameters could lead to an enhanced Bi incorporation.

  2. In situ Observation of Formation Process of Negative Electron Affinity Surface of GaAs by Surface Photo-Absorption

    NASA Astrophysics Data System (ADS)

    Hayase, Kazuya; Nishitani, Tomohiro; Suzuki, Katsunari; Imai, Hironobu; Hasegawa, Jun-ichi; Namba, Daiki; Meguro, Takashi

    2013-06-01

    We have used surface photo-absorption (SPA) to investigate the formation of negative electron affinity (NEA) surfaces on p-GaAs during the Yo-Yo method, under an alternating supply of Cs and O2. The SPA spectra showed that the surface during the first Cs step was different from those in the following Cs and O2 steps. This suggests that the surface structure did not change after the initial surface was formed, indicating that there could be two Cs adsorption sites on the GaAs surface, which is different from previously proposed models.

  3. Effects of ion bombardment on bulk GaAs photocathodes with different surface-cleavage planes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Shukui; Stutzman, Marcy; Poelker, Matt

    2016-10-01

    Bulk GaAs samples with different surface cleave planes were implanted with 100 and 10 000 V hydrogen ions inside an ultrahigh vacuum test apparatus to simulate ion back-bombardment of the photocathode inside a DC high voltage photogun. The photocathode yield, or quantum efficiency, could easily be recovered following implantation with 100 V hydrogen ions but not for 10 000 V ions. Moreover, the implantation damage with 10 000 V hydrogen ions was more pronounced for GaAs photocathode samples with (100) and (111A) cleave planes, compared to the photocathode with (110) cleave plane. This result is consistent with enhanced ion channeling for the (110) cleave plane compared to the other cleave planes, with ions penetrating deeper into the photocathode material beyond the absorption depth of the laser light and beyond the region of the photocathode where the photoemitted electrons originate.

  4. Transient surface photoconductivity of GaAs emitter studied by terahertz pump-emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Yulei; Zhou, Qing-li; Zhang, Cunlin

    2010-11-01

    The ultrafast carrier dynamics and surface photoconductivity of unbiased semi-insulating GaAs have been investigated in detail by using terahertz pump-emission technique. Through theoretical modeling based on Hertz vector potential, it is found that transient photoconductivity plays a very important role in the temporal waveform of terahertz radiation pulse. Anomalous enhancement in both terahertz radiation and transient photoconductivity is observed subsequent to the excitation of pump pulse, and our modeling gives successful analyses for the dynamics of photogenerated carriers in the GaAs. We attribute these phenomena to carrier capture in the EL2 centers. Moreover, the pump power- and temperaturedependent measurements are also performed to verify this model.

  5. GaP-interlayer formation on epitaxial GaAs(100) surfaces in MOVPE ambient

    NASA Astrophysics Data System (ADS)

    Döscher, Henning; Hens, Philip; Beyer, Andreas; Tapfer, Leander; Volz, Kerstin; Stolz, Wolfgang

    2017-04-01

    The challenge to embed a single monolayer of phosphorus during epitaxial gallium arsenide (GaAs) growth triggers numerous questions regarding practical preparation, effective analysis, and fundamental consideration of the resulting interlayers. Beyond better understanding of III-V heterointerface formation processes, precise interlayer incorporation may enable enhanced interface design, effective diffusion barriers, and advanced band structure engineering. We employ metalorganic vapor phase epitaxy (MOVPE) in various growth modes (continuous, with interruptions, pulsed, surface exchange) targeting the most abrupt incorporation of thinnest GaP films in the GaAs(100) matrix. The intensities of higher order interference fringes in high resolution X-ray diffraction (HR-XRD) serve as a measure of the effective GaPxAs1-x film thickness and P concentration, which is compared to compositional analysis based on scanning transmission electron microscopy (STEM). In situ reflection anisotropy spectroscopy (RAS) provided us with insights to the GaAs(100) surface configurations relevant during the P interlayer preparation.

  6. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  7. Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth

    NASA Astrophysics Data System (ADS)

    Helfrich, Mathieu; Gröger, Roland; Förste, Alexander; Litvinov, Dimitri; Gerthsen, Dagmar; Schimmel, Thomas; Schaadt, Daniel M.

    2011-12-01

    In this study, we investigated pre-structured (100) GaAs sample surfaces with respect to subsequent site-selective quantum dot growth. Defects occurring in the GaAs buffer layer grown after pre-structuring are attributed to insufficient cleaning of the samples prior to regrowth. Successive cleaning steps were analyzed and optimized. A UV-ozone cleaning is performed at the end of sample preparation in order to get rid of remaining organic contamination.

  8. Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth

    PubMed Central

    2011-01-01

    In this study, we investigated pre-structured (100) GaAs sample surfaces with respect to subsequent site-selective quantum dot growth. Defects occurring in the GaAs buffer layer grown after pre-structuring are attributed to insufficient cleaning of the samples prior to regrowth. Successive cleaning steps were analyzed and optimized. A UV-ozone cleaning is performed at the end of sample preparation in order to get rid of remaining organic contamination. PMID:21711729

  9. GaAs Surface Passivation for Device Applications.

    DTIC Science & Technology

    1981-12-01

    Physics Letters 38, 167 (1981). 10. A Ga203 surface layer with the low band bending may also be pro- duced by heating the initial etched surface to... Physics of MOS Insulators, Edited by G. Lucovsky, S.T. Pantelides, and F.L. Galeener -Pergamon Press, New York, 1980) p. 202. 7. E.A. Kraut, R.W...E. Luscher , W. S. Knodle, and Y. Chai, Electronics 53, (19), 160 (1980). 2. J. P. Hobson and E. V. Kornelsen, J. Vac. Sci. Technol. 16, 701(1979). 3

  10. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes.

    PubMed

    Lacour, Vivien; Elie-Caille, Céline; Leblois, Thérèse; Dubowski, Jan J

    2016-03-02

    Wet chemical processes were investigated to remove alkanethiol self-assembled monolayers (SAMs) and regenerate GaAs (001) samples studied in the context of the development of reusable devices for biosensing applications. The authors focused on 16-mercaptohexadecanoic acid (MHDA) SAMs that are commonly used to produce an interface between antibodies or others proteins and metallic or semiconductor substrates. As determined by Fourier transform infrared absorption spectroscopy, among the investigated solutions of HCl, H2O2, and NH4OH, the highest efficiency in removing alkanethiol SAM from GaAs was shown by NH4OH:H2O2 (3:1 volume ratio) diluted in H2O. The authors observed that this result was related to chemical etching of GaAs that even in a weak solution of NH4OH:H2O2:H2O (3:1:100) proceeded at a rate of 130 nm/min. The surface revealed by a 2-min etching under these conditions allowed depositing successfully a new MHDA SAM with comparable quality and density to the initial coating. This work provides an important view on the perspective of the development of a family of cost-effective GaAs-based biosensors designed for repetitive detection of a variety of biomolecules immobilized with dedicated antibody architectures.

  11. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs (0 0 1) -(4×2) β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  12. Substitutional Co dopant on the GaAs(110) surface: A first principles study

    NASA Astrophysics Data System (ADS)

    Fang, Zhou; Yi, Zhijun

    2016-12-01

    Using the first principles ground state method, the electronic properties of single Co dopant replacing one Ga atom on the GaAs(110) surface are studied. Our calculated local density of states (LDOS) at Co site presents several distinct peaks above the valence band maximum (VBM), and this agrees with recent experiments. Moreover, the calculated STM images at bias voltages of 2 eV and -2 eV also agree with experiments. We discussed the origin of Co impurity induced distinct peaks, which can be characterized with the hybridization between Co d orbitals and p-like orbitals of surface As and Ga atoms.

  13. In-situ ellipsometric studies of optical and surface properties of GaAs(100) at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.

    1991-01-01

    A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.

  14. Monolithic integration of waveguide structures with surface-micromachined polysilicon actuators

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.

    1996-03-01

    The integration of optical components with polysilicon surface micromechanical actuation mechanisms show significant promise for signal switching, fiber alignment, and optical sensing applications. Monolithically integrating the manufacturing process for waveguide structures with the processing of polysilicon actuators allows actuated waveguides to take advantage of the economy of silicon manufacturing. The optical and stress properties of the oxides and nitrides considered for the waveguide design along with design, fabrication, and testing details for the polysilicon actuators are presented.

  15. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  16. Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning.

    PubMed

    Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin

    2016-04-01

    The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials.

  17. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  18. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.

    PubMed

    Lv, Li-Bing; Cui, Tian-Lu; Zhang, Bing; Wang, Hong-Hui; Li, Xin-Hao; Chen, Jie-Sheng

    2015-12-07

    Superhydrophobic and superhydrophilic surfaces are of great interest because of a large range of applications, for example, as antifogging and self-cleaning coatings, as antibiofouling paints for boats, in metal refining, and for water-oil separation. An aqueous ink based on three-dimensional graphene monoliths (Gr) can be used for constructing both superhydrophobic and superhydrophilic surfaces on arbitrary substrates with different surficial structures from the meso- to the macroscale. The surface wettability of a Gr-coated surface mainly depends on which additional layers (air for a superhydrophobic surface and water for a superhydrophilic surface) are adsorbed on the surface of the graphene sheets. Switching a Gr-coated surface between being superhydrophobic and superhydrophilic can thus be easily achieved by drying and prewetting with ethanol. The Gr-based superhydrophobic membranes or films should have great potential as efficient separators for fast and gravity-driven oil-water separation.

  19. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    SciTech Connect

    Schmidt, Christian B. Priyadarshi, Shekhar; Bieler, Mark; Tarasenko, Sergey A.

    2015-04-06

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which is the inverse spin Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  20. Monolithic Thin Film SAW (Surface Acoustic Wave) Structures.

    DTIC Science & Technology

    1984-09-01

    storage " regions. The device is simple to fabricate, requiring neither pn or Schottky diode * arrays for -ignal storage. The memory function is...and is close to the value for LiNbOj Several convolvers and diode storage correlators which exploit the banidwidth advantage of the Sezawa mode have...fLUILcti of the properties~ of the interface. Surface state storage was subscquenitly replaced by more easily controlled and repeatable diode storage

  1. Electronic structure around an As antisite near the (110) surface of GaAs

    NASA Astrophysics Data System (ADS)

    Iguchi, Yusuke; Fujiwara, Takeo; Hida, Akira; Maeda, Koji

    2005-03-01

    The electronic structure around a single As antisite in GaAs is investigated in bulk and near the surface both in the stable and the metastable atomic configurations. The most characteristic electronic structures of As antisite is the existence of the localized p orbitals extending from the As antisite. The major component of the highest occupied state on As antisite in the stable configuration is s -orbital connecting with neighboring As atoms with nodes whereas that in the metastable configuration is p -orbital connecting without nodes. Localized p orbitals on the surrounding As atoms around the As antisite exist in every configuration of As antisite. Such features are retained except the case of the As antisite located just in the surface layer in which the midgap level is smeared into the conduction band and no localized states exist near the top of the valence band. Scanning tunneling microscopic images of defects observed in low-temperature grown GaAs, possibly assigned as As antisite, the origin of the metastability, and the peculiarity of the defects in the surface layer are discussed.

  2. Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Dhawan, Punit Kumar; Wan, Meher; Verma, S. K.; Pandey, D. K.; Yadav, R. R.

    2015-02-01

    Second and third order elastic constants of GaAs Nanowires (NWs) are calculated using the many-body interaction potential model. The velocities of ultrasonic waves at different orientations of propagation with unique axis are evaluated using the second order elastic constants. The ultrasonic attenuation and thermal relaxation times of the single crystalline GaAs-NW are determined as a function of diameter and surface roughness by means of Mason theoretical approach using the thermal conductivity and higher order elastic constants. The diameter variation of ultrasonic attenuation and thermal relaxation exhibit second order polynomial function of diameter. It is also found that ultrasonic attenuation and thermal relaxation follow the exponential decay with the surface roughness for GaAs-NW due to reduction in thermal conductivity caused by dominance of surface asperities. Finally, the correlations among ultrasonic parameters, thermal conductivity, surface roughness, and diameter for GaAs-NWs are established leading towards potential applications.

  3. Modification of GaAs surface by low-current Townsend discharge

    NASA Astrophysics Data System (ADS)

    Gurevich, E. L.; Kittel, S.; Hergenröder, R.; Astrov, Yu A.; Portsel, L. M.; Lodygin, A. N.; Tolmachev, V. A.; Ankudinov, A. V.

    2010-07-01

    The influence of stationary spatially homogeneous Townsend discharge on the (1 0 0) surface of semi-insulating GaAs samples is studied. Samples exposed to both electrons and ions in a nitrogen discharge at a current density j = 60 µA cm-2 are studied by means of x-ray photoelectron spectroscopy, ellipsometry and atomic force microscopy. It is shown that an exposure to low-energy ions (<1 eV) changes the crystal structure of the semiconductor for a depth of up to 10-20 nm, although the stoichiometric composition does not change. The exposure to low-energy electrons (<10 eV) forms an oxide layer, which is 5-10 nm thick. Atomic force microscopy demonstrates that the change in the surface potential of the samples may exceed 100 mV, for both discharge polarities, while the surface roughness does not increase.

  4. Surface studies of the thermal decomposition of triethylgallium on GaAs (100)

    NASA Astrophysics Data System (ADS)

    Murrell, A. J.; Wee, A. T. S.; Fairbrother, D. H.; Singh, N. K.; Foord, J. S.; Davies, G. J.; Andrews, D. A.

    1990-10-01

    The adsorption and surface decomposition of triethylgallium (TEG) on GaAs (100) has been studied using XPS and thermal desorption techniques. TEG is found to adsorb in a molecular form on the Ga rich (4×1) surface below 150 K. As the surface temperature is raised, this molecular state dissociates to form Ga and adsorbed ethyl species. The overall cracking reaction occurs in competition with the desorption of TEG and diethylgallium (DEG). Under the conditions of our experiments the adsorbed ethyl species formed above are found to dissociate above 600 K to form mainly gas phase ethene and hydrogen with traces of ethane, resulting in the formation of a pure Ga layer within the sensitivity limits imposed by XPS.

  5. Passivation effects of polyphenylene sulphide on the surface of GaAs

    NASA Astrophysics Data System (ADS)

    Bhide, R. S.; Bhoraskar, S. V.; Rao, V. J.

    1992-08-01

    Vacuum-evaporated thin films of polyphenylene sulphide have been used as an insulating overlayer on n-GaAs(110). Sulphur present in the polymer is seen to passivate the dangling bonds of GaAs. The interface of n-GaAs/polyphenylene sulphide was studied using grazing-angle x-ray diffraction at various angles for different annealing temperatures. The electronic properties of the interface are studied using electron-beam-induced-current measurements for determining the minority-carrier diffusion length and surface recombination velocity. The x-ray-diffraction analysis indicates the formation of arsenic sulphide at the interface and is expected to reduce the dangling bond density. The treated surface shows an increase in diffusion length and reduction in the surface recombination velocity. The polymer-semiconductor interface shows stability against annealing up to a temperature of 300 °C.

  6. Defect metastability in surfaces: A study of EL2 defect in GaAs(110)

    SciTech Connect

    Zhang, S.B.

    1999-08-01

    Although it has been widely accepted that EL2 in GaAs is an As antisite, the identity of the metastable state of EL2thinsp(=EL2{sup {asterisk}}) has not been confirmed by experiment. Here it is suggested that cross-sectional scanning tunneling microscopy may be used to identify EL2{sup {asterisk}}. My suggestion is based on a comprehensive first-principles total energy study of surface defect metastability. It reveals rich structures of the EL2{sup {asterisk}} near the surface. The energy difference between EL2{sup {asterisk}} and EL2 can be reduced to only a tenth of that bulk due to interaction with relaxed surface atoms. {copyright} {ital 1999} {ital The American Physical Society}

  7. Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×6) surface

    NASA Astrophysics Data System (ADS)

    Shimoda, M.; Tsukamoto, S.; Koguchi, N.

    1998-01-01

    Core-level X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) have been applied to investigate the sulfur-terminated GaAs(001)-(2×6) surface. No forward scattering peaks were found in the XPD pattern of S 2s emission, indicating that adsorbed S atoms form a single layer on the GaAs substrate. In accordance with the zincblende structure of GaAs, the AED patterns of Ga L 3M 45M 45 and As L 3M 45M 45 emission almost coincide with each other, if one of the emissions is rotated by 90° around the [001] direction. This fact suggests that the diffraction patterns mainly reflect the structure of the bulk GaAs crystal. In order to investigate the surface structure, AED patterns in large polar angles were analyzed with single scattering cluster (SSC) calculations. The best result was obtained with a model cluster where the S-S bond length was set at 0.28 nm, 30% shorter than the corresponding length of the ideal (1×1) structure, and the adsorption height was set at 0.12-0.13 nm, 10% shorter than the ideal interlayer distance of GaAs(001) planes. These values are in good agreement with the results of STM measurements. A modulation of the inter-dimer distance was also found, suggesting the existence of missing dimers.

  8. Laser and voltage manipulation of bistable Si dopants in the GaAs (110) surface

    NASA Astrophysics Data System (ADS)

    Smakman, E. P.; van Bree, J.; Koenraad, P. M.

    2013-02-01

    Bistable behavior of single Si dopants in the (110) surface layer of GaAs was studied with a scanning tunneling microscope (STM). The Si atom acts as either a positively charged substitutional donor or a negatively charged interstitial. Its configuration can switch under the influence of a local biased STM tip. To independently manipulate the charge state, the sample was illuminated by a laser during STM operation. The Si atom can be reversibly switched between its positive and negative charge states by turning the laser on and off, respectively. This process occurs mostly with the photon energy tuned above the band gap of GaAs, indicating that photogenerated electron-hole pairs play an important role in the process. The occupation of the donor and interstitial configurations depends on the carrier dynamics, i.e., the possibility of the electrons to escape or to be captured. If the tip-induced band bending is large enough, it is possible for electrons to tunnel into the conduction band and the donor configuration is observed. Another escape path is created when the sample is illuminated and photogenerated holes can recombine with the bound electrons of the dopant.

  9. Crystal bending by surface damaging in mosaic GaAs crystals for the LAUE project

    NASA Astrophysics Data System (ADS)

    Buffagni, E.; Bonnini, E.; Zappettini, A.; Guadalupi, G. M.; Rossi, F.; Ferrari, C.

    2013-09-01

    Curved crystals used as optical elements of a Laue lens for hard x- and gamma-ray astronomy have a larger diffraction efficiency with respect to perfect flat crystals. In this work we show how to achieve the bending of the crystals by a controlled surface damaging which introduces defects in a superficial layer of few tens micrometers in thickness undergoing a highly compressive strain. Several silicon, gallium arsenide and germanium wafer crystals have been treated. The local and mean curvature radii of each sample have been determined by means of high resolution x-ray diffraction measurements in Bragg condition at low energy (8 keV). (100) oriented silicon and (111) oriented germanium samples showed spherical curvatures, whereas (100) oriented GaAs treated samples evidenced an elliptical curvature with major axes corresponding to the <011< crystallographic directions. Curvature radii between 3 and 70 m were easily obtained in wafers with thicknesses up to 2 mm. Several 3x1x0.2 cm3 GaAs crystals (100) oriented with a radius of curvature of 40 m were prepared for the Laue Lens. Using a x-ray tube set at a distance of 20 m from the crystal for the first time the focusing of the (022) diffracted beam at a distance of 20 m was observed.

  10. Surface-morphology evolution during growth-interrupt in situ annealing on GaAs(110) epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yoshita, Masahiro; Akiyama, Hidefumi; Pfeiffer, Loren N.; West, Ken W.

    2007-05-01

    Temperature and surface-coverage dependence of the evolution of surface morphology during growth-interrupt in situ annealing on GaAs epitaxial layers grown on the singular (110) cleaved edges by the cleaved-edge overgrowth method with molecular-beam epitaxy has been studied by means of atomic force microscopy. Annealing at substrate temperatures below 630 °C produced atomically flat surfaces with characteristic islands or pits, depending on the surface coverage. The atomic flatness of the surfaces is enhanced with increasing annealing temperature owing to the enhanced adatom migration. At a higher annealing temperature of about 650 °C, however, 2-monolayer-deep triangular pits with well-defined step edges due to Ga-atom desorption from the crystal appeared in the atomically flat surface. The growth-interrupt annealing temperature optimal for the formation of atomically flat GaAs(110) surfaces is therefore about 630 °C.

  11. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry.

    PubMed

    Peters, E C; Petro, M; Svec, F; Fréchet, J M

    1998-06-01

    Monolithic columns for capillary electrochromatography have been prepared within the confines of untreated fused-silica capillaries in a single step by a simple copolymerization of mixtures of butyl methacrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propane-sulfonic acid (AMPS) in the presence of a porogenic solvent. The use of these novel macroporous monoliths eliminates the need for frits, the difficulties encountered with packed capillaries, and capillary surface functionalization. Since the porous properties of the monolithic materials can be easily tailored through changes in the composition of the ternary porogenic solvent, the effects of both pore size and the percentage of sulfonic acid monomer on the efficiency and the electroosmotic flow velocity of the capillary columns could be studied independently over a broad range. A simple increase in the content of charged functionalities within the monolith leads to an expected acceleration of the flow velocity. However, increasing the pore size leads to a substantial deterioration of the efficiency of the separation. In contrast, monoliths with increasing levels of AMPS in which the pore size remains fixed due to adjustments in the composition of the porogenic solvent show no deterioration in efficiency while maintaining the same increase in flow velocity, thus producing a significant reduction in separation time. Additionally, measurements on monoliths with constant levels of AMPS but different pore sizes suggest that flow velocity may be affected by the flow resistance within the capillary column.

  12. Growth of GaAs from a free surface melt under controlled arsenic pressure in a partially confined configuration

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.; Wu, Y.

    1988-01-01

    A partially confined configuration for the growth of GaAs from melt in space was developed, consisting of a triangular prism containing the seed crystal and source material in the form of a rod. It is suggested that the configuration overcomes two obstacles in the growth of GaAs in space: total confinement in a quartz crucible and lack of arsenic pressure control. Ground tests of the configuration show that it is capable of crystal growth in space and is useful for studying the growth of GaAs from a free-surface melt on earth. The resulting chemical composition, electrical property variations, and phenomenological models to account for the results are presented.

  13. Step energy and step interactions on the reconstructed GaAs(001) surface

    NASA Astrophysics Data System (ADS)

    Magri, Rita; Gupta, Sanjeev K.; Rosini, Marcello

    2014-09-01

    Using ab initio total energy calculations we have studied the relation between the step atomic configuration and its properties (step energy, donor/acceptor behavior, and step interaction) on a β2(2×4) reconstructed GaAs (001) surface. The results have been tested against the widely used elastic dipole model for the step energy and step interaction considered valid for stress-free surfaces. We have found that acceptor-behaving steps have an attractive interaction and donor-behaving steps have a repulsive interaction in contrast with the elastic dipole model which predicts always a repulsive interaction between like-oriented steps. To account for the attractive interaction we consider the electrostatic dipole interaction having the L-2 scaling with the step distance L and therefore compatible with the standard elastic model. Using a model charge distribution with localized point charges at the step based on the electron counting model we show that the electrostatic step interaction can indeed be generally attractive and of the same order of magnitude of the negative elastic dipole interaction. Our results show however that the usually employed dipole model is unable to account for the repulsive/attractive step interaction between donorlike/acceptorlike steps. Therefore, the ab initio results suggest an important electronic contribution to the step interaction, at least at the short step distances accessible to the first-principles study. Our results explain qualitatively many experimental observations and provide an explanation to the step bunching phenomenon on GaAs(001) induced by doping or by critical growth conditions as due to the stabilization of attractively interacting step structures. These ideas would lead to the development of a bottom-up surface step engineering.

  14. In-situ NAP XPS studies of dissociative water adsorption on GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Zhang, Xueqiang

    2014-03-01

    In current semiconductor-based technology it is important to design and fabricate new materials in order to achieve specific well-defined properties and functionalities. Before such systems can be applied they first need to be understood, refined and controlled. Therefore, a basic knowledge about molecule/semiconductor surface interfaces is essential. In the present work dissociative water adsorption on the GaAs(100) surface is monitored using X-ray Photoelectron Spectroscopy (XPS) performed in situ under near ambient conditions. Firstly, the crystal surface is exposed to water vapor pressures ranging from UHV to 0.5 kPa. At elevated pressures an increase of oxygenation and hydroxylation of Ga surface atoms has been observed in the Ga2p XPS spectra. Moreover, intense signals obtained from molecularly adsorbed water molecules or water molecules adsorbed via hydrogen bond to surface OH groups have been also observed in the O1s spectra. Finally, the crystal surface is annealed up to 700 K at water vapor pressure of 0.01 kPa, which leads to desorption of physisorbed water molecules and further increase of surface oxidation. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through grant number DE-FC02-04ER15533.

  15. Role of deep level trapping on surface photovoltage of semi-insulating GaAs

    SciTech Connect

    Liu, Q.; Ruda, H.E.; Koutzarov, I.P.; Jedral, L.; Chen, G.; Prasad, M.

    1996-12-31

    Dual beam (bias and probe) transient Surface Photovoltage (SPV) measurements were made on undoped Semi-Insulating (SI) GaAs over an extended temperature range. Above 270 K, SPV recovery transients following a bias pulse were shown to reflect near surface conductivity changes; these are in turn controlled by surface/interface state thermal emission. Owing to the absence of a strong surface electric field in this material, the emitted carriers are not immediately removed from the near surface region. The recapturing of the emitted carriers is shown to be responsible for non-exponential conductivity and reciprocal-SPV transients. This behavior is considered to be characteristic of relaxation-type semiconductors with near-surface ungated structures. Below 150 K, the photoinduced transition of EL2 from its ground to metastable state El2* was shown to change the effective electron and hole mobilities and augment the SPV signals immediately following the bias pulse. Thermally induced EL2* recovery above 120 K decreases the SPV signal from its maximum. This decay transient was analyzed and the decay rate fitted to a single exponential. An activation energy of 0.32 eV and a pre-exponential constant of 1.9 {times} 10{sup 12} s{sup {minus}1} were obtained, and attributed to the thermal recovery rate for EL2*.

  16. Nano-pits on GaAs (1 0 0) surface: Preferential sputtering and diffusion

    NASA Astrophysics Data System (ADS)

    Kumar, Tanuj; Panchal, Vandana; Kumar, Ashish; Kanjilal, D.

    2016-07-01

    Self organized nano-structure array on the surfaces of semiconductors have potential applications in photonics, magnetic devices, photovoltaics, and surface-wetting tailoring etc. Therefore, the control over their dimensions is gaining scientific interest in last couple of decades. In this work, fabrication of pits of nano-dimensions is carried out on the GaAs (1 0 0) surface using 50 keV Ar+ at normal incidence. Variation in fluence from 3 × 1017 ions/cm2 to 5 × 1018 ions/cm2 does not make a remarkable variation in the dimension of pits such as size and depth, which is confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). However the simultaneous dots formation is observed along with the pits at higher fluences. Average size of pits is found to be of 22 nm with depth of 1-5 nm for the used fluences. The importance of preferential sputtering of 'As' as compared to 'Ga' is estimated using energy dispersive X-ray analysis (EDX). The observed alteration in near surface composition shows the Ga enrichment of surface, which is not being much affected by variation in fluence. The growth evolution of pits and dots for the used experimental conditions is explained on the basis of ion beam induced preferential sputtering and surface diffusion.

  17. Surface chemistry of new As precursors for MOVPE and MOMBE: phenylarsine and tertiarybutylarsine on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Kaul, P.; Schütze, A.; Kohl, D.; Brauers, A.; Weyers, M.

    1992-10-01

    Surface reactions of PhAs and tBAs on unoxidized and thermally oxidized GaAs(100) were studied in an UHV chamber using a differentially pumped quadrupole mass spectrometer and a molecular beam nozzle. A special sample holder allowed periodic switching between an unoxidized and an oxidized surface to observe small differences in reactivity. The following assumptions are compatible with the experimental results: Adsorption of PhAs or tBAs on GaAs(100) followed by rupture of the As-H bonds is the first step. Most of the organometallic radicals desorb from the surface, a fraction decomposes further by rupture of the As-C bond. The organic radicals react with the surface hydrogen and desorb as benzene and butane or butene, respectively. Low values of the activation energies ( ≤ 0.4 eV) for the different reaction steps suggest a diffusion of PhAs or tBAs on the surface as the rate limiting step for the overall reaction. A comparison of oxidized and unoxidized surfaces exposed to a constant gas flux of PhAs or tBAs revealed a reduced reactivity on the oxidized surface. Thermodesorption experiments with oxidized GaAs(100) surfaces showed that the desorption temperature of GA 2O decreased from 862 K without tBAs to 835 K in a tBAs flux. During this annealing process a reaction between the surface oxide and organic radicals from the tBAs decomposition seems to form a highly stable contamination layer which was observed by X-ray photoelectron spectroscopy. This contamination of the surface can be avoided by annealing in UHV without any As-species present and monitoring the Ga 2O flux from the surface with a mass spectrometer because non-stoichiometric evaporation of GaAs occurs only after desorption of the oxide.

  18. 30 GHz monolithic balanced mixers using an ion-implanted FET-compatible 3-inch GaAs wafer process technology

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.

    1986-01-01

    An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.

  19. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  20. Nitride chemical passivation of a GaAs (100) Surface: Effect on the electrical characteristics of Au/GaAs surface-barrier structures

    SciTech Connect

    Berkovits, V. L. L'vova, T. V.; Ulin, V. P.

    2011-12-15

    The effect of chemical nitridation of GaAs substrates in a hydrazine-sulfide solution on the electrical characteristics of Au/GaAs Schottky structures has been studied. In nitridation of this kind, a solid passivating gallium nitride film with a monolayer thickness is formed on the surface of GaAs, providing almost direct contact between the semiconductor and the metal deposited on its surface. Au/GaAs structures fabricated on nitride substrates have ideality factors close to unity and are characterized by a narrow scatter of potential barrier heights. Prolonged heating of these structures at 350 Degree-Sign C does not change these parameters. The data obtained show that the nitride monolayer formed on the GaAs surface upon treatment in hydrazidesulfide solutions effectively hinders atomic migration across the metal-semiconductor phase boundary.

  1. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate

    SciTech Connect

    Nunes, O. A. C.

    2014-06-21

    We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate R{sup PA,DA} scales with T{sub BG}{sup S−1} (S=PA,DA), T{sub BG}{sup S} being the Block−Gru{sup ¨}neisen temperature. In the high-T Block−Gru{sup ¨}neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio R{sup PA}/R{sup DA} scales with ≈1/√(n), n being the carrier concentration. We found that only for carrier concentration n≤10{sup 10}cm{sup −2}, R{sup PA}/R{sup DA}>1. In the low-T Block−Gru{sup ¨}neisen regime, and for n=10{sup 10}cm{sup −2}, the ratio R{sup PA}/R{sup DA} scales with T{sub BG}{sup DA}/T{sub BG}{sup PA}≈7.5 and R{sup PA}/R{sup DA}>1. In this regime, PA phonon dominates the electron scattering and R{sup PA}/R{sup DA}<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.

  2. Droplet etched GaAs quantum dots close to surfaces and metallic interfaces

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Zocher, M.; Pudewill, L.; Runge, H.; Küster, A.; Hansen, W.

    2017-01-01

    GaAs quantum dots (QDs) with a thin cap layer are studied as building blocks for self-aligned hybrids with a metallic nanostructure (MN). Both constituents are filled into a nanohole template that is drilled into an AlGaAs surface by self-assembled local droplet etching during molecular beam epitaxy. In a first series of samples, the interaction of a near AlGaAs surface with a single QD at varied distance is studied using microphotoluminescence (PL) spectroscopy. With decreasing distance down to 12.5 nm, surface charges cause an increase in the exciton radiative lifetime, the formation of charged excitons, and a broadening of the exciton PL peaks. The PL peak broadening is quantitatively analyzed on the basis of an analytical model assuming temporal fluctuations of the surface charge. In a second sample series, the nanoholes are filled in addition with an Au nanostructure. The optical spectra are similar to those from QDs without a metal but with a slightly stronger PL peak broadening. For a small distance of 12.5 nm clearly within the optical near-field of the MN, the QDs show a typical PL linewidth of 430 μeV that is still small enough to separate different excitonic lines.

  3. Energetic, electronic, and magnetic properties of Mn pairs on reconstructed (001) GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Birowska, Magdalena; Śliwa, Cezary; Majewski, Jacek A.

    2017-03-01

    We study energetic, magnetic, and electronic properties of diluted substitutional Mn pairs on reconstructed (001 ) GaAs surfaces. The studies are based on first-principles calculations in the framework of density functional theory. We demonstrate that the stability of the systems strongly depends on the position, orientation, and the distance between the Mn atoms constituting the pair. Independently of the considered surface reconstruction pattern, the Mn pairs with Mn atoms being the nearest neighbors (NN) on a cationic sublattice turn out to be energetically more favorable than the pairs with the larger distance between the Mn atoms. However, the preferential buildup orientation of the Mn-NN pair depends on the surface reconstruction and is parallel to either the [110 ] or the [1 1 ¯0 ] crystallographic direction. We reveal also the mechanisms of the magnetic ordering of Mn-NN pairs. The Mn-NN pairs along the [110 ] crystallographic direction exhibit always ferromagnetic alignment of Mn spins, whereas the spins in the Mn-NN pairs along the [1 1 ¯0 ] direction are mostly antiferromagnetically aligned. In the electronic structure of the systems containing Mn pairs with ferromagnetically aligned spins, we observe the valence band hole states in the neighborhood of Fermi energy. This indicates that the surface ferromagnetism in this prototype of dilute magnetic semiconductors can be explained in terms of the p -d Zener model.

  4. Characterization of epiready n +-GaAs (100) surfaces by SPV-transient

    NASA Astrophysics Data System (ADS)

    Sinkkonen, Juha; Novikov, Sergey; Varpula, Aapo; Haapamaa, J.

    2007-12-01

    Surface photovoltage (SPV) transient provides a non-destructive, contact-free method for characterization of semiconductor surfaces. Here we study SPV-transients of differently cleaned, heavily doped epiready GaAs wafers. After a rapid initial part the transient shows a very slow decay taking place in 100 - 1000 s time scale. Chemical NH 4OH:H IIO II:H IIO cleaning and atomic hydrogen UHV cleaning are applied. SPV-transients are measured by Kelvin probe in normal atmospheric conditions. A large signal surface trapping model is developed which includes both majority and minority carrier processes and covers the whole light on, steady state, light off sequence. Model fitting allows band bending, energy and density of surface states as well as electron and hole capture cross-sections to be extracted. The results show that the traps are electronic states in thin oxide layer covering the samples. This conclusion is based on the finding that the capture cross-sections are very small, in the range 10 -19 - 10 -26 cm2, which calls tunneling for explanation. This indicates that after cleaning the oxide layer is rapidly re-grown in laboratory atmosphere in less than 30 min. Typical band bendings are 0.6 - 0.8 eV, trap energies are slightly above the mid-gap and the density of occupied trap states is around 5×10 12 cm -2 at thermal equilibrium.

  5. GaAs nanopillar-array solar cells employing in situ surface passivation.

    PubMed

    Mariani, Giacomo; Scofield, Adam C; Hung, Chung-Hong; Huffaker, Diana L

    2013-01-01

    Arrays of III-V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p-n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm(-2) and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode.

  6. GaAs nanopillar-array solar cells employing in situ surface passivation

    NASA Astrophysics Data System (ADS)

    Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.

    2013-02-01

    Arrays of III-V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p-n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm-2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode.

  7. Optical and surface properties of the in doped GaAs layer deposition using thermionic vacuum arc method.

    PubMed

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan; Şimşek, Veli

    2016-07-01

    A broadband optical transparent InGaAs semiconductor layer production of micron thicknesses was produced in only 75 s by thermionic vacuum arc (TVA) method at the first time. The optical and surface properties of the produced layers have been investigated. InGaAs structure is using in electronics and optoelectronics devices. The main advantage of TVA method is its fast deposition rate, without any loss in the quality of the films. Doping is a very simple and fast according to common production methods. InGaAs is an alloy of indium arsenide (InAs) and gallium arsenide (GaAs). InAs with (220) crystallographic direction and GaAs with (024)/(022) crystallographic directions were detected using by XRD analysis. GaAs and InAs are in the cubic and zinc blende crystal system, respectively. According to the transmittance spectra, sample has a broadband transparency in the range of 1000-3300 nm. According to results, defined TVA method for In doping to GaAs is proper fast and friendly method. SCANNING 38:297-302, 2016. © 2015 Wiley Periodicals, Inc.

  8. Transient surface states during the CBE growth of GaAs

    NASA Astrophysics Data System (ADS)

    Farrell, T.; Hill, D.; Joyce, T. B.; Bullough, T. J.; Weightman, P.

    1997-05-01

    We report the occurrence of a transient surface state during the initial stages of CBE GaAs(0 0 1) growth. The state was detected in real-time reflectance ( R) and reflectance anisotropy spectroscopy (RAS) growth monitoring. At low growth rates, less than 1 μm/h, beam equivalent pressure (BEP) of triethylgallium (TEG) < 2.5 × 10 -5 mbar there was no change in R and the RAS signal changed from its pre-growth value under arsenic stabilisation at the growth temperature to its "during growth" value upon admission of the TEG, with the familiar monolayer oscillations. At higher TEG BEPs there was a rapid increase in R at all monitoring wavelengths, followed by a monotonic decay to its pre-growth value. This transient increase in R was accompanied by a change in the RAS signal, the magnitude and sign of which varied with wavelength. The initial increase in R is shown to be associated with the development of a metallic-like surface whereas the changes in the RAS signal are consistent with the formation of Ga dimers.

  9. Role of GaAs surface clearing in plasma deposition of silicon nitride films for encapsulated annealing

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.

    1985-01-01

    The role of GaAs surface cleaning and plasma reactor cleaning prior to deposition of silicon nitride films for encapsulated annealing has been investigated. X-ray photoelectron spectroscopy was employed to determine the surface characteristics of GaAs treated with HCl, HF, and NH4OH solutions preceded by a degreasing procedure. The HCl clean left the least amount of oxygen on the surface. Fluorine contamination resulting from the CF4 plasma used to clean the reactor was found to be located at the film-substrate interface by Auger electron spectroscopy with argon-ion sputtering. A modified deposition procedure was developed to eliminate the fluorine contamination. Plasma deposition of silicon nitride encapsulating films was found to modify the I-V characteristics of Schottky diodes subsequently formed on GaAs surface. The reverse current of the diodes was slightly reduced. Substrates implanted with Si at 100 keV and a dose of 5 x 10 to the 12th/sq cm showed a peak electron concentration of 1.7 x 10 to the 17th/cu cm at a depth of 0.1-micron with 60 percent activation after encapsulation and annealing at 800 C for 7 min.

  10. Surface passivation of tellurium-doped GaAs nanowires by GaP: Effect on electrical conduction

    SciTech Connect

    Darbandi, A.; Salehzadeh, O.; Watkins, S. P.; Kuyanov, P.; LaPierre, R. R.

    2014-06-21

    We report on the surface passivation of Au-assisted Te-doped GaAs nanowires (NWs) grown by metalorganic vapor phase epitaxy. The electrical properties of individual free standing NWs were assessed using a tungsten nano-probe inside a scanning electron microscope. The diameter independent apparent resistivity of both strained and relaxed passivated NWs suggests the unpinning of the Fermi level and reduction of sidewalls surface states density. Similar current-voltage properties were observed for partially axially relaxed GaAs/GaP NWs. This indicates a negligible contribution of misfit dislocations in the charge transport properties of the NWs. Low temperature micro-photoluminescence (μ-PL) measurements were also carried out for both uncapped and passivated GaAs NWs. The improvement of the integrated (μ-PL) intensity for GaAs/GaP NWs further confirms the effect of passivation.

  11. A new high-efficiency GaAs solar cell structure using a heterostructure back-surface field

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Fan, J. C. C.; Turner, G. W.; Chapman, R. L.

    1984-01-01

    Shallow-homojunction GaAs solar cells are fabricated with a back-surface field (BSF) produced by a GaAs/Al(0.2)Ga(0.8)As heterostructure. These cells exhibit higher open-circuit voltages and conversion efficiencies than control cells made with a p-GaAs/p(+)-GaAs BSF. Conversion efficiencies of over 22 percent (AM1, total area) have been obtained with this new structure. The use of a higher bandgap material below the active region not only provides an enhanced BSF but will also permit the implementation of two solar-cell designs: a GaAs cell with a back-surface reflector and an AlGaAs cell that can be used as the upper cell in tandem configurations.

  12. Basic Study on the Radio Frequency Characteristics of the Transmission Lines Employing Periodically Perforated Ground Metal on GaAs Monolithic Microwave Integrated Circuit and Their Equivalent Ciruits

    NASA Astrophysics Data System (ADS)

    Yun, Young; Ju, Jeong-Gab; Kim, Hong Seung

    2011-01-01

    In this work, basic characteristics of transmission line employing periodically perforated ground metal (PPGM) were investigated using theoretical and experimental analysis. Concretely, bandwidth and impedance were investigated using theoretical analysis, and wavelength and effective permittivity were extracted from experimental results. In addition, insertion loss and isolation characteristics were investigated using equivalent circuit analysis. For simplification of design process, equivalent circuits for the PPGM cell were extracted, and all circuit parameters were expressed by closed-form equation. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on monolithic microwave integrated circuit (MMIC) including wireless communication circuit and compound semiconducting devices such as high electron mobility transistor (HEMT), diamond field effect transistor (FET) and light emitting diode (LED).

  13. Effects of surface reconstruction on the epitaxial growth of III-Sb on GaAs using interfacial misfit array

    NASA Astrophysics Data System (ADS)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt

    2017-03-01

    The effects of pre-growth Sb reconstruction on a GaAs surface on the epitaxial growth of III-Sb (GaSb and InSb) on a (100) GaAs substrate using interfacial misfit array were investigated. All samples exhibited smooth surface with a root mean square (r.m.s.) roughness below 1.5 nm and nearly 100% relaxation. Modeling indicated that the distribution and types of misfit dislocations can be evaluated using a reciprocal space map (RSM) of the x-ray measurements. The interfacial misfit (IMF) arrays in III-Sb/GaAs samples were characterized by RSMs of high-resolution x-ray diffraction (XRD) and transmission electron microscopy (TEM). The RSM results suggest that all samples exhibited highly uniformly distributed misfit dislocations, and pre-growth (2 × 8) Sb surface reconstruction promoted the formation of 90° dislocations in an IMF array. Hall measurements of unintentionally doped GaSb and InSb layers also suggested that the highest motilities at both 77 K and 300 K were achieved at the samples grown on GaAs with pre-growth (2 × 8) Sb reconstruction.

  14. Relevance of GaAs(001) surface electronic structure for high frequency dispersion on n-type accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Pi, T. W.; Chen, W. S.; Lin, Y. H.; Cheng, Y. T.; Wei, G. J.; Lin, K. Y.; Cheng, C.-P.; Kwo, J.; Hong, M.

    2017-01-01

    This study investigates the origin of long-puzzled high frequency dispersion on the accumulation region of capacitance-voltage characteristics in an n-type GaAs-based metal-oxide-semiconductor. Probed adatoms with a high Pauling electronegativity, Ag and Au, unexpectedly donate charge to the contacted As/Ga atoms of as-grown α2 GaAs(001)-2 × 4 surfaces. The GaAs surface atoms behave as charge acceptors, and if not properly passivated, they would trap those electrons accumulated at the oxide and semiconductor interface under a positive bias. The exemplified core-level spectra of the Al2O3/n-GaAs(001)-2 × 4 and the Al2O3/n-GaAs(001)-4 × 6 interfaces exhibit remnant of pristine surface As emission, thereby causing high frequency dispersion in the accumulation region. For the p-type GaAs, electrons under a negatively biased condition are expelled from the interface, thereby avoiding becoming trapped.

  15. Decomposition Mechanism of Triethyl-Arsenic on a GaAs Surface for Metalorganic Molecular-Beam Epitaxy: Role of Hydrogen Radicals

    NASA Astrophysics Data System (ADS)

    Suemune, Ikuo; Hamaoka, Kazuhiko; Koui, Tomoaki; Kishimoto, Akihiro; Yamanishi, Masamichi

    1991-09-01

    Growth of GaAs in metalorganic molecular-beam epitaxy using triethyl-arsenic (TEAs) becomes possible only when TEAs is thermally precracked or when hydrogen (H) plasma is irradiated simultaneously. In this paper, it will be shown that the bottleneck in the growth of GaAs with TEAs is the quick desorption of the As-intermediate species before its decomposition to supply As to a GaAs surface. The Ga-stabilized GaAs surface after the TEAs supply is proposed to be covered with stable C2H4 species based on reflection high-energy electron diffraction and quadrupole mass spectrometric measurements. H radicals are shown to be effective in the initial stages of the decomposition process of TEAs, but once the surface is covered stably with C2H4, even the H radicals cannot enhance their desorption.

  16. Atomic structure of InSb(001) and GaAs(001) surfaces imaged with noncontact atomic force microscopy.

    PubMed

    Kolodziej, J J; Such, B; Szymonski, M; Krok, F

    2003-06-06

    Noncontact atomic force microscopy (NC-AFM) has been used to study the c(8x2) InSb(001) and the c(8x2) GaAs(001) surfaces prepared by sputter cleaning and annealing. Atomically resolved tip-surface interaction maps display different characteristic patterns depending on the tip front atom type. It is shown that representative AFM maps can be interpreted consistently with the most recent structural model of A(III)B(V)(001) surface, as corresponding to the A(III) sublattice, to the B(V) sublattice, or to the combination of both sublattices.

  17. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    PubMed

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the <110> direction, which is theoretically predicted to produce a high Curie temperature.

  18. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    NASA Astrophysics Data System (ADS)

    Kim, Juho; Hwang, Jeongwoo; Song, Kwangsun; Kim, Namyun; Shin, Jae Cheol; Lee, Jongho

    2016-06-01

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric power similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.

  19. A Study of the Activated GaAs Surface for Application as an Electron Source in Particle Accelerators

    SciTech Connect

    Chanlek, N.; Herbert, J. D.; Jones, L. B.; Middleman, K. J.; Jones, R. M.

    2009-08-04

    The use of type III-V semiconductor materials as photocathodes has in recent years become a focus for the High Energy Physics community. Once activated to a negative electron affinity (NEA) state and illuminated by a laser, these materials can be used as a high-brightness source of both polarised and un-polarised electrons in some modern accelerators, for example, ALICE (Accelerators and Lasers in Combined Experiments) at Daresbury Laboratory. This paper will focus on the use of gallium arsenide (GaAs) as a photocathode, and detail the reconfiguration and re-commissioning of two vacuum systems that support standard surface science techniques such as ultraviolet/X-ray photoelectron spectroscopy (UPS/XPS), low energy electron diffraction (LEED) and auger electron spectroscopy (AES). The paper will present details of cleaning GaAs in order to maximise quantum efficiency and will provide evidence from XPS and LEED to demonstrate what is happening at the atomic level.

  20. Controlling the surface chemistry and chromatographic properties of methacrylate-ester-based monolithic capillary columns via photografting.

    PubMed

    Eeltink, Sebastiaan; Hilder, Emily F; Geiser, Laurent; Svec, Frantisek; Fréchet, Jean M J; Rozing, Gerard P; Schoenmakers, Peter J; Kok, Wim Th

    2007-02-01

    Preparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC. Different strategies were applied to control the grafting density and, thereby, the magnitude of the EOF. To control the hydrophobic properties, two approaches were tested: (i) cografting of a mixture of the ionizable and hydrophobic monomers and (ii) sequential grafting of the ionizable and hydrophobic monomers. Cografting resulted in similar retention but higher EOF. With sequential grafting, more than 50% increase in retention factors was obtained and a slight decrease in EOF was observed due to shielding of the ionizable moieties.

  1. Measurement of the Surface Strain Induced by Reconstructed Surfaces of GaAs (001) Using Photoreflectance and Reflectance-Difference Spectroscopies

    NASA Astrophysics Data System (ADS)

    Lastras-Martínez, L. F.; Flores-Camacho, J. M.; Lastras-Martínez, A.; Balderas-Navarro, R. E.; Cardona, M.

    2006-02-01

    We report photoreflectance-difference and reflectance-difference measurements on reconstructed GaAs (001) surfaces. From these data the linear and quadratic electro-optic coefficient spectra are determined in the important 2.8-3.4 eV spectral region. The surface strain and fields induced by the surface reconstruction are also determined. We show experimentally that between c(4×4) and (2×4) surfaces, there is an inversion of the surface electric field which we attribute to a direct piezo-electric effect related to the surface strain induced by reconstruction.

  2. Interaction of Mn with GaAs and InSb: incorporation, surface reconstruction and nano-cluster formation.

    PubMed

    Burrows, C W; Hatfield, S A; Bastiman, F; Bell, G R

    2014-10-01

    The deposition of Mn on to reconstructed InSb and GaAs surfaces, without coincident As or Sb flux, has been studied by reflection high energy electron diffraction, atomic force microscopy and scanning tunnelling microscopy. On both Ga- and As-terminated GaAs(0 0 1), (2 × n) Mn-induced reconstruction domains arise with n = 2 for the most well ordered reconstructions. On the Ga-terminated (4 × 6), the Mn-induced (2 × 2) persists up to around 0.5 ML Mn followed by Mn nano-cluster formation. For deposition on initially β2(2 × 4)-reconstructed GaAs(0 0 1), the characteristic trench structure of the reconstruction is partially preserved even beyond 1 monolayer Mn coverage. On both the β2(2 × 4) and c(4 × 4) surfaces, MnAs-like nano-clusters form alongside the reconstruction changes. In contrast, there are no new Mn-induced surface reconstructions on InSb. Instead, the Sb-terminated surfaces of InSb (0 0 1), (1 1 1)A and (1 1 1)B revert to reconstructions characteristic of clean In-rich surfaces after well defined coverages of Mn proportional to the Sb content of the starting reconstruction. These surfaces are decorated with self-assembled MnSb nanoclusters. These results are discussed in terms of basic thermodynamic quantities and the generalized electron counting rule.

  3. Polymethacrylate monoliths with immobilized poly-3-mercaptopropyl methylsiloxane film for high-coverage surface functionalization by thiol-ene click reaction.

    PubMed

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel; Lämmerhofer, Michael

    2014-11-07

    In this work, new polythiol-functionalized macroporous monolithic polymethacrylate-polysiloxane composite materials are presented which can be useful substrates for highly efficient immobilization of (chiral) catalysts, chromatographic ligands, and other functional moieties by thiol-ene click reaction. Poly(glycidyl methacrylate-co-ethylene dimethacrylate) (poly(GMA-co-EDMA)) monoliths were coated with a poly-3-mercaptopropyl methylsiloxane (PMPMS) film and subsequently the polymer was covalently immobilized by formation of crosslinks via nucleophilic substitution reaction with pendent 2,3-epoxypropyl groups on the monolith surface. This monolith, though, showed similar levels of surface coverage as a reference monolith obtained by opening of the epoxide groups with sodium hydrogen sulfide. However, a 3-step functionalization by amination of the epoxy monolith, followed by its vinylation with allylglycidyl ether and subsequent thiolation by coating of a thin polythiol (PMPMS) film and crosslinking by click reaction furnished a monolith with more than 2-fold elevated thiol coverage. Its further functionalization with a clickable chiral quinine carbamate selector clearly documented the benefit of highly dense thiol surfaces for such reactions and synthesis of functional materials with proper ligand loadings. The new monoliths were chromatographically tested in capillary electrochromatography mode using N-3,5-dinitrobenzoyl-leucine as chiral probe and the capillary column with the monolith having the highest selector coverage, produced from the precursor with the most thiols on the surface, showed the largest separation factor. By performic acid oxidation the surface characteristic could be tuned and strongly altered due to a delicate balance of enantioselective and non-specific interactions.

  4. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    SciTech Connect

    Egorov, A. Yu. Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Nevedomskiy, V. N.; Bugrov, V. E.

    2015-11-15

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  5. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    SciTech Connect

    Zech, E. S.; Chang, A. S.; Martin, A. J.; Canniff, J. C.; Millunchick, J. M.; Lin, Y. H.; Goldman, R. S.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  6. Effect of the Photoquenching of EL2 in GaAs Substrate on the Piezoelectric Photothermal and Surface Photovoltage Spectra of a GaAs Single Quantum Well Confined by GaAs/AlAs Short-Period Superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Fukuyama, Atsuhiko; Akashi, Yoshito; Ikari, Tetsuo

    2008-01-01

    Two nondestructive techniques, surface photovoltage (SPV) and piezoelectric photothermal (PPT) spectroscopies, were adopted to investigate a GaAs single quantum well (SQW) confined by GaAs/AlAs short-period superlattices (SPSs) fabricated on a semi-insulating (SI) GaAs substrate, whose absorption spectra cannot be obtained easily using conventional techniques. Excitonic absorptions associated with subband transitions in a GaAs SQW and SPSs were clearly observed. We also examined how a SI-GaAs substrate affects the PPT and SPV spectra, particularly the effect of the photoquenching of the deep donor level EL2. It was found that the photoquenching of EL2 causes a significant change in the total built-in potential at the interface between the epitaxial layers and the substrate, and affected the signal intensities observed in the PPT and SPV spectra. The present experimental results have shown that a large amount of carrier leakage occurs from a GaAs SQW and SPSs to the sample surface, even in the presence of Al0.3Ga0.7As buffer layers.

  7. Novel Metal-Sulfur-Based Air-Stable Passivation of GaAs with Very Low Surface State Densities

    SciTech Connect

    Ashby, Carol I.H.; Baca, Albert G.; Chang, P.-C; Hafich, M.J.; Hammons, B.E.; Zavadil, Kevin R.

    1999-08-09

    A new air-stable electronic surface passivation for GaAs and other III-V compound semiconductors that employs sulfur and a suitable metal ion, e.g., Zn, and that is robust towards plasma dielectric deposition has been developed. Initial improvements in photoluminescence are twice that of S-only treatments and have been preserved for >11 months with SiO{sub x}N{sub y} dielectric encapsulation. Photoluminescence and X-ray photoelectron spectroscopies indicate that the passivation consists of two major components with one being stable for >2 years in air. This process improves heterojunction bipolar transistor current gain for both large and small area devices.

  8. Submilliampere continuous-wave room-temperature lasing operation of a GaAs mushroom structure surface-emitting laser

    SciTech Connect

    Yang, Y.J.; Dziura, T.G.; Wang, S.C. ); Hsin, W.; Wang, S. Electronics Research Laboratory, University of California, Berkeley, California 94720 )

    1990-05-07

    We report a GaAs mushroom structure surface-emitting laser at 900 nm with submilliampere (0.2--0.5 mA) threshold under room-temperature cw operation for the first time. The very low threshold current was achieved on devices which consisted of a 2--4 {mu}m diameter active region formed by chemical selective etching, and sandwiched between two Al{sub 0.05}Ga{sub 0.95} As/ Al{sub 0.53}Ga{sub 0.47} As distributed Bragg reflectors of very high reflectivity (98--99%) grown by metalorganic chemical vapor deposition.

  9. Simulation of GaAs cluster formation on GaAs(00-1), AlAs(00-1), Si(001), and As1/Si(001) surfaces

    NASA Technical Reports Server (NTRS)

    Choi, D. K.; Koch, S. M.; Takai, T.; Halicioglu, T.; Tiller, W. A.

    1988-01-01

    Recently developed semiempirical potential energy functions for the Ga-As-Si and Ga-As-Al systems have been applied here to determine the excess formation energy for GaAs clusters on GaAs(00-1), AlAs(00-1), Si(001), and one atomic layer As-covered Si(001) substrates as a function of cluster size and cluster shape by the Monte Carlo technique. Pyramidal type ledges on the GaAs clusters are found to be the favored ledge for the first three layers while an inverted-pyramidal type ledge is also favored in certain cases for the As1/Si(001) substrate. Cluster formation at ledges is compared with cluster formation on a flat terrace for the Si(001) and the As1/Si(001) substrates.

  10. Monolithic excitation and manipulation of surface plasmon polaritons on a vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Lamy, J.-M.; Justice, J.; Lévêque, G.; Corbett, B.

    2011-06-01

    We report the manipulation of surface plasmon polaritons (SPPs) on a thin Au layer integrated on top of the mirror of a vertical-cavity surface-emitting laser (VCSEL). Gratings etched into the Au layer to different depths are used to couple the light into and out of the film, and to bend the trajectory of the SPP. The result paves the way to compact integrated plasmonic devices.

  11. Laser-driven growth of silver nanoplates on p-Type GaAs substrates and their surface-enhanced raman scattering activity.

    SciTech Connect

    Sun, Y.; Pelton, M.

    2009-03-20

    Contact between aqueous solutions of silver nitrate (AgNO{sub 3}) and pristine surfaces of p-type gallium arsenide (GaAs) wafers results in essentially no reaction at room temperature and in the dark. The galvanic reactions between the GaAs wafers and AgNO{sub 3} can be triggered under illumination of laser beams with power densities higher than a critical value ({approx}15 mW/cm{sup 2} for a 630 nm laser), resulting in the growth of silver (Ag) nanoplates on the GaAs surface. The density and dimensions (including both thickness and edge length) of the resulting nanoplates can be readily tuned by controlling the growth time and laser power density. The as-grown Ag nanoplates on the substrates significantly enhance Raman signals of interesting molecules and serve as a new class of promising surface-enhanced Raman scattering substrates for sensitive chemical detection.

  12. Effective reduction of interfacial traps in Al2O3/GaAs (001) gate stacks using surface engineering and thermal annealing

    NASA Astrophysics Data System (ADS)

    Chang, Y. C.; Merckling, C.; Penaud, J.; Lu, C. Y.; Wang, W.-E.; Dekoster, J.; Meuris, M.; Caymax, M.; Heyns, M.; Kwo, J.; Hong, M.

    2010-09-01

    To effectively passivate the technologically important GaAs (001) surfaces, in situ deposition of Al2O3 was carried out with molecular beam epitaxy. The impacts of initial GaAs surface reconstruction and post-deposition annealing have been systematically investigated. The corresponding interfacial state density (Dit) were derived by applying the conductance method at 25 and 150 °C on both p-type and n-type GaAs metal-oxide-semiconductor capacitors to establish the Dit spectra in proximity of the critical midgap region. We show that significant reduction of Dit near the midgap is achieved by applying an optimized thermal annealing on samples grown on a Ga-rich (4×6) reconstructed surface.

  13. Epitaxial (100) GaAs Thin Films on Sapphire for Surface Acoustic Wave/Electronic Devices.

    DTIC Science & Technology

    1985-12-01

    demonstrated that undoped -,111> single crystal a’ gallium arsenide could be grown on 򒠰> sapphire using the metalorganic chemical vapor deposition...chip. Metalorganic chemical vapor deposition (MO-CVD) was used for all depositions during this work. Sapphire with an orientation of (01 T2 > was...as quartz. d& I SECTION 2 MO-CVD GROWTH SYSTEMS All GaAs depositions were performed in our second MO-CVD system which is also being used in a

  14. Structure of GaSb layers grown on (111) GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Babkevich, A. Yu.; Cowley, R. A.; Mason, N. J.; Shields, P. A.; Stadelman, T.; Brown, S.; Mannix, D.; Paul, D.

    2004-09-01

    The structure of GaSb layers with thicknesses of 70Å, 160Å, and 1260Å grown on GaAs (111) substrates by metal-organic vapor phase epitaxy has been studied by high-resolution x-ray diffraction. The lattice mismatch between the layer and the substrate is large and most of the misfit strain is taken up by a regular network of dislocations localized at the interface between the GaSb and the GaAs. The spacing between the dislocations is about 49Å along the [1¯1¯2] direction. We observe that the layers have both the ABC … and ACB … face-centered-cubic (fcc) domains with a domain size of about 1500Å. The presence of approximately the same volume of both the domains in the overall layer suggests that the particular domain is chosen largely randomly and independent of the orientation of the substrate. In contrast, the results show that the structure of the GaAs substrate was a single fcc domain. The widths of the off-axis Bragg reflections along the [111] direction for the thinnest sample was within error the same as those for the (hhh ) Bragg reflections showing that each fcc domain penetrated through the entire layer.

  15. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  16. Characterization and simulation of fast neutron detectors based on surface-barrier VPE GaAs structures with polyethylene converter

    NASA Astrophysics Data System (ADS)

    Chernykh, A. V.; Chernykh, S. V.; Baryshnikov, F. M.; Didenko, S. I.; Burtebayev, N.; Britvich, G. I.; Kostin, M. Yu.; Chubenko, A. P.; Nassurlla, Marzhan; Nassurlla, Maulen; Kerimkulov, Zh.; Zholdybayev, T.; Glybin, Yu. N.; Sadykov, T. Kh.

    2016-12-01

    Fast neutron detectors with an active area of 80 mm2 based on surface-barrier VPE GaAs structures were fabricated and tested. Polyethylene with density of 0.90 g/cm3 was used as a converter layer. The recoil-proton surface-barrier sensor was fabricated on high purity VPE GaAs epilayers with a thickness of 50 μm. The neutron detection efficiency measured with a 241Am-Be source was 1.30 · 10-3 puls./neutr. for the PE converter thickness of 670 μm. The signal-to-gamma-background ratio was at the level of 50. Simulation of the detector characteristics with Geant4 toolkit has showed good correlation with the experimental data and allowed to estimate the maximal theoretical detection efficiency of the detector which is determined by the PE converter and equals to 1.37 · 10-3 puls./neutr. The difference between the measured and simulated values of the detection efficiency is due to the fact that the events with energies below 0.5 MeV were not taken into account during the measurements.

  17. Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings

    SciTech Connect

    Pennington, D.M.

    1992-04-01

    This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

  18. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  19. Epitaxial ferromagnetic Fe{sub 3}Si on GaAs(111)A with atomically smooth surface and interface

    SciTech Connect

    Liu, Y. C.; Hung, H. Y.; Kwo, J. E-mail: raynien@phys.nthu.edu.tw; Chen, Y. W.; Lin, Y. H.; Cheng, C. K.; Hong, M. E-mail: raynien@phys.nthu.edu.tw; Tseng, S. C.; Hsu, C. H. E-mail: raynien@phys.nthu.edu.tw; Chang, M. T.; Lo, S. C.

    2015-09-21

    Single crystal ferromagnetic Fe{sub 3}Si(111) films were grown epitaxially on GaAs(111)A by molecular beam epitaxy. These hetero-structures possess extremely low surface roughness of 1.3 Å and interfacial roughness of 1.9 Å, measured by in-situ scanning tunneling microscope and X-ray reflectivity analyses, respectively, showing superior film quality, comparing to those attained on GaAs(001) in previous publications. The atomically smooth interface was revealed by the atomic-resolution Z (atomic number)-contrast scanning transmission electron microscopy (STEM) images using the correction of spherical aberration (Cs)-corrected electron probe. Excellent crystallinity and perfect lattice match were both confirmed by high resolution x-ray diffraction. Measurements of magnetic property for the Fe{sub 3}Si/GaAs(111) yielded a saturation moment of 990 emu/cm{sup 3} with a small coercive field ≤1 Oe at room temperature.

  20. Kinetics of band bending and electron affinity at GaAs(001) surface with nonequilibrium cesium overlayers

    SciTech Connect

    Zhuravlev, A. G.; Savchenko, M. L.; Paulish, A. G.; Alperovich, V. L.; Scheibler, H. E.; Jaroshevich, A. S.

    2013-12-04

    The dosage dependences of surface band bending and effective electron affinity under cesium deposition on the Ga-rich GaAs(001) surface, along with the relaxation of these electronic properties after switching off the Cs source are experimentally studied by means of modified photoreflectance spectroscopy and photoemission quantum yield spectroscopy. At small Cs coverages, below half of a monolayer, additional features in the dosage dependence and subsequent downward relaxation of the photoemission current are determined by the variations of band bending. At coverages above half of a monolayer the upward relaxation of the photocurrent is caused supposedly by the decrease of the electron affinity due to restructuring in the nonequilibrium cesium overlayer.

  1. Capillary electrochromatography with monolithic silica column: I. Preparation of silica monoliths having surface-bound octadecyl moieties and their chromatographic characterization and applications to the separation of neutral and charged species.

    PubMed

    Allen, Darin; El Rassi, Ziad

    2003-01-01

    Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.

  2. Accelerated colorimetric immunosensing using surface-modified porous monoliths and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chuag, Shao-Hsuan; Chen, Guan-Hua; Chou, Hsin-Hao; Shen, Shu-Wei; Chen, Chien-Fu

    2013-08-01

    A rapid and sensitive immunoassay platform integrating polymerized monoliths and gold nanoparticles (AuNPs) has been developed. The porous monoliths are photopolymerized in situ within a silica capillary and serve as solid support for high-mass transport and high-density capture antibody immobilization to create a shorter diffusion length for antibody-antigen interactions, resulting in a rapid assay and low reagent consumption. AuNPs are modified with detection antibodies and are utilized as signals for colorimetric immunoassays without the need for enzyme, substrate and sophisticated equipment for quantitative measurements. This platform has been verified by performing a human IgG sandwich immunoassay with a detection limit of 0.1 ng ml-1. In addition, a single assay can be completed in 1 h, which is more efficient than traditional immunoassays that require several hours to complete.

  3. Coalescence of GaAs on (001) Si nano-trenches based on three-stage epitaxial lateral overgrowth

    SciTech Connect

    He, Yunrui; Wang, Jun Hu, Haiyang; Wang, Qi; Huang, Yongqing; Ren, Xiaomin

    2015-05-18

    The coalescence of selective area grown GaAs regions has been performed on patterned 1.8 μm GaAs buffer layer on Si via metal-organic chemical vapor deposition. We propose a promising method of three-stage epitaxial lateral overgrowth (ELO) to achieve uniform coalescence and flat surface. Rough surface caused by the coalescence of different growth fronts is smoothened by this method. Low root-mean-square surface roughness of 6.29 nm has been obtained on a 410-nm-thick coalesced ELO GaAs layer. Cross-sectional transmission electron microscope study shows that the coalescence of different growth fronts will induce some new dislocations. However, the coalescence-induced dislocations tend to mutually annihilate and only a small part of them reach the GaAs surface. High optical quality of the ELO GaAs layer has been confirmed by low temperature (77 K) photoluminescence measurements. This research promises a very large scale integration platform for the monolithic integration of GaAs-based device on Si.

  4. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.

    PubMed

    Reid, Matthew; Fedosejevs, Robert

    2005-01-01

    InAs has previously been reported to be an efficient emitter of terahertz radiation at low excitation fluences by use of femtosecond laser pulses. The scaling and saturation of terahertz emission from a (100) InAs surface as a function of excitation fluence is measured and quantitatively compared with the emission from a GaAs large-aperture photoconductive switch. We find that, although the instantaneous peak radiated terahertz field from (100) InAs exceeds the peak radiated signals from a GaAs large-aperture photoconductive switch biased at 1.6 kV/cm, the pulse duration is shorter. For the InAs source the total energy radiated is less than can be obtained from a GaAs large-aperture photoconductive switch.

  5. Effect of interaction in the Ga-As-O system on the morphology of a GaAs surface during molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Balakirev, S. V.; Solodovnik, M. S.; Eremenko, M. M.

    2016-05-01

    A thermodynamic analysis of processes of interphase interaction in the Ga-As-O system has been performed and their theoretical laws have been determined, taking into account nonlinear thermal physical properties of the compounds, the oxide film compositions, and modes of molecular-beam epitaxy of GaAs. The processes of interaction of the native oxide of GaAs with the substrate material and also with Ga and As4 from a vapor gaseous phase have been studied experimentally. The experimental results correlate with the results of the thermodynamic analysis. The laws of influence of the removal of the proper oxide on the evolution of the GaAs surface morphology under conditions of the molecular-beam epitaxy have been proposed.

  6. The synthesis of surface-glycosylated porous monolithic column via aqueous two-phase graft copolymerization and its application in capillary-liquid chromatography.

    PubMed

    Xiong, Xiyue; He, Haiqin; Shu, Yan; Li, Yuxin; Yang, Zihui; Chen, Yingzhuang; Ma, Ming; Chen, Bo

    2016-12-01

    A facile, flexible process was developed for the preparation of surface-glycosylated porous monolithic columns via aqueous two-phase graft copolymerization of polyethylene glycol diacrylate (PEGDA) and water-soluble dextran (dextran sulfate). The formation of poly(PEGDA) porous skeletons and surface glycosylation were achieved via a one-step process without pre-modification of the dextran. The synthesis conditions were thoroughly optimized. The optimal monolithic column exhibited a large dry state surface area (greater than 400m(2)/g), and it was evaluated as a hydrophilic liquid chromatography (HILIC) stationary phase. A typical HILIC mechanism was observed at high organic solvent content (≥65% acetonitrile). In addition, the resulting monolithic column demonstrated the potential use in analysis of complex biological sample and enviroment water.

  7. Evaluation of modulating field of photoreflectance of surface-intrinsic-n+ type doped GaAs by using photoinduced voltage

    NASA Astrophysics Data System (ADS)

    Lee, W. Y.; Chien, J. Y.; Wang, D. P.; Huang, K. F.; Huang, T. C.

    2002-04-01

    Photoreflectance (PR) of surface-intrinsic-n+ type doped GaAs has been measured for various power densities of pump laser. The spectra exhibited many Franz-Keldysh oscillations, whereby the strength of electric field F in the undoped layer can be determined. The thus obtained Fs are subject to photovoltaic effect and are less than built-in field Fbi. In the previous work we have obtained the relation F≈Fbi-δF/2 when δF≪Fbi by using electroreflectance to simulate PR, where δF is the modulating field of the pump beam. In this work a method was devised to evaluate δF by using photoinduced voltages Vs and, hence, the relation can be verified by PR itself. The δFs obtained by Vs are also consistent with those of using imaginary part of fast Fourier transform of PR spectra.

  8. GaAs Gigabit Monolithic Optoelectronic Transmitter.

    DTIC Science & Technology

    1983-10-01

    required for laser fabrication is the major advantage of Honeywell’s laser-in-a-well concept. The most critical processing step for the laser-in-a-well is...HEAT SINK Figure 51. Detail of the Laser/Multiplexer Chip Carrier Assembly The 14 wafers that completed the initial laser fabrication steps were sent...capabilities. It is not known if all of these char- acteristics can be achieved in a single laser or if trade-offs will be required. * The laser

  9. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  10. High-k gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Wen; Xu, Jing-Ping; Liu, Lu; Lu, Han-Han

    2015-12-01

    High-k gate dielectric HfTiON GaAs metal-oxide-semiconductor (MOS) capacitors with LaON as interfacial passivation layer (IPL) and NH3- or N2-plasma surface pretreatment are fabricated, and their interfacial and electrical properties are investigated and compared with their counterparts that have neither LaON IPL nor surface treatment. It is found that good interface quality and excellent electrical properties can be achieved for a NH3-plasma pretreated GaAs MOS device with a stacked gate dielectric of HfTiON/LaON. These improvements should be ascribed to the fact that the NH3-plasma can provide H atoms and NH radicals that can effectively remove defective Ga/As oxides. In addition, LaON IPL can further block oxygen atoms from being in-diffused, and Ga and As atoms from being out-diffused from the substrate to the high-k dielectric. This greatly suppresses the formation of Ga/As native oxides and gives rise to an excellent high-k/GaAs interface. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112).

  11. Half-metallicity at the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surface and its interface with GaAs(001).

    PubMed

    Zarei, Sareh; Javad Hashemifar, S; Akbarzadeh, Hadi; Hafari, Zohre

    2009-02-04

    Electronic and magnetic properties of the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surfaces and its interfaces with GaAs(001) are studied within the framework of density functional theory by using the plane-wave pseudopotential approach. The phase diagram obtained by ab initio atomistic thermodynamics shows that the CrAl surface is the most stable (001) termination of this Heusler alloy. We discuss that, at the ideal surfaces and interfaces with GaAs, half-metallicity of the alloy is lost, although the CrAl surface keeps high spin polarization. The energy band profile of the stable interface is investigated and a negative p Schottky barrier of -0.78 eV is obtained for this system.

  12. Chemotaxis for enhanced immobilization of Escherichia coli and Legionella pneumophila on biofunctionalized surfaces of GaAs.

    PubMed

    Hassen, Walid M; Sanyal, Hashimita; Hammood, Manar; Moumanis, Khalid; Frost, Eric H; Dubowski, Jan J

    2016-06-20

    The authors have investigated the effect of chemotaxis on immobilization of bacteria on the surface of biofunctionalized GaAs (001) samples. Escherichia coli K12 bacteria were employed to provide a proof-of-concept of chemotaxis-enhanced bacterial immobilization, and then, these results were confirmed using Legionella pneumophila. The recognition layer was based on a self-assembled monolayer of thiol functionalized with specific antibodies directed toward E. coli or L. pneumophila, together with the enzyme beta-galactosidase (β-gal). The authors hypothesized that this enzyme together with its substrate lactose would produce a gradient of glucose which would attract bacteria toward the biochip surface. The chemotaxis effect was monitored by comparing the number of bacteria bound to the biochip surface with and without attractant. The authors have observed that β-gal plus lactose enhanced the immobilization of bacteria on our biochips with a higher effect at low bacterial concentrations. At 100 and 10 bacteria/ml, respectively, for E. coli and L. pneumophila, the authors observed up to 11 and 8 times more bacteria bound to biochip surfaces assisted with the chemotaxis effect in comparison to biochips without chemotaxis. At 10(4) bacteria/ml, the immobilization enhancement rate did not exceed two times.

  13. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  14. High-spectral-radiance, red-emitting tapered diode lasers with monolithically integrated distributed Bragg reflector surface gratings.

    PubMed

    Feise, David; John, Wilfred; Bugge, Frank; Fiebig, Christian; Blume, Gunnar; Paschke, Katrin

    2012-10-08

    A red-emitting tapered diode laser with a monolithically integrated distributed Bragg reflector grating is presented. The device is able to emit up to 1 W of spectrally stabilized optical output power at 5°C. Depending on the period of the tenth order surface grating the emission wavelengths of these devices from the same gain material are 635 nm, 637 nm, and 639 nm. The emission is as narrow as 9 pm (FWHM) at 637.6 nm. The lateral beam quality is M(2)(1/e(2)) = 1.2. Therefore, these devices simplify techniques such as wavelength multiplexing and fiber coupling dedicating them as light sources for µ-Raman spectroscopy, absolute distance interferometry, and holographic imaging.

  15. Characterization of two MMIC GaAs switch matrices at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene

    1990-01-01

    Monolithic GaAs microwave switch matrices for use in satellite switched, time division multiple access communication systems were developed. Two monolithic GaAs MESFET switch matrices were fabricated; one for switching operation at intermediate frequencies, 3.5 to 6.0 GHz, and another for switching at radio frequencies, 17.7 to 20.2 GHz. Key switch parameters were measured for both switch matrices.

  16. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Henegar, A. J., , Dr.; Gougousi, T., , Prof.

    2016-12-01

    In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al2O3 and TiO2, using H2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al2O3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO2 and the native oxides continues well after the surface has been covered with 2 nm of TiO2. This difference is traced to the superior properties of Al2O3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  17. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  18. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  19. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  20. Surface Chemistry and Interface Evolution during the Atomic Layer Deposition of High-k Metal Oxides on InAs(100) and GaAs(100) Surfaces

    NASA Astrophysics Data System (ADS)

    Henegar, Alex J.

    Device scaling has been key for creating faster and more powerful electronic devices. Integral circuit components like the metal-oxide semiconductor field-effect transistor (MOSFET) now rely on material deposition techniques, like atomic layer deposition (ALD), that possess atomic-scale thickness precision. At the heart of the archetypal MOSFET is a SiO2/Si interface which can be formed to near perfection. However when the thickness of the SiO 2 layer is shrunk down to a few nanometers several complications arise like unacceptably high leakage current and power consumption. Replacing Si with III-V semiconductors and SiO2 with high-k dielectric materials is appealing but comes with its own set of challenges. While SiO2 is practically defect-free, the native oxides of III-Vs are poor dielectrics. In this dissertation, the surface chemistry and interface evolution during the ALD of high-k metal oxides on Si(100), GaAs(100) and InAs(100) was studied. In particular, the surface chemistry and crystallization of TiO2 films grown on Si(100) was investigated using transmission Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Large, stable, and highly reactive anatase TiO2 grains were found to form during a post-deposition heat treatment after the ALD at 100 °C. The remainder of this work was focused on the evolution of the interfacial oxides during the deposition of TiO2 and Al2O3 on InAs(100) and GaAs(100) and during the deposition of Ta2O 5 on InAs(100). In summary the ALD precursor type, deposited film, and substrate had an influence in the evolution of the native oxides. Alkyl amine precursors fared better at removing the native oxides but the deposited films (TiO2 and Ta2O5) were susceptible to significant native oxide diffusion. The alkyl precursor used for the growth of Al 2O3 was relatively ineffective at removing the oxides but was

  1. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G.; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R.; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-01

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h‑1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  2. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h(-1) and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  3. Chemical effect of inert argon beam on nitride nanolayer formed by ion implantation into GaAs surface

    NASA Astrophysics Data System (ADS)

    Mikoushkin, V. M.

    2010-12-01

    The composition of a nitride nanolayer formed on a GaAs(100) surface by the implantation of ions with an energy of E i = 2.5 keV and the chemical state of nitrogen in this layer have been studied by the method of Auger electron spectroscopy. It is established that, in addition to GaN, a GaAsN solid solution phase is formed in the ion-implanted layer. The energies of N KVV Auger electron transitions in these phases are determined as E A (GaN) = 379.8 ± 0.2 eV and E A (GaAsN) = 382.8 ± 0.2 eV (relative to the Fermi level), which allowed the distribution of nitrogen between these phases to be evaluated as [N(GaN)] = 70% and [N(GaAsN)] = 30%. It is established that an argon ion beam produces a chemical effect on the nitride layer, which is related to a cascade mixing of the material. Under the action of the argon ion bombardment, the distribution of nitrogen in the indicated phases changes to opposite. As a result a nitride nanolayer is formed in which the narrow-bandgap semiconductor (GaAsN) predominates rather than the wide-bandgap component (GaN).

  4. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  5. Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors

    NASA Astrophysics Data System (ADS)

    Gajos, Katarzyna; Angelopoulou, Michailia; Petrou, Panagiota; Awsiuk, Kamil; Kakabakos, Sotirios; Haasnoot, Willem; Bernasik, Andrzej; Rysz, Jakub; Marzec, Mateusz M.; Misiakos, Konstantinos; Raptis, Ioannis; Budkowski, Andrzej

    2016-11-01

    Time-of-flight secondary ion mass spectrometry (imaging, micro-analysis) has been employed to evaluate biofunctionalization of the sensing arm areas of Mach-Zehnder interferometers monolithically integrated on silicon chips for the immunochemical (competitive) detection of bovine κ-casein in goat milk. Biosensor surfaces are examined after: modification with (3-aminopropyl)triethoxysilane, application of multiple overlapping spots of κ-casein solutions, blocking with 100-times diluted goat milk, and reaction with monoclonal mouse anti-κ-casein antibodies in blocking solution. The areas spotted with κ-casein solutions of different concentrations are examined and optimum concentration providing homogeneous coverage is determined. Coverage of biosensor surfaces with biomolecules after each of the sequential steps employed in immunodetection is also evaluated with TOF-SIMS, supplemented by Atomic force microscopy and X-ray photoelectron spectroscopy. Uniform molecular distributions are observed on the sensing arm areas after spotting with optimum κ-casein concentration, blocking and immunoreaction. The corresponding biomolecular compositions are determined with a Principal Component Analysis that distinguished between protein amino acids and milk glycerides, as well as between amino acids characteristic for Mabs and κ-casein, respectively. Use of the optimum conditions (κ-casein concentration) for functionalization of chips with arrays of ten Mach-Zehnder interferometers provided on-chips assays with dramatically improved both intra-chip response repeatability and assay detection sensitivity.

  6. Polymerisation and surface modification of methacrylate monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes.

    PubMed

    Walsh, Zarah; Levkin, Pavel A; Abele, Silvija; Scarmagnani, Silvia; Heger, Dominik; Klán, Petr; Diamond, Dermot; Paull, Brett; Svec, Frantisek; Macka, Mirek

    2011-05-20

    An investigation into the preparation of monolithic separation media utilising a cyanine dye sensitiser/triphenylbutylborate/N-methoxy-4-phenylpyridinium tetrafluoroborate initiating system activated by 660 nm light emitting diodes is reported. The work demonstrates multiple uses of red-light initiated polymerisation in the preparation of monolithic stationary phases within polyimide and polyimide coated channels and the modification of monolithic materials with molecules which absorb strongly in the UV region. This initiator complex was used to synthesise poly(butyl methacrylate-co-ethylene dimethacrylate) and poly(methyl methacrylate-co-ethylene dimethacrylate) monolithic stationary phases in polyimide coated fused silica capillaries of varying internal diameters, as well as within polyimide micro-fluidic chips. The repeatability of the preparation procedure and resultant monolithic structure was demonstrated with a batch of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths in 100 μm i.d. polyimide coated fused silica capillary, which were applied to the separation of a model protein mixture (ribonuclease A, cytochrome C, myoglobin and ovalbumin). Taking an average from 12 chromatograms originating from each batch, the maximum relative standard deviation of the retention factor (k) for the protein separations was recorded as 0.53%, the maximum variance for the selectivity factor (α) was 0.40% while the maximum relative standard deviation in peak resolution was 8.72%. All maxima were recorded for the Ribonuclease A/Cytochrome C peaks. Scanning electron microscopy confirmed the success of experiments in which poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths were prepared using the same initiation approach in capillary and micro-fluidic chips, respectively. The initiating system was also applied to the photo-initiated grafting of a chromophoric monomer onto poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths within poly

  7. Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.

  8. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  9. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  10. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  11. Geometrical Mechanism versus Electronic Mechanism: STM Images for Vacancies at the GaAs(110) Surface.

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Harper, John; Lengel, George; Weimer, Michael

    1998-03-01

    Scanning tunneling microscopy has provided considerable information on vacancies at the surfaces.html>GaAs(110) surface. (PRL 72), 836 (1994); 77, 119 (1996);79, 3312 and 3314 (1997). Among many other observed features, it is found that the two nearest neighbors have brightened images, suggesting upward displacements. Recently an alternative interpretation was proposed: The neighbors supposedly rebond to subsurface atoms, but with a rearrangement of the electronic states which more than compensates for the resulting downward displacements. This picture is based on LDA calculations which disagree with one another and with experiment. The most critical prediction of the electronic mechanism, however, is that the brightening of the nearest-neighbor images should disappear as the bias voltage is increased. This prediction has now been disconfirmed: The measured surface profile remains essentially unchanged as \\varepsilon_F-\\varepsilon_CBM is increased from 0.6 to 1.4 eV, indicating that a robust geometrical interpretation is more appropriate than one based solely on electronic effects.

  12. RF characterization of monolithic microwave and mm-wave ICs

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1986-01-01

    A number of fixturing techniques compatible with automatic network analysis are presented. The fixtures are capable of characterizing GaAs Monolithic Microwave Integrated Circuits (MMICs) at K and Ka band. Several different transitions are used to couple the RF test port to microstrip. Fixtures which provide chip level de-embedding are included. In addition, two advanced characterization techniques are assessed.

  13. Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy; Scherer, Axel; Pickrell, Gregory; Louderback, Duane; Guilfoyle, Peter

    2005-03-01

    The ability to couple light from a vertical-cavity surface-emitting laser into a planar, on-chip waveguide creates new opportunities for achieving higher levels of integration and functionality. Here we propose to use a strong grating etched into a waveguide defined into the top layer of the epitaxially grown structure, so that epitaxial regrowth is not required. By introducing a defect mode into the cavity we were able to achieve a 40% coupling efficiency even though light is coupled through a ninety degrees bend. We also show that polarization control of the vertical-cavity surface-emitting laser is enhanced by coupling to the defect mode. Calculations were performed using the finite-difference time-domain method.

  14. Measurements of entrance-surface vs. conventional single-ended readout of a monolithic scintillator.

    PubMed

    Hunter, William C J; Li; McDougald, Wendy; Griesmer, Jerome J; Shao, Lingxiong; Zahn, Robert; Lewellen, Tom K; Miyaoka, Robert S

    2011-01-01

    Availability of compact high-gain, low-noise Silicon Photomultipliers (SiPM) prompts us to examine readout sensors on the entrance surface (SES) as compared to the conventional single-ended readout with sensors on the opposing surface. We measured detector response statistics versus 3D position for these configurations using an 8×8 SiPM array on a 15-mm-thick by 32-mm-wide LYSO block. We calibrate an independently distributed multivariate-normal likelihood model and use it to generate maximum-likelihood estimates of 3D interaction position. Spatial resolution improved 14% and timing resolution improved 10% for the SES device. Bias was unaffected. Photodetection efficiency of our prototype SiPM may have limited further improvement in positioning and timing performance. In future work, we will look to utilize SiPM arrays with enhanced photodetection efficiency.

  15. Measurements of entrance-surface vs. conventional single-ended readout of a monolithic scintillator

    PubMed Central

    Hunter, William C. J.; Li; McDougald, Wendy; Griesmer, Jerome J.; Shao, Lingxiong; Zahn, Robert; Lewellen, Tom K.; Miyaoka, Robert S.

    2012-01-01

    Availability of compact high-gain, low-noise Silicon Photomultipliers (SiPM) prompts us to examine readout sensors on the entrance surface (SES) as compared to the conventional single-ended readout with sensors on the opposing surface. We measured detector response statistics versus 3D position for these configurations using an 8×8 SiPM array on a 15-mm-thick by 32-mm-wide LYSO block. We calibrate an independently distributed multivariate-normal likelihood model and use it to generate maximum-likelihood estimates of 3D interaction position. Spatial resolution improved 14% and timing resolution improved 10% for the SES device. Bias was unaffected. Photodetection efficiency of our prototype SiPM may have limited further improvement in positioning and timing performance. In future work, we will look to utilize SiPM arrays with enhanced photodetection efficiency. PMID:23202544

  16. Evaluation of the minority carrier diffusion length and surface-recombination velocity in GaAs p/n solar cells

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Moeller, Hans J.; Bailey, Sheila

    1991-01-01

    The minority carrier diffusion length (Lp) and the surface recombination velocity (Vs) were measured as a function of distance (x) from the p-n junction in GaAs p/n concentrator solar cells. The measured Vs values were used in a theoretical expression for the normalized electron-beam-induced current. A fitting procedure was then used to fit this expression with experimental values to obtain Lp. The results show that both Vs and Lp vary with x. Lp measured in irradiated cells showed a marked reduction. These values were compared to those measured previously which did not account for Vs.

  17. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Transient surface photoconductivity of GaAs emitter studied by terahertz pump-emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Lei; Zhou, Qing-Li; Zhang, Cun-Lin

    2009-10-01

    This paper investigates the ultrafast carrier dynamics and surface photoconductivity of unbiased semi-insulating GaAs in detail by using a terahertz pump-emission technique. Based on theoretical modelling, it finds that transient photoconductivity plays a very important role in the temporal waveform of terahertz radiation pulse. Anomalous enhancement in both terahertz radiation and transient photoconductivity is observed after the excitation of pump pulse and we attribute these phenomena to carrier capture in the EL2 centers. Moreover, the pump power- and temperature-dependent measurements are also performed to verify this trapping model.

  18. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  19. Optical detectors for GaAs MMIC integration - Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  20. Porous polymer monoliths: Preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput, online, solid-phase extraction of polar organic compounds

    SciTech Connect

    Xie, S.; Svec, F.; Frechet, J.M.J.

    1998-12-01

    Porous monolithic materials with high surface areas have been prepared from commercial 80% divinylbenzene. The pore properties of these materials are controlled by the type and composition of the porogenic solvent and by the percentage of cross-linking monomer (divinylbenzene) in the polymerization mixture. Surface area was found to increase with the divinylbenzene content of the monolith. Using high-grade divinylbenzene and a suitable porogenic solvent, monolithic materials with specific surface areas as high as 400 m{sup 2}/g yet still permeable to liquids at reasonable back pressure were obtained for the first time. A macroporous material with hydrodynamic properties optimized for solid-phase extraction has been designed and its permeability and adsorption ability was demonstrated by adsorbing phenols at flow velocities that exceed those of current materials by a factor of 30. A unique set of polymerization conditions had to be developed to allow the incorporation of polar 2-hydroxylethyl methacrylate into the hydrophobic nonpolar backbone of the divinylbenzene monolithic material. This improves wettability while high-flow properties are maintained and unusually high recoveries of polar compounds are allowed.

  1. Monolithic geared-mechanisms driven by a polysilicon surface-micromachined on-chip electrostatic microengine

    SciTech Connect

    Sniegowski, J.J.; Miller, S.L.; LaVigne, G.F.; Rodgers, M.S.; McWhorter, P.J.

    1996-05-01

    We have previously described a practical micromachined power source: the polysilicon, surface-micromachined, electrostatically actuated microengine. Here we report on 3 aspects of implementing the microengine. First, we discuss demonstrations of the first-generation microengine actuating geared micromechanisms including gear trains with elements having dimensions comparable to the drive gear (about 50 {mu}m) and a relatively large (1600-{mu}m-diameter) rotating optical shutter element. These configurations span expected operating extremes for the microengine and address the coupling and loading issues for very-low-aspect-ratio micromechanisms which are common to the design of surface-micromachined devices. Second, we report on a second-generation of designs that utilize improved gear teeth design, a gear speed-reduction unit, and higher force-per-unit-area electrostatic comb drives. The speed-reduction unit produces an overall angular speed reduction of 9.63 and requires dual-level compound gears. Third, we discuss a dynamics model developed to accomplish 3 objectives: drive inertial loads in a controlled fashion, minimize stress and frictional forces during operation, and determine as a function of time the forces associated with the drive gear (eg load torque on drive gear from friction).

  2. Diffusion and interface evolution during the atomic layer deposition of TiO{sub 2} on GaAs(100) and InAs(100) surfaces

    SciTech Connect

    Ye, Liwang; Gougousi, Theodosia

    2016-01-15

    Atomic layer deposition is used to form TiO{sub 2} films from tetrakis dimethyl amino titanium and H{sub 2}O on native oxide GaAs(100) and InAs(100) surfaces. The evolution of the film/substrate interface is examined as a function of the deposition temperature (100–325 °C) using ex situ x-ray photoelectron spectroscopy. An increase in the deposition temperature up to 250 °C leads to enhancement of the native oxide removal. For depositions at 300 °C and above, interface reoxidation is observed during the initial deposition cycles but when the films are thicker than 3 nm, the surface oxides are removed steadily. Based on these observations, two distinct film growth regimes are identified; up to 250 °C, layer-by-layer dominates while at higher temperatures island growth takes over. Angle resolved x-ray photoelectron spectroscopy measurements performed on 3 nm TiO{sub 2} film deposited at 325 °C on both surfaces demonstrates a very important difference between the two substrates: for GaAs the native oxides remaining in the stack are localized at the interface, while for InAs(100), the indium oxides are mixed in the TiO{sub 2} film.

  3. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 < 1.07. The mode-locked laser utilizes a passive mode-locking region provided by a semiconductor saturable absorber integrated together with the gain region. Such an aggressive integration forces the resonant beam in the cavity to have the same area on the gain and absorber sections, placing high demands on the saturation fluence and absorption coefficient for the saturable absorber. Quantum Wells (QWs), excitons in QWs and Quantum Dots (QDs) have been investigated as possible saturable absorbers for the proposed device. QDs have been found to have the lowest saturation fluence and total absorption, necessary to meet the mode-locking requirements for this configuration. The need to further understand QDs as saturable absorbers has led to the development of a theoretical model on the dynamics of

  4. Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation

    NASA Astrophysics Data System (ADS)

    Hinkle, C. L.; Sonnet, A. M.; Vogel, E. M.; McDonnell, S.; Hughes, G. J.; Milojevic, M.; Lee, B.; Aguirre-Tostado, F. S.; Choi, K. J.; Kim, J.; Wallace, R. M.

    2007-10-01

    The method of surface preparation on n-type GaAs, even with the presence of an amorphous-Si interfacial passivation layer, is shown to be a critical step in the removal of accumulation capacitance frequency dispersion. In situ deposition and analysis techniques were used to study different surface preparations, including NH4OH, Si-flux, and atomic hydrogen exposures, as well as Si passivation depositions prior to in situ atomic layer deposition of Al2O3. As-O bonding was removed and a bond conversion process with Si deposition is observed. The accumulation capacitance frequency dispersion was removed only when a Si interlayer and a specific surface clean were combined.

  5. Reflection Properties of Metallic Gratings on ZnO Films over GaAs Substrates

    NASA Technical Reports Server (NTRS)

    Hickernell, Fred S.; Kim, Yoonkee; Hunt, William D.

    1994-01-01

    A potential application for piezoelectric film deposited on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Metallic gratings are basic elements required for the construction of such devices, and analyzing the reflectivity and the velocity change due to metallic gratings is often a critical design parameter. In this article, Datta and Hunsinger technique is extended to the case of a multilayered structure, and the developed technique is applied to analyze shorted and open gratings on ZnO films sputtered over (001)-cut (110)-propagating GaAs substrates. The analysis shows that zero reflectivity of shorted gratings can be obtained by a combination of the ZnO film and the metal thickness and the metalization ratio of the grating. Experiments are performed on shorted and an open gratings (with the center frequency of about 180 MHz) for three different metal thicknesses over ZnO films which are 0.8 and 2.6 micrometers thick. From the experiments, zero reflectivity at the resonant frequency of the grating is observed for a reasonable thickness (h/Alpha = 0.5%) of aluminum metalization. The velocity shift between the shorted and the open grating is also measured to be 0.18 MHz and 0.25 MHz for 0.8 and 1.6 micrometers respectively. The measured data show relatively good agreement with theoretical predictions.

  6. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  7. Monolith electroplating process

    DOEpatents

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  8. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  9. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  10. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  11. Strain and magnetic anisotropy of as-grown and annealed Fe films on c(4x4) reconstructed GaAs (001) surface

    SciTech Connect

    Lu, J.; Meng, H. J.; Deng, J. J.; Xu, P. F.; Chen, L.; Zhao, J. H.; Jia, Q. J.

    2009-07-01

    Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10{sup -4} J m{sup -2}. We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.

  12. Low-Electronegativity Overlayers and Enhanced Semiconductor Oxidation: Sm on Si(111) and GaAs(110) Surfaces.

    DTIC Science & Technology

    1986-04-15

    6 4 2 0=E F Binding Energy (eV) 81+02 hL/=13OeV Sl 2p Core --- 01 I1 0 I I 4,z eusz 6 4il0 - Bidn0nry(V I I I I I I GaAs + 02 hv=85eV AsSd Cores 1000 0 0 C 0.2 53 2 o4 6 4 2 0 -2 -4 Relative Binding Energy (eV) -... MEN

  13. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    SciTech Connect

    Takano, H.; Hosogi, K.; Kato, T.

    1995-05-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.

  14. Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing

    NASA Astrophysics Data System (ADS)

    Marshall, Gregory M.

    Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH2)n], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford. In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity. Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the

  15. Surface passivation and interface properties of bulk GaAs and epitaxial-GaAs/Ge using atomic layer deposited TiAlO alloy dielectric.

    PubMed

    Dalapati, G K; Chia, C K; Tan, C C; Tan, H R; Chiam, S Y; Dong, J R; Das, A; Chattopadhyay, S; Mahata, C; Maiti, C K; Chi, D Z

    2013-02-01

    High quality surface passivation on bulk-GaAs substrates and epitaxial-GaAs/Ge (epi-GaAs) layers were achieved by using atomic layer deposited (ALD) titanium aluminum oxide (TiAlO) alloy dielectric. The TiAlO alloy dielectric suppresses the formation of defective native oxide on GaAs layers. X-ray photoelectron spectroscopy (XPS) analysis shows interfacial arsenic oxide (As(x)O(y)) and elemental arsenic (As) were completely removed from the GaAs surface. Energy dispersive X-ray diffraction (EDX) analysis and secondary ion mass spectroscopy (SIMS) analysis showed that TiAlO dielectric is an effective barrier layer for reducing the out-diffusion of elemental atoms, enhancing the electrical properties of bulk-GaAs based metal-oxide-semiconductor (MOS) devices. Moreover, ALD TiAlO alloy dielectric on epi-GaAs with AlGaAs buffer layer realized smooth interface between epi-GaAs layers and TiAlO dielectric, yielding a high quality surface passivation on epi-GaAs layers, much sought-after for high-speed transistor applications on a silicon platform. Presence of a thin AlGaAs buffer layer between epi-GaAs and Ge substrates improved interface quality and gate dielectric quality through the reduction of interfacial layer formation (Ga(x)O(y)) and suppression of elemental out-diffusion (Ga and As). The AlGaAs buffer layer and TiAlO dielectric play a key role to suppress the roughening, interfacial layer formation, and impurity diffusion into the dielectric, which in turn largely enhances the electrical property of the epi-GaAs MOS devices.

  16. Clustering effects in a low coverage deposition of gold on the GaAs( 0 0 1 )-β2(2×4) surface: an STM-UHV and theoretical study

    NASA Astrophysics Data System (ADS)

    Amore Bonapasta, A.; Scavia, G.; Buda, F.

    2002-11-01

    A comparative study of gold deposition on the GaAs(0 0 1)-β2(2×4) surface based on scanning tunneling microscopy (STM)-ultra high vacuum (UHV) and Car-Parrinello calculations has been carried out. The theoretical results show that the preferential reactive sites of an isolated Au adatom on the GaAs surface drive a self-organizing process of further Au adatoms onto the surface, thus determining an Au clusterization onto the two-As-dimer cell. On the other hand, STM-UHV images reveal, for Au depositions <1 ML, a decorating effect of gold towards the GaAs(0 0 1)-β2(2×4) unit cell. In detail, gold clusters tend to cover the two-As-dimer cell without modifying the (2×4) reconstruction, in agreement with the theoretical results. Moreover, a fine comparison between the STM images of gold clusters and the theoretical results reveals that each of these clusters can be composed of four Au adatoms directly interacting with the two As dimers of the GaAs unit cell. An STM-UHV analysis of the surface for a deposition >1 ML suggests that gold clusterizes into 3D clusters rather than forming a 2D layer.

  17. Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces.

    PubMed

    Milekhin, Alexander; Yeryukov, Nikolay; Toropov, Alexander; Dmitriev, Dmitry; Sheremet, Evgeniya; Zahn, Dietrich Rt

    2012-08-23

    We present a comparative analysis of Raman scattering by acoustic and optical phonons in InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces. Doublets of folded longitudinal acoustic phonons up to the fifth order were observed in the Raman spectra of (001)- and (311)B-oriented quantum dot superlattices measured in polarized scattering geometries. The energy positions of the folded acoustic phonons are well described by the elastic continuum model. Besides the acoustic phonons, the spectra display features related to confined transverse and longitudinal optical as well as interface phonons in quantum dots and spacer layers. Their frequency positions are discussed in terms of phonon confinement, elastic stress, and atomic intermixing.

  18. Combined experimental and theoretical study of fast atom diffraction on the β2(2×4) reconstructed GaAs(001) surface

    NASA Astrophysics Data System (ADS)

    Debiossac, M.; Zugarramurdi, A.; Khemliche, H.; Roncin, P.; Borisov, A. G.; Momeni, A.; Atkinson, P.; Eddrief, M.; Finocchi, F.; Etgens, V. H.

    2014-10-01

    A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530∘C under an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure. Experimental diffraction data are in good agreement with results from quantum scattering calculations based on an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring in situ the subtle details of complex surface reconstructions. We have performed measurements at very small incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as -8.7 meV in very good agreement with results reported in literature.

  19. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  20. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    NASA Technical Reports Server (NTRS)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  1. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  2. GaAs Optoelectronic Integrated-Circuit Neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H.; Kim, Jae H.; Psaltis, Demetri

    1992-01-01

    Monolithic GaAs optoelectronic integrated circuits developed for use as artificial neurons. Neural-network computer contains planar arrays of optoelectronic neurons, and variable synaptic connections between neurons effected by diffraction of light from volume hologram in photorefractive material. Basic principles of neural-network computers explained more fully in "Optoelectronic Integrated Circuits For Neural Networks" (NPO-17652). In present circuits, devices replaced by metal/semiconductor field effect transistors (MESFET's), which consume less power.

  3. Optimization of monolithic columns for microfluidic devices

    NASA Astrophysics Data System (ADS)

    Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.

    2011-06-01

    Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.

  4. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  5. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  6. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  7. Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Okumura, Ken; Nakasuji, Kaori; Suga, Tadatomo

    2015-03-01

    Thermal management of high-power semiconductor lasers is of great importance since the output power and beam quality are affected by the temperature rise of the gain region. Thermal simulations of a vertical-external-cavity surface-emitting laser by a finite-element method showed that the solder layer between the semiconductor thin film consisting of the gain region and a heat sink has a strong influence on the thermal resistance and direct bonding is preferred to achieve effective heat dissipation. To realize thin-film semiconductor lasers directly bonded on a high-thermal-conductivity substrate, surface-activated bonding using an argon fast atom beam was applied to the bonding of gallium arsenide (GaAs) and silicon carbide (SiC) wafers. The GaAs/SiC structure was demonstrated in the wafer scale (2 in. in diameter) at room temperature. The cross-sectional transmission electron microscopy observations showed that void-free bonding interfaces were achieved.

  8. The impact of the surface on step-bunching and diffusion of Ga on GaAs (001) in metal-organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Pristovsek, Markus; Poser, Florian; Richter, Wolfgang

    2016-07-01

    We studied diffusion by measuring step-bunching, island spacing, and the transition from step-flow growth to two-dimensional island growth of (001) GaAs in metal-organic vapour phase epitaxy and correlated them with the surface reconstruction measured by reflectance anisotropy spectroscopy. The V/III ratio had a small effect, while the square root of the growth rate was anti-proportional to the diffusion length. The thermal activation energy was about 2.3 eV on {{c}}(4× 4) terraces and 1.6 eV on (2× 4) domains at higher temperatures. Pronounced step-bunching coincided with large (4× 2) domains at the step-edges, causing smoother steps for the [11̅0] misorientation. This Ga-rich reconstruction at the step-edges is needed for the Schwoebel barrier to induce step-bunching. At higher temperatures of (2× 4) domains grow in size, the Schwoebel barrier reduces and nucleation becomes easier on this surface which reduces diffusion length and thus step-bunching.

  9. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  10. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Connolly, D. J.

    1986-10-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  11. GaAs microwave devices and circuits with submicron electron-beam defined features

    NASA Technical Reports Server (NTRS)

    Wisseman, W. R.; Macksey, H. M.; Brehm, G. E.; Saunier, P.

    1983-01-01

    This paper describes the fabrication and application of GaAs FET's, both as discrete microwave devices and as the key active components in monolithic microwave integrated circuits. The performance of these devices and circuits is discussed for frequencies ranging from 3 to 25 GHz. The crucial fabrication step is the formation of the submicron gate by electron-beam lithography.

  12. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  13. Control of sidegating effects in AlGaAs/GaAs heterostructure field-effect transistors by modification of GaAs wafer surfaces

    NASA Astrophysics Data System (ADS)

    Gray, M. L.; Reynolds, C. L.; Parsey, J. M., Jr.

    1990-07-01

    Sidegating characteristics of AlGaAs/GaAs heterostructure field-effect transistors, fabricated on molecular-beam epitaxially grown layers, were investigated with emphasis on the material properties. A systematic analyses of the epitaxial layers concluded with the identification of the substrate-superlattice-buffer-layer interface as the predominant cause of the sidegating effect. Remnant carbon contamination on the GaAs surface was found to produce a p-type, conducting interfacial region. Controlled oxidation of the carbon on the wafers was accomplished using ultraviolet radiation. This oxide was desorbed in situ before epitaxial growth. Secondary-ion-mass spectroscopy was employed to estimate the carbon concentration at the substrate-epitaxial-layer interface for standard cleaned and ultraviolet-ozone-treated wafers. The carbon concentration of the interfacial region decreased by two orders of magnitude for the wafers exposed to the ultraviolet radiation. Hall-effect measurements of standard cleaned and ultraviolet-ozone-treated heterostructure wafers, prepared with various buffer layer thicknesses, demonstrated the dominant influence of the interfacial p-type region on the electronic properties of the material. A comparison of sidegating characteristics for devices fabricated on the two types of wafers is presented and discussed. A dramatic improvement in sidegating was observed for the wafers subjected to the ultraviolet-ozone cleaning procedure.

  14. Surface-acoustic-wave study of defects in GaAs grown by molecular-beam epitaxy at 220 degree C

    SciTech Connect

    Khachaturyan, K.; Weber, E.R. Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 ); White, R.M. )

    1992-02-15

    Surface acoustic waves (SAW's) were used to study the influence of defects on the elastic properties of epitaxial films of semiconductors. The object of this study was As-rich GaAs grown by molecular-beam-epitaxy at 220 {degree}C. The SAW velocity on 0.3-wavelength-thick epilayers was 1.2% smaller than on the substrate alone. That velocity difference decreased after loss of some excess As as a result of 350 {degree}C--435 {degree}C anneals. A persistent increase as much as 0.4% of the SAW velocity at low temperatures was observed after illumination; this increase could be quenched by annealing at 120--130 K. This behavior is caused by the metastable transition of EL2-like As{sub Ga} defects and constitutes the direct experimental proof of the illumination-induced large lattice relaxation of this defect. The SAW velocity increase was correlated with the persistent bleaching of EL2-related optical absorption. The spectral dependence of rate of illumination-induced SAW velocity increase was measured.

  15. Sensor Lead Wires Positioned on SiC-based Monolithic Ceramic and Fiber- reinforced Ceramic Matrix Composite Subcomponents with Flat and Curved Surfaces

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Singh, Mrityunjay; Lei, Jih-Fen; Martin, Lisa C.

    1999-01-01

    There is strong interest in the development of silicon carbide-based monolithic ceramic and composite materials and components for demanding, high-temperature applications. Thorough characterization of material properties, including high-temperature testing under simulated or actual operating conditions, is a high priority for programs involved in developing these silicon carbide- (SiC) based materials and components. Members of the Sensors and Electronics Technology Branch at the NASA Lewis Research Center are developing minimally intrusive methods of measuring the properties (such as the surface temperature, strain, and heat flux characteristics) of components and subelements that are being tested or operated in hostile, high-temperature environments. Their primary goal is to instrument the test article or operating component with durable sensors that have a minimal effect on test conditions such as the gas flow across the surface of the item and the material response (including the through-thickness conduction of heat). Therefore, the main thrust of their work has been the development of thin-film sensors (e.g., thermocouples or strain gauges) for use on various advanced material test articles, including SiC/SiC composite components. There was a need for a better method of securing sensor lead wires on SiC-based components and subelements that would be tested at temperatures to 1000 C (or higher), to enhance the durability of the overall minimally intrusive sensor system. To address this need, Lewis researchers devised an alternative approach for positioning the sensor lead wires (which are connected to the thin-film sensors) on SiC or SiC/SiC components. A reaction-forming method of joining was used to strongly bond hoop-shaped monolithic SiC and SiC/SiC composite attachments of various sizes to both flat and curved surfaces of SiC/SiC composite subelements (see the photos). This approach is based on an affordable, robust ceramic joining technology, named

  16. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  17. Monolithic exploding foil initiator

    SciTech Connect

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  18. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    SciTech Connect

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  19. Near infrared broadband emission of In0.35Ga0.65As quantum dots on high index GaAs surfaces.

    PubMed

    Wu, Jiang; Wang, Zhiming M; Dorogan, Vitaliy G; Li, Shibin; Mazur, Yuriy I; Salamo, Gregory J

    2011-04-01

    The morphology and optical properties of In(0.35)Ga(0.65)As/GaAs quantum dots (QDs) grown on (210), (311)A, (711)A, (731) and (100) substrates are investigated. QDs formed on (210) and (731) oriented substrates are grown by molecular beam epitaxy. Regular QDs are observed on (100), (311)A, and (711)A. Randomly distributed QDs and comet-shaped QDs form on (210) and (731) substrates, respectively. A high density of QDs on the order of 10(11) cm(-2) are obtained from (711)A. The optical measurement shows a spectrum linewidth (FWHM = 74.3 nm) of QDs on GaAs (210) three times wider than GaAs (100) substrate. Long exciton decay times, over 1 ns, are also measured by time-resolved photoluminescence technique for all samples. Our results demonstrate the potential for QDs on GaAs high index substrates for wideband applications.

  20. Hydrophobic-hydrophilic monolithic dual-phase layer for two-dimensional thin-layer chromatography coupled with surface-enhanced Raman spectroscopy detection.

    PubMed

    Zheng, Binxing; Liu, Yanhua; Li, Dan; Chai, Yifeng; Lu, Feng; Xu, Jiyang

    2015-08-01

    Hydrophobic-hydrophilic monolithic dual-phase plates have been prepared by a two-step polymerization method for two-dimensional thin-layer chromatography of low-molecular-weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV-initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate-co-ethylene dimethacrylate) area, these two-dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed-phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface-enhanced Raman spectroscopy.

  1. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  2. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  3. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces

    SciTech Connect

    Ledentsov, N. N. Shchukin, V. A.; Lyytikäinen, J.; Okhotnikov, O.; Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu.; Maximov, M. V.; Schlichting, S.; Nippert, F.; Hoffmann, A.

    2014-11-03

    We report on green (550–560 nm) electroluminescence (EL) from (Al{sub 0.5}Ga{sub 0.5}){sub 0.5}In{sub 0.5}P-(Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P double p-i-n heterostructures with monolayer-scale GaP insertions in the cladding layers and light-emitting diodes based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. At moderate current densities (∼500 A/cm{sup 2}), the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (∼550 nm at room temperature). At high current densities (>1 kA/cm{sup 2}), a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4 kA/cm{sup 2}, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14 kA/cm{sup 2}. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure, which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p-doped (Al{sub 0.8}Ga{sub 0.2}){sub 0.5}In{sub 0.5}P cladding layers.

  4. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  5. Geometry versus Electronic Structure in STM Images of the Arsenic Vacancy at the GaAs(110) Surface.

    NASA Astrophysics Data System (ADS)

    Allen, R. E.; Harper, J.; Weimer, M.; Lengel, G.

    1998-03-01

    Scanning tunneling microscopy has provided considerable experimental information concerning the arsenic vacancy at the GaAs(110) surface.(PRL 72), 836 (1994); 77, 119 (1996); 79, 3312 and 3314 (1997). Among other features, this defect is characterized by an increase in the tunneling current over symmetrically-situated nearest neighbors that suggests upward displacements. An alternative interpretation was recently proposed: These neighbors supposedly rebond to subsurface atoms, but with a rearrangement of the electronic states that more than compensates for the resulting downward displacements. This picture is based on LDA calculations that disagree with several important experimental facts. A central assertion of the proposed electronic mechanism is that the increased tunneling current over nearest neighbors will disappear as the bias voltage is increased. This assertion is contradicted by experiment: The measured surface profile remains essentially unchanged as \\varepsilon_F-\\varepsilon_CBM is increased from 0.6 to 1.4 eV, indicating a robust geometrical interpretation is more appropriate than one based solely on electronic effects.

  6. Fabrication of poly(γ-glutamic acid) monolith by thermally induced phase separation and its application.

    PubMed

    Park, Sung-Bin; Fujimoto, Takashi; Mizohata, Eiichi; Inoue, Tsuyoshi; Sung, Moon-Hee; Uyama, Hiroshi

    2013-01-01

    Monoliths are functional porous materials with a three-dimensional continuous interconnected pore structure in a single piece. A monolith with uniform shape based on poly(γ-glutamic acid) (PGA) has been prepared via a thermally induced phase separation technique using a mixture of dimethyl sulfoxide, water, and ethanol as solvent. The morphology of the obtained monolith was observed by scanning electron microscopy and the surface area of the monolith was evaluated by the Brunauer Emmett Teller method. The effects of fabrication parameters such as the concentration and molecular mass of PGA and the solvent composition have been systematically investigated. The PGA monolith was cross-linked with hexamethylene diisocyanate to produce the water-insoluble monolith. The addition of sodium chloride to the phase separation solvent affected the properties of the cross-linked monolith. The swelling ratio of the cross-linked monolith toward aqueous solutions depended on the buffer pH as well as the monolith fabrication condition. Copper(II) ion was efficiently adsorbed on the cross-linked PGA monolith, and the obtained copper-immobilized monolith showed strong antibacterial activity for Escherichia coli. By combination of the characteristic properties of PGA (e.g., high biocompatibility and biodegradability) and the unique features of monoliths (e.g., through-pore structure, large surface area, and high porosity with small pore size), the PGA monolith possesses large potentials for various industrial applications in the biomedical, environmental, analytical, and separation fields.

  7. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  8. Preparation of GaAs photocathodes at low temperature

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Tang, H.

    1996-10-01

    The preparation of an atomically clean surface is a necessary step in the formation of negative electron affinity (NEA) GaAs. Traditional methods to this end include cleaving, heat cleaning and epitaxial growth. Cleaving has the advantage of yielding a fresh surface after each cleave, but is limited to small areas and is not suitable for specialized structures. Heat cleaning is both simple and highly successful, so it is used as a preparation method in virtually all laboratories employing a NEA source on a regular basis. Due to its high cost and complexity, epitaxial growth of GaAs with subsequent in vacuo transfer is not a practical solution for most end users of GaAs as a NEA electron source. While simple, the heating cleaning process has a number of disadvantages. Here, a variety of cleaning techniques related to preparation of an atomically clean GaAs surface without heating to 600 C are discussed and evaluated.

  9. Development of an affinity silica monolith containing human serum albumin for chiral separations.

    PubMed

    Mallik, Rangan; Hage, David S

    2008-04-14

    An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3-2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: d/l-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase.

  10. A 30 GHz monolithic receive module technology assessment

    NASA Technical Reports Server (NTRS)

    Geddes, J.; Sokolov, V.; Bauhahn, P.; Contolatis, T.

    1988-01-01

    This report is a technology assessment relevant to the 30 GHz Monolithic Receive Module development. It is based on results obtained on the present NASA Contract (NAS3-23356) as well as on information gathered from literature and other industry sources. To date the on-going Honeywell program has concentrated on demonstrating the so-called interconnected receive module which consists of four monolithic chips - the low noise front-end amplifier (LNA), the five bit phase shifter (PS), the gain control amplifier (GC), and the RF to IF downconverter (RF/IF). Results on all four individual chips have been obtained and interconnection of the first three functions has been accomplished. Future work on this contract is aimed at a higher level of integration, i.e., integration of the first three functions (LNA + PS + GC) on a single GaAs chip. The report presents the status of this technology and projections of its future directions.

  11. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  12. Air Force development of thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Masloski, K.

    1982-01-01

    The advantages of gallium arsenide (GaAs) over silicon (Si) type solar cells are well documented. However, two major disadvantages are weight and cost. Several ideas have recently surfaced that, if successful, will diminish these disadvantages. The CLEFT peeled film technique and the galicon cell are two of the more promising approaches. Low weight, low cost, high efficiency GaAs solar cell research is summarized.

  13. Advanced on-chip divider for monolithic microwave VCO's

    NASA Technical Reports Server (NTRS)

    Peterson, Weddell C.

    1989-01-01

    High frequency division on a monolithic circuit is a critical technology required to significantly enhance the performance of microwave and millimeter-wave phase-locked sources. The approach used to meet this need is to apply circuit design practices which are essentially 'microwave' in nature to the basically 'digital' problem of high speed division. Following investigation of several promising circuit approaches, program phase 1 culminated in the design and layout of an 8.5 GHz (Deep Space Channel 14) divide by four circuit based on a dynamic mixing divider circuit approach. Therefore, during program phase 2, an 8.5 GHz VCO with an integral divider which provides a phase coherent 2.125 GHz reference signal for phase locking applications was fabricated and optimized. Complete phase locked operation of the monolithic GaAs devices (VCO, power splitter, and dynamic divider) was demonstrated both individually and as an integrated unit. The fully functional integrated unit in a suitable test fixture was delivered to NASA for engineering data correlation. Based on the experience gained from this 8.5 GHz super component, a monolithic GaAs millimeter-wave dynamic divider for operation with an external VCO was also designed, fabricated, and characterized. This circuit, which was also delivered to NASA, demonstrated coherent division by four at an input frequency of 24.3 GHz. The high performance monolithic microwave VCO with a coherent low frequency reference output described in this report and others based on this technology will greatly benefit advanced communications systems in both the DoD and commercial sectors. Signal processing and instrumentation systems based on phase-locking loops will also attain enhanced performance at potentially reduced cost.

  14. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  15. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  16. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J.; Svec, Frantisek; Rohr, Thomas

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  17. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  18. Surface morphologies and electrical properties of molecular beam epitaxial InSb and InAs(x)Sb(1-x) grown on GaAs and InP substrates

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Chen, Y. C.; Bhattacharya, P. K.; Tsukamoto, S.

    1989-01-01

    Surface morphologies and electrical properties of molecular beam epitaxial InSb and InAs(x)Sb(1-x) grown on GaAs and InP substrates are discussed. The crystals are all n-type at 300 K and lower temperatures. The surface morphology and electrical characteristics are strongly dependent on Sb(4)/In flux ratio and substrate temperature. The highest mobilities in InSb on InP are 70,000 at 300 K and 110,000 cm(2)/V.s (n=3x10(15) cm(-3)) at 77 K. The mobilities in the alloys also increase monotonically with lowering of temperature. Good quality InAs(x)Sb(1-x) was grown directly on InP substrates by molecular beam epitaxy.

  19. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  20. Growth of silver nanowires on GaAs wafers.

    PubMed

    Sun, Yugang

    2011-05-01

    Silver (Ag) nanowires with chemically clean surfaces have been directly grown on semi-insulating gallium arsenide (GaAs) wafers through a simple solution/solid interfacial reaction (SSIR) between the GaAs wafers themselves and aqueous solutions of silver nitrate (AgNO(3)) at room temperature. The success in synthesis of Ag nanowires mainly benefits from the low concentration of surface electrons in the semi-insulating GaAs wafers that can lead to the formation of a low-density of nuclei that facilitate their anisotropic growth into nanowires. The resulting Ag nanowires exhibit rough surfaces and reasonably good electric conductivity. These characteristics are beneficial to sensing applications based on single-nanowire surface-enhanced Raman scattering (SERS) and possible surface-adsorption-induced conductivity variation.

  1. A two-stage monolithic buffer amplifier for 20 GHz satellite communication

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Gupta, A. K.

    1983-01-01

    Design, fabrication, and test results of a two-stage GaAs monolithic buffer amplifier for 20 GHz satellite communication are described in this paper. A gain of 13 + or - 0.75 dB from 17.7 to 20.2 GHz was obtained from the 1.5 x 1.5 millimeter chip, which includes all necessary bias and dc blocking circuitry.

  2. Microwave monolithic integrated circuit-related metrology at the National Institute of Standards and Technology

    NASA Astrophysics Data System (ADS)

    Reeve, Gerome; Marks, Roger; Blackburn, David

    1990-12-01

    How the National Institute of Standards and Technology (NIST) interacts with the GaAs community and the Defense Advanced Research Projects Agency microwave monolithic integrated circuit (MMIC) initiative is described. The organization of a joint industry and government laboratory consortium for MMIC-related metrology research is described along with some of the initial technical developments at NIST done in support of the consortium.

  3. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; Rahmanian, Omid D.; DeVoe, Don L.

    2014-01-01

    A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over in-situ photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements. PMID:25018587

  4. Hierarchical Porous Polystyrene Monoliths from PolyHIPE.

    PubMed

    Yang, Xinjia; Tan, Liangxiao; Xia, Lingling; Wood, Colin D; Tan, Bien

    2015-09-01

    Hierarchical porous polystyrene monoliths (HCP-PolyHIPE) are obtained by hypercrosslinking poly(styrene-divinylbenzene) monoliths prepared by polymerization of high internal phase emulsions (PolyHIPEs). The hypercrosslinking is achieved using an approach known as knitting which employs formaldehyde dimethyl acetal (FDA) as an external crosslinker. Scanning electron microscopy (SEM) confirms that the macroporous structure in the original monolith is retained during the knitting process. By increasing the amount of divinylbenzene (DVB) in PolyHIPE, the BET surface area and pore volume of the HCP-PolyHIPE decrease, while the micropore size increases. BET surface areas of 196-595 m(2) g(-1) are obtained. The presence of micropores, mesopores, and macropores is confirmed from the pore size distribution. With a hierarchical porous structure, the monoliths reveal comparable gas sorption properties and potential applications in oil spill clean-up.

  5. Monolithic MACS micro resonators

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  6. Monolithic Optoelectronic Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Walters, Wayne; Gustafsen, Jerry; Bendett, Mark

    1990-01-01

    Monolithic optoelectronic integrated circuit (OEIC) receives single digitally modulated input light signal via optical fiber and converts it into 16-channel electrical output signal. Potentially useful in any system in which digital data must be transmitted serially at high rates, then decoded into and used in parallel format at destination. Applications include transmission and decoding of control signals to phase shifters in phased-array antennas and also communication of data between computers and peripheral equipment in local-area networks.

  7. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows

  8. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  9. Fabrication of self-assembled Au droplets by the systematic variation of the deposition amount on various type-B GaAs surfaces

    PubMed Central

    2014-01-01

    The fabrication of self-assembled Au droplets is successfully demonstrated on various GaAs (n11)B, where n is 2, 4, 5, 7, 8, and 9, by the systematic variation of the Au deposition amount (DA) from 2 to 12 nm with subsequent annealing at 550°C. Under an identical growth condition, the self-assembled Au droplets of mini to supersizes are successfully synthesized via the Volmer-Weber growth mode. Depending on the DA, an apparent evolution is clearly observed in terms of the average height (AH), lateral diameter (LD), and average density (AD). For example, compared with the mini Au droplets with a DA of 2 nm, AH of 22.5 nm, and LD of 86.5 nm, the super Au droplets with 12-nm DA show significantly increased AH of 316% and LD of 320%, reaching an AH of 71.1 nm and LD of 276.8 nm on GaAs (211)B. In addition, accompanied with the dimensional expansion, the AD of Au droplets drastically swings on 2 orders of magnitudes from 3.2 × 1010 to 4.2 × 108 cm-2. The results are systematically analyzed with respect to the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images, energy-dispersive X-ray spectrometry (EDS) spectra, cross-sectional line profiles, Fourier filter transform (FFT) power spectra, and root-mean-square (RMS) roughness as well as the droplet dimension and density summary, respectively. PMID:25221460

  10. High efficiency GaAs/Ge monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Tobin, S. P.; Vernon, S. M.; Bajgar, C.; Haven, V. E.; Geoffroy, L. M.; Sanfacon, M. M.; Lillington, D. R.; Hart, R. E., Jr.

    1988-01-01

    Two-terminal monolithic tandem cells consisting of a GaAs solar cell grown epitaxially on a Ge solar cell substrate are very attractive for space applications. Tandem cells of GaAs grown by metal-organic chemical vapor deposition on thin Ge were investigated to address both higher efficiency and reduced weight. Two materials growth issues associated with this heteroepitaxial system, autodoping of the GaAs layers by Ge and diffusion of Ga and As into the Ge substrate, were addressed. The latter appears to result in information of an unintentional p-n junction in the Ge. Early simulator measurements gave efficiencies as high as 21.7 percent for 4 cm2 GaAs/Ge cells, but recent high-altitude testing has given efficiencies of 18 percent. Sources of errors in simulator measurements of two-terminal tandem cells are discussed. A limiting efficiency of about 36 percent for the tandem cell at AMO was calculated. Ways to improve the performance of present cells, primarily by increasing the Isc and Voc of the Ge cell, are proposed.

  11. A GaAs phononic crystal with shallow noncylindrical holes.

    PubMed

    Petrus, Joseph A; Mathew, Reuble; Stotz, James A H

    2014-02-01

    A square lattice of shallow, noncylindrical holes in GaAs is shown to act as a phononic crystal (PnC) reflector. The holes are produced by wet-etching a GaAs substrate using a citric acid:H2O2 etching procedure and a photolithographed array pattern. Although nonuniform and asymmetric etch rates limit the depth and shape of the phononic crystal holes, the matrix acts as a PnC, as demonstrated by insertion loss measurements together with interferometric imaging of surface acoustic waves propagating on the GaAs surface. The measured vertical displacement induced by surface phonons compares favorably with finite-difference time-domain simulations of a PnC with rounded-square holes.

  12. Measurement of charge limit in a strained lattice GaAs photocathode

    SciTech Connect

    Saez, P.; Alley, R.; Aoyagi, H.

    1993-04-01

    The SLAC Linear Collider (SLC) Polarized Electron Source (PES) photocathodes have shown a charge saturation when illuminated with a high intensity laser pulse. This charge limit in the cesium-activated GaAs crystal seems to be strongly dependent on its surface condition and on the incident light wavelength. Charge limit studies with highly polarized strained lattice GaAs materials are presented.

  13. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  14. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  15. Direct-bonded four-junction GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Jingman, Shen; Lijie, Sun; Kaijian, Chen; Wei, Zhang; Xunchun, Wang

    2015-06-01

    Direct wafer bonding technology is able to integrate two smooth wafers and thus can be used in fabricating III-V multijunction solar cells with lattice mismatch. In order to monolithically interconnect between the GaInP/GaAs and InGaAsP/InGaAs subcells, the bonded GaAs/InP heterojunction must be a highly conductive ohmic junction or a tunnel junction. Three types of bonding interfaces were designed by tuning the conduction type and doping elements of GaAs and InP. The electrical properties of p-GaAs (Zn doped)/n-InP (Si doped), p-GaAs (C doped)/n-InP (Si doped) and n-GaAs (Si doped)/n-InP (Si doped) bonded heterojunctions were analyzed from the I-V characteristics. The wafer bonding process was investigated by improving the quality of the sample surface and optimizing the bonding parameters such as bonding temperature, bonding pressure, bonding time and so on. Finally, GaInP/GaAs/InGaAsP/InGaAs 4-junction solar cells have been prepared by a direct wafer bonding technique with the high efficiency of 34.14% at the AM0 condition (1 Sun). Project supported by the Shanghai Rising-Star Program (No. 14QB1402800).

  16. Graphitized carbon on GaAs(100) substrates

    SciTech Connect

    Simon, J.; Simmonds, P. J.; Lee, M. L.; Woodall, J. M.

    2011-02-14

    We report on the formation of graphitized carbon on GaAs(100) surfaces by molecular beam epitaxy. We grew highly carbon-doped GaAs on AlAs, which was then thermally etched in situ leaving behind carbon atoms on the surface. After thermal etching, Raman spectra revealed characteristic phonon modes for sp{sup 2}-bonded carbon, consistent with the formation of graphitic crystallites. We estimate that the graphitic crystallites are 1.5-3 nm in size and demonstrate that crystallite domain size can be increased through the use of higher etch temperatures.

  17. Electronic contribution to friction on GaAs

    SciTech Connect

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  18. Porous monoliths for on-line sample preparation: A review.

    PubMed

    Masini, Jorge C; Svec, Frantisek

    2017-04-29

    This review aims at presenting the state of the art concerning monolithic materials for on-line sample preparation emphasizing solid-phase extraction, matrix exchange, and analyte conversion. Emphasis was given to organic and silica-based, as well as hybrid monoliths reported in the literature mostly after 2010. The first part of this review presents materials and strategies for enrichment of inorganic species in environmental and biological samples using mostly ICP-MS detectors. In the second part we focus on organic analytes, discussing the role of surface area of the polymer monoliths and density of adsorption sites for specific interactions, including incorporation of nanoparticles, metal organic frameworks, as well as the preparation of hybrid organic-silica monoliths to increase the surface area. Incorporation of ionic liquids to increase the number of types of interaction mechanisms available for retention is also discussed. Monoliths affording molecular recognition properties achieved by including boronate moieties for cis-diol recognition, as well as antibodies and aptamers for specific molecular recognition are also reviewed. The largest number of applications of molecular recognition mechanisms was observed for molecularly imprinted polymer monoliths as a consequence of the simplicity of this approach when compared to the use of immunosorbents or aptamers. The final part examines the on-line applications of immobilized enzyme reactors used for protein digestion in proteomic analysis and for kinetic studies in drug discovery and clinical assays usually coupling the reactors to mass spectrometers.

  19. Combining thermodynamic simulations, element and surface analytics to study U(VI) retention in corroded cement monoliths upon >20 years of leaching

    NASA Astrophysics Data System (ADS)

    Bube, C.; Metz, V.; Schild, D.; Rothe, J.; Dardenne, K.; Lagos, M.; Plaschke, M.; Kienzler, B.

    Retention or release of radionuclides in a deep geological repository for radioactive wastes strongly depends on the geochemical environment and on the interaction with near-field components, e.g. waste packages and backfill materials. Deep geological disposal in rock salt is one of the concepts considered for cemented low- and intermediate-level wastes. Long-term experiments were performed to observe the evolution of full-scale cemented waste simulates (doped with (NH4)2U2O7) upon reaction with relevant salt brines, e.g. MgCl2-rich and saturated NaCl solutions, and to examine the binding mechanisms of uranium. Throughout the experiments, concentrations of major solution components, uranium and pH values were monitored regularly and compared to thermodynamic equilibrium calculations, which indicate that close-to-equilibrium conditions have been achieved after 13-14 years duration of the leaching experiments. Two of the full-scale cemented waste simulates were recovered from the solutions after 17-18 years and studied by different analytical methods to characterize the solids, especially with respect to uranium incorporation. In drill core fragments of various lateral and horizontal positions of the corroded monoliths, U-rich aggregates were detected and analyzed by means of space-resolved techniques. Raman, μ-XANES and μ-XRD analyses of several aggregates demonstrate that they consist of an amorphous diuranate-type solid. Within error, calculated U solubilities controlled by Na-diuranate (Na2U2O7·H2O) are consistent with measured U concentrations in both, the NaCl and the MgCl2-system. Since uranophane occurs also in the corroded monoliths, it is proposed that a transition towards the thermodynamic equilibrium U(VI) phase is kinetically hindered.

  20. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  1. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  2. (In,Ga,Al)P–GaP laser diodes grown on high-index GaAs surfaces emitting in the green, yellow and bright red spectral range

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Shernyakov, Yu M.; Kulagina, M. M.; Payusov, A. S.; Gordeev, N. Yu; Maximov, M. V.; Cherkashin, N. A.

    2017-02-01

    We report on low threshold current density (<400 A cm‑2) injection lasing in (Al x Ga1–x )0.5In0.5P–GaAs-based diodes down to the green spectral range (<570 nm). The epitaxial structures are grown on high-index (611)A and (211)A GaAs substrates by metal–organic vapor phase epitaxy and contain tensile-strained GaP-enriched insertions aimed at reflection of the injected nonequilibrium electrons preventing their escape from the active region. Extended waveguide concept results in a vertical beam divergence with a full width at half maximum of 15° for (611)A substrates. The lasing at the wavelength of 569 nm is realized at 85 K. In an orange–red laser diode structure low threshold current density (190 A cm‑2) in the orange spectral range (598 nm) is realized at 85 K. The latter devices demonstrated room temperature lasing at 628 nm at ∼2 kA cm‑2 and a total power above 3 W. The red laser diodes grown on (211)A substrates demonstrated a far field characteristic for vertically multimode lasing indicating a lower optical confinement factor for the fundamental mode as compared to the devices grown on (611)A. However, as expected from previous research, the temperature stability of the threshold current and the wavelength stability were significantly higher for (211)A-grown structures.

  3. A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform.

    PubMed

    Xin, Yuanrong; Xiong, Qiancheng; Bai, Qiuhong; Miyamoto, Miwa; Li, Cong; Shen, Yehua; Uyama, Hiroshi

    2017-02-10

    Recently, monoliths with continuous porous structure have received much attention for high-performance separation/adsorption matrix in biomedical and environmental fields. This study proposes a novel route to prepare cellulose monoliths with hierarchically porous structure by selecting cellulose acetate (CA) as the starting material. Thermally induced phase separation of CA solution using a mixed solvent affords a CA monolith, which is converted into the cellulose monolith by alkaline hydrolysis. Scanning electron microscopy images of the CA and cellulose monoliths reveal a continuous macropore with rough surface, and nitrogen adsorption/desorption analysis indicates the formation of a mesoporous structure. The macroporous structure could be controlled by changing the fabrication parameters. A series of reactive groups are introduced by chemical modifications on the surface of the cellulose monolith. The facile and diverse modifiability combined with its hydrophilic property make the hierarchically porous cellulose monolith a potential platform for use in separation, purification and bio-related applications.

  4. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2016-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  5. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  6. Epitaxial growth of GaAs and GaN by gas source molecular beam epitaxy using organic group V compounds

    NASA Astrophysics Data System (ADS)

    Okumura, H.; Yoshida, S.; Misawa, S.; Sakuma, E.

    1992-05-01

    GaAs and GaN epilayers were grown on GaAs substrates by gas source molecular beam epitaxy technique using triethylarsine (TEAs) and diethylarsine (DEAsH) as As sources, and dimethylhydrazine (DMHy) as an N source. It was found that GaAs grows layer by layer even when organic arsine molecular sources are used. Cubic GaN was found to grow epitaxially on sufficiently nitrided surfaces of GaAs (001) substrates, in contrast with the growth of hexagonal GaN on GaAs (111) surfaces. It was also found that nitridation of GaAs surfaces does not occur when DEAsH and DMHy beams are supplied onto the GaAs substrates, simultaneously. Thus, GaN/GaAs multilayers were obtained only by intermittent supply of a DEAsH beam.

  7. Monolithic optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Breunig, Ingo; Beckmann, Tobias; Buse, Karsten

    2012-02-01

    Stability and footprint of optical parametric oscillators (OPOs) strongly depend on the cavity used. Monolithic OPOs tend to be most stable and compact since they do not require external mirrors that have to be aligned. The most straightforward way to get rid of the mirrors is to coat the end faces of the nonlinear crystal. Whispering gallery resonators (WGRs) are a more advanced solution since they provide ultra-high reflectivity over a wide spectral range without any coating. Furthermore, they can be fabricated out of nonlinear-optical materials like lithium niobate. Thus, they are ideally suited to serve as a monolithic OPO cavity. We present the experimental realization of optical parametric oscillators based on whispering gallery resonators. Pumped at 1 μm wavelength, they generate signal and idler fields tunable between 1.8 and 2.5 μm wavelength. We explore different schemes, how to phase match the nonlinear interaction in a WGR. In particular, we show improvements in the fabrication of quasi-phase-matching structures. They enable great flexibility for the tuning and for the choice of the pump laser.

  8. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  9. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  10. [Preparation of a novel polymer monolith using atom transfer radical polymerization method for solid phase extraction].

    PubMed

    Shen, Ying; Qi, Li; Qiao, Juan; Mao, Lanqun; Chen, Yi

    2013-04-01

    In this study, a novel polymer monolith based solid phase extraction (SPE) material has been prepared by two-step atom transfer radical polymerization (ATRP) method. Firstly, employing ethylene glycol dimethacrylate (EDMA) as a cross-linker, a polymer monolith filled in a filter head has been in-situ prepared quickly under mild conditions. Then, the activators generated by electron transfer ATRP (ARGET ATRP) was used for the modification of poly(2-(dimethylamino)ethyl-methacrylate) (PDMAEMA) on the monolithic surface. Finally, this synthesized monolith for SPE was successfully applied in the extraction and enrichment of steroids. The results revealed that ATRP can be developed as a facile and effective method with mild reaction conditions for monolith construction and has the potential for preparing monolith in diverse devices.

  11. Comparison of monolithic silica and polymethacrylate capillary columns for LC.

    PubMed

    Moravcová, Dana; Jandera, Pavel; Urban, Jiri; Planeta, Josef

    2004-07-01

    Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening.

  12. The temperature dependent variation of bulk and surface composition of In(x)Ga(1-x)As on GaAs grown by chemical beam epitaxy studied by RHEED, X-ray diffraction and XPS

    NASA Technical Reports Server (NTRS)

    Hansen, H. S.; Bensaoula, A.; Tougaard, S.; Zborowski, J.; Ignatiev, A.

    1992-01-01

    The paper investigates the bulk as well as near-surface composition of In(x)Ga(1-x)As epilayers on GaAs grown by chemical beam epitaxy (CBE) as a function of triethylindium flow rate and substrate temperature by reflection high energy electron diffraction (RHEED), X-ray diffraction, and XPS. To clarify whether the bulk stoichiometry of CBE-grown ternaries can be extracted from the growth rate change as determined by the change in the period of RHEED oscillations from binary to ternary compound growth, a systematic study of growth rate change as a function of ternary bulk composition determined by X-ray diffraction was performed at various temperatures. It is shown that for low growth temperatures there is a linear relationship between the two methods of determination, whereas no correlation is found for higher growth temperatures, in contrast to the MBE case where the two methods of determination yield identical results. In the near surface region the epilayer composition is determined in situ by XPS.

  13. GaAs solar cells with V-grooved emitters

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Fatemi, N.; Wilt, D. M.; Landis, G. A.; Thomas, R. D.

    1989-01-01

    A GaAs solar cell with a V-grooved front surface is described. It shows improved optical coupling and higher short-circuit current compared to planar cells. The GaAs homojunction cells, manufactured by OrganoMetallic Chemical Vapor Deposition (OMCVD), are described. The V-grooves were formed by anisotropic etching. Reflectivity measurements show significantly lower reflectance for the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell is consistently higher than that of the planar controls.

  14. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1977-01-01

    Several oxidation techniques are discussed which have been found to increase the open circuit (V sub oc) of metal-GaAs Schottky barrier solar cells, the oxide chemistry, attempts to measure surface state parameters, the evolving characteristics of the solar cell as background contamination (has been decreased, but not eliminated), results of focused Nd/YAG laser beam recrystallization of Ge films evaporated onto tungsten, and studies of AMOS solar cells fabricated on sliced polycrystalline GaAs wafers. Also discussed are projected materials availability and costs for GaAs thin-film solar cells.

  15. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.

    PubMed

    Ren, Shenqiang; Zhao, Ni; Crawford, Samuel C; Tambe, Michael; Bulović, Vladimir; Gradecak, Silvija

    2011-02-09

    We demonstrate an organic/inorganic solar cell architecture based on a blend of poly(3-hexylthiophene) (P3HT) and narrow bandgap GaAs nanowires. The measured increase of device photocurrent with increased nanowire loading is correlated with structural ordering within the active layer that enhances charge transport. Coating the GaAs nanowires with TiO(x) shells passivates nanowire surface states and further improves the photovoltaic performance. We find that the P3HT/nanowire cells yield power conversion efficiencies of 2.36% under white LED illumination for devices containing 50 wt % of TiO(x)-coated GaAs nanowires. Our results constitute important progress for the use of nanowires in large area solution processed hybrid photovoltaic cells and provide insight into the role of structural ordering in the device performance.

  16. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  17. ZnSe Films in GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Kachare, Ram H.

    1987-01-01

    ZnSe increases efficiency and conserves material. Two proposed uses of zinc selenide films promise to boost performance and reduce cost of gallium arsenide solar cells. Accordingly ZnSe serves as surface-passivation layer and as sacrificial layer enabling repeated use of costly GaAs substrate in fabrication.

  18. Measuring Carrier Lifetime in GaAs by Luminescence

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1986-01-01

    Luminescence proposed as nondestructive technique for measuring Shockley-Read-Hall (SRH) recombination lifetime GaAs. Sample irradiated, and luminescence escapes through surface. Measurement requires no mechanical or electrical contact with sample. No ohmic contacts or p/n junctions needed. Sample not scrapped after tested.

  19. X-ray photoelectron spectroscopy study of the effects of ultrapure water on GaAs

    NASA Astrophysics Data System (ADS)

    Massies, J.; Contour, J. P.

    1985-06-01

    X-ray photoelectron spectroscopy has been used to investigate the effects of de-ionized water on chemical etched GaAs surfaces. When the treatment with water is performed in static conditions (stagnant water) a Ga-rich oxide layer is formed on GaAs at the rate of 10-20 Å h-1. In contrast, when the GaAs surface is treated in dynamic conditions (running water), no oxide buildup is observed. Moreover, running water can remove the oxide film formed in static conditions, as well as oxidized layers due to air exposure. These results are discussed in the framework of cleaning prior to molecular beam epitaxy.

  20. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  1. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  2. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  3. GaAs and 3-5 compound solar cells status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Brinker, D. J.

    1984-01-01

    Gallium arsenide solar cells equal or supass the best silicon solar cells in efficiency, radiation resistance, annealability, and in the capability to produce usable power output at elevated temperatures. NASA has been involved in a long range research and development program to capitalize on these manifold advantages, and to explore alternative III-V compounds for additional potential improvements. The current status and future prospects for research and development in this area are reviewed and the progress being made toward development of GaAs cells suitable for variety of space missions is discussed. Cell types under various stages of development include n(+)/p shallow homojunction thin film GaAs cells, x100 concentration ratio p/n and n/p GaAs small area concentrator cells, mechanically-stacked, two-junction tandem cells, and three-junction monolithic cascade cells, among various other cell types.

  4. Comparison of soil-monolith extraction techniques

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Rupp, H.; Weller, U.; Vogel, H.-J.

    2009-04-01

    the soil monolith employing a rotary cutting system. This procedure should avoid structural damages and substantially reduces the necessary technical expenditure during monolith extraction. This "cutting" technology has been used successfully for different soil types (from gravel to sand to clay including contaminated sites) and for different lysimeter sizes (surface area 0.1-2 m2 and depths of 0.5-3.0 m). There is evidence in literature that lateral water and solute fluxes cannot - or only insufficient - be examined with conventional lysimeters. Lateral fluxes are of particular importance in groundwater dominated systems, as peat soils (fens or Histosols). To investigate lateral transport processes a box-shaped stainless steel lysimeter vessel (4 m long, 1 m width and 1.5 m depth) was constructed. The most challenging task of the extraction procedure was the horizontal sliding of the lysimeter vessel through the natural peat soil. At the front of the vessel a cutting tool assists in carving the soil monolith out of the peat, both vertically and at the base of the vessel. The yet unfilled vessel was inserted at the extraction site into an already prepared starting pit and aligned to a guiding system (guide tracks) adjustable in three axes. Serrated knife bars were used for cutting. A hydraulic plunger was used to support the cutting procedure. The whole horizontal extraction technology will be described and demonstrated. For the evaluation of the different extraction technologies with respect to the potential disturbance of soil structure we applied the different techniques for the same soil type (Eutric Fluvisol). At natural site conditions soil monoliths with the same size have been extracted with the "hammering", the "pressing" and the "cutting" technology. The soil structure close to the vessel wall was recorded using X-ray tomography at a resolution of some 0.1 mm. The results will be demonstrated and discussed.

  5. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Shi, Sui-Xing; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2015-01-26

    In this study, the effect of substrate orientation on the structural quality of Au-catalyzed epitaxial GaAs nanowires grown by a molecular beam epitaxy reactor has been investigated. It was found that the substrate orientations can be used to manipulate the nanowire catalyst composition and the catalyst surface energy and, therefore, to alter the structural quality of GaAs nanowires grown on different substrates. Defect-free wurtzite-structured GaAs nanowires grown on the GaAs (110) substrate have been achieved under our growth conditions.

  6. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  7. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  8. Comparison of perfusion media and monoliths for protein and virus-like particle chromatography.

    PubMed

    Wu, Yige; Abraham, Dicky; Carta, Giorgio

    2016-05-20

    Structural and performance characteristics of perfusion chromatography media (POROS HS 20 and 50) and those of a polymethacrylate monolith (CIM SO3-1 tube monolith column) are compared for protein and virus-like particle chromatography using 1mL columns. Axial flow columns are used for POROS while the monolith has a radial flow configuration, which provides comparable operating pressures. The POROS beads contain a bimodal distribution of pore sizes, some as large as 0.5μm, which allow a small fraction of the mobile phase to flow within the particles, while the monolith contains 1-2μm flow channels. For proteins (lysozyme and IgG), the dynamic binding capacity of the POROS columns is more than twice that of the monolith at longer residence times. While the DBC of the POROS HS 50 column decreases at shorter residence times, the DBC of the POROS HS 20 column for IgG remains nearly twice that of the monolith at residence times at least as low as 0.2min as a result of intraparticle convection. Protein recoveries are comparable for all three columns. For VLPs, however, the eluted peaks are broader and recovery is lower for the monolith than for the POROS columns and is dependent on the direction of flow in the monolith, which is attributed to denser layer observed by SEM at the inlet surface of the monolith that appears to trap VLPs when loading in the normal flow direction.

  9. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.

    PubMed

    Bi, Hui; Lin, Tianquan; Xu, Feng; Tang, Yufeng; Liu, Zhanqiang; Huang, Fuqiang

    2016-01-13

    Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare another new graphene monolith of mesoporous graphene-filled tubes instead of hollow tubes in the reported cellular structure. This graphene nanoporous monolith is also composed of covalently bonded carbon network possessing high specific surface area of ∼1590 m(2) g(-1) and electrical conductivity of ∼32 S cm(-1), superior to graphene aerogels and porous graphene forms self-assembled by graphene oxide. This 3D graphene monolith can support over 10 000 times its own weight, significantly superior to CNT and graphene cellular materials with a similar density. Furthermore, pseudocapacitance-active functional groups are introduced into the new nanoporous graphene monolith as an electrode material in electrochemical capacitors. Surprisingly, the electrode of 3D mesoporous graphene has a specific capacitance of 303 F g(-1) and maintains over 98% retention after 10 000 cycles, belonging to the list for the best carbon-based active materials. The macroscopic mesoporous graphene monolith suggests the great potential as an electrode for supercapacitors in energy storage areas.

  10. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.; Romero, M. J.

    2007-01-01

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include

  11. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1-x Bi x films

    NASA Astrophysics Data System (ADS)

    Wood, Adam W.; Collar, Kristen; Li, Jincheng; Brown, April S.; Babcock, Susan E.

    2016-03-01

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs1-x Bi x using high angle annular dark field (‘Z-contrast’) imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ˜GaAs embedded in the GaAs1-x Bi x epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (˜4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ˜GaAs to GaAs1-x Bi x appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ˜25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs1-x Bi x film growth.

  12. A chitosan coated monolith for nucleic acid capture in a thermoplastic microfluidic chip

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; DeVoe, Don L.

    2014-01-01

    A technique for microfluidic, pH modulated DNA capture and purification using chitosan functionalized glycidyl methacrylate monoliths is presented. Highly porous polymer monoliths are formed and subsequently functionalized off-chip in a batch process before insertion into thermoplastic microchannels prior to solvent bonding, simplifying the overall fabrication process by eliminating the need for on-chip surface modifications. The monolith anchoring method allows for the use of large cross-section monoliths enabling high flowrates and high DNA capture capacity with a minimum of added design complexity. Using monolith capture elements requiring less than 1 mm2 of chip surface area, loading levels above 100 ng are demonstrated, with DNA capture and elution efficiency of 54.2% ± 14.2% achieved. PMID:25379094

  13. Preparation and photocatalytic activity of robust titania monoliths for water remediation.

    PubMed

    Nakata, Kazuya; Kagawa, Tomoya; Sakai, Munetoshi; Liu, Shanhu; Ochiai, Tsuyoshi; Sakai, Hideki; Murakami, Taketoshi; Abe, Masahiko; Fujishima, Akira

    2013-02-01

    TiO(2) monoliths were prepared, characterized, and evaluated for photocatalytic performance. The TiO(2) monoliths were found to have an interconnected void lattice and a bimodal porous structure with macropores and mesopores after calcination at 500-700 °C. Monoliths calcined at 500 °C had high specific surface area (93.1 m(2)/g) and porosity (68%), which were maintained after calcination at 700-1100 °C (51-46%). The calcined monoliths had relatively high Vickers hardness (∼104) despite their porous structure. Monoliths calcined at 500 and 700 °C exhibited high performance for methylene blue decolorization because of their high specific surface area.

  14. Tandem lectin affinity chromatography monolithic columns with surface immobilised concanavalin A, wheat germ agglutinin and Ricinus communis agglutinin-I for capturing sub-glycoproteomics from breast cancer and disease-free human sera.

    PubMed

    Selvaraju, Subhashini; El Rassi, Ziad

    2012-07-01

    In this study, a liquid-phase separation platform consisting of tandem lectin affinity chromatography was introduced for the selective capturing of sub-glycoproteomics that are affected in cancers, e.g. breast cancer. The platform is comprised of three monolithic columns with surface immobilised lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and Ricinus communis agglutinin-I (RCA-I). While WGA and Con A have specificities directed towards the core portion of N-glycans on the glycoprotein surface, RCA-I specifically interacts with the non-reducing terminal moieties of the outer chain structures of N-glycans. The effects of the order in which the three lectin columns were arranged in the tandem columns format were evaluated. The most suitable order proved to be WGA → Con A → RCA-I (denoted as WCR) as far as the number of captured proteins was concerned. The WCR tandem columns allowed the capture of 113 and 112 proteins from disease-free and breast cancer sera, respectively, corresponding to 75 and 65 non-redundant proteins, respectively. Using mass spectral count ratios and Q-Q plots yielded a panel of 23 non-redundant differentially expressed proteins (i.e. a panel of 23 candidate markers), which should in principle be more representative of a pathophysiological state than a single marker candidate.

  15. Progress toward a 30 percent-efficient, monolithic, three-junction, two-terminal concentrator solar cell for space applications

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.

    1991-01-01

    Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.

  16. Molecular-beam epitaxial regrowth on oxygen-implanted GaAs substrates for device integration

    NASA Astrophysics Data System (ADS)

    Chen, C. L.; Mahoney, L. J.; Calawa, S. D.; Molvar, K. M.; Maki, P. A.; Mathews, R. H.; Sage, J. P.; Sollner, T. C. L. G.

    1999-06-01

    Device-quality layers were regrown on GaAs wafers by molecular-beam epitaxy over conductive pregrown areas and on selectively patterned high-resistivity areas formed by oxygen implantation. The regrowth over both areas resulted in comparable device-quality GaAs. The high resistivity of the oxygen-implanted area was maintained after the regrowth and no oxygen incorporation was observed in the regrown layer. The cutoff frequency of a 1.5-μm-gate metal-semiconductor field-effect transistor fabricated on the regrown layer over the high-resistivity areas is 7 GHz. This demonstration shows that planar technology can be used in epitaxial regrowth, simplifying the integration of vastly different devices into monolithic circuits.

  17. Monolithic supports with unique geometries and enhanced mass transfer.

    SciTech Connect

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  18. Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Demenev, A. A.; Kulakovskii, V. D.; Schneider, C.; Brodbeck, S.; Kamp, M.; Höfling, S.; Lobanov, S. V.; Weiss, T.; Gippius, N. A.; Tikhodeev, S. G.

    2016-10-01

    We report close to circularly polarized lasing at ℏ ω = 1.473 and 1.522 eV from an AlAs/AlGaAs Bragg microcavity, with 12 GaAs quantum wells in the active region and chirally etched upper distributed Bragg refractor under optical pump at room temperature. The advantage of using the chiral photonic crystal with a large contrast of dielectric permittivities is its giant optical activity, allowing to fabricate a very thin half-wave plate, with a thickness of the order of the emitted light wavelength, and to realize the monolithic control of circular polarization.

  19. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  20. Allyl-silica Hybrid Monoliths For Chromatographic Application

    NASA Astrophysics Data System (ADS)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  1. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  2. Monolithically integrated optical displacement sensor based on triangulation and optical beam deflection.

    PubMed

    Higurashi, E; Sawada, R; Ito, T

    1999-03-20

    A monolithically integrated optical displacement sensor based on triangulation and optical beam deflection is reported. This sensor is simple and consists of only a laser diode, a polyimide waveguide, and a split detector (a pair of photodiodes) upon a GaAs substrate. The resultant prototype device is extremely small (750 microm x 800 microm). Experiments have shown that this sensor can measure the displacement of a mirror with resolution of better than 4 nm. Additionally, we have experimentally demonstrated both axial and lateral displacement measurements when we used a cylindrical micromirror (diameter, 125 microm) as a movable external object.

  3. Simulation and fabrication of monolithically integrated MSM/PHEMT 850 nm optical receiver front end

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Chen, Tang-Sheng; Jiao, Shi-Long; Liu, Lin; Chen, Zhen-Long; Wang, Yu-Lin; Wu, Yun-Feng; Ye, Yu-Tang

    2007-12-01

    An 850 nm monolithically integrated optical receiver front end has been simulated by ATLAS and developed based on 0.5 μm GaAs PHEMT process, which comprises a metal-semiconductor-metal (MSM) photodetector and a distributed amplifier.The output eye diagrams for 2.5 Gb/s and 5Gb/s NRZ pseudorandom binary sequence are attained. Compared to the characteristics of actual device, this contribution details a simulation strategy for accurate prediction of the unilluminated performances of the devices.

  4. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  5. Surface segregation effects of erbium in GaAs growth and their implications for optical devices containing ErAs nanostructures

    SciTech Connect

    Crook, Adam M.; Nair, Hari P.; Bank, Seth R.

    2011-03-21

    We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.

  6. GaAs microcrystals selectively grown on silicon: Intrinsic carbon doping during chemical beam epitaxy with trimethylgallium

    NASA Astrophysics Data System (ADS)

    Molière, T.; Jaffré, A.; Alvarez, J.; Mencaraglia, D.; Connolly, J. P.; Vincent, L.; Hallais, G.; Mangelinck, D.; Descoins, M.; Bouchier, D.; Renard, C.

    2017-01-01

    The monolithic integration of III-V semiconductors on silicon and particularly of GaAs has aroused great interest since the 1980s. Potential applications are legion, ranging from photovoltaics to high mobility channel transistors. By using a novel integration method, we have shown that it is possible to achieve heteroepitaxial integration of GaAs crystals (typical size 1 μ m) on silicon without any structural defect such as antiphase domains, dislocations, or stress, usually reported for direct GaAs heteroepitaxy on silicon. However, concerning their electronic properties, conventional free carrier characterization methods are impractical due to the micrometric size of GaAs crystals. In order to evaluate the GaAs material quality for optoelectronic applications, a series of indirect analyses such as atom probe tomography, Raman spectroscopy, and micro-photoluminescence as a function of temperature were performed. These revealed a high content of partially electrically active carbon originating from the trimethylgallium used as the Ga precursor. Nevertheless, the very good homogeneity observed by this doping mechanism and the attractive properties of carbon as a dopant once controlled to a sufficient degree are a promising route to device doping.

  7. GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells.

    PubMed

    Chao, Jiun-Jie; Shiu, Shu-Chia; Hung, Shih-Che; Lin, Ching-Fuh

    2010-07-16

    In this paper, a new type of hybrid solar cell based on a heterojunction between poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and vertically aligned n-type GaAs nanowire (NW) arrays is investigated. The GaAs NW arrays are fabricated by directly performing the nano-etching of GaAs wafer with spun-on SiO(2) nanospheres as the etch mask through inductively coupled plasma reactive ion etching. The PEDOT:PSS adheres to the surface of the GaAs NW arrays to form a p-n junction. The morphology of GaAs NW arrays strongly influences the characteristics of the GaAs NW/PEDOT:PSS hybrid solar cells. The suppression of reflectance and the interpenetrating heterojunction interface of GaAs NW arrays offers great improvements in efficiency relative to a conventional planar cell. Compared to the planar GaAs/PEDOT:PSS cells, the power conversion efficiency under AM 1.5 global one sun illumination is improved from 0.29% to 5.8%.

  8. Molecular enhancement of ferromagnetism in GaAs /GaMnAs heterostructures

    NASA Astrophysics Data System (ADS)

    Carmeli, Itai; Bloom, Francisco; Gwinn, E. G.; Kreutz, T. C.; Scoby, Cheyne; Gossard, A. C.; Ray, S. G.; Naaman, Ron

    2006-09-01

    The authors investigate effects of chemisorption of polar organic molecules onto ferromagnetic GaAs /GaMnAs heterostructures. The chemisorbed heterostructures exhibit striking anisotropic enhancement of the magnetization, while GaAs substrates that are physisorbed with the same molecules show no change in magnetic properties. Thus the enhanced magnetism of the chemisorbed heterostructures reflects changes in spin alignment that arise from surface bonding of the organic monolayer.

  9. Preparation and evaluation of a lysine-bonded silica monolith as polar stationary phase for hydrophilic interaction pressurized capillary electrochromatography.

    PubMed

    Huang, Guihua; Lian, Qiuyan; Zeng, Wencan; Xie, Zenghong

    2008-09-01

    A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.

  10. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis.

    PubMed

    Liu, Zhongshan; Liu, Jing; Liu, Zheyi; Wang, Hongwei; Ou, Junjie; Ye, Mingliang; Zou, Hanfa

    2017-01-16

    The vinyl-functionalized hybrid monolithic columns (75 and 150μm i.d.) were prepared via sol-gel chemistry of tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS). The content of accessible vinyl groups was further improved after the monolithic column was post-treated with vinyldimethylethoxysilane (VDMES). The surface properties of monolithic columns were tailored via thiol-ene click reaction by using 1-octadecanethiol, sodium 3-mercapto-1-propanesulfonate and 2,2'-(ethylenedioxy)diethanethiol/vinylphosphonic acid, respectively. The preparing octadecyl-functionalized monolithic columns were adopted for proteomics analysis in cLC-MS/MS. A 37-cm-long×75-μm-i.d. monolithic column could identify 3918 unique peptides and 1067 unique proteins in the tryptic digest of proteins from HeLa cells. When a 90-cm-long×75-μm-i.d. monolithic column was used, the numbers of unique peptides and proteins were increased by 82% and 32%, respectively. Furthermore, strong cation exchange (SCX) monolithic columns (4cm in length×150μm i.d.) were also prepared and coupled with the 37-cm-long×75-μm-i.d. octadecyl-functionalized monolithic column for two-dimensional SCX-RPLC-MS/MS analysis, which could identify 17114 unique peptides and 3211 unique proteins.

  11. Method of monolithic module assembly

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  12. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.; Matthias, Sabrina

    2014-10-01

    Beam expanding is a common task, where Galileo telescopes are preferred. However researches and customers have found limitations when using these systems. A new monolithical solution which is based on the usage of only one aspherical component will be presented. It will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Insights will be given how aspherical beam expanding systems will help using larger incoming beams and reducing the overall length of such a system. Additionally an add-on element for divergence and wavelength adaption will be presented.

  13. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    PubMed

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

  14. Spectroscopic constants and potential energy curves of GaAs, GaAs +, and GaAs -

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1990-02-01

    Twenty electronic states of GaAs, 12 electronic states of GaAs +, and 13 electronic states of GaAs - are investigated using relativistic ab initio complete active space MCSCF (CASSCF) followed by large-scale configuration interaction calculations which included up to 700 000 configurations. Potential energy curves and spectroscopic constants of all these states of three radicals are obtained. Spectroscopic constants of low-lying states of GaAs are in very good agreement with both experiment and all-electron results. Two nearly-degenerate states of 2Σ +, 2Π ( 2Σ + lower) symmetries are found as candidates for the ground state of GaAs -. The GaAs - negative ion is found to be more stable compared to the neutral GaAs ( De(GaAs -) = 3 eV). The electron affinity of GaAs is computed as 0.89 and 1.3 eV at the FOCI and SOCI levels of theory, respectively. Calculated potential energy curves of GaAs are in accord with the experimentally observed predissociation in the 3Π( III) - X3Σ- system.

  15. CBE growth of (001) GaAs: RHEED and RD studies

    NASA Astrophysics Data System (ADS)

    Samuelson, L.; Junno, B.; Paulson, G.; Fornell, J. O.; Ledebo, L.

    1992-11-01

    A novel type of epitaxial growth system has been designed and optimized for studies of surface physics and epitaxial growth during chemical beam epitaxy (CBE). The work presented here deals with the growth of GaAs on (001) oriented GaAs, and is specifically focused on detailed studies of the surface modifications appearing during exposure to triethylgallium (TEG) or tertiarybutylarsine (TBA), as well as during continuous growth. Reflection high-energy electron diffraction (RHEED) is used to characterize surface reconstructions and to monitor monolayer growth oscillations. Optical reflectance-difference (RD) is used as a very sensitive probe to track the chemical admixture and the concentration of dimers on the surface. Examples are given of direct correlations between characteristics RD features and specific surface reconstructions as determined by RHEED. The surface reconstruction phase diagram for CBE growth of (001) GaAs using TBA is presented and compared with the case for MBE growth.

  16. Lectin-carbohydrate interactions on nanoporous gold monoliths.

    PubMed

    Tan, Yih Horng; Fujikawa, Kohki; Pornsuriyasak, Papapida; Alla, Allan J; Ganesh, N Vijaya; Demchenko, Alexei V; Stine, Keith J

    2013-07-01

    Monoliths of nanoporous gold (np-Au) were modified with self-assembled monolayers of octadecanethiol (C18-SH), 8-mercaptooctyl α-D-mannopyranoside (αMan-C8-SH), and 8-mercapto-3,6-dioxaoctanol (HO-PEG2-SH), and the loading was assessed using thermogravimetric analysis (TGA). Modification with mixed SAMs containing αMan-C8-SH (at a 0.20 mole fraction in the SAM forming solution) with either octanethiol or HO-PEG2-SH was also investigated. The np-Au monoliths modified with αMan-C8-SH bind the lectin Concanavalin A (Con A), and the additional mass due to bound protein was assessed using TGA analysis. A comparison of TGA traces measured before and after exposure of HO-PEG2-SH modified np-Au to Con A showed that the non-specific binding of Con A was minimal. In contrast, np-Au modified with octanethiol showed a significant mass loss due to non-specifically adsorbed Con A. A significant mass loss was also attributed to binding of Con A to bare np-Au monoliths. TGA revealed a mass loss due to the binding of Con A to np-Au monoliths modified with pure αMan-C8-SH. The use of mass losses determined by TGA to compare the binding of Con A to np-Au monoliths modified by mixed SAMs of αMan-C8-SH and either octanethiol or HO-PEG2-SH revealed that binding to mixed SAM modified surfaces is specific for the mixed SAMs with HO-PEG2-SH but shows a significant contribution from non-specific adsorption for the mixed SAMs with octanethiol. Minimal adsorption of immunoglobulin G (IgG) and peanut agglutinin (PNA) towards the mannoside modified np-Au monoliths was demonstrated. A greater mass loss was found for Con A bound onto the monolith than for either IgG or PNA, signifying that the mannose presenting SAMs in np-Au retain selectivity for Con A. TGA data also provide evidence that Con A bound to the αMan-C8-SH modified np-Au can be eluted by flowing a solution of methyl α-D-mannopyranoside through the structure. The presence of Con A proteins on the modified np-Au surface was

  17. The Investigation of Intermediate Stage of Template Etching with Metal Droplets by Wetting Angle Analysis on (001) GaAs Surface.

    PubMed

    Lyamkina, A A; Dmitriev, D V; Galitsyn, Yu G; Kesler, V G; Moshchenko, S P; Toropov, A I

    2011-12-01

    In this work, we study metal droplets on a semiconductor surface that are the initial stage for both droplet epitaxy and local droplet etching. The distributions of droplet geometrical parameters such as height, radius and volume help to understand the droplet formation that strongly influences subsequent nanohole etching. To investigate the etching and intermixing processes, we offer a new method of wetting angle analysis. The aspect ratio that is defined as the ratio of the height to radius was used as an estimation of wetting angle which depends on the droplet material. The investigation of the wetting angle and the estimation of indium content revealed significant materials intermixing during the deposition time. AFM measurements reveal the presence of two droplet groups that is in agreement with nanohole investigations. To explain this observation, we consider arsenic evaporation and consequent change in the initial substrate. On the basis of our analysis, we suggest the model of droplet evolution and the formation of two droplet groups.

  18. Monolithic blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Gaebler, Volker; Eichler, Hans J.

    2002-06-01

    We report a monolithic low threshold 482nm Tm:ZBLAN upconversion fiber laser. The laser cavity consists of a directly coated single-mode fluoride fiber. The vapor deposit coatings significantly reduce the coupling losses and are suitable to be pumped by laser diodes. The laser operation and threshold characteristics have been investigated. The output stability and beam quality was tested.

  19. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  20. Activation processes on GaAs photocathode by different currents of oxygen source

    NASA Astrophysics Data System (ADS)

    Miao, Zhuang; Shi, Feng; Cheng, Hongchang; Wang, Shufei; Zhang, Xiaohui; Yuan, Yuan; Chen, Chang

    2015-04-01

    In order to know the influence of activation processes on GaAs photocathodes, three GaAs samples were activated by a fixed current of cesium source and different currents of oxygen source. The current of caesium source is same during activation to ensure initial adsorption of caesium quantum is similar, which is the base to show the difference during alternation activation of caesium and oxygen. Analysed with the activation data, it is indicated that Cs-to-O current ratio of 1.07 is the optimum ratio to obtain higher sensitivity and better stability. According to double dipole model, stable and uniform double dipole layers of GaAs-O-Cs:Cs-O-Cs are formed and negative electron affinity is achieved on GaAs surface by activation with cesium and oxygen. The analytical result is just coincident with the model. Thus there is an efficient technological method to improve sensitivity and stability of GaAs photocathode.

  1. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  2. Mixed-mode reversed-phase and ion-exchange monolithic columns for micro-HPLC.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2008-08-01

    This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.

  3. Martensite transformations in Mn2NiGa thin films grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; Neckel, I. T.; Mazzaro, I.; Graff, I. L.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2016-11-01

    The purpose of this work is to investigate the correlation between magnetism and crystallographic structures of Mn2NiGa thin films grown by molecular beam epitaxy on GaAs(1 1 1) and GaAs(0 0 1) surfaces. The films present themselves with thermoelastic martensitic transformations upon cooling, and heating with high-temperature leads to austenite structures exhibiting a preferable (1 1 0) texture. X-ray diffraction measurements performed as a function of temperature reveal three different types of domain variants in the films within a large interval of temperatures. The austenite structures with lattice parameters ranging from 0.574 nm to 0.601 nm undergo volume conserving structural transitions to martensite with a c/a ratio of 1.2. The coexistence of variants with different domain configurations is induced on each GaAs substrate. Although the Curie temperatures (~360 K) are similar for films grown on GaAs(1 1 1) and GaAs (0 0 1) substrates, their saturation magnetizations are respectively 18 kA m-1 and 8 kA m-1 at room temperature and exhibit quite different magnetic irreversibility behaviors. Our results indicate that a multiplicity of possible equivalent variant domains on the GaAs surfaces makes it difficult to stabilize epitaxial films on these substrates.

  4. Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant.

    PubMed

    Yu, Huan; Zhu, Yang; Yang, Hui; Nakanishi, Kazuki; Kanamori, Kazuyoshi; Guo, Xingzhong

    2014-09-07

    A facile and "green" method was proposed to introduce Ag nanoparticles (Ag NPs) into the hierarchically monolithic silica uniformly in the presence of (3-aminopropyl)-triethoxysilane (APTES) and ethylene glycol. APTES is used to modify the monolith by incorporating amino groups onto the surface of meso-macroporous skeletons, while ethylene glycol is employed as the productive reductant. Ag NPs are homogeneously immobilized in hierarchically monolithic silica after reduction and drying at 40 °C for different duration times, and the embedded amount of Ag NPs can reach 15.44 wt% when treated once. The embedment of Ag NPs increases with the repeat treatment and the APTES amount, without uncontrollable crystalline growth. The surface areas of Ag NPs embedded in silica monoliths after heat treatment at 300 and 400 °C are higher than those before heat treatment. The modification via APTES and the embedment of Ag NPs does not spoil the morphology of monolithic silica, while changing the pore structures of the monolith. A tentative formation process and a reduction mechanism are proposed for the modification, reduction and embedment. Ag NPs embedded in monolithic silica is promising for wide applications such as catalysis and separation.

  5. Catastrophic failure of a monolithic zirconia prosthesis.

    PubMed

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis.

  6. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  7. Role of sidewall diffusion in GaAs nanowire growth: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pankoke, Volker; Sakong, Sung; Kratzer, Peter

    2012-08-01

    The molecular processes during the growth of GaAs nanowires in molecular beam epitaxy (MBE) are studied from first principles. For the wurtzite crystal structure of GaAs, which is formed exclusively in nanowire growth, potential energy surfaces for sidewall diffusion of Ga, As, and GaAs surface species are calculated using density functional theory. We compare materials transport on type-I and -II nanowires (with {101¯0} and {112¯0} facets of wurtzite GaAs, respectively) and discuss its role for materials supply to the growth zone at the nanowire tip. On the sidewalls of type-II nanowires, the diffusion barrier for Ga along the growth direction is particularly low, only 0.30 eV compared to 0.60 eV on type-I nanowires. For As adatoms, the corresponding diffusion barriers are 0.64 eV and 1.20 eV, respectively, and hence higher than for Ga adatoms. The GaAs molecule formed by the chemical surface reaction of Ga and As finds very stable binding sites on type-II sidewalls where it inserts itself into a chemical bond between surface atoms, triggering radial growth. In contrast, on type-I nanowires the GaAs molecule adsorbed with the As end towards the surface has a low diffusion barrier of 0.50 eV. Together with our previous finding that the gold particle at the nanowire tip is efficient in promoting dissociative adsorption of As2 molecules, we conclude that the influx of Ga adatoms from sidewall diffusion is very important to maintain stoichiometric growth of GaAs nanowires, in particular when a large V-III ratio is used in MBE.

  8. An ultra-sensitive microfluidic immunoassay using living radical polymerization and porous polymer monoliths.

    SciTech Connect

    Abhyankar, Vinay V.; Singh, Anup K.; Hatch, Anson V.

    2010-07-01

    We present a platform that combines patterned photopolymerized polymer monoliths with living radical polymerization (LRP) to develop a low cost microfluidic based immunoassay capable of sensitive (low to sub pM) and rapid (<30 minute) detection of protein in 100 {micro}L sample. The introduction of LRP functionality to the porous monolith allows one step grafting of functionalized affinity probes from the monolith surface while the composition of the hydrophilic graft chain reduces non-specific interactions and helps to significantly improve the limit of detection.

  9. Development of GaAs/Si and GaAs/Si monolithic structures for future space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Vernon, S. M.; Wolfson, R. G.; Tobin, S. P.

    1984-01-01

    The results of heteroepitaxial growth of GaAs and GaAlAs directly on Si are presented, and applications to new cell structures are suggested. The novel feature is the elimination of a Ge lattice transition region. This feature not only reduces the cost of substrate preparation, but also makes possible the fabrication of high efficiency monolithic cascade structures. All films to be discussed were grown by organometallic chemical vapor deposition at atmospheric pressure. This process yielded reproducible, large-area films of GaAs, grown directly on Si, that are tightly adherent and smooth, and are characterized by a defect density of 5 x 10(6) power/sq cm. Preliminary studies indicate that GaAlAs can also be grown in this way. A number of promising applications are suggested. Certainly these substrates are ideal for low-weight GaAs space solar ells. For very high efficiency, the absence of Ge makes the technology attractive for GaAlAs/Si monolithic cascades, in which the Si substrates would first be provided with a suitable p/n junction. An evaluation of a three bandgap cascade consisting of appropriately designed GaAlAs/GaAs/Si layers is also presented.

  10. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column.

  11. One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme.

    PubMed

    Lin, Zian; Lin, Yao; Sun, Xiaobo; Yang, Huanghao; Zhang, Lan; Chen, Guonan

    2013-04-05

    A molecularly imprinted inorganic-organic hybrid monolithic capillary column (MIP hybrid monolith) was synthesized by one-pot process and its application in selective recognition and capture of lysozyme (Lyz) from complex biological samples was described for the first time. Due to a combination of rigid silica matrices and flexible organic hydrogels in one-pot process, stable and accessible recognition sites in the as-prepared MIP hybrid monolith could be obtained after the removal of template protein, which facilitated the rebinding of template and provided good reproducibility and lifetime of use. The morphology, permeability, and pore properties of the as-prepared MIP hybrid monolith were characterized and a uniform monolithic matrix with high surface area and large through-pores was observed. The recognition behavior of MIP and non-imprinted (NIP) hybrid monolith was evaluated by separating template protein from unfractionated protein mixture and the result indicated that the MIP hybrid monolith has much higher affinity toward the template protein than NIP hybrid monolith. High imprinted factor (IF) and separation efficiency could be obtained. In addition, the practicality of the Lyz-MIP hybrid monolith was further evaluated by selective separation of Lyz from egg white and capture of Lyz from human serum by adopting it as an in-tube solid phase microextraction (in-tube SPME), and the good results demonstrated its potential in proteome analysis.

  12. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen.

    PubMed

    Li, Xiang-Jie; Jia, Man; Zhao, Yong-Xin; Liu, Zhao-Sheng; Akber Aisa, Haji

    2016-03-18

    Boronate-affinity monolithic column was first prepared via polystyrene (PS) as porogen in this work. The monolithic polymer was synthetized using 4-vinylphenylboronic acid (4-VPBA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker monomer, and a mixture of PS solution in tetrahydrofuran, the linear macromolecular porogen, and toluene as porogen. Isoquercitrin (ISO) and hyperoside (HYP), isomer diol flavonoid glycosides, can be baseline separated on the poly(VPBA-co-EDMA) monolith. The effect of polymerization variables on the selectivity factor, e.g., the ratio of monomer to crosslinker (M/C), the amount of PS and the molecular weight of macromolecular porogen was investigated. The surface properties of the monolithic polymer were characterized by scanning electron microscopy and nitrogen adsorption. The best polymerization condition was the M/C ratio of 7:3, and the PS concentration of 40 mg/ml. The poly(VPBA-co-EDMA) polymer was also applied to extract cis-diol flavonoid glycosides from the crude extraction of cotton flower. After treated by poly(VPBA-co-EDMA) for solid phase extraction, high purity ISO and HYP (>99.96%) can be obtained with recovery of 83.7% and 78.6%, respectively.

  13. Translucency of monolithic and core zirconia after hydrothermal aging

    PubMed Central

    Fathy, Salma M.; El-Fallal, Abeer A.; El-Negoly, Salwa A.; El Bedawy, Abu Baker

    2015-01-01

    Abstract Objective: To evaluate the hydrothermal aging effect on the translucency of partially stabilized tetragonal zirconia with yttria (Y-TZP) used as monolithic or fully milled zirconia and of core type. Methods: Twenty disc-shaped specimens (1 and 10 mm) for each type of monolithic and core Y-TZP materials were milled and sintered according to the manufacturer’s instruction. The final specimens were divided into two groups according to the type of Y-TZP used. Translucency parameter (TP) was measured over white and black backgrounds with the diffuse reflectance method; X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the microstructure of both Y-TZP types before and after aging. Data for TP values was statistically analyzed using Student’s t-test. Results: Monolithic Y-TZP showed the highest TP mean value (16.4 ± 0.316) before aging while core Y-TZP showed the lowest TP mean value (7.05 ± 0.261) after aging. There was a significant difference between the two Y-TZP types before and after hydrothermal aging. XRD analysis showed increases in monoclinic content in both Y-TZP surfaces after aging. Conclusion: Monolithic Y-TZP has a higher chance to low-temperature degradation than core type, which may significantly affect the esthetic appearance and translucency hence durability of translucent Y-TZP. PMID:27335897

  14. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Knechtli, R. C.; Kamath, S.; Loo, R.

    1977-01-01

    The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

  15. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  16. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high

  17. Hydrophobic polymer monoliths as novel phase separators: application in continuous liquid-liquid extraction systems.

    PubMed

    Peroni, Daniela; Vanhoutte, Dominique; Vilaplana, Francisco; Schoenmakers, Peter; de Koning, Sjaak; Janssen, Hans-Gerd

    2012-03-30

    Hydrophobic macroporous polymer monoliths are shown to be interesting materials for the construction of "selective solvent gates". With the appropriate surface chemistry and porous properties the monoliths can be made permeable only for apolar organic solvents and not for water. Different poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA-EDMA) and poly(styrene-co-divinylbenzene) (PS-DVB) monoliths prepared with tailored chemistries and porosities were evaluated for this purpose. After extensive characterization, the PS-DVB monoliths were selected due to their higher hydrophobicity and their more suitable flow characteristics. BMA-EDMA monoliths are preferred for mid-polarity solvents such as ethyl acetate, for which they provide efficient separation from water. Breakthrough experiments confirmed that the pressures necessary to generate flow of organic solvents through PS-DVB monoliths were substantially lower than for water. A phase separator was constructed using the monoliths as the flow selector. This device was successfully coupled on-line with a chip-based continuous liquid-liquid-extraction (LLE) system with segmented flow. Efficient separation of different solvents was obtained across a wide range of flow rates (0.5-4.0 mL min(-1)) and aqueous-to-organic flow ratios (β=1-10). Good robustness and long life-time were also confirmed. The suitability of the device to perform simple, cheap, and reliable phase separation in a continuous LLE system prior to gas-chromatographic analysis was proven for some selected real-life applications.

  18. Hydrophilic diol monolith for the preparation of immuno-sorbents at reduced nonspecific interactions.

    PubMed

    Gunasena, Dilani N; El Rassi, Ziad

    2011-08-01

    A polar organic polymer monolith (M1) was introduced for performing immunoaffinity chromatography (IAC) at reduced nonspecific interactions. The M1 monolith was prepared by the in situ polymerization of glyceryl methacrylate (GMM) and pentaerythritol triacrylate (PETA). Through its surface diol groups, M1 provided the functionalities to immobilize antibodies. Anti-haptoglobin antibody was used as the model antibody to study the overall behavior of the immuno monolith M1 in terms of its binding to the antigen and to evaluate its nonspecific binding with other proteins, especially the high-abundance human serum proteins. To better assess the suitability of M1 for IAC, other immuno monoliths were prepared and compared with the immuno monolith M1. Two monoliths were of the traditional ones: copolymers of (i) glycidyl methacrylate and ethylene glycol dimethacrylate (EDMA) and (ii) GMM and EDMA, referred to as M2 and M3, respectively. A fourth monolith involving the copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride and EDMA (M4) was introduced to allow the site-directed immobilization of antibodies. Owing to its hydroxyl groups, the M1 exhibited negligible nonspecific hydrophobic interactions with proteins. On the other hand, M4 exhibited extensive electrostatic interactions, while the M2 and to a lesser extent M3 exhibited hydrophobic interactions.

  19. Monolith froth reactor: Development of a novel three-phase catalytic system

    SciTech Connect

    Crynes, L.L.; Cerro, R.L.; Abraham, M.A. . Dept. of Chemical Engineering)

    1995-02-01

    The monolith froth reactor, involving two-phase flow and a monolith catalyst, is developed. The flow within monolith channels, consisting of trains of gas bubbles and liquid slugs, is produced by forming a two-phase froth in a chamber immediately below the bottom of the monolith. The froth then flows upward into the monolith channels through pressure forces, which differs from previous methods since it may be carried out for a commercial-scale reactor. Because the liquid film which develops between the gas phase and the surface of the catalyst is extremely thin, two-phase flow within a monolith can provide reaction rates which are near their intrinsic values. Catalytic oxidation of aqueous phenol over copper oxide supported on [gamma]-Al[sub 2]O[sub 3] is used as a model reaction for investigating reactor performance. Generation of a froth is confirmed by visual inspection; the average bubble size is approximately that predicted by a force balance. The effect of externally controllable process variables (liquid and gas flow rates, temperature, and pressure) on the rate of phenol oxidation was investigated. Reaction rate increases with temperature or pressure increase and decreases with gas flow rate increase, achieving a maximum with respect to liquid flow rate. The activation energy calculated from the apparent reaction rate measured in the monolith froth reactor is similar to that of intrinsic value, suggesting minimal mass-transfer limitations.

  20. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation.

    PubMed

    Wu, Ci; Liang, Yu; Yang, Kaiguang; Min, Yi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-02-02

    A novel clickable periodic mesoporous organosilica monolith with the surface area up to 1707 m(2) g(-1) was in situ synthesized in the capillary by the one-step condensation of the organobridged-bonded alkoxysilane precursor bis(triethoxysilyl)ethylene. With Si-C bonds in the skeleton, the monolith possesses excellent chemical and mechanical stability. With vinyl groups highly loaded and homogeneously distributed throughout the structure, the monolith can be readily functionalized with functional groups by effective thiol-ene "click" chemistry reaction. Herein, with "click" modification of C18, the obtained monolith was successfully applied for capillary liquid chromatographic separation of small molecules and proteins. The column efficiency could reach 148,000 N/m, higher than most reported hybrid monoliths. Moreover, intact proteins could be separated well with good reproducibility, even after the monolithic column was exposed by basic mobile phase (pH 10.0) overnight, demonstrating the great promising of such monolith for capillary chromatographic separation.

  1. GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1982-01-01

    The major thrusts proposed for GaAs were increased efficiency and improved radiation damage data. Current laboratory production cells consistently achieve 16 percent AMO one-Sun efficiency. The user community wants 18-percent efficient cells as soon as possible, and such a goal is though to be achievable in 2 years with sufficient research funds. A 20-percent research cell is considered the efficiency limit with current technology, and such a cell seems realizable in approximately 4 years. Future efficiency improvements await improved substrates and materials. For still higher efficiencies, concentrator cells and multijunction cells are proposed as near-term directions.

  2. Monolithic pattern-sensitive detector

    DOEpatents

    Berger, Kurt W.

    2000-01-01

    Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.

  3. Monolithic Fuel Fabrication Process Development

    SciTech Connect

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  4. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  5. Effects of Photowashing Treatment on Gate Leakage Current of GaAs Metal-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Jin; Moon, Jae Kyoung; Park, Min; Kim, Haechon; Lee, Jong-Lam

    2002-05-01

    Effects of photowashing treatment on gate leakage current (IGD) of a GaAs metal-semiconductor field-effect transistor were studied by observing changes in atomic composition and band bending at the surface of GaAs through X-ray photoemission spectroscopy. The photowashing treatment produces Ga2O3 on the surface of GaAs, leaving acceptor-type Ga antisites behind under the oxide. The Ga antisites played a role in reducing the maximum electric field at the drain edge of the gate, leading to the decrease of IGD. The longer photowashing time produced thicker oxide on the surface of GaAs, acting as a conducting pass for electrons, leading to the increase of IGD.

  6. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  7. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns.

    PubMed

    Lameira, Deborah Pacheco; Buarque e Silva, Wilkens Aurélio; Andrade e Silva, Frederico; De Souza, Grace M

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed monolithic zirconia crowns (GM); Bi-layer crowns (BL). Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37 °C), and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey's test (P = .05) indicated that monolithic zirconia crowns presented similar fracture strength (PM = 3476.2 N ± 791.7; GM = 3561.5 N ± 991.6), which was higher than bilayer crowns (2060.4 N ± 810.6). There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  8. One-pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography.

    PubMed

    Racha, El-Debs; Gay, Pauline; Dugas, Vincent; Demesmay, Claire

    2016-03-01

    A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, (29) Si nuclear magnetic resonance spectroscopy and N2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m(2) /g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).

  9. Dopant mapping of Be δ-doped layers in GaAs tailored by counterdoping using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ebert, Ph.; Landrock, S.; Chiu, Y. P.; Breuer, U.; Dunin-Borkowski, R. E.

    2012-11-01

    The effect of counterdoping on the Be dopant distribution in delta (δ)-doped layers embedded in Si-doped and intrinsic GaAs is investigated by cross-sectional scanning tunneling microscopy. δ-doped layers in intrinsic GaAs exhibit a large spreading, whereas those surrounded by Si-doped GaAs remain spatially localized. The different spreading is explained by the Fermi-level pinning at the growth surface, which leads to an increased Ga vacancies concentration with increasing Si counterdoping. The Ga vacancies act as sinks for the diffusing Be dopant atoms, hence retarding the spreading.

  10. Modified energetics and growth kinetics on H-terminated GaAs (110)

    SciTech Connect

    Galiana, B.; Benedicto, M.; Díez-Merino, L.; Tejedor, P.; Lorbek, S.; Hlawacek, G.; Teichert, C.

    2013-10-28

    Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As{sub 4}, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å{sup 2} measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As{sub 4} molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.

  11. Coupling reactions of trifluoroethyl iodide on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Kemp, N. T.; Paris, N.; Balan, V.

    2004-07-01

    We report on the reactions of 2-iodo-1,1,1-trifluoroethane (CF3CH2I) on gallium-rich GaAs(100)-(4×1), studied using the techniques of temperature programmed desorption and x-ray photoelectron spectroscopy. The study is to provide evidence for the formation of a higher fluorinated alkene, 1,1,4,4,4-pentafluoro-1-butene (CF2=CHCH2CF3) and alkane, 1,1,1,4,4,4-hexafluorobutane (CF3CH2CH2CF3) from the coupling reactions of covalently bonded surface alkyl (CF3CH2•) moieties. CF3CH2I adsorbs nondissociatively at 150 K. Thermal dissociation of this weakly chemisorbed state occurs below room temperature to form adsorbed CF3CH2• and I• species. The surface CF3CH2• species undergoes β-fluoride elimination to form gaseous CF2=CH2 and this represents the major pathway for the removal of CF3CH2• species from the surface. In competition with the β-fluoride elimination process the adsorbed CF3CH2• species also undergoes, recombination with surface iodine atoms to form recombinative molecular CF3CH2I, olefin insertion reaction with CF2=CH2 to form gaseous CF2=CHCH2CF3, and last self-coupling reaction to form CF3CH2CH2CF3. The adsorbed surface iodine atoms, formed by the dissociation of the molecularly chemisorbed CF3CH2I, and fluorine atoms formed during the β-fluoride elimination reaction, both form etch products (GaI, GaF, AsI, AsF, and As2) by their reactions with the surface layer Ga atoms, subsurface As atoms, and GaAs substrate. In this article we discuss the mechanisms by which these products form from the adsorbed CF3CH2• and I• species, and the role that the GaAs surface plays in the proposed reaction pathways. We compare the reactivity of the GaAs surface with transition metals in its ability to facilitate dehydrogenation and coupling reactions in adsorbed alkyl species. .

  12. Highly microporous-graphene aerogel monolith of unidirectional honeycomb macro-textures

    NASA Astrophysics Data System (ADS)

    Wang, Shuwen; Wang, Zhipeng; Futamura, Ryusuke; Endo, Morinobu; Kaneko, Katsumi

    2017-04-01

    The highly microporous graphene aerogel monolith of unidirectional textures is obtained from reduction and KOH activation of colloidal graphene oxide prepared with an ice-templating route. The free-standing geometry and well-aligned textures of graphene monolith are persevered even after an intensive KOH activation at 973 K, although the frame structure is slightly disordered. The non-overestimated surface area of the KOH activated graphene monolith is 990 m2 g-1. The free-standing graphene aerogel monolith has predominant microporosity with appropriate macroporosity and a low bulk density of 8 ± 0.5 mg cm-3, being one of the lightest materials of the reported porous graphene materials.

  13. Multiple Applications of GaAs semiconductors

    NASA Astrophysics Data System (ADS)

    Martel, Jenrené; Wonka, Willy

    2003-03-01

    The object of this discussion will be to explore the many facets of Gallium Arsenide(GaAs) semiconductors. The session will begin with a brief overview of the basic properties of semiconductors in general(band gap, doping, charge mobility etc.). It will then follow with a closer look at the properties of GaAs and how these properties could potentially translate into some very exciting applications. Furthermore, current applications of GaAs semiconductors will be dicussed and analyzed. Finally, physical limits and advantages/disadvantages of GaAs will be considered.

  14. InP and GaAs characterization with variable stoichiometry obtained by molecular spray

    NASA Technical Reports Server (NTRS)

    Massies, J.; Linh, N. T.; Olivier, J.; Faulconnier, P.; Poirier, R.

    1979-01-01

    Both InP and GaAs surfaces were studied in parallel. A molecular spray technique was used to obtain two semiconductor surfaces with different superficial compositions. The structures of these surfaces were examined by electron diffraction. Electron energy loss was measured spectroscopically in order to determine surface electrical characteristics. The results are used to support conclusions relative to the role of surface composition in establishing a Schottky barrier effect in semiconductor devices.

  15. Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Yan; Zhou, Xu-Liang; Kong, Xiang-Ting; Li, Meng-Ke; Mi, Jun-Ping; Wang, Meng-Qi; Pan, Jiao-Qing

    2016-12-01

    This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy. Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111} surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface. Project supported by the National Science and Technology Major Project of Science and Technology of China (Grant No. 2011ZX02708) and the National Natural Science Foundation of China (Grant No. 61504137).

  16. New monolith technology for automated anion-exchange purification of nucleic acids.

    PubMed

    Thayer, J R; Flook, K J; Woodruff, A; Rao, S; Pohl, C A

    2010-04-15

    Synthetic nucleic acid analysis often employs pellicular anion-exchange (AE) chromatography because it supports very high efficiency separations while offering means to control secondary structure, retention and resolution by readily modifiable chromatographic conditions. However, these pellicular anion-exchange (pAE) phases do not offer capacity sufficient for lab-scale oligonucleotide (ON) purification. In contrast, monolithic phases produce fast separations at capacities exceeding their pellicular counterparts, but do not exhibit capacities typical of fully porous, bead-based, anion-exchangers. In order to further increase monolith capacity and obtain the selectivity and mass transfer characteristics of pellicular phases, a surface-functionalized monolith was coated with pAE nanobeads (latexes) usually employed on the pellicular DNAPac phase. The nanobead-coated monolith exhibited chromatographic behaviors typical of polymer AE phases. Based on this observation the monolithic substrate surface porosity and latex diameters were co-optimized to produce a hybrid monolith harboring capacity similar to that of fully porous bead-based phases and peak shape approaching that of the pAE phases. We tested the hybrid monolith on a variety of previously developed pAE capabilities including control of ON selectivity, resolution of derivatized ONs, the ability to resolve RNA ONs harboring aberrant linkages at different positions in a single sequence and separation of phosphorothioate diastereoisomers. We compared the yield and purity of an 8 mg ON sample purified on both the new hybrid monolith and a benchmark AE column based on fully porous monodisperse beads. This comparison included an assessment of the relative selectivities of both columns. Finally, we demonstrated the ability to couple AE ON separations with ESI-MS using an automated desalting protocol. This protocol is also useful for preparing ONs for other assays, such as enzyme treatments, that may be sensitive to

  17. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  18. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  19. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  20. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  1. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  2. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  3. A new monolithic approach for mid-IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xie, Chengzhi; Pusino, Vincenzo; Khalid, Ata; Aziz, Mohsin; Steer, Matthew J.; Cumming, David R. S.

    2016-10-01

    Antimonide-based photodetectors have recently been grown on a GaAs substrate by molecular beam epitaxy (MBE) and reported to have comparable performance to the devices grown on more expensive InSb and GaSb substrates. We demonstrated that GaAs, in addition to providing a cost saving substrate for antimonide-based semiconductor growth, can be used as a functional material to fabricate transistors and realize addressing circuits for the heterogeneously grown photodetectors. Based on co-integration of a GaAs MESFET with an InSb photodiode, we recently reported the first demonstration of a switchable and mid-IR sensible photo-pixel on a GaAs substrate that is suitable for large-scale integration into a focal plane array. In this work we report on the fabrication steps that we had to develop to deliver the integrated photo-pixel. Various highly controllable etch processes, both wet and dry etch based, were established for distinct material layers. Moreover, in order to avoid thermally-induced damage to the InSb detectors, a low temperature annealed Ohmic contact was used, and the processing temperature never exceeded 180 °C. Furthermore, since there is a considerable etch step (> 6 μm) that metal must straddle in order to interconnect the fabricated devices, we developed an intermediate step using polyimide to provide a smoothing section between the lower MESFET and upper photodiode regions of the device. This heterogeneous technology creates great potential to realize a new type of monolithic focal plane array of addressable pixels for imaging in the medium wavelength infrared range without the need for flip-chip bonding to a CMOS readout chip.

  4. The growth of high quality CdTe on GaAs by molecular beam epitaxy

    SciTech Connect

    Reno, J.L.; Carr, M.J.; Gourley, P.L. )

    1990-03-01

    We have grown CdTe (111) on oriented and misoriented GaAs (100) and have characterized the layers by photoluminescence microscopy (PLM) and transmission electron microscopy (TEM). Photoluminescence microscopy showed a totally different type of defect structure for the oriented substrate than for the misoriented substrates. The CdTe grown on the misoriented substrates exhibited only threading dislocations. The CdTe grown on oriented GaAs showed fewer threading dislocations but exhibited a random structure of loops. The loop structure observed by PLM has been identified by TEM as the boundary between twinned crystallites which extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins. We present for the first time the growth of CdTe on patterned GaAs substrates. By growing on oriented GaAs(100) substrates that had been patterned prior to growth with 12 {mu}m mesas, it is possible to grow material on the mesa top that is twin free and has a low dislocation density.

  5. Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals

    SciTech Connect

    Abdulsattar, Mudar Ahmed; Hussein, Mohammed T.; Hameed, Hadeel Ali

    2014-12-15

    Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d) level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å) is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm{sup -1}) compared to experimental 0.035 eV (285.2 cm{sup -1}). Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å). Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.

  6. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  7. Reduction of native oxides on GaAs during atomic layer growth of Al2O3

    NASA Astrophysics Data System (ADS)

    Lee, Hang Dong; Feng, Tian; Yu, Lei; Mastrogiovanni, Daniel; Wan, Alan; Gustafsson, Torgny; Garfunkel, Eric

    2009-06-01

    The reduction of surface "native" oxides from GaAs substrates following reactions with trimethylaluminum (TMA) precursor is studied using medium energy ion scattering spectroscopy (MEIS) and x-ray photoelectron spectroscopy (XPS). MEIS measurements after one single TMA pulse show that ˜65% of the native oxide is reduced, confirmed by XPS measurement, and a 5 Å thick oxygen-rich aluminum oxide layer is formed. This reduction occurs upon TMA exposure to as-received GaAs wafers.

  8. Drain current drift by holes trapped in Schottky contact in WSi gate GaAs MESFeTs

    SciTech Connect

    Shiga, T.; Hattori, R.; Kunii, T.

    1995-12-31

    Hysteretic drain current (Id) drift phenomena observed in the high power operation of WSi gate GaAs MESFETs were studied. The existence of a thin insulating layer at WSi/GaAs interface originated by the native oxide on GaAs surface was revealed by XPS and X-ray reflection. Id drift phenomena can be explained as the effect of holes being trapped in the insulating layer at the WSi/GaAs Schottky contact interface.

  9. Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction.

    PubMed

    Alzahrani, Eman; Welham, Kevin

    2011-10-21

    Sample pretreatment is a required step in proteomics in order to remove interferences and preconcentrate the samples. Much research in recent years has focused on porous monolithic materials since they are highly permeable to liquid flow and show high mass transport compared with more common packed beds. These features are due to the micro-structure within the monolithic silica column which contains both macropores that reduce the back pressure, and mesopores that give good interaction with analytes. The aim of this work was to fabricate a continuous porous silica monolithic rod inside a heat shrinkable tube and to compare this with the same material whose surface has been modified with a C(18) phase, in order to use them for preconcentration/extraction of proteins. The performance of the silica-based monolithic rod was evaluated using eight proteins; insulin, cytochrome C, lysozyme, myoglobin, β-lactoglobulin, ovalbumin, hemoglobin, and bovine serum albumin at a concentration of 60 μM. The results show that recovery of the proteins was achieved by both columns with variable yields; however, the C(18) modified silica monolith gave higher recoveries (92.7 to 109.7%) than the non-modified silica monolith (25.5 to 97.9%). Both silica monoliths can be used with very low back pressure indicating a promising approach for future fabrication of the silica monolith inside a microfluidic device for the extraction of proteins from biological media.

  10. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry.

    PubMed

    Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-04-05

    In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach.

  11. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.

    PubMed

    Wood, Adam W; Collar, Kristen; Li, Jincheng; Brown, April S; Babcock, Susan E

    2016-03-18

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs(1-x)Bi(x) using high angle annular dark field ('Z-contrast') imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ∼GaAs embedded in the GaAs(1-x)Bi(x) epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (∼4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ∼GaAs to GaAs(1-x)Bi(x) appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ∼25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs(1-x)Bi(x) film growth.

  12. GaAs homojunction solar cell development

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Swartz, C. K.; Hart, R. E., Jr.

    1980-01-01

    The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells.

  13. Ohmic contact to GaAs semiconductor

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    Multimetallic layers produce stable, low-resistance contacts for p-type GaAs and p-type GaAlAs devices. Contacts present no leakage problems, and their series resistance is too small to measure at 1 Sun intensity. Ohmic contacts are stable and should meet 20-year-life requirement at 150 C for GaAs combined photothermal/photovoltaic concentrators.

  14. Laser Annealing of GaAs

    DTIC Science & Technology

    1978-12-01

    annealing implanted layers. Sheet resistance measurements made on the irradiated semi- insulating GaAs samples indicate no significant change in the... sheet resistance after laser irradiation (typical decrease in the sheet resistance after laser irradiation was found to be less than a factor of two...OF THE SHEET - RESISTANCE (P ) THE EFFECTIVE SHEET ELECTRON CONCENTRATION (N ), AND THE EFFECTIVE MOBILITY _u)FOR SEMIb- INSULATING GaAs IMPLANTED WITH

  15. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  16. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  17. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  18. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  19. Monolithical aspherical beam expanding systems

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-02-01

    In complex laser systems, such as those for material processing, and in basically all laboratory applications passive optical components are indispensable. Matching beam diameters is a common task, where Galileo type telescopes are preferred for beam expansion. Nevertheless researches and customers have found various limitations when using these systems. Some of them are the complicated adjustment, very small diameter for the incoming beam (1/e2), fixed and non-modifiable magnifications. Above that, diffraction-limitation is only assured within the optical design and not for the real world setup of the beam expanding system. Therefore, we will discuss limitations of currently used beam expanding systems to some extent. We will then present a new monolithical solution, which is based on the usage of only one aspherical component. It will be shown theoretically how the beam quality can be significantly improved by using aspherical lenses. As it is in the nature of things aspheres are working diffraction limited in the design, it will be shown how to combine up to five monolithical beam expanding systems and to keep the beam quality at diffraction limitation. Data of the culminated wavefront error will be presented. Last but not least insights will be given how beam expanding systems based on aspheres will help to use larger incoming beams and to reduce the overall length of such a system.

  20. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    PubMed

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes.

  1. A Butyl Methacrylate Monolithic Column Prepared In-Situ on a Microfluidic Chip and its Applications

    PubMed Central

    Xu, Yi; Zhang, Wenpin; Zeng, Ping; Cao, Qiang

    2009-01-01

    A butyl methacrylate (BMA) monolithic column was polymerized in-situ with UV irradiation in an ultraviolet transparent PDMS micro-channel on a homemade micro-fluidic chip. Under the optimized conditions and using a typical polymerization mixture consisting of 75% porogenic solvents and 25% monomers, the BMA monolithic column was obtained as expected. The BET surface area ratio of the BMA monolithic column was 366 m2·g-1. The corresponding SEM images showed that the monolithic column material polymerized in a glass channel was composed of uniform pores and spherical particles with diameters ranging from 3 to 5 μm. The promethazine–luminal–potassium ferricyanide chemiluminescence system was selected for testing the capability of the column. A flow injection analytical technique–chemiluminescence (FIA–CL) system on the microfluidic chip with a BMA monolithic column pretreatment unit was established to determine promethazine. Trace promethazine was enriched by the BMA monolithic column, with more than a 10-fold average enrichment ratio. The proposed method has a linear response concentration range of 1.0×10-8 - 1.0×10-6g·mL-1 and the detection limit was 1.6×10-9g·mL-1. PMID:22412320

  2. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine

    2013-08-02

    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming.

  3. Capillary monolithic titania column for miniaturized liquid chromatography and extraction of organo-phosphorous compounds.

    PubMed

    Abi Jaoudé, Maguy; Randon, Jérôme

    2011-05-01

    A new sol-gel protocol was designed and optimized to produce titanium-dioxide-based columns within confined geometries such as monolithic capillary columns and porous-layer open-tubular columns. A surface pre-treatment of the capillary enabled an efficient anchorage of the monolith to the silica capillary wall during the synthesis. The monolith was further synthesized from a solution containing titanium n-propoxide, hydrochloric acid, N-methylformamide, water, and poly(ethylene oxide) as pore template. The chromatographic application of capillary titania-based columns was demonstrated with the separation of a set of phosphorylated nucleotides as probe molecules using aqueous normal-phase liquid chromatography conditions. Capillary titania monoliths offered a compromise between the high permeability and the important loading capacity needed to potentially achieve miniaturized sample preparations. The specificity of the miniaturized titania monolithic support is illustrated with the specific enrichment of 5'-adenosine mono-phosphate. The monolithic column offered a ten times higher loading capacity of 5'-adenosine mono-phosphate compared with that of the capillary titania porous-layer open-tubular geometry.

  4. CO2 laser waveguiding in proton implanted GaAs

    NASA Technical Reports Server (NTRS)

    Jenkinson, H. A.; Larson, D. C.

    1981-01-01

    Surface layers capable of supporting optical modes at 10.6 microns have been produced in n-type GaAs wafers through 300 keV proton implantation. The dominant mechanism for this effect appears to be free carrier compensation. Characterization of the implanted layers by analysis of infrared reflectivity spectra and synchronous coupling at 10.6 microns produced results in good agreement with elementary models. These results of sample characterization by infrared reflectivity and by CO2 laser waveguiding as implanted are presented and evaluated.

  5. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.

    PubMed

    Lee, Sung-Min; Kwong, Anthony; Jung, Daehwan; Faucher, Joseph; Biswas, Roshni; Shen, Lang; Kang, Dongseok; Lee, Minjoo Larry; Yoon, Jongseung

    2015-10-27

    Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules.

  6. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    NASA Astrophysics Data System (ADS)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  7. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  8. Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001)

    SciTech Connect

    Guo, W. Pena, V.; Merckling, C.; Waldron, N.; Collaert, N.; Caymax, M.; Vancoille, E.; Barla, K.; Thean, A.; Eyben, P.; Date, L.; Bao, X.; Sanchez, E.; Vandervorst, W.

    2014-08-11

    High quality GaAs is selectively grown in 40 nm width Shallow Trench Isolation patterned structures. The patterned wafers have a V-shape Si (111) surface obtained by Tetramethylammonium hydroxide etching. By employing a SiCoNi™ pre-epi clean and two-step growth procedure (low temperature buffer and high temperature main layer), defects are effectively confined at the trench bottom, leaving a dislocation-free GaAs layer at the upper part. The high crystal quality is confirmed by transmission electron microscopy. Scanning spreading resistance microscopy indicates a high resistance of GaAs. The process conditions and GaAs material quality are highly compatible with Si technology platform.

  9. Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001)

    NASA Astrophysics Data System (ADS)

    Guo, W.; Date, L.; Pena, V.; Bao, X.; Merckling, C.; Waldron, N.; Collaert, N.; Caymax, M.; Sanchez, E.; Vancoille, E.; Barla, K.; Thean, A.; Eyben, P.; Vandervorst, W.

    2014-08-01

    High quality GaAs is selectively grown in 40 nm width Shallow Trench Isolation patterned structures. The patterned wafers have a V-shape Si (111) surface obtained by Tetramethylammonium hydroxide etching. By employing a SiCoNi™ pre-epi clean and two-step growth procedure (low temperature buffer and high temperature main layer), defects are effectively confined at the trench bottom, leaving a dislocation-free GaAs layer at the upper part. The high crystal quality is confirmed by transmission electron microscopy. Scanning spreading resistance microscopy indicates a high resistance of GaAs. The process conditions and GaAs material quality are highly compatible with Si technology platform.

  10. Optical Anisotropy of InAs Monolayer in (311)-Oriented GaAs Matrix

    NASA Astrophysics Data System (ADS)

    Y, H. Chen; Z, Yang; Xu, Bo; Wang, Zhan-guo; Liang, Ji-ben

    1997-12-01

    In-plane optical anisotropy which comes from the heavy hole and the light hole transitions in an InAs monolayer inserted in (311)-oriented GaAs matrix is observed by reflectance difference spectroscopy. The observed steplike density of states demonstrates that the InAs layer behaves like a two-dimensional quantum well rather than isolated quantum dots. The magnitude of the anisotropy is in good agreement with the intrinsic anisotropy of (311) orientation quantum wells, indicating that there is little structural or strain anisotropy of the InAs layer grown on (311)-oriented GaAs surface.

  11. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    SciTech Connect

    Nemcsics, A.

    2005-11-15

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed.

  12. Ka-band IQ vector modulator employing GaAs HBTs

    NASA Astrophysics Data System (ADS)

    Yuxiong, Cao; Danyu, Wu; Gaopeng, Chen; Zhi, Jin; Xinyu, Liu

    2011-06-01

    The importance of high-performance, low-cost and millimeter-wave transmitters for digital communications and radar applications is increasing. The design and performance of a Ka-band balanced in-phase and quadrature-phase (I-Q) type vector modulator, using GaAs heterojunction bipolar transistors (HBTs) as switching elements, are presented. The balanced technique is used to remove the parasitics of the HBTs to result in near perfect constellations. Measurements of the monolithic microwave integrated circuit (MMIC) chip with a size of 1.89 × 2.26 mm2 demonstrate an amplitude error below 1.5 dB and the phase error within 3° between 26 and 40 GHz except for a singular point at 35.6 GHz. The results show that the technique is suitable for millimeter-wave digital communications.

  13. GaInP2/GaAs tandem cells for space applications

    NASA Technical Reports Server (NTRS)

    Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Bertness, K. A.; Friedman, D. J.

    1991-01-01

    The monolithic, tunnel-junction-interconnected tandem combination of a GaInP2 top cell and a GaAs bottom cell has achieved a one-sun, AM1.5 efficiency of 27.3 percent. With proper design of the top cell, air mass zero (AM0) efficiencies greater than 25 percent are possible. A description and the advantages of this device for space applications are presented and discussed. The advantages include high-voltage, low-current, two-terminal operation for simple panel fabrication, and high conversion efficiency with low-temperature coefficient. Also, because the active regions of the device are Al-free, the growth of high efficiency devices is not affected by trace levels of O2 or H2O in the MOCVD growth system.

  14. Optically coupled 3D common memory with GaAs on Si structure

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Takata, H.; Koyanagi, M.

    1991-02-01

    An ultra fast data transfer speed is demonstrated for a novel three-dimensional (3D) Static Random Access Memory (SRAM) consisting of multilayer silicon LSI chips on which GaAs LEDs and photodetectors are monolithically integrated for vertical optical interconnections. A unique feature of this system is the capability of parallel data transfer from one memory layer to the upper and lower memory layers by the optical interconnections. The results of static and dynamic simulations of the optically coupled 3D common memory have indicated that a block of 512 bits data can be transferred through four memory layers within 16 nsec. This is an equivalent data transfer speed of 128 Gbits/sec/layer.

  15. Calibration Designs for Non-Monolithic Wind Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas H.; Parker, Peter A.; Landman, Drew

    2010-01-01

    This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.

  16. Efficiency enhancement in GaAs solar cells using self-assembled microspheres.

    PubMed

    Chang, Te-Hung; Wu, Pei-Hsuan; Chen, Sheng-Hui; Chan, Chia-Hua; Lee, Cheng-Chung; Chen, Chii-Chang; Su, Yan-Kuin

    2009-04-13

    In this study we develop an efficient light harvesting scheme that can enhance the efficiency of GaAs solar cells using self-assembled microspheres. Based on the scattering of the microspheres and the theory of photonic crystals, the path length can be increased. In addition, the self-assembly of microspheres is one of the simplest and the fastest methods with which to build a 2D periodic structure. The experimental results are confirmed by the use of a simulation in which a finite-difference time-domain (FDTD) method is used to analyze the absorption and electric field of the 2D periodic structure. Both the results of the numerical simulations and the experimental results show an increase in the conversion power efficiency of GaAs solar cell of about 25% when 1 microm microspheres were assembled on the surface of GaAs solar cells.

  17. Growth of GaAs crystals from the melt in a partially confined configuration

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1988-01-01

    The experimental approach was directed along two main goals: (1) the implementation of an approach to melt growth in a partially confined configuration; and (2) the investigation of point defect interaction and electronic characteristics as related to thermal treatment following solidification and stoichiometry. Significant progress was made along both fronts. Crystal growth of GaAs in triangular ampuls was already carried out successfully and consistent with the model. In fact, pronounced surface tension phenomena which cannot be observed in ordinary confinement system were identified and should premit the assessment of Maragoni effects prior to space processing. Regarding thermal treatment, it was discovered that the rate of cooling from elevated temperatures is primarily responsible for a whole class of defect interactions affecting the electronic characteristics of GaAs and that stoichiometry plays a critical role in the quality of GaAs.

  18. Self-assembled growth of GaAs anti quantum dots in InAs matrix by migration enhanced molecular beam epitaxy.

    PubMed

    Lee, E H; Song, J D; Kim, S Y; Han, I K; Chang, S K; Lee, J I

    2012-02-01

    Self-assembled GaAs anti quantum dots (AQDs) were grown in an InAs matrix via migration enhanced molecular beam epitaxy. The transmission electron microscopy image showed that the 2D to 3D transition thickness is below 1.5 monolayers (MLs) of GaAs coverage. The average diameter and height of the GaAs AQDs for 1.5 ML GaAs coverage taken from the atomic force microscopy image were approximately 29.0 nm and 1.4 nm, respectively. The density was approximately 6.0 x 10(10) cm(-2). The size of the AQDs was enlarged in the InAs matrix compared with that on the surface. These results indicate that the GaAs AQDs in the InAs matrix under tensile strain can be effectively formed with the assistance of the migration enhanced epitaxy method.

  19. Strong cation exchange monoliths for HPLC by Reactive Gelation.

    PubMed

    Brand, Bastian; Krättli, Martin; Storti, Giuseppe; Morbidelli, Massimo

    2011-08-01

    Polymeric monolithic stationary phases for HPLC can be produced by Reactive Gelation. Unlike the conventional method of using porogens, such novel process consists of a number of separate steps, thus enabling a better control of the quality of the final material. A suspension of polymer nanoparticles in water is produced and subsequently swollen with hydrophobic monomers. The particles are then destabilised (usually by salt addition) to make them aggregate into a large percolating structure, the so-called monolith. Finally, the added monomer can then be polymerised to harden the structure. In this work, a polystyrene latex is used as the base material and functionalised by introduction of epoxide groups on the surface and subsequent reaction to sulphonic acid groups, yielding a SO3(-) density of 0.7 mmol/g dry material. Morphological investigations show 54% porosity made of 300 nm large pores. Van Deemter measurements of a large protein show no practical influence of diffusion limitations on the plate number. Finally, a preliminary separation of a test protein mixture is shown, demonstrating the potential of using ion-exchange chromatography on Reactive Gelation monoliths.

  20. Three-Dimensional Bicontinuous Graphene Monolith from Polymer Templates.

    PubMed

    Liu, Kewei; Chen, Yu-Ming; Policastro, Gina M; Becker, Matthew L; Zhu, Yu

    2015-06-23

    The two-dimensional single-layer and few-layered graphene exhibit many attractive properties such as large specific surface area and high charge carrier mobility. However, graphene sheets tend to stack together and form aggregates, which do not possess the desirable properties associated with graphene. Herein, we report a method to fabricate three-dimensional (3D), bicontinuous graphene monolith through a versatile hollow nickel (Ni) template derived from polymer blends. The poly(styrene)/poly(ethylene oxide) were used to fabricate a bicontinuous gyroid template using controlled phase separation. The Ni template was formed by electroless metal depositing on the polymer followed by removing the polymer phase. The resulting hollow Ni structure was highly porous (95.2%). Graphene was then synthesized from this hollow Ni template using chemical vapor deposition and the free-standing bicontinuous graphene monolith was obtained in high-throughput process. Finally, the bicontinuous graphene monolith was used directly as binder-free electrode in supercapacitor applications. The supercapacitor devices exhibited excellent stability.

  1. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  2. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  3. Analysis of defects in GaAsN grown by chemical beam epitaxy on high index GaAs substrates

    SciTech Connect

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-09-27

    The lattice defects in GaAsN grown by chemical beam epitaxy on GaAs 311B and GaAs 10A toward [110] were characterized and discussed by using deep level transient spectroscopy (DLTS) and on the basis of temperature dependence of the junction capacitances (C{sub J}). In one hand, GaAsN films grown on GaAs 311B and GaAs 10A showed n-type and p-type conductivities, respectively although the similar and simultaneous growth conditions. This result is indeed in contrast to the common known effect of N concentration on the type of conductivity, since the surface 311B showed a significant improvement in the incorporation of N. Furthermore, the temperature dependence of C{sub J} has shown that GaAs 311B limits the formation of N-H defects. In the other hand, the energy states in the forbidden gap of GaAsN were obtained. Six electron traps, E1 to E6, were observed in the DLTS spectrum of GaAsN grown on GaAs 311B, with apparent activation energies of 0.02, 0.14, 0.16, 0.33, 0.48, and 0.74 eV below the bottom edge of the conduction band, respectively. In addition, four hole traps, H1 to H4, were observed in the DLTS spectrum of GaAsN grown on GaAs 10A, with energy depths of 0.13, 0.20, 0.39, and 0.52 eV above the valence band maximum of the alloy, respectively. Hence, the surface morphology of the GaAs substrate was found to play a key factor role in clarifying the electrical properties of GaAsN grown by CBE.

  4. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    NASA Astrophysics Data System (ADS)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  5. Preparation of a novel polymer monolith with functional polymer brushes by two-step atom-transfer radical polymerization for trypsin immobilization.

    PubMed

    Li, Nan; Zheng, Wei; Shen, Ying; Qi, Li; Li, Yaping; Qiao, Juan; Wang, Fuyi; Chen, Yi

    2014-12-01

    Novel porous polymer monoliths grafted with poly{oligo[(ethylene glycol) methacrylate]-co-glycidyl methacrylate} brushes were fabricated via two-step atom-transfer radical polymerization and used as a trypsin-based reactor in a continuous flow system. This is the first time that atom-transfer radical polymerization technique was utilized to design and construct polymer monolith bioreactor. The prepared monoliths possessed excellent permeability, providing fast mass transfer for enzymatic reaction. More importantly, surface properties, which were modulated via surface-initiated atom-transfer radical polymerization, were found to have a great effect on bioreactor activities based on Michaelis-Menten studies. Furthermore, three model proteins were digested by the monolith bioreactor to a larger degree within dramatically reduced time (50 s), about 900 times faster than that by free trypsin (12 h). The proposed method provided a platform to prepare porous monoliths with desired surface properties for immobilizing various enzymes.

  6. Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array

    NASA Astrophysics Data System (ADS)

    Fan, Wenjun; Zhang, Shuang; Malloy, K. J.; Brueck, S. R. J.; Panoiu, N. C.; Osgood, R. M.

    2006-10-01

    By extending GaAs dielectric posts with a large second-order nonlinear susceptibility through the holes of a subwavelength metallic hole array coupled to the metal surface-plasma wave, strong second harmonic (SH) signal is observed. The SH signal is strengthened as a result of the enhanced electromagnetic fields inside the hole apertures.

  7. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  8. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  9. Layer-by-Layer Assembly of Metal-Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization.

    PubMed

    Wen, Liyin; Gao, Aicong; Cao, Yao; Svec, Frantisek; Tan, Tianwei; Lv, Yongqin

    2016-03-01

    New monolithic materials comprising zeolitic imidazolate framework (ZIF-8) located on the pore surface of poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith previously functionalized with N-(3-aminopropyl)-imidazole have been prepared via a layer-by-layer self-assembly strategy. These new ZIF-8@monolith hybrids are used as solid-phase carriers for enzyme immobilization. Their performance is demonstrated with immobilization of a model proteolytic enzyme trypsin. The best of the conjugates enable very efficient digestion of proteins that can be achieved in mere 43 s.

  10. Performance impact of luminescent coupling on monolithic 12-junction phototransducers for 12 V photonic power systems

    NASA Astrophysics Data System (ADS)

    Wilkins, Matthew; Valdivia, Christopher E.; Chahal, Sanmeet; Ishigaki, Masanori; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2016-03-01

    A twelve-junction monolithically-integrated GaAs phototransducer device with >60% power conversion efficiency and >14 V open-circuit voltage under monochromatic illumination is presented. Drift-diffusion based simulations including a luminescent coupled generation term are used to study photon recycling and luminescent coupling between each junction. We find that luminescent coupling effectively redistributes any excess generated photocurrent between all junctions leading to reduced wavelength sensitivity. This broadened response is consistent with experimental measurements of devices with high-quality materials exhibiting long carrier lifetimes. Photon recycling is also found to significantly improve the voltage of all junctions, in contrast to multi-junction solar cells which utilize junctions of differing bandgaps and where high-bandgap junctions benefit less from photon recycling.

  11. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  12. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  13. Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction.

    PubMed

    Liu, Zhongshan; Ou, Junjie; Lin, Hui; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2014-05-16

    A polyhedral oligomeric silsesquioxane (POSS) hybrid monolith was simply prepared by using octaglycidyldimethylsilyl POSS (POSS-epoxy) and cystamine dihydrochloride as monomers via ring-opening polymerization. The effects of composition of prepolymerization solution and polycondensation temperature on the morphology and permeability of monolithic column were investigated in detail. The obtained POSS hybrid monolithic column showed 3D skeleton morphology and exhibited high column efficiency of ∼71,000 plates per meter in reversed-phase mechanism. Owing to this POSS hybrid monolith essentially possessing a great number of disulfide bonds, the monolith surface would expose thiol groups after reduction with dithiothreitol (DTT), which supplied active sites to functionalize with various alkene monomers via thiol-ene click reaction. The results indicated that the reduction with DTT could not destroy the 3D skeleton of hybrid monolith. Both stearyl methylacrylate (SMA) and benzyl methacrylate (BMA) were selected to functionalize the hybrid monolithic columns for reversed-phase liquid chromatography (RPLC), while [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide (MSA) was used to modify the hybrid monolithic column in hydrophilic interaction chromatography (HILIC). These modified hybrid monolithic columns could be successfully applied for separation of small molecules with high efficiency. It is demonstrated that thiol-ene click reaction supplies a facile way to introduce various functional groups to the hybrid monolith possessing thiol groups. Furthermore, due to good permeability of the resulting hybrid monoliths, we also prepared long hybrid monolithic columns in narrow-bore capillaries. The highest column efficiency reached to ∼70,000 plates using a 1-m-long column of 75μm i.d. with a peak capacity of 147 for isocratic chromatography, indicating potential application in separation and analysis of complex biosamples.

  14. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  15. Cathodoluminescence Characterization of Ion Implanted GaAs.

    DTIC Science & Technology

    1980-03-01

    into GaAs. In their experi- ment, GaAs thin films were grown on MgA12 4 spinel substrates. When the electrons had sufficient energy they caused the...sections. Growing The epi-layers were grown on a chromium doped GaAs substrate using a vapor phase epitaxial growth technique. They were grown by G

  16. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  17. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    PubMed

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  18. A 1.2 THz Planar Tripler Using GaAs Membrane Based Chips

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Maestrini, A.; Pukala, D.; Martin, S.; Nakamura, B.; Mehdi, I.

    2001-01-01

    Fabrication technology for submillimeter-wave monolithic circuits has made tremendous progress in recent years and it is now possible to fabricate sub-micron GaAs Schottky devices on a number of substrate types, such as membranes, frame-less membranes or substrateless circuits. These new technologies allow designers to implement very high frequency circuits, either Schottky mixers or multipliers, in a radically new manner. This paper will address the design, fabrication, and preliminary results of a 1.2 THz planar tripler fabricated on a GaAs frame-less membrane, the concept of which was described previously. The tripler uses a diode pair in an antiparallel configuration similar to designs used at lower frequency. To date, this tripler has produced a peak output power of 80 microW with 0.9% efficiency at room temperature (at 1126 GHz). The measured fix-tuned 3 dB bandwidth is about 3.5%. When cooled, the output power reached a peak of 195 microW at 120 K and 250 microW at 50 K. The ease with which this circuit was implemented along with the superb achieved performance indicates that properly designed planar devices such as this tripler can now usher in a new era of practical very high frequency multipliers.

  19. Synthesis of Mesoporous Titania-Silica Monolith Composites — A Comprehensive Study on their Photocatalytic Degradation of Acid Blue 113 Dye Under UV Light

    NASA Astrophysics Data System (ADS)

    Thejaswini, Thurlapathi Vl; Prabhakaran, Deivasigamani

    2016-10-01

    The present work deals with the synthesis of bi-continuous macro and mesoporous crack-free titania-silica monoliths, with well-defined structural dimensions and high surface area. The work also highlights their potential photocatalytic environmental applications. The highly ordered titania-silica monoliths are synthesized through direct surface template method using organic precursors of silica and titania in the presence of surface directing agents such as pluronic P123 and PEG, under acetic acid medium. The monoliths are synthesized with different Ti/Si ratios to obtain monolithic designs that exhibit better photocatalytic activity for dye degradation. The titania-silica monoliths are characterized using XRD, SEM, EDAX, FT-IR, TG-DTA and BET analysis. The photocatalytic activity of the synthesized monoliths is tested on the photodegradation of a textile dye (acid blue 113). It is observed that the monolith with 7:3 ratio of Ti/Si showed significant photocatalysis behavior in the presence of UV light. The influence of various physico-chemical properties such as, solution pH, photocatalyst dosage, light intensity, dye concentration, effect of oxidants, etc. are analyzed and optimized using a customized photoreactor set-up. Under optimized conditions, the monoliths exhibited superior degradation kinetics, with the dye dissipation complete within 10min of photolysis. The mesoporous catalysts are recoverable and reusable up to four cycles of repeated usage.

  20. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    PubMed

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  1. A lab-on-a-chip for monolith-based preconcentration and electrophoresis separation of phosphopeptides.

    PubMed

    Araya-Farias, Monica; Dziomba, Szymon; Carbonnier, Benjamin; Guerrouache, Mohamed; Ayed, Ichraf; Aboud, Nacera; Taverna, Myriam; Tran, N Thuy

    2017-01-26

    A microdevice combining online preconcentration and separation of phosphopeptides was developed in a glass microchip. An ethylene glycol methacrylate phosphate (EGMP), acrylamide (AM) and bisacrylamide (BAA) based monolith was synthesized within microchannels through a photo-driven process. Morphological investigations revealed a homogeneous monolithic structure composed of uniform nodules (∼0.8 μm), with a large pore volume (0.62 cm(3) g(-1)) and sufficiently high specific surface area (34.1 m(2) g(-1)). These features make the monolith particularly interesting for preconcentration purposes. Immobilization of Zr(4+) ions on the phosphate groups present at the poly(EGMP-co-AM-co-BAA) monolith surface leads to immobilized metal affinity chromatography support. This monolith-Zr(4+) showed a great capacity to capture phosphopeptides. Successful preconcentration and separation of a mixture of ERK2 derived peptides differing only by their phosphorylation degree and sites could be achieved with signal enhancement factors between 340 and 910 after only 7 min of preconcentration. This integrated microdevice represents a novel approach for phosphoproteomic applications.

  2. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  3. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  4. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  5. GaAs solar cell test facility

    NASA Astrophysics Data System (ADS)

    Kawashima, M.; Hosoda, Y.; Suzawa, C.; Shimada, T.; Motoyoshi, K.; Sasatani, Y.

    1982-01-01

    A hybrid type (electricity and heat) GaAs solar cell test facility has been made to evaluate total characteristics of GaAs cell and to study the energy conversion system. The size of a solar collector is 3.4 m x 2.1 m and 60 GaAs cells with Fresnel lenses are attached on it. The solar collector is controlled by a microcomputer to track the sun. Electric energy produced by the cells is stored in a lead-acid battery and then supplied to the load through a DC-AC inverter. The microcomputer also controls the data acquisition in parallel with tracking. This paper presents an overview of the facility and the experimental results of power generation obtained to date.

  6. Electrical characterization of GaAs single crystal in direct support of M555 flight experiment

    NASA Technical Reports Server (NTRS)

    Castle, J. G.

    1975-01-01

    The exploration of several nondestructive methods of electrical characterization of semiconductor single crystals was carried out during the period ending May 1974. Two methods of obtaining the microwave skin depth, one for the mapping flat surfaces and the other for analyzing the whole surface of small single crystal wafers, were developed to the stage of working laboratory procedures. The preliminary 35 GHz data characterizing the two types of space-related single crystal surfaces, flat slices of gallium arsenide and small wafers of germanium selenide, are discussed. A third method of nondestructive mapping of donor impurity density in semiconductor surfaces by scanning with a light beam was developed for GaAs; its testing indicates reasonable precision at reasonable scan rates for GaAs surfaces at room temperature.

  7. Electrical characterization of GaAs single crystal in direct support of M555 flight experiment

    NASA Technical Reports Server (NTRS)

    Castle, J. G.

    1975-01-01

    An exploration of several nondestructive methods of electrical characterization of semiconductor single crystals was carried out. Two methods of obtaining the microwave skin depth, one for mapping flat surfaces and the other for analyzing the whole surface of small single crystal wafers, were developed to the stage of working laboratory procedures. The preliminary 35 GHz data characterizing the two types of space related single crystal surfaces, flat slices of gallium arsenide and small wafers of germanium selenide, are discussed. A third method of nondestructive mapping of donor impurity density in semiconductor surfaces by scanning with a light beam was developed for GaAs; its testing indicates reasonable precision at reasonable scan rates for GaAs surfaces at room temperature.

  8. Carbon doping of GaAs NWs

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Nanowires (NWs) have been proposed and demonstrated as the building blocks for nanoscale electronic and photonic devices such as NW field effect transistors and NW solar cells which rely on doping and trap-free carrier transport. Controlled doping of NWs and a high degree of structure and morphology control are required for device applications. However, doping of III-V nanowires such as GaAs nanowires has not been reported extensively in the literature. Carbon is a well known p-type dopant in planar GaAs due to its low diffusivity and high solubility in bulk GaAs; however its use as an intentional dopant in NW growth has not yet been investigated. In this work we studied the carbon doping of GaAs nanowires using CBr4 as the dopant source. Gold nanoparticles (NP) at the tip ofthe NWs have been used to drive the NW growth. We show that carbon doping suppresses the migration ofthe gold NPs from the tip of the NWs. In addition, we show that the carbon doping of GaAs NWs is accompanied by an increase of the axial growth rate and decrease of the lateral growth rate ofthe NWs. Carbon-doped GaAs NWs, unlike the undoped ones which are highly tapered, are rod-like. The origin of the observed morphological changes is attributed to the carbon adsorbates on the sidewalls ofthe nanowires which suppress the lateral growth of the nanowires and increase the diffusion length of the gallium adatoms on the sidewalls. Stacking fault formation consisting of alternating regIOns of zincblende and wurtzite structures has been commonly observed in NWs grown along the (111) direction. In this work, based on transmission electron microscopy (TEM) analysis, we show that carbon doping ofGaAs NWs eliminates the stacking fault formation. Raman spectroscopy was used to investigate the effects of carbon doping on the vibrational properties of the carbon-doped GaAs nanowires. Carbon doping shows a strong impact on the intrinsic longitudinal and transverse optical (La and TO) modes of the GaAs

  9. Ion Implanted GaAs I.C. Process Technology

    DTIC Science & Technology

    1981-07-01

    in ion implantation in GaAs, coupled with better control of the substrate material. 1 Once ion implantation became a reliable processing technology it... Processing Technology for Planar GaAs Integrated Circuits," GaAs IC Symposium, Lake Tahoe, CA., Sept. 1979. 20. R.C. Eden, "GaAs Integrated Circuit Device...1980. 25. B.M. Welch, "Advances in GaAs LSI!VLSI Processing Technology ," Sol. St. Tech., Feb. 1980, pp. 95-101. 27. R. Zucca, B.M. Welch, P.M

  10. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with "covalently" incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-06

    This study is concerned with the incorporation of surface modified fumed silica nanoparticles (FSNPs) into polymethacrylate based monolithic columns for use in reversed phase chromatography (RPC) of small solutes and proteins. First, FSNPs were modified with 3-(trimethoxysilyl)propylmethacrylate (TMSPM) to yield the "hybrid" methacryloyl fumed silica nanoparticle (MFSNP) monomer. The resulting MFSNP was then mixed with glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in a binary porogenic solvent composed of cyclohexanol and dodecanol, and the in situ copolymerization of MFSNP, GMM and EDMA was performed in a stainless steel column of 4.6 mm i.d. The silanol groups of the hybrid monolith thus obtained were grafted with octadecyl ligands by perfusing the hybrid monolithic column with a solution of 4% w/v of dimethyloctadecylchlorosilane (DODCS) in toluene while the column was maintained at 110°C for 6h (in a heated HPLC oven). One of the originalities of this study was to demonstrate MFSNP as a novel derivatized "hybrid monomer" in making RPC monolithic columns with surface bound octadecyl ligands. In this respect, the RPC behavior of the monolithic column with "covalently" incorporated FNSPs having surface grafted octadecyl ligands was evaluated with alkylbenzenes, aniline derivatives and phenolic compounds. The results showed that the hybrid poly(GMA-EDMA-MFSNP) having surface bound octadecyl ligands exhibited hydrophobic interactions under reversed phase elution conditions. Furthermore, six standard proteins were baseline separated on the column using a 10min linear gradient elution at increasing ACN concentration in the mobile phase at a flow rate of 1.0mL/min using a 10 cm×4.6mm i.d. column. The relative standard deviations (RSDs) for the retention times of the tested solutes were lower than 2.1% and 2.4% under isocratic elution and gradient elution conditions, respectively.

  11. Development of fibrous monoliths from mullite, alumina, and zirconia powders

    SciTech Connect

    Polzin, B. J.; Cruse, T. A.; Singh, D.; Picciolo, J. J.; Tsaliagos, R. N.; Phelan, P. J.; Goretta, K. C.

    2000-06-29

    Fibrous monoliths (FMs) based on mullite combined with Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} have been produced. These FMs incorporate duplex cells in which compressive residual stresses were engineered into the surfaces of the cells. The residual stresses should increase average cell strength, which may allow them to achieve mechanical properties comparable to those of Si{sub 3}N{sub 4}/BN FMs. The expected residual stresses have been calculated, and data on sintering and thermal expansion have been gathered. Prototype FMs were produced and their microstructure examined.

  12. Remote Sensing with Commutable Monolithic Laser and Detector

    PubMed Central

    2016-01-01

    The ubiquitous trend toward miniaturized sensing systems demands novel concepts for compact and versatile spectroscopic tools. Conventional optical sensing setups include a light source, an analyte interaction region, and a separate external detector. We present a compact sensor providing room-temperature operation of monolithic surface-active lasers and detectors integrated on the same chip. The differentiation between emitter and detector is eliminated, which enables mutual commutation. Proof-of-principle gas measurements with a limit of detection below 400 ppm are demonstrated. This concept enables a crucial miniaturization of sensing devices. PMID:27785455

  13. Remote Sensing with Commutable Monolithic Laser and Detector.

    PubMed

    Szedlak, Rolf; Harrer, Andreas; Holzbauer, Martin; Schwarz, Benedikt; Waclawek, Johannes Paul; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried

    2016-10-19

    The ubiquitous trend toward miniaturized sensing systems demands novel concepts for compact and versatile spectroscopic tools. Conventional optical sensing setups include a light source, an analyte interaction region, and a separate external detector. We present a compact sensor providing room-temperature operation of monolithic surface-active lasers and detectors integrated on the same chip. The differentiation between emitter and detector is eliminated, which enables mutual commutation. Proof-of-principle gas measurements with a limit of detection below 400 ppm are demonstrated. This concept enables a crucial miniaturization of sensing devices.

  14. Monolithically integrated Ge CMOS laser

    NASA Astrophysics Data System (ADS)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  15. Uncooled monolithic ferroelectric IRFPA technology

    NASA Astrophysics Data System (ADS)

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  16. Monolithic integration of a DFB superlattice laser using high energy ion implantation

    NASA Astrophysics Data System (ADS)

    Pronko, P. P.; Rai, A. K.; Ingram, D.; McCormick, A. W.; Ezis, A.

    1991-02-01

    The objective of this research is to develop the use of high energy (MeV) and medium energy (keV) ion beams for the purpose of selectively modifying the optical properties of superlattice systems consisting of mixed III-V compound semiconductors. In particular, the research was directed at the AlGaAs/GaAs multilayer superlattice system and its potential use in fabricating a monolithically integrated distributed feedback laser for use in optoelectronic circuits. The optical properties of such semiconductor superlattice systems have been shown to be sensitive to ion bombardment and its associated implantation and mixing process. The use of ion beams makes it possible to modify these structures through selective masking so that optical elements such as lasers, waveguides, and switches could be fabricated under the constraints imposed by monolithic integration. In particular, investigations were made into the effects of implantation controlled disordering of AlGaAs and GaAs through impurity, defect, and ion beam mixing effects. The results of this work were applied to the development and fabrication of an ion implanted distributed feedback (DFB) type laser in a multilayer superlattice system.

  17. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    PubMed Central

    Lameira, Deborah Pacheco; Silva, Wilkens Aurélio Buarque e; Silva, Frederico Andrade e; De Souza, Grace M.

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed monolithic zirconia crowns (GM); Bi-layer crowns (BL). Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C), and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey's test (P = .05) indicated that monolithic zirconia crowns presented similar fracture strength (PM = 3476.2 N ± 791.7; GM = 3561.5 N ± 991.6), which was higher than bilayer crowns (2060.4 N ± 810.6). There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength. PMID:26576423

  18. Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications.

    PubMed

    Pélisson, Carl-Hugo; Nakanishi, Takahiro; Zhu, Yang; Morisato, Kei; Kamei, Toshiyuki; Maeno, Ayaka; Kaji, Hironori; Muroyama, Shunki; Tafu, Masamoto; Kanamori, Kazuyoshi; Shimada, Toyoshi; Nakanishi, Kazuki

    2017-01-11

    Polymethylhydrosiloxane has been grafted on the surface of a hierarchically porous silica monolith using a facile catalytic reaction between Si-H and silanol to anchor the polymer. This easy methodology leads to the functionalization of the surface of a silica monolith, where a large amount of free Si-H bonds remain available for reducing metal ions in solution. Palladium nanoparticles of 15 nm have been synthesized homogeneously inside the mesopores of the monolith without any stabilizers, using a flow of a solution containing Pd(2+). This monolith was used as column-type fixed bed catalyst for continuous flow hydrogenation of styrene and selective hydrogenation of 3-hexyn-1-ol, in each case without a significant decrease of the catalytic activity after several hours or days. Conversion, selectivity, and stereoselectivity of the alkyne hydrogenation can be tuned by flow rates of hydrogen and the substrate solution, leading to high productivity (1.57 mol g(Pd)(-1) h(-1)) of the corresponding cis-alkene.

  19. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Anomalous behaviours of terahertz reflected waves transmitted from GaAs induced by optical pumping

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Lei; Zhou, Qing-Li; Zhao, Dong-Mei; Zhang, Cun-Lin

    2009-12-01

    Femtosecond pump-terahertz probe studies of carrier dynamics in semi-insulating GaAs have been investigated in detail for various pump powers. It is observed that, at high pump powers, the reflection peaks flip to the opposite polarity and dramatically enhance as the pump arrival time approaches the reflected wave of the terahertz pulse. The abnormal polarity-flip and enhancement can be interpreted by the pump-induced enhancement in the photoconductivity of GaAs and half-wave loss. Moreover, the carrier relaxation processes and surface states filling in GaAs are also studied in these measurements.

  20. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  1. Image transfer in photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Gheen, Gregory; Rau, Mann-Fu; Wang, Faa-Ching

    1987-01-01

    Image transfer from one beam to the other using counterpropagation beam coupling in GaAs was demonstrated. Good image quality was achieved. The results also reveal that local birefringence due to the residual stress/strain field in the crystal can degrade the image quality.

  2. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  3. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  4. Preparation of activated carbon monolith by application of phenolic resins as carbon precursors

    NASA Astrophysics Data System (ADS)

    Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht

    2014-04-01

    In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.

  5. Tensile strained island growth at step-edges on GaAs(110)

    SciTech Connect

    Simmonds, P. J.; Lee, M. L.

    2010-10-11

    We report the growth of tensile strained GaP islands on a GaAs(110) surface. Three-dimensional island formation proceeds via a step-edge nucleation process. To explain the dislocation-free nature of these islands, we consider the kinetics of strain relief within the context of a model for dislocation glide as a function of surface orientation and sign of strain.

  6. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  7. Development of MBE II-VI Epilayers on GaAs(211)B

    DTIC Science & Technology

    2012-10-01

    Surface morphologies were examined by Nomarski and atomic force microscopy. Near-surface chemistry was performed using x-ray photoelectron spectroscopy...lower than measured by the noncontact thermocouple as stated in this article. RESULTS We started our investigation by examining the quality of current... force microscopy (AFM) images for as-received (a) and chemical defect decorated (b)16 GaAs. Polishing damage on a >5 nm scale is visible in Fig. 1a

  8. Sn nanothreads in GaAs: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  9. Thermal stress cycling of GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  10. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Monolithic and mechanically stacked tandem solar cells have been fabricated with encouraging AM0 efficiencies summarized as: monolithic GaAs/Ge: 19.1 percent (28 C, 4 sq cm); monolithic InP/Ga0.47In0.53As: 22.2 percent (25 C, 0.296 sq cm); monolithic AlGaAs/GaAs/InGaAs: 27.6 percent (80 C, 0.2 sq cm, 100 X); mechanically stacked GaAs/GaSb: 30.8 percent (25 C, 0.049 sq cm, 100 X); and mechanically stacked GaAs/CuInSe2: 23.1 percent (25 C, 4 sq cm). Significant improvement in tandem cell efficiencies nearing to theoretical predictions has been projected with the improvement in cell material quality and processing. Thin-film cells offer improved specific power. It is pointed out that both the monolithic and mechanically stacked cells have their own problems as to size, processing, current-voltage matching, weight, etc. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full spectrum range simulators are required to measure efficiencies correctly.

  11. Functionalization of epoxy-based monoliths for ion exchange chromatography of proteins.

    PubMed

    Dinh, Ngoc Phuoc; Cam, Quach Minh; Nguyen, Anh Mai; Shchukarev, Andrei; Irgum, Knut

    2009-08-01

    Macroporous epoxy-based monoliths prepared by emulsion polymerization have been modified for use in ion exchange chromatography (IEC) of proteins. Strong anion exchange functionality was established by iodomethane quaternization of tertiary amine present on the monolith surface as a part of the polymer backbone. The modification pathway to cation exchange materials was via incorporation of glycidyl methacrylate (GMA) brushes which were coated using atom transfer radical polymerization (ATRP). Strong (SO(3)(-)) and weak (COO(-)) cation exchange groups were thereafter introduced onto the GMA-grafted monoliths by reactions with sodium hydrogen sulfite and iminodiacetic acid, respectively. Grafting was confirmed by XPS, gravimetric measurement, and chromatographic behavior of the modified materials toward model proteins. In incubation experiments the proteins were recovered quantitatively with no obvious signs of unfolding after contact with the stationary phase for >2 h. Chromatographic assessments on the functionalized columns as well as problems associated with flow-through modification by ATRP are discussed.

  12. Solvothermal removal of the organic template from L 3 ("sponge") templated silica monoliths

    NASA Astrophysics Data System (ADS)

    Dabbs, Daniel M.; Mulders, Norbert; Aksay, Ilhan A.

    2006-10-01

    We compare the methods of continuous solvent (Soxhlet) and supercritical solvent extractions for the removal of the organic template from nanostructured silica monoliths. Our monoliths are formed by templating the L 3 liquid crystal phase of cetylpyridinium chloride in aqueous solutions with tetramethoxy silane. The monoliths that result from both Soxhlet and supercritical extraction methods are mechanically robust, optically clear, and free of cracks. The Soxhlet method compares favorably with supercritical solvent extraction in that equivalent L 3-templated silica can be synthesized without the use of specialized reactor hardware or higher temperatures and high pressures, while avoiding noxious byproducts. The comparative effectiveness of various solvents in the Soxhlet process is related to the Hildebrand solubility parameter, determined by the effective surface area of the extracted silica.

  13. Miniaturized monolithic columns for the electrochromatographic separation and SERS detection of molecules of exobiological interest

    NASA Astrophysics Data System (ADS)

    Carbonnier, Benjamin; Guerrouache, Mohamed

    Development of miniaturized separation and detection media represents one of the major challenges in the field of modern analytical chemistry dedicated to space exploration. To date, gas chromatography-mass spectrometry has been selected as the method of choice for exobiology flight experiments for seeking for organic molecules and especially potential chemical indicators of life. [1] Liquid phase separation methods have also been developed with for instance, the so-called Mars Organic Analyzer (MOA) capillary electrophoresis (CE) microchip.[2] Although CE offers the advantages of easy miniaturization and high separation efficiency it suffers from a lack of selectivity towards a broad range of analytes with varied chemical nature. In this respect, we propose the use of capillary columns filled with monolithic stationary phases for the electrochromatographic separation of organic molecules of exobiology interest. Polymer monoliths have attracted a great deal of interest in analytical science over the last years as (electro)chromatographic stationary phases [3], immunosensors [4]. Beyond the intrinsic properties of monolithic polymers, i.e. fast mass transport between the monolithic support and the surrounding fluid and high permeability, other major advantages are their easy in situ preparation and tuning of surface functionality. Indeed, monoliths can be simply prepared through free radical copolymerization of a homogeneous mixture made of monomers, cross-linkers, porogenic solvents and initiator. UV-initiation process has been exploited to the synthesis of a discrete section of monolith as a flow-through active element within the confines of micro channels [5,6] while two-step strategies have been reported for the design of varied adsorbent starting with a generic monolith [7,8]. Although a nearly limitless range of monolithic supports can be prepared by this traditional method, the resulting monoliths exhibit unique function. In this contribution, we describe an

  14. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  15. Taking a Large Monolith to Use for Teaching Soil Morphology.

    ERIC Educational Resources Information Center

    Smith, B. R.; And Others

    1989-01-01

    Described is a technique for taking a large monolith for the purpose of teaching soil structure. Materials and procedures are detailed. A survey of 93 students indicated that the larger monolith was preferred over the commonly used narrow ones. (CW)

  16. Consolidation and densification methods for fibrous monolith processing

    SciTech Connect

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  17. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  18. Methacrylate-based diol monolithic stationary phase for the separation of polar and non-polar compounds in capillary liquid chromatography.

    PubMed

    Linda, Roza; Lim, Lee Wah; Takeuchi, Toyohide

    2013-01-01

    A monolithic capillary column prepared with glycidyl methacrylate (GMA) and poly(ethylene glycol) dimethacrylate (PEGDMA) was investigated and used in capillary liquid chromatography. The polymer monolith was synthesized in the presence of methanol and decanol as the biporogenic solvents by in situ polymerization of GMA and PEGDMA, and the optimum composition of monomer and porogen was investigated. After polymerization, glycidyl groups were hydrolyzed with sulfuric acid to produce diol groups at the surface of the porous monolith via epoxy-ring-opening. The GMA content in the polymerization mixture affected the hydrophilicity of the monolith. The separation capability was evaluated by separation of phenol compounds, phthalic acids, and polycyclic aromatic hydrocarbons. The poly(GMA-PEGDMA) monolithic capillary column exhibited satisfactory stability.

  19. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  20. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  1. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  2. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  3. Physical and chemical sensing using monolithic semiconductor optical transducers

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  4. Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design

    DTIC Science & Technology

    2012-10-01

    Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design by John E. Penn ARL-TR-6237 October 2012...Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design John E. Penn Sensors and Electron Devices Directorate, ARL...TITLE AND SUBTITLE Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  5. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.

    PubMed

    Teran, Alan S; Moon, Eunseong; Lim, Wootaek; Kim, Gyouho; Lee, Inhee; Blaauw, David; Phillips, Jamie D

    2016-07-01

    GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm(2)) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation-recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm(2) and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm(2) indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm(2)) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions.

  6. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions

    PubMed Central

    Teran, Alan S.; Moon, Eunseong; Lim, Wootaek; Kim, Gyouho; Lee, Inhee; Blaauw, David; Phillips, Jamie D.

    2016-01-01

    GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm2) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation–recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm2 and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm2 indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm2) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions. PMID:28133394

  7. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  8. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  9. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  10. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    PubMed

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment.

  11. Growth of single-crystal Al layers on GaAs and Si substrates for microwave superconducting resonators

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Gosselink, D.; Jaikissoon, M.; Miao, G.-X.; Langenberg, D.; Mariantoni, M.; Wasilewski, Zr

    Thin Al layers on dielectrics are essential building blocks of circuits used in the quest for scalable quantum computing systems. While molecular beam epitaxy (MBE) has been shown to produce the highest quality Al layers, further reduction of losses in superconducting resonators fabricated from them is highly desirable. Defects at the Al-substrate interface are likely the key source of losses. Here we report on the optimization of MBE growth of Al layers on GaAs and Si substrates. Si surfaces were prepared by in-situ high temperature substrate annealing. For GaAs, defects typically remaining on the substrate surfaces after oxide desorption were overgrown with GaAs or GaAs/AlAs superlattice buffer layers. Such surface preparation steps were followed by cooling process to below 0°C, precisely controlled to obtain targeted surface reconstructions. Deposition of 110 nm Al layers was done at subzero temperatures and monitored with RHEED at several azimuths simultaneously. The resulting layers were characterized by HRXRD, AFM and Nomarski. Single crystal, near-atomically smooth layers of Al(110) were demonstrated on GaAs(001)-2x4 surface whereas Al(111) of comparable quality was formed on Si(111)-1x1 and 7x7 surfaces.

  12. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  13. Synthesis of Mesoporous Silica Monoliths — A Novel Approach Towards Fabrication of Solid-State Optical Sensors for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, D.; Subashini, C.; Akhila Maheswari, M.

    2016-10-01

    Mesoporous silica monoliths are an attractive area of research owing to their high specific surface area, uniform channels and mesoporous size (2-30nm). This paper deals with the direct templating synthesis of a mesoporous worm-like silica monolithic material using F127 — a triblock copolymer, by micro-emulsion technique using trimethyl benzene (TMB), as the solvent. The synthesized silica monolith is characterized using SEM-EDAX, XRD, BET, NMR and FT-IR. The monolith shows an ordered worm-like mesoporous structure with tuneable through pores, an excellent host for the anchoring of chromo-ionophores for the naked-eye metal ion-sensing. The mesoporous monoliths were loaded with 4-dodecyl-6-(2-pyridylazo)-phenol (DPAP) ligand through direct immobilization, thereby acting as solid-state naked-eye colorimetric ion-sensors for the sensing toxic Pb(II) ions at parts-per-billion (ppb) level in various industrial and environmental systems. The influence of various experimental parameters such as solution pH, limiting ligand loading concentration, amount of monolith material, matrix tolerance level, limit of detection and quantification has been studied and optimized.

  14. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography.

    PubMed

    Moravcová, Dana; Planeta, Josef; Wiedmer, Susanne K

    2013-11-22

    This study introduces a silica-based monolith in a capillary format (0.1 mm × 100 mm) as a support for immobilization of liposomes and its characterization in immobilized liposome chromatography. Silica-based monolithic capillary columns prepared by acidic hydrolysis of tetramethoxysilane in the presence of polyethylene glycol and urea were modified by (3-aminopropyl)trimethoxysilane, whereby amino groups were introduced to the monolithic surface. These groups undergo reaction with glutaraldehyde to form an iminoaldehyde, allowing covalent binding of pre-formed liposomes containing primary amino groups. Two types of phospholipid vesicles were used for column modification; these were 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidyl choline with and without 1,2-diacyl-sn-glycero-3-phospho-L-serine. The prepared columns were evaluated under isocratic separation conditions employing 20mM phosphate buffer at pH 7.4 as a mobile phase and a set of unrelated drugs as model analytes. The liposome layer on the synthesized columns significantly changed the column selectivity compared to the aminopropylsilylated monolithic stationary phase. Monolithic columns modified by liposomes were stable under the separation conditions, which proved the applicability of the suggested preparation procedure for the synthesis of capillary columns dedicated to study analyte-liposome interactions. The column efficiency originating from the silica monolith was preserved and reached, e.g., more than 120,000 theoretical plates/m for caffeine as a solute.

  15. [Reparation and application of perfluorodecyl modified silica monolithic capillary column in extraction and enrichment of perfluorooctane sulfonates].

    PubMed

    Huang, Ke; Zhou, Naiyuan; Chen, Bo

    2011-10-01

    A perfluorodecyl modified silica monolithic capillary column has been prepared by using sol-gel method. The preparation steps included hydrolysis of alkoxy silane, fasculation of silanol, gelation, aging, meso-pore preparation, drying and surface modification. It could be used as a solid phase extraction (SPE) microcolumn for extraction and enrichment of perfluorooctane sulfonate (PFOS). The enrichment characteristics and efficiency of the perfluorodecyl modified monolithic silica capillary column has been investigated and compared with C18 silica monolithic capillary column. The results indicated that the perfluorodecyl modified silica monolithic capillary column ( 15 cm x 75 microm) had a higher adsorption capacity and a better enrichment selectivity for PFOS. The average adsorption capacity of the perfluorodecyl modified silica monolithic capillary column was 75 ng. And when the PFOS mass concentration in sample was 0. 25 mg/L, the enrichment factor was 29-fold in average. Owing to the good performance of the perfluorodecyl modified silica monolithic capillary column, it can be used for the extraction and enrichment of trace PFOS in water to meet the requirements of water quality monitoring and analysis.

  16. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  17. LSI/VLSI Ion Implanted GaAs IC Processing

    DTIC Science & Technology

    1982-02-10

    insulating High Speed Logic Ion Implantation GaAs IC FET Integrated Circuits MESFET 20. ABSTRACT (Coalki. on.. roersie if oookay and IdoeI by WOOe tw**, This...The goal of this program is to realize the full potential of GaAs digital integrated circuits employing depletion mode MESFETs by developing the...Processing. The main objective of this program is to realize the full potential of GaAs digital integrated circuits by expanding and improving

  18. Engineering Controlled Spalling in (100)-Oriented GaAs for Wafer Reuse

    SciTech Connect

    Sweet, Cassi A.; McNeely, Joshua E.; Gorman, Brian; Young, David L.; Ptak, Aaron J.; Packard, Corinne E.

    2015-06-14

    Controlled spalling offers a way to cleave thin, single-crystal films or devices from wafers, particularly if the fracture planes in the material are oriented parallel to the wafer surface. Unfortunately, misalignment between the favored fracture planes and the wafer surface preferred for photovoltaic growth in (100)-oriented GaAs produces a highly faceted surface when subject to controlled spalling. This highly faceted cleavage surface is problematic in several ways: (1) it can result in large variations of spall depth due to unstable crack propagation; (2) it may introduce defects into the device zone or underlying substrate; and (3) it consumes many microns of material outside of the device zone. We present the ways in which we have engineered controlled spalling for (100)-oriented GaAs to minimize these effects. We expand the operational window for controlled spalling to avoid spontaneous spalling, find no evidence of dislocation activity in the spalled film or the parent wafer, and reduce facet height and facet height irregularity. Resolving these issues provides a viable path forward for reducing III-V device cost through the controlled spalling of (100)-oriented GaAs devices and subsequent wafer reuse when these processes are combined with a high-throughput growth method such as Hydride Vapor Phase Epitaxy.

  19. Package Holds Five Monolithic Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  20. Development of oxide fibrous monolith systems.

    SciTech Connect

    Goretta, K. C.

    1999-03-02

    Fibrous monolithic ceramics generally have a cellular structure that consists of a strong cell surrounded by a weaker boundary phase [1-5]. Fibrous monoliths (FMs) are produced from powders by conventional ceramic fabrication techniques, such as extrusion [1,2]. When properly engineered, they exhibit fail gracefully [3-5]. Several compositions of ceramics and cermets have been processed successfully in fibrous monolithic form [4]. The most thoroughly investigated fibrous monolith consists of Si{sub 3}N{sub 4} cells and a BN cell-boundary phase [3-5]. Through appropriate selection of initial powders and extrusion and hot-pressing parameters, very tough final products have been produced. The resultant high toughness is due primarily to delamination during fracture along textured platelike BN grains. The primary objectives of our program are to develop: (1) Oxide-based FMs, including new systems with improved properties; (2) FMs that can be pressureless sintered rather than hot-pressed; (3) Techniques for continuous extrusion of FM filaments, including solid freeform fabrication (SFF) for net-shape fabrication of FMs; (4) Predictive micromechanical models for FM design and performance; and (5) Ties with industrial producers and users of FMs.

  1. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  2. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  3. Competition of Fracture Mechanisms in Monolithic Dental Ceramics: Flat Model Systems

    PubMed Central

    Zhang, Yu; Kim, Jae-Won; Bhowmick, Sanjit; Thompson, Van P.; Rekow, E. Dianne

    2015-01-01

    Monolithic (single layer) glass-ceramic restorations often fail from chipping and fracture. Using blunt indentation of a model flat porcelain-like brittle layer bonded onto a dentin-like polymer support system, a variety of fatigue fracture modes has been identified and analyzed: outer cone, inner cone, and median cracks developing in the near-contact region at the occlusal surface; radial cracks developing at the internal cementation surface along the loading axis. Our findings indicate that monolithic glass-ceramic layers are vulnerable to both occlusal surface damage and cementation internal surface fracture. Clinical issues in the longevity of ceramic restorations are discussed in relation to biting force, physical properties of ceramic crowns and luting cement, and thicknesses of ceramic and cement layers. PMID:18478533

  4. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  5. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  6. Sulfur passivation and contact methods for GaAs nanowire solar cells.

    PubMed

    Tajik, N; Peng, Z; Kuyanov, P; LaPierre, R R

    2011-06-03

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.

  7. Effects of atomic hydrogen and deuterium exposure on high polarization GaAs photocathodes

    SciTech Connect

    M. Baylac; P. Adderley; J. Brittian; J. Clark; T. Day; J. Grames; J. Hansknecht; M. Poelker; M. Stutzman; A. T. Wu; A. S. Terekhov

    2005-12-01

    Strained-layer GaAs and strained-superlattice GaAs photocathodes are used at Jefferson Laboratory to create high average current beams of highly spin-polarized electrons. High electron yield, or quantum efficiency (QE), is obtained only when the photocathode surface is atomically clean. For years, exposure to atomic hydrogen or deuterium has been the photocathode cleaning technique employed at Jefferson Laboratory. This work demonstrates that atomic hydrogen cleaning is not necessary when precautions are taken to ensure that clean photocathode material from the vendor is not inadvertently dirtied while samples are prepared for installation inside photoemission guns. Moreover, this work demonstrates that QE and beam polarization can be significantly reduced when clean high-polarization photocathode material is exposed to atomic hydrogen from an rf dissociator-style atomic hydrogen source. Surface analysis provides some insight into the mechanisms that degrade QE and polarization due to atomic hydrogen cleaning.

  8. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    PubMed

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m(2) /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency.

  9. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-06

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions.

  10. Coalescence of planar GaAs nanowires into strain-free three-dimensional crystals on exact (001) silicon

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Jiang, Huaxing; Lau, Kei May

    2016-11-01

    We report three dimensional (3D) disk-shaped GaAs crystals on V-groove patterned (001) Si substrates by metalorganic chemical vapor deposition. Planar GaAs nanowires with triangular cross-sections were grown inside Si V-grooves by nano-scale selective heteroepitaxy. These nanowires were then partially confined in micro-sized SiO2 cavities and coalesced into uniform arrays of 3D crystals. Scanning electron microscope and atomic force microscopy inspection showed the absence of antiphase-domains and smooth top surface morphology. Superior structural and optical properties over GaAs thin films on planar Si were also demonstrated. More remarkably, by growing the 3D crystals on V-grooved Si, we were able to overcome the residual tensile stress induced by the thermal mismatch between GaAs and Si. Strain-free GaAs was uncovered in the crystals with a dimension of 3×3 μm2.

  11. Final report on LDRD project 105967 : exploring the increase in GaAs photodiode responsivity with increased neutron fluence.

    SciTech Connect

    Blansett, Ethan L.; Geib, Kent Martin; Cich, Michael Joseph; Wrobel, Theodore Frank; Peake, Gregory Merwin; Fleming, Robert M.; Serkland, Darwin Keith; Wrobel, Diana L.

    2008-01-01

    A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.

  12. Optical anisotropy in self-assembled InAs nanostructures grown on GaAs high index substrate

    PubMed Central

    Bennour, M.; Saidi, F.; Bouzaïene, L.; Sfaxi, L.; Maaref, H.

    2012-01-01

    We present a study of the optical properties of InAs self-assembled nanostructures grown by molecular beam epitaxy on GaAs(11N)A substrates (N = 3–5). Photoluminescence (PL) measurements revealed good optical properties of InAs quantum dots (QDs) grown on GaAs(115)A compared to those grown on GaAs(113)A and (114)A orientations substrate. An additional peak localized at 1.39 eV has been shown on PL spectra of both GaAs(114)A and (113)A samples. This peak persists even at lower power density. Supporting on the polarized photoluminescence characterization, we have attributed this additional peak to the quantum strings (QSTs) emission. A theoretical study based on the resolution of the three dimensional Schrödinger equation, using the finite element method, including strain and piezoelectric-field effect was adopted to distinguish the observed photoluminescence emission peaks. The mechanism of QDs and QSTs formation on such a high index GaAs substrates was explained in terms of piezoelectric driven atoms and the equilibrium surfaces at edges. PMID:22396623

  13. Silver as Seed-Particle Material for GaAs Nanowires—Dictating Crystal Phase and Growth Direction by Substrate Orientation

    PubMed Central

    2016-01-01

    Here we investigate the feasibility of silver as seed-particle material to synthesize GaAs nanowires and show that both crystal phase and growth direction can be controlled by choice of substrate orientation. A (111)B substrate orientation can be used to form vertically aligned wurtzite GaAs nanowires and a (100) substrate orientation to form vertically aligned zinc blende GaAs nanowires. A 45–50% yield of vertical nanowire growth is achieved on the (100) substrate orientation without employing any type of surface modification or nucleation strategy to promote a vertical growth direction. In addition, photoluminescence measurements reveal that the photon emission from the silver seeded wurtzite GaAs nanowires is characterized by a single and narrow emission peak at 1.52 eV. PMID:26998550

  14. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  15. Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography.

    PubMed

    Kip, Çiğdem; Erkakan, Damla; Gökaltun, Aslıhan; Çelebi, Bekir; Tuncel, Ali

    2015-05-29

    Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20μm. TEA-OH attached-poly(HPMA-Cl-co-EDMA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized.

  16. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, Mark W.

    1995-01-01

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  17. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, M.W.

    1995-02-21

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  18. An analysis of side readouts of monolithic scintillation crystals

    NASA Astrophysics Data System (ADS)

    Li, Xin; Furenlid, Lars R.

    2016-10-01

    We have explored a method of using the side surfaces of a thin monolithic scintillation crystal for reading out scintillation photons. A Monte-Carlo simulation was carried out for an LYSO crystal of 50:8mmx50:8mmx3mm with 5 silicon photomultipliers attached on each of the four side surfaces. With 511 keV gamma-rays, X-Y spatial resolution of 2:10mm was predicted with an energy resolution of 9:0%. We also explored adding optical barriers to improve the X-Y spatial resolution, and an X-Y spatial resolution of 786um was predicted with an energy resolution of 9:2%. Multiple layers can be stacked together and readout channels can be combined. Depth-of- interaction information (DOI) can be directly read out. This method provides an attractive detector module design for positron emission tomography (PET).

  19. Monolithic laser diode array with one metalized sidewall

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.; Wooldridge, John P.; Emanuel, Mark A.; Payne, Stephen A.

    2001-01-01

    A monolithic, electrically-insulating substrate that contains a series of notched grooves is fabricated. The substrate is then metalized so that only the top surface and one wall adjacent to the notch are metalized. Within the grooves is located a laser bar, an electrically-conductive ribbon or contact bar and an elastomer which secures/registers the laser bar and ribbon (or contact bar) firmly along the wall of the groove that is adjacent to the notch. The invention includes several embodiments for providing electrical contact to the corresponding top surface of the adjacent wall. In one embodiment, after the bar is located in the proper position, the electrically conductive ribbon is bent so that it makes electrical contact with the adjoining metalized top side of the heatsink.

  20. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.