Science.gov

Sample records for gaas photoconductive semiconductor

  1. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  2. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  3. High gain GaAs photoconductive semiconductor switches: Switch longevity

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1998-07-01

    Optically activated, high gain GaAs switches are being tested for many different pulsed power applications that require long lifetime (longevity). The switches have p and n contact metallization (with intentional or unintentional dopants) configured in such a way as to produce p-i-n or n-i-n switches. The longevity of the switches is determined by circuit parameters and by the ability of the contacts to resist erosion. This paper will describe how the switches performed in test-beds designed to measure switch longevity. The best longevity was achieved with switches made with diffused contacts, achieving over 50 million pulses at 10 A and over 2 million pulses at 80 A.

  4. Synchronization of two GaAs photoconductive semiconductor switches triggered by two laser diodes.

    PubMed

    Xu, Ming; Bian, Kangkang; Ma, Cheng; Jia, Hangjuan; An, Xin; Shi, Wei

    2016-09-15

    In this Letter, we show the synchronization of two 2-mm-gap gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS), which are in parallel and triggered by two laser diodes (LDs) independently. The comparison of the synchronization is measured by varying the bias electric field and optical excitation energy, respectively. An optimum synchronization is achieved as low as 200.5 ps, while the GaAs PCSS are biased at 1.2 kV with optical excitation energy of 1.91 μJ. The simulations demonstrate the relationship between the synchronization, the carriers average drift velocity, and the number of carriers undergoing intervalley scattering. PMID:27628404

  5. Synchronization of two GaAs photoconductive semiconductor switches triggered by two laser diodes.

    PubMed

    Xu, Ming; Bian, Kangkang; Ma, Cheng; Jia, Hangjuan; An, Xin; Shi, Wei

    2016-09-15

    In this Letter, we show the synchronization of two 2-mm-gap gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS), which are in parallel and triggered by two laser diodes (LDs) independently. The comparison of the synchronization is measured by varying the bias electric field and optical excitation energy, respectively. An optimum synchronization is achieved as low as 200.5 ps, while the GaAs PCSS are biased at 1.2 kV with optical excitation energy of 1.91 μJ. The simulations demonstrate the relationship between the synchronization, the carriers average drift velocity, and the number of carriers undergoing intervalley scattering.

  6. Effects of trigger laser pulse width on the jitter time of GaAs photoconductive semiconductor switch.

    PubMed

    Shi, Wei; Gui, Huaimeng; Zhang, Lin; Ma, Cheng; Li, Mengxia; Xu, Ming; Wang, Luyi

    2013-07-01

    The effects of trigger laser pulse width on the jitter time of a GaAs photoconductive semiconductor switch (PCSS) is investigated in the experiment. The laser is split into two optical beams by a cross grating to excite two 3 mm gap GaAs PCSSs in parallel at the same time. This work reveals that the jitter time of the GaAs PCSS is reduced as the trigger laser pulse width decreases. Our results overcome a significant obstacle that hinders the testing and theory of GaAs PCSSs in high-time-precision synchronous control.

  7. Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.

    2000-03-02

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

  8. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.; THORNTON,R.L.; DONALDSON,R.D.

    1999-12-17

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible with virtually infinite expected lifetime at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approx}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs, unlike a switch with conventional contacts. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  9. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    Baca, A.G.; Brown, D.J.; Donaldson, R.D.; Helgeson, W.D.; Hjalmarson, H.P.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Thornton, R.L.; Zutavern, F.J.

    1999-08-05

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  10. Closing photoconductive semiconductor switches

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Hjalmarson, H.P.; O'Malley, M.W.

    1989-01-01

    One of the most important limitations of Photoconductive Semiconductor Switches (PCSS) for pulsed power applications is the high laser powers required to activate the switches. In this paper, we discuss recent developments on two different aspects of GaAs PCSS that result in reductions in laser power by a factor of nearly 1000. The advantages of using GaAs over Si are many. First of all, the resistivity of GaAs can be orders of magnitude higher than that of the highest resistivity Si material, thus allowing GaAs switches to withstand dc voltages without thermal runaway. Secondly, GaAs has a higher carrier mobility than Si and, thus, is more efficient (per carrier). Finally, GaAs switches can have naturally fast (ns) opening times at room temperature and low fields, microsecond opening times at liquid nitrogen temperature of 77 K, or, on demand, closing and opening at high fields and room temperature by a mechanism called lock-on (see Ref. 1). By contrast, Si switches typically opening times of milliseconds. The amount of laser light required to trigger GaAs for lock-on, or at 77 K, is about three orders of magnitude lower than at room temperature. In this paper we describe the study of lock-on in GaAs and InP, as well as switching of GaAs at 77 K. We shall show that when GaAs is switched at 77 K, the carrier lifetime is about three orders of magnitude longer than it is at room temperature. We shall explain the change in lifetime in terms of the change in electron capture cross section of the deep levels in GaAs (these are defect or impurity levels in the band gap). In the second section, we describe the lock-on effect, now seen in GaAs and InP, and at fields as high as 70 kV/cm. We show how lock-on can be tailored by changing the GaAs temperature or by neutron bombardment. In the third section, we discuss possible lock-on mechanisms. 5 refs., 5 figs.

  11. Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber

    SciTech Connect

    Shi, Wei; Zhang, Lin; Gui, Huaimeng; Hou, Lei; Xu, Ming; Qu, Guanghui

    2013-04-15

    An improved method is proposed to measure the jitter time of the photoconductive semiconductor switches (PCSSs). A one-to-two fiber is utilized to separate and guide the 1053 nm laser beam to trigger two identical 3-mm-gap GaAs PCSSs synchronously. The jitter time is derived from the time lags of two switches turn-on by the error transfer theory. At a bias voltage of 1 kV, the jitter time is measured as 14.41 ps, which is the lowest jitter of GaAs PCSS that has been reported so far.

  12. Influence of the incident laser pulse energy on jitter time of GaAs photoconductive semiconductor switches.

    PubMed

    Shi, Wei; Gui, Huai-meng; Zhang, Lin; Li, Meng-xia; Ma, Cheng; Wang, Lu-yi; Jiang, Huan

    2013-11-01

    We have experimentally investigated the jitter time of a GaAs photoconductive switch (PCSS) when it is triggered by a laser pulse with 30 ns pulse width and 1064 nm wavelength. It is found that the jitter time decreases as the incident laser pulse energy increases from 0.40 to 1.6 mJ. In addition, a theoretical analysis indicates that the jitter time is proportional to relative deviation of the laser pulse energy. This work provides a path to improve the performance of the PCSS, which is used in applications such as a high time precision synchronous control system and ultrawide-band radiation source.

  13. High gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F.J.; Loubriel, G.M.; O'Malley, M.W.; Helgeson, W.D.; McLaughlin, D.L.

    1991-01-01

    Switching properties are reported for high gain photoconductive semiconductor switches (PCSS). A 200 ps pulse width laser was used in tests to examine the relations between electric field, rise time, delay, and minimum optical trigger energy for switches which reached 80 kV in a 50 {Omega} transmission line with rise times as short as 600 ps. Infrared photoluminescence was imaged during high gain switching providing direct evidence for current filamentation. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. 16 refs., 10 figs.

  14. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  15. Textured semiconductors for enhanced photoconductive terahertz emission

    NASA Astrophysics Data System (ADS)

    Collier, Christopher M.; Krupa, Jeffrey D. A.; Hristovski, Ilija R.; Stirling, Trevor J.; Bergen, Mark H.; Holzman, Jonathan F.

    2016-02-01

    There are severe limitations that photoconductive (PC) terahertz (THz) antennas experience due to Joule heating and ohmic losses, which cause premature device breakdown through thermal runaway. In response, this work introduces PC THz antennas utilizing textured InP semiconductors. These textured InP semiconductors exhibit high surface recombination properties and have shortened carrier lifetimes which limit residual photocurrents in the picoseconds following THz pulse emission—ultimately reducing Joule heating and ohmic losses. Fine- and coarse-textured InP semiconductors are studied and compared to a smooth-textured InP semiconductor, which provides a baseline. The surface area ratio (measuring roughness) of the smooth-, fine-, and coarse-textured InP semiconductors is resolved through a computational analysis of SEM images and found as 1.0 +/- 0.1, 2.9 +/- 0.4, and 4.3 +/- 0.6, respectively. The carrier lifetimes of the smooth-, fine-, and coarse-textured InP semiconductors are found as respective values of 200 +/- 6, 100 +/- 10, and 20 +/- 3 ps when measured with a pump-probe experimental system. The emitted THz electric fields and corresponding consumption of photocurrent are measured with a THz experimental setup. The temporal and spectral responses of PC THz antennas made with each of the textured InP semiconductors are found to be similar; however, the consumption of photocurrent (relating to Joule heating and ohmic losses) is greatly diminished for the semiconductors that are textured. The findings of this work can assist in engineering of small-scale PC THz antennas for high-power operation, where they are extremely vulnerable to premature device breakdown through thermal runaway.

  16. Photoconductivity spectra of nanodimensional structures on c-Si and GaAs substrates

    NASA Astrophysics Data System (ADS)

    Udovitskaya, Ruslana S.; Kondratenko, Sergey V.; Vakulenko, Oleg V.

    2005-08-01

    The photoconductivity spectra of the structure nanodimensional Ge/c-Si with Ge quantum wells on a single-crystal substrate surface were measured using infrared spectrophotometer IR-12. The same measurements were also made for the structures Al0.2Ga0.8As/In0.1Ga0.9As/GaAs with further comparison of received results to standard GaAs photodiode. The photoconductivity spectrum of nanodimensional Ge/c-S i structure was received at room temperature. The investigated samples are made by molecular - beam epitaxy method. rectangular frame type (5x5 micron) contact was generated on a surface of Ge layer. The thickness of a contact strip was equaled to 0,5 micron. The second contact was soldered to the back side of the singlecrystal surface. A shifting voltage U =1,5 V was switched in the opposite direction (negative potential to Ge slice) At measurements of photoconductivity of structure. It is necessary to note that photoconductive signal was 3 orders less, than at inverse displacement. It specifies presence heterotransitions between Ge and c-S i layer. The photosensitivity of a standard silicon photodiode was investigated for comparison of such assumption. For example the spectral dependence of photosensitivity of standard silicon photodiode FD-142Κ is represented. The spectral position of a photoconductivity curve was the same to standard silicon photodiode at room temperature. The value of photosensitivity of a researched sample was compared with the standard photodiode. Is established, that both these values are of the same order. It is possible to explain it by presence of a potential barrier between Ge and Si. It is known that longwave border of photoconductivity is defined by width of the forbidden zone of the semiconductor. The increase of photoconductivity is caused by increase of absorption at rising of quantums energy of the exited radiation (at reduction of wavelength). The form of a photoconductivity spectrum of the photodiode FD-142Κ and absence of a hole in

  17. Effect of illumination uniformity on GaAs photoconductive switches

    SciTech Connect

    Donaldson, W.R.; Mu, L. . Lab. for Laser Energetics)

    1994-12-01

    The dynamic behavior of a GaAs photoconductive switch was studied with an electro-optic imaging system during the first 2 ns after optical illumination. The switch behavior changed as a function of the spatial distribution of the optical illumination. Symmetric and asymmetric illumination schemes were investigated experimentally with their electro-optic imaging system. The electric fields were significantly enhanced in the regions of low photo-carrier density. Approximately 1 ns after illumination the simple longitudinal variation of the electric field gave way to nonuniform transverse structure. The experimental results were modeled by treating the switch as an integral part of a transmission line consisting of discrete elements. The experimental results matched the predictions of the transmission-line model in terms of the electric-field enhancements and efficiency.

  18. Photoconductive Semiconductor Switches for pulsed power applications

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Denison, G.J.; Helgeson, W.D.; McLaughlin, D.L.; O`Malley, M.W.; Buttram, M.T.

    1993-08-01

    Photoconductive Semiconductor Switches (PCSS) are being used in, or tested for, many different pulsed power applications as diverse as ultrawideband (UWB) transmitters and high current pulsers. Some aspects of the switches that are relevant to most of the applications are: switch lifetime (longevity), switch opening time (related to the lifetime of carriers in the semiconductor), switching jitter, and the required laser energy. This paper will emphasize the results that we have obtained with Si switches for UWB applications. These include: measurement of switch longevity (a total of 80 Coulombs or 40 C/cm for a 2 cm wide switch and 18.4 Coulombs or 73 Coulombs/cm for a 0.25 cm wide switch), switching at high repetition rates (up to 540 Hz), measurement of carrier lifetime decay rates (a fast one of a few {mu}s, and a slow one of about 330 {mu}s), and measurements on the effect of neutron irradiation on carrier lifetimes. The total charge switched seems to be the highest ever reported for a PCSS. We have used these Si switches in a variety of circuits to produce: a monocycle with a period of about 10 ns corresponding to a center frequency of about 84 MHz, and ringing (many pulse) waveforms with periods of about 1 ns and 7.5 ns corresponding to center frequencies of 770 MHz and 133 MHz. We will also discuss recent studies on the switching properties of GaP.

  19. Subnanosecond, high voltage photoconductive switching in GaAs

    SciTech Connect

    Druce, R.L.; Pocha, M.D.; Griffin, K.L. ); O'Bannon, B.J. )

    1990-01-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating high-power microwaves (HPM) and for high rep-rate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanche-like mode (the optical pulse only controls switch closing). Operating in the linear mode, we have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lock-on modes, high fields are switched with lower laser pulse energies, resulting in higher efficiencies; but with measurable switching delay and jitter. We are currently investigating both large area (1 cm{sup 2}) and small area (<1 mm{sup 2}) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 {mu}m.

  20. Electro-optic imagery of high-voltage GaAs photoconductive switches

    SciTech Connect

    Falk, R.A.; Adams, J.C.; Capps, C.D.; Ferrier, S.G.; Krinsky, J.A. )

    1995-01-01

    The authors present electro-optic images of GaAs high-voltage photoconductive switches utilizing the electro-optic effect of the semi-insulating GaAs substrate. Experimental methodology for obtaining the images is described along with a self-calibrating data reduction algorithm. Use of the technique for observing fabrication defects is shown.

  1. Electrical Breakdown Physics in Photoconductive Semiconductor Switches (PCSS).

    SciTech Connect

    Mar, Alan; Zutavern, Fred J.; Vawter, Gregory A.; Hjalmarson, Harold P.; Gallegos, Richard Joseph; Bigman, Verle Howard

    2016-01-01

    Advanced switching devices with long lifetime will be critical components for Linear Transformer Drivers (LTDs) in next-generation accelerators. LTD designs employ high switch counts. With current gas switch technology at %7E10e3 shot life, a potential game-changer would be the development of a reliable low-impedance (%3C35nh) optically-triggered compact solid-state switch capable of switching 200kV and 50kA with 10e5 shotlife or better. Other applications of this technology, are pulse shaping programmable systems for dynamic material studies (Z-next, Genesis), efficient pulsed power systems for biofuel feedstock, short pulse (10 ns) accelerator designs for the Defense Threat Reduction Agency (DTRA), and sprytron replacements in NW firing sets. This LDRD project has succeeded in developing new optically-triggered photoconductive semiconductor switch (PCSS) designs that show great promise for scaling to modules capable of 200kV (DC) and 5kA current that can be stacked in parallel to achieve 100's of kA with 10e5 shot lifetime. . Executive Summary Advanced switching devices with long lifetime will be critical components for Linear Transformer Drivers (LTDs) in next-generation accelerators. LTD designs employ high switch counts. With current gas switch technology at %7E10e3 shot life, a potential game-changer would be the development of a reliable low-impedance (%3C35nh) optically-triggered compact solid-state switch capable of switching 200kV and 50kA with 10e5 shotlife or better. Other applications of this technology, are pulse shaping programmable systems for dynamic material studies (Z-next, Genesis), efficient pulsed power systems for biofuel feedstock, short pulse (10 ns) accelerator designs for the Defense Threat Reduction Agency (DTRA), and sprytron replacements in NW firing sets. This LDRD project has succeeded in developing new optically-triggered photoconductive semiconductor switch (PCSS) designs that show great promise for scaling to modules capable

  2. Toward a photoconducting semiconductor RF optical fiber antenna array.

    PubMed

    Davis, R; Rice, R; Ballato, A; Hawkins, T; Foy, P; Ballato, J

    2010-09-20

    Recently, optical fibers comprising a crystalline semiconductor core in a silica cladding have been successfully drawn by a conventional drawing process. These fibers are expected to exhibit a photoconductive response when illuminated by photons more energetic than the band gap of the core. In the photoconducting state, such a fiber can be expected to support driven RF currents so as to function as an antenna element, much as a plasma antenna. In this paper, we report the first device-related results on a crystalline semiconductor core optical fiber potentially useful in a photoconducting optical fiber antenna array; namely, optically induced changes to the electrical conductivity of a glass-clad germanium-core optical fiber. Since DC photoconduction measurements were masked by a photovoltaic effect, RF measurements at 5 MHz were used to determine the magnitude of the induced photoconductive effect. The observed photoconductivity, though not large in the present experiment, was comparable to that measured for the bulk crystals from which the fibers were drawn. The absorbed pumping light generated photo-carriers, thereby transforming the core from a dielectric material to a conductor. This technology could thus enable a class of transient antenna elements useful in low observable and reconfigurable antenna array applications.

  3. The temporal dynamics of impurity photoconductivity in quantum wells in GaAs

    SciTech Connect

    Aleshkin, V. Ya. E-mail: aleshkin@ipm.sci-nnov.ru

    2015-10-15

    A theory of cascade capture at charged donors in quantum wells (QWs) is developed without using the Fokker-Planck approximation, which is not valid in QWs. The time dependences of impurity photoconductivity and photoelectron concentration in GaAs QWs are determined. The cascade capture time as a function of the charge donor concentration is calculated.

  4. Semiconductor nanocrystals in photoconductive polymers: Charge generation and charge transport

    SciTech Connect

    Wang, Ying; Herron, Norman; Suna, A.

    1996-10-01

    A new class of photoconductive polymer composites, based on semiconductor nanocrystals (clusters) and carder-transporting polymers, have been developed. These materials are interesting for their potentials in laser printing, imaging, and photorefractives. We will describe material synthesis, charge transport and charge generation mechanisms. In particular, a model of field-dependent charge generation and separation in nonpolar media (e.g. polymers) will be discussed.

  5. Photoconductive terahertz generation from textured semiconductor materials

    NASA Astrophysics Data System (ADS)

    Collier, Christopher M.; Stirling, Trevor J.; Hristovski, Ilija R.; Krupa, Jeffrey D. A.; Holzman, Jonathan F.

    2016-03-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating—as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  6. Photoconductive terahertz generation from textured semiconductor materials.

    PubMed

    Collier, Christopher M; Stirling, Trevor J; Hristovski, Ilija R; Krupa, Jeffrey D A; Holzman, Jonathan F

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating-as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  7. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    NASA Astrophysics Data System (ADS)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  8. Photoconductive terahertz generation from textured semiconductor materials

    PubMed Central

    Collier, Christopher M.; Stirling, Trevor J.; Hristovski, Ilija R.; Krupa, Jeffrey D. A.; Holzman, Jonathan F.

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating—as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials. PMID:26979292

  9. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.

    PubMed

    Tani, M; Matsuura, S; Sakai, K; Nakashima, S

    1997-10-20

    Terahertz radiation was generated with several designs of photoconductive antennas (three dipoles, a bow tie, and a coplanar strip line) fabricated on low-temperature-grown (LT) GaAs and semi-insulating (SI) GaAs, and the emission properties of the photoconductive antennas were compared with each other. The radiation spectrum of each antenna was characterized with the photoconductive sampling technique. The total radiation power was also measured by a bolometer for comparison of the relative radiation power. The radiation spectra of the LT-GaAs-based and SI-GaAs-based photoconductive antennas of the same design showed no significant difference. The pump-power dependencies of the radiation power showed saturation for higher pump intensities, which was more serious in SI-GaAs-based antennas than in LT-GaAs-based antennas. We attributed the origin of the saturation to the field screening of the photocarriers. PMID:18264312

  10. Wavelength dependent negative and positive persistent photoconductivity in Sn δ-doped GaAs structures

    NASA Astrophysics Data System (ADS)

    Kulbachinskii, V. A.; Kytin, V. G.; Golikov, A. V.; Lunin, R. A.; van Schaijk, R. T. F.; de Visser, A.; Senichkin, A. P.; Bugaev, A. S.

    2000-09-01

    The photoconductivity of GaAs structures δ-doped by Sn has been investigated for wavelengths λ = 650-1200 nm in the temperature interval T = 4.2-300 K. The electron densities and mobilities, before and after illumination, have been determined by magnetoresistance, Shubnikov-de Haas effect and Hall effect measurements, in high magnetic fields. For the heavily doped structures (Hall density nH>2×1013 cm-2) we observe under illumination by light with wavelengths larger than the bandgap wavelength of the host material (λ = 815 nm at T = 4.2 K) first positive (PPPC) and then negative (NPPC) persistent photoconductivity. The NPPC is attributed to the ionization of DX centres and PPPC is explained by the excitation of electrons from Cr impurity states in the substrate. For λ<815 nm, in addition, the excitation of electrons over the bandgap of GaAs contributes to the PPPC. For the lightly doped structures (nH≤2×1013 cm-2) the photoconductivity effect is always positive.

  11. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Xiangrong, Ma; Wei, Shi; Weili, Ji; Hong, Xue

    2011-12-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.

  12. High gain photoconductive semiconductor switch having tailored doping profile zones

    SciTech Connect

    Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.

    2001-01-01

    A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

  13. Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration

    SciTech Connect

    Loubriel, G.M.; Mar, A.; Hamil, R.A.; Zutavern, F.J.; Helgeson, W.D.

    1997-12-01

    This report provides a summary of the Pulser In a Chip 9000-Discretionary LDRD. The program began in January of 1997 and concluded in September of 1997. The over-arching goal of this LDRD is to study whether laser diode triggered photoconductive semiconductor switches (PCSS) can be used to activate electro-optic devices such as Q-switches and Pockels cells and to study possible laser diode/switch integration. The PCSS switches we used were high gain GaAs switches because they can be triggered with small amounts of laser light. The specific goals of the LDRD were to demonstrate: (1) that small laser diode arrays that are potential candidates for laser-switch integration will indeed trigger the PCSS switch, and (2) that high gain GaAs switches can be used to trigger optical Q-switches in lasers such as the lasers to be used in the X-1 Advanced Radiation Source and the laser used for direct optical initiation (DOI) of explosives. The technology developed with this LDRD is now the prime candidate for triggering the Q switch in the multiple lasers in the laser trigger system of the X-1 Advanced Radiation Source and may be utilized in other accelerators. As part of the LDRD we developed a commercial supplier. To study laser/switch integration we tested triggering the high gain GaAs switches with: edge emitting laser diodes, vertical cavity surface emitting lasers (VCSELs), and transverse junction stripe (TJS) lasers. The first two types of lasers (edge emitting and VCSELs) did activate the PCSS but are harder to integrate with the PCSS for a compact package. The US lasers, while easier to integrate with the switch, did not trigger the PCSS at the US laser power levels we used. The PCSS was used to activate the Q-switch of the compact laser to be used in the X-1 Advanced Radiation Source.

  14. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    SciTech Connect

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W.; Zutavern, Fred J.

    1999-08-05

    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  15. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    PubMed

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers.

  16. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.

    PubMed

    Singh, Abhishek; Pal, Sanjoy; Surdi, Harshad; Prabhu, S S; Mathimalar, S; Nanal, Vandana; Pillay, R G; Döhler, G H

    2015-03-01

    We report here a photoconductive material for THz detection with sub-picosecond carrier lifetime made by C(12) (Carbon) irradiation on commercially available semi-insulating (SI) GaAs. We are able to reduce the carrier lifetime of SI-GaAs down to sub-picosecond by irradiating it with various irradiation dosages of Carbon (C(12)) ions. With an increase of the irradiation dose from ~10(12) /cm(2) to ~10(15) /cm(2) the carrier lifetime of SI-GaAs monotonously decreases to 0.55 picosecond, whereas that of usual non-irradiated SI-GaAs is ~70 picosecond. This decreased carrier lifetime has resulted in a strong improvement in THz pulse detection compared with normal SI-GaAs. Improvement in signal to noise ratio as well as in detection bandwidth is observed. Carbon irradiated SI-GaAs appears to be an economical alternative to low temperature grown GaAs for fabrication of THz devices.

  17. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors

    PubMed Central

    Irkhin, P.; Najafov, H.; Podzorov, V.

    2015-01-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121

  18. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors.

    PubMed

    Irkhin, P; Najafov, H; Podzorov, V

    2015-01-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of "gauge effect" in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121

  19. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Irkhin, P.; Najafov, H.; Podzorov, V.

    2015-10-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors.

  20. Anisotropic picosecond photoconductivity caused by optical alignment of electron momenta in cubic semiconductors

    SciTech Connect

    Malevich, Y. V. Adomavičius, R.; Krotkus, A.; Malevich, V. L.

    2014-02-21

    Transient photoconductivity in cubic semiconductors InGaAs and InAs excited by a femtosecond laser pulse in the presence of a uniform dc electric field has been studied with the use of the Monte Carlo simulation by taking into account optical alignment of photoexcited electrons over their momenta. Simulations show that due to the optical alignment effect and energy dependence of the electron mobility, the transient photoconductivity in cubic semiconductors becomes anisotropic during the first few picoseconds after optical excitation. The magnitude of this anisotropy reaches its peak when the excess energy of the optically excited electrons approaches the threshold for the intervalley transfer. It has also been found that when the electrons are excited near the threshold energy for the intervalley transfer, the component of the transient photocurrent directed along the dc field for a short time after the end of the femtosecond optical pulse can become negative. The anisotropy of the transient photoconductivity has been investigated experimentally on (001) InGaAs sample by the optical pump - terahertz-probe technique. Optically induced changes in terahertz pulse amplitude were found to be dependent on the direction of terahertz field relative to the polarization of the optical pump pulse and to the crystallographic axes of the semiconductor. Experimental data have been explained in terms of the transient anisotropic photoconductivity and correlate with the results of the Monte Carlo simulation.

  1. Photoexcited carrier relaxation dynamics and terahertz response of photoconductive antennas made on proton bombarded GaAs materials

    NASA Astrophysics Data System (ADS)

    Savard, S.; Allard, J.-F.; Bernier, M.; Petersen, J. C.; Dodge, J. S.; Fournier, P.; Morris, D.

    2010-12-01

    We present a model reproducing the instrumental response of a time-domain spectrometer that integrates photoconductive transmitter and receiver antennas made on identical proton-bombarded GaAs substrates. This model is used to determine the ultrafast capture time of the photoexcited carriers by the ion-bombardment-induced traps. A 0.5 ps capture time can be extracted for a low laser pump fluence of 0.66 μJ/cm2 per pulse. This carrier trapping time gets longer as the pump fluence increases. This behavior is explained by a gradual filling of the traps that are distributed over a 1 μm depth from the GaAs surface. This interpretation is supported by time-resolved measurements obtained on the same photoconductive material using both an 820 nm pump/terahertz-probe transmission experiment and a degenerate 760 nm pump/probe reflectivity experiment. The differential transmission and reflectivity dynamics are reproduced using a biexponential function which correctly describes the photoexcited carrier relaxation and transport dynamics in this material. The strong agreement observed between these different measurements reinforces the validity of the theoretical model used to reproduce the instrumental response of the terahertz setup.

  2. Multi-line triggering and interdigitated electrode structure for photoconductive semiconductor switches

    DOEpatents

    Mar, Alan; Zutavern, Fred J.; Loubriel, Guillermo

    2007-02-06

    An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.

  3. Modeling the effect of deep impurity ionization on GaAs photoconductive switches

    SciTech Connect

    Yee, J.H.; Khanaka, G.H.; Druce, R.L.; Pocha, M.D.

    1992-01-01

    The ionization coefficient of deep traps in GaAs is determined from a gas breakdown model together with the recent experimental data obtained at LLNL (Lawrence Livermore National Laboratory) and Boeing. Using this coefficient in our nonlinear device transport code, we have investigated theoretically the nonlinear switching phenomena in GaAs devices. The results obtained from our investigations show that if we take into consideration the effect of the field ionization of the deep traps, we can show how the Lock-On'' phenomena could occur in the device.

  4. Nanoscale Photoconductivity Imaging of Thin-film Semiconductors by Laser-assisted Microwave Impedance Microscopy

    NASA Astrophysics Data System (ADS)

    Chu, Zhaodong; Wu, Di; Ren, Yuan; Yang, Seungcheol; Sun, Liuyang; Li, Xiaoqin; Lai, Keji

    The photo-response of semiconductors is usually studied by detecting the photocurrent across source-drain electrodes under light illumination. By integrating the microwave impedance microscopy (MIM) technique with focused-laser stimulation, we are able to perform the real-space photoconductivity mapping of photo-sensitive materials without the need of patterning contact electrodes. Here, we report the MIM results of various thin-film materials, such as In2Se3 nano-sheets and transition metal dichalcogenides (TMD) flakes, illuminated by laser beams of different wavelengths in the ambient condition. With no or below-gap illumination, the samples were highly resistive, as indicated by the low MIM signals. The MIM contrast emerges under above-gap light and increases as increasing laser intensity, which clearly demonstrates the local imaging of photoconductivity rather than the transport photocurrent. Interestingly, clear domain structures with mesoscopic length scales were seen in the data due to the coexistence of multiple phases in In2Se3. The unique combination of MIM and laser stimulation thus provides a new direction to explore the microscopic origin of various light-driven phenomena in complex systems. We gratefully acknowledge financial support from NSF.

  5. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOEpatents

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  6. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas.

    PubMed

    Hale, P J; Madeo, J; Chin, C; Dhillon, S S; Mangeney, J; Tignon, J; Dani, K M

    2014-10-20

    We demonstrate broadband (20 THz), high electric field, terahertz generation using large area interdigitated antennas fabricated on semi-insulating GaAs. The bandwidth is characterized as a function of incident pulse duration (15-35 fs) and pump energy (2-30 nJ). Broadband spectroscopy of PTFE is shown. Numerical Drude-Lorentz simulations of the generated THz pulses are performed as a function of the excitation pulse duration, showing good agreement with the experimental data. PMID:25401668

  7. Ultrafast electronic processes in CVD diamonds and GaAs: picosecond photoconductivity and high-voltage switching

    NASA Astrophysics Data System (ADS)

    Garnov, Serge V.; Klimentov, Sergei M.; Pimenov, Sergej M.; Konov, Vitali I.; Kononenko, V. V.; Tsarkova, Olga G.; Gloor, S.; Luethy, Willy A.; Weber, Heinz P.

    1998-04-01

    An 'electrode-free' transient photoconductivity technique was applied to investigate excitation, drift and recombination of non-equilibrium free charge carriers in high quality synthetic polycrystalline diamond films, natural diamond crystals and low-conductive GaAs with a time resolution better than 200 ps. Picosecond laser pulses of UV, visible and Ir spectral range were applied for single- photon excitation of free charge carriers with initial concentrations of (1012-1019) cm-3. Dependences of amplitude and duration of photocurrent on laser intensity/carrier density were measured. Lifetimes, drift mobilities and carrier photoexcitation cross sections as a function of electron concentration were estimated. Computer calculations of conduction and displacement currents, induced space charge and electric field spatial distribution have been performed for the real experimental conditions. Based on the obtained results, high voltage diamond-based switches triggered by ultra-short laser pulses have been designed. Special attention was paid to metal- dielectric interface investigation and ohmic contacts formation. The developed diamond-base module permitted to switch electric fields as high as 100 kV/cm within a time interval less than 200 ps. The amplitude of photocurrent reached 100 A and the electrical resistance reduce by a factor of 1010.

  8. Plasma Etching of n-Type 4H-SiC for Photoconductive Semiconductor Switch Applications

    NASA Astrophysics Data System (ADS)

    Ekinci, Huseyin; Kuryatkov, Vladimir V.; Mauch, Daniel L.; Dickens, James C.; Nikishin, Sergey A.

    2015-05-01

    Photoconductive semiconductor switches (PCSS) fabricated on high-purity semi-insulating 4H-SiC substrates (000) are capable of switching high currents in compact packages with long device lifetimes. A heavily doped n-type SiC epitaxial layer of appropriate thickness is required to form low-resistance ohmic contacts with these devices. In addition, to enhance the performance of the PCSSs, the SiC surface between the ohmic contacts must be extremely smooth. We report a chlorine-based, inductively coupled plasma reactive ion-etching process yielding n-type SiC epitaxial layers with the required smoothness. The rate of etching and post-etching surface morphology were dependent on plasma conditions. We found that the surface smoothness of epitaxial layers can be improved by including BCl3 in the argon-chlorine mixture. The optimum etching process yielded very smooth surfaces (˜0.3 nm RMS) at a relatively high rate of etching of ˜220 nm/min. This new fabrication approach significantly reduced the on-state resistance of the PCSS device and improved its durability of operation.

  9. Influence of different illumination profiles on the on-state resistances of silicon carbide photoconductive semiconductor switches

    SciTech Connect

    Wang, Langning Xun, Tao; Yang, Hanwu; Liu, Jinliang; Zhang, Yu

    2014-04-15

    Characteristics of a silicon-carbide (SiC) photoconductive switch under different illumination profiles are presented. We triggered a V-doped semi-insulated 6H-SiC switch with lateral geometry using a laser beam of 532-nm wavelength. Photoconductivity tests for different spot profiles and locations show that such switches achieve a minimum on-state resistance when the switching gap is illuminated. The differences between on-state resistances are small for various partial illuminations of the switching gap. Semiconductor modeling is used to simulate the electric field and current profiles for different partial illuminations. The simulation results show poor on-state switch performance when partially illuminated. Based on these results, a more revealing circuit model for the switch matches well with experimental results for partial illuminations.

  10. Colossal photoconductivity in transparent perovskite semiconductor BaSnO3

    NASA Astrophysics Data System (ADS)

    Park, Jisung; Kim, Useong; Char, Kookrin

    2015-03-01

    We compare photoconductivities of BaSnO3 (BSO) and SrTiO3 (STO). Photoconductivity of STO has been intensively studied for its high potential for UV detector and optical devices. On the other hand, BSO has recently started to draw a large attention for its high electron mobility and thermal stability. BSO and STO have the same perovskite structure and similar band gap. Epitaxial thin films of BSO and STO were grown by pulsed laser ablation. The spectral responses measured by the monochromatic light showed peaks around the band gap of each film, an evidence that the electron-hole pair generation is the main mechanism for the photoconductivity in both materials. We have found the photoconductivity of BSO to be several orders of magnitude higher than that of STO. In addition, there exists a larger ``persistent'' photoconductivity in BSO. The high mobility of BSO, which is two orders of magnitude larger than that of STO at room temperature, should be partially responsible for the higher photoconductivity. The small difference between the direct gap and indirect gap of BSO may make band to band transition easier. We are also investigating the effect of dislocations on the ``persistent'' photoconductivity.

  11. Enhanced excitonic photoconductivity due to built-in internal electric field in TlGaSe{sub 2} layered semiconductor

    SciTech Connect

    Seyidov, MirHasan Yu. Suleymanov, Rauf A.; Şale, Yasin; Balaban, Ertan

    2014-12-07

    The strong enhancement, by several orders of magnitude, of the excitonic peak within the photoconductivity spectrum of TlGaSe{sub 2} semiconductor was observed. The samples were polarized in external dc electric field, which was applied prior to the measurements. Due to the accumulation of charges near the surface, an internal electric field was formed. Electron-hole pairs that were created after the absorption of light are fallen in and then separated by the built-in electric field, which prevents radiative recombination process.

  12. Experimental study and chemical application of GaAs semiconductor laser treating trigeminal neuralgia

    NASA Astrophysics Data System (ADS)

    Qiu, Ke-Qum; Cao, Shu-Chen; Wang, Hu-Zhong; Wang, Ke-Ning; Xiao, Ton-Ha; Shen, Ke-Wei

    1993-03-01

    GaAs semiconductor laser was used to treat trigeminal neuralgia with an effective rate of 91.1%, and no side effects were found in 67 cases. Changes in and the recovery of the trigeminal nerve cell were studied with light and electromicroscope. Discussed in this article are the time length and quantity of laser treatment with low power. Experimental study and clinical application of the GaAs semiconductor laser have been carried out in our department since 1987. One-hundred-fifteen patients with various diseases in the maxillofacial region (including 67 cases of trigeminal neuralgia) have been treated with satisfactory effects and without any side-effects. The wavelength of the laser is 904 mu, the largest pulse length is 200 mu, and the average power is 2000 HZ.

  13. Nano photoconductive switches for microwave applications

    NASA Astrophysics Data System (ADS)

    Tripon-Canseliet, C.; Faci, S.; Decoster, D.; Pagies, A.; Yoon, S. F.; Pey, K. L.; Chazelas, J.

    2013-01-01

    This paper addresses the interaction between light wave technologies and semiconductors devices at the nanoscale. Research works aiming at the development of emerging 1D and 2D nano materials such as nanodots, nanowires, nanotubes and nanoribbons open the way to overcome the performances bottleneck of conventional microwave photoconductive switches. Such new materials offer new opportunities for the confinement of light/matter interaction and exhibit interesting energy band diagram in an optical wavelength spectrum covering visible to NIR. Strong material interests stays for the generation of very high local density of carriers in contrast with a high dark resistivity, in association with a high carrier mobility. These challenges can be reached today thanks to nanotechnology processes with a high compatibility constraint with submicrometer light coupling solutions and microwave devices and circuits technologies. Modeling and design tools dedicated to photoconductive effect description at nanometer scale, for its implementation in passive and active components must be set up in order to exalt this effect for microwave signal processing functionalities such as switching, generation, amplification and emission over a large frequency bandwidth. This paper will report on latest demonstrations of high performance photoconductive switches for high frequency applications at 0.8μm and 1.5μm based on LT-GaAs, GaAs nanowires and GaInAsSb semiconductor materials.

  14. Diode-pumped passively Q-switched Nd:GGG laser with a Bi-doped GaAs semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-12-01

    Passive Q-switching of a diode-pumped Nd:GGG laser is demonstrated using Bi-doped GaAs as saturable absorber. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. Compared with the Q-switched laser by undoped GaAs semiconductor saturable absorber, the laser with Bi-doped GaAs as saturable absorber can produce higher output power, shorter pulses, higher single pulse energies and higher peak powers. These results suggest that Bi-doped GaAs can be a promising new candidate of semiconductor saturable absorber in Q-switched laser.

  15. A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection

    NASA Astrophysics Data System (ADS)

    Darío Velásquez Ríos, Rubén; Bikorimana, Siméon; Ummy, Muhammad Ali; Dorsinville, Roger; Seo, Sang-Woo

    2015-12-01

    This paper presents heterogeneously integrated bow-tie emitter-detector photoconductive antennas (PCAs) based on low-temperature grown-gallium arsenide (LTG-GaAs) thin-film devices on silicon-dioxide/silicon (SiO2/Si) host substrates for integrated terahertz (THz) systems. The LTG-GaAs thin-film devices are fabricated with standard photolithography and thermal evaporation of metal-contact layers of chromium (Cr), nickel (Ni) and gold (Au). They are etched selectively and separated from their growth GaAs substrate. The LTG-GaAs thin-film devices are then heterogeneously integrated on bow-tie antenna electrodes patterned on the surface of a SiO2/Si host substrate for THz emitters and THz detectors. Cost-effective and selective integration of LTG-GaAs thin-film devices on a Si platform is demonstrated. THz radiation from the fabricated THz PCAs is successfully measured using a pump-probe THz time-domain configuration. The THz temporal duration was measured at full width half maximum of 0.36 ps. Its frequency spectrum exhibits a broadband response with a peak resonant frequency of about 0.31 THz. The demonstration illustrates the feasibility of creating heterogeneously integrated THz systems using separately optimized LTG-GaAs devices and Si based electronics.

  16. Studies on dislocation patterning and bunching in semiconductor compound crystals (GaAs)

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Frank-Rotsch, Ch.; Juda, U.; Naumann, M.; Neubert, M.

    2004-05-01

    The origins of formation of two not yet completely understood structural defects in undoped semiconductor compound crystals, mainly GaAs, are analysed and discussed—(i) dislocation patterning in cells and (ii) dislocation bunching. The dependences of the mean cell diameter d on the dislocation density N and acting thermo-mechanical stress σ in VCz GaAs crystals are investigated and compared with metallic crystals. The rules of correspondence d˜ Nb-1/2 and d˜ Gbσ-1 ( G—shear modulus, b—Burgers vector) have been confirmed. The superposition of two genesis paths is proposed: formation of dislocation networks by dynamical polygonization and cell patterning by dissipative structuring. Possible reasons for the absence of missing of cells in InP crystals are proposed. The concepts of dislocation bunching are reviewed. Newer simulation results in the field of metals demonstrate the possible importance of oscillating growth conditions like melt convection, turbulences or heating temperature fluctuations. Experimentally, the probability of appearance of dislocation bundles in VCz GaAs crystals as function of the growing interface shape is investigated. Considering the radial distribution of von Mises tensors a bunching by glide collision is possible.

  17. High-performance GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Ye, P. D.; Xuan, Y.; Lu, G.; Facchetti, A.; Marks, T. J.

    2006-10-01

    High-performance GaAs metal-insulator-semiconductor field-effect-transistors (MISFETs) fabricated with very thin self-assembled organic nanodielectrics (SANDs), deposited from solution at room temperature, are demonstrated. A submicron gate-length depletion-mode n-channel GaAs MISFET with SAND thicknesses ranging from 5.5to16.5nm exhibit a gate leakage current density <10-5A/cm2 at a gate bias smaller than 3V, a maximum drain current of 370mA/mm at a forward gate bias of 2V, and a maximum intrinsic transconductance of 170mS/mm. The importance of appropriate GaAs surface chemistry treatments on SAND/GaAs interface properties is also presented. Application of SANDs to III-V compound semiconductors affords more opportunities to manipulate the complex III-V surface chemistry with broad materials options.

  18. High gain single GaAs nanowire photodetector

    NASA Astrophysics Data System (ADS)

    Wang, Hao

    2013-08-01

    An undoped single GaAs nanowire (NW) photodetector based on a metal-semiconductor-metal Schottky diode structure is fabricated by a focused ion beam method. The photoconductive gain of the device reaches 20 000 at low laser excitation. Bias-dependence of gain proves that the surface contributes more to the gain at higher bias because of an increased surface charge region. The spectral response demonstrates not only the band-edge absorption profile of the single GaAs NW, but also the existence of leaky-mode resonance.

  19. Technology of GaAs metal-oxide-semiconductor solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1977-01-01

    The growth of an oxide interfacial layer was recently found to increase the open-circuit voltage (OCV) and efficiency by up to 60 per cent in GaAs metal-semiconductor solar cells. Details of oxidation techniques to provide the necessary oxide thickness and chemical structure and using ozone, water-vapor-saturated oxygen, or oxygen gas discharges are described, as well as apparent crystallographic orientation effects. Preliminary results of the oxide chemistry obtained from X-ray, photoelectron spectroscopy are given. Ratios of arsenic oxide to gallium oxide of unity or less seem to be preferable. Samples with the highest OVC predominantly have As(+3) in the arsenic oxide rather than As(+5). A major difficulty at this time is a reduction in OCV by 100-200 mV when the antireflection coating is vacuum deposited.

  20. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.

    PubMed

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-01

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed. PMID:25273719

  1. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches

    SciTech Connect

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-15

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ∼40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  2. Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.

  3. The reverse mode of the photo activated charge domain in high field biased semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Qu, Guanghui; Shi, Wei

    2013-02-01

    The nonlinear accumulation of the photogenerated electrons in high field biased SI-GaAs has been defined as photo activated charge domain (PACD). The transient transport dynamics of the PACD is investigated. The result shows that the PACD, working as a reverse gun dipole domain when biased electric field much higher than 4 kV/cm, and the reverse mode of the PACD could dominate the electric field shielding by its main electric field ultrafast and exponential rising against the bias field. Such mechanisms could play an important role in GaAs THz antenna, GaAs photoconductive semiconductor switch, and the other ultrafast GaAs devices.

  4. Diffusive electronic transport in superconductor-semiconductor-superconductor junctions of Al or Nb on δ-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kutchinsky, J.; Taboryski, R. J.; Clausen, T.; Sørensen, C. B.; Lindelof, P. E.; Hansen, J. Bindslev; Jacobsen, C. Schelde; Skov, J. L.

    1996-02-01

    We report measurements on planar superconductor-semiconductor-superconductor (S-Sm-S) junctions consisting of a n++ modulation doped conduction layer in MBE grown GaAs with superconducting contacts of Al or Nb. At distances between the two superconducting banks below ≈3.5μm we observe a coupling between the two superconductors, due to multiple Andreev reflections at the S-Sm interfaces.

  5. Semiconductors for high temperature active devices: silicon, GaAs, and GaP. [For use in geothermal wells

    SciTech Connect

    Coquat, J.A.

    1980-01-01

    This paper reviews developments during the past three years in the area of high-temperature active semiconductor devices for use at 275/sup 0/C in instrumentation needed to characterize geothermal resources. Surveys of silicon bipolar, MOS, and JFET devices operated at high temperature and development work on high temperature silicon CMOS logic and DI analog circuits are reviewed. The initial results of developmental work on GaAs and GaP diodes are discussed. These efforts have identified several promising devices for high temperature applications; however, further development is required to resolve such problems as excessive leakage currents, metallization degradation, device stability, and long term aging.

  6. Pressure-dependent measurements on n+ GaAs (Si, Sn): the effect of deep donor (DX) states on the electrical properties and persistent photoconductivity

    NASA Astrophysics Data System (ADS)

    Foster, T. J.; Maude, D. K.; Eaves, L.; Portal, J. C.; Dmowski, L.; Nathan, M.; Heiblum, M.; Harris, J. J.; Beall, R. B.

    1988-10-01

    Shubnikov-de Haas and persistent photoconductivity measurements are used to study the mobility, free electron density (n) and the occupancy of the DX centre in heavily doped n-GaAs as a function of doping level and hydrostatic pressure. The results show that the DX centre produces a resonant donor level between the Γ - and L-conduction band minima at a concentration comparable with the doping level. For the Si-doped samples, comparison with local vibration mode measurements indicates that the DX level can be identified with SiGa. The level acts to pin the Fermi energy at electron concentrations around 1.8 × 1019 cm-3. Analysis of the results indicates that macroscopic charge separation is not responsible for persistent photoconductivity in these samples.

  7. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  8. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    SciTech Connect

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa; Svane, Axel; Petit, Leon

    2007-01-01

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.

  9. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  10. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, Christen

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  11. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  12. High-field electroluminescence in semiconductor tunnel junctions with a Mn-doped GaAs layer

    SciTech Connect

    Hai, Pham Nam; Yatsui, Takashi; Ohtsu, Motoichi; Tanaka, Masaaki

    2014-09-21

    We investigated high-field electroluminescence (EL) in semiconductor tunnel junctions with a Mn-doped GaAs layer (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show visible light emissions with two peaks at 1.94 eV and 2.19 eV, which are caused by d-d transitions of the Mn atoms excited by hot electrons. The threshold voltages for band-gap and visible light EL in the tunnel junctions with a GaAs:Mn electrode are 1.3 V higher than those of GaAs:Mn excited by hot holes in reserve biased p⁺-n junctions, which is consistent with the hot carrier transport in the band profiles of these structures. Our EL results at room temperature show that the electron temperature in GaAs:Mn can be as high as ~700 K for a low input electrical power density of 0.4 W/cm², while the lattice temperature of the GaAs:Mn layer can be kept at 340 K.

  13. Misfit accommodation and dislocations in heteroepitaxial semiconductor layers: II-VI compounds on GaAs

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Rivière, J. P.; Castaing, J.

    1993-06-01

    We suggest a model for the nucleation and expansion of dislocations which accommodate the parameter misfit of an epitaxial layer on a substrate, applied, in this work, to a II-VI compound on GaAs. We examine in particular the dislocations threading through the layer, which must be kept as low as possible in density. Nous proposons un mécanisme de germination et de développement des dislocations permettant de compenser l'écart de paramètres d'une couche épitaxiée sur un substrat, par exemple dans notre cas, un composé II-VI sur GaAs. On porte une attention particulière aux dislocations résiduelles dans la couche dont on cherche à minimiser la densité.

  14. Graded Al sub x Ga sub 1-x as photoconductive devices for high efficiency picosecond optoelectronic switching

    SciTech Connect

    Morse, J.D.; Mariella, R.P. ); Dutton, R.W. . Center for Integrated Systems)

    1990-10-01

    Picosecond photoconductivity has been achieved for a variety of semiconductor materials by techniques which have now become almost standard. Enhanced scattering by the excessive amount of deep level defects which provide for picosecond recombination lifetimes significantly reduce the mobility, degrading the responsivity of the photoconductor. This paper will present a concept where improved responsivity is achievable by utilizing a graded bandgap Al{sub x}Ga{sub 1-x}As active detecting layer grown on a high defect density GaAs layer by molecular beam epitaxy (MBE). 7 refs., 6 figs.

  15. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect

    Sullivan, James S.

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  16. Structural and electronic properties of GaAs and GaP semiconductors

    SciTech Connect

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  17. Localization-delocalization transition of electrons at the percolation threshold of semiconductor GaAs1–xNx alloys: The appearance of a mobility edge

    DOE PAGES

    Alberi, K.; Fluegel, B.; Beaton, D. A.; Ptak, A. J.; Mascarenhas, A.

    2012-07-09

    Electrons in semiconductor alloys have generally been described in terms of Bloch states that evolve from constructive interference of electron waves scattering from perfectly periodic potentials, despite the loss of structural periodicity that occurs on alloying. Using the semiconductor alloy GaAs₁₋xNx as a prototype, we demonstrate a localized to delocalized transition of the electronic states at a percolation threshold, the emergence of a mobility edge, and the onset of an abrupt perturbation to the host GaAs electronic structure, shedding light on the evolution of electronic structure in these abnormal alloys.

  18. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  19. Effect of semiconductor GaAs laser irradiation on pain perception in mice

    SciTech Connect

    Zarkovic, N.; Manev, H.; Pericic, D.; Skala, K.; Jurin, M.; Persin, A.; Kubovic, M.

    1989-01-01

    The influence of subacute exposure (11 exposures within 16 days) of mice to the low power (GaAs) semiconductive laser-stimulated irradiation on pain perception was investigated. The pain perception was determined by the latency of foot-licking or jumping from the surface of a 53 degrees C hot plate. Repeated hot-plate testing resulted in shortening of latencies in both sham- and laser-irradiated mice. Laser treatment (wavelength, 905 nm; frequency, 256 Hz; irradiation time, 50 sec; pulse duration, 100 nsec; distance, 3 cm; peak irradiance, 50 W/cm2 in irradiated area; and total exposure, 0.41 mJ/cm2) induced further shortening of latencies, suggesting its stimulatory influence on pain perception. Administration of morphine (20 mg/kg) prolonged the latency of response to the hot plate in both sham- and laser-irradiated mice. This prolongation tended to be lesser in laser-irradiated animals. Further investigations are required to elucidate the mechanism of the observed effect of laser.

  20. The friction behavior of semiconductors Si and GaAs in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.

    1984-01-01

    The friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals was studied. Five transition and two nontransition metals, titanium, tantalum, nickel, palladium, platinum, copper, and silver, slid on a single crystal silicon (111) surface. Four metals, indium, nickel, copper and silver, slid on a single crystal gallium arsenide (100) surface. Experiments were conducted in room air and in a vacuum of 10 to the minus 7th power N/sq cm (10 to the minus 9th power torr). The results indicate that the sliding of silicon on the transition metals exhibits relatively higher friction than for the nontransition metals in contact with silicon. There is a clear correlation between friction and Schottky barrier height formed at the metal silicon interface for the transition metals. Transition metals with a higher barrier height on silicon had a lower friction. The same effect of barrier height was found for the friction of gallium arsenide in contact with metals.

  1. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect

    Sullivan, James S.

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  2. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  3. Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires.

    PubMed

    Joyce, Hannah J; Parkinson, Patrick; Jiang, Nian; Docherty, Callum J; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Herz, Laura M; Johnston, Michael B

    2014-10-01

    Achieving bulk-like charge carrier mobilities in semiconductor nanowires is a major challenge facing the development of nanowire-based electronic devices. Here we demonstrate that engineering the GaAs nanowire surface by overcoating with optimized AlGaAs shells is an effective means of obtaining exceptionally high carrier mobilities and lifetimes. We performed measurements of GaAs/AlGaAs core-shell nanowires using optical pump-terahertz probe spectroscopy: a noncontact and accurate probe of carrier transport on ultrafast time scales. The carrier lifetimes and mobilities both improved significantly with increasing AlGaAs shell thickness. Remarkably, optimized GaAs/AlGaAs core-shell nanowires exhibited electron mobilities up to 3000 cm(2) V(-1) s(-1), reaching over 65% of the electron mobility typical of high quality undoped bulk GaAs at equivalent photoexcited carrier densities. This points to the high interface quality and the very low levels of ionized impurities and lattice defects in these nanowires. The improvements in mobility were concomitant with drastic improvements in photoconductivity lifetime, reaching 1.6 ns. Comparison of photoconductivity and photoluminescence dynamics indicates that midgap GaAs surface states, and consequently surface band-bending and depletion, are effectively eliminated in these high quality heterostructures.

  4. Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Kim, S. K.; Chang, D.; Xuan, Y.; Mohammadi, S.; Ye, P. D.; Lu, G.; Facchetti, A.; Marks, T. J.

    2007-08-01

    Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors (MISFETs) with very thin self-assembled organic nanodielectrics (SANDs) are presented. The application of SAND on compound semiconductors offers unique opportunities for high-performance devices. Thus, 1μm gate-length depletion-mode n-channel SAND/GaAs MISFETs exhibit low gate leakage current densities of 10-2-10-5A/cm2, a maximum drain current of 260mA/mm at 2V forward gate bias, and a maximum intrinsic transconductance of 127mS/mm. These devices achieve a current cutoff frequency (fT) of 10.6GHz and a maximum oscillation frequency (fmax) of 6.9GHz. Nearly hysteresis-free Ids-Vgs characteristics and low flicker noise indicate that a high-quality SAND-GaAs interface is achieved.

  5. Hole mobility of GaAs, GaP, and GaAs1-xPx mixed-compound semiconductors

    NASA Astrophysics Data System (ADS)

    Takeda, Kyozaburo; Matsumoto, Nobuo; Taguchi, Akihito; Taki, Hiroyuki; Ohta, Eiji; Sakata, Makoto

    1985-07-01

    With the use of the substitutional virtual-crystal-approximation method, the composition dependence is semiempirically estimated for the GaAs1-xPx valence-band parameter and the hole-phonon coupling constants. Alloy scattering is also investigated with the help of dielectric band theory. Taking account of the inter-valence-band interaction, we discuss theoretical hole mobility using two different approaches: the conventional effective-relaxation-time approximation and Rode's difference approximation. Owing to decreased split-off energy, the influence of inter-valence-band interaction on the hole material parameter is strengthened with increased P content and temperature.

  6. Characterization and Modeling Analysis for Metal-Semiconductor-Metal GaAs Diodes with Pd/SiO2 Mixture Electrode

    PubMed Central

    Tan, Shih-Wei; Lai, Shih-Wen

    2012-01-01

    Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φb) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones. PMID:23226352

  7. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    SciTech Connect

    Islam, Sk Masiul Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P.; Chakraborty, S.

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  8. Passivation of oxide traps and interface states in GaAs metal-oxide-semiconductor capacitor by LaTaON passivation layer and fluorine incorporation

    SciTech Connect

    Liu, L. N.; Choi, H. W.; Lai, P. T.; Xu, J. P.

    2015-11-23

    GaAs metal-oxide-semiconductor capacitor with TaYON/LaTaON gate-oxide stack and fluorine-plasma treatment is fabricated and compared with its counterparts without the LaTaON passivation interlayer or the fluorine treatment. Experimental results show that the sample exhibits better characteristics: low interface-state density (8 × 10{sup 11 }cm{sup −2}/eV), small flatband voltage (0.69 V), good capacitance-voltage behavior, small frequency dispersion, and small gate leakage current (6.35 × 10{sup −6} A/cm{sup 2} at V{sub fb} + 1 V). These should be attributed to the suppressed growth of unstable Ga and As oxides on the GaAs surface during gate-oxide annealing by the LaTaON interlayer and fluorine incorporation, and the passivating effects of fluorine atoms on the acceptor-like interface and near-interface traps.

  9. Terahertz radiation from InAlAs and GaAs surface intrinsic-N+ structures and the critical electric fields of semiconductors

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Lin, H. C.; Lin, K. I.; Zhang, X. C.

    2005-09-01

    This study examines terahertz radiation from a series of In0.52Al0.48As and GaAs surface-intrinsic-N+ structures (SIN+) with surface-intrinsic layers of various thicknesses. The built-in electric fields in the SIN+ structures are used as the bias. Experimental results indicate that the amplitudes of the THz emission are independent of the built-in electric fields in the emitters when the built-in electric fields exceed the corresponding critical electric fields of the semiconductors. In contrast, the amplitudes of the THz emission are proportional to the thickness of the intrinsic layer and, therefore, the number of photo-excited charged carriers.

  10. Quantum-dot based ultrafast photoconductive antennae for efficient THz radiation

    NASA Astrophysics Data System (ADS)

    Gorodetsky, Andrei; Bazieva, Natalia; Rafailov, Edik U.

    2016-03-01

    Here we overview our work on quantum dot based THz photoconductive antennae, capable of being pumped at very high optical intensities of higher than 1W optical mean power, i.e. about 50 times higher than the conventional LT-GaAs based antennae. Apart from high thermal tolerance, defect-free GaAs crystal layers in an InAs:GaAs quantum dot structure allow high carrier mobility and ultra-short photo carrier lifetimes simultaneously. Thus, they combine the advantages and lacking the disadvantages of GaAs and LT-GaAs, which are the most popular materials so far, and thus can be used for both CW and pulsed THz generation. By changing quantum dot size, composition, density of dots and number of quantum dot layers, the optoelectronic properties of the overall structure can be set over a reasonable range-compact semiconductor pump lasers that operate at wavelengths in the region of 1.0 μm to 1.3 μm can be used. InAs:GaAs quantum dot-based antennae samples show no saturation in pulsed THz generation for all average pump powers up to 1W focused into 30 μm spot. Generated THz power is super-linearly proportional to laser pump power. The generated THz spectrum depends on antenna design and can cover from 150 GHz up to 1.5 THz.

  11. Wide Bandgap Extrinsic Photoconductive Switches

    NASA Astrophysics Data System (ADS)

    Sullivan, James Stephen

    Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The

  12. Photoconductive switch enhancements for use in Blumlein pulse generators

    NASA Astrophysics Data System (ADS)

    Davanloo, F.; Park, H.; Collins, C. B.; Agee, F. J.

    1999-06-01

    Stacked Blumlein pulse generators developed at the University of Texas at Dallas have produced high-power waveforms with risetimes and repetition rates in the range of 0.2-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap or photoconductive switch. Adaptation of the design has enabled the stacked Blumleins to produce 80 MW, nanosecond pulses with risetimes better than 200 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single GaAs photoconductive switch triggered by a low power laser diode array. Our current investigations involve the switch characteristics that affect the broadening of the current channels in the avalanche, pre-avalanche seedings, the switch lifetime and the durability. This report presents the progress toward improving the GaAs switch operation and lifetime in stacked Blumlein pulsers. Advanced switch treatments including diamond film overcoating are implemented and discussed.

  13. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  14. Effect of surface scattering of carriers in the photoconductivity spectra of CdS

    SciTech Connect

    Batyrev, A. S. Bisengaliev, R. A.; Novikov, B. V.

    2013-05-15

    The effect caused by electron scattering at a semiconductor surface is revealed in the low-temperature (77 K) photoconductivity spectra of second-group CdS crystals subjected to the influence of an external enriching transverse electric field.

  15. Study on the high-power semi-insulating GaAs PCSS with quantum well structure

    NASA Astrophysics Data System (ADS)

    Luan, Chongbiao; Wang, Bo; Huang, Yupeng; Li, Xiqin; Li, Hongtao; Xiao, Jinshui

    2016-05-01

    A high-power semi-insulating GaAs photoconductive semiconductor switch (PCSS) with quantum well structure was fabricated. The AlGaAs layer was deposited on the surface of the GaAs material, and the reflecting film and the antireflection film have been made on the surface of the GaAs and AlGaAs, respectively. When the prepared PCSS worked at a bias voltage of 9.8 kV and triggered by a laser pulse with an incident optical energy of 5.4 mJ, a wavelength of 1064 nm and an optical pulse width of 25 ns, the on-state resistance of the AlGaAs/GaAs PCSS was only 0.45 Ω, and the longevity of the AlGaAs/GaAs PCSS was larger than 106 shots. The results show that this structure reduces the on-state resistance and extends the longevity of the GaAs PCSS.

  16. Theoretical comparison of Si, Ge, and GaAs ultrathin p-type double-gate metal oxide semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Dib, Elias; Bescond, Marc; Cavassilas, Nicolas; Michelini, Fabienne; Raymond, Laurent; Lannoo, Michel

    2013-08-01

    Based on a self-consistent multi-band quantum transport code including hole-phonon scattering, we compare current characteristics of Si, Ge, and GaAs p-type double-gate transistors. Electronic properties are analyzed as a function of (i) transport orientation, (ii) channel material, and (iii) gate length. We first show that ⟨100⟩-oriented devices offer better characteristics than their ⟨110⟩-counterparts independently of the material choice. Our results also point out that the weaker impact of scattering in Ge produces better electrical performances in long devices, while the moderate tunneling effect makes Si more advantageous in ultimately scaled transistors. Moreover, GaAs-based devices are less advantageous for shorter lengths and do not offer a high enough ON current for longer gate lengths. According to our simulations, the performance switching between Si and Ge occurs for a gate length of 12 nm. The conclusions of the study invite then to consider ⟨100⟩-oriented double-gate devices with Si for gate length shorter than 12 nm and Ge otherwise.

  17. Photoconductivity in Dirac materials

    SciTech Connect

    Shao, J. M.; Yang, G. W.

    2015-11-15

    Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  18. Photoconductive switch package

    DOEpatents

    Ca[rasp, George J

    2013-10-22

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  19. Photoconductive switch package

    SciTech Connect

    Caporaso, George J.

    2015-10-27

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  20. Experiments on Photoconductivity

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Computer-assisted experiments with CdS and CdSe photoresistors are described. The most important characteristics of the photoresistors are determined: (i) the spectral response, (ii) the photocurrent versus incident radiant power, (iii) the rise and decay time constants and (iv) the frequency response to modulated light. The photoconductivity gain…

  1. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    NASA Astrophysics Data System (ADS)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  2. Evolution of THz impulse imaging radar to 1550nm photoconductive switches

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Zhang, W.-D.; Feldman, A.; Harvey, T.; Mirin, R. P.; Sung, S.; Grundfest, W. S.; Taylor, Z. D.

    2016-05-01

    We present measurements of sub-bandgap photoconductivity and photoconductive switches using GaAs doped heavily with Er such that nanoparticles of ErAs are formed. In addition to strong resonant absorption centered around 1550 nm, the material provides strong sub-bandgap photoconductivity and >> μW average power levels when fabricated into an efficient (square spiral) THz antenna and driven by a 1550- nm ultrafast fiber laser. Photo-Hall measurements prove that the predominant photocarrier is the electron and the linearity of the 1550-nm photocurrent (with laser power) suggests that the photoconductivity is "extrinsic", not other possible mechanisms, such as two-photon absorption. These results have immediate relevance to the use of GaAs:Er switches as the transmitter in 1550-nm-driven THz imaging systems such as the "impulse imager" that we have successfully used for biomedical imaging applications.

  3. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al{sub 2}O{sub 3}/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    SciTech Connect

    Aoki, T. Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-21

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap of less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  4. Analysis of terahertz generation characteristic affected by injured photoconductive antenna

    NASA Astrophysics Data System (ADS)

    Li, Hui; Fan, Wen-hui; Liu, Jia

    2013-08-01

    In this paper, we deployed a home-made THz time-domain system and experimentally investigated the influence of impairment on photoconductive antenna. The low temperature grown GaAs photoconductive antenna (PCA) was used as THz emitter and a <110< ZnTe crystal modulating the probe beam to detect the THz field based on electro-optic sampling. By adjusting the position of laser spot on PCA gap, we found that the generated THz signal was quite different as the laser beam irradiating on different position of the antenna's gap. Moreover, we found that the small burned holes on the edge of both metal electrodes may affect the electric field of the antenna. Furthermore, we simulated the electric field of the PCA with a DC biased voltage applied across the electrodes, and found that the simulation results agreed with the experimental phenomenon, which can well demonstrated that the impairments on the antenna electrodes have a great influence on THz generation.

  5. Paradoxes of photoconductive target and optical control of secondary ion yield

    SciTech Connect

    Rokakh, A. G. Matasov, M. D.

    2010-01-15

    This study of the photoconductivity of semiconductors, in particular, cadmium chalcogenides as materials for targets of vacuum image converters followed the path of overcoming paradoxes. The concepts developed by the classics of photoelectricity also help to understand the paradoxes of the new secondary-ion photoelectric effect, especially, its spectral characteristic. The optical channel of secondary ion yield control via a photoconductive target opens the way to a new branch of nanotechnology, i.e., optoionics.

  6. Coherent and incoherent terahertz beams measured from a terahertz photoconductive antenna

    SciTech Connect

    Ho Wu, Dong; Graber, Benjamin; Kim, Christopher; Qadri, S. B.; Garzarella, Anthony

    2014-02-03

    We have systematically measured and analyzed the terahertz beams of a photoconductive antenna fabricated on a GaAs substrate. Our data indicate that the antenna produces both coherent and incoherent terahertz beams. The former is produced largely by the plasmon, and the latter is believed to be due to the black body radiation resulting from the thermal excitations and Joule heating by both the femto-second laser and the bias voltage, applied across the electrodes of the antenna. The terahertz-beam property is greatly affected by the operating condition of the photoconductive antenna.

  7. Optically-Activated GaAs Switches for Ground Penetrating Radar and Firing Set Applications

    SciTech Connect

    Aurand, J.; Brown, D.J.; Carin, L.; Denison, G.J.; Helgeson, W.D.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Rinehart, L.F.; Zutavern, F.J.

    1999-07-14

    Optically activated, high gain GaAs switches are being tested for many different applications. TWO such applications are ground penetrating radar (GPR) and firing set switches. The ability of high gain GaAs Photoconductive Semiconductor Switches (PCSs) to deliver fast risetime pulses makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for the detection of buried items because it can operate at low frequency, high average power, and close to the ground, greatly increasing power on target. We have demonstrated that a PCSs based system can be used to produce a bipolar waveform with a total duration of about 6 ns and with minimal ringing. Such a pulse is radiated and returns from a 55 gallon drum will be presented. For firing sets, the switch requirements include small size, high current, dc charging, radiation hardness and modest longevity. We have switched 1 kA at 1 kV and 2.8 kA at 3 kV dc charge.

  8. Triggering GaAs lock-on switches with laser diode arrays

    SciTech Connect

    Loubriel, G.M.; Buttram, M.T.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. ); Rosen, A.; Stabile, P.J. )

    1990-01-01

    Laser diode arrays have been used to trigger GaAs Photoconducting Semiconductor Switches (PCSS) charged to voltages of up to 60 kV and conducting currents of 580 A. The driving forces behind the use of laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays can trigger GaAs at high fields as the result of a new switching mode (lock-on) with very high carrier number gain. We have achieved switching of up to 10 MW in a 60 {Omega} system, with a pulse rise time of 500 ps. At 1.2 MW we have achieved repetition rates of 1 kHz with switch rise time of 500 ps for 10{sup 5} shots. The laser diode array used for these experiments delivers a 166 W pulse. In a single shot mode we have switched 4 kA with a flash lamp pumped laser and 600 A with the 166 W array. 7 refs., 5 figs.

  9. Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains

    SciTech Connect

    Kondratenko, S. V. Vakulenko, O. V.; Mazur, Yu. I. Dorogan, V. G.; Marega, E.; Benamara, M.; Ware, M. E.; Salamo, G. J.

    2014-11-21

    The in-plane photoconductivity and photoluminescence are investigated in quantum dot-chain InGaAs/GaAs heterostructures. Different photoconductivity transients resulting from spectrally selecting photoexcitation of InGaAs QDs, GaAs spacers, or EL2 centers were observed. Persistent photoconductivity was observed at 80 K after excitation of electron-hole pairs due to interband transitions in both the InGaAs QDs and the GaAs matrix. Giant optically induced quenching of in-plane conductivity driven by recharging of EL2 centers is observed in the spectral range from 0.83 eV to 1.0 eV. Conductivity loss under photoexcitation is discussed in terms of carrier localization by analogy with carrier distribution in disordered media.

  10. First-principles studies of orbital and spin-orbit properties of GaAs, GaSb, InAs, and InSb zinc-blende and wurtzite semiconductors

    NASA Astrophysics Data System (ADS)

    Gmitra, Martin; Fabian, Jaroslav

    2016-10-01

    We employ first-principles techniques tailored to properly describe semiconductors (semilocal exchange potential added to the exchange-correlation functional), to obtain the electronic band structures of both the zinc-blende and wurtzite phases of GaAs, GaSb, InAs, and InSb. We extract the spin-orbit fields for the relevant valence and conduction bands at the zone center, by fitting the spin splittings resulting from the lack of space inversion symmetry of these bulk crystal structures, to known functional forms—third-order polynomials. We also determine the orientations of the spin-orbit vector fields (for conduction bands) and the average spins (valence bands) in the momentum space. We describe the dependence of the spin-orbit parameters on the cation and anion atomic weights. These results should be useful for spin transport, spin relaxation, and spin optical orientation modeling of semiconductor heterostructures, as well as for realistic studies of semiconductor-based Majorana nanowires, for which accurate values of spin-orbit couplings are needed.

  11. Avalanche photoconductive switching

    SciTech Connect

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  12. Persistent photoconductivity in poly(p-phenylenevinylene): Spectral response and slow relaxation

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Yu, G.; Heeger, A. J.

    1993-06-01

    We report the spectral response and slow decay of the steady-state photoconductivity in poly(p-phenylenevinylene) (PPV) films. The spectral response of the photoconductivity is in good agreement with that calculated from the absorption data with the assumption of rapid recombination at the surface of the film; the results indicate direct photogeneration of free charge carriers via an interband transition. The photoconductivity is, therefore, consistent with a description of the electronic structure of PPV in terms of a semiconductor band model (rather than an exciton model). The very slow stretched-exponential relaxation of the photoinduced conductivity is reminiscent of the persistent photoconductivity observed in inorganic semiconductors. By assuming that the photocurrent is carried predominantly by mobile polarons near the surface, one can construct a model for the persistent photoconductivity in which the recombination of long-lived bipolarons is inhibited in the bulk where bipolarons have a lower free energy than polarons. The persistent photoconductivity, therefore, is caused by the slow dispersive diffusion of photogenerated bipolarons to the surface where they dissociate into polarons and where both polaron transport and recombination occur.

  13. Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters.

    PubMed

    Yardimci, Nezih T; Salas, Rodolfo; Krivoy, Erica M; Nair, Hari P; Bank, Seth R; Jarrahi, Mona

    2015-12-14

    We present a comprehensive analysis of terahertz radiation from large area plasmonic photoconductive emitters in relation with characteristics of device substrate. Specifically, we investigate the radiation properties of large area plasmonic photoconductive emitters fabricated on GaAs substrates that exhibit short carrier lifetimes through low-temperature substrate growth and through epitaxially embedded rare-earth arsenide (ErAs and LuAs) nanoparticles in superlattice structures. Our analysis indicates that the utilized substrate composition and growth process for achieving short carrier lifetimes are crucial in determining substrate resistivity, carrier drift velocity, and carrier lifetime, which directly impact optical-to-terahertz conversion efficiency, radiation power, radiation bandwidth, and reliability of large area plasmonic photoconductive emitters.

  14. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  15. Molecular self-assembly at bare semiconductor surfaces: preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001).

    PubMed

    McGuiness, Christine L; Shaporenko, Andrey; Mars, Carole K; Uppili, Sundararajan; Zharnikov, Michael; Allara, David L

    2006-04-19

    Through rigorous control of preparation conditions, organized monolayers with a highly reproducible structure can be formed by solution self-assembly of octadecanethiol on GaAs (001) at ambient temperature. A combination of characterization probes reveal a structure with conformationally ordered alkyl chains tilted on average at 14 +/- 1 degrees from the surface normal with a 43 +/- 5 degrees twist, a highly oleophobic and hydrophobic ambient surface, and direct S-GaAs attachment. Analysis of the tilt angle and film thickness data shows a significant mismatch of the average adsorbate molecule spacings with the spacings of an intrinsic GaAs(001) surface lattice. The monolayers are stable up to approximately 100 degrees C and exhibit an overall thermal stability which is lower than that of the same monolayers on Au[111] surfaces. A two-step solution assembly process is observed: rapid adsorption of molecules over the first several hours to form disordered structures with molecules lying close to the substrate surface, followed by a slow densification and asymptotic approach to final ordering. This process, while similar to the assembly of alkanethiols on Au[111], is nearly 2 orders of magnitude slower. Finally, despite differences in assembly rates and the thermal stability, exchange experiments with isotopically tagged molecules show that the octadecanethiol on GaAs(001) monolayers undergo exchange with solute thiol molecules at roughly the same rate as the corresponding exchanges of the same monolayers on Au[111]. PMID:16608359

  16. Molecular self-assembly at bare semiconductor surfaces: preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001).

    PubMed

    McGuiness, Christine L; Shaporenko, Andrey; Mars, Carole K; Uppili, Sundararajan; Zharnikov, Michael; Allara, David L

    2006-04-19

    Through rigorous control of preparation conditions, organized monolayers with a highly reproducible structure can be formed by solution self-assembly of octadecanethiol on GaAs (001) at ambient temperature. A combination of characterization probes reveal a structure with conformationally ordered alkyl chains tilted on average at 14 +/- 1 degrees from the surface normal with a 43 +/- 5 degrees twist, a highly oleophobic and hydrophobic ambient surface, and direct S-GaAs attachment. Analysis of the tilt angle and film thickness data shows a significant mismatch of the average adsorbate molecule spacings with the spacings of an intrinsic GaAs(001) surface lattice. The monolayers are stable up to approximately 100 degrees C and exhibit an overall thermal stability which is lower than that of the same monolayers on Au[111] surfaces. A two-step solution assembly process is observed: rapid adsorption of molecules over the first several hours to form disordered structures with molecules lying close to the substrate surface, followed by a slow densification and asymptotic approach to final ordering. This process, while similar to the assembly of alkanethiols on Au[111], is nearly 2 orders of magnitude slower. Finally, despite differences in assembly rates and the thermal stability, exchange experiments with isotopically tagged molecules show that the octadecanethiol on GaAs(001) monolayers undergo exchange with solute thiol molecules at roughly the same rate as the corresponding exchanges of the same monolayers on Au[111].

  17. Simulations of terahertz pulse emission from thin-film semiconductor structures

    NASA Astrophysics Data System (ADS)

    Semichaevsky, Andrey

    The photo-Dember effect is the formation of transient electric dipoles due to the interaction of semiconductors with ultrashort optical pulses. Typically the optically-induced dipole moments vary on the ns- or ps- scales, leading to the emission of electromagnetic pulses with terahertz (THz) bandwidths. One of the applications of the photo-Dember effect is a photoconductive dipole antenna (PDA). This work presents a computational model of a PDA based on Maxwell's equations coupled to the Boltzmann transport equation. The latter is solved semiclassically for the doped GaAs using a continuum approach. The emphasis is on the accurate prediction of the emitted THz pulse shape and bandwidth, particularly when materials are doped with a rare-earth metal such as erbium or terbium that serve as carrier recombination centers. Field-dependent carrier mobility is determined from particle-based simulations. Some of the previous experimental results are used as a basis for comparison with our model.

  18. InP:Fe Photoconducting device

    DOEpatents

    Hammond, Robert B.; Paulter, Nicholas G.; Wagner, Ronald S.

    1984-01-01

    A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.

  19. InP:Fe photoconducting device

    DOEpatents

    Hammond, R.B.; Paulter, N.G.; Wagner, R.S.

    A photoconducting device fabricated from Fe-doped, semi-insulating InP crystals exhibits an exponential decay transient with decay time inversely related to Fe concentration. Photoconductive gain as high as 5 is demonstrated in photoconducting devices with AuGe and AuSn contacts. Response times from 150 to 1000 picoseconds can be achieved.

  20. Characterization of thin semiconductor films for (opto)electronic applications

    SciTech Connect

    Elmiger, J.R.; Feist, H.; Kunst, M.

    1996-12-31

    A simple set-up to measure the transient photoconductivity in the microwave frequency range is presented. The effective mobility is derived from the end of pulse transient photoconductivity. This can be used for the characterization of semiconductor films. Examples of measurements on a-Si:H films are given.

  1. Transversely-illuminated high current photoconductive switches with geometry-constrained conductivity path

    DOEpatents

    Nelson, Scott D.

    2016-05-10

    A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.

  2. Strain-induced photoconductivity in thin films of Co doped amorphous carbon.

    PubMed

    Jiang, Y C; Gao, J

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg(1/3)Nb(2/3)O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  3. Strain-induced photoconductivity in thin films of Co doped amorphous carbon

    PubMed Central

    Jiang, Y. C.; Gao, J.

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  4. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  5. Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors

    DOEpatents

    Biefeld, Robert M.; Dawson, L. Ralph; Fritz, Ian J.; Kurtz, Steven R.; Zipperian, Thomas E.

    1991-01-01

    A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.

  6. Photoconductive switching for HPM (high power microwave) generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-01-01

    Photoconductive switching has been explored at LLNL and demonstrated to be a viable technology for high power microwave (HPM) generation. This technology enables the development of compact, portable, and efficient HPM sources. At LLNL we have successfully switched 35 KV in <200 ps using laser triggered, 1 {times} 5 {times} 20 mm GaAs switches. Based on these results we are developing an HPM generator with applications for HPM weapons and high power, wideband radar. The paper will discuss the physics limits and tradeoffs in the application of this technology. Among the topics discussed will be switching efficiency, candidate switch materials, laser requirements, applicable laser technologies, generator configurations, and cooling requirements and techniques. In addition to presenting theoretical and practical considerations, the paper will discuss on-going work at LLNL and elsewhere. 11 refs., 2 figs., 1 tab.

  7. Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs

    NASA Astrophysics Data System (ADS)

    Hatem, O.; Cunningham, J.; Linfield, E. H.; Wood, C. D.; Davies, A. G.; Cannard, P. J.; Robertson, M. J.; Moodie, D. G.

    2011-03-01

    We report the detection of terahertz frequency radiation using photoconductive antennas fabricated from Fe-doped InGaAs, grown by metal-organic chemical vapor deposition. Coherent photoconductive detection is demonstrated using femtosecond laser pulses centered at either an 800 or a 1550 nm wavelength. The InGaAs resistivity and the sensitivity of photoconductive detection are both found to depend on the Fe-doping level. We investigate a wide range of probe laser powers, finding a peak in detected signal for ˜5 mW probe power, followed by a reduction at larger powers, attributed to screening of the detected THz field by photo-generated carriers in the material. The measured signal from Fe:InGaAs photoconductive detectors excited at 800 nm is four times greater than that from a low-temperature-grown GaAs photodetector with identical antenna design, despite the use of a ten times smaller probe power.

  8. DX centers in III-V semiconductors under hydrostatic pressure

    SciTech Connect

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si{sub Ga} shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  9. Ultrahigh photoconductivity of bandgap-graded CdSxSe1‑x nanowires probed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur

    2016-06-01

    Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1‑x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1‑x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.

  10. Ultrahigh photoconductivity of bandgap-graded CdSxSe1−x nanowires probed by terahertz spectroscopy

    PubMed Central

    Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur

    2016-01-01

    Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1−x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1−x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices. PMID:27263861

  11. Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy.

    PubMed

    Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur

    2016-06-06

    Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1-x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.

  12. Maximizing terahertz pulse amplitude from low temperature gallium arsenide photo conductive semiconductor switch

    NASA Astrophysics Data System (ADS)

    Ray, Sampad

    An antenna radiates when a time rate of change of signal arrives at the structure from a generator, after travelling through a transmitting medium. THz radiation in a photoconductive semiconductor switches (PCSS) follows the same principles. Here the signal is produced by the photoconductive action, which travels through the bulk to the metallic contacts. In the simulation analysis, therefore, one needs to analyze the substrate with semiconductor code to characterize the generated pulse and then use Maxwell's equation solver for the antenna (contact) analysis. This is because of the unavailability of a comprehensive simulation code that can solve both Maxwell's and semiconductor equations in tandem. In this study, two different commercially available simulation codes were used to optimize the THZ radiation from a GaAs PCSS. Results show that the 50 X 50 microm PCSS material produces a central frequency of 1.75 Terahertz, and a pulse amplitude of approximately 0.22 A at an optimum bias voltage of 1100 Volts. The PCSS was illuminated for 350 fs with a 0.78 microm beam, 50 Mw/cm2 in intensity. The FWHM of the generated pulse 0.4 ps, and the rise time is 0.275 ps. In the antenna analysis, results show that the rectangular patch antenna had a maximum return loss (S11) of approximately -30 dB and had multiple resonant frequencies. The maximum S11 was achieved at 5.6845 THz. The directivity of the main lobe was found out to be 6.2 dB with an angular width of 36.9 degrees. The main lobe was directed at 148 degrees. The side lobes were found out to be -6.8 dB.

  13. Photoconductive detection of hydrogen in ZnO and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.; Mchedlidze, T.; Herklotz, F.

    2016-08-01

    Hydrogen donors in ZnO and rutile TiO2 are probed by means of photoconductivity and IR absorption. It is shown that the O-H bonds giving rise to the local vibrational modes (LVMs) of interstitial hydrogen at 3611 and 3290 cm-1 in the case of ZnO and TiO2, respectively, also occur in the photoconductivity spectra as Fano resonances. The effects of isotope substitution, concentration, sample thickness, influence of other donors present in both oxides are considered. Based on the shape and frequency of these resonances, it is concluded that the apparent ionization energy of interstitial hydrogen in rutile TiO2 is less than 300 meV. By a direct comparison, we also demonstrate that photoconductive detection of LVMs of defects in thin semiconductor films is superior to the standard IR absorption.

  14. Resonant Transport in Nb/gaas/algaas/gaas Microstructures

    NASA Astrophysics Data System (ADS)

    Giazotto, F.; Pingue, P.; Beltram, F.; Lazzarino, M.; Orani, D.; Rubini, S.; Franciosi, A.

    2003-03-01

    Resonant transport in a hybrid semiconductor-superconductor microstructure grown by MBE on GaAs in presented. This structure experimentally realizes the prototype system originally proposed by de Gennes and Saint-James in 1963 in all-metal structures. A low temperature single peak superimposed to the characteristic Andreev-dominated subgap conductance represents the mark of such resonant behavior. Random matrix theory of quantum transport was employed in order to analyze the observed magnetotransport properties and ballistic effects were included by directly solving the Bogoliubov-de Gennes equations.

  15. Directly tailoring photon-electron coupling for sensitive photoconductance

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-03-01

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.

  16. Directly tailoring photon-electron coupling for sensitive photoconductance

    PubMed Central

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-01-01

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics. PMID:26964883

  17. Directly tailoring photon-electron coupling for sensitive photoconductance.

    PubMed

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-01-01

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics. PMID:26964883

  18. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  19. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al{sub 2}O{sub 3} gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    SciTech Connect

    Aoki, Takeshi Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-15

    This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  20. Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy

    SciTech Connect

    Hudait, M. K.; Zhu, Y.; Johnston, S. W.; Maurya, D.; Priya, S.; Umbel, R.

    2013-03-04

    GaAs/Ge/GaAs double heterostructures (DHs) were grown in-situ using two separate molecular beam epitaxy chambers. High-resolution x-ray rocking curve demonstrates a high-quality GaAs/Ge/GaAs heterostructure by observing Pendelloesung oscillations. The kinetics of the carrier recombination in Ge/GaAs DHs were investigated using photoconductivity decay measurements by the incidence excitation from the front and back side of 15 nm GaAs/100 nm Ge/0.5 {mu}m GaAs/(100)GaAs substrate structure. High-minority carrier lifetimes of 1.06-1.17 {mu}s were measured when excited from the front or from the back of the Ge epitaxial layer, suggests equivalent interface quality of GaAs/Ge and Ge/GaAs. Wavelength-dependent minority carrier recombination properties are explained by the wavelength-dependent absorption coefficient of Ge.

  1. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  2. Terahertz pulse detection by the GaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Laperashvili, Tina; Kvitsiani, Orest; Imerlishvili, Ilia; Laperashvili, David

    2010-06-01

    We present the results of experimental studies of physical properties of the detection process of GaAs Schottky diodes for terahertz frequency radiation. The development of technology in the THz frequency band has a rapid progress recently. Considered as an extension of the microwave and millimeter wave bands, the THz frequency offers greater communication bandwidth than is available at microwave frequencies. The Schottky barrier contact has an important role in the operation of many GaAs devices. GaAs Schottky diodes have been the primary nonlinear device used in millimeter and sub millimeter wave detectors and receivers. GaAs Schottky diodes are especially interesting due to their high mobility transport characteristics, which allows for a large reduction of the resistance-capacitance (RC) time constant and thermal noise. In This work are investigated the electrical and photoelectric properties of GaAs Schottky diodes. Samples were obtained by deposition of different metals (Au, Ni, Pt, Pd, Fe, In, Ga, Al) on semiconductor. For fabrication metal-semiconductor (MS) structures is used original method of metal electrodepositing. In this method electrochemical etching of semiconductor surface occurs just before deposition of metal from the solution, which contains etching material and metal ions together. For that, semiconductor surface cleaning processes and metal deposition carries out in the same technological process. In the experiments as the electrolyte was used aqueous solution of chlorides. Metal deposition was carried out at room temperature.

  3. Observation of the DX center in Pb-doped GaAs

    NASA Astrophysics Data System (ADS)

    Willke, U.; Maude, D. K.; Sallese, J. M.; Fille, M. L.; el Jani, B.; Gibart, P.; Portal, J. C.

    1993-06-01

    Pb in GaAs introduces a DX center-like (metastable) defect level that is (229±16) meV above the Γ-conduction-band edge, in a similar energetic position to the Si and Sn related DX centers in GaAs. The persistent photoconductivity effect quenches at approximately 50 K, indicating that the barrier to capture for the Pb and Sn dopants are similar. Despite the quite different atomic parameters of the Pb atom compared with the Sn atom, no significant chemical shifts have been found.

  4. Carrier heating and negative photoconductivity in graphene

    SciTech Connect

    Heyman, J. N.; Stein, J. D.; Kaminski, Z. S.; Banman, A. R.; Massari, A. M.; Robinson, J. T.

    2015-01-07

    We investigated negative photoconductivity in graphene using ultrafast terahertz techniques. Infrared transmission was used to determine the Fermi energy, carrier density, and mobility of p-type chemical vapor deposition graphene samples. Time-resolved terahertz photoconductivity measurements using a tunable mid-infrared pump probed these samples at photon energies between 0.35 eV and 1.55 eV, approximately one-half to three times the Fermi energy of the samples. Although interband optical transitions in graphene are blocked for pump photon energies less than twice the Fermi energy, we observe negative photoconductivity at all pump photon energies investigated, indicating that interband excitation is not required to observe this effect. Our results are consistent with a thermalized free-carrier population that cools by electron-phonon scattering, but are inconsistent with models of negative photoconductivity based on population inversion.

  5. Persistent photoconductivity of ZnO

    NASA Astrophysics Data System (ADS)

    Laiho, R.; Stepanov, Yu. P.; Vlasenko, M. P.; Vlasenko, L. S.

    2009-12-01

    Persistent photoconductivity is observed in ZnO single crystals and ceramics together with persistence of electron paramagnetic resonance (EPR) spectra of defects and impurity centers. It is shown that when the light is switched on and off the microwave conductivity detected from absorption of the microwave field is well correlated with the dc-conductivity measured with electrical contacts applied to the sample. The microwave photoconductivity arises together with light-induced EPR spectra and persists after switching off the light. Coexistence of the conductivity and EPR spectra shows that the photoexcited electrons cannot return back to paramagnetic centers. The persistent photoconductivity in ZnO ceramics is large in comparison with the effect observed in powders prepared from the same material and in ZnO single crystals. This suggests that surface conductivity is the dominant mechanism of persistent photoconductivity in ZnO.

  6. Emission characteristics of ion-irradiated In(0.53)Ga(0.47)As based photoconductive antennas excited at 1.55 microm.

    PubMed

    Mangeney, J; Chimot, N; Meignien, L; Zerounian, N; Crozat, P; Blary, K; Lampin, J F; Mounaix, P

    2007-07-01

    We present a detailed study of the effect of the carrier lifetime on the terahertz signal characteristics emitted by Br(+)-irradiated In(0.53)Ga(0.47)As photoconductive antennas excited by 1550 nm wavelength femtosecond optical pulses. The temporal waveforms and the average radiated powers for various carrier lifetimes are experimentally analyzed and compared to predictions of analytical models of charge transport. Improvements in bandwidth and in average power of the emitted terahertz radiation are observed with the decrease of the carrier lifetime on the emitter. The power radiated by ion-irradiated In(0.53)Ga(0.47)As photoconductive antennas excited by 1550 nm wavelength optical pulses is measured to be 0.8 muW. This value is comparable with or greater than that emitted by similar low temperature grown GaAs photoconductive antennas excited by 780 nm wavelength optical pulses. PMID:19547233

  7. A method of monitoring the temperature of the photoconductive antenna

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Wang, Yiqi; Li, Zhou; Bai, Yang; Pu, Ting; Kuang, Tingting; Chen, Kejian

    2014-11-01

    Photoconductive antenna (PCA), as the most widely used emitter (or detector) in Terahertz time-domain spectroscopy (TDS) system, virtually acts as a semiconductor switch, whose electrical conductivity controlled by pump light. At the same time, the heat caused by the pump light and the electrical bias will be stacked in a tiny area. Inevitably, the thermal effects, which may reduce the performance of PCA and the operational lifetime of device, need to be considered, especially for that generated by a compact package fiber-pigtailed photoconductive antenna. Nonetheless, there still lacks of relevant reports about real-time temperature monitoring for PCA. This paper proposes a method to obtain the temperature information by observing the temperature dependent frequency drifting of radiation spectroscopy. In other words, it converts the temperature information via analyzing the radiation spectrum of the conventional TDS system. In this work, we simulate a design of meta-atom-loaded PCA with indium antimonide (InSb). As a kind of temperature-dependent permittivity of the semiconductor, InSb is stuffed into the gap of split-ring resonator (SRR). When the temperature increases from 300K to 380 K, the resonance frequency shifts from 0.582THz to 0.678THz (a shift more than 16%), calculated by the commercial software-CST. The significant blue shift is caused by the SRR loading temperature sensitive materials, well analyzed by the LC resonant circuit model. Then, one can clearly obtain the actual antenna temperature from the radiation spectrum through the relationship between temperature and resonance frequency. Always, this simply method could be applied to shift the peak frequency of spectrum for various applications.

  8. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona

    2014-02-24

    An array of 3 × 3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800 nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  9. Crystal Growth of Device Quality Gaas in Space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1985-01-01

    The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.

  10. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  11. The development of integrated chemical microsensors in GaAs

    SciTech Connect

    CASALNUOVO,STEPHEN A.; ASON,GREGORY CHARLES; HELLER,EDWIN J.; HIETALA,VINCENT M.; BACA,ALBERT G.; HIETALA,S.L.

    1999-11-01

    Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators; GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.

  12. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  13. New developments in photoconductive detectors

    SciTech Connect

    Han, S.

    1996-07-01

    Nearly ideal for detecting ionizing radiation, wide bandgap semiconductors present a possibility of having outstanding radiation hardness, fast charge collection and low leakage current that will allow them to be used in high radiation, high temperature, and chemically aggressive environments. Over the past few years, the improvements in the electrical quality of wide bandgap semiconductors have progressed enormously. One particular wide bandgap semiconductor, diamond, has properties which may be ideal for radiation detection. Since the discovery of low pressure and low temperature deposition of diamond, the possibility of large area diamond films have become a reality. Over the past few years, great progress has been made in advancing the electrical quality of chemical-vapor-deposited (CVD) diamond. Presently, unprecedented diamond wafer size of 7 in. diameter is possible. Due to both the present electrical quality and the available size, the utilization of diamond in radiation detection applications is not just a dream but a reality. The progression of CVD diamond`s electrical properties in the last few years will be presented along with what is currently possible. Applications of CVD diamond for the National Ignition Facility (NIF) diagnostics will be reviewed. In addition, a brief review concerning other possible wide bandgap semiconductors for ICF diagnostics will be presented.

  14. Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Bhattacharya, P. K.

    1996-03-01

    We have studied the properties of molecular beam epitaxially (MBE)-grown Erdoped III-V semiconductors for optoelectronic applications. Optically excited Er3+ in insulating materials exhibits optical emission chiefly around 1.54 μm, in the range of minimum loss in silica fiber. It was thought, therefore, that an electrically pumped Er-doped semiconductor laser would find great applicability in fiber-optic communication systems. Exhaustive photoluminescence (PL) characterization was conducted on several of As-based III-V semiconductors doped with Er, on bulk as well as quantum-well structures. We did not observe any Errelated PL emission at 1.54 μm for any of the materials/structures studied, a phenomenon which renders impractical the realization of an Er-doped III-V semiconductor laser. Deep level transient spectroscopy studies were performed on GaAs and AlGaAs co-doped with Er and Si to investigate the presence of any Er-related deep levels. The lack of band-edge luminescence in the GaAs:Er films led us to perform carrier-lifetime measurements by electro-optic sampling of photoconductive transients generated in these films. We discovered lifetimes in the picosecond regime, tunable by varying the Er concentration in the films. We also found the films to be highly resistive, the resistivity increasing with increasing Er-concentration. Intensive structural characterization (double-crys-tal x-ray and transmission electron microscopy) performed by us on GaAs:Er epilayers indicates the presence of high-density nanometer-sized ErAs precipitates in MBE-grown GaAs:Er. These metallic nanoprecipitates probably form internal Schottky barriers within the GaAs matrix, which give rise to Shockley-Read-Hall recombination centers, thus accounting for both the high resistivities and the ultrashort carrier lifetimes. Optoelectronic devices fabricated included novel tunable (in terms of speed and responsivity) high-speed metal-semiconductor-metal (MSM) photodiodes made with Ga

  15. a Study of Erbium Doped Iii-V Semiconductors for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Sethi, Sanjay

    1995-11-01

    This dissertation presents work done on materials and novel devices made with MBE-grown Er-doped III-V semiconductors for optoelectronic applications. Optically-excited Er ^{3+} in insulating materials exhibits optical emission chiefly around 1.54 mum, in the range of minimum loss in silica fiber. It was thought, therefore, that an electrically -pumped Er-doped semiconductor laser would find great applicability in fiber-optic communication systems. Exhaustive photoluminescence (PL) characterization was conducted on the entire gamut of As-based III-V semiconductors doped with Er, on bulk as well as quantum-well structures. We did not observe any Er-related PL emission at 1.54 μm for any of the materials/structures studied, a phenomenon which renders impractical the realization of an Er-doped III-V semiconductor laser. Deep level transient spectroscopy studies were performed on GaAs and AlGaAs co-doped with Er and Si to investigate the presence of any Er-related deep levels. The lack of band-edge luminescence in the GaAs:Er films led us to perform carrier-lifetime measurements by electro-optic sampling of photoconductive transients generated in these films. We discovered lifetimes in the picosecond regime, tunable by varying the Er concentration in the films. We also found the films to be highly resistive, the resistivity increasing with increasing Er-concentration. Intensive structural characterization (Double -crystal X-ray and TEM) performed by us on GaAs:Er epilayers indicates the presence of high-density nanometer-sized ErAs precipitates in MBE-grown GaAs:Er. These metallic nanoprecipitates probably form internal Schottky barriers within the GaAs matrix, which give rise to Shockley-Read -Hall recombination centers, thus accounting for both the high resistivities and the ultrashort carrier lifetimes. Optoelectronic devices fabricated included novel tunable (in terms of speed and responsivity) high-speed metal-semiconductor-metal (MSM) photodiodes made with Ga

  16. Terahertz photoconductive antenna with metal nanoislands.

    PubMed

    Park, Sang-Gil; Choi, Yongje; Oh, Young-Jae; Jeong, Ki-Hun

    2012-11-01

    This work presents a nanoplasmonic photoconductive antenna (PCA) with metal nanoislands for enhancing terahertz (THz) pulse emission. The whole photoconductive area was fully covered with metal nanoislands by using thermal dewetting of thin metal film at relatively low temperature. The metal nanoislands serve as plasmonic nanoantennas to locally enhance the electric field of an ultrashort pulsed pump beam for higher photocarrier generation. The plasmon resonance of metal nanoislands was achieved at an excitation laser wavelength by changing the initial thickness of metal film. This nanoplasmonic PCA shows two times higher enhancement for THz pulse emission power than a conventional PCA. This work opens up a new opportunity for plasmon enhanced large-aperture THz photoconductive antennas. PMID:23187370

  17. Hydroplane polishing of semiconductor crystals

    NASA Astrophysics Data System (ADS)

    Gormley, J. V.; Manfra, M. J.; Calawa, A. R.

    1981-08-01

    A new technique for obtaining optically flat, damage-free surfaces on semiconductor crystals has been developed. The polishing is very fast, being capable of removing over 30 μm of materials per minute in the case of GaAs and InP. Initial results indicate that the technique can also be used in the polishing of HgCdTe.

  18. Semiconductor technology program: Progress briefs

    NASA Technical Reports Server (NTRS)

    Galloway, K. F.; Scace, R. I.; Walters, E. J.

    1981-01-01

    Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.

  19. DX centers in III-V semiconductors under hydrostatic pressure. [GaAs:Si; InP:S

    SciTech Connect

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si[sub Ga] shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  20. Deep donor model for the persistent photoconductivity effect

    SciTech Connect

    Hjalmarson, H.P.; Drummond, T.J.

    1986-03-10

    It is proposed that a persistent photoconductivity (PPC) effect is universally produced by deep donors. The general requirements of a class of models which explains the PPC effect in semiconductors are discussed. In particular, donor dopants such as Si and Te in Ga/sub 1-x/Al/sub x/As with xapprox.0.3 are conjectured to be deep and responsible for the PPC effect attributed to DX centers consisting of donor-vacancy pairs. It is shown that the Si donor has properties which explain the known data attributed to the DX center; these data include (1) the slow capture rate at low temperatures, (2) the thermally activated capture rate at high temperatures, and (3) the shape of the photoexcitation cross section. However, in contrast with the DX-center model, the deep donor model does not require a high trapped vacancy concentration ((V)approx.10/sup 18/ cm/sup -3/) to explain the PPC effect in highly doped semiconductors.

  1. Trap-induced photoconductivity in singlet fission pentacene diodes

    SciTech Connect

    Qiao, Xianfeng Zhao, Chen; Chen, Bingbing; Luan, Lin

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  2. Inductively Coupled Plasma Etching of III-V Semiconductors in BCl(3)-Based Chemistries: Part 1: GaAs, GaN, GaP, GaSb and AlGaAs

    SciTech Connect

    Abernathy, C.R,; Han, J.; Hobson, W.S.; Hong, J.; Lambers, E.S.; Lee, J.W.; Maeda, T.; Pearton, S.J.; Shul, R.J.

    1998-12-04

    BC13, with addition of Nz, Ar or Hz, is found to provide smooth anisotropic pattern transfer in GaAs, GaN, GaP, GaSb and AIGriAs under Inductively Coupled Plasma conditions, Maxima in the etch rates for these materials are observed at 33% N2 or 87$'40 Hz (by flow) addition to BC13, whereas Ar addition does not show this behavior. Maximum etch rates are typically much higher for GaAs, Gap, GaSb and AIGaAs (-1,2 @rein) than for GaN (-0.3 ymu'min) due to the higher bond energies of the iatter. The rates decrease at higher pressure, saturate with source power (ion flux) and tend to show maxima with chuck power (ion energy). The etched surfaces remain stoichiometric over abroad range of plasma conditions.

  3. High-energy passively Q-switched operation of Yb:GdCa(4)O(BO(3))(3) laser with a GaAs semiconductor saturable absorber.

    PubMed

    Chen, Xiaowen; Wang, Lisha; Han, Wenjuan; Guo, Yunfeng; Xu, Honghao; Yu, Haohai; Zhang, Huaijin; Liu, Junhai

    2015-11-16

    High-energy passively Q-switched operation of a Yb:GdCa(4)O(BO(3))(3) laser is demonstrated, with a GaAs crystal plate acting as saturable absorber. An average output power of 1.31 W at 1027 nm is produced at a pulse repetition rate of 1.92 kHz, the resulting pulse energy, duration, and peak power being respectively 0.68 mJ, 9.0 ns, and 75.6 kW. The shortest pulse duration obtained is 4.9 ns; whereas the maximum pulse energy achievable amounts to 0.83 mJ, which proves to be nearly one order of magnitude higher than ever generated from Yb or Nd lasers passively Q-switched by a GaAs saturable absorber.

  4. High-energy passively Q-switched operation of Yb:GdCa(4)O(BO(3))(3) laser with a GaAs semiconductor saturable absorber.

    PubMed

    Chen, Xiaowen; Wang, Lisha; Han, Wenjuan; Guo, Yunfeng; Xu, Honghao; Yu, Haohai; Zhang, Huaijin; Liu, Junhai

    2015-11-16

    High-energy passively Q-switched operation of a Yb:GdCa(4)O(BO(3))(3) laser is demonstrated, with a GaAs crystal plate acting as saturable absorber. An average output power of 1.31 W at 1027 nm is produced at a pulse repetition rate of 1.92 kHz, the resulting pulse energy, duration, and peak power being respectively 0.68 mJ, 9.0 ns, and 75.6 kW. The shortest pulse duration obtained is 4.9 ns; whereas the maximum pulse energy achievable amounts to 0.83 mJ, which proves to be nearly one order of magnitude higher than ever generated from Yb or Nd lasers passively Q-switched by a GaAs saturable absorber. PMID:26698515

  5. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  6. Electronic contribution to friction on GaAs

    SciTech Connect

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  7. Gamma ray measurements with photoconductive detectors using a dense plasma focus

    SciTech Connect

    May, M. J. Brown, G. V.; Halvorson, C.; Schmidt, A.; Bower, D.; Tran, B.; Lewis, P.; Hagen, C.

    2014-11-15

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or “pinches” plasmas of various gases (e.g., H{sub 2}, D{sub 2}, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n{sup ′}) reactions if D{sub 2} gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  8. Gamma ray measurements with photoconductive detectors using a dense plasma focusa)

    NASA Astrophysics Data System (ADS)

    May, M. J.; Brown, G. V.; Halvorson, C.; Schmidt, A.; Bower, D.; Tran, B.; Lewis, P.; Hagen, C.

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n') reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  9. Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes

    SciTech Connect

    Singh, Abhishek; Surdi, Harshad; Nikesh, V. V.; Prabhu, S. S.; Döhler, G. H.

    2013-12-15

    We study the effect of a surface modification at the interface between metallic electrodes and semiconducting substrate in Semi-Insulating GaAs (SI-GaAs) based photoconductive emitters (PCE) on the emission of Tera-Hertz (THz) radiation. We partially etch out a 500 nm thick layer of SI-GaAs in grating like pattern with various periods before the contact deposition. By depositing the electrodes on the patterned surface, the electrodes follow the contour of the grating period. This increases the effective contact length of the electrodes per unit area of the active regions on the PCE. The maxima of the electric field amplitude of the THz pulses emitted from the patterned surface are enhanced by up to more than a factor 2 as compared to an un-patterned surface. We attribute this increase to the increase of the effective contact length of the electrode due to surface patterning.

  10. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy

    NASA Astrophysics Data System (ADS)

    Joyce, Hannah J.; Boland, Jessica L.; Davies, Christopher L.; Baig, Sarwat A.; Johnston, Michael B.

    2016-10-01

    Accurately measuring and controlling the electrical properties of semiconductor nanowires is of paramount importance in the development of novel nanowire-based devices. In light of this, terahertz (THz) conductivity spectroscopy has emerged as an ideal non-contact technique for probing nanowire electrical conductivity and is showing tremendous value in the targeted development of nanowire devices. THz spectroscopic measurements of nanowires enable charge carrier lifetimes, mobilities, dopant concentrations and surface recombination velocities to be measured with high accuracy and high throughput in a contact-free fashion. This review spans seminal and recent studies of the electronic properties of nanowires using THz spectroscopy. A didactic description of THz time-domain spectroscopy, optical pump-THz probe spectroscopy, and their application to nanowires is included. We review a variety of technologically important nanowire materials, including GaAs, InAs, InP, GaN and InN nanowires, Si and Ge nanowires, ZnO nanowires, nanowire heterostructures, doped nanowires and modulation-doped nanowires. Finally, we discuss how THz measurements are guiding the development of nanowire-based devices, with the example of single-nanowire photoconductive THz receivers.

  11. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  12. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  13. Thermophysical properties data on molten semiconductors

    SciTech Connect

    Nakamura, S.; Hibiya, T. )

    1992-01-01

    Thermophysical properties of molten semiconductors are reviewed. Published data for viscosity, thermal conductivity, surface tension, and other properties are presented. Several measurement methods often used for molten semiconductors are described. Recommended values of thermophysical properties are tabulated for Si, Ge, GaAs, InP, InSb, GaSh, and other compounds. This review shows that further measurements of thermophysical properties of GaAs and InP in the molten state are required. It is also indicated that a very limited amount of data on emissivity is available. Space experiments relating to thermophysical property measurements are described briefly. 77 refs., 9 figs., 3 tabs.

  14. Atomic hydrogen cleaning of GaAS Photocathodes

    SciTech Connect

    M. Poelker; J. Price; C. Sinclair

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs.

  15. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  16. Empirical-Statistics Analysis for Zero-Failure GaAs MMICs Life Testing Data

    NASA Astrophysics Data System (ADS)

    Huang, Zheng-Liang; Yu, Fa-Xin; Zhang, Shu-Ting; Luo, Hao; Wang, Ping-Hui; Zheng, Yao

    GaAs MMICs (Monolithic Microwave Integrated Circuits) reliability is a critical part of the overall reliability of the thermal solution in semiconductor devices. With MMICs reliability improved, GaAs MMICs failure rates will reach levels which are impractical to measure with conventional methods in the near future. This letter proposes a methodology to predict the GaAs MMICs reliability by combining empirical and statistical methods based on zero-failure GaAs MMICs life testing data. Besides, we investigate the effect of accelerated factors on MMICs degradation and make a comparison between the Weibull and lognormal distributions. The method has been used in the reliability evaluation of GaAs MMICs successfully.

  17. Inversion-mode GaAs wave-shaped field-effect transistor on GaAs (100) substrate

    SciTech Connect

    Zhang, Jingyun; Si, Mengwei; Wu, Heng; Ye, Peide D.; Lou, Xiabing; Gordon, Roy G.; Shao, Jiayi; Manfra, Michael J.

    2015-02-16

    Inversion-mode GaAs wave-shaped metal-oxide-semiconductor field-effect transistors (WaveFETs) are demonstrated using atomic-layer epitaxy of La{sub 2}O{sub 3} as gate dielectric on (111)A nano-facets formed on a GaAs (100) substrate. The wave-shaped nano-facets, which are desirable for the device on-state and off-state performance, are realized by lithographic patterning and anisotropic wet etching with optimized geometry. A well-behaved 1 μm gate length GaAs WaveFET shows a maximum drain current of 64 mA/mm, a subthreshold swing of 135 mV/dec, and an I{sub ON}/I{sub OFF} ratio of greater than 10{sup 7}.

  18. Effect of diffusion on the photoconductivity of thin films

    SciTech Connect

    Hughes, R. C.; Sokel, R. J.

    1980-01-01

    The equations governing time dependent and steady state photoconductivity are solved analytically for some approxiations and numerically in exact form. The diffusion terms are shown to be important especially in thin films. Some data of Farmer and Lee on photoconductivity in MOS structures is reinterpreted with losses due to diffusion to the contacts included.

  19. Epitaxial Fe on free-standing GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Mingze; Darbandi, Ali; Majumder, Sarmita; Watkins, Simon; Kavanagh, Karen

    2016-07-01

    Epitaxial Fe contacts have been fabricated onto the top half of free-standing, Te-doped GaAs nanowires (NWs) via electrodeposition. Electrical isolation from the substrate via a polymeric layer enabled the measurement of electrical transport through individual wires. Using a fixed probe within a scanning electron microscope, an average metal-semiconductor diode barrier height of 0.69 ± 0.03 eV (ideality factor 1.48 ± 0.02) was found.

  20. GaAs Optoelectronic Integrated-Circuit Neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H.; Kim, Jae H.; Psaltis, Demetri

    1992-01-01

    Monolithic GaAs optoelectronic integrated circuits developed for use as artificial neurons. Neural-network computer contains planar arrays of optoelectronic neurons, and variable synaptic connections between neurons effected by diffraction of light from volume hologram in photorefractive material. Basic principles of neural-network computers explained more fully in "Optoelectronic Integrated Circuits For Neural Networks" (NPO-17652). In present circuits, devices replaced by metal/semiconductor field effect transistors (MESFET's), which consume less power.

  1. Optical and photoelectric properties of anodic oxide films on GaAs, GaP, and GaAs/sub 0. 6/P/sub 0. 4/

    SciTech Connect

    Kashkarov, P.K.; Obraztsov, A.N.; Sorokin, I.N.; Sosnovskikh, Yu.N.

    1987-03-01

    The authors investigate the optical absorption spectra and the photoconductivities of anodic oxide film based on GaAs, GaP, and GaAs/sub 0.6/P/sub 0.4/ in the range of light energy quanta 2-6.2 eV. Anodic oxide film (AOF) was studied on the surface of single crystals of GaAs and epitaxial layers of p-type Gap and AsAs/sub 0.6/P/sub 0.4/ of the n-type. The structures of the oxides were monitored by electron diffraction. The photoconductivity of the AOF was investigated. The absorption of the AOF in the visible and near-UV ranges was estimated by comparing the spectra of excitation of photoluminescence at 80 K for specimens coated with an AOF and specimens with the AOF removed by etching in HCl.

  2. Semiconductor superlattice photodetectors

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.

    1984-01-01

    A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described.

  3. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  4. Optical correlators with fast updating speed using photorefractive semiconductor materials

    NASA Technical Reports Server (NTRS)

    Gheen, Gregory; Cheng, Li-Jen

    1988-01-01

    The performance of an updatable optical correlator which uses a photorefractive semiconductor to generate real-time matched filters is discussed. The application of compound semiconductors makes possible high-speed operation and low optical input intensities. The Bragg diffraction is considered, along with the speed and power characteristics of these materials. Experimental results on photorefractive GaAs are presented.

  5. Preparation of Hydrogenated Amorphous Silicon and its Characterization by Transient Photoconductivity

    NASA Astrophysics Data System (ADS)

    Walker, Christopher Morgan

    1992-01-01

    Hydrogenated amorphous silicon (a-Si:H) is a semiconductor material that has generated recent widespread interest because of its low manufacturing and processing costs compared with other semiconducting materials. The performance of devices incorporating a-Si:H depends to a large extent on the photoresponse of the a-Si:H. The work in this thesis involves the construction of an a-Si:H plasma-enhanced chemical vapor deposition (PECVD) system, characterization of the quality of the a-Si:H produced by this system, and measurement of the transient photoconductivity in response to pulses of laser illumination with different durations. The relationship of the design of the PECVD system to the quality of the a-Si:H is treated, emphasizing the features included in the system to reduce the incorporation of defects in the a-Si:H layers. These features include an ultra-high-vacuum deposition chamber, a load-lock chamber enabling samples to be loaded under vacuum, and an electrode assembly designed to produce a uniform electric field for decomposing the reactant gases used in the system. The quality of the a-Si:H films is examined. The dark conductivity activation energy, optical absorption, and photoconductivity are measured to characterize intrinsic, p-doped, and n-doped a-Si:H layers. Results from these measurements indicate our system produces good-quality a-Si:H films. The current vs. voltage characteristics under illuminated and dark conditions, and the quantum efficiency are measured on a-Si:H p-i-n diodes made in our system, and the results show that these diodes compare favorably to similar high-quality p-i-n diodes produced at other laboratories. An investigation into the effect of the light-induced degradation associated with a-Si:H on the performance of OASLMs is also presented. Finally, the transient photoresponse to laser pulses ranging in duration from 1 mus to 1 s over a range of temperatures from 100 to 300 K is investigated. We have discovered that the

  6. Semiconductor structure

    NASA Technical Reports Server (NTRS)

    Hovel, Harold J. (Inventor); Woodall, Jerry M. (Inventor)

    1979-01-01

    A technique for fabricating a semiconductor heterostructure by growth of a ternary semiconductor on a binary semiconductor substrate from a melt of the ternary semiconductor containing less than saturation of at least one common ingredient of both the binary and ternary semiconductors wherein in a single temperature step the binary semiconductor substrate is etched, a p-n junction with specific device characteristics is produced in the binary semiconductor substrate by diffusion of a dopant from the melt and a region of the ternary semiconductor of precise conductivity type and thickness is grown by virtue of a change in the melt characteristics when the etched binary semiconductor enters the melt.

  7. Photoconductivities in MoS2 Nanoflake Photoconductors

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Chu; Chen, Ruei-San; Huang, Ying-Sheng

    2016-03-01

    Photoconductivities in molybdenum disulfide (MoS2) layered nanostructures with two-hexagonal crystalline structure prepared by mechanical exfoliation were investigated. The photoconductor-type MoS2 nanoflakes exhibit remarkable photoresponse under the above bandgap excitation wavelength of 532 nm at different optical intensity. The photocurrent responsivity and photoconductive gain of nanoflakes can reach, respectively, 30 AW-1 and 103 at the intensity of 50 Wm-2, which are several orders of magnitude higher than those of their bulk counterparts. The vacuum-enhanced photocurrent and power-independent responsivity/gain indicate a surface-controlled photoconduction mechanism in the MoS2 nanomaterial.

  8. Guiding effect of quantum wells in semiconductor lasers

    SciTech Connect

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N

    2013-05-31

    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  9. Nanostructured donor-acceptor self assembly with improved photoconductivity.

    PubMed

    Saibal, B; Ashar, A Z; Devi, R Nandini; Narayan, K S; Asha, S K

    2014-11-12

    Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly.

  10. Nanostructured donor-acceptor self assembly with improved photoconductivity.

    PubMed

    Saibal, B; Ashar, A Z; Devi, R Nandini; Narayan, K S; Asha, S K

    2014-11-12

    Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly. PMID:25283356

  11. InP and GaAs characterization with variable stoichiometry obtained by molecular spray

    NASA Technical Reports Server (NTRS)

    Massies, J.; Linh, N. T.; Olivier, J.; Faulconnier, P.; Poirier, R.

    1979-01-01

    Both InP and GaAs surfaces were studied in parallel. A molecular spray technique was used to obtain two semiconductor surfaces with different superficial compositions. The structures of these surfaces were examined by electron diffraction. Electron energy loss was measured spectroscopically in order to determine surface electrical characteristics. The results are used to support conclusions relative to the role of surface composition in establishing a Schottky barrier effect in semiconductor devices.

  12. High-power question - Will diamonds be the next GaAs?

    NASA Astrophysics Data System (ADS)

    Manz, Barry

    1988-05-01

    It is shown that, due to the outstanding properties of diamond material, diamond technology offers much promise for microwave power generation. For example, diamond exhibits high dielectric breakdown voltage (10 to the 7th V, 50 times that of conventional semiconductors such as GaAs), high thermal conductivity (20 W/cm per C, which is about four times that of Cu), a low dielectric constant (5.5, half that of GaAs), and high saturated carrier velocity (2.7 times that of GaAs, Si, or InP). Moreover, unlike GaAs, Si, or InP, the saturated carrier velocity of diamond maintains its high rate in electric fields of increasing intensity. However, the process of growing pure thin-film material is still at experimental stages. The approaches used in growing diamond by the laboratories in the U.S, USSR, and Japan are discussed.

  13. Direct Observation of the E_ Resonant State in GaAs1-xBix

    SciTech Connect

    Alberi, Kirstin; Beaton, Daniel A.; Mascarenhas, Angelo

    2015-12-15

    Bismuth-derived resonant states with T2 symmetry are detected in the valence band of GaAs1-xBix using electromodulated reflectance. A doublet is located 42 meV below the valence band edge of GaAs that is split by local strain around isolated Bi impurity atoms. A transition associated with a singlet is also observed just above the GaAs spin orbit split-off band. These states move deeper into the valence band with increasing Bi concentration but at a much slower rate than the well-known giant upward movement of the valence band edge in GaAs1-xBix. Our results provide key new insights for clarifying the mechanisms by which isovalent impurities alter the bandstructure of the host semiconductor.

  14. First principles study of bismuth alloying effects in GaAs saturable absorber.

    PubMed

    Li, Dechun; Yang, Ming; Zhao, Shengzhi; Cai, Yongqing; Feng, Yuanping

    2012-05-01

    First principles hybrid functional calculations have been carried out to study electronic properties of GaAs with Bi alloying effects. It is found that the doping of Bi into GaAs reduces the bandgap due to the intraband level repulsions between Bi induced states and host states, and the Bi-related impurity states originate from the hybridization of Bi-6p and its nearest As-4p orbitals. With the increase of Bi concentration in GaAs, the bandgap decreases monotonously. The calculated optical properties of the undoped and Bi-doped GaAs are similar except the shift toward lower energy of absorption edge and main absorption peaks with Bi doping. These results suggest a promising application of GaBi(x)As(1-x) alloy as semiconductor saturable absorber in Q-switched or mode-locked laser.

  15. Performance analysis of undoped cylindrical gate all around (GAA) MOSFET at subthreshold regime

    NASA Astrophysics Data System (ADS)

    Jena, B.; Pradhan, K. P.; Dash, S.; Mishra, G. P.; Sahu, P. K.; Mohapatra, S. K.

    2015-09-01

    In this work the sensitivity of process parameters like channel length (L), channel thickness (tSi), and gate work function (φM) on various performance metrics of an undoped cylindrical gate all around (GAA) metal-oxide-semiconductor field effect transistor (MOSFET) are systematically analyzed. Undoped GAA MOSFET is a radical invention as it introduces a new direction for transistor scaling. In conventional MOSFET, generally the channel doping concentration is very high to provide high on-state current, but in contrary it causes random dopant fluctuation and threshold voltage variation. So, the undoped nature of GAA MOSFET solves the above complications. Hence, we have analyzed the electrical characteristics as well as the analog/RF performances of undoped GAA MOSFET through Sentaurus device simulator.

  16. In situ studies of transient photoconductivity in PbSe quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Jianbo; Koh, Weon-Kyu; Makarov, Nikolay; Pietryga, Jeffrey; Klimov, Victor

    2014-03-01

    PbSe quantum dot (QD) solar cells have attracted significant interest due to their band gap tunability, easy-processing and flexibility. Efficiencies have risen from 1% just a few years ago to nearly 9% today. Furthermore, the novel concept of multiple exciton generation (MEG) resulting from quantum confinement makes these materials scientifically interesting counterparts to bulk semiconductors. Recent observations of more than 100% external quantum efficiency in PbSe QD solar cells confirm direct relevance of MEG to practical photovoltaics. However, in order to take full advantage of this effect, one needs a better understanding of photogeneration dynamics and carrier transport in QD solar cells. In this talk, we discuss a new technique for in situ measurements of transient photoconductivity with fast response time (<50 ps) applied to study carrier transport and photogeneration dynamics in PbSe QD solar cells. These measurements complement traditional photoconductivity techniques such as time-resolved microwave conductivity and time-of-flight. Based on the analysis of temperature, excitation wavelength and electrical field dependence measurements, we derive parameters such as MEG efficiency, carrier lifetime, trap-free mobility and carrier emission rate from trap states.

  17. Transport and photoconduction characteristics of metal-graphene-4H-SiC(0001) heterojunction devices

    SciTech Connect

    Hosseini, T.; Kouklin, N.; Tomer, D.; Rajput, S.; Li, L.

    2014-12-01

    Vertically integrated graphene-semiconductor systems remain of significant technological importance for their promise to captivate new device physics and propel the development of advanced carbon-based opto-electronic devices. In this study, we carry out a series of bias-dependent transport, gate-dependent transport, and photoconduction measurements to probe the opto-electronic characteristics of metal-graphene-4H-SiC (0001) (Si-face) heterojunctions. The forward bias transport is found to deviate strongly from thermionic emission one as being controlled by the device circuitry and minority carrier injection mechanisms. An improved analytical model is offered and used to extract key junction parameters including series resistance of ∼80 kΩ, interface barrier height of ∼0.6 eV, and ideality factor of ∼6.1. The results of the photocurrent tests point to a light-assisted minority carrier injection as a key mechanism behind the photoconductive gain obtained in the devices subject to a weak, sub-bandgap cw-excitation.

  18. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.

    PubMed

    Lee, Chao-Kuei; Yang, Chan-Shan; Lin, Sung-Hui; Huang, Shiuan-Hua; Wada, Osamu; Pan, Ci-Ling

    2011-11-21

    Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed. PMID:22109395

  19. Photoconductivity and photoconversion at a photorefractive thin crystal plate

    NASA Astrophysics Data System (ADS)

    Frejlich, Jaime; de Oliveira, Ivan; de Araujo, William R.; Carvalho, Jesiel F.; Montenegro, Renata; Georges, Marc; Fleury-Frenette, Karl

    2016-05-01

    We report on the photoconductivity and the photoelectric conversion measured on a thin photorefractive sillenite crystal plate, between transparent electrodes, in the longitudinal configuration where the current is measured along the same direction of the light beam through the sample. Its behavior is based on the already reported light-induced Schottky effect. The wavelength for optimal photoconductivity is determined. A specific parameter is formulated here for quantitatively determining the photoelectric conversion efficiency of the sandwiched material.

  20. Growth of single GaAs nanowhiskers on the tip of a tungsten needle and their electrical properties

    SciTech Connect

    Golubok, A. O.; Samsonenko, Yu. B.; Mukhin, I. S. Buravlev, A. D.; Cirlin, G. E.

    2011-08-15

    A method for the formation of single GaAs semiconductor nanowhiskers and their assemblies on the tip of a chemically etched tungsten needle by molecular-beam epitaxy is proposed. The focused-ionbeam technique was used to separate a single nanowhisker. Electronic properties of single nanowhiskers were studied by elastic tunneling spectroscopy in ultrahigh vacuum. The band gap and the doping level of GaAs whiskers were determined using the current-voltage characteristics obtained from these measurements.

  1. Steady-state photoconductivity of amorphous (As4S3Se3)1-x:Snx films

    NASA Astrophysics Data System (ADS)

    Iaseniuc, O. V.; Iovu, M. S.; Cojocaru, I. A.; Prisacar, A. M.

    2015-02-01

    Amorphous arsenic trisulfide (As2S3) and arsenic triselenide (As2Se3) are among widely investigated amorphous materials due to its interesting electrical, optical and photoelectrical properties. In order to improve the physical properties and recording characteristics, and to extend the spectral range of photosensibility, a special interest represents the mixed amorphous materials, like (As2S3):(As2Se3). Chalcogenide vitreous semiconductors (ChVS) of the As-S-Se system exhibit photostructural transformations with reversible and irreversible properties, and are promising materials as registration media for holography and optical information, for fabrication of diffractive elements, and other optoelectronic applications. Because many optoelectronic devices on amorphous semiconductors are based on the photoconductivity effect, special interests represent investigation of the stationary and non-stationary characteristics of photoconductivity. In this paper the experimental results of steady-state photoconductivity and holographic characteristics of amorphous (As4S3Se3)1-x:Snx thin films are presented. It was shown that the photoconductivity spectra depend on the polarity on the top illuminated electrode and on the Sn concentration in the host glass. The photosensitivity of amorphous ((As4S3Se3)1-x:Snx thin films is almost constant for all Sn-containing glasses. The Moss rule was used for determination of the optical forbidden gap Eg from the photoconductivity spectra. It was demonstrated that the investigated amorphous films are sensitive to the light irradiation and can be used as effective registration media for holographic information. The relaxation of photodarkening in amorphous (As4S3Se3)1-x:Snx thin films was investigated and was shown that the relaxation curves of transmittance T/T0 = f(t) can be described the stretch exponential function T(t)/T(0) = A0+Aexp[-(t-t0)/τ] (1-β) . The kinetics of diffraction efficiency growth η(t) was measured by registration of

  2. Specific features of the spectra and relaxation kinetics of long-wavelength photoconductivity in narrow-gap HgCdTe epitaxial films and heterostructures with quantum wells

    SciTech Connect

    Rumyantsev, V. V. Ikonnikov, A. V.; Antonov, A. V.; Morozov, S. V.; Zholudev, M. S.; Spirin, K. E.; Gavrilenko, V. I.; Dvoretskii, S. A.; Mikhailov, N. N.

    2013-11-15

    The spectra and relaxation kinetics of interband photoconductivity are investigated in narrow-gap Hg{sub 1-x}Cd{sub x}Te epitaxial films with x = 0.19-0.23 and in structures with HgCdTe-based quantum wells (QWs), having an interband-transition energy in the range of 30-90 meV, grown by molecular-beam epitaxy on GaAs (013) substrates. A long-wavelength sensitivity band caused by impurities or defects is found in the spectra of the structures with quantum wells in addition to the interband photoconductivity. It is shown that the lifetimes of nonequilibrium carriers in the structures with QWs is less than in bulk samples at the same optical-transition energy. From the measured carrier lifetimes, the ampere-watt responsivity and the equivalent noise power for a film with x = 0.19 at a wavelength of 19 {mu}m are estimated. When investigating the relaxation kinetics of the photoconductivity at 4.2 K in high excitation regime, it is revealed that radiative recombination is dominant over other mechanisms of nonequilibrium-carrier recombination.

  3. Visible-light photoconductivity of Zn1-xCoxO and its dependence on Co2+ concentration

    SciTech Connect

    Johnson, Claire A.; Cohn, Alicia; Kaspar, Tiffany C.; Chambers, Scott A.; Salley, G. Mackay; Gamelin, Daniel R.

    2011-09-06

    Many metal oxides investigated for solar photocatalysis or photoelectrochemistry have band gaps that are too wide to absorb a sufficient portion of the solar spectrum. Doping with impurity ions has been extensively explored as a strategy to sensitize such oxides to visible light, but the electronic structures of the resulting materials are frequently complex and poorly understood. Here, we report a detailed photoconductivity investigation of the wide-gap II-VI semiconductor ZnO doped with Co2+ (Zn1-xCoxO), which responds to visible light in photoelectrochemical and photoconductivity experiments and thus represents a well-defined model system for understanding dopant-sensitized oxides. Variable-temperature scanning photoconductivity measurements have been performed on high-structural-quality Zn1-xCoxO epitaxial films to examine the relationship between dopant concentration (x) and visible-light photoconductivity, with particular focus on mid-gap d-d photoactivity. Excitation into the intense 4T1(P) d-d band at ~2.0 eV (620 nm) leads to Co2+/3+ ionization with a quantum efficiency that increases with decreasing cobalt concentration and increasing sample temperature. Both spontaneous and thermally assisted ionization from the Co2+ d-d excited state are found to become less effective as x is increased, attributed to an increasing conduction-band-edge potential. These trends counter the increasing light absorption with increasing x, explaining the experimental maximum in external photon-to-current conversion efficiencies at values well below the solid solubility of Co2+ in ZnO.

  4. Spin-Resolved Electronic Structure of Ultrathin Epitaxial Fe Films on Vicinal and Singular GaAs(100) Substrates

    SciTech Connect

    Morton, S A; Waddill, G D; Spangenberg, M; Seddon, E A; Neal, J; Shen, T; Tobin, J G

    2003-03-10

    Recently there has been considerable interest in the study of spin injection at ferromagnetic semiconductor heterojunctions and ferromagnetic metal--semiconductor contacts. Studies of ntype semiconductors have demonstrated spin-coherent transport over large distances5 and the persistence of spin coherence over a sizeable time scale. Clearly such investigations have been stimulated by the potential of the development of ''spintronics'', electronic devices utilizing the information of the electron spin states. To understand and improve the magnetic properties of ultrathin Fe films on GaAs has been the aim of many research groups over recent years. The interest in this system has both technological and fundamental scientific motivations. Technologically, Fe on GaAs may serve to realize spin electronic devices. From a fundamental science point of view, Fe on GaAs serves as a prototype for studies of the interplay between the crystalline structure and morphology of an ultrathin film, its electronic structure and the long range magnetic order it exhibits. Furthermore, it is well known that an oxidized Cs layer on GaAs substantially alters the work-function of the GaAs surface, which plays a very important role in the application of GaAs as a spin polarized electron source.

  5. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts.

    PubMed

    Li, Liang; Auer, Erwin; Liao, Meiyong; Fang, Xiaosheng; Zhai, Tianyou; Gautam, Ujjal K; Lugstein, Alois; Koide, Yasuo; Bando, Yoshio; Golberg, Dmitri

    2011-03-01

    We designed solar-blind deep-ultraviolet semiconductor photodetectors using individual Ga2O3 nanobelts. The photoconductive behavior was systematically studied. The photodetectors demonstrate high selectivity towards 250 nm light, fast response times of less than 0.3 s, and a large photocurrent to dark current ratio of up to 4 orders of magnitude. The photoresponse parameters such as photocurrent, response time, and quantum efficiency depend strongly on the intensity of light, the detector environment, and the nanobelt size. The photoresponse mechanism was discussed, which was mainly attributed to the band bending, surface traps, and distribution of traps in the bandgap. Present Ga2O3 nanobelts can be exploited for future applications in photo sensing, light-emitting diodes, and optical switches.

  6. Photoconductivity of composites based on CdSe quantum dots and low-band-gap polymers

    NASA Astrophysics Data System (ADS)

    Dayneko, Sergey; Linkov, Pavel; Martynov, Igor; Tameev, Alexey; Tedoradze, Marine; Samokhvalov, Pavel; Nabiev, Igor; Chistyakov, Alexander

    2016-05-01

    Photoconductivity of thin layers prepared by spin coating of blends of CdSe quantum dots (QDs) and a low-band-gap polymer PCDTBT or PTB7 has been studied. It has been found that photocurrent in the composites containing QDs of 10-nm in size is significantly higher than in those of containing 5-nm QDs. Analysis of the results showed that the photoresponse of the thin layers is mainly determined by the relative positions of the frontier energy levels of the materials used, organic semiconductors and QDs. Therefore, the ability to tune the relative positions of these levels by varying the QD size is of special importance, thus allowing the optimization of photodetectors and photovoltaic cells.

  7. Photoconductive response in organic charge transfer interfaces with high quantum efficiency.

    PubMed

    Alves, Helena; Pinto, Rui M; Maçôas, Ermelinda S

    2013-01-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications, such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior improved performance when compared with materials in a more disordered form. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. Here we report the first example of photoconductive behaviour of single-crystal charge-transfer interfaces. The system composed of rubrene and 7,7,8,8-tetracyanoquinodimethane presents a responsivity reaching 1 AW(-1), corresponding to an external quantum efficiency of nearly 100%. This result opens the possibility of using organic single-crystal interfaces in photonic applications. PMID:23673627

  8. Oxygen-enhanced wet thermal oxidation of GaAs

    NASA Astrophysics Data System (ADS)

    Bauters, J. F.; Fenlon, R. E.; Seibert, C. S.; Yuan, W.; Plunkett, J. S. B.; Li, J.; Hall, D. C.

    2011-10-01

    An oxygen-enhanced wet thermal oxidation process is used to grow smooth, uniform, insulating native oxides of GaAs. At 420 °C, a maximum linear growth rate of 4.8 nm/min is observed for oxidation in water vapor with 2000 ppm O2 added relative to the N2 carrier gas, with growth ceasing by 7000 ppm. Films as thick as 800 nm with surface roughness as low as 0.2 nm are demonstrated. In fabricated metal-oxide-semiconductor capacitors, a 412 nm thick native oxide film exhibits a factor of ˜2700 reduction in leakage current density at 1 V relative to a direct metal (Au:Ti) to GaAs contact.

  9. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  10. Pressure-dependent studies of the DX centre in Si- and Sn-doped n +GaAs

    NASA Astrophysics Data System (ADS)

    Portal, J. C.; Maude, D. K.; Foster, T. J.; Eaves, L.; Dmowski, L.; Nathan, M.; Heiblum, M.; Harris, J. J.; Beall, R. B.; Simmonds, P. E.

    Shubnikov-de Haas and persistent photoconductivity measurements are used to study the effect of hydrostatic pressure on the free electron concentration, mobility, and the occupancy of the DX centre in MBE grown n +GaAs heavily doped with either Si or Sn. The results show that the DX centre produces a resonant donor level between the Γ- and L- conduction band minima at a concentration comparable with the doping level. The position and occupancy of the DX centre are calculated using Fermi-Dirac statistics. For the Si-doped samples comparison with local vibrational mode measurements indicate that the DX level can be identified with Si Ga.

  11. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    SciTech Connect

    Juang, Bor-Chau Laghumavarapu, Ramesh B.; Foggo, Brandon J.; Lin, Andrew; Simmonds, Paul J.; Liang, Baolai; Huffaker, Diana L.

    2015-03-16

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAs substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.

  12. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  13. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, Rex; Pocha, Michael D.

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  14. Dynamics of the cascade capture of electrons by charged donors in GaAs and InP

    NASA Astrophysics Data System (ADS)

    Aleshkin, V. Ya.; Gavrilenko, L. V.

    2016-08-01

    The times for the cascade capture of an electron by a charged impurity have been calculated for pulsed and stationary excitations of impurity photoconductivity in GaAs and InP. The characteristic capture times under pulsed and continuous excitations are shown to differ noticeably both from each other and from the value given by the Abakumov-Perel-Yassievich formula for a charged impurity concentration greater than 1010 cm-3. The cause of this difference has been established. The Abakumov-Perel-Yassievich formula for the cascade capture cross section in the case of stationary excitation has been generalized. The dependences of the cascade capture rate on the charged impurity concentration in GaAs and InP have been found for three temperatures in the case of pulsed excitation.

  15. Vectorial photocurrents and photoconductivity in metalized chloroplasts

    SciTech Connect

    Greenbaum, E. )

    1990-08-09

    A novel photobiophysical phenomenon was observed in isolated spinach chloroplasts that were metalized by precipitating colloidal platinum onto the surface of the thylakoid membranes. A two-point irradiation and detection system was constructed in which a continuous-beam helium-neon laser ({lambda} = 632.8 nm) was used to irradiate the platinized chloroplasts at varying perpendicular distances (Figure 1) from a single linear platinum electrode in pressure contact with the platinized chloroplasts. No external voltage bias was applied to the system. The key objective of the experiments reported in this report was to measure the relative photoconductivity of the chloroplast-metal composite matrix. Unlike conventional photosynthetic electrochemical cells, in which irradiated chloroplasts are in close proximity to an electrode or linked to the electrode by an electrode-active mediator, the flow of photocurrent was through the biocomposite material. A sustained steady-state vectorial flow of current in the plane of the entrapped composite from the point of laser irradiation to the wire electrode was measured.

  16. Study on Nonlinear Absorption Effect of Nanosecond Pulse Laser Irradiation for GaAs.

    PubMed

    Sun, Wenjun; Liu, Zhongyang; Zhou, Haijiao

    2016-04-01

    In order to research nonlinear absorption effect of pulse laser irradiation for GaAs, a physical model of Gaussian distribution pulse laser irradiation for semiconductor material was established by software COMSOL Multiphysics. The thermal effects of semiconductor material GaAs was analyzed under irradiation of nanosecond pulse laser with wavelength of 1064 nm. The radial and transverse temperature distribution of semiconductor material GaAs was calculated under irradiation of nanosecond pulse laser with different power density by solving the thermal conduction equations. The contribution of one-photon absorption, two-photon absorption and free carrier absorption to temperature of GaAs material were discussed. The results show that when the pulse laser power density rises to 10(10) W/cm2, free carrier absorption played a leading role and it was more than that of one-photon absorption of material. The temperature contribution of two-photon absorption and free carrier absorption could be ignored at laser power density lower than 10(8) W/cm2. The result is basically consistent with relevant experiments, which shows that physical model constructed is valid. PMID:27451733

  17. Study on Nonlinear Absorption Effect of Nanosecond Pulse Laser Irradiation for GaAs.

    PubMed

    Sun, Wenjun; Liu, Zhongyang; Zhou, Haijiao

    2016-04-01

    In order to research nonlinear absorption effect of pulse laser irradiation for GaAs, a physical model of Gaussian distribution pulse laser irradiation for semiconductor material was established by software COMSOL Multiphysics. The thermal effects of semiconductor material GaAs was analyzed under irradiation of nanosecond pulse laser with wavelength of 1064 nm. The radial and transverse temperature distribution of semiconductor material GaAs was calculated under irradiation of nanosecond pulse laser with different power density by solving the thermal conduction equations. The contribution of one-photon absorption, two-photon absorption and free carrier absorption to temperature of GaAs material were discussed. The results show that when the pulse laser power density rises to 10(10) W/cm2, free carrier absorption played a leading role and it was more than that of one-photon absorption of material. The temperature contribution of two-photon absorption and free carrier absorption could be ignored at laser power density lower than 10(8) W/cm2. The result is basically consistent with relevant experiments, which shows that physical model constructed is valid.

  18. Investigation of the optical and electrical properties of p-type porous GaAs structure

    NASA Astrophysics Data System (ADS)

    Saghrouni, H.; Missaoui, A.; Hannachi, R.; Beji, L.

    2013-12-01

    Porous GaAs layers have been formed by electrochemical anodic etching of (1 0 0) heavily doped p-type GaAs substrate in a HF:C2H5OH solution. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-structural nature of the porous layer has been demonstrated by X-ray diffraction analysis (XRD) and confirmed by AFM. An estimation of the main size of the GaAs crystallites obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results. The porous p-GaAs samples are characterised by spectroscopic ellipsometry and modulation spectroscopy techniques. The objective of this study is to determine the porosity, refractive index, and thickness. The porosity of GaAs determined by atomic force microscopy confirmed by the value obtained from the spectroscopic ellipsometry. In fact the current-voltage I(V) characteristics of metal-semiconductor Au/p-GaAs are investigated and compared with Au/p-porous GaAs structures. From the forward bias I(V) characteristics of these devices, the main electrical parameters such as ideality factor, barrier height, and series resistance have been determined.

  19. Semiconductor nanocrystals photosensitize C60 crystals.

    PubMed

    Biebersdorf, Andreas; Dietmüller, Roland; Susha, Andrei S; Rogach, Andrey L; Poznyak, Sergey K; Talapin, Dmitri V; Weller, Horst; Klar, Thomas A; Feldmann, Jochen

    2006-07-01

    Semiconductor nanocrystals (SCNCs) made of CdSe, CdTe, and InP are used to photosensitize needlelike C(60) crystals. The photocurrent is increased by up to 3 orders of magnitude as compared with C(60) crystals without SCNCs. The photocurrent spectrum can be tuned precisely by the SCNC size and material, rendering the SCNC-functionalized C(60) crystals an excellent material for spectrally tuneable photodetectors. We explain the increased photocurrent as a result of photoexcited electrons transferring from the SCNCs to the C(60) crystals and causing photoconductivity, while the complementary holes remain trapped in the SCNCs.

  20. New developments in photoconductive detectors (invited)

    SciTech Connect

    Han, S.

    1997-01-01

    Nearly ideal for detecting ionizing radiation, wide band-gap semiconductors present a possibility of having outstanding radiation hardness, fast charge collection, and low leakage current that will allow them to be used in high radiation, high temperature, and chemically aggressive environments. Over the past few years, the improvements in the electrical quality of wide band-gap semiconductors have progressed enormously. One particular wide band-gap semiconductor, diamond, has properties that may be ideal for radiation detection. Since the discovery of low pressure and low temperature deposition of diamond, the possibility of large area diamond films has become a reality. Over the past few years, great progress has been made in advancing the electrical quality of chemical-vapor-deposited (CVD) diamond. Presently, unprecedented diamond wafer size of 7 in. diam is possible. Due to both the present electrical quality and the available size, the utilization of diamond in radiation detection applications is not just a dream but a reality. The progression of CVD diamond{close_quote}s electrical properties in the last few years will be presented along with what is currently possible. Applications of CVD diamond for the National Ignition Facility (NIF) diagnostics will be reviewed. In addition, a brief review concerning other possible wide band-gap semiconductors for ICF diagnostics will be presented. {copyright} {ital 1997 American Institute of Physics.}

  1. Shallow-Lever Centers in Semiconductors - Proceedings of the 7th International Conference

    NASA Astrophysics Data System (ADS)

    Ammerlaan, C. A. J.; Pajot, B.

    1997-04-01

    Quantum Well Structures Grown by MBE * Shallow Centers in Heavily Doped Silicon Quantum Wells * Optically Detected Resonance Spectroscopy of III-V and II-VI Quantum Wells * Shallow Thermal Donor Defects in Silicon * Pressure Dependence of Se Absorption Lines in AlSb * Fine Structure in the Magnetic Resonance of Single Acceptors in Silicon * Far-Infrared Photoconductivity and Photoluminescence of Beryllium in Gallium Arsenide * Shift of Photoluminescence Peak in Highly Self-Compensated Ge-Doped GaAs * Electron-Phonon Coupling in a Delta-Doped n-i-p Structure in GaAs * Group-III and Group-II Quasi-Deep Impurities in Silicon Carbide: Electron Paramagnetic Resonance and Optically Detected Magnetic Resonance Studies * Resonance Acceptor States in Uniaxially Strained Semiconductors * Donor-Related Infrared-Absorption Spectra of GaAs-(Ga, Al)As Quantum Wells * Electrical Properties of Shallow Donor Centers Formed Due to Oxygen Interaction with Chemically Active Impurities in Heat-Treated Silicon * Fine Structure and Higher Lying Transitions of Er3+ in 4H and 6H SiC * Mechanism for the Enhanced Dissociation of C-H Complexes in GaAs * Bistability and Metastability of Hydrogen in Si * EPR of Aluminum-Aluminum Interstitial Pair in Silicon * Magnetic Order of Shallow Acceptor Centres in Semiconductors (InSb:Mn) * Luminescence and DLTS Study of Photonuclear Transmutation Doped (PND) Gallium Arsenide * Photoluminescence of Deformed Bulk Crystals of Si-Ge Alloy * Di-Oxygen Complex in Silicon: Some New Characteristic Features * Reactions of Interstitial Iron with Shallow Acceptors in Silicon * The 819.8 meV Photoluminescence Band in Copper Doped Silicon * Zeeman Spectroscopy of Aluminium in Germanium * Microscopic Studies of the Hydrogen Passivation in n-Type Silicon: A New Application of the 73As γ-e- PAC Technique * Shallow Donor Solubility Mechanism: Tellurium in GaAs * Energy Levels of Shallow Donor Pairs and Thermal Double Donors in Silicon * Boron Neutralization by Hydrogen in

  2. Single crystal and polycrystalline GaAs solar cells using AMOS technology

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1976-01-01

    A description is given of current technology for fabricating single AMOS (antireflection-coated metal oxide semiconductor) solar cells, with attention given to thermal, plasma, and anodic oxidation, native oxide stripping, and X-ray photoelectron spectroscopy results. Some preliminary results are presented on the chemistry and electrical characterization of such cells, and the characteristics of cells fabricated on sliced polycrystalline GaAs wafers are examined. Consideration is also given to the recrystallization of evaporated Ge films for use as low-cost substrates for polycrystalline GaAs solar cells.

  3. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    NASA Astrophysics Data System (ADS)

    di Mario, Lorenzo; Turchini, Stefano; Zamborlini, Giovanni; Feyer, Vitaly; Tian, Lin; Schneider, Claus M.; Rubini, Silvia; Martelli, Faustino

    2016-11-01

    We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  4. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Abere, Michael J.; Torralva, Ben; Yalisove, Steven M.

    2016-04-01

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350-400 nm tall and ˜90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  5. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    NASA Astrophysics Data System (ADS)

    Zhuang, Shendong; Chen, Yan; Xia, Yidong; Tang, Nujiang; Xu, Xiaoyong; Hu, Jingguo; Chen, Zhuo

    2016-04-01

    Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  6. Lateral photoconductivity in structures with Ge/Si quantum dots

    SciTech Connect

    Panevin, V. Yu. Sofronov, A. N.; Vorobjev, L. E.; Firsov, D. A.; Shalygin, V. A.; Vinnichenko, M. Ya.; Balagula, R. M.; Tonkikh, A. A.; Werner, P.; Fuhrman, B.; Schmidt, G.

    2013-12-15

    The spectra of lateral photoconductivity and optical absorption caused by the intraband optical transitions of holes in Ge/Si quantum dots are studied at different lattice temperatures. Polarization-dependent spectral features related to the transitions of holes from the quantum dot (QD) ground state are revealed in the optical spectra. Temperature photoconductivity quenching caused by the reverse trapping of nonequilibrium free holes by the QD bound state is observed. The obtained experimental data make it possible to determine the height of the surface band bending at the QD heterointerface.

  7. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    SciTech Connect

    Chemla, D.S.

    1993-06-30

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells.

  8. Electron Spin Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-07-15

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  9. Large electroabsorption susceptibility mediated by internal photoconductive gain in Ge nanowires.

    PubMed

    Lee, Hyun-Seung; Kim, Cheol-Joo; Lee, Donghun; Lee, Ru Ri; Kang, Kibum; Hwang, Inchan; Jo, Moon-Ho

    2012-11-14

    Large spectral modulation in the photon-to-electron conversion near the absorption band-edge of a semiconductor by an applied electrical field can be a basis for efficient electro-optical modulators. This electro-absorption effect in Group IV semiconductors is, however, inherently weak, and this poses the technological challenges for their electro-photonic integration. Here we report unprecedentedly large electro-absorption susceptibility at the direct band-edge of intrinsic Ge nanowire (NW) photodetectors, which is strongly diameter-dependent. We provide evidence that the large spectral shift at the 1.55 μm wavelength, enhanced up to 20 times larger than Ge bulk crystals, is attributed to the internal Franz-Keldysh effect across the NW surface field of ~10(5) V/cm, mediated by the strong photoconductive gain. This classical size-effect operating at the nanometer scale is universal, regardless of the choice of materials, and thus suggests general implications for the monolithic integration of Group IV photonic circuits.

  10. Preparation of hydrogenated amorphous silicon and its characterization by transient photoconductivity

    SciTech Connect

    Walker, C.M.

    1992-12-31

    Hydrogenated amorphous silicon (a-Si:H) is a semiconductor material that has generated recent widespread interest because of its low manufacturing and processing costs compared with other semiconducting materials. The performance of devices incorporating a-Si:H depends to a large extent on the photoresponse of the a-Si:H. The work in this thesis involves the construction of an a-Si:H plasma-enhanced chemical vapor deposition (PECVD) system, characterization of the quality of the a-Si:H produced by this system, and measurement of the transient photoconductivity n response to pulses of laser illumination with different durations. The relationship of the design of the PECVD system to the quality of the a-Si:H is treated, emphasizing the features included in the system to reduce the incorporation of defects in the a-Si:H layers. These features include an ultra-high-vacuum deposition chamber, a load-lock chamber enabling samples to be loaded under vacuum, and an electrode assembly designed to produce a uniform electric field for decomposing the reactant gases. The quality of the A-Si:H films is examined. The dark conductivity activation energy, optical absorption, and photoconductivity are measured to characterize intrinsic, p-doped, and n-doped a-Si:H layers. The current vs. voltage characteristics under illuminated and dark conditions, and the quantum efficiency are measured on a-Si:H p-i-n diodes made in our system, and the results show that these diodes compare favorably to similar high-quality p-i-n diodes produced at other laboratories. An investigation into the effect of the light-induced degradation associated with a-Si:H on the performance of OASLMs is also presented. Finally, the transient photoresponse to laser pulses ranging in duration from 1 {mu}s to 1 s over a range of temperatures from 100 to 300 K is investigated. We have discovered that the response time of the initial photoconductivity decay increases as the excitation-pulse duration increases.

  11. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2016-08-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  12. Coexistence of electron-glass phase and persistent photoconductivity in GeSbTe compounds

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2015-03-01

    It is demonstrated that persistent photoconductivity (PPC), well studied in lightly-doped semiconductors, is observable in GeSbTe compounds using infrared excitation at cryogenic temperatures. The low levels of energy flux necessary to induce an appreciable effect seems surprising given the high carrier concentration n of these ternary alloys (n >1020cm-3 ). On the other hand, their high density of carriers makes GeSbTe films favorable candidates for exhibiting intrinsic electron-glass effects with long relaxation times. These are indeed observed in GeSbTe thin films that are Anderson-localized. In particular, a memory dip is observed in samples with sheet resistances larger than ≈105Ω at T ≈4 K with similar characteristics as in other systems that exhibit intrinsic electron-glass effects. Persistent photoconductivity, however, is observable in GeSbTe films even for sheet resistances of the order of 103Ω , well below the range of disorder required for observing electron-glass effects. These two nonequilibrium phenomena, PPC and electron glass, are shown to be of different nature in terms of other aspects as well. In particular, their relaxation dynamics is qualitatively different; the excess conductance Δ G associated with PPC decays with time as a stretched exponential whereas a logarithmic relaxation law characterizes Δ G (t ) of all electron glasses studied to date. Surprisingly, the magnitude of the memory dip is enhanced when the system is in the PPC state. This counter-intuitive result may be related to the compositional disorder in these materials extending over mesoscopic scales. Evidence in support of this scenario is presented and discussed.

  13. High photon extraction efficiency from GaAs pillar with InAs quantum dots embedded in Niobium

    NASA Astrophysics Data System (ADS)

    Kato, Daimotsu; Idutsu, Yasuhiro; Takada, Makoto; Ito, Saki; Sato, Hiroyasu; Huh, Jae-Hoon; Ida, Sotaro; Sasakura, Hirotaka; Kumano, Hidekazu; Suemune, Ikuo

    2009-08-01

    We studied the novel structure for improving the emission properties of semiconductor light sources both theoretically and experimentally. The proposed structure is a semiconductor pillar buried in a metal except for one end surface of the pillar. Photons are extracted only from the air-exposed surface. The structure consists of the GaAs nanopillar structures embedded in metal and is analyzed by the finite-difference-time-domain method. InAs quantum dots buried in a GaAs pillar are assumed to be the photon emitters. Simulations are performed on GaAs pillars with different diameters buried in Niobium. Consequently, the simulation showed 75% light extraction efficiency from the pillar to air with the optimization of the structure. In addition, we experimentally measured photoluminescence intensities of up to 40 times enhancement in embedded structures compared to normal pillar structure. These are promising for future applications to overcome single photon sources.

  14. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures. PMID:27008537

  15. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.

  16. Mössbauer studies with radioactive probes in semiconductors

    NASA Astrophysics Data System (ADS)

    Langouche, G.

    1994-12-01

    The extreme sensitivity of Mössbauer spectroscopy to the local atomic and electronic configuration around Mössbauer probes is demonstrated in a number of recent defect configuration studies in semiconductors. The DX-center formation at Te and Sn donor atoms in GaAs is discussed, as well as the behavior of Co and Fe transition metal atoms in Si.

  17. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  18. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels.

    PubMed

    Gogurla, Narendar; Sinha, Arun K; Naskar, Deboki; Kundu, Subhas C; Ray, Samit K

    2016-04-14

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms. PMID:26996157

  19. Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures

    NASA Astrophysics Data System (ADS)

    Tsuruta, Shuichi; Takeuchi, Hideo; Yamada, Hisashi; Hata, Masahiko; Nakayama, Masaaki

    2013-04-01

    We have investigated the characteristics of monochromatic terahertz electromagnetic waves emitted from coherent longitudinal optical (LO) phonons in undoped GaAs/n-type GaAs epitaxial structures with various thicknesses, which range from 200 nm to 1200 nm, of the undoped GaAs layer. The terahertz waves were measured at room temperature using an optical gating method with a photoconductive dipole antenna. It was found that the intensity of the terahertz waves markedly depends on the thickness of the undoped GaAs layer. The analysis of Franz-Keldysh oscillations observed with photoreflectance spectroscopy demonstrates that the built-in electric field strength in the undoped GaAs layer, which results from the Fermi-level pinning at the surface, increases from 6.1 kV/cm to 28.4 kV/cm with a decrease in the thickness. It was revealed that the amplitude of the terahertz wave is proportional to the electric field strength in the undoped GaAs layer. This fact indicates that the efficiency of the terahertz radiation is dominated by the initial polarization of the LO phonons induced by the built-in electric field, which provides us a simple strategy for the enhancement of the terahertz radiation from the coherent LO phonons.

  20. The development and characterization of neutron-damaged GaAs x-ray detectors

    SciTech Connect

    Springer, P.T.

    1988-09-09

    Photoconductive x-ray detectors are becoming an important x-ray diagnostic as a result of their small size, fast response time, and high sensitivity. We are developing a discrete array of neutron- damaged GaAs detectors to be used in an imaging x-ray spectrometer, and we describe herein the techniques we use to fabricate and characterize them for an upcoming experiment. Using a 225-ps x-ray pulse from a laser-produced plasma, we measured the sensitivity and time response of the detectors to be 7.1 mA/W and on the order of 150 ps FWHM, respectively. The carrier mobility is 741 cm/sup 2//V/center dot/s at a bias of 2 /times/ 10/sup 4/V/cm. 6 figs.

  1. Nano-cones Formed on a Surface of Semiconductors by Laser Radiation: Technology, Model and Properties

    NASA Astrophysics Data System (ADS)

    Medvid', A.; Onufrijevs, P.

    2011-12-01

    The new laser method for nanostructures formation on a surface of semiconductors Si, Ge, GaAs and SiGe, CdZnTe solid solutions is proposed. For the first time was shown the possibility of graded band gap structure formation in elementary semiconductors. Thermogradient effect has a main role in initial stage of nano-cones and graded band gap structure formation by laser radiation in semiconductors.

  2. Growth and properties of crystalline barium oxide on the GaAs(100) substrate

    SciTech Connect

    Yasir, M.; Dahl, J.; Lång, J.; Tuominen, M.; Punkkinen, M. P. J.; Laukkanen, P. Kokko, K.; Kuzmin, M.; Korpijärvi, V.-M.; Polojärvi, V.; Guina, M.

    2013-11-04

    Growing a crystalline oxide film on III-V semiconductor renders possible approaches to improve operation of electronics and optoelectronics heterostructures such as oxide/semiconductor junctions for transistors and window layers for solar cells. We demonstrate the growth of crystalline barium oxide (BaO) on GaAs(100) at low temperatures, even down to room temperature. Photoluminescence (PL) measurements reveal that the amount of interface defects is reduced for BaO/GaAs, compared to Al{sub 2}O{sub 3}/GaAs, suggesting that BaO is a useful buffer layer to passivate the surface of the III-V device material. PL and photoemission data show that the produced junction tolerates the post heating around 600 °C.

  3. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations N D of GaAs nanowires are found to vary from 7 × 1017 cm-3 to 2 × 1018 cm-3. The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  4. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  5. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.

    PubMed

    Lee, Sung-Min; Kwong, Anthony; Jung, Daehwan; Faucher, Joseph; Biswas, Roshni; Shen, Lang; Kang, Dongseok; Lee, Minjoo Larry; Yoon, Jongseung

    2015-10-27

    Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules.

  6. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  7. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters.

    PubMed

    Vazhappilly, Tijo; Hembree, Robert H; Micha, David A

    2016-01-14

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes. PMID:26772554

  8. Photoconductivity in AC-driven modulated two-dimensional electron gas in a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Torres, Manuel; Kunold, Alejandro

    2006-04-01

    In this work we study the microwave photoconductivity of a two-dimensional electron system (2DES) in the presence of a magnetic field and a two-dimensional modulation (2D). The model includes the microwave and Landau contributions in a non-perturbative exact way; the periodic potential is treated perturbatively. The Landau-Floquet states provide a convenient base with respect to which the lattice potential becomes time dependent, inducing transitions between the Landau-Floquet levels. Based on this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet structure of the problem. The total longitudinal conductivity and resistivity exhibit strong oscillations, determined by epsi = ω/ωc, with ω the radiation frequency and ωc the cyclotron frequency. The oscillations follow a pattern with minima centred at \\omega /\\omega_{\\mathrm {c}}=j+\\frac {1}{2} (l-1)+\\delta , and maxima centred at \\omega /\\omega_{\\mathrm {c}}=j+\\frac {1}{2} (l-1)-\\delta , where j = 1,2,3..., δ~1/5 is a constant shift and l is the dominant multipole contribution. Negative resistance states (NRSs) develop as the electron mobility and the intensity of the microwave power are increased. These NRSs appear in a narrow window region of values of the lattice parameter (a), around a~lB, where lB is the magnetic length. It is proposed that these phenomena may be observed in artificially fabricated arrays of periodic scatterers at the interface of ultraclean GaAs /AlxGa1-xAs heterostructures.

  9. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  10. Shallow-Lever Centers in Semiconductors - Proceedings of the 7th International Conference

    NASA Astrophysics Data System (ADS)

    Ammerlaan, C. A. J.; Pajot, B.

    1997-04-01

    Quantum Well Structures Grown by MBE * Shallow Centers in Heavily Doped Silicon Quantum Wells * Optically Detected Resonance Spectroscopy of III-V and II-VI Quantum Wells * Shallow Thermal Donor Defects in Silicon * Pressure Dependence of Se Absorption Lines in AlSb * Fine Structure in the Magnetic Resonance of Single Acceptors in Silicon * Far-Infrared Photoconductivity and Photoluminescence of Beryllium in Gallium Arsenide * Shift of Photoluminescence Peak in Highly Self-Compensated Ge-Doped GaAs * Electron-Phonon Coupling in a Delta-Doped n-i-p Structure in GaAs * Group-III and Group-II Quasi-Deep Impurities in Silicon Carbide: Electron Paramagnetic Resonance and Optically Detected Magnetic Resonance Studies * Resonance Acceptor States in Uniaxially Strained Semiconductors * Donor-Related Infrared-Absorption Spectra of GaAs-(Ga, Al)As Quantum Wells * Electrical Properties of Shallow Donor Centers Formed Due to Oxygen Interaction with Chemically Active Impurities in Heat-Treated Silicon * Fine Structure and Higher Lying Transitions of Er3+ in 4H and 6H SiC * Mechanism for the Enhanced Dissociation of C-H Complexes in GaAs * Bistability and Metastability of Hydrogen in Si * EPR of Aluminum-Aluminum Interstitial Pair in Silicon * Magnetic Order of Shallow Acceptor Centres in Semiconductors (InSb:Mn) * Luminescence and DLTS Study of Photonuclear Transmutation Doped (PND) Gallium Arsenide * Photoluminescence of Deformed Bulk Crystals of Si-Ge Alloy * Di-Oxygen Complex in Silicon: Some New Characteristic Features * Reactions of Interstitial Iron with Shallow Acceptors in Silicon * The 819.8 meV Photoluminescence Band in Copper Doped Silicon * Zeeman Spectroscopy of Aluminium in Germanium * Microscopic Studies of the Hydrogen Passivation in n-Type Silicon: A New Application of the 73As γ-e- PAC Technique * Shallow Donor Solubility Mechanism: Tellurium in GaAs * Energy Levels of Shallow Donor Pairs and Thermal Double Donors in Silicon * Boron Neutralization by Hydrogen in

  11. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    SciTech Connect

    Kozlov, D. V. Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M.; Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A.; Gavrilenko, V. I.; Teppe, F.

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  12. Terahertz line detection by a microlens array coupled photoconductive antenna array.

    PubMed

    Pradarutti, B; Müller, R; Freese, W; Matthäus, G; Riehemann, S; Notni, G; Nolte, S; Tünnermann, A

    2008-10-27

    We present THz ultrashort pulse detection by a photoconductive antenna array consisting of 16 photoconductive antennas. The efficient excitation of the photoconductive antennas has been realized by a microlens array which generates 16 single spots from the exciting fs-laser beam. This combination of optoelectronics and microoptics improves the detection efficiency by an order of magnitude in comparison to an excitation by a line focus. PMID:18958123

  13. Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors

    PubMed Central

    2009-01-01

    The phenomenon of persistent photoconductivity is elusive and has not been addressed to an extent to attract attention both in micro and nanoscale devices due to unavailability of clear material systems and device configurations capable of providing comprehensive information. In this work, we have employed a nanostructured (nanowire diameter 30–65 nm and 5 μm in length) ZnO-based metal–semiconductor–metal photoconductor device in order to study the origin of persistent photoconductivity. The current–voltage measurements were carried with and without UV illumination under different oxygen levels. The photoresponse measurements indicated a persistent conductivity trend for depleted oxygen conditions. The persistent conductivity phenomenon is explained on the theoretical model that proposes the change of a neutral anion vacancy to a charged state. PMID:20652149

  14. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    NASA Astrophysics Data System (ADS)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-08-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  15. Photoconductivities in anatase TiO{sub 2} nanorods

    SciTech Connect

    Chen, Ruei-San; Liu, Yi-Ling; Chan, Ching-Hsiang; Huang, Ying-Sheng

    2014-10-13

    The photoconduction (PC) properties of single-crystalline titanium dioxide (TiO{sub 2}) nanorods (NRs) with anatase phase were investigated and compared. By examining the material's inherent properties, the anatase TiO{sub 2} NRs exhibit superior PC efficiency (quantitatively defined by normalized gain) which is near one order of magnitude higher than that of the rutile ones. The optimal photoconductive gain of the anatase NR device can also reach 1.6 × 10{sup 7} at the light intensity of 0.02 Wm{sup −2} and a low bias of 0.1 V. The power-dependent and time-resolved PC measurements were performed to investigate the physical mechanisms. The higher quantum efficiency and mobility product was confirmed to be responsible for the higher PC efficiency in the anatase TiO{sub 2} NRs in comparison to the rutile ones.

  16. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    NASA Astrophysics Data System (ADS)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-11-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  17. Photoconductivity in donor-acceptor heterojunction organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Renshaw, C. K.; Zimmerman, J. D.; Lassiter, B. E.; Forrest, S. R.

    2012-08-01

    Organic photovoltaics (OPVs) differ from ideal inorganic solar cells due to their pronounced voltage dependence under reverse bias. This feature is commonly modeled in an ad hoc fashion by including a parallel junction resistance (Rp) that bypasses the heterojunction energy barrier between donor and acceptor. The existence of a finite Rp has variously been attributed to rough interfaces, pinhole defects, or to the electric field dependence of the dissociation of polaron pairs that are bound at the heterojunction. Here we show that the voltage dependence of the photocurrent can also arise from photoconductivity resulting from exciton generation followed by dissociation into free polarons within the bulk of the donor and acceptor layers. The presence of photoconductivity of the active layers does not result in an increase in power conversion efficiency, and places a constraint on the maximum fill factor that can be achieved in an OPV cell.

  18. Fabrication and characterization of GaAs/A1GaAs quantum-well lasers using thermally oxidized A1GaAs

    NASA Astrophysics Data System (ADS)

    Homan, Otte J.; Epler, John E.; Patterson, Bruce D.; Lehmann, Hans W.

    1994-07-01

    Aluminum-oxide thermally grown into high Al-concentration AlxGa1-xAs layers has recently been studied extensively. The material shows electrical and optical properties that make it useful in a semiconductor laser fabrication process where it can provide electrical isolation and optical guiding, as well as simplify the fabrication and integration process considerably. We use this thermal oxide to produce GaAs/AlGaAs semiconductor lasers that can be integrated with other devices. The GaAs cap- layer is masked with photoresist and the exposed GaAs areas are etched away, leaving a GaAs oxidation mask on the AlGaAs upper cladding layer. Using N2 carrier gas saturated with H2O vapor, the uncovered Al0.8Ga0.2As material is converted into a stable aluminum-oxide at temperatures around 450 degree(s)C. Due to the near-isotropic oxidation an `ellipsoidal' diffusion front is created, which is in strong contrast to the well-known mesa cross-section in conventional dry-etched ridge-waveguides but is more similar to e.g. wet-etched buried heterostruture lasers.

  19. Radiation-induced extrinsic photoconductivity in Li-doped Si.

    NASA Technical Reports Server (NTRS)

    Fenimore, E.; Mortka, T.; Corelli, J. C.

    1972-01-01

    Investigation of the effects of lithium on radiation-produced complexes having long-time stability by examining the localized energy levels in the forbidden gap which give rise to extrinsic photoconductivity. The levels are found to disappear and in some cases shift with annealing in the 100-450 C temperature range. Due to the complexity of the system and the present lack of adequate theory, no complete analysis of the data obtained could be made.

  20. Time-resolved photoconductivity of PbSe nanocrystal arrays.

    PubMed

    Murphy, James E; Beard, Matthew C; Nozik, Arthur J

    2006-12-21

    We report the sub-picosecond photoconductivity dynamics of chemically treated PbSe nanocrystal arrays utilizing time-resolved terahertz spectroscopy (TRTS). TRTS allows both the degree of interdot electronic coupling and the carrier dynamics to be extracted simultaneously. The following capping ligands bonded to the quantum dot surface were studied: hydrazine, ethylenediamine, butlyamine, and aniline. In addition, the arrays were treated with NaOH. We find that the treatments affect both the degree of electronic coupling and the carrier dynamics.

  1. Magnetic and photoconductive repetitive rail-gun opening switches

    SciTech Connect

    Nunnally, W.C.

    1984-07-01

    This report investigates the use of a transformer with a saturable ferromagnetic core and a photoconductive element as a possible opening switch for a repetitive rail gun. A basic rail gun is first analyzed to determine the voltage, current, and power requirements for the switch. Then, each switch concept is analyzed to determine the characteristic size and operating parameters necessary to operate in the rail-gun system. The analysis is used to determine concept feasibility.

  2. Carbon doping of III-V compound semiconductors

    SciTech Connect

    Moll, A.J.

    1994-09-01

    Focus of the study is C acceptor doping of GaAs, since C diffusion coefficient is at least one order of magnitude lower than that of other common p-type dopants in GaAs. C ion implantation results in a concentration of free holes in the valence band < 10% of that of the implanted C atoms for doses > 10{sup 14}/cm{sup 2}. Rutherford backscattering, electrical measurements, Raman spectroscopy, and Fourier transform infrared spectroscopy were amonth the techniques used. Ga co-implantation increased the C activation in two steps: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer, reducing the number of compensating native defects. In InP, the behavior of C was different from that in GaAs. C acts as n-type dopant in the In site; however, its incorporation by implantation was difficult to control; experiments using P co-implants were inconsistent. The lattice position of inactive C in GaAs in implanted and epitaxial layers is discussed; evidence for formation of C precipitates in GaAs and InP was found. Correlation of the results with literature on C doping in III-V semiconductors led to a phenomenological description of C in III-V compounds (particularly GaAs): The behavior of C is controlled by the chemical nature of C and the instrinsic Fermi level stabilization energy of the material.

  3. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  4. Plasmon enhanced photoconduction in porphyrin-gold nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Conklin, David J.

    2011-07-01

    This thesis describes a series of experiments to both determine the origins of charge transport and enhanced photoconduction in metal nanoparticle arrays linked with zinc-porphyrin complexes, but to also determine the nucleation and growth mechanisms related to Ferroelectric Nanolithography (FNL) as a platform for hybrid devices. The development of test structures on glass substrates was undertaken to not only allow the study of the mechanisms controlling charge transport but the photoconduction of zinc-porphyrin linked gold nanoparticle (AuNP) arrays. In this study, the dominate charge transport mechanism was determined to be thermally assisted tunneling and the origins of enhanced photoconduction in these systems was attributed to three mechanisms: direct exciton formation in the molecules, hot electrons and a field effect (optical antenna) due to the excitation of surface plasmons. In the hope of developing a platform for hybrid devices, FNL was utilized to systematically vary the parameters that effect the deposition of metal nanoparticles through domain directed deposition on ferroelectric surfaces. The nucleation and growth mechanisms were determined through this work, where the integrated photon flux controlled the particle density and the interface between the particle and the ferroelectric surface determined the particles size. Finally, with the ability to control the deposition of AuNPs on a ferroelectric surface, hybrid devices of zinc-porphyrin linked AuNPs were realized with FNL.

  5. First-principles calculations for the structural and electronic properties of GaAs1-xPx nanowires

    NASA Astrophysics Data System (ADS)

    Mohammad, Rezek; Katırcıoğlu, Şenay

    2016-09-01

    Structural stability and electronic properties of GaAs1-xPx (0.0≤x≤1.0) nanowires (NWs) in zinc-blende (ZB) (˜5≤ diameter ≤˜21Å) and wurtzite (WZ) (˜5≤diameter≤˜29Å) phases are investigated by first-principles calculations based on density functional theory (DFT). GaAs (x=0.0) and GaP (x=1.0) compound NWs in WZ phase are found energetically more stable than in ZB structural ones. In the case of GaAs1-xPx alloy NWs, the energetically favorable phase is found size and composition dependent. All the presented NWs have semiconductor characteristics. The quantum size effect is clearly demonstrated for all GaAs1-xPx (0.0≤x≤1.0) NWs. The band gaps of ZB and WZ structural GaAs compound NWs with ˜10≤ diameter ≤˜21Å and ˜5≤diameter≤˜29Å, respectively are enlarged by the addition of concentrations of phosphorus for obtaining GaAs1-xPx NWs proportional to the x values around 0.25, 0.50 and 0.75.

  6. Mechanisms of current flow in metal-semiconductor ohmic contacts

    SciTech Connect

    Blank, T. V. Gol'dberg, Yu. A.

    2007-11-15

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.

  7. High density semiconductor nanodots by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  8. Collective excitations of spherical semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-10-01

    In this article, we study the dispersion properties of bulk and surface electrostatic oscillations of a spherical quantum electron-hole semiconductor plasma as a simple model of a semiconductor nanoparticle. We derive general dispersion relation for both bulk and surface modes, using quantum hydrodynamic theory (including the electrons and holes quantum recoil effects, quantum statistical pressures of the plasma species, as well as exchange and correlation effects) in conjunction with Poisson’s equation and appropriate boundary conditions. We show that for the arbitrary value of angular quantum number {\\ell }≥slant 1 there are only two surface plasmon modes, but two infinite series of bulk modes for {\\ell }≥slant 0 that owe their existence to the curvature of the interface. We use the typical values of GaAs semiconductor to compute the bulk and surface mode frequencies for different value of {\\ell }.

  9. Waveguide effect of GaAsSb quantum wells in a laser structure based on GaAs

    SciTech Connect

    Aleshkin, V. Ya.; Afonenko, A. A.; Dikareva, N. V.; Dubinov, A. A. Kudryavtsev, K. E.; Morozov, S. V.; Nekorkin, S. M.

    2013-11-15

    The waveguide effect of GaAsSb quantum wells in a semiconductor-laser structure based on GaAs is studied theoretically and experimentally. It is shown that quantum wells themselves can be used as waveguide layers in the laser structure. As the excitation-power density attains a value of 2 kW/cm{sup 2} at liquid-nitrogen temperature, superluminescence at the wavelength corresponding to the optical transition in bulk GaAs (at 835 nm) is observed.

  10. High voltage bulk GaN-based photoconductive switches for pulsed power applications

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Metzger, R.; Preble, E. A.; Evans, K. R.

    2013-03-01

    Switches are at the heart of all pulsed power and directed energy systems, which find utility in a number of applications. At present, those applications requiring the highest power levels tend to employ spark-gap switches, but these suffer from relatively high delay-times (~10-8 sec), significant jitter (variation in delay time), and large size. That said, optically-triggered GaN-based photoconductive semiconductor switches (PCSS) offer a suitably small form factor and are a cost-effective, versatile solution in which delay times and jitter can be extremely short. Furthermore, the optical control of the switch means that they are electrically isolated from the environment and from any other system circuitry, making them immune from electrical noise, eliminating the potential for inadvertent switch triggering. Our recent work shows great promise to extend high-voltage GaN-based extrinsic PCSS state-of-the-art performance in terms of subnanosecond response times, low on-resistance, high current carrying capacity and high blocking voltages. We discuss our recent results in this work.

  11. InP:Fe and GaAs:Cr picosecond photoconductive radiation detectors. Master's thesis

    SciTech Connect

    Keipper, P.J.

    1985-12-01

    The dark-current, impulse, and square-pulse response measurements of photoconductive devices fabricated from two different types of materials, gallium arsenide with chromium dopant (GaAs:r) and indium phosphide with iron dopant (InP:Fe) are reported. These devices have been subjected to irradiation from the S-band electron linear accelerator (LINAC) with an energy fo 100 MeV at room temperature. Fluence ranged between 10/sup 13/ and 10/sup 16/ electrons/sq cm. Dark/current decreases with increasing fluence for the GaAs:Cr devices whereas InP:Fe shows an increase in the dark current. Both types of materials exhibit extremely fast impulse response after the irradiation. Electron mobility, drift velocity, and response speed decrease with increasing fluence. Response speeds of < 100 ps are achieved by fast-carrier relaxation in the semiconductor due to the introduction of trapping and recombination centers resulting from the irradiation damage. The GaAs:Cr, unlike the InP:Fe, more closely follows the longer square-pulse exhibiting non nonlinearity. All results are consistent with previously investigated neutron irradiated devices.

  12. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  13. Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors

    NASA Astrophysics Data System (ADS)

    Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.

    2006-09-01

    Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.

  14. Vibrational, mechanical, and thermal properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dow, John D.

    1989-02-01

    Theories of the mechanical, vibrational, and electronic properties of 3 to 5 semiconductors were developed and applied to: (1) help determine the feasibility of InN-based visible and ultraviolet lasers and light detectors, (2) develop a theory of phonons in semiconductor alloys, (3) understand surface reconstruction of semiconductors, (4) predict the effects of atomic correlations on the light-scattering (Raman) properties of semiconductive alloys, (5) develop a new first principles pseudo-function implementation of local-density theory, (6) study the oxidation of GaAs, (7) develop a theory of scanning tunneling microscope images, and (8) understand the electronic and optical properties of highly strained artificial semiconductors and small semiconductor particles.

  15. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Knechtli, R. C.; Kamath, S.; Loo, R.

    1977-01-01

    The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

  16. The binding energies of a bulged GaAs nanowire

    NASA Astrophysics Data System (ADS)

    Zamani, A.; Estabar, Th.; Safarpour, Gh.; Moradi, M.

    2014-12-01

    As it is well-known the electronic structure of the semiconductor nanostructures are so sensitive to alteration of confinement while the nanostructure morphology often determines the confinement. Accordingly existence of a bulge on the wire surface will affect the features of the nanowire. In the present work we consider an on-center hydrogenic donor impurity in a GaAs nanowire with bulge. The ground and first excited states energy levels as well as their binding energies are calculated as functions of bulge and nanowire radius. It is found that both the energy levels and binding energies are strongly influenced by the bulge size for ultrafine nanowires. For large wire radii the effects of bulge existence is trivial and the electronic properties of the system approach to those of the simple nanowire.

  17. Observation of dynamics of impurity photoconductivity in n-GaAs caused by electron cooling

    SciTech Connect

    Aleshkin, V. Ya. Morozov, S. V.; Rumyantsev, V. V.; Tuzov, I. V.

    2015-01-15

    Experimental investigation of the time dependence of impurity photoconductivity in n-GaAs is carried out upon pulsed optical excitation. It is shown that a change in the photoconductivity is determined mainly by electron cooling in the first 20 ns after photoexcitation. A theoretical model for describing the dependences under observation is proposed.

  18. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  19. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals

    SciTech Connect

    Brenny, B. J. M.; Coenen, T.; Polman, A.

    2014-06-28

    We present a method to separate coherent and incoherent contributions to cathodoluminescence from bulk materials by using angle-resolved cathodoluminescence spectroscopy. Using 5 and 30 keV electrons, we measure the cathodoluminescence spectra for Si, GaAs, Al, Ag, Au, and Cu and determine the angular emission distributions for Al, GaAs, and Si. Aluminium shows a clear dipolar radiation profile due to coherent transition radiation, while GaAs shows incoherent luminescence characterized by a Lambertian angular distribution. Silicon shows both transition radiation and incoherent radiation. From the angular data, we determine the ratio between the two processes and decompose their spectra. This method provides a powerful way to separate different radiative cathodoluminescence processes, which is useful for material characterization and in studies of electron- and light-matter interaction in metals and semiconductors.

  20. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  1. Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene

    NASA Astrophysics Data System (ADS)

    Frenzel, A. J.; Lui, C. H.; Shin, Y. C.; Kong, J.; Gedik, N.

    2014-08-01

    We investigate the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations can be accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Notably, we observe nonmonotonic fluence dependence of the photoconductivity at low carrier density. This behavior reveals the nonmonotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

  2. Measurement of Young's modulus of GaAs nanowires growing obliquely on a substrate

    SciTech Connect

    Alekseev, P. A. Dunaevskii, M. S.; Stovpyaga, A. V.; Lepsa, M.; Titkov, A. N.

    2012-05-15

    A convenient and fast method for measuring Young's modulus of semiconductor nanowires obliquely standing on the growth substrate is presented. In this method, the nanowire is elastically bent under the force exerted by the probe of an atomic-force microscope, and the load-unload dependences for the bending of the probe cantilever are recorded. Next, these curves are used to find the bending stiffness of the tilted nanowires, after which, taking into account the nanowire dimensions, Young's modulus is obtained. The implementation of this method is demonstrated for tilted GaAs nanowires growing on a GaAs (111) substrate. Young's modulus is determined by applying finite-element analysis to the problem of the stationary elastic bending of a nanowire taking into account the actual nanowire shape and faceting. It proves that a fairly accurate estimate of Young's modulus can be obtained even if the nanowire shape is approximated by a circular cylinder with a single cross-sectional area. The values of Young's modulus obtained for GaAs nanowires of cubic lattice symmetry are 2 to 3 times smaller than its value for bulk GaAs. This difference is attributed to the presence of stacking faults in the central part of the nanowires.

  3. Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs

    NASA Astrophysics Data System (ADS)

    Kim, Taeseok; Pillai, Manoj R.; Aziz, Michael J.; Scarpulla, Michael A.; Dubon, Oscar D.; Yu, Kin M.; Beeman, Jeffrey W.; Ridgway, Mark C.

    2010-07-01

    In order to further understand the pulsed-laser melting (PLM) of Mn and N implanted GaAs, which we have used to synthesize thin films of the ferromagnetic semiconductor Ga1-xMnxAs and the highly mismatched alloy GaNxAs1-x, we have simulated PLM of amorphous (a-) and crystalline (c-) GaAs. We present a numerical solution to the one-dimensional heat equation, accounting for phase-dependent reflectivity, optical skin depth, and latent heat, and a temperature-dependent thermal conductivity and specific heat. By comparing the simulations with experimental time-resolved reflectivity and melt depth versus laser fluence, we identify a set of thermophysical and optical properties for the crystalline, amorphous, and liquid phases of GaAs that give reasonable agreement between experiment and simulation. This work resulted in the estimation of thermal conductivity, melting temperature and latent heat of fusion of a-GaAs of 0.008 W/cm K at 300 K, 1350 K, and 2650 J/cm3, respectively. These materials properties also allow the prediction of the solidification velocity of crystalline and ion-amorphized GaAs.

  4. The role of proximity caps during the annealing of UV-ozone oxidized GaAs

    SciTech Connect

    Ghosh, S. C.; Biesinger, M. C.; LaPierre, R. R.; Kruse, P.

    2007-06-01

    This study provides a deeper insight into the chemistry and physics of the common engineering practice of using a proximity cap, while annealing compound semiconductors such as GaAs. We have studied the cases of a GaAs proximity cap, a Si proximity cap, and no proximity cap. Using x-ray photoelectron spectroscopy, it has been found that annealing increases the gallium to arsenic ratio in the oxide layer in all cases. During the annealing of UV-ozone oxidized GaAs, it has been observed that GaAs proximity caps also serve as a sacrificial layer to accelerate the desorption of oxide species. In all cases surface deterioration due to pit formation has been observed, and the depth of pits is found to depend on the effective role played by the capping material. Energy dispersive x-ray analysis provides additional evidence that pits mainly consist of elemental As and gallium oxide, with most of the elemental As situated at the pit-substrate interface. Deposition of a thin layer of gold and subsequent annealing to 500 deg. C for 300 s under different capping conditions shows the use of a proximate cap to be practically insignificant in annealing Au deposited films.

  5. Photoelectrolytic production of hydrogen using semiconductor electrodes

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    Experimental data for the photoelectrolytic production of hydrogen using GaAs photoanodes was presented. Four types of GaAs anodes were investigated: polished GaAs, GaAs coated with gold, GaAs coated with silver, and GaAs coated with tin. The maximum measured efficiency using a tungsten light source was 8.9 percent for polished GaAs electrodes and 6.3 percent for tin coated GaAs electrodes.

  6. Improvement of the interface quality during thermal oxidation of Al0.98Ga0.02As layers due to the presence of low-temperature-grown GaAs

    NASA Astrophysics Data System (ADS)

    Ferrer, J. C.; Liliental-Weber, Z.; Reese, H.; Chiu, Y. J.; Hu, E.

    2000-07-01

    The role of a low-temperature-grown GaAs (LT GaAs) layer on the lateral oxidation of an Al0.98Ga0.02As/GaAs layer structure has been studied by transmission electron microscopy. Results show that structures incorporating LT GaAs develop better quality oxide/GaAs interfaces compared to reference samples without LT GaAs. While the latter have As accumulation in the vicinity of these interfaces, the structures with LT layers display sharper oxide-GaAs interfaces with a reduced concentration of As. These results are explained in terms of the high Ga vacancy concentration in the LT GaAs and the possible influence of those vacancies in enhancing As diffusion away from the oxide-semiconductor interface.

  7. Transparent ceramic photo-optical semiconductor high power switches

    DOEpatents

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  8. III-V GaAs based plasmonic lasers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lafone, Lucas; Nguyen, Ngoc; Clarke, Ed; Fry, Paul; Oulton, Rupert F.

    2015-09-01

    Plasmonics is a potential route to new and improved optical devices. Many predict that sub wavelength optical systems will be essential in the development of future integrated circuits, offering the only viable way of simultaneously increasing speed and reducing power consumption. Realising this potential will be contingent on the ability to exploit plasmonic effects within the framework of the established semiconductor industry and to this end we present III-V (GaAs) based surface plasmon laser platform capable of effective laser light generation in highly focussed regions of space. Our design utilises a suspended slab of GaAs with a metallic slot printed on top. Here, hybridisation between the plasmonic mode of the slot and the photonic mode of the slab leads to the formation of a mode with confinement and loss that can be adjusted through variation of the slot width alone. As in previous designs the use of a hybrid mode provides strong confinement with relatively low losses, however the ability to print the metal slot removes the randomness associated with device fabrication and the requirement for etching that can deteriorate the semiconductor's properties. The deterministic fabrication process and the use of bulk GaAs for gain make the device prime for practical implementation.

  9. Molecular dynamics simulations of displacement cascades in GaAs.

    SciTech Connect

    Foiles, Stephen Martin

    2010-04-01

    The quantification of the production of primary defects via displacement cascades is an important ingredient in the prediction of the influence of radiation on the performance of electronic components in radiation environments. Molecular dynamics simulations of displacement cascades are performed for GaAs The interatomic interactions are described using a recently proposed Bond Order Potential, and a simple model of electronic stopping is incorporated. The production of point defects is quantified as a function of recoil energy and recoil species. Correlations in the point defects are examined. There are a large number of anti-site defects nearest-neighbor pairs as well as di-vacancies and larger order vacancy clusters. Radiation damage and ion implantation in materials have been studied via molecular dynamics for many years. A significant challenge in these simulations is the detailed identification and quantification of the primary defect production. For the present case of a compound semiconductor, GaAs, there are a larger number of possible point defects compared to elemental materials; two types of vacancies, two types of interstitials and antisite defects. This is further complicated by the fact that, in addition to the formation of point defects, amorphous zones may also be created. The goal of the current work is to quantify the production of primary defects in GaAs due to radiation exposures. This information will be used as part of an effort to predict the influence of radiation environments on the performance of electronic components and circuits. The data provide the initial state for continuum-level analysis of the temporal evolution of defect populations. For this initial state, it is important to know both the number of the various point defects that may be produced as well as the initial spatial correlations between the primary defects. The molecular dynamics simulations employ a recently developed Bond Order Potential (BOP) for GaAs. The analysis

  10. Enforced one-dimensional photoconductivity in core-cladding hexabenzocoronenes.

    PubMed

    Cohen, Yaron S; Xiao, Shengxiong; Steigerwald, Michael L; Nuckolls, Colin; Kagan, Cherie R

    2006-12-01

    Photoconductivity in contorted hexabenzocoronene liquid crystals is found to be exclusively one-dimensional. Spectroscopic measurements and density functional theory support the existence of two pi-systems attributed to a low-energy radialene-core and higher energy out-of-plane alkoxyphenyl rings. Persistent photocurrents, measured as a function of field, channel length, and intensity, fit a stretched exponential characteristic of intracolumnar transport, restricted through the radialene-core by the alkoxyphenyl-cladding. Bimolecular recombination is enhanced with increasing carrier concentration by the system's one-dimensionality.

  11. Large persistent photoconductivity in strontium titanate single crystals

    NASA Astrophysics Data System (ADS)

    Poole, Violet M.; McCluskey, Matthew D.

    2016-02-01

    Strontium titanate is a complex oxide with a range of interesting properties. Annealed samples show persistent photoconductivity at room temperature. When irradiated with sub-gap light, the resistivity drops significantly. The increased conductivity persists for days with negligible decay. This unusual effect is attributed to the excitation of an electron from an acceptor defect into the conduction band. A large barrier for recapture prevents electrons from returning to the defect level. Recent work suggests that optimized annealing conditions result in weakly p-type material prior to illumination.

  12. X-ray-induced persistent photoconductivity in vanadium dioxide

    SciTech Connect

    Dietze, S. H.; Marsh, M. J.; Wang, Siming; Ramírez, J. -G.; Cai, Z. -H.; Mohanty, J. R.; Schuller, Ivan K.; Shpyrko, O. G.

    2014-10-08

    The resistivity of vanadium dioxide (VO2) decreased by over one order of magnitude upon localized illumination with x rays at room temperature. Despite this reduction, the structure remained in the monoclinic phase and had no signature of the high-temperature tetragonal phase that is usually associated with the lower resistance. Once illumination ceased, relaxation to the insulating state took tens of hours near room temperature. However, a full recovery of the insulating state was achieved within minutes by thermal cycling. We show that this behavior is consistent with random local-potential fluctuations and random distribution of discrete recombination sites used to model residual photoconductivity.

  13. Strong-Field Resonant Dynamics in Semiconductors

    NASA Astrophysics Data System (ADS)

    Wismer, Michael S.; Kruchinin, Stanislav Yu.; Ciappina, Marcelo; Stockman, Mark I.; Yakovlev, Vladislav S.

    2016-05-01

    We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse. The predicted effects are experimentally observable using photoemission and terahertz spectroscopies.

  14. Optical communication with semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, X.

    1989-01-01

    This interim report describes the progress in the construction of a 220 Mbps Q=4 PPM optical communication system that uses a semiconductor laser as the optical transmitter and an avalanche photodiode (APD) as the photodetector. The transmitter electronics have been completed and contain both GaAs and ECL III IC's. The circuit was able to operate at a source binary data rate from 75 Mbps to 290 Mbps with pulse rise and fall times of 400 ps. The pulse shapes of the laser diode and the response from the APD/preamplifier module were also measured.

  15. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration

    NASA Astrophysics Data System (ADS)

    Khurgin, Jacob B.

    2014-06-01

    Laser cooling of semiconductors has been an elusive goal for many years, and while attempts to cool the narrow gap semiconductors such as GaAs are yet to succeed, recently, net cooling has been attained in a wider gap CdS. This raises the question of whether wider gap semiconductors with higher phonon energies and stronger electron-phonon coupling are better suitable for laser cooling. In this work, we develop a straightforward theory of phonon-assisted absorption and photoluminescence of semiconductors that involves more than one phonon and use to examine wide gap materials, such as GaN and CdS and compare them with GaAs. The results indicate that while strong electron-phonon coupling in both GaN and CdS definitely improves the prospects of laser cooling, large phonon energy in GaN may be a limitation, which makes CdS a better prospect for laser cooling.

  16. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration

    SciTech Connect

    Khurgin, Jacob B.

    2014-06-02

    Laser cooling of semiconductors has been an elusive goal for many years, and while attempts to cool the narrow gap semiconductors such as GaAs are yet to succeed, recently, net cooling has been attained in a wider gap CdS. This raises the question of whether wider gap semiconductors with higher phonon energies and stronger electron-phonon coupling are better suitable for laser cooling. In this work, we develop a straightforward theory of phonon-assisted absorption and photoluminescence of semiconductors that involves more than one phonon and use to examine wide gap materials, such as GaN and CdS and compare them with GaAs. The results indicate that while strong electron-phonon coupling in both GaN and CdS definitely improves the prospects of laser cooling, large phonon energy in GaN may be a limitation, which makes CdS a better prospect for laser cooling.

  17. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  18. In Situ Heat-Induced Replacement of GaAs Nanowires by Au.

    PubMed

    Fauske, Vidar T; Huh, Junghwan; Divitini, Giorgio; Dheeraj, Dasa L; Munshi, A Mazid; Ducati, Caterina; Weman, Helge; Fimland, Bjørn-Ove; van Helvoort, Antonius T J

    2016-05-11

    Here we report on the heat-induced solid-state replacement of GaAs by Au in nanowires. Such replacement of semiconductor nanowires by metals is envisioned as a method to achieve well-defined junctions within nanowires. To better understand the mechanisms and dynamics that govern the replacement reaction, we performed in situ heating studies using high-resolution scanning transmission electron microscopy. The dynamic evolution of the phase boundary was investigated, as well as the crystal structure and orientation of the different phases at reaction temperatures. In general, the replacement proceeds one GaAs(111) bilayer at a time, and no fixed epitaxial relation could be found between the two phases. The relative orientation of the phases affects the replacement dynamics and can induce growth twins in the Au nanowire phase. In the case of a limited Au supply, the metal phase can also become liquid. PMID:27104293

  19. Temperature-dependent side-facets of GaAs nanopillars

    NASA Astrophysics Data System (ADS)

    Soo, Mun Teng; Zheng, Kun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati; Zou, Jin

    2016-09-01

    In this study, the effect of growth temperature on the structural properties of Au-catalysed epitaxial GaAs semiconductor nanopillars grown by metal-organic chemical vapour deposition is investigated by electron microscopy. It has been found that the growth temperature plays a significant role on the evolution of side-facets of zinc-blende structured GaAs nanopillars. At a growth temperature of 550 °C, six \\{112\\} side-facets are formed; whereas at a higher growth temperature of 600 °C, six \\{110\\} side-facets are observed. It is believed that the formation of \\{112\\} side-facets is a kinetically dominated process while the formation of \\{110\\} side-facets is a thermodynamical process. Besides, the diffusion-induced nanopillar foundations present the same \\{112\\} edge side-facets regardless of the growth temperature.

  20. In Situ Heat-Induced Replacement of GaAs Nanowires by Au.

    PubMed

    Fauske, Vidar T; Huh, Junghwan; Divitini, Giorgio; Dheeraj, Dasa L; Munshi, A Mazid; Ducati, Caterina; Weman, Helge; Fimland, Bjørn-Ove; van Helvoort, Antonius T J

    2016-05-11

    Here we report on the heat-induced solid-state replacement of GaAs by Au in nanowires. Such replacement of semiconductor nanowires by metals is envisioned as a method to achieve well-defined junctions within nanowires. To better understand the mechanisms and dynamics that govern the replacement reaction, we performed in situ heating studies using high-resolution scanning transmission electron microscopy. The dynamic evolution of the phase boundary was investigated, as well as the crystal structure and orientation of the different phases at reaction temperatures. In general, the replacement proceeds one GaAs(111) bilayer at a time, and no fixed epitaxial relation could be found between the two phases. The relative orientation of the phases affects the replacement dynamics and can induce growth twins in the Au nanowire phase. In the case of a limited Au supply, the metal phase can also become liquid.

  1. Transient and local illumination of an organic photoconductive sensor

    NASA Astrophysics Data System (ADS)

    Woestenborghs, Wouter; De Visschere, Patrick; Beunis, Filip; Vetsuypens, Arnout; Neyts, Kristiaan

    2013-03-01

    In this paper we investigate the performance of a transparent photoconductive sensor based on a double layer of organic materials (m-MTDAB / PTCBI) which are deposited on two interdigitated transparent ITO electrodes. The performance of the sensor is demonstrated with electro-optical measurements: the I(V) curves consist of two linear sections meeting at a knee voltage Vt. Linear regression performed on the I(V) curves below Vt show that the conductance is a power law of the luminance incident on the device. We present a model to describe the behaviour of the sensor below Vt. We present measurements of I(t) for a transient illumination of the sensor. Plotting the inverse of the current as a function of time we find that the transient is consistent with the model for voltages below Vt. For voltages above Vt we find that the sensor behaves like a resistor in series with a space charge (SC) region. We present a local illumination experiment that confirms the existence of a SC region between the electrodes of the photoconductive sensor for V

  2. Photoelectron imaging of cells: photoconductivity extends the range of applicability.

    PubMed Central

    Habliston, D L; Hedberg, K K; Birrell, G B; Rempfer, G F; Griffith, O H

    1995-01-01

    Photoelectron imaging is a sensitive surface technique in which photons are used to excite electron emission. This novel method has been applied successfully in studies of relatively flat cultured cells, viruses, and protein-DNA complexes. However, rounded-up cell types such as tumor cells frequently are more difficult to image. By comparing photoelectron images of uncoated and metal-coated MCF-7 human breast carcinoma cells, it is shown that the problem is specimen charging rather than a fundamental limitation of the electron imaging process. This is confirmed by emission current measurements on uncoated monolayers of MCF-7 carcinoma cells and flatter, normal Wi-38 fibroblasts. We report here that sample charging in photoelectron microscopy can be eliminated in most specimens by simultaneous use of two light sources--the standard UV excitation source (e.g., 254 nm) and a longer wavelength light source (e.g., 325 nm). The reduction in sample charging results largely from enhanced photoconduction in the bulk sample and greatly extends the range of cells that can be examined by photoelectron imaging. The contributions of photoconductivity, the electric field of the imaging system, and the short escape depths of the photoelectrons combine to make photoelectron imaging a uniquely sensitive technique for the study of biological surfaces. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8534832

  3. Synthesis and functionalization of a triaryldiamine-base photoconductive/photorefractive composite, and its application to aberrated image restoration

    NASA Astrophysics Data System (ADS)

    Liang, Yichen

    Organic phoorefractive (PR) composites have recently emerged as an important class of materials for applications including high-density data storage, optical communication, and biomedical imaging. In an effort to further improve their performance, this study focused on the utilization of functionalized semiconductor nanocrystals to photosensitize triaryamine (TPD)-based PR composites, as well as the application of TPD-based PR composites in the restoration of aberrated optical information. A novel approach to functionalize CdSe quantum dot (QCdSe) was firstly introduced where the sulfonated triarydiamine (STPD) was used as charge-transporting ligand to passivate QCdSe. TPD-based photoconductive and PR composites were photosensitized with the STPD-passivated QCdSe (SQCdSe). Due to the charge-transporting capability of STPD, the composites photosensitized with STPD-capped QCdSe exhibited superior performance relative to composites employing more traditional photosensitizers (such as fullerene C60 and trioctylphosphine-capped QCdSe), with figures-of-merit including photoconductivities in excess of 60 pS/cm, two-beam coupling gain coefficients in excess of 110 cm-1, and PR response time of less than 30 ms. In addition, the ability of TPD-based PR composites to correct aberrations associated with a laser beam was described. Here, a severely aberrated laser beam was able to be restored to a nearly unaberrated condition through the PR process, and the potential of this technique for practical applications was well explained. Based on the current experimental geometry, a PR response time of 0.5 s was observed, which is the fastest PR response time reported for a PR composite operating under experimental conditions designed for the correction of optical aberrations.

  4. Direct Patterning of Organic Self-Assembled Monolayer (SAM) on GaAs Surfaces via Dip-Pen Nanolithography (DPN)

    NASA Astrophysics Data System (ADS)

    Xiong, Peng; Keiper, Timothy; Wang, Xiaolei; Zhao, Jianhua

    2015-03-01

    Hybrid structures of functional molecules and solid-state (SS) materials have attracted extensive interest in surface nanoscience and molecular electronics. The formation and micro/nano patterning of organic SAMs on SS surfaces are a key step in fabricating such devices. Here we report realization of high quality MHA SAMs on GaAs and direct formation of micro/nanoscale patterns of MHA SAM on the surface by micro-contact printing (μ CP) and DPN. The process begins with the preparation of an oxide-free surface of GaAs, for which we employed treatment by an ammonium polysulfide ((NH4)2 Sx) solution. The treatment strips native oxides from GaAs creating an atomic layer of sulfur covalently bonded to the fresh surface. Formation of high-quality SAMs of thiol molecules on GaAs then proceeds through exchange of the sulfur and the thiol terminal of the molecules. The effects of the sulfur-passivation and formation of MHA SAM on the treated surface were confirmed by XPS, HRTEM, and DPN. To the best of our knowledge, this is a first realization of direct DPN of nanoscale organic SAM on a semiconductor free of surface oxide. We further evidence the utility of the hybrid platform by demonstrating directed self-assembly of Au nanoparticles onto MHA/ODT SAM templates on GaAs.

  5. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    for homogeneous doping of floating zone Si with P, holds perhaps the biggest promises for isotopically controlled semiconductors and is discussed in some detail. Local vibrational modes of low-mass impurities are sensitive to the mass of the impurity as well as the masses of the host atoms neighboring the impurity. High-resolution infrared-absorption studies of O in Ge crystals of different isotopic composition demonstrate the extreme simplification in such spectra which is achieved by isotope control. Interdiffusion of GaAs and Ge isotope superlattices with 0.1-1 μm thick layers have been studied with secondary-ion-mass spectroscopy. This kind of internal diffusion avoids the problems with surface effects and can produce accurate data without the need for radioactive tracers. The review closes with an outlook on the exciting future possibilities offered through isotope control of a wide range of semiconductor materials.

  6. Beam driven upper-hybrid-wave instability in quantized semiconductor plasmas

    SciTech Connect

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Moslem, W. M.; Salimullah, M.

    2014-02-15

    The excitation of Upper-Hybrid waves (UHWs) induced by electron beam in semiconductor plasma is examined using quantum hydrodynamic model. Various quantum effects are taken into account including recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The bandwidth of the UHWs spectrum shows that the system supports purely growing unstable mode. The latter has been studied for diversified parameters of nano-sized GaAs semiconductor.

  7. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    SciTech Connect

    Liu, Houquan; She, Weilong

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  8. Andreev Reflections at the Superconductor-Semiconductor Interface

    NASA Astrophysics Data System (ADS)

    Flexner, Soren

    2005-03-01

    We present results of experiments involving coupling of a BCS superconductor (niobium) with a heavily doped gallium arsenide based semiconductor system. Silicon doped GaAs is grown by molecular beam epitaxy and capped by InGaAs, with an indium fraction of 30 percent. Silicon delta doping layers increase electron densities into the semi-metallic regime. Intimate contact between superconductor and semiconductor is obtained by in situ evaporation of niobium. Evidence of strong Andreev reflections at this interface is observed and analysis of this behavior in accordance with the BTK formalism will be presented.

  9. [Photoexcitation mechanism of photoconductive device by organic/inorganic thin-film heteropairing].

    PubMed

    Jin, Hui; Teng, Feng; Liu, Jun-Feng; Meng, Xian-Guo; Xu, Zheng; Hou, Yan-Bing; Xu, Xu-Rong

    2004-08-01

    Photoconductive devices with organic (polyvinylcarbazole-PVK)/inorganic (zinc-sulfide--ZnS) thin-film heteropairing were fabricated. In external field, the excitation profile of the steady-state photoconductivity and the primary photoexcitation process of hybrid devices were presented and discussed. Comparison of photoconductivity of the devices and absorption spectra of PVK and ZnS implied that both layers absorption contributes to the photocurrent, but the effective part is at the interface of PVK and ZnS. The dependence of maximum photocurrent on the applied voltage and the dark and illuminated current spectra indicates the ultrafast charge transfer at the interface.

  10. Photorefractive effect in ferroelectric liquid crystal blends containing terthiophene photoconductive chiral dopants

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeo; Yoshino, Masanori

    2016-04-01

    Ferroelectric liquid crystalline mixtures composed of a smectic liquid crystal, a photoconductive chiral dopant, and an electron trap reagent exhibit a large photorefractivity with a rapid response. It is expected that the photorefractive FLC blends can be utilized in dynamic amplification of moving optical signals. In the present study, the photorefractive properties of the ferroelectric liquid crystal blends containing different photoconductive chiral dopants were examined. The durability of the photoconductive chiral dopants during laser irradiation was investigated. Tthe effect of the conduction of photogenerated ionic species on the photorefractivity decay was clarified.

  11. Photorefractive amplification of dynamic light signals using photoconductive ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeo

    2015-05-01

    The photorefractive effect in photoconductive ferroelectric liquid crystal blends containing photoconductive chiral compounds was investigated. Terthiophene compounds possessing chiral structures were mixed with an achiral smectic C liquid crystal mixture. The blends exhibit the ferroelectric chiral smectic C phase. The photorefractivity of the liquid crystal blends was investigated by two-beam coupling experiments. The photoconductive ferroelectric liquid crystal blends prepared in this study exhibited a large gain coefficient of over 1200 cm-1 and a fast response time shorter than 1 ms. Amplification of an moving optical image signal of over 30 fps using the photorefractive ferroelectric liquid crystal was demonstrated.

  12. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  13. Persistent photoconductivity in two-dimensional Mo1-xW xSe2–MoSe2 van der Waals heterojunctions

    DOE PAGES

    Puretzky, Alexander A.; Basile, Leonardo; Idrobo, Juan Carlos; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai; Li, Xufan; Lin, Ming -Wei; Wang, Kei

    2016-02-16

    Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional (2D) layered semiconductors, especially the transition metal dichalcogenides (TMDs), are fascinating new artificial solids just nanometers-thin that promise novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe2 and p-type Mo1-xW xSe2–MoSe2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with different interlayer orientations. Atomic-resolution Z-contrast electron microscopy and electron diffraction are used to characterize both the individual monolayers and the atomic registry betweenmore » layers in the bilayer vdW heterostructures. These measurements are compared with photoluminescence and low-frequency Raman spectroscopy, which indicates strong interlayer coupling in heterostructures. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. Furthermore, these measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.« less

  14. Additional compound semiconductor nanowires for photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  15. Spin splitting in 2D monochalcogenide semiconductors

    PubMed Central

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-01-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907

  16. Photoconductivity of Er-doped InAs quantum dots embedded in strain-relaxed InGaAs layers with 1.5 µm cw and pulse excitation

    NASA Astrophysics Data System (ADS)

    Murakumo, Keisuke; Yamaoka, Yuya; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro

    2016-04-01

    We fabricated a photoconductive antenna structure utilizing Er-doped InAs quantum dot layers embedded in strain-relaxed In0.35Ga0.65As layers on a GaAs substrate. Mesa-shaped electrodes for the antenna structure were formed by photolithography and wet etching in order to suppress its dark current. We measured the photocurrent with the excitation of ∼1.5 µm cw and femtosecond pulse lasers. Compared with the dark current, the photocurrent was clearly observed under both cw and pulse excitation conditions and almost linearly increased with increasing excitation power in a wide range of magnitudes from 10 W/cm2 to 10 MW/cm2 order.

  17. Electronic interactions in metal complexed photoconducting polymers : a ZINDO study.

    SciTech Connect

    Manas, E. S.; Chen, L. X.; Chemistry; Univ. of Pennsylvania School of Medicine

    2000-12-01

    Semi-empirical (INDO/s) calculations have been conducted on molecular fragments with zero to three phenylenevinylene (PV) units attached to 4 and 4{prime} positions of a 2,2{prime}-bipyridine (bpy) group, with and without chelated metal ions, mimicking metal-free and metal-chelated photoconducting polymers 1 and 2 [Chen et al., J. Phys. Chem. B 104 (2000) 1950]. The calculations suggest that: (1) a global lowering of the molecular orbital energy levels due to metal-chelation is responsible for the observed red-shift in the lowest energy transitions; and (2) metal chelation attenuates {pi}-electron delocalization. The relevance of these effects to photoluminescence of metal-chelated polymers is also discussed.

  18. Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines

    NASA Astrophysics Data System (ADS)

    Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.

    2015-08-01

    The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.

  19. Fielding and calibration issues for diamond photoconducting detectors

    SciTech Connect

    Spielman, R.B.; Ruggles, L.E.; Pepping, R.E.; Breeze, S.F.; McGurn, J.S.; Struve, K.W.

    1996-12-01

    Diamond photoconducting detectors are routinely fielded as soft x-ray diagnostics on Sandia`s Saturn facility. We have developed an improved detector mount that provides a 200-ps time response, is easily cleanable, and is very rugged. In addition, we have developed a new, fast insertion unit to apply bias voltage to the detectors. Absolute calibration of the PCDs is carried out either at the Brookhaven National Synchrotron Light Source or on Sandia`s laser calibration facility. We are now fielding diamond elements that have the dimensions 1x3x0.5 nun and 1x1xO.5 mm. We are neutron damaging some of the 1x1xO.5-mm detectors to reduce their sensitivity. We can tailor PCD sensitivity by adjusting element size and neutron damage level.

  20. Photoconductive probing of the trap distribution in switchable interfaces.

    PubMed

    Tian, Ye; Zhang, Jianming; Guo, Chuan Fei; Zhang, Baoshun; Liu, Qian

    2016-01-14

    Interfacial resistive switching features are highly dependent on the distribution of the carrier traps in the interface. However, the lack of probing seriously restricts ways of offering physical insights into its mechanism and improving interfacial resistors. In this work, we investigated a resistive switching interface that consists of Bi2S3 nano networks (BSNN) and F-doped SnO2 (FTO), uncovering the relationship between the decay of the photoconductance in BSNN and interfacial trap distribution. Based on this, we suggest a general method to probe the distribution of various interface traps. This method provides us with a new tool to study the interfacial trap distribution in an interfacial resistor, and it might also be used to understand other interface problems. PMID:26660900

  1. Polycrystalline diamond photoconductive device with high UV-visible discrimination

    NASA Astrophysics Data System (ADS)

    McKeag, Robert D.; Chan, Simon S. M.; Jackman, Richard B.

    1995-10-01

    Planar metal-diamond-metal photoconductive devices have been fabricated from free standing large grain (20-30 μm) polycrystalline thin film diamond. An interdigitated electrode design with spacings of 20 μm was used to produce effective UV photodetecting devices at bias values in the range 0.1-10 V. A methane-air treatment has been used to modify the structures such that unprecedented performance characteristics have been recorded (106 higher response to 200 nm than visible wavelengths, <0.1 nA dark currents); spectral features similar to those observed in natural diamond crystals have been observed indicating that the treatment used led to near ideal electronic characteristics from polycrystalline material.

  2. Supralinear photoconductivity of copper doped semi-insulating gallium arsenide

    SciTech Connect

    Schoenbach, K.H.; Joshi, R.P.; Peterkin, F.; Druce, R.L.

    1995-05-15

    We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low-energy phototransistor application for the GaAs:Cu material system is presented. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Microstructured gradient-index lenses for THz photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Brincker, Mads; Karlsen, Peter; Skovsen, Esben; Søndergaard, Thomas

    2016-02-01

    A new type of substrate lens for photoconductive antennas (PCA's) based on sub-wavelength microstructuring is presented and studied theoretically by the use of Greens function integral equation methods (GFIEM's). By etching sub-wavelength trenches into a flat substrate, the effective dielectric constant can be designed to function like a gradient index (GRIN) lens. The proposed GRIN substrate lenses have sub-mm dimension, which is smaller than the dimensions of a typical hyper-hemispherical substrate lens (HSL), and could enable fabrication of arrays of closely packed PCA's with individual lenses integrated directly into the PCA substrate. The performance of different GRIN lenses is compared to a HSL and shown to be comparable with regards to the terahertz radiation extraction efficiency, and it is shown that the collimating properties of these GRIN lenses can be tailored by changing the parameters used for microstructuring.

  4. Stress induced long wavelength photoconductivity in doped silicon infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1982-01-01

    The long wavelength cutoff of a Si:P detector was extended to 34 microns by the application of a uniaxial stress. An unstressed Si:P photoconductive detector responds to photons of up to 28 microns wavelength. By applying a uniaxial stress to a detector along the /100/ crystal axis, the response was extended to approximately 34 microns. The /100/ axis was chosen as the stress direction because theoretical calculations predicted that such a stress extends the wavelength response more than one along the /110/ axis. These theoretical calculations were based upon fits to experimental data obtained at stresses of up to approximately kbar, and indicated that the extension in wavelength response continues to increase at much larger stresses.

  5. Pulsed Molecular Beams For Growth Of InAs On GaAs

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1989-01-01

    Pauses for annealing reduce number of defects. Deposition process that includes pulsed molecular beams produces high-quality epitaxial layers of indium arsenide on gallium arsenide substrates. Layers made as much as 30 atoms thick without introducing excessive numbers of dislocations, despite 7.4-percent mismatch between InAs and GaAs crystal lattices. Layers offer superior electrical properties in such devices as optically addressed light modulators, infrared sensors, semiconductor lasers, and high-electron-mobility transistors. Technique applicable to other epitaxial systems in which lattices highly mismatched.

  6. Novel GaAs surface phases via direct control of chemical potential

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Tersoff, J.; Tang, W. X.; Morreau, A.; Jesson, D. E.

    2016-05-01

    Using in situ surface electron microscopy, we show that the surface chemical potential of GaAs (001), and hence the surface phase, can be systematically controlled by varying temperature with liquid Ga droplets present as Ga reservoirs. With decreasing temperature, the surface approaches equilibrium with liquid Ga. This provides access to a regime where we find phases ultrarich in Ga, extending the range of surface phases available in this technologically important system. The same behavior is expected to occur for similar binary or multicomponent semiconductors such as InGaAs.

  7. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Hamza, A. V.; Barnes, A. V.; Schneider, D. H.; Banks, J. C.; Doyle, B. L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow \\(v = 6.6×105 m/s\\), very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400 target atoms are removed when a single Th70+ ion deposits a potential energy of 152.6 keV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation.

  8. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    SciTech Connect

    Schenkel, T.; Hamza, A.V.; Barnes, A.V.; Schneider, D.H.; Banks, J.C.; Doyle, B.L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow (v=6.6{times}10{sup 5} m /s) , very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400thinspthinsptarget atoms are removed when a single Th{sup 70+} ion deposits a potential energy of 152.6thinspthinspkeV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation. {copyright} {ital 1998} {ital The American Physical Society}

  9. Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs

    NASA Astrophysics Data System (ADS)

    Legrand, R.; Huynh, A.; Jusserand, B.; Perrin, B.; Lemaître, A.

    2016-05-01

    The phonon mean free path is generally inferred from the measurement of thermal conductivity and we are still lacking precise information on this quantity. Recent advances in the field of high-frequency phonons transduction using semiconductor superlattices give the opportunity to fill this gap. We present experimental results on the attenuation of longitudinal acoustic phonons in GaAs in the frequency and temperature ranges 0.2-1 THz and 10-80 K respectively. Surprisingly, we observe a plateau in the frequency dependence of the attenuation above 0.7 THz, that we ascribe to a breakdown of Herring processes.

  10. Determination of carrier concentration and compensation microprofiles in GaAs

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.; Lagowski, J.; Walukiewicz, W.; Gatos, H. C.

    1980-01-01

    Simultaneous microprofiling of semiconductor free carrier, donor, and acceptor concentrations was achieved for the first time from the absolute value of the free carrier absorption coefficient and its wavelength dependence determined by IR absorption in a scanning mode. Employing Ge- and Si-doped melt-grown GaAs, striking differences were found between the variations of electron concentration and those of ionized impurity concentrations. These results showed clearly that the electronic characteristics of this material are controlled by amphoteric doping and deviations from stoichiometry rather than by impurity segregation.

  11. Twin superlattice-induced large surface recombination velocity in GaAs nanostructures

    SciTech Connect

    Sheng, Chunyang; Brown, Evan; Nakano, Aiichiro; Shimojo, Fuyuki

    2014-12-08

    Semiconductor nanowires (NWs) often contain a high density of twin defects that form a twin superlattice, but its effects on electronic properties are largely unknown. Here, nonadiabatic quantum molecular dynamics simulation shows unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective charge-recombination centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying surface-recombination processes.

  12. A new methodology for determining recombination parameters using an RF photoconductance instrument

    SciTech Connect

    Sinton, R.A.; Cuevas, A.

    1995-08-01

    Measurements of minority-carrier lifetime in silicon wafers provide an effective technique for process control and device-physics optimization. For example, detailed measurements of minority-carrier lifetime vs. injection level can allow a nearly complete experimental optimization of a solar cell design and process. This extended abstract describes a methodology that allows this fully characterization by using a relatively simple RF photoconductance-decay tool. By analyzing the quasi-steady-state photoconductance as a function of incident light intensity, information corresponding to an I{sub sc}-V{sub oc} curve can be obtained from a non-contacted silicon wafer. This information is available at various stages during the solar cell fabrication process. The use of steady-state photoconductance instead of transient photoconductance makes use of simple electronics and light sources, yet it has the capability to measure lifetimes down into the 100 ns range.

  13. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup −5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 10{sup 6} cm{sup −1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  14. Thermal oxidation of 3-5 compound semiconductors

    NASA Astrophysics Data System (ADS)

    Monteironeto, Othon Derego

    1988-11-01

    Thermal oxidation of 3-5 compound semiconductors has been studied in the temperature range of 300 to 600 C. Two members of this class of materials, namely InP and GaAs, were the object of the experimental work carried out here. The main analytical tools used were transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). TEM was employed to access microstructural changes and SIMS to access the composition redistribution that takes place as a consequence of the oxidation reaction. Below 400 C oxidation of both materials led to the formation of amorphous scales, which consisted of a mixture of gallium and arsenic oxides in the case of GaAs, and indium phosphate and oxide in the case of InP. The oxidation kinetics of InP was found to be slower than that of GaAs. In the high temperature regime, i.e., above 400 C, the oxidation of both materials resulted in crystalline products. Precipitation of the group 5 element at the scale/semiconductor interface took place during oxidation. At the GaAs/Ga2O3interface, As precipitates were formed with a truncated square pyramid shape bound by (111) sub GaAs planes. The precipitates found at the InPO4/InP interface were either a phosphorus rich phase or red phosphorus. Strong vaporization under the electron beam prohibited a more accurate determination. The morphology of those precipitates were very similar to the As ones in GaAs.

  15. Thermal oxidation of III-V compound semiconductors

    SciTech Connect

    Neto, O.R.M.

    1988-11-01

    Thermal oxidation of III-V compound semiconductors has been studied in the temperature range of 300/degree/C to 600/degree/C. Two members of this class of materials, namely InP and GaAs, were the object of the experimental work carried out here. The main analytical tools used were transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS). TEM was employed to access microstructural changes and SIMS to access the composition redistribution that takes place as a consequence of the oxidation reaction. Below 400/degree/C oxidation of both materials led to the formation of amorphous scales, which consisted of a mixture of gallium and arsenic oxides in the case of GaAs, and indium phosphate and oxide in the case of InP. The oxidation kinetics of InP was found to be slower than that of GaAs. In the high temperature regime, i.e., above 400/degree/C, the oxidation of both materials resulted in crystalline products. Precipitation of the group V element at the scale/semiconductor interface took place during oxidation. At the GaAs/Ga/sub 2/O/sub 3/interface, As precipitates were formed with a truncated square pyramid shape bound by /l brace/111/r brace//sub GaAs/ planes. The precipitates found at the InPO/sub 4//InP interface were either a phosphorus rich phase or red phosphorus. Strong vaporization under the electron beam prohibited a more accurate determination. The morphology of those precipitates were very similar to the As ones in GaAs. 83 refs., 48 figs., 6 tabs.

  16. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  17. Ultra-Thin-Film GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Shin, B. K.; Yeh, Y. C. M.; Stirn, R. J.

    1982-01-01

    Process based on organo-metallic chemical vapor deposition (OM/CVD) of trimethyl gallium with arsine forms economical ultrathin GaAs epitaxial films. Process has higher potential for low manufacturing cost and large-scale production compared with more-conventional halide CVD and liquid-phase epitaxy processes. By reducing thickness of GaAs and substituting low-cost substrate for single-crystal GaAs wafer, process would make GaAs solar cells commercially more attractive.

  18. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka; Ahyi, Ayayi; Dhar, Sarit

    2016-03-01

    Solar-blind photodetection and photoconductive gain >50 corresponding to a responsivity >8 A/W were observed for β-Ga2O3 Schottky photodiodes. The origin of photoconductive gain was investigated. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. It is concluded that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.

  19. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes

    DOE PAGES

    Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka; Ahyi, Ayayi; Dhar, Sarit

    2016-03-10

    Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga2O3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reversemore » bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.« less

  20. Impacts of crystal orientation of GaAs on the interfacial structures and electrical properties of Hf{sub 0.6}La{sub 0.4}O{sub x} films

    SciTech Connect

    Jia, Tingting; Kimura, Hideo; Zhao, Hongyang; Yao, Qiwen; Cheng, Zhenxiang; Cheng, Xinghong; Yu, Yuehui

    2014-04-07

    One of the major challenges in realizing the GaAs channel in the metal oxide semiconductor field effect transistor is the degrading in electron transport properties at the interface between GaAs and the gate oxide. In this study, Hf{sub 0.6}La{sub 0.4}O{sub x} gate oxide films were deposited at a low temperature (200 °C) on GaAs(111)A and GaAs(100) substrates by plasma enhanced atomic layer deposition. Microstructure analysis indicates that residuals of gallium oxide, arsenic oxide, and As element remained at the interface of Hf{sub 0.6}La{sub 0.4}O{sub x}/GaAs(100). On contrast, a smoother interface is observed between Hf{sub 0.6}La{sub 0.4}O{sub x} thin film and GaAs(111)A substrate. Furthermore, a reduction of interfacial layer is observed in Hf{sub 0.6}La{sub 0.4}O{sub x}/GaAs(111)A. Electrical characterization of the metal-insulator-semiconductor Pt/Hf{sub 0.6}La{sub 0.4}O{sub x}/n-GaAs(111)A capacitor indicated a reduction of D{sub it} and leakage current compared with the capacitor fabricated on GaAs(100)

  1. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  2. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  3. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  4. Study of Thermodynamic Properties of Zinc-Blende Semiconductors:. Temperature and Pressure Dependences

    NASA Astrophysics Data System (ADS)

    Hieu, Ho Khac; Hung, Vu Van

    Using the statistical moment method (SMM), the temperature and pressure dependences of thermodynamic quantities of zinc-blende-type semiconductors have been investigated. The analytical expressions of the nearest-neighbor distances, the change of volumes and the mean-square atomic displacements (MSDs) have been derived. Numerical calculations have been performed for a series of zinc-blende-type semiconductors: GaAs, GaP, GaSb, InAs, InP and InSb. The agreement between our calculations and both earlier other theoretical results and experimental data is a support for our new theory in investigating the temperature and pressure dependences of thermodynamic quantities of semiconductors.

  5. Effect of GaAs native oxide upon the surface morphology during GaAs MBE growth

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Solodovnik, M. S.; Balakirev, S. V.; Mikhaylin, I. A.; Eremenko, M. M.

    2016-08-01

    The GaAs native oxide effect upon the surface morphology of the GaAs epitaxial layer was studied with taking into account the main growth parameters of MBE technology: substrate temperature, effective As4/Ga flux ratio and growth rate. The MBE modes of atomically smooth and rough surfaces and surfaces with Ga droplet array formation were determined. The possibility of the obtaining of GaAs nanowires via GaAs native oxide layer was shown.

  6. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour–liquid–solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255–1000 nm and diameters of 50–80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  7. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes.

    PubMed

    Lacour, Vivien; Elie-Caille, Céline; Leblois, Thérèse; Dubowski, Jan J

    2016-03-02

    Wet chemical processes were investigated to remove alkanethiol self-assembled monolayers (SAMs) and regenerate GaAs (001) samples studied in the context of the development of reusable devices for biosensing applications. The authors focused on 16-mercaptohexadecanoic acid (MHDA) SAMs that are commonly used to produce an interface between antibodies or others proteins and metallic or semiconductor substrates. As determined by Fourier transform infrared absorption spectroscopy, among the investigated solutions of HCl, H2O2, and NH4OH, the highest efficiency in removing alkanethiol SAM from GaAs was shown by NH4OH:H2O2 (3:1 volume ratio) diluted in H2O. The authors observed that this result was related to chemical etching of GaAs that even in a weak solution of NH4OH:H2O2:H2O (3:1:100) proceeded at a rate of 130 nm/min. The surface revealed by a 2-min etching under these conditions allowed depositing successfully a new MHDA SAM with comparable quality and density to the initial coating. This work provides an important view on the perspective of the development of a family of cost-effective GaAs-based biosensors designed for repetitive detection of a variety of biomolecules immobilized with dedicated antibody architectures.

  8. Light-Emitting Devices Based on Top-down Fabricated GaAs Quantum Nanodisks

    PubMed Central

    Higo, Akio; Kiba, Takayuki; Tamura, Yosuke; Thomas, Cedric; Takayama, Junichi; Wang, Yunpeng; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki; Yamashita, Ichiro; Murayama, Akihiro; Samukawa, Seiji

    2015-01-01

    Quantum dots photonic devices based on the III–V compound semiconductor technology offer low power consumption, temperature stability, and high-speed modulation. We fabricated GaAs nanodisks (NDs) of sub-20-nm diameters by a top-down process using a biotemplate and neutral beam etching (NBE). The GaAs NDs were embedded in an AlGaAs barrier regrown by metalorganic vapor phase epitaxy (MOVPE). The temperature dependence of photoluminescence emission energies and the transient behavior were strongly affected by the quantum confinement effects of the embedded NDs. Therefore, the quantum levels of the NDs may be tuned by controlling their dimensions. We combined NBE and MOVPE in a high-throughput process compatible with industrial production systems to produce GaAs NDs with tunable optical characteristics. ND light emitting diode exhibited a narrow spectral width of 38 nm of high-intensity emission as a result of small deviation of ND sizes and superior crystallographic quality of the etched GaAs/AlGaAs layer. PMID:25792119

  9. On magnetism and the insulator-to-metal transition in p-doped GaAs

    NASA Astrophysics Data System (ADS)

    Chapler, Brian; Myers, R. C.; Mack, S.; Frenzel, A.; Pursley, B. C.; Burch, K. S.; Singley, E. J.; Dattelbaum, A. M.; Samarth, N.; Awschalom, D. D.; Basov, D. N.

    2011-03-01

    Although Ga 1-x Mn x As is often described as the prototypical ferromagnetic semiconductor, many aspects of the electronic structure and nature of mediating carriers remain open. A central question in this regard is whether the insulator-to-metal transition (IMT) in p -doped GaAs is significantly modified when dopants are magnetic. We address this through an infrared spectroscopic study of GaAs doped with either non-magnetic Be or magnetic Mn acceptors. Through our comparison, we are able to isolate effects of magnetic dopants in GaAs from those associated with disorder and proximity to the IMT. Here we show Mn-doped samples exhibit an unusual electronic transport regime, combining elements of both metallic and insulating behavior, at doping concentrations far beyond the onset of the IMT. Be-doped films however, reveal genuine metallicity just above the IMT boundary. These results underscore the pivotal role of magnetism in transport and optical phenomena of Ga 1-x Mn x As.

  10. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  11. Observation of Nondegenerate Two-Photon Gain in GaAs

    NASA Astrophysics Data System (ADS)

    Reichert, Matthew; Smirl, Arthur L.; Salamo, Greg; Hagan, David J.; Van Stryland, Eric W.

    2016-08-01

    Two-photon lasers require materials with large two-photon gain (2PG) coefficients and low linear and nonlinear losses. Our previous demonstration of large enhancement of two-photon absorption in semiconductors for very different photon energies translates directly into enhancement of 2PG. We experimentally demonstrate nondegenerate 2PG in optically excited bulk GaAs via femtosecond pump-probe measurements. 2PG is isolated from other pump induced effects through the difference between measurements performed with parallel and perpendicular polarizations of pump and probe. An enhancement in the 2PG coefficient of nearly 2 orders of magnitude is reported. The results point a possible way toward two-photon semiconductor lasers.

  12. Observation of Nondegenerate Two-Photon Gain in GaAs.

    PubMed

    Reichert, Matthew; Smirl, Arthur L; Salamo, Greg; Hagan, David J; Van Stryland, Eric W

    2016-08-12

    Two-photon lasers require materials with large two-photon gain (2PG) coefficients and low linear and nonlinear losses. Our previous demonstration of large enhancement of two-photon absorption in semiconductors for very different photon energies translates directly into enhancement of 2PG. We experimentally demonstrate nondegenerate 2PG in optically excited bulk GaAs via femtosecond pump-probe measurements. 2PG is isolated from other pump induced effects through the difference between measurements performed with parallel and perpendicular polarizations of pump and probe. An enhancement in the 2PG coefficient of nearly 2 orders of magnitude is reported. The results point a possible way toward two-photon semiconductor lasers. PMID:27563962

  13. Artificial Graphene in Nano-patterned GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Scarabelli, Diego; Kuznetsova, Yuliya Y.; Pfeiffer, Loren N.; West, Ken; Gardner, Geoff C.; Manfra, Michael J.; Pellegrini, Vittorio; Wind, Shalom J.; Pinczuk, Aron

    We report the realization of artificial graphene (AG) in a 2D electron gas in a highly tunable semiconductor quantum well system. Very short period (as small as 40 nm) honeycomb lattices were formed in a GaAs heterostructure by electron beam lithography followed by dry etching. Characterization of the AG samples by photoluminescence at low temperature (about 4K) indicates modulation of 2D electron states. Low-lying electron excitations observed by resonant inelastic light scattering and interpreted with a calculated AG band structure confirm the formation of AG bands with a well-defined Dirac cone, evidence for the presence of massless Dirac fermions. These results suggest that engineered semiconductor nano-scale structures can serve as advanced quantum simulators for probing novel electron behavior in low dimensional systems. Supported by DOE-BES Award DE-SC0010695.

  14. Nonlinear response of GaAs gratings in the extraordinary transmission regime.

    PubMed

    Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael

    2011-12-01

    We theoretically describe a way to enhance harmonic generation from subwavelength slits milled on semiconductor substrates in strongly absorptive regimes. The metal-like response typical of semiconductors, like GaAs and GaP, triggers enhanced transmission and nonlinear optical phenomena in the deep UV range. We numerically study correlations between linear and nonlinear responses and their intricacies in infinite arrays, and highlight differences between nonlinear surface and magnetic sources, and intrinsic χ((2)) and χ((3)) contributions to harmonic generation. The results show promising efficiencies at wavelengths below 120 nm, and reveal coupling of TE and TM polarizations for pump and harmonic signals. A downconversion process that can regenerate pump photons with polarization orthogonal to the incident pump is also discussed. PMID:22139280

  15. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  16. Transport studies of conducting, semiconducting and photoconducting star polymers

    NASA Astrophysics Data System (ADS)

    Ferguson, John Baker

    Star polymers are studied for their transport properties in the highly conducting state doped with NOPF6 and iodine, the undoped semiconducting state and the photoconducting state. Doped star polymers exhibit variable range hopping of charge carriers. Transport dimensionality and conductivity depend intricately on the processing conditions for doping and casting films. The highest conducting diffusion doped film (room temperature conductivity 50 S/cm) exhibits 2-dimensional variable range for all doping levels. Polymers doped in solution, then cast to form films have 1.4 dimensional variable range hopping for the highest conducting samples with 10 S/cm at room temperature. The hopping dimensionality varies as the conductivity decreases. The doped star polymers remain on the insulator side of the insulator metal transition with localized carriers as revealed with Kramer-Kronig analysis. Optical and near infrared absorbance and photoluminescence reveal the core of the star polymers exist in a solid state solution of the arms with similar absorbance and luminescence for both solution and films. The arms retain the optical properties of their linear analogs indicating the core and arms do not interact quantum mechanically to produce a new state. Excitons created by absorption in the wider band gap cores rapidly migrate to the arms. Photoconductive time of flight mobility measurements reveal an almost field independent mobility at room temperature. This is due to a unique cancellation of on diagonal and off diagonal disorder in the Bassler disorder formalism. The cores introduce heterogeneous regions with a net lower mobility predicted by correlated disorder models. Space charge limited current reveals trap densities several orders of magnitude higher than the carrier density. Photovoltaic performance of star polymer and fullerene blend devices with both 20 nm and 100 nm thick layers are investigated. The thin devices have low open circuit voltages due to space charge

  17. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    SciTech Connect

    Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  18. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    PubMed

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  19. Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Damsgaard, C. D.; Hickey, M. C.; Holmes, S. N.; Feidenhans'l, R.; Mariager, S. O.; Jacobsen, C. S.; Hansen, J. B.

    2009-06-01

    The interfacial, electrical, and magnetic properties of the Heusler alloy Co2MnGa grown epitaxially on GaAs(100) are presented with an emphasis on the use of this metal-semiconductor combination for a device that operates on the principles of spin-injection between the two materials. Through systematic growth optimization the stoichiometry in the bulk Co2MnGa can be controlled to better than ±2%, although the interface is disordered and limits the spin-injection efficiency in a practical spintronic device irrespective of the half-metallic nature of the bulk metal. Molecular beam epitaxial growth was monitored in situ by reflection high energy electron diffraction and the bulk composition was measured ex situ with inductively coupled plasma optical emission spectroscopy. The Co2MnGa L21 cubic structure is strained below a thickness of 20 nm on GaAs(100) but relaxed in films thicker than 20 nm. Electrical measurements on the Co2MnGa reveal general characteristics of a disordered electron system with insulating behavior for layer thicknesses <4 nm. Thicker layers show a negative magnetoresistance with extraordinary Hall effect constants up to 30 Ω T-1. Spin polarization transfer across the interface between Co2MnGa and GaAs is approximately 6.4% at 5 K in the current of a GaAs p-i-n diode even with compositional disorder at the interface.

  20. Optical and surface properties of the in doped GaAs layer deposition using thermionic vacuum arc method.

    PubMed

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan; Şimşek, Veli

    2016-07-01

    A broadband optical transparent InGaAs semiconductor layer production of micron thicknesses was produced in only 75 s by thermionic vacuum arc (TVA) method at the first time. The optical and surface properties of the produced layers have been investigated. InGaAs structure is using in electronics and optoelectronics devices. The main advantage of TVA method is its fast deposition rate, without any loss in the quality of the films. Doping is a very simple and fast according to common production methods. InGaAs is an alloy of indium arsenide (InAs) and gallium arsenide (GaAs). InAs with (220) crystallographic direction and GaAs with (024)/(022) crystallographic directions were detected using by XRD analysis. GaAs and InAs are in the cubic and zinc blende crystal system, respectively. According to the transmittance spectra, sample has a broadband transparency in the range of 1000-3300 nm. According to results, defined TVA method for In doping to GaAs is proper fast and friendly method. SCANNING 38:297-302, 2016. © 2015 Wiley Periodicals, Inc.

  1. Effect of high dose γ-ray irradiation on GaAs p-i-n photodetectors

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Khamari, Shailesh K.; Manwani, Sapna; Porwal, S.; Alexander, K.; Sharma, T. K.; Kher, S.; Oak, S. M.

    2015-06-01

    Metal organic vapor phase epitaxy grown GaAs p-i-n photodetector devices are fabricated and tested for the assessment of practical usage of the detector after the exposure to high radiation doses of γ-ray. Increased values of saturation current, ideality factor and leakage current after 360 kGy γ-ray irradiation confirm a substantial increase in the number of generation-recombination centers. It is further observed that the leakage current density, current per unit volume (Jv), increases linearly with the radiation fluence (Φ). The slope (α=ΔJv/ΔΦ) of the leakage current density versus γ-ray radiation fluences curve is two order less (4-5×10-l9 A/cm) for GaAs compared to Si (4-6×10-l7 A/cm). The lower value of α (radiation damage constant) confirms that GaAs is radiation harder than Si. Subsequently, it is also observed that the photo response of 360 kGy γ-ray irradiated GaAs device is reduced by ~50% due to the reduction of quantum efficiency by the radiation induced generation-recombination centers. The functionality of the irradiated sensor is verified by comparing the response of the pristine and irradiated detectors to the photoluminescence of semiconductor quantum well structures.

  2. Theoretical Study of the Effect of an AlGaAs Double Heterostructure on Metal-Semiconductor-Metal Photodetector Performance

    NASA Technical Reports Server (NTRS)

    Salem, Ali F.; Smith, Arlynn W.; Brennan, Kevin F.

    1994-01-01

    The impulse and square-wave input response of different GaAs metal-semiconductor-metal photodetector (MSM) designs are theoretically examined using a two dimensional drift- diffusion numerical calculation with a thermionic-field emission boundary condition model for the heterojunctions. The rise time and the fall time of the output signal current are calculated for a simple GaAs, epitaxially grown, MSM device as well as for various double-heterostructure barrier devices. The double heterostructure devices consist of an AlGaAs layer sandwiched between the top GaAs active, absorption layer and the bottom GaAs substrate. The effect of the depth of the AlGaAs layer on the speed and responsivity of the MSM devices is examined. It is found that there is an optimal depth, at fixed applied bias, of the AlGaAs layer within the structure that provides maximum responsivity at minimal compromise in speed.

  3. The role of d levels of substitutional magnetic impurities at the (110) GaAs surface

    NASA Astrophysics Data System (ADS)

    Mahani, M. R.; Pertsova, Anna; Islam, Fhokrul; Canali, C. M.

    2013-03-01

    The study of the spin of individual transition-metal dopants in a semiconductor host is an emergent field known as magnetic solotronics, bearing exciting prospects for novel spintronics devices at the atomic scale. Advances in different STM based techniques allowed experimentalists to investigate substitutional dopants at a semiconductor surface with unprecedented accuracy and degree of details. Theoretical studies based both on microscopic tight-binding (TB) models and DFT techniques have contributed in elucidating the experimental findings. In particular, for the case of Mn dopants on the (110) GaAs surface, TB models have provided a quantitative description of the properties of the associated acceptor states. Most of these TB calculations ignore dealing explicitly with the Mn d-levels and treat the associated magnetic moment as a classical vector. However recent STM experiments involving other TM impurities, such as Fe, reveal topographic features that might be related to electronic transitions within the d-level shell of the dopant. In this work we have included explicitly the d levels in the Hamiltonian. The parameters of the model have been extracted from DFT calculations. We have investigated the role that d levels play on the properties of the acceptor states of the doped GaAs(110) surface, and analyzed their implications for STM spectroscopy.

  4. Thermodynamic stability and band alignment at Sr-TiO3 /GaAs(001) interface

    NASA Astrophysics Data System (ADS)

    Cott, Joelson; Droopad, Ravi; Lee, Byounghak

    2015-03-01

    The successful epitaxial growth of SrTiO3 on Si showed that it is possible to integrate the functional oxides with semiconductors incorporating unique multifunctional properties of oxides into various existing semiconductor technologies. While SrTiO3 has been also deposited on GaAs without amorphous interfacial layers, the exact interface structure has been controversial; On one hand, scanning Transmission Electron Microscopy (STEM) shows As atoms at the interface. X-ray photoelectron spectroscopy (XPS) measurements, on the other hand, do not show peaks associated with As-O bonding, indicating that the GaAs/STO interface does not involve an As/oxide layer, contradicting to STEM observations. Using ab initio calculations, we determine the interfacial structure of a SrTiO3 film on a GaAs substrate to help clarify the apparently discrepancy between the XPS and the STEM measurements. The calculations reveal that, under the condition that allows atomically abrupt interfaces, the energetically most stable interface is As/Sr/TiO2 structure, in accordance with both XPS and STEM measurements. We discuss the band offsets and the possibility of in-gap states of various interface structures. This work was supported by the Air Force Office of Scientific Research, Contract FA9950-10-1-0133.

  5. Interface composition between Fe3O4 nanoparticles and GaAs for spintronic applications

    NASA Astrophysics Data System (ADS)

    Hihath, Sahar; Kiehl, Richard A.; Benthem, Klaus van

    2014-08-01

    Recent interest in spintronic applications has necessitated the study of magnetic materials in contact with semiconductor substrates; importantly, the structure and composition of these interfaces can influence both device functionality and the magnetic properties. Nanoscale ferromagnet/semiconductor structures are of particular interest. In this study, the interface structure between a monolayer of ferromagnetic magnetite (Fe3O4) nanoparticles and a GaAs substrate was studied using cross-sectional transmission electron microscopy techniques. It was found that a continuous amorphous oxide interface layer separates the nanoparticles from the GaAs substrate, and that iron diffused into the interface layer forming a compositional gradient. Electron energy-loss near-edge fine structures of the O K absorption edge revealed that the amorphous oxide is composed of γ-Fe2O3 directly underneath the Fe3O4 nanoparticles, followed by a solid solution of Ga2O3 and FeO and mostly Ga2O3 when approaching the buckled oxide/substrate interface. Real-space density functional theory calculations of the dynamical form factor confirmed the experimental observations. The implication of the findings on the optimization of these structures for spin injection is discussed.

  6. STM analysis of defects at the GaAs(001)-c(4 × 4) surface

    NASA Astrophysics Data System (ADS)

    Bruhn, Thomas; Fimland, Bjørn-Ove; Esser, Norbert; Vogt, Patrick

    2013-11-01

    Atomic structure models of semiconductor surfaces consider usually ideal models based on density functional theory calculations. In reality, however, semiconductor surfaces exhibit a variety of defects which deviate from this ideal surface structure. Depending on their specific nature and amount, these defects can contribute significantly to the total energy of the surface. Furthermore, the electronic properties and consequently their specific reactivity towards adsorption processes can be modified significantly due to the existence of surface defects. Here, we present an analysis of different kinds of defects at the GaAs(001)-c(4 × 4) surface reconstruction. The surfaces were prepared by thermal decapping of GaAs(001) epilayers grown by molecular beam epitaxy and capped by an amorphous As cap. High resolution measurements with scanning tunneling microscopy were performed at room temperature and allowed the identification and atomic analysis of several different kinds of surface defects. Apart from other defects we found indications that approximately 3% of the surface dimers are incomplete, consisting only of one As atom instead of two.

  7. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  8. Optically enhanced oxidation of III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsuo; Takahei, Kenichiro

    1985-01-01

    Oxidation of III-V compound semiconductor (110) cleaved surfaces under light irradiation is studied. The light irradiation enhanced the reaction rate of oxidation but the relationship between oxide growth and oxidation time under logarithmic law scarcely changed within this experimental range. The oxidation trend observed under light irradiation is similar to that of thermal oxidation for GaP, GaAs, InP, InAs, InGaAs, and InGaAsP. Semiconductors having As as the V element tend to be easily oxidized, while those of the above mentioned six kinds of materials having Ga as the III element are quickly oxidized in their initial stage. Ternary and quaternary compound semiconductors have less tendency to be oxidized compared to their constituent binary materials. off

  9. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  10. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  11. Special Issue featuring invited articles arising from UK Semiconductors 2012

    NASA Astrophysics Data System (ADS)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  12. Theory of Spin Hall Effect in GaAs

    NASA Astrophysics Data System (ADS)

    Engel, Hans-Andreas

    2006-03-01

    In the spin Hall effect, an electric current in a system with spin-orbit coupling induces a transverse spin current which leads to non-equilibrium spin accumulation near sample boundaries. Generating and manipulating non-equilibrium spin magnetization by electric fields is one of the most desirable goals of semiconductor spintronics, because electric fields have potentialities for accessing individual spins at nanometer scales. In this talk, I review the different spin-orbit coupling mechanisms in direct gap semiconductors and the implications of these mechanisms for the spin Hall effect. In particular, we recently developed a theory that accounts for spin-orbit coupling at charged impurities. This coupling leads to extrinsic spin currents that contain skew scattering and side jump contribution [1]. Applying our theory to bulk n-GaAs, without any free parameters, we find spin currents that are in reasonable agreement with recent experiments by Kato et al. [2]. Also, such contributions are important for p-doped GaAs. Furthermore, we analyzed the effect of intrinsic spin-orbit coupling in the presence of anisotropic impurity scattering, and found that, somewhat surprisingly, an electrical field can lead to a bulk magnetization component perpendicular to both the spin-orbit field and an external magnetic field. These works have been done in collaboration with B.I. Halperin, E.I. Rashba, and A.A. Burkov. [1] H.-A. Engel, B.I. Halperin, and E.I. Rashba, Phys. Rev.Lett. 95, 166605 (2005). [2] Y.K. Kato, R.C. Myers, A.C. Gossard, and D.D. Awschalom, Science 306, 1910 (2004).

  13. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  14. GaAs optoelectronic neuron arrays.

    PubMed

    Lin, S; Grot, A; Luo, J; Psaltis, D

    1993-03-10

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10(4) cm(-2) are discussed.

  15. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  16. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector

    SciTech Connect

    Yamashita, Masatsugu Takahashi, Hideki; Otani, Chiko; Ouchi, Toshihiko

    2014-02-03

    We present a reflection-type ultra-broadband terahertz (THz) time-domain spectroscopic ellipsometry system covering the frequency range of 0.5–30 THz. GaP (110) and z-cut GaSe crystals are used as emitters to generate the THz and mid-infrared pulses, respectively, and a photoconductive antenna switch using a low-temperature grown GaAs epitaxial layer transferred on Si substrate was used as a detector. By changing the emitter between the GaP and GaSe crystals, the measurable frequency range can be easily switched from the 0.5–7.8 THz range to the 7.8–30 THz range without additional optical alignment. We demonstrated the measurement of the dielectric function in a p-type InAs wafer and the optical conductivity of an indium tin oxide (ITO) thin film. The obtained carrier density and the mobility of the ITO thin film show good agreement with that obtained by the Hall measurement.

  17. Simulating photoconductive atomic-force microscopy on disordered photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Blakesley, James C.; Castro, Fernando A.

    2015-04-01

    We present a tool for simulating photoconductive atomic-force microscopy (Pc-AFM) on bulk heterojunction (BHJ) materials with a minimal set of empirical parameters. The simulation is a master-equation solution of a three-dimensional hopping charge transport model which includes donor-acceptor domain morphology, energetic and spatial disorder, exciton transport and splitting, charge-pair generation and recombination, and tip-substrate electrostatics. A simplifying aspect of the model is that electron transport, hole transport, and electron-hole recombination are treated as the same electron-transfer process. The model recreates realistic bulk recombination rates, without requiring short-range Coulombic effects to be calculated. We demonstrate the tool by simulating line scans of a Pc-AFM tip passing over the surface of a buried or exposed acceptor cluster in a BHJ film. The simulations confirm experimental observations that such defects can be detected by open-circuit mode Pc-AFM imaging, even when the clusters are buried below the surface.

  18. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  19. Structural and Photoconductivity Properties of Tellurium/PMMA Films

    NASA Astrophysics Data System (ADS)

    Carotenuto, Gianfranco; Palomba, Mariano; De Nicola, Sergio; Ambrosone, Giuseppina; Coscia, Ubaldo

    2015-08-01

    Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm2 and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

  20. Cryogenic silicon photoconductive power switches for high-power applications

    SciTech Connect

    Petr, R.A.

    1987-01-01

    The silicon photoconductive power switch (PCPS) is an attractive switch technology because it is capable of switching extremely large energy pulses of short duration with good efficiency and precise timing control. At high operating frequencies, there are enormous advantages to be gained by operating at liquid nitrogen temperatures. For example, the mechanical properties of silicon at 77K are such that its power-dissipation limit due to stress fracture is an order of magnitude higher than at 300K. Also, its thermal conductivity is improved at lower temperatures. Another important characteristic of 77K silicon is that its optical absorption depth at 1.06um extends out to 13cm, as compared to 0.1cm at 300K. Important aspects of operating a cryogenic silicon PCPS at high average power levels are addressed here. Electrical and optical properties of silicon at both 77K and 300K are developed, along with its thermomechanical properties when switching high peak and average power. In addition, experimental data concerning PCPS electrical-switching characteristics, optical trigger uniformity, and thermal stress response during conduction are presented. Finally, a system study compares the silicon PCPS to the thyratron.

  1. Photoconductivity of high-voltage space insulating materials

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.

    1975-01-01

    The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.

  2. Time- and spectrally resolved terahertz photoconductivity of quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Stellmach, C.; Vasile, G.; Hirsch, A.; Bonk, R.; Vasilyev, Yu. B.; Hein, G.; Becker, C. R.; Nachtwei, G.

    2007-07-01

    We present terahertz photoconductivity measurements on GaAs/AlGaAs and HgTe/HgCdTe heterostructures. The photoresponse is investigated time and spectrally resolved under quantum Hall conditions. The samples are excited by a pulsed p-Ge laser, which emits photons of frequencies around 2THz (corresponding to photon energies around 10meV ). Corbino-shaped GaAs/AlGaAs samples show relaxation times τ down to 10ns . The dependence of τ on the applied source-drain voltage is explained by a two-level picture after normalizing the data. All spectrally resolved measurements show contributions of the cyclotron resonance and the bolometric effect. These results are compared to numerical calculations based on a self-consistent Born approximation method. The measurements on HgTe/HgCdTe samples show comparable results. However, the effective mass in these samples is only mc=0.026m0 (approximately 1/3 of the mass in GaAs/AlGaAs ). Thus the cyclotron resonance is shifted to smaller magnetic fields around 2T . This fact makes HgTe/HgCdTe systems especially interesting for terahertz detector applications.

  3. Supramolecular core–shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core–shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  4. Structural and Photoconductivity Properties of Tellurium/PMMA Films.

    PubMed

    Carotenuto, Gianfranco; Palomba, Mariano; De Nicola, Sergio; Ambrosone, Giuseppina; Coscia, Ubaldo

    2015-12-01

    Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration. PMID:26245856

  5. Supramolecular core-shell nanoparticles for photoconductive device applications.

    PubMed

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-12

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices. PMID:27353003

  6. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy.

  7. Metal Insulator Semiconductor Structures on Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Connor, Sean Denis

    Available from UMI in association with The British Library. The compound semiconductor gallium arsenide and its associated aluminium alloys have been the subject of intensive research in recent years. These materials offer the advantage of high electron mobilities coupled with the ability to be 'barrier engineered' leading to high injection efficiencies in bipolar devices. From a technological viewpoint however these materials are difficult to work with and device realisation is a major problem. Both thermal and anodic oxidation of these materials fail to produce a dielectric of sufficient quality for device applications and as a result devices tend to be complex non planar, mesa structures. A technique is proposed whereby the electrical interface is separated from the dielectric by means of a thin layer of AlGaAs, carrier confinement in the active GaAs region being maintained by the potential barriers to holes and electrons formed by the GaAs-AlGaAs junction. The integrity of these barriers is maintained by the provision of a suitable 'capping' dielectric. The electrical characteristics of various dielectric systems on GaAs have been investigated by means of current -voltage, capacitance-voltage and electronic breakdown measurements. Transport mechanisms for leakage current through these systems are identified and the interface properties (viz Fermi level pinning etc.) assessed by means of a direct comparison between experimental capacitance-voltage curves and theoretical data obtained from classical theory. As a technique for producing a convenient, in house 'capping' dielectric with good electrical and mechanical properties, the plasma anodisation of deposited aluminium films has been investigated. The anodisation parameters have been optimised for oxidation of these films in a microwave sustained oxygen plasma to give alumina films of around 500 A. A qualitative model for the anodisation process, involving linear and parabolic growth kinetics is proposed and

  8. Semiconductor Bolometers Give Background-Limited Performance

    NASA Technical Reports Server (NTRS)

    Goebel, John; McMurray, Robert

    2006-01-01

    Semiconductor bolometers that are capable of detecting electromagnetic radiation over most or all of the infrared spectrum and that give background-limited performance at operating temperatures from 20 to 300 K have been invented. The term background-limited performance as applied to a bolometer, thermopile, or other infrared detector signifies that the ability to detect infrared signals that originate outside the detector is limited primarily by thermal noise attributable to the background radiation generated external to the bolometer. The signal-to-noise ratios and detectivities of the bolometers and thermopiles available prior to this invention have been lower than those needed for background-limited performance by factors of about 100 and 10, respectively. Like other electrically resistive bolometers, a device according to the invention exhibits an increase in electrical resistance when heated by infrared radiation. Depending on whether the device is operated under the customary constant- current or constant-voltage bias, the increase in electrical resistance can be measured in terms of an increase in voltage across the device or a decrease in current through the device, respectively. In the case of a semiconductor bolometer, it is necessary to filter out visible and shorter-wavelength light that could induce photoconductivity and thereby counteract all or part of the desired infrared- induced increase in resistance. The basic semiconductor material of a bolometer according to the invention is preferably silicon doped with one or more of a number of elements, each of which confers a different variable temperature coefficient of resistance. Suitable dopants include In, Ga, S, Se, Te, B, Al, As, P, and Sb. The concentration of dopant preferably lies in the range between 0.1 and 1,000 parts per billion.

  9. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  10. Magneto-Optical Characterization of Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Agool, Ibrahim R.

    Available from UMI in association with The British Library. The subject matter of this thesis lies within the area of the physics of semiconductor crystals and more particularly is concerned with the characterization of compound semiconductors using the magneto-optical excitation studies for their importance in the field of device technology. In the first part of this thesis a full study is reported for bulk indium phosphide which is important as substrate material for device fabrication. Measurements have shown that the MCD-ODMR technique is a powerful tool in the investigation of ground state transitions of bulk substrate semiconductors. It has also been shown that the optical technique can be used to explore native defects and transition metal ions in semiconductors. It is also shown in the thesis that an important method used in the characterization of semiconductor superlattices is the use of CO_2 optically pumped far-infrared lasers for studies in quantum wells. This method described as optically detected cyclotron resonance (ODCR), where FIR induced changes in luminescence intensity at resonance has allowed the investigation of non-parabolicity and subband structure for both conduction and valence bands in GaAs. ODCR results at FIR frequencies are compared with measurements performed at microwave frequencies. We have demonstrated that the sensitivity and resolution of FIR-ODCR allows the investigation of multilayer (low dimensional) GaAs/GaAlAs systems with different well widths, where one can monitor the emission from each well independently and examine the effective mass versus well thickness. For the first time we have observed the exchange interaction between donor and acceptor pairs. A Hall Effect system is described for the electrical characterization of doped ZnSe grown at Heriot-Watt University using molecular beam epitaxy (MBE) for new optoelectronic devices such as blue light emitting diodes and blue lasers.

  11. Photocurrents in semiconductors and semiconductor quantum wells analyzed by k.p-based Bloch equations

    NASA Astrophysics Data System (ADS)

    Podzimski, Reinold; Duc, Huynh Thanh; Priyadarshi, Shekhar; Schmidt, Christian; Bieler, Mark; Meier, Torsten

    2016-03-01

    Using a microscopic theory that combines k.p band structure calculations with multisubband semiconductor Bloch equations we are capable of computing coherent optically-induced rectification, injection, and shift currents in semiconductors and semiconductor nanostructures. A 14-band k.p theory has been employed to obtain electron states in non-centrosymmetric semiconductor systems. Numerical solutions of the multisubband Bloch equations provide a detailed and transparent description of the dynamics of the material excitations in terms of interband and intersubband polarizations/coherences and occupations. Our approach allows us to calculate and analyze photocurrents in the time and the frequency domains for bulk as well as quantum well and quantum wire systems with various growth directions. As examples, we present theoretical results on the rectification and shift currents in bulk GaAs and GaAs-based quantum wells. Moreover, we compare our results with experiments on shift currents. In the experiments the terahertz radiation emitted from the transient currents is detected via electro-optic sampling. This comparison is important from two perspectives. First, it helps to validate the theoretical model. Second, it allows us to investigate the microscopic origins of interesting features observed in the experiments.

  12. Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires.

    PubMed

    Chen, Yujie; Burgess, Tim; An, Xianghai; Mai, Yiu-Wing; Tan, H Hoe; Zou, Jin; Ringer, Simon P; Jagadish, Chennupati; Liao, Xiaozhou

    2016-03-01

    Stacking faults (SFs) are commonly observed crystalline defects in III-V semiconductor nanowires (NWs) that affect a variety of physical properties. Understanding the effect of SFs on NW mechanical properties is critical to NW applications in nanodevices. In this study, the Young's moduli of GaAs NWs with two distinct structures, defect-free single crystalline wurtzite (WZ) and highly defective wurtzite containing a high density of SFs (WZ-SF), are investigated using combined in situ compression transmission electron microscopy and finite element analysis. The Young's moduli of both WZ and WZ-SF GaAs NWs were found to increase with decreasing diameter due to the increasing volume fraction of the native oxide shell. The presence of a high density of SFs was further found to increase the Young's modulus by 13%. This stiffening effect of SFs is attributed to the change in the interatomic bonding configuration at the SFs. PMID:26885570

  13. Acoustic Wave Chemical Microsensors in GaAs

    SciTech Connect

    Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason; John L. Reno; Richard Kottenstette; Stephen A. Casalnuovo; Susan L. Hietala; Vincent M. Hietala

    1998-09-20

    High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperature compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.

  14. One-dimensional organic photoconductive nanoribbons built on Zn-Schiff base complex

    SciTech Connect

    Liu Li; Shao Mingwang; Wang Xiuhua

    2010-03-15

    One-dimensional organic nanoribbons built on N-p-nitrophenylsalicylaldimine zinc complex were synthesized via a facile solvothermal route. The scanning electron microscope images revealed that the as-synthesized products were ribbon-like with width mainly of 300-600 nm, thickness of about 50 nm, and length of up to tens of micrometers. Fourier transform infrared spectrum was employed to characterize the structure. Ultraviolet-visible absorption and photoluminescence spectra showed that the products had good photoluminescent property and exhibited blue emission. The conductivity of a bundle of nanoribbons was also measured, which showed that the Schiff base zinc nanoribbons had good photoconductive property. This work might enrich the organic photoconductive materials and be applicable in light-controlled micro-devices or nano-devices in the future. - Graphical abstract: The Schiff base zinc nanoribbons nanowires exhibited good photoresponse under an incandescent lamp, which indicated their potential application as organic semiconductive or photoconductive nanodevices in the future.

  15. Photoconducting properties of a unit nanostructure of ZnO assembled between microelectrodes.

    PubMed

    Kulkarni, Atul; Wahab, Rizwan; Ansari, S G; Kim, Tae-Sung; Al-Deyab, Salem S; Ansari, Z A

    2012-03-01

    The photoconducting properties of a unit microflower of zinc oxide are investigated as a function of wavelength from UV to IR region at constant illumination intensity. Synthesized flowers were trapped in 2 microm gap, between pre-prepared gold microelectrodes, using AC dielectrophoresis. Photocurrent drastically increases upon illumination in the UV region, whereas it gradually reduces when irradiated in visible and IR region. Higher photoconductivity in UV region is correlated to band to band transition upon illumination. In visible region, deep level transitions are expected which intern exhibits comparatively low photocurrent. Photoconduction in IR region is only due to the adsorbed surface oxygen species. This investigation suggests the potential application of ZnO nanostructures for various optoelectronic device applications.

  16. Investigation on the photoconductive behaviors of an individual AlN nanowire under different excited lights

    PubMed Central

    2012-01-01

    Ultra-long AlN nanowire arrays are prepared by chemical vapor deposition, and the photoconductive performances of individual nanowires are investigated in our self-built measurement system. Individual ultra-long AlN nanowire (UAN) exhibits a clear photoconductive effect under different excited lights. We attribute the positive photocurrent response of individual UAN to the dominant molecular sensitization effect. It is found that they have a much faster response speed (a rise and decay time of about 1 ms), higher photocurrent response (2.7×106), and more reproductive working performance (the photocurrent fluctuation is lower than 2%) in the air environment. Their better photoconductive performances are comparable to many nanostructures, which are suggested to be a candidate for building promising photosensitive nanodevices in the future. PMID:22883472

  17. High Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals

    PubMed Central

    2014-01-01

    Highly photoconductive thin films of inorganic-capped PbS nanocrystal quantum dots (QDs) are reported. Stable colloidal dispersions of (NH4)3AsS3-capped PbS QDs were processed by a conventional dip-coating technique into a thin homogeneous film of electronically coupled PbS QDs. Upon drying at 130 °C, (NH4)3AsS3 capping ligands were converted into a thin layer of As2S3, acting as an infrared-transparent semiconducting glue. Photodetectors obtained by depositing such films onto glass substrates with interdigitate electrode structures feature extremely high light responsivity and detectivity with values of more than 200 A/W and 1.2 × 1013 Jones, respectively, at infrared wavelengths up to 1400 nm. Importantly, these devices were fabricated and tested under ambient atmosphere. Using a set of time-resolved optoelectronic experiments, the important role played by the carrier trap states, presumably localized on the arsenic-sulfide surface coating, has been elucidated. Foremost, these traps enable a very high photoconductive gain of at least 200. The trap state density as a function of energy has been plotted from the frequency dependence of the photoinduced absorption (PIA), whereas the distribution of lifetimes of these traps was recovered from PIA and photoconductivity (PC) phase spectra. These trap states also have an important impact on carrier dynamics, which led us to propose a kinetic model for trap state filling that consistently describes the experimental photoconductivity transients at various intensities of excitation light. This model also provides realistic values for the photoconductive gain and thus may serve as a useful tool to describe photoconductivity in nanocrystal-based solids. PMID:25470412

  18. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals.

    PubMed

    Yakunin, Sergii; Dirin, Dmitry N; Protesescu, Loredana; Sytnyk, Mykhailo; Tollabimazraehno, Sajjad; Humer, Markus; Hackl, Florian; Fromherz, Thomas; Bodnarchuk, Maryna I; Kovalenko, Maksym V; Heiss, Wolfgang

    2014-12-23

    Highly photoconductive thin films of inorganic-capped PbS nanocrystal quantum dots (QDs) are reported. Stable colloidal dispersions of (NH4)3AsS3-capped PbS QDs were processed by a conventional dip-coating technique into a thin homogeneous film of electronically coupled PbS QDs. Upon drying at 130 °C, (NH4)3AsS3 capping ligands were converted into a thin layer of As2S3, acting as an infrared-transparent semiconducting glue. Photodetectors obtained by depositing such films onto glass substrates with interdigitate electrode structures feature extremely high light responsivity and detectivity with values of more than 200 A/W and 1.2×10(13) Jones, respectively, at infrared wavelengths up to 1400 nm. Importantly, these devices were fabricated and tested under ambient atmosphere. Using a set of time-resolved optoelectronic experiments, the important role played by the carrier trap states, presumably localized on the arsenic-sulfide surface coating, has been elucidated. Foremost, these traps enable a very high photoconductive gain of at least 200. The trap state density as a function of energy has been plotted from the frequency dependence of the photoinduced absorption (PIA), whereas the distribution of lifetimes of these traps was recovered from PIA and photoconductivity (PC) phase spectra. These trap states also have an important impact on carrier dynamics, which led us to propose a kinetic model for trap state filling that consistently describes the experimental photoconductivity transients at various intensities of excitation light. This model also provides realistic values for the photoconductive gain and thus may serve as a useful tool to describe photoconductivity in nanocrystal-based solids.

  19. On-Chip Picosecond Pulse Detection and Generation Using Graphene Photoconductive Switches

    PubMed Central

    2015-01-01

    We report on the use of graphene for room temperature on-chip detection and generation of pulsed terahertz (THz) frequency radiation, exploiting the fast carrier dynamics of light-generated hot carriers, and compare our results with conventional low-temperature-grown gallium arsenide (LT-GaAs) photoconductive (PC) switches. Coupling of picosecond-duration pulses from a biased graphene PC switch into Goubau line waveguides is also demonstrated. A Drude transport model based on the transient photoconductance of graphene is used to describe the mechanism for both detection and generation of THz radiation. PMID:25710079

  20. Study of photoconductivity in Ni doped CdS thin films prepared by spray pyrolysis technique

    SciTech Connect

    Patidar, Manju Mishra Gangrade, Mohan; Nath, R.; Ganesan, V.; Ajay, Akhil; Wala, Arwa Dewas; N, Kiran; Panda, Richa

    2014-04-24

    Ni-doped cadmium sulphide [Cd{sub 1−x}Ni{sub x}S, (x=0, 0.03, 0.05 and 0.20)] thin films were investigated for photoconductive properties. The films were prepared by spray Pyrolysis technique (SPT). AFM and two probe resistivity measurements were carried out to analyze the morphological and electrical properties of the films. AFM shows the note worthy changes in the morphology where the nanorod structures in CdS is changed into nano particles with the Ni doping. The presence of persistence photo current is demonstrated and extensive photoconductivity analysis has been studied on these films.

  1. New configuration of photoconductive-type diamond detector head for X-ray beam position monitors

    NASA Astrophysics Data System (ADS)

    Aoyagi, Hideki; Kudo, Togo; Tanida, Hajime; Kitamura, Hideo

    2004-05-01

    We designed and fabricated new diamond detector head for an X-ray beam position monitor (XBPM). This monitor operates in photoconductive mode, and is shaped into a blade in order to reduce heat load. A pair of aluminum electrodes is formed on both sides of the diamond blade. The profile of the detection efficiency inside the diamond detector head was measured. The signal current is generated only between the pair of electrodes. The bias voltage dependence of signal current along a section of the detector head is also measured. The results show that the detector head operates in photoconductive mode. We demonstrated that this detector head is feasible for the XBPM.

  2. Light-soaking effects on photoconductivity in a-Si:H thin films

    SciTech Connect

    Morgado, E.; Da Silva, M.R.; Henriques, R.T.

    1997-07-01

    Metastable defects have been created by light exposure in thin films of a-Si:H. The samples have been characterized by Photothermal Deflection Spectroscopy, Electron Spin Resonance, dark- and photo-conductivity. The experimental results are consistent with numerical calculations with a recombination model involving band tails and one class of correlated dangling-bond states. The effects of light-soaking on the light intensity and defect density dependences of photoconductivity are reproduced by the calculations. The model allows to explain the experimental trends by changes in the electronic occupation of the gap states produced by light-induced defects.

  3. Photorefractive amplification of moving light signals by photoconductive ferroelectric liquid crystal blends

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeo; Yoshino, Masanori

    2015-09-01

    Ferroelectric liquid crystal blends composed of a smectic liquid crystalline mixture, a photoconductive chiral dopant, and an electron trap reagent exhibit significant photorefractivity together with rapid responses. As such, they allow the dynamic amplification of moving optical signals. In the present work, the durability of a photorefractive ferroelectric liquid crystal blend was investigated. A series of photoconductive chiral dopants was prepared and the durability of blends incorporating these dopants during laser irradiation was examined. In addition, the effect of the conduction of photogenerated ionic species on the photorefractivity decay was clarified.

  4. Magnetic anisotropy in ultrathin Fe films on GaAs, ZnSe, and Ge (001) substrates

    SciTech Connect

    Tivakornsasithorn, K.; Liu, X.; Li, X.; Dobrowolska, M.; Furdyna, J. K.

    2014-07-28

    We discuss magnetic anisotropy parameters of ferromagnetic body-centered cubic (bcc) Fe films grown by molecular beam epitaxy (MBE) on (001) substrates of face-centered cubic (fcc) GaAs, ZnSe, and Ge. High-quality MBE growth of these metal/semiconductor combinations is made possible by the fortuitous atomic relationship between the bcc Fe and the underlying fcc semiconductor surfaces, resulting in excellent lattice match. Magnetization measurements by superconducting quantum interference device (SQUID) indicate that the Fe films grown on (001) GaAs surfaces are characterized by a very strong uniaxial in-plane anisotropy; those grown on (001) Ge surfaces have a fully cubic anisotropy; and Fe films grown on ZnSe represent an intermediate case between the preceding two combinations. Ferromagnetic resonance measurements carried out on these three systems provide a strikingly clear quantitative picture of the anisotropy parameters, in excellent agreement with the SQUID results. Based on these results, we propose that the observed anisotropy of cubic Fe films grown in this way results from the surface reconstruction of the specific semiconductor substrate on which the Fe film is deposited. These results suggest that, by controlling surface reconstruction of the substrate during the MBE growth, one may be able to engineer the magnetic anisotropy in Fe, and possibly also in other MBE-grown ferromagnetic films.

  5. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  6. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  7. Semiconductor structures for repeated velocity overshoot

    NASA Astrophysics Data System (ADS)

    Cooper, J. A., Jr.; Capasso, F.; Thornber, K. K.

    1982-12-01

    The conditions required for obtaining repeated velocity overshoot in semiconductors are discussed. Two classes of structures that provide these conditions are considered. The structures are seen as holding promise for achieving average drift velocities well in excess of the maximum steady-state velocity over distances ranging from submicron to tens of microns. In structures of the first class, the stairstep in potential is achieved by using a graded bandgap that is similar to the avalanche photodetector described by Williams et al. (1982), where the composition is graded from GaAs to Al(0.2)Ga(0.8)As. The second class of structures uses alternating planar doped charge sheets, as described by Malik et al. (1980).

  8. Discontinuous envelope function in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Drouhin, Henri-Jean; Bottegoni, Federico; Nguyen, T. L. Hoai; Wegrowe, Jean-Eric; Fishman, Guy

    2013-09-01

    Based on a proper definition of the current operators for non-quadratic Hamiltonians, we derive the expression for the transport current which involves the derivative of the imaginary part of the free-electron current, highlighting peculiarities of the extra terms. The expression of the probability current, when Spin-Orbit Interaction (SOI) is taken into account, requires a reformulation of the boudary conditions. This is especially important for tunnel heterojunctions made of non-centrosymmetric semiconductors. Therefore, we consider a model case: tunneling of conduction electrons through a [110]-oriented GaAs barrier. The new boundary conditions are reduced to two set of equations: the first one expresses the discontinuity of the envelope function at the interface while the other one expresses the discontinuity of the derivative of the envelope function.

  9. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  10. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  11. Development of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mcnally, P. J.

    1972-01-01

    This is the second quarterly technical report on a program, the goal of which is to achieve high efficiency GaAs solar cells. Analysis was concerned with providing design information for use in experimentally determining optimum solar cell process parameters. The first quarterly report contained the results of those design calculations. Using those results as a guide, experimental work was initiated to determine optimum cell process parameters. The initial results on this phase of the program are reported.

  12. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  13. Surface-modified GaAs terahertz plasmon emitter

    NASA Astrophysics Data System (ADS)

    Darmo, J.; Strasser, G.; Muller, T.; Bratschitsch, R.; Unterrainer, K.

    2002-07-01

    We studied the THz emission from n-GaAs plasmon emitters modified by low-temperature-grown (LT) GaAs surface layers. The THz emission is increased since the LT GaAs pins the Fermi level at a midgap position, increasing the surface depletion field. For a THz emitter with a 70-nm-thick LT GaAs layer we observe without external fields a THz emission intensity of 140 nW. In addition, the long-term performance of the modified emitters is improved by the LT GaAs surface layer.

  14. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  15. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Ahrenkiel, Richard K.

    1999-01-01

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample.

  16. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  17. Ion implantation in semiconductors studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Langouche, G.

    1989-03-01

    The application of Mössbauer spectroscopy as an extremely sensitive characterization technique for ion-implanted semiconductors, is illustrated. Factors influencing the final landing site of implanted ions are first reviewed, as well as ion beam induced material modifications. Recent applications of Mössbauer spectroscopy in this field are then discussed including the study of supersaturated solutions of Sb and Sn in Si, the formation of epitaxial and buried silicides and the search for the DX-center in GaAs.

  18. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron x-ray diffraction.

    SciTech Connect

    Sun, Y.; Ren, Y.; Haeffner, D. R.; Almer, J. D.; Wang, L.; Yang, W.; Truong, T. T.

    2010-09-01

    Real-time evolution of nanoparticles grown at the semiconductor/electrolyte interface formed between a single crystalline n-type GaAs wafer and an aqueous solution of AgNO{sub 3} has been studied by using high-energy synchrotron X-ray diffraction. The results reveal the distinct nucleation and growth steps involved in the growth of anisotropic Ag nanoplates on the surface of the GaAs wafer. For the first time, a quick transit stage is observed to be responsible for the structural transformation of the nuclei to form structurally stable seeds that are critical for guiding their anisotropic growth into nanoplates. Reaction between a GaAs wafer and AgNO{sub 3} solution at room temperature primarily produces Ag nanoplates on the surface of the GaAs wafer in the dark and at room temperature. In contrast, X-ray irradiation can induce charge separation in the GaAs wafer to drive the growth of nanoparticles made of silver oxy salt (Ag{sub 7}NO{sub 11}) and silver arsenate (Ag{sub 3}AsO{sub 4}) at the semiconductor/electrolyte interface if the GaAs wafer is illuminated by the X-ray and reaction time is long enough.

  19. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron X-ray diffraction.

    PubMed

    Sun, Yugang; Ren, Yang; Haeffner, Dean R; Almer, Jonathan D; Wang, Lin; Yang, Wenge; Truong, Tu T

    2010-09-01

    Real-time evolution of nanoparticles grown at the semiconductor/electrolyte interface formed between a single crystalline n-type GaAs wafer and an aqueous solution of AgNO(3) has been studied by using high-energy synchrotron X-ray diffraction. The results reveal the distinct nucleation and growth steps involved in the growth of anisotropic Ag nanoplates on the surface of the GaAs wafer. For the first time, a quick transit stage is observed to be responsible for the structural transformation of the nuclei to form structurally stable seeds that are critical for guiding their anisotropic growth into nanoplates. Reaction between a GaAs wafer and AgNO(3) solution at room temperature primarily produces Ag nanoplates on the surface of the GaAs wafer in the dark and at room temperature. In contrast, X-ray irradiation can induce charge separation in the GaAs wafer to drive the growth of nanoparticles made of silver oxy salt (Ag(7)NO(11)) and silver arsenate (Ag(3)AsO(4)) at the semiconductor/electrolyte interface if the GaAs wafer is illuminated by the X-ray and reaction time is long enough.

  20. Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Linpeng, Xiayu; Karin, Todd; Durnev, M. V.; Barbour, Russell; Glazov, M. M.; Sherman, E. Ya.; Watkins, S. P.; Seto, Satoru; Fu, Kai-Mei C.

    2016-09-01

    We measure the donor-bound electron longitudinal spin-relaxation time (T1) as a function of magnetic field (B ) in three high-purity direct band-gap semiconductors: GaAs, InP, and CdTe, observing a maximum T1 of 1.4, 0.4, and 1.2 ms, respectively. In GaAs and InP at low magnetic field, up to ˜2 T, the spin-relaxation mechanism is strongly density and temperature dependent and is attributed to the random precession of the electron spin in hyperfine fields caused by the lattice nuclear spins. In all three semiconductors at high magnetic field, we observe a power-law dependence T1∝B-ν with 3 ≲ν ≲4 . Our theory predicts that the direct spin-phonon interaction is important in all three materials in this regime in contrast to quantum dot structures. In addition, the "admixture" mechanism caused by Dresselhaus spin-orbit coupling combined with single-phonon processes has a comparable contribution in GaAs. We find excellent agreement between high-field theory and experiment for GaAs and CdTe with no free parameters, however a significant discrepancy exists for InP.

  1. A survey of ohmic contacts to III-V compound semiconductors

    SciTech Connect

    Baca, A.G.; Zolper, J.C.; Briggs, R.D.; Ren, F.; Pearton, S.J.

    1997-04-01

    A survey of ohmic contact materials and properties to GaAs, InP, GaN will be presented along with critical issues pertaining to each semiconductor material. Au-based alloys (e.g., GeAuNi for n-type GaAs) are the most commonly used contacts for GaAs and InP materials for both n- and p-type contacts due to the excellent contact resistivity, reliability, and usefulness over a wide range of doping levels. Research into new contacting schemes for these materials has focused on addressing limitations of the conventional Au-alloys in thermal stability, propensity for spiking, poor edge definition, and new approaches for a non-alloyed contact. The alternative contacts to GaAs and InP include alloys with higher temperature stability, contacts based on solid phase regrowth, and contacts that react with the substrate to form lower bandgap semiconductors alloys at the interface. A new area of contact studies is for the wide bandgap group III-Nitride materials. At present, low resistivity ohmic contact to p-type GaN has not been obtained primarily due to the large acceptor ionization energy and the resultant difficulty in achieving high free hole concentrations at room temperature. For n-type GaN, however, significant progress has been reported with reactive Ti-based metalization schemes or the use of graded InGaN layers. The present status of these approaches will be reviewed.

  2. Effect of electron-electron interaction on the magnetic moment and susceptibility of a parabolic GaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Boda, Aalu; Kumar, D. Sanjeev; Sankar, I. V.; Chatterjee, Ashok

    2016-11-01

    The problem of a parabolically confined two-dimensional semiconductor GaAs quantum dot with two interacting electrons in the presence of an external magnetic field and the spin-Zeeman interaction is studied using a method of numerical diagonalization. The energy spectrum is calculated as a function of the magnetic field. The magnetic moment (M) and the magnetic susceptibility (χ) show zero temperature diamagnetic peaks due to the exchange induced singlet-triplet transitions. The position and the number of these peaks depend both on the confinement strength of the quantum dot and the strength of the electron-electron interaction (β) .

  3. Heteroepitaxial growth of Cd(1-x)Mn(x)Te on GaAs by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar; Stirn, Richard J.

    1987-01-01

    In this letter, preliminary results are reported of heteroepitaxial growth of the dilute magnetic semiconductor alloy Cd(1-x)Mn(x)Te on GaAs by metalorganic chemical vapor deposition. Dimethylcadmium (DMCd), diethyltellurium (DETe), and tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) were used as source materials. The TCPMn had to be heated to as high as 140 C to provide the required vapor pressure. Films with Mn atomic fractions up to 30 percent have been grown over the temperature range 410-450 C. Results of optical absorption/transmission, photoluminescence, and X-ray diffraction measurements are presented along with a scanning electron micrograph showing good surface morphology of the grown layers.

  4. Rare Earth Doped Semiconductors and Materials Research Society Symposium Proceedings, Volume 301

    NASA Astrophysics Data System (ADS)

    Ballance, John

    1994-02-01

    The properties of rare earth ions in solids were studied in detail for decades, but until recently this work was restricted to dominantly ionic hosts such as fluorides and oxides, and to a lesser extent to more covalently bonded hosts, such as tetrahedral 2-6 semiconductors. The idea of rare earth elements incorporated into covalent semiconductors such as GaAs and Si may be traced to a short communication in 1963 by R.L. Bell (J. Appl. Phys. 34, 1563 (1963)) proposing a dc-pumped rare earth laser. At about the same time, three unpublished technical reports appeared as a result of U.S. Department of Defense sponsored research in rare earth doped Si, GaAs, and InP to fabricate LED's. Attempts by other researchers to identify sharp 4f specific emissions in these hosts essentially failed.

  5. All-semiconductor metamaterial-based optical circuit board at the microscale

    SciTech Connect

    Min, Li; Huang, Lirong

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  6. A new technique to study transient conductivity under pulsed monochromatic light in Cr-doped GaAs using acoustoelectric voltage measurement

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1991-01-01

    The transient conductivity of high-resistivity Bridgman-grown Cr-doped GaAs under pulsed monochromatic light is monitored using transverse acoustoelectric voltage (TAV) at 83 K. Keeping the photon flux constant, the height and transient time constant at the TAV are used to calculate the energy dependence of the trap density and its cross section, respectively. Two prominent trap profiles with peak trap densities of approximately 10 to the 17th/cu cm eV near the valence and the conduction bands are detected. These traps have very small capture cross sections in the range of 10 to the -23 to 10 to the -21st cm sq. A phenomenon similar to the persistent photoconductivity with transient time constants in excess of a few seconds in high-resistivity GaAs at T = 83 K is also detected using this technique. These long relaxation times are readily explained by the spatial separation of the photo-excited electron-hole pairs and the small capture cross section and large density of trap distribution near the conduction band.

  7. Bistability of the Sn donor in Al(x)Ga(1-x)As and GaAs under pressure studied by Moessbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Gibart, Pierre; Williamson, Don L.

    1991-02-01

    Deep donor levels are observed in Al(x)Ga(1-x)As for x of greater than 0.22 and GaAs under hydrostatic pressure (for p of more than 2GPa). Persistent photoconduction (PPC) is the most striking feature of this deep donor, the DX center. Upon illumination at low temperature, the free-electrons concentration increases and remains at this new value even after the light is off. Basically the DX centers are photoionized and one (or several) electrons per center are transferred to the conduction band. The bistable character of the donor which involves two electronic configurations is studied by Moessbauer spectroscopy (MS). Electronic wavefunctions, near-neighbor geometries and lattice vibrational properties can be probed. Moessbauer spectroscopy is used to observe the Sn DX center in Al(x)Ga(1-x)As near x = 0.3-0.4 and in GaAs under high pressure. The latter experiment, coupled with Hall data, provides strong evidence that the Sn DX center localizes two or more electrons in the ground state.

  8. Anomalous high photoconductivity in short channel indium-zinc-oxide photo-transistors

    SciTech Connect

    Choi, Hyun-Sik; Jeon, Sanghun

    2015-01-05

    Upon light exposure, an indium-zinc-oxide (IZO) thin-film transistor (TFT) presents higher photoconductivity by several orders of magnitude at the negative gate bias region. Among various device geometrical factors, scaling down the channel length of the photo-transistor results in an anomalous increase in photoconductivity. To probe the origin of this high photoconductivity in short-channel device, we measured transient current, current–voltage, and capacitance–voltage characteristics of IZO–TFTs with various channel lengths and widths before and after illumination. Under the illumination, the equilibrium potential region which lies far from front interface exists only in short-channel devices, forming the un-depleted conducting back channel. This region plays an important role in carrier transport under the illumination, leading to high photoconductivity in short-channel devices. Photon exposure coupled with gate-modulated band bending for short-channel devices leads to the accumulation of V{sub o}{sup ++} at the front channel and screening negative gate bias, thereby generating high current flow in the un-depleted back-channel region.

  9. Anomalous high photoconductivity in short channel indium-zinc-oxide photo-transistors

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Sik; Jeon, Sanghun

    2015-01-01

    Upon light exposure, an indium-zinc-oxide (IZO) thin-film transistor (TFT) presents higher photoconductivity by several orders of magnitude at the negative gate bias region. Among various device geometrical factors, scaling down the channel length of the photo-transistor results in an anomalous increase in photoconductivity. To probe the origin of this high photoconductivity in short-channel device, we measured transient current, current-voltage, and capacitance-voltage characteristics of IZO-TFTs with various channel lengths and widths before and after illumination. Under the illumination, the equilibrium potential region which lies far from front interface exists only in short-channel devices, forming the un-depleted conducting back channel. This region plays an important role in carrier transport under the illumination, leading to high photoconductivity in short-channel devices. Photon exposure coupled with gate-modulated band bending for short-channel devices leads to the accumulation of Vo++ at the front channel and screening negative gate bias, thereby generating high current flow in the un-depleted back-channel region.

  10. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas

    SciTech Connect

    Ropagnol, X.; Bouvier, Marcel; Reid, M.; Ozaki, T.

    2014-07-28

    We study the generation of free-space terahertz (THz) pulses at low THz frequencies using 6H-SiC and 4H-SiC photoconductive antennas. We investigate the dependence of the THz electric field radiated from the biased SiC emitters on the applied bias field and on the incident optical fluence. In this work, bias fields as high as 32 kV/cm, and optical fluences up to 2.5 mJ/cm{sup 2} (for the 400 nm laser), and 7.5 mJ/cm{sup 2} (for the 800 nm laser) were used. THz generation with back- and front-side illumination of the antennas is also examined. It is found that the SiC antenna, when illuminated from the backside, generates higher THz electric fields. The performance of 6H-SiC and ZnSe photoconductive antennas are compared. We show that, taking advantage of the superior thermal properties of SiC compare with ZnSe, the THz output power generated with the 6H-SiC photoconductive antenna under optimum conditions is 2.3 times larger that with a ZnSe photoconductive antenna.

  11. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    DOE PAGES

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; Reno, John L.

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less

  12. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    SciTech Connect

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; Reno, John L.

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.

  13. Temperature dependence of photoconductivity in Zn-doped GaN

    SciTech Connect

    Reshchikov, Michael A.

    2014-02-21

    In agreement with predictions from a model that explained an abrupt thermal quenching of the blue luminescence (BL) band in high-resistivity Zn-doped GaN [Reshchikov et al., Phys. Rev. B 84, 075212 (2011) and Phys. Rev. B 85, 245203 (2012)], we observed the stepwise decrease of photoconductivity in this material with increasing temperature. For the sample studied in this work, the decrease in photoconductivity occurred in two steps at characteristic temperatures T{sub 1} and T{sub 2}. The characteristic temperatures increased with increasing excitation intensity, very similar to the photoluminescence (PL) behavior. The steps in photoconductivity at about 100 K and 200 K are attributed to drop in the concentration of free electrons due to the thermal emission of holes from a shallow acceptor and the Zn{sub Ga} acceptor, respectively, to the valence band and their recombination with electrons via nonradiative centers. This finding supports the model suggested previously and helps to explain other examples of tunable photoconductivity reported in literature.

  14. Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2.

    PubMed

    Ansari, S G; Bhayana, Laitka; Umar, Ahmad; Al-Hajry, A; Al-Deyab, Salem S; Ansari, Z A

    2012-10-01

    Here we report an easy method to improve the optoelectronic properties of commercially available TiO2 nanopowder using extracts of various flowers viz. Calendula Orange (CO), Calendula Yellow (CY), Dahlia Violet (DV), Dahlia Yellow (DY), Rabbit flower (RF), Sweet Poppy (SP), Sweet Williams (SW) and their Mixed Extracts (ME). Various analysis techniques such as UV-Vis, FTIR, FESEM, XRD, and Raman spectroscopy were used to characterize for elemental, structural and morphological properties of the unmixed/mixed TiO2 nanopowder. TiO2 nanopowder was also calcined at 550 degrees C. Thick films of the these unmixed/mixed powder were printed, using conventional screen printing method, on fluorine doped tin oxide (FTO) substrate with organic binders and dried at 45 degrees C. The photoconducting properties are investigated as a function of wavelength from ultra-violet (UV) to infra-red (IR) region at a constant illumination intensity. Photocurrent gradually decreases when irradiated from UV to IR region. In case of unmixed and uncalcined TiO2, conductance decreased continuously whereas when extracts are added, a flat region of conductance is observed. The overall effect of extracts (colour pigments) is seen as an increase in the photoconductance. Highest photoconductance is observed in case of DY flower extract. Anthocyanins, present in flowers are known to have antioxidative properties and hence can contribute in photoconduction by reducing the surface adsorbed oxygen. This investigation indicates the potential use of flower extracts for dye sensitized solar cell (DSSC).

  15. Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2.

    PubMed

    Ansari, S G; Bhayana, Laitka; Umar, Ahmad; Al-Hajry, A; Al-Deyab, Salem S; Ansari, Z A

    2012-10-01

    Here we report an easy method to improve the optoelectronic properties of commercially available TiO2 nanopowder using extracts of various flowers viz. Calendula Orange (CO), Calendula Yellow (CY), Dahlia Violet (DV), Dahlia Yellow (DY), Rabbit flower (RF), Sweet Poppy (SP), Sweet Williams (SW) and their Mixed Extracts (ME). Various analysis techniques such as UV-Vis, FTIR, FESEM, XRD, and Raman spectroscopy were used to characterize for elemental, structural and morphological properties of the unmixed/mixed TiO2 nanopowder. TiO2 nanopowder was also calcined at 550 degrees C. Thick films of the these unmixed/mixed powder were printed, using conventional screen printing method, on fluorine doped tin oxide (FTO) substrate with organic binders and dried at 45 degrees C. The photoconducting properties are investigated as a function of wavelength from ultra-violet (UV) to infra-red (IR) region at a constant illumination intensity. Photocurrent gradually decreases when irradiated from UV to IR region. In case of unmixed and uncalcined TiO2, conductance decreased continuously whereas when extracts are added, a flat region of conductance is observed. The overall effect of extracts (colour pigments) is seen as an increase in the photoconductance. Highest photoconductance is observed in case of DY flower extract. Anthocyanins, present in flowers are known to have antioxidative properties and hence can contribute in photoconduction by reducing the surface adsorbed oxygen. This investigation indicates the potential use of flower extracts for dye sensitized solar cell (DSSC). PMID:23421149

  16. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  17. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  18. Exposure of GaAs to atomic hydrogen for cleaning prior to NEA photocathode activation

    SciTech Connect

    Sinclair, C.K.; Poelker, B.M.; Price, J.S.

    1998-12-31

    Creating an atomically clean semiconductor surface is an essential step in preparing negative electron affinity (NEA) photoemission cathodes. While bulk GaAs can be satisfactorily cleaned by chemical etching and in situ heat cleaning, many high polarization electron source materials are either much too thin, or have oxides and carbides which are too tightly bound, to be cleaned by these methods. Some polarized source candidate materials may be degraded during the heat cleaning step. It is well established that the exposure of many III-V, II-VI, and elemental semiconductors to atomic hydrogen, typically at elevated temperatures, produces semiconductor surfaces free of contamination. Furthermore, this cleaning, possibly followed by thermal annealing, leaves surfaces which show sharp LEED patterns, indicating good stoichiometry and surface order. Atomic hydrogen cleaning should eliminate the chemical etching step, and might reduce the temperature and/or temperature-time product presently used in forming NEA cathodes. The process is readily adaptable to in situ use in ultrahigh vaccum.

  19. Thermodynamic properties of semiconductor compounds studied based on Debye-Waller factors

    NASA Astrophysics Data System (ADS)

    Van Hung, Nguyen; Toan, Nguyen Cong; Ba Duc, Nguyen; Vuong, Dinh Quoc

    2015-08-01

    Thermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.

  20. Atomic-scale detection of magnetic impurity interactions in bulk semiconductors

    NASA Astrophysics Data System (ADS)

    Geisler, Benjamin; Kratzer, Peter

    2015-09-01

    We demonstrate on the basis of ab initio simulations how passivated semiconductor surfaces can be exploited to study bulklike interaction properties and wave functions of magnetic impurities on the atomic scale with conventional and spin-polarized scanning tunneling microscopy. By applying our approach to the case of 3 d transition metal impurities close to the H /Si (111 ) surface, we show exemplarily that their wave functions in Si are less extended than for Mn in GaAs, thus obstructing ferromagnetism in Si. Finally, we discuss possible applications of this method to other dilute magnetic semiconductors.

  1. Polarization and charge limit studies of strained GaAs photocathodes

    SciTech Connect

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  2. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  3. Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene

    NASA Astrophysics Data System (ADS)

    Bagsican, Filchito Renee; Zhang, Xiang; Ma, Lulu; Wang, Minjie; Murakami, Hironaru; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro; Tonouchi, Masayoshi; Kawayama, Iwao

    2016-11-01

    We have studied coherent terahertz (THz) emission from graphene-coated surfaces of three different semiconductors—InP, GaAs, and InAs—to provide insight into the influence of O2 adsorption on charge states and dynamics at the graphene/semiconductor interface. The amplitude of emitted THz radiation from graphene-coated InP was found to change significantly upon desorption of O2 molecules by thermal annealing, while THz emission from bare InP was nearly uninfluenced by O2 desorption. In contrast, the amount of change in the amplitude of emitted THz radiation due to O2 desorption was essentially the same for graphene-coated GaAs and bare GaAs. However, in InAs, neither graphene coating nor O2 adsorption/desorption affected the properties of its THz emission. These results can be explained in terms of the effects of adsorbed O2 molecules on the different THz generation mechanisms in these semiconductors. Furthermore, these observations suggest that THz emission from graphene-coated semiconductors can be used for probing surface chemical reactions (e.g., oxidation) as well as for developing O2 gas sensor devices.

  4. Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene

    NASA Astrophysics Data System (ADS)

    Bagsican, Filchito Renee; Zhang, Xiang; Ma, Lulu; Wang, Minjie; Murakami, Hironaru; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro; Tonouchi, Masayoshi; Kawayama, Iwao

    2016-07-01

    We have studied coherent terahertz (THz) emission from graphene-coated surfaces of three different semiconductors—InP, GaAs, and InAs—to provide insight into the influence of O2 adsorption on charge states and dynamics at the graphene/semiconductor interface. The amplitude of emitted THz radiation from graphene-coated InP was found to change significantly upon desorption of O2 molecules by thermal annealing, while THz emission from bare InP was nearly uninfluenced by O2 desorption. In contrast, the amount of change in the amplitude of emitted THz radiation due to O2 desorption was essentially the same for graphene-coated GaAs and bare GaAs. However, in InAs, neither graphene coating nor O2 adsorption/desorption affected the properties of its THz emission. These results can be explained in terms of the effects of adsorbed O2 molecules on the different THz generation mechanisms in these semiconductors. Furthermore, these observations suggest that THz emission from graphene-coated semiconductors can be used for probing surface chemical reactions (e.g., oxidation) as well as for developing O2 gas sensor devices.

  5. Investigation of the interface characteristics of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions

    NASA Astrophysics Data System (ADS)

    Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan

    2016-09-01

    We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.

  6. Electron spin filtering in ferromagnet/semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Bland, J. A. C.; Steinmuller, S. J.; Hirohata, A.; Cho, W. S.; Xu, Y. B.; Guertler, C. M.; Wastlbauer, G.; Ionescu, A.; Trypiniotis, T.; Holmes, S. N.

    2003-09-01

    Circularly polarized light was used to generate spin-polarized electrons at room temperature in ferromagnet (FM)/GaAs Schottky diode structures. A change in the helicity-dependent photocurrent was obtained when the ferromagnetic layer magnetization was realigned from perpendicular to parallel to the photon helicity. This effect is attributed to spin filtering of photoexcited electrons generated in the GaAs due to the spin-split density of states at the Fermi level in the FM which occurs when the magnetization is aligned with the photon helicity. Significant spin filtering effects were observed in NiFe/GaAs and Fe/GaAs structures, increasing with increasing applied magnetic field. Antiferromagnetic Cr/GaAs showed no spin-dependent effects as expected. As the photon energy approaches the energy gap of the GaAs, the effects associated with the optically induced spin polarization in the GaAs become larger, confirming that polarized electrons are first excited in the semiconductor (SC) and then filtered by the ferromagnetic layer. The spin filtering effects in all cases increase with increasing ferromagnetic layer thickness, and are much larger than the estimated magneto-circular dichroism in NiFe. Our combined results unambiguously indicate that highly efficient spin transport from the SC to the FM occurs at room temperature.

  7. Femtosecond high-field transport in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Leitenstorfer, A.; Hunsche, S.; Shah, J.; Nuss, M. C.; Knox, W. H.

    2000-06-01

    A study of nonequilibrium transport of carriers in GaAs and InP at electric fields up to 130 kV/cm and with a temporal resolution of 20 fs is presented. All measurements are carried out at room temperature. The THz radiation originating from the ultrafast current change in a photoexcited semiconductor device is measured by ultrabroadband electro-optic detection. We probe the influences of two important lattice scattering processes on electron acceleration. Distinct differences are seen between GaAs and InP and interpreted in terms of the different band structures and coupling strengths of these important materials. The maximum velocities and carrier displacements achieved under nonequilibrium conditions are measured directly. Peak velocities of 6×107 and 8×107 cm/s are obtained in GaAs and InP, respectively. The distances achieved during the overshoot regime are found to depend strongly on electric field and material. A displacement as large as 120 nm builds up in less than 200 fs at a field of 60 kV/cm in InP. These findings are important for the design of modern high-speed devices. Coherent excitation of the polar crystal lattice is observed and demonstrated to result from the coupling between free carrier displacement and material polarization via the linear dielectric function. Our experiment is sensitive to collective displacements of the lattice ions with an amplitude as small as 10-16 m.

  8. Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor.

    PubMed

    Muneta, Iriya; Ohya, Shinobu; Terada, Hiroshi; Tanaka, Masaaki

    2016-01-01

    The band ordering of semiconductors is an important factor in determining the mobility and coherence of the wave function of carriers, and is thus a key factor in device performance. However, in heavily doped semiconductors, the impurities substantially disturb the band ordering, leading to significant degradation in performance. Here, we present the unexpected finding that the band ordering is suddenly restored in Mn-doped GaAs ((Ga,Mn)As) when the Mn concentration slightly exceeds ∼0.7% despite the extremely high doping concentration; this phenomenon is very difficult to predict from the general behaviour of doped semiconductors. This phenomenon occurs with a ferromagnetic phase transition, which is considered to have a crucial role in generating a well-ordered band structure. Our findings offer possibilities for ultra-high-speed quantum-effect spin devices based on semiconductors. PMID:27349454

  9. Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor

    NASA Astrophysics Data System (ADS)

    Muneta, Iriya; Ohya, Shinobu; Terada, Hiroshi; Tanaka, Masaaki

    2016-06-01

    The band ordering of semiconductors is an important factor in determining the mobility and coherence of the wave function of carriers, and is thus a key factor in device performance. However, in heavily doped semiconductors, the impurities substantially disturb the band ordering, leading to significant degradation in performance. Here, we present the unexpected finding that the band ordering is suddenly restored in Mn-doped GaAs ((Ga,Mn)As) when the Mn concentration slightly exceeds ~0.7% despite the extremely high doping concentration; this phenomenon is very difficult to predict from the general behaviour of doped semiconductors. This phenomenon occurs with a ferromagnetic phase transition, which is considered to have a crucial role in generating a well-ordered band structure. Our findings offer possibilities for ultra-high-speed quantum-effect spin devices based on semiconductors.

  10. Dynamic detection of electron spin accumulation in ferromagnet–semiconductor devices by ferromagnetic resonance

    PubMed Central

    Liu, Changjiang; Patel, Sahil J.; Peterson, Timothy A.; Geppert, Chad C.; Christie, Kevin D.; Stecklein, Gordon; Palmstrøm, Chris J.; Crowell, Paul A.

    2016-01-01

    A distinguishing feature of spin accumulation in ferromagnet–semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this approach enables a measurement of short spin lifetimes (<100 ps), a regime that is not accessible in semiconductors using traditional Hanle techniques. PMID:26777243

  11. Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor

    PubMed Central

    Muneta, Iriya; Ohya, Shinobu; Terada, Hiroshi; Tanaka, Masaaki

    2016-01-01

    The band ordering of semiconductors is an important factor in determining the mobility and coherence of the wave function of carriers, and is thus a key factor in device performance. However, in heavily doped semiconductors, the impurities substantially disturb the band ordering, leading to significant degradation in performance. Here, we present the unexpected finding that the band ordering is suddenly restored in Mn-doped GaAs ((Ga,Mn)As) when the Mn concentration slightly exceeds ∼0.7% despite the extremely high doping concentration; this phenomenon is very difficult to predict from the general behaviour of doped semiconductors. This phenomenon occurs with a ferromagnetic phase transition, which is considered to have a crucial role in generating a well-ordered band structure. Our findings offer possibilities for ultra-high-speed quantum-effect spin devices based on semiconductors. PMID:27349454

  12. Fisrt-principles calculations on metal-induced gap states at metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Gohda, Y.; Tsuneyuki, S.

    2010-03-01

    Metal-induced gap states (MIGS) are responsible for Fermi-level pinning for narrow-gap semiconductors such as Si and GaAs. First-principles calculations have demonstrated that MIGS are related to the tails of metal states penetrating into the semiconductor corresponding to Bloch states with wave vectors having an imaginary part. Thus, their existence is a consequence of intrinsic properties of the bulk semiconductor. In contrast, a removal of FLP has been reported experimentally at atomically controlled Al-Si(100) interfaces, suggesting that MIGS play a less dominant role in determining the interface properties. This inconsistency between experimental results and the accepted view of MIGS calls for a detailed theoretical investigation. Here, we report our recent progresses on MIGS at a few metal-semiconductor interfaces investigated by means of first-principles calculations.

  13. A spectroscopic method for the evaluation of surface passivation treatments on metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walsh, Lee A.; Hurley, Paul K.; Lin, Jun; Cockayne, Eric; O'Regan, T. P.; Woicik, Joseph C.; Hughes, Greg

    2014-05-01

    Combined hard x-ray photoelectron spectroscopy (HAXPES) and electrical characterisation measurements have been shown to provide complementary information on the electrical performance of Si and GaAs based metal-oxide-semiconductor (MOS) structures. The results obtained indicate that surface potential changes at the semiconductor/dielectric interface due to the presence of different work function metals can be detected from HAXPES measurements. Changes in the semiconductor band bending at zero gate voltage and the flat band voltage values derived from C-V measurements are in agreement with the semiconductor core level shifts measured from the HAXPES spectra. These results highlight the potential application of this measurement approach in the evaluation of the efficacy of surface passivation treatments: HAXPES—hard x-ray photoelectron spectroscopy; C-V—capacitance voltage; Dit—interface state density; BE—binding energy, at reducing defect states densities in MOS structures.

  14. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier–carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  15. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  16. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed. PMID:27587178

  17. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  18. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches

    NASA Astrophysics Data System (ADS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  19. Peeled film GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    1990-01-01

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.

  20. Electric field effect on optical harmonic generation at the exciton resonances in GaAs

    NASA Astrophysics Data System (ADS)

    Brunne, D.; Lafrentz, M.; Pavlov, V. V.; Pisarev, R. V.; Rodina, A. V.; Yakovlev, D. R.; Bayer, M.

    2015-08-01

    An electric field applied to a semiconductor reduces its crystal symmetry and modifies its electronic structure which is expected to result in changes of the linear and nonlinear response to optical excitation. In GaAs, we observe experimentally strong electric field effects on the optical second (SHG) and third (THG) harmonic generation. The SHG signal for the laser-light k vector parallel to the [001] crystal axis is symmetry forbidden in the electric-dipole approximation, but can be induced by an applied electric field in the vicinity of the 1 s exciton energy. Surprisingly, the THG signal, which is allowed in this geometry, is considerably reduced by the electric field. We develop a theory which provides good agreement with the experimental data. In particular, it shows that the optical nonlinearities for the 1 s exciton resonance are modified in an electric field by the Stark effect, which mixes the 1 s and 2 p exciton states of opposite parity. This mixing acts in opposite way on the SHG and THG processes, as it leads to the appearance of forbidden SHG in (001)-oriented GaAs and decreases the crystallographic THG.

  1. Optoelectronic gain control of a microwave single stage GaAs MESFET amplifier

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1988-01-01

    Gain control of a single stage GaAs MESFET amplifier is demonstrated by the use of optical illumination of photon energy greater than the GaAs bandgap. The optical illumination is supplied by a semiconductor laser diode and is coupled to the Schottky gate of the MESFET by an optical fiber. The increase in gain is observed to be as much as 5.15 dB when the MESFET is biased close to pinchoff, that is, V(sub gs) equals -1.5 V and with optical illumination of 1.5 mW. The computed maximum available gain (MAG) and current gain (bar h sub 21 bar) from the de-embedded s-parameters show that MAG is unaffected by optical illumination, however, bar h(sub 21)bar increases by more than 2 dB under optical illumination of 1.5 mW. The maximum frequency of oscillation (F sub max) and the unity current gain cut-off frequency (F sub t) obtained by extrapolating the MAG and bar h(sub 21)bar curves, respectively, show that the F(sub max) is insensitive to optical illumination but F(sub t) increases by 5 GHz.

  2. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaA s is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BA s. This systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.

  3. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    NASA Astrophysics Data System (ADS)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Sn-Seeded GaAs Nanowires as Self-Assembled Radial p–n Junctions

    PubMed Central

    2015-01-01

    The widespread use of Au as a seed particle in the fabrication of semiconductor nanowires presents a fundamental limitation to the potential incorporation of such nanostructures into electronic devices. Although several other growth techniques have been demonstrated, the use of alternative seed particle metals remains an underexplored but potentially very promising way to influence the properties of the resulting nanowires while simultaneously avoiding gold. In this Letter, we demonstrate the use of Sn as a seed particle metal for GaAs nanowires grown by metal–organic vapor phase epitaxy. We show that vertically aligned and stacking defect-free GaAs nanowires can be grown with very high yield. The resulting nanowires exhibit Esaki diode behavior, attributed to very high n-doping of the nanowire core with Sn, and simultaneous C-doping of the radial overgrowth. These results demonstrate that the use of alternative seed particle metals is a potentially important area to explore for developing nanowire materials with controlled material properties. PMID:25989532

  5. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    DOE PAGES

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematicmore » approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less

  6. Optomechanical interactions in two-dimensional Si and GaAs phoXonic cavities.

    PubMed

    El-Jallal, S; Oudich, M; Pennec, Y; Djafari-Rouhani, B; Makhoute, A; Rolland, Q; Dupont, S; Gazalet, J

    2014-01-01

    We investigate theoretically the optomechanical interactions inside cavities created in two-dimensional infinite phoXonic crystals constituted by a square array of holes in silicon (Si) and gallium arsenide (GaAs) matrices. The cavity is simply obtained by removing one hole in the perfect crystal. Our calculations take into account two mechanisms that contribute to the optomechanical coupling, namely the bulk photoelastic effect and the deformations of the interfaces due to the acoustic strain. The coupling strength is estimated by two different methods, modulation of the photonic mode frequency during one period of the acoustic oscillations and calculation of the optomechanical coupling rate. We discuss the important roles of the symmetry and degeneracy of the modes to discriminate which ones are not able to interact efficiently. Calculations in Si and GaAs crystals at different optical wavelengths emphasize the dependence of the photoelastic contribution to the optomechanical interaction as a function of material and wavelength, especially owing to the significant variation of the photoelastic coefficients near the semiconductor band gap.

  7. Ultrafast shift and rectification photocurrents in GaAs quantum wells: Excitation intensity dependence and the importance of band mixing

    NASA Astrophysics Data System (ADS)

    Duc, Huynh Thanh; Podzimski, Reinold; Priyadarshi, Shekhar; Bieler, Mark; Meier, Torsten

    2016-08-01

    A microscopic approach that is based on the multisubband semiconductor Bloch equations formulated in the basis of a 14-band k .p model is employed to compute the temporal dynamics of photocurrents in GaAs quantum wells following excitation with femtosecond laser pulses. This approach provides a transparent description of the interband, intersubband, and intraband excitations, fully includes all resonant as well as off-resonant excitations, and treats the light-matter interaction nonperturbatively. For linearly polarized excitations, the photocurrents contain contributions from shift and rectification currents. We numerically compute and analyze these currents generated by excitation with femtosecond laser pulses for [110]- and [111]-oriented GaAs quantum wells. It is shown that the often employed perturbative χ(2 ) approach breaks down for peak fields larger than about 10 kV/cm, and that nonperturbative effects lead to a reduction of the peak values of the shift and rectification currents and to temporal oscillations that originate from Rabi flopping. In particular, we find a complex oscillatory photon energy dependence of the magnitudes of the shift and rectification currents. Our simulations demonstrate that this dependence is the result of mixing between the heavy- and light-hole valence bands. This is a surprising finding since the band mixing has an even larger influence on the strength of the photocurrents than the absorption coefficient. For [110]-oriented GaAs quantum wells, the calculated photon energy dependence is compared to experimental results, and good agreement is obtained. This validates our theoretical approach.

  8. Effect of Long-Range Polar Electron-Phonon Interaction on the Hot Carrier Dynamics of GaAs

    NASA Astrophysics Data System (ADS)

    Ong, Chin Shen; Bernadi, Marco; Louie, Steven G.

    Hot carrier dynamics plays an important role in the functionality of electronic and photovoltaic devices. Recent interest in harvesting the energy of hot electrons before it is lost through thermalization has led to renewed interest in the microscopic details of hot electron energy loss mechanisms. Gallium arsenide (GaAs) is of particular interest because amongst its many advantages, it is a direct-gap semiconductor, has high electron mobility and is a high-performing candidate for electronic and photovoltaic applications. GaAs is a polar material, and long-range polar (Frölich) electron-phonon interaction has non-trivial effects on the carrier dynamics in the material. In this work, we investigate the effect of this interaction on the hot carrier dynamics of GaAs. This work is supported by NSF Grant No. DMR15-1508412 and the DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  9. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    PubMed

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  10. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-06-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications.

  11. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  12. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs

    PubMed Central

    Botzem, Tim; McNeil, Robert P. G.; Mol, Jan-Michael; Schuh, Dieter; Bougeard, Dominique; Bluhm, Hendrik

    2016-01-01

    Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of the nuclear Larmor precession reduces electron spin coherence by causing faster decorrelation of transverse nuclear fields. However, this effect disappears for appropriate field directions. Furthermore, we observe an additional modulation of coherence attributed to an anisotropic electronic g-tensor. These results complete our understanding of dephasing in gated quantum dots and point to mitigation strategies. They may also help to unravel unexplained behaviour in self-assembled quantum dots and III–V nanowires. PMID:27079269

  13. Structure of GaAs(001) surfaces: The role of electrostatic interactions

    SciTech Connect

    Northrup, J.E. ); Froyen, S. )

    1994-07-15

    We report first-principles total-energy calculations for the GaAs(001) surface. Our results indicate that the 2[times]4 reconstruction corresponds to the [beta]2(2[times]4) structure, which exhibits two As dimers in the top layer and a third As dimer in the third layer. This structure has a lower surface energy than the [beta](2[times]4) model, which has three As dimers in the top layer. We also find that a model recently proposed by Skala [ital et] [ital al]. [Phys. Rev. B [bold 48], 9138 (1993)] for the structure of the Ga-rich 4[times]2 phase is energetically unfavorable. From our results we conclude that electrostatic interactions between the charged building blocks of polar semiconductor surfaces play an important role in determining the equilibrium structure. We introduce a simple model for estimating these interactions.

  14. Tuning the magnetic interaction between Mn dopants in GaAs

    NASA Astrophysics Data System (ADS)

    Gohlke, David; Gupta, Jay

    2012-02-01

    Manganese can be used as a dopant in gallium arsenide to create a ferromagnetic semiconductor. We use low-temperature scanning tunneling microscopy to study these magnetic properties. The magnetic coupling between Mn dopants in GaAs(110) changes between ferromagnetic and antiferromagnetic depending on the orientation of the acceptors due to the zincblende crystal structure of the surface [Kitchen et al, Nature, 2006]. We have recently reported tuning of the resonance energy for a single Mn acceptor by moving charged atomic point defects [Lee and Gupta, Science, 2010]. Here, we tune the magnetic interaction between surface-layer Mn atoms in the same way. Funding for this research was provided by the Center for Emergent Materials at the Ohio State University, an NSF MRSEC (Award Number DMR-0820414). http://www.physics.ohio-state.edu/˜jgupta/

  15. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires.

    PubMed

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R; Davis, Jeffrey A; Wang, Yuda; Smith, Leigh M; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  16. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect

    Lastras-Martínez, A. E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Lastras-Montaño, L. A.; Lastras-Montaño, M. A.

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  17. A high-voltage optoelectronic GaAs static induction transistor

    SciTech Connect

    Hadizad, P.; Hur, J.H.; Zhao, H.; Kaviani, K.; Gundersen, M.A. ); Fetterman, H.R. )

    1993-04-01

    Experimental realization of an optically activated, high-voltage GaAs static induction transistor (SIT) is reported. In the forward blocking state, the breakdown voltage of the device was [approximately]200 V, while in the conduction state, on-state current densities exceeding 150 A/cm[sup 2] were obtained. In the floating-gate configuration (gate open), the specific on-resistance of the device was [approximately]50 m[Omega] [center dot] cm[sup 2]. Optical modulation of the device was achieved using a compact semiconductor laser array as the triggering source, In this mode, a gate-coupled RC network was implemented, resulting in an average switching energy gain (load energy/optical energy) of [approximately]30. This mode of operation is applicable to series-coupled devices for pulsed switching at higher power levels.

  18. Impact of nucleation conditions on diameter modulation of GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Crawford, Samuel C.; Ermez, Sema; Haberfehlner, Georg; Jones, Eric J.; Gradečak, Silvija

    2015-06-01

    Diameter-modulated nanowires can be used to impart unique properties to nanowire-based devices. Here, diameter modulation along Au-seeded GaAs nanowires was achieved by varying the flux of the III and V precursors during growth. Furthermore, three different types of [111]B-oriented nanowires were observed to display distinct differences in diameter modulation, growth rate, and cross-sectional shape. These differences are attributed to the presence of multiple distinct Au-Ga seed particle phases at the growth temperature of 420 °C. We show that the diameter modulation behavior can be modified by the growth conditions during nanowire nucleation, including temperature, V/III ratio, substrate orientation, and seed particle size. These results demonstrate the general viability of flow-controlled diameter modulation for compound semiconductors and highlight both opportunities and challenges that can arise from using compound-forming alloys to seed nanowire growth.

  19. Giant Magnetoresistance of ErAs Self-organized Islands in GaAs

    NASA Astrophysics Data System (ADS)

    Schmidt, Daniel R.; Brehmer, Daniel E.; Allen, S. J.; Ibbetson, James P.

    1997-03-01

    We have used Molecular Beam Epitaxy to directly grow two-dimensional sheets of ErAs islands within GaAs, thus forming a self-organized magnetic, semi-metal/semiconductor composite structure. The height of the islands (along the growth direction) was approximately 3 monolayers. The lateral size of the islands is controlled by the growth temperature and ranged from 10 Å - 800 ÅSince the ErAs layers are disconnected, the lateral transport in these composite films is by hopping conduction. At fixed island size the zero-field resistivity drops several orders of magnitude as the island density increases. For 10 Å islands the giant magnetoresistance (GMR) is as large as several orders of magnitude at low temperatures ((<)direction. SQUID magnetometry demonstrates that the structures are paramagnetic and that both the magnetization and GMR saturate at the same field strength. These effects are similar to those observed in granular giant magnetoresistive material.

  20. Narrow-line self-assembled GaAs quantum dots for plasmonics

    SciTech Connect

    Zhang, Hongyi; Huo, Yongheng; Schmidt, Oliver G.; Lindfors, Klas; Chen, Yonghai; Rastelli, Armando; Lippitz, Markus

    2015-03-09

    We demonstrate efficient coupling of excitons in near-surface GaAs quantum dots (QDs) to surface-plasmon polaritons. We observe distinct changes in the photoluminescence of the emitters as the distance between the QDs and the gold interface decreases. Based on an electric point-dipole model, we identify the surface plasmon launching rates for different QD-surface distances. While in conventional far-field experiments only a few percent of the emitted photons can be collected due to the high refractive index semiconductor substrate, already for distances around 30 nm the plasmon launching-rate becomes comparable to the emission rate into bulk photon modes, thus much larger than the photon collection rate. For even smaller distances, the degrading optical properties of the emitter counterweight the increasing coupling efficiency to plasmonic modes.

  1. Quasiequilibrium nonlinearities in Faraday and Kerr rotation from spin-polarized carriers in GaAs

    SciTech Connect

    Joshua, Arjun; Venkataraman, V.

    2010-01-04

    Semiconductor Bloch equations (SBEs), which microscopically describe optical properties in terms of the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. Recently, Nemec et al. reported circularly polarized pump-probe absorption spectra in the quasiequilibrium regime for carrier spin-polarized bulk GaAs at room temperature, which lacked a suitable microscopic theoretical understanding. We have very recently explained their results by solving the spin-SBEs in the quasiequilibrium regime (spin-Bethe-Salpeter equation), and accounted for spin-dependent mechanisms of optical nonlinearity. Here, we extend our theory to the microscopic calculation of Kerr and Faraday rotation in the quasiequilibrium regime, for which there are no experimental or theoretical results available.

  2. Space-charge limited current in the series resistance of GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Folkes, P. A.; Olver, K.

    2013-12-01

    We report the observation of space-charge limited current in the current-voltage characteristics of GaAs solar cells as evidenced by an abrupt decrease in the series resistance, a concurrent steep increase in the dark current at a threshold voltage and the observation of a quadratic dependence of the dark current on the voltage across the series resistance above threshold. The abrupt decrease in the series resistance at threshold, results in the observation of negative differential resistance and a subsequent hysteresis in the current-voltage characteristics. Auger electron spectroscopy analysis shows that the space-charge limited current can be attributed to a thin insulating CrAs layer at the contact/semiconductor interface.

  3. Ion implanted GaAs microwave FET's

    NASA Astrophysics Data System (ADS)

    Gill, S. S.; Blockley, E. G.; Dawsey, J. R.; Foreman, B. J.; Woodward, J.; Ball, G.; Beard, S. J.; Gaskell, J. M.; Allenson, M. B.

    1988-06-01

    The combination of ion implantation and photolithographic patterning techniques was applied to the fabrication of GaAs microwave FETs to provide a large number of devices having consistently predictable dc and high frequency characteristics. To validate the accuracy and repeatability of the high frequency device parameters, an X-band microwave circuit was designed and realized. The performance of this circuit, a buffered amplifier, is very close to the design specification. The availability of a large number of reproducible, well-characterized transistors enabled work to commence on the development of a large signal model for FETs. Work in this area is also described.

  4. Microfabrication techniques for semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Tamanuki, Takemasa; Tadokoro, T.; Morito, Ken; Koyama, Fumio; Iga, Kenichi

    1991-03-01

    Several important techniques for fabricating micro-cavity semiconductor lasers including surface emitting lasers have been developed. Reactive ion beam etch (RIBE) for GaA1As and GaInAsP is employed and its condition for vertical fine etch under low damages and removal of residual damages are made clear. Passivation by sulfur is introduced to the fabrication process. Regrowth techniques for DII structures by LPE and MOCVD has been established. Some device applications are discussed. 1. MICRO-ETCHING PROCESS Micro-cavity lasers including a vertical cavity surface emitting laser1 are attracting the research interest for optical parallel processing and parallel light wave systems. In order to realize micron-order or sub-micron laserdevices the technology of micro-fabrication must be established. In this study the total fabrication technology has been almost completed. First fine and low damage etching condition by ultrahigh vacuum background RIBE using a Cl2 gas has been made clear. We have found an isotropic etching condition for the vertical side wall formation and good mask traceability i. e. the acceleration voltage is 500 V and substrate temperature is 150 C with a 5000A thickness Si02 mask. Residual damages induced on the surface and the side wall are characterized by photo-luminescence and making stripe lasers. Figure 1 is the histogram of the nominal threshold current density for (a) oxide-defined stripe lasers (b) RIBE etched and LPE regrown BH-lasers using an LPE grown DII wafer (LPE/LPE) and (c) RIBE etched

  5. Spectral photosensitivity of an organic semiconductor in a submicron metal grating

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Palto, S. P.

    2016-02-01

    The photoelectric effect in films of the copper phthalocyanine organic semiconductor (α-CuPc) has been experimentally studied for two fundamentally different geometries. A sample in the first, normal geometry is fabricated in the form of a sandwich with an α-CuPc film between a transparent SnO2 electrode on a substrate and an upper reflecting Al electrode. In the second case of the planar geometry, the semiconductor is deposited on the substrate with a system of submicron chromium interdigital electrodes. It has been found that the effective photoconductivity in the planar geometry is more than two orders of magnitude higher than that in the normal geometry. In addition to the classical model (without excitons), a simple exciton model has been proposed within which a relation has been obtained between the probability of the formation of electron-hole pairs and the characteristic recombination and dissociation times of excitons. An increase in the photoconductivity in the planar geometry has been explained within the exciton model by an increase in the rate of dissociation of excitons into electron-hole pairs owing to acceptor oxygen molecules, which diffuse more efficiently into the film in the case of the planar geometry where the upper electrode is absent.

  6. Analysis of microwave characteristics of photoconductive IC structures

    NASA Astrophysics Data System (ADS)

    Darling, Robert B.

    1987-03-01

    A one-dimensional analytic solution for the microwave photoresponse of an optically modulated semiconductor channel is presented. This extends the existing treatments by including the effects of nonuniform channel cross sections and conductivity, nonuniform optical illumination, field-dependent mobilities, nonzero dielectric relaxation times, arbitrary electrical and optical excitation frequencies, and full coupled bipolar carrier transport. The solution is continuous over the full range of electric field intensities and thereby describes both the saturated and nonsaturated regimes of the photocurrent. Only the low-level generation case is considered, and trapping effects and diffusion are not included. This model allows the effects of optical stimulation in many typical IC structures to be assessed from dc up through the microwave range of frequencies.

  7. Semiconductor ohmic contact

    NASA Technical Reports Server (NTRS)

    Hawrylo, Frank Zygmunt (Inventor); Kressel, Henry (Inventor)

    1977-01-01

    A semiconductor device has one surface of P type conductivity material having a wide energy bandgap and a large crystal lattice parameter. Applied to the P type surface of the semiconductor device is a degenerate region of semiconductor material, preferably a group III-V semiconductor material, having a narrower energy bandgap. The degenerate region is doped with tin to increase the crystal lattice of the region to more closely approximate the crystal lattice of the one surface of the semiconductor device. The degenerate region is compensatingly doped with a P type conductivity modifier. An electrical contact is applied to one surface of the degenerate region forming an ohmic contact with the semiconductor device.

  8. Self-consistent GW calculations for semiconductors and insulators

    NASA Astrophysics Data System (ADS)

    Shishkin, M.; Kresse, G.

    2007-06-01

    We present GW calculations for small and large gap systems comprising typical semiconductors (Si, SiC, GaAs, GaN, ZnO, ZnS, CdS, and AlP), small gap semiconductors (PbS, PbSe, and PbTe), insulators (C, BN, MgO, and LiF), and noble gas solids (Ar and Ne). It is shown that the G0W0 approximation always yields too small band gaps. To improve agreement with experiment, the eigenvalues in the Green’s function G (GW0) and in the Green’s function and the dielectric matrix (GW) are updated until self-consistency is reached. The first approximation leads to excellent agreement with experiment, whereas an update of the eigenvalues in G and W gives too large band gaps for virtually all materials. From a pragmatic point of view, the GW0 approximation thus seems to be an accurate and still reasonably fast method for predicting quasiparticle energies in simple sp -bonded systems. We furthermore observe that the band gaps in materials with shallow d states (GaAs, GaN, and ZnO) are systematically underestimated. We propose that an inaccurate description of the static dielectric properties of these materials is responsible for the underestimation of the band gaps in GW0 , which is itself a result of the incomplete cancellation of the Hartree self-energy within the d shell by local or gradient corrected density functionals.

  9. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    PubMed Central

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca i Cabarrocas, Pere

    2016-01-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs. PMID:27166163

  10. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-05-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.

  11. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    NASA Astrophysics Data System (ADS)

    Englhard, M.; Klemp, C.; Behringer, M.; Rudolph, A.; Skibitzki, O.; Zaumseil, P.; Schroeder, T.

    2016-07-01

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In0.5(Ga0.45Al0.55)0.5P (Q55) layer was investigated by high resolution x-ray diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.

  12. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration.

    PubMed

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-01-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs. PMID:27166163

  13. High-k gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Wen; Xu, Jing-Ping; Liu, Lu; Lu, Han-Han

    2015-12-01

    High-k gate dielectric HfTiON GaAs metal-oxide-semiconductor (MOS) capacitors with LaON as interfacial passivation layer (IPL) and NH3- or N2-plasma surface pretreatment are fabricated, and their interfacial and electrical properties are investigated and compared with their counterparts that have neither LaON IPL nor surface treatment. It is found that good interface quality and excellent electrical properties can be achieved for a NH3-plasma pretreated GaAs MOS device with a stacked gate dielectric of HfTiON/LaON. These improvements should be ascribed to the fact that the NH3-plasma can provide H atoms and NH radicals that can effectively remove defective Ga/As oxides. In addition, LaON IPL can further block oxygen atoms from being in-diffused, and Ga and As atoms from being out-diffused from the substrate to the high-k dielectric. This greatly suppresses the formation of Ga/As native oxides and gives rise to an excellent high-k/GaAs interface. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112).

  14. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  15. Implantation of carbon in GaAs

    SciTech Connect

    Moll, A.J.

    1992-03-01

    Carbon implanted into GaAs and thermally annealed typically exhibits very low (<3%) electrical activity. It has been demonstrated that the electrical activity of C can be significantly enhanced by co-implantation with Ga. Improved activation may result from either additional damage of the crystal lattice or from stoichiometric changes, forcing the C atoms onto As sites. To determine the relative importance of each of these effects, I have undertaken a systematic study of carbon activation in GaAs. A range of co-implants have been used: group III (B, Ga), group V (N, P, As) and noble gases (Ar, Kr). The damage introduced to the substrate will depend on the mass of the ion implanted. The group III and group V co-implants will affect the crystal stoichiometry. The results indicate that both lattice damage and crystal stoichiometry are important for high electrical activity of C. Increasing the damage will increase the activation due to the increased number of As vacancies but maximum activation can be obtained only by a co-implant which not only damages the lattice but also forces the C to occupy an As site.

  16. Band offsets and band bending at heterovalent semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Frey, A.; Bass, U.; Mahapatra, S.; Schumacher, C.; Geurts, J.; Brunner, K.

    2010-11-01

    We present a comprehensive study of band offsets and band bending at heterovalent semiconductor heterointerfaces. A perfectly abrupt heterovalent interface is usually thermodynamically unstable, and atomic intermixing of materials with different numbers of valence electrons causes large variations in band offsets and local doping density, depending on the spatial arrangement of atoms at the interface. The studied prototypical II-VI/III-V semiconductor interfaces are n -doped ZnSe/GaAs (001) heterostructures with varied composition profiles close to the interface, which were realized by molecular-beam epitaxy with different amounts of Zn or Se predeposited on n -GaAs prior to n -ZnSe layer growth. The samples are characterized by temperature-dependent electrical transport across the interface, electrochemical capacitance-voltage profiling, Raman spectroscopy, and high-resolution x-ray diffraction. We find that the potential barrier in the conduction band at a Zn-rich n -ZnSe/ n -GaAs interface is as high as 550 meV and it gradually decreases with Se predeposition down to about 70 meV. A large depletion region at the heterointerface, about 50 nm wide, is assigned to significant intermixing of acceptor-type atoms, resulting in an effective electron deficit of 1.5×1013cm-2 . The depletion width and the acceptor density around the interface are nearly independent from the growth start procedure. Se predeposition, however, partially shifts the depletion region at the heterointerface from GaAs into ZnSe, compared to Zn predeposition. The results are discussed on the basis of a band-bending model accounting for variable band offsets, interface state density and atomic interdiffusion profiles depending on growth start.

  17. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  18. Interface composition between Fe{sub 3}O{sub 4} nanoparticles and GaAs for spintronic applications

    SciTech Connect

    Hihath, Sahar; Kiehl, Richard A.; Benthem, Klaus van

    2014-08-28

    Recent interest in spintronic applications has necessitated the study of magnetic materials in contact with semiconductor substrates; importantly, the structure and composition of these interfaces can influence both device functionality and the magnetic properties. Nanoscale ferromagnet/semiconductor structures are of particular interest. In this study, the interface structure between a monolayer of ferromagnetic magnetite (Fe{sub 3}O{sub 4}) nanoparticles and a GaAs substrate was studied using cross-sectional transmission electron microscopy techniques. It was found that a continuous amorphous oxide interface layer separates the nanoparticles from the GaAs substrate, and that iron diffused into the interface layer forming a compositional gradient. Electron energy-loss near-edge fine structures of the O K absorption edge revealed that the amorphous oxide is composed of γ-Fe{sub 2}O{sub 3} directly underneath the Fe{sub 3}O{sub 4} nanoparticles, followed by a solid solution of Ga{sub 2}O{sub 3} and FeO and mostly Ga{sub 2}O{sub 3} when approaching the buckled oxide/substrate interface. Real-space density functional theory calculations of the dynamical form factor confirmed the experimental observations. The implication of the findings on the optimization of these structures for spin injection is discussed.

  19. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  20. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.