Sample records for gaba agonist induced

  1. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  2. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    PubMed

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  3. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

  4. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  5. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    PubMed

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  6. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  7. Pharmacologic Treatment with GABAB Receptor Agonist of Methamphetamine-Induced Cognitive Impairment in Mice

    PubMed Central

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi

    2011-01-01

    Methamphetamine (METH) is a highly addictive drug, and addiction to METH has increased to epidemic proportions worldwide. Chronic use of METH causes psychiatric symptoms, such as hallucinations and delusions, and long-term cognitive deficits, which are indistinguishable from paranoid schizophrenia. The GABA receptor system is known to play a significant role in modulating the dopaminergic neuronal system, which is related to behavioral changes induced by drug abuse. However, few studies have investigated the effects of GABA receptor agonists on cognitive deficits induced by METH. In the present review, we show that baclofen, a GABA receptor agonist, is effective in treating METH-induced impairment of object recognition memory and prepulse inhibition (PPI) of the startle reflex, a measure of sensorimotor gating in mice. Acute and repeated treatment with METH induced a significant impairment of PPI. Furthermore, repeated but not acute treatment of METH resulted in a long-lasting deficit of object recognition memory. Baclofen, a GABAB receptor agonist, dose-dependently ameliorated the METH-induced PPI deficits and object recognition memory impairment in mice. On the other hand, THIP, a GABAA receptor agonist, had no effect on METH-induced cognitive deficits. These results suggest that GABAB receptors may constitute a putative new target in treating cognitive deficits in chronic METH users. PMID:21886573

  8. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  9. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  10. The GABA[subscript A] Receptor Agonist Muscimol Induces an Age- and Region-Dependent Form of Long-Term Depression in the Mouse Striatum

    ERIC Educational Resources Information Center

    Zhang, Xiaoqun; Yao, Ning; Chergui, Karima

    2016-01-01

    Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABA[subscript A] receptor agonist muscimol was recently found to trigger a…

  11. Effects of GABA(B) receptor agents on cocaine priming, discrete contextual cue and food induced relapses.

    PubMed

    Filip, Małgorzata; Frankowska, Małgorzata

    2007-10-01

    In the present study we investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phosphinic acid (SKF 97541), and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl)-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) on cocaine seeking behavior. The effects of the above drugs on the reinstatement of responding induced by natural reinforcer (food) were also studied. Male Wistar rats were trained to self-administer either cocaine (0.5 mg/kg/infusion) or food (sweet milk) and responding on the reinforcer-paired lever was extinguished. Reinstatement of responding was induced by a noncontingent presentation of the self-administered reinforcer (10 mg/kg cocaine, i.p.), a discrete contextual cue, or a contingent presentation of food. SCH 50911 (3-10 mg/kg) dose-dependently attenuated responding on the previously cocaine-paired lever during both reinstatement conditions, with slightly greater efficacy at reducing conditioned cue reinstatement. At the same time, it failed to alter reinstatement of food-seeking behavior. Baclofen (1.25-5 mg/kg) and SKF 97541 (0.03-0.3 mg/kg) attenuated cocaine- or food-seeking behavior; the effect of the drug appeared more effective for cocaine-seeking than food-seeking. CGP 7930 (10-30 mg/kg) reduced cocaine seeking without affecting food-induced reinstatement on reward seeking. Our results indicate that tonic activation of GABA(B) receptors is required for cocaine seeking behavior in rats. Moreover, the GABA(B) receptor antagonist SCH 50911 was effective in reducing relapse to cocaine at doses that failed to alter reinstatement of food-seeking behavior (present study), basal locomotor activity, cocaine and food self-administration (Filip et al., submitted for publication), suggesting its selective effects on motivated drug-seeking behavior. The potent inhibitory responses on cocaine seeking behavior were also seen

  12. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BRmore » agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.« less

  13. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    PubMed

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P < 0.05). Prior administration of GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  14. Gamma-aminobutyric acid agonists for antipsychotic-induced tardive dyskinesia.

    PubMed

    Alabed, Samer; Latifeh, Youssef; Mohammad, Husam Aldeen; Bergman, Hanna

    2018-04-17

    Chronic antipsychotic drug treatment may cause tardive dyskinesia (TD), a long-term movement disorder. Gamma-aminobutyric acid (GABA) agonist drugs, which have intense sedative properties and may exacerbate psychotic symptoms, have been used to treat TD. 1. Primary objectiveThe primary objective was to determine whether using non-benzodiazepine GABA agonist drugs for at least six weeks was clinically effective for the treatment of antipsychotic-induced TD in people with schizophrenia, schizoaffective disorder or other chronic mental illnesses.2. Secondary objectivesThe secondary objectives were as follows.To examine whether any improvement occurred with short periods of intervention (less than six weeks) and, if this did occur, whether this effect was maintained at longer periods of follow-up.To examine whether there was a differential effect between the various compounds.To test the hypothesis that GABA agonist drugs are most effective for a younger age group (less than 40 years old). We searched the Cochrane Schizophrenia Group Trials Register (last searched April 2017), inspected references of all identified studies for further trials, and, when necessary, contacted authors of trials for additional information. We included randomised controlled trials of non-benzodiazepine GABA agonist drugs in people with antipsychotic-induced TD and schizophrenia or other chronic mental illness. Two review authors independently selected and critically appraised studies, extracted and analysed data on an intention-to-treat basis. Where possible and appropriate we calculated risk ratios (RRs) and their 95% confidence intervals (CIs). For continuous data we calculated mean differences (MD). We assumed that people who left early had no improvement. We contacted investigators to obtain missing information. We assessed risk of bias for included studies and created a 'Summary of findings' table using GRADE. We included 11 studies that randomised 343 people. Overall, the risk of bias

  15. Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats

    PubMed Central

    Beas, B. Sofia; Setlow, Barry; Bizon, Jennifer L.

    2016-01-01

    RATIONALE The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility. METHODS Male Fischer 344 rats were trained in a set-shifting task in which they learned to discriminate between two response levers to obtain a food reward. Correct levers were signaled in accordance with two distinct response rules (Rule 1: correct lever signaled by a cue light; Rule 2: correct lever signaled by its left/right position). The order of rule presentation varied, but they were always presented sequentially, with the trials and errors to reach criterion performance on the second (set shift) rule providing the measure of behavioral flexibility. Experiments determined the effects of the GABA(B) receptor agonist baclofen (i.p., 0, 1.0, 2.5 and 4.0 mg/kg) administered acutely before the shift to the second rule. RESULTS Baclofen enhanced set-shifting performance. Control experiments demonstrated that this enhancement was not simply due to improved discrimination learning, nor was it due to impaired recall of the initial discrimination rule. CONCLUSIONS The results demonstrate that baclofen can facilitate behavioral flexibility, suggesting that GABA(B) receptor agonists may have utility for treating behavioral dysfunction in neuropsychiatric disorders. PMID:27256354

  16. Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats.

    PubMed

    Beas, B Sofia; Setlow, Barry; Bizon, Jennifer L

    2016-07-01

    The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility. Male Fischer 344 rats were trained in a set-shifting task in which they learned to discriminate between two response levers to obtain a food reward. Correct levers were signaled in accordance with two distinct response rules (rule 1: correct lever signaled by a cue light; rule 2: correct lever signaled by its left/right position). The order of rule presentation varied, but they were always presented sequentially, with the trials and errors to reach criterion performance on the second (set shift) rule providing the measure of behavioral flexibility. Experiments determined the effects of the GABA(B) receptor agonist baclofen (intraperitoneal, 0, 1.0, 2.5, and 4.0 mg/kg) administered acutely before the shift to the second rule. Baclofen enhanced set-shifting performance. Control experiments demonstrated that this enhancement was not simply due to improved discrimination learning, nor was it due to impaired recall of the initial discrimination rule. The results demonstrate that baclofen can facilitate behavioral flexibility, suggesting that GABA(B) receptor agonists may have utility for treating behavioral dysfunction in neuropsychiatric disorders.

  17. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  18. Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Wilhelm, Ines; Ma, Ying; Groch, Sabine; Binkofski, Ferdinand; Mölle, Matthias; Born, Jan

    2013-01-01

    Study Objectives: Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. Design: This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). Participants: Fourteen healthy young men aged 21.9 years (range 18-28 years). Measurements and Results: Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. Conclusions: Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity. Citation: Feld GB; Wilhelm I; Ma Y; Groch S; Binkofski F; Mölle M; Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. SLEEP 2013;36(9):1317-1326. PMID:23997364

  19. Cerebral radioprotection by pentobarbital: Dose-response characteristics and association with GABA agonist activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, J.J.; Friedman, R.; Orr, K.

    1990-05-01

    Pentobarbital reduces cerebral radiation toxicity; however, the mechanism of this phenomenon remains unknown. As an anesthetic and depressant of cerebral metabolism, pentobarbital induces its effects on the central nervous system by stimulating the binding of gamma-aminobutyric acid (GABA) to its receptor and by inhibiting postsynaptic excitatory amino acid activity. The purpose of this study is to investigate the role of these actions as well as other aspects of the radioprotective activity of pentobarbital. Fischer 344 rats were separated into multiple groups and underwent two dose-response evaluations. In one set of experiments to examine the relationship of radioprotection to pentobarbital dose,more » a range of pentobarbital doses (0 to 75 mg/kg) were given intraperitoneally prior to a constant-level radiation dose (70 Gy). In a second series of experiments to determine the dose-response relationship of radiation protection to radiation dose, a range of radiation doses (10 to 90 Gy) were given with a single pentobarbital dose. Further groups of animals were used to evaluate the importance of the timing of pentobarbital administration, the function of the (+) and (-) isomers of pentobarbital, and the role of an alternative GABA agonist (diazepam). In addition, the potential protective effects of alternative methods of anesthesia (ketamine) and induction of cerebral hypometabolism (hypothermia) were examined. Enhancement of survival time from acute radiation injury due to high-dose single-fraction whole-brain irradiation was maximal with 60 mg/kg of pentobarbital, and occurred over the range of all doses examined between 30 to 90 Gy. Protection was seen only in animals that received the pentobarbital before irradiation. Administration of other compounds that enhance GABA binding (Saffan and diazepam) also significantly enhanced survival time.« less

  20. Actions of Agonists, Fipronil and Ivermectin on the Predominant In Vivo Splice and Edit Variant (RDLbd, I/V) of the Drosophila GABA Receptor Expressed in Xenopus laevis Oocytes

    PubMed Central

    Suwanmanee, Siros; Buckingham, Steven David; Biggin, Philip; Sattelle, David

    2014-01-01

    Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides. PMID:24823815

  1. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice.

    PubMed

    Farahmandfar, Maryam; Akbarabadi, Ardeshir; Bakhtazad, Atefeh; Zarrindast, Mohammad-Reza

    2017-03-06

    Ketamine and other noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists are known to induce deficits in learning and cognitive performance sensitive to prefrontal cortex (PFC) functions. The interaction of a glutamatergic and GABAergic systems is essential for many cognitive behaviors. In order to understand the effect of γ-aminobutyric acid (GABA)/glutamate interactions on learning and memory, we investigated the effects of intra medial prefrontal cortex (mPFC) injections of GABAergic agents on ketamine-induced amnesia using a one-trial passive avoidance task in mice. Pre-training systemic administration of ketamine (5, 10 and 15mg/kg, i.p.) dose-dependently decreased the memory acquisition of a one-trial passive avoidance task. Pre-training intra-mPFC injection of muscimol, GABAA receptor agonist (0.05, 0.1 and 0.2μg/mouse) and baclofen GABAB receptor agonist (0.05, 0.1, 0.5 and 1μg/mouse), impaired memory acquisition. However, co-pretreatment of different doses of muscimol and baclofen with a lower dose of ketamine (5mg/kg), which did not induce amnesia by itself, caused inhibition of memory formation. Our data showed that sole pre-training administration of bicuculline, GABA-A receptor antagonist and phaclofen GABA-B receptor antagonist into the mPFC, did not affect memory acquisition. In addition, the amnesia induced by pre-training ketamine (15mg/kg) was significantly decreased by the pretreatment of bicuculline (0.005, 0.1 and 0.5μg/mouse). It can be concluded that GABAergic system of the mPFC is involved in the ketamine-induced impairment of memory acquisition. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis.

    PubMed

    Bassi, Gabriel S; do C Malvar, David; Cunha, Thiago M; Cunha, Fernando Q; Kanashiro, Alexandre

    2016-08-01

    Recent studies have demonstrated that the central nervous system controls inflammatory responses by activating complex efferent neuroimmune pathways. The present study was designed to evaluate the role that central gamma-aminobutyric acid type B (GABA-B) receptor plays in neutrophil migration in a murine model of zymosan-induced arthritis by using different pharmacological tools. We observed that intrathecal administration of baclofen, a selective GABA-B agonist, exacerbated the inflammatory response in the knee after zymosan administration characterized by an increase in the neutrophil recruitment and knee joint edema, whereas saclofen, a GABA-B antagonist, exerted the opposite effect. Intrathecal pretreatment of the animals with SB203580 (an inhibitor of p38 mitogen-activated protein kinase) blocked the pro-inflammatory effect of baclofen. On the other hand, systemic administration of guanethidine, a sympatholytic drug that inhibits catecholamine release, and nadolol, a beta-adrenergic receptor antagonist, reversed the effect of saclofen. Moreover, saclofen suppressed the release of the pro-inflammatory cytokines into the knee joint (ELISA) and pain-related behaviors (open field test). Since the anti-inflammatory effect of saclofen depends on the sympathetic nervous system integrity, we observed that isoproterenol, a beta-adrenergic receptor agonist, mimics the central GABA-B blockade decreasing knee joint neutrophil recruitment. Together, these results demonstrate that the pharmacological manipulation of spinal GABAergic transmission aids control of neutrophil migration to the inflamed joint by modulating the activation of the knee joint-innervating sympathetic terminal fibers through a mechanism dependent on peripheral beta-adrenergic receptors and central components, such as p38 MAPK.

  3. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    PubMed

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  4. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    PubMed

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells

    PubMed Central

    Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J

    2006-01-01

    Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes

  6. mGluR antagonists and GABA agonists as novel pharmacological agents for the treatment of autism spectrum disorders.

    PubMed

    Oberman, Lindsay M

    2012-12-01

    The CDC currently estimates the prevalence of autism spectrum disorders (ASD) at 1 in 88 children. Though the exact etiology of ASD is unknown, recent studies implicate synaptic maturation and plasticity in the pathogenesis of ASD leading to an imbalance of excitation and inhibition, and specifically a disproportionately high level of excitation. Pharmacological agents that modulate excitation and inhibition are currently in clinical trials for treatment of ASD and show promising preliminary results. This paper reviews the literature implicating the role of glutamate and GABA pathways in the pathophysiology of ASD. It also provides a review of the current results from both animal models and human clinical trials of drugs aimed at normalizing the imbalance of excitation and inhibition through the use of metabotropic glutamate receptor (mGluR) antagonists and GABA agonists. Both mGluR antagonists and GABA agonists have promising preliminary data from animal model and small-scale Phase II human trials. They show significant efficacy in subpopulations and appear to have favorable side-effect profiles. Though preliminary data are extremely promising, results from ongoing larger, double-blind, placebo-controlled studies will give a more complete understanding of the efficacy and side-effect profile related to these drugs.

  7. Effects of 5-HT1A Receptor Stimulation on D1 Receptor Agonist-Induced Striatonigral Activity and Dyskinesia in Hemiparkinsonian Rats

    PubMed Central

    2013-01-01

    Accumulating evidence supports the value of 5-HT1A receptor (5-HT1AR) agonists for dyskinesias that arise with long-term L-DOPA therapy in Parkinson’s disease (PD). Yet, how 5-HT1AR stimulation directly influences the dyskinetogenic D1 receptor (D1R)-expressing striatonigral pathway remains largely unknown. To directly examine this, one cohort of hemiparkinsonian rats received systemic injections of Vehicle + Vehicle, Vehicle + the D1R agonist SKF81297 (0.8 mg/kg), or the 5-HT1AR agonist ±8-OH-DPAT (1.0 mg/kg) + SKF81297. Rats were examined for changes in abnormal involuntary movements (AIMs), rotations, striatal preprodynorphin (PPD), and glutamic acid decarboxylase (GAD; 65 and 67) mRNA via RT-PCR. In the second experiment, hemiparkinsonian rats received intrastriatal pretreatments of Vehicle (aCSF), ±8-OH-DPAT (7.5 mM), or ±8-OH-DPAT + the 5-HT1AR antagonist WAY100635 (4.6 mM), followed by systemic Vehicle or SKF81297 after which AIMs, rotations, and extracellular striatal glutamate and nigral GABA efflux were measured by in vivo microdialysis. Results revealed D1R agonist-induced AIMs were reduced by systemic and intrastriatal 5-HT1AR stimulation while rotations were enhanced. Although ±8-OH-DPAT did not modify D1R agonist-induced increases in striatal PPD mRNA, the D1R/5-HT1AR agonist combination enhanced GAD65 and GAD67 mRNA. When applied locally, ±8-OH-DPAT alone diminished striatal glutamate levels while the agonist combination increased nigral GABA efflux. Thus, presynaptic 5-HT1AR stimulation may attenuate striatal glutamate levels, resulting in diminished D1R-mediated dyskinetic behaviors, but maintain or enhance striatal postsynaptic factors ultimately increasing nigral GABA levels and rotational activity. The current findings offer a novel mechanistic explanation for previous results concerning 5-HT1AR agonists for the treatment of dyskinesia. PMID:23496922

  8. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  9. Epigenetic regulation of dorsal raphe GABA(B1a) associated with isolation-induced abnormal responses to social stimulation in mice.

    PubMed

    Araki, Ryota; Hiraki, Yosuke; Nishida, Shoji; Kuramoto, Nobuyuki; Matsumoto, Kinzo; Yabe, Takeshi

    2016-02-01

    In isolation-reared mice, social encounter stimulation induces locomotor hyperactivity and activation of the dorsal raphe nucleus (DRN), suggesting that dysregulation of dorsal raphe function may be involved in abnormal behaviors. In this study, we examined the involvement of dorsal raphe GABAergic dysregulation in the abnormal behaviors of isolation-reared mice. We also studied an epigenetic mechanism underlying abnormalities of the dorsal raphe GABAergic system. Both mRNA and protein levels of GABA(B1a), a GABA(B) receptor subunit, were increased in the DRN of isolation-reared mice, compared with these levels in group-reared mice. In contrast, mRNA levels for other GABAergic system-related genes (GABA(A) receptor α1, β2 and γ2 subunits, GABA(B) receptor 1b and 2 subunits, and glutamate decarboxylase 67 and 65) were unchanged. Intra-DRN microinjection of 0.06 nmol baclofen (a GABA(B) receptor agonist) exacerbated encounter-induced hyperactivity and aggressive behavior, while microinjection of 0.3 nmol phaclofen (a GABA(B) receptor antagonist) attenuated encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Furthermore, microinjection of 0.06 nmol baclofen elicited encounter-induced hyperactivity in group-reared mice. Neither baclofen nor phaclofen affected immobility time in the forced swim test and hyperactivity in a novel environment of isolation reared mice. Bisulfite sequence analyses revealed that the DNA methylation level of the CpG island around the transcription start site (TSS) of GABA(B1a) was decreased in the DRN of isolation-reared mice. Chromatin immunoprecipitation analysis showed that histone H3 was hyperacetylated around the TSS of GABA(B1a) in the DRN of isolation-reared mice. These findings indicate that an increase in dorsal raphe GABA(B1a) expression via epigenetic regulation is associated with abnormal responses to social stimulation such as encounter-induced hyperactivity and aggressive behavior in isolation

  10. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Telegdy, Gyula

    2009-05-01

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

  11. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover.

    PubMed

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ 1 -pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.

  12. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover

    PubMed Central

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism. PMID:29312009

  13. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    PubMed Central

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  14. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    PubMed Central

    Chanana, Priyanka; Kumar, Anil

    2016-01-01

    Rationale: Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel

  15. Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens

    PubMed Central

    Haudecoeur, E.; Planamente, S.; Cirou, A.; Tannières, M.; Shelp, B. J.; Moréra, S.; Faure, D.

    2009-01-01

    Plants accumulate free L-proline (Pro) in response to abiotic stresses (drought and salinity) and presence of bacterial pathogens, including the tumor-inducing bacterium Agrobacterium tumefaciens. However, the function of Pro accumulation in host-pathogen interaction is still unclear. Here, we demonstrated that Pro antagonizes plant GABA-defense in the A. tumefaciens C58-induced tumor by interfering with the import of GABA and consequently the GABA-induced degradation of the bacterial quorum-sensing signal, 3-oxo-octanoylhomoserine lactone. We identified a bacterial receptor Atu2422, which is implicated in the uptake of GABA and Pro, suggesting that Pro acts as a natural antagonist of GABA-signaling. The Atu2422 amino acid sequence contains a Venus flytrap domain that is required for trapping GABA in human GABAB receptors. A constructed atu2422 mutant was more virulent than the wild type bacterium; moreover, transgenic plants with a low level of Pro exhibited less severe tumor symptoms than did their wild-type parents, revealing a crucial role for Venus flytrap GABA-receptor and relative abundance of GABA and Pro in host-pathogen interaction. PMID:19706545

  16. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    PubMed Central

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia. PMID:26630957

  17. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function.

    PubMed

    Uehara, Takashi; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia.

  18. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA A-ρ1 Receptors

    DOE PAGES

    Xie, A.; Yan, J.; Yue, L.; ...

    2011-08-02

    All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brownmore » Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists

  19. In vivo electroretinographic studies of the role of GABA C receptors in retinal signal processing

    DOE PAGES

    Wang, Jing; Mojumder, Deb Kumar; Yan, Jun; ...

    2015-07-08

    The retina expresses all three classes of receptors for the inhibitory neurotransmitter GABA (GABAR). Our study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats.more » The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. Furthermore, the negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA

  20. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    PubMed

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcar, V.J.; Dreher, B.

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary andmore » association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.« less

  2. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    PubMed Central

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  3. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.

    PubMed

    Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot

    2014-02-01

    The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  5. Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine.

    PubMed

    Ahn, Kyung-Heup; Sewell, Andrew; Elander, Jacqueline; Pittman, Brian; Ranganathan, Mohini; Gunduz-Bruce, Handan; Krystal, John; D'Souza, Deepak Cyril

    2015-11-01

    Some schizophrenia patients are more sensitive to amphetamine (AMPH)-induced exacerbations in psychosis-an effect that correlates with higher striatal dopamine release. This enhanced vulnerability may be related to gamma-aminobutyric acid (GABA) deficits observed in schizophrenia. We hypothesized that a pharmacologically induced GABA deficit would create vulnerability to the psychotomimetic effects to the 'subthreshold' dose of AMPH in healthy subjects, which by itself would not induce clinically significant increase in positive symptoms. To test this hypothesis, a GABA deficit was induced by intravenous infusion of iomazenil (IOM; 3.7 μg/kg), an antagonist and partial inverse agonist of benzodiazepine receptor. A subthreshold dose of AMPH (0.1 mg/kg) was administered by intravenous infusion. Healthy subjects received placebo IOM followed by placebo AMPH, active IOM followed by placebo AMPH, placebo IOM followed by active AMPH, and active IOM followed by active AMPH in a randomized, double-blind crossover design over 4 test days. Twelve healthy subjects who had a subclinical response to active AMPH alone were included in the analysis. Psychotomimetic effects (Positive and Negative Syndrome Scale (PANSS)), perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)), and subjective effects (visual analog scale) were captured before and after the administration of drugs. IOM significantly augmented AMPH-induced peak changes in PANSS positive symptom subscale and both subjective and objective CADSS scores. There were no pharmacokinetic interactions. In conclusion, GABA deficits increased vulnerability to amphetamine-induced psychosis-relevant effects in healthy subjects, suggesting that pre-existing GABA deficits may explain why a subgroup of schizophrenia patients are vulnerable to AMPH.

  6. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  7. Acute spinal cord injury (SCI) transforms how GABA affects nociceptive sensitization.

    PubMed

    Huang, Yung-Jen; Lee, Kuan H; Murphy, Lauren; Garraway, Sandra M; Grau, James W

    2016-11-01

    Noxious input can sensitize pain (nociceptive) circuits within the spinal cord, inducing a lasting increase in spinal cord neural excitability (central sensitization) that is thought to contribute to chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. The current study provides evidence that spinal cord injury (SCI) transforms how GABA affects nociceptive transmission within the spinal cord, recapitulating an earlier developmental state wherein GABA has an excitatory effect. In spinally transected rats, noxious electrical stimulation and inflammation induce enhanced mechanical reactivity (EMR), a behavioral index of nociceptive sensitization. Pretreatment with the GABA A receptor antagonist bicuculline blocked these effects. Peripheral application of an irritant (capsaicin) also induced EMR. Both the induction and maintenance of this effect were blocked by bicuculline. Cellular indices of central sensitization [c-fos expression and ERK phosphorylation (pERK)] were also attenuated. In intact (sham operated) rats, bicuculline had the opposite effect. Pretreatment with a GABA agonist (muscimol) attenuated nociceptive sensitization in intact, but not spinally injured, rats. The effect of SCI on GABA function was linked to a reduction in the Cl - transporter, KCC2, leading to a reduction in intracellular Cl - that would attenuate GABA-mediated inhibition. Pharmacologically blocking the KCC2 channel (with i.t. DIOA) in intact rats mimicked the effect of SCI. Conversely, a pharmacological treatment (bumetanide) that should increase intracellular Cl - levels blocked the effect of SCI. The results suggest that GABAergic neurons drive, rather than inhibit, the development of nociceptive sensitization after spinal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The effects of intraperitoneal administration of the GABA(B) receptor agonist baclofen on food intake in CFLP and C57BL/6 mice.

    PubMed

    Ebenezer, Ivor S; Prabhaker, Monika

    2007-08-13

    The effects of the GABA(B) receptor agonist baclofen were investigated on food intake in non-deprived CFLP and C57BL/6 mice. In Experiment 1, baclofen (1-8 mg /kg) administered i.p. to CFLP mice, produced a dose-related increase in food intake. The 4 and 8 mg/kg doses produced significant increases in cumulative feeding when measure 120 min after administration (at least P < 0.05, in each case). In Experiment 2, baclofen (1-10 mg/kg), administered intraperitoneally (i.p.) to C57BL/6 mice, also produced a dose-related increase in food intake. The 4 mg/kg dose of baclofen significantly increased cumulative food intake at 60 min (P < 0.05), while the 2 and 4 mg/kg doses significantly increased cumulative food intake at 120 min (P < 0.01, in each case). The 10mg/kg dose was without effect. These data show that systemic administration of the GABA(B) agonist baclofen produces an increase in food consumption in two different strains of mice and extend previous observations made in rat to another rodent species.

  9. The effects of neuroleptics on the GABA-induced Cl- current in rat dorsal root ganglion neurons: differences between some neuroleptics.

    PubMed

    Yokota, Kenjiro; Tatebayashi, Hideharu; Matsuo, Tadashi; Shoge, Takashi; Motomura, Haruhiko; Matsuno, Toshiyuki; Fukuda, Akira; Tashiro, Nobutada

    2002-03-01

    1. Several neuroleptics inhibited the 3 microM gamma-aminobutyric acid induced-chloride current (GABA-current) on dissociated rat dorsal root ganglion neurons in whole-cell patch-clamp investigations. 2. The IC(50) for clozapine, zotepine, olanzapine, risperidone and chlorpromazine were 6.95, 18.26, 20.30, 106.01 and 114.56 microM, respectively. The values for the inhibitory effects of neuroleptics on the GABA (3 microM)-current, which were calculated by the fitting Hill's equations where the concentrations represent the mean therapeutic blood concentrations, were ranked clozapine>zotepine>chlorpromazine>olanzapine>risperidone. These inhibitory effects, weighted with the therapeutic concentrations of neuroleptics, were correlated with the clinical incidences of seizure during treatment with neuroleptics. 3. Clozapine reduced the picrotoxin-inhibiton, and may compete with a ligand of the t-butylbicyclophosphorothionate (TBPS) binding site. 4. Haloperidol and quetiapine did not affect the peak amplitude of the GABA (3 microM)-current. However, haloperidol reduced the clozapine-inhibition, and may antagonize ligand binding to TBPS binding site. 5. Neuroleptics including haloperidol and quetiapine enhanced the desensitization of the GABA (3 microM)-current. However, haloperidol and quetiapine at 100 microM inhibited the desensitization at the beginning of application. 6. Blonanserin (AD-5423) at 30 and 50 microM potentiated the GABA (3 microM)-current to 170.1+/-6.9 and 192.0+/-10.6% of the control current, respectively. Blonanserin shifted GABA concentration-response curve leftward. Blonanserin only partly negatively interacted with diazepam. The blonanserin-potentiation was not reversed by flumazenil. Blonanserin is not a benzodiazepine receptor agonist. 7. The various effects of neuroleptics on the GABA-current may be related to the clinical effects including modifying the seizure threshold.

  10. The effects of neuroleptics on the GABA-induced Cl− current in rat dorsal root ganglion neurons: differences between some neuroleptics

    PubMed Central

    Yokota, Kenjiro; Tatebayashi, Hideharu; Matsuo, Tadashi; Shoge, Takashi; Motomura, Haruhiko; Matsuno, Toshiyuki; Fukuda, Akira; Tashiro, Nobutada

    2002-01-01

    Several neuroleptics inhibited the 3 μM γ-aminobutyric acid induced-chloride current (GABA-current) on dissociated rat dorsal root ganglion neurons in whole-cell patch-clamp investigations. The IC50 for clozapine, zotepine, olanzapine, risperidone and chlorpromazine were 6.95, 18.26, 20.30, 106.01 and 114.56 μM, respectively. The values for the inhibitory effects of neuroleptics on the GABA (3 μM)-current, which were calculated by the fitting Hill's equations where the concentrations represent the mean therapeutic blood concentrations, were ranked clozapine>zotepine>chlorpromazine>olanzapine>risperidone. These inhibitory effects, weighted with the therapeutic concentrations of neuroleptics, were correlated with the clinical incidences of seizure during treatment with neuroleptics. Clozapine reduced the picrotoxin-inhibiton, and may compete with a ligand of the t-butylbicyclophosphorothionate (TBPS) binding site. Haloperidol and quetiapine did not affect the peak amplitude of the GABA (3 μM)-current. However, haloperidol reduced the clozapine-inhibition, and may antagonize ligand binding to TBPS binding site. Neuroleptics including haloperidol and quetiapine enhanced the desensitization of the GABA (3 μM)-current. However, haloperidol and quetiapine at 100 μM inhibited the desensitization at the beginning of application. Blonanserin (AD-5423) at 30 and 50 μM potentiated the GABA (3 μM)-current to 170.1±6.9 and 192.0±10.6% of the control current, respectively. Blonanserin shifted GABA concentration-response curve leftward. Blonanserin only partly negatively interacted with diazepam. The blonanserin-potentiation was not reversed by flumazenil. Blonanserin is not a benzodiazepine receptor agonist. The various effects of neuroleptics on the GABA-current may be related to the clinical effects including modifying the seizure threshold. PMID:11906969

  11. GABA pharmacology: the search for analgesics.

    PubMed

    McCarson, Kenneth E; Enna, S J

    2014-10-01

    Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.

  12. The role of GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effects of neurosteroids on food intake in mice.

    PubMed

    Reddy, D S; Kulkarni, S K

    1998-06-01

    The present studies were undertaken to investigate the neuroactive steroidal modulation of feeding behavior and possible involvement of gamma-aminobutyric acid type-A (GABA-A) and mitochondrial diazepam binding inhibitor (DBI) receptors (MDR) in food-deprived male mice. Allopregnanolone (0.5-2 mg/kg), a neurosteroid, progesterone (1-10 mg/kg), a neurosteroid precursor, and 4'-chlordiazepam (0.25-1 mg/kg), a specific high affinity MDR agonist, produced a dose-dependent hyperphagic effects. In contrast, neurosteroids pregnenolone sulfate (PS) (1-10 mg/kg) and dehydroepiandrosterone sulfate (DHEAS) (1-10 mg/kg) produced a hypophagic effect, in a dose-dependent manner. The allopregnanolone-, progesterone- and 4'-chlordiazepam-induced hyperphagic effect was blocked by picrotoxin (1 mg/kg), a GABA-A chloride channel antagonist, but not by flumazenil (2 mg/kg), a benzodiazepine (BZD) antagonist. The 4'-chlordiazepam-induced hyperphagic effect was prevented by pretreatment with PK11195 (2 mg/kg), a selective partial MDR antagonist. The hypophagic effect of DHEAS (10 mg/kg) was reversed by dizocilpine (10 microg/kg), an NMDA receptor antagonist, but resistant to muscimol (0.1 mg/kg), a selective GABA-A receptor agonist. In contrast, the PS (10 mg/kg)-induced hypophagic response was resistant to dizocilpine, but sensitive to muscimol (0.1 mg/kg). Both the sulfated neurosteroids PS and DHEAS also reversed the hyperphagic effect of allopregnanolone. In addition, the BZD agonist triazolam (0.05-0.25 mg/kg) also produced a flumazenil- and picrotoxin-sensitive hyperphagic effects, thereby suggesting the changes in feeding behavior by neurosteroids represent GABA-A receptor mediated hyperphagic action. Although the possible antistress or anxiolytic actions of neurosteroids may confound the hyperphagia, behavioral effects observed were specific to food because the mice were adopted to the test environment and diet, and of a possible variation between various neurosteroids in the

  13. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats.

    PubMed

    Backes, E N; Hemby, S E

    2008-03-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 microg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 microg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.

  14. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats

    PubMed Central

    Backes, E.N.; Hemby, S.E.

    2008-01-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 µg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n=7; 68 ng/side, n=8), GABA-A agonist muscimol (14 ng/side, n=8), GABA-B agonist baclofen (56 ng/side, n=7; 100 ng/side, n=6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n=7; 2 µg/side, n=8) or artificial cerebrospinal fluid (aCSF, n=6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n=6) nor baclofen (n=8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction. PMID:17943439

  15. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  16. Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission.

    PubMed

    Beggiato, Sarah; Tomasini, Maria Cristina; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel Oscar; Fuxe, Kjell; Antonelli, Tiziana; Tanganelli, Sergio; Ferraro, Luca

    2016-07-01

    In this study, the functional role of individual striatal receptors for adenosine (A2AR), dopamine (D2R), and the metabotropic glutamate receptor mGlu5R in regulating rat basal ganglia activity was characterized in vivo using dual-probe microdialysis in freely moving rats. In particular, intrastriatal perfusion with the D2R agonist quinpirole (10 μM, 60 min) decreased ipsilateral pallidal GABA and glutamate levels, whereas intrastriatal CGS21680 (A2AR agonist; 1 μM, 60 min) was ineffective on either pallidal GABA and glutamate levels or the quinpirole-induced effects. Intrastriatal perfusion with the mGlu5R agonist (RS)-2-chloro-5-hydroxyphenylglycine (600 μM, 60 min), by itself ineffective on pallidal GABA and glutamate levels, partially counteracted the effects of quinpirole. When combined with CGS21680 (1 μM, 60 min), (RS)-2-chloro-5-hydroxyphenylglycine (CHPG; 600 μM, 60 min) fully counteracted the quinpirole (10 μM, 60 min)-induced reduction in ipsilateral pallidal GABA and glutamate levels. These effects were fully counteracted by local perfusion with the mGlu5R antagonist MPEP (300 μM) or the A2AR antagonist ZM 241385 (100 nM). These results suggest that A2ARs and mGlu5Rs interact synergistically in modulating the D2R-mediated control of striatopallidal GABA neurons. Using dual-probe microdialysis, we characterized the functional role of striatal adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R), and metabotropic glutamate receptor 5 (mGluR5) interactions in regulating rat basal ganglia activity. The results suggest the possible usefulness of using an A2AR antagonist and mGluR5 antagonist combination in the treatment of Parkinson's disease to increase the inhibitory D2 signaling on striatopallidal GABA neurons. © 2016 International Society for Neurochemistry.

  17. MT-7716, a novel selective nonpeptidergic NOP receptor agonist, effectively blocks ethanol-induced increase in GABAergic transmission in the rat central amygdala

    PubMed Central

    Kallupi, Marsida; Oleata, Christopher S.; Luu, George; Teshima, Koji; Ciccocioppo, Roberto; Roberto, Marisa

    2014-01-01

    The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it. Using electrophysiological techniques in an in vitro slice preparation, in this study we investigated the effects of a nonpeptidergic NOP receptor agonist, MT-7716 [(R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate], and its interaction with ethanol on GABAergic transmission in CeA slices of naïve rats. We found that MT-7716 dose-dependently (100–1000 nM) diminished evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) and increased paired-pulse facilitation (PPF) ratio of these evoked IPSPs, suggesting a presynaptic site of action of the MT-7716 by decreasing GABA release at CeA synapses. The presynaptic action of MT-7716 was also supported by the significant decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) induced by the nociceptin receptor (NOP) agonist. Interestingly, MT-7716 prevented the ethanol-induced augmentation of evoked IPSPs. A putative selective NOP antagonist, [Nphe1]Nociceptin(1–13)NH2, totally prevented the MT-7716-induced inhibition of IPSP amplitudes indicating that MT-7716 exerts its effect through NOPs. These data provide support for an interaction between the nociceptin and GABAergic systems in the CeA and for the anti-alcohol properties of the NOP activation. The development of a synthetic nonpeptidergic NOP receptor agonist such as MT-7716 may represent a useful therapeutic target for alcoholism. PMID:24600360

  18. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study

    PubMed Central

    Franklin, Teresa R.; Harper, Derek; Kampman, Kyle; Kildea, Susan; Jens, Will; Lynch, Kevin; O’Brien, Charles P.; Childress, Anna Rose

    2009-01-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20 mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (β=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation. PMID:19398283

  19. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    PubMed Central

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  20. Insights into GABA receptor signalling in TM3 Leydig cells.

    PubMed

    Doepner, Richard F G; Geigerseder, Christof; Frungieri, Monica B; Gonzalez-Calvar, Silvia I; Calandra, Ricardo S; Raemsch, Romi; Fohr, Karl; Kunz, Lars; Mayerhofer, Artur

    2005-01-01

    Gamma-aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A )receptor subunits, but also bind the GABA agonist [(3)H]muscimol with a binding affinity in the range reported for other endocrine cells (K(d) = 2.740 +/- 0.721 nM). However, they exhibit a low B(max) value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl(-) currents, changes in resting membrane potential, intracellular Ca(2+) or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an atypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Basel.

  1. Behavioral differences between subgroups of rats with high and low threshold to clonic convulsions induced by DMCM, a benzodiazepine inverse agonist.

    PubMed

    Contó, Marcos Brandão; de Carvalho, José Gilberto Barbosa; Benedito, Marco Antonio Campana

    2005-11-01

    In epileptic patients, there is a high incidence of psychiatric comorbidities, such as anxiety. Gamma-aminobutyric acid (GABA) ionotropic receptor GABA(A)/benzodiazepine allosteric site is involved in both epilepsy and anxiety. This involvement is based on the fact that benzodiazepine allosteric site agonists are anticonvulsant and anxiolytic drugs; on the other hand, benzodiazepine inverse agonists are potent convulsant and anxiogenic drugs. The aim of this work was to determine if subgroups of rats selected according to their susceptibility to clonic convulsions induced by a convulsant dose 50% (CD50) of DMCM, a benzodiazepine inverse agonist, would differ in behavioral tests commonly used to measure anxiety (elevated plus-maze, open field) and depression (forced swimming test). In the first experiment, subgroups of adult male Wistar rats were selected after a single dose of DMCM and in the second experiment they were selected after two injections of DMCM given after an interval of 1 week. Those rats presenting full clonic convulsions were termed Low Threshold rats to DMCM-induced clonic convulsions (LTR) and those not having clonic convulsions High Threshold rats to DMCM-induced clonic convulsions (HTR). In both experiments, only those rats presenting full clonic convulsions induced by DMCM and those not showing any signs of motor disturbances were used in the behavioral tests. The results showed that the LTR subgroup selected after two injections of a CD50 of DMCM spent a significantly lower time in the open arms of the elevated plus-maze and in the off the walls area of the open field; moreover, this group also presented a higher number of rearings in the open field. There were no significant differences between HTR and LTR subgroups in the forced swimming test. LTR and HTR subgroups selected after only one injection of DMCM did not differ in the three behavioral tests. To verify if the behavioral differences between HTR and LTR subgroups of rats selected

  2. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  3. Pharmacology of intracisternal or intrathecal glycine, muscimol, and baclofen in strychnine-induced thermal hyperalgesia of mice.

    PubMed

    Lee, Il Ok; Son, Jin Kook; Lim, Eui-Sung; Kim, Yeon-Soo

    2011-10-01

    Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABA(A) receptor agonist), baclofen (a GABA(B) receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.

  4. The GABA uptake inhibitor beta-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis.

    PubMed

    Ishiwari, Keita; Mingote, Susana; Correa, Merce; Trevitt, Jennifer T; Carlson, Brian B; Salamone, John D

    2004-12-30

    Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of the lower jaw that resemble chewing but are not directed at a particular stimulus, and evidence indicates that these movements share many characteristics with parkinsonian tremor in humans. In order to investigate the role of GABA in motor functions related to tremor, the present study tested the GABA uptake blocker beta-alanine for its ability to reduce pilocarpine-induced tremulous jaw movements. In a parallel experiment, the effect of an active dose of beta-alanine on dialysate levels of GABA in SNr was assessed using microdialysis methods. GABA levels in dialysis samples were measured using high performance liquid chromatography with electrochemical detection. beta-Alanine (250-500 mg/kg) significantly reduced tremulous jaw movements induced by pilocarpine (4.0 mg/kg). Moreover, systemic administration of beta-alanine at a dose that reduced tremulous jaw movements (500 mg/kg) resulted in a substantial increase in extracellular levels of GABA in SNr compared to the pre-injection baseline. Thus, the present results are consistent with the hypothesis that GABAergic tone in SNr plays a role in the regulation of tremulous jaw movements. This research may lead to a better understanding of how parkinsonian symptoms are modulated by SNr GABA mechanisms.

  5. Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling

    PubMed Central

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570

  6. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats

    PubMed Central

    Blacktop, Jordan M.; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A.; Mantsch, John R.

    2015-01-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 hrs/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 sec; range 10–70 sec) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 µg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. PMID:26596556

  7. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regionalmore » variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.« less

  8. Alleviation in the rat of a GABA-induced reduction in food intake and growth.

    PubMed

    Tews, J K; Repa, J J; Harper, A E

    1984-07-01

    Cold exposure and diet dilution which stimulate food intake of normal rats lessened depressions of food intake and growth induced by dietary GABA. During a 3-day adaptation to the cold, rats fed a diet containing 4.5% GABA lost weight; thereafter, food intake and growth rate differed little from those of cold control rats and were usually greater than those of normal rats fed GABA. Hepatic GABA-aminotransferase activity of cold-exposed rats fed the GABA diet increased to about twice that of normal control rats. Rats fed a control diet diluted by half with cellulose ate 50% more of this diet than of the undiluted diet but gained only 20% less weight. Rats ate twice as much of a diluted, 9% GABA diet as of an undiluted, 4.5% GABA diet (thus doubling their GABA intake) and gained three times as much weight. A novel food (condensed milk) barely lessened the adverse responses to GABA. These results show that conditions requiring rats to increase their food intake in order to maintain body weight can also increase their acceptance of a diet high in GABA.

  9. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    PubMed

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  10. Zinc ion enhances GABA tea-mediated oxidative DNA damage.

    PubMed

    Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih

    2012-02-15

    GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.

  11. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABA(B) receptors, but not α2 adrenergic receptors.

    PubMed

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G

    2010-09-01

    GABA(B) , μ-opioid and adrenergic α(2) receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABA(B) receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high-frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABA(B) agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low-frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α(2) adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low-frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABA(B) receptors, but not by α(2) receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.

  12. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    PubMed

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia.

    PubMed

    O'Connor, W T

    2001-08-15

    Microdialysis was employed to investigate the dopamine, cholecystokinin (CCK) and neurotensin receptor regulation of ventral striopallidal GABA transmission by intra-accumbens perfusion with selective receptor ligands and monitoring local or ipsilateral ventral pallidal GABA release. In the dual probe studies intra-accumbens perfusion with the dopamine D1 and D2 receptor agonists SKF28293 and pergolide had no effect on ventral pallidal GABA, while both the D1 and D2 receptor antagonists SCH23390 and raclopride increased ventral pallidal GABA release. In contrast, intra-accumbens CCK decreased ventral pallidal GABA release and this was reversed by local perfusion with the CCK2 receptor antagonist PD134308 but not the CCK1 receptor antagonist L-364,718. In a single probe study intra-accumbens neurotensin increased local GABA release, which was strongly potentiated when the peptidase inhibitor phosphodiepryl 08 was perfused together with neurotensin. In addition, the neurotensin receptor antagonist SR48692 counteracted this phosphodiepryl 08 induced potentiated increased in GABA release. Taken together, these findings indicate that mesolimbic dopamine and CCK exert a respective tonic and phasic inhibition of ventral pallidal GABA release while the antipsychotic activity associated with D1 and D2 receptor antagonists may be explained by their ability to increase ventral striopallidal GABA transmission. Furthermore, the findings suggest that CCK2 receptor antagonists and neurotensin endopeptidase inhibitors may be useful antipsychotics.

  14. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications.

    PubMed

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2009-08-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of

  15. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles.

    PubMed

    Volkov, Eugeny M; Nurullin, Leniz F; Volkov, Michael E; Nikolsky, Eugeny E; Vyskočil, Frantisek

    2011-04-01

    This work was aimed to identify the action of several ion channel and pump inhibitors as well as nicotinic, GABAergic, purinergic and serotoninergic drugs on the resting membrane potential (RMP) and assess the role of cholinergic and GABAergic sensitivity in earthworm muscle electrogenesis. The nicotinic agonists acetylcholine (ACh), carbacholine (CCh) and nicotine depolarize the RMP at concentrations of 5 μM and higher. The nicotinic antagonists (+)tubocurarine, α-bungarotoxin, muscarinic antagonists atropine and hexamethonium do not remove or prevent the CCh-induced depolarization. Verapamil, tetrodotoxin, removal of Cl(-) and Ca(2+) from the solution also cannot prevent the depolarization by CCh. In a Na(+)-free medium, however, CCh lost this depolarization ability and this indicates that the drug opens the sodium permeable pathway. Serotonin, glutamate, glycine, adenosine triphosphate (ATP) and cis-4-aminocrotonic acid (GABA(C) receptor antagonist) had no effect on the RMP. On the other hand, isoguvacin, γ-aminobutyric acid (GABA) and baclofen (GABA(B) receptor agonist) hyperpolarized the RMP. Ouabain, bicucullin (GABA(A) antagonist) and phaclofen (GABA(B) antagonist), as well as the removal of Cl(-), suppressed the effect of GABA and baclofen. CCh did not enhance the depolarization generated by ouabain but, on the other hand, hindered the hyperpolarizing activity of baclofen both in the absence and presence of atropine and (+)tubocurarine. The long-term application of CCh depolarizes the RMP primarily by inhibiting the Na(+)/K(+)-ATPase. The muscle membrane also contains A and B type GABA binding sites, the activation of which increases the RMP at the expense of increasing the action of ouabain- and Cl(-) -sensitive electrogenic pumps. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats

    PubMed Central

    Conti, Melissa M.; Ostock, Corinne Y.; George, Jessica A.; Goldenberg, Adam A.; Melikhov-Sosin, Mitchell; Nuss, Emily E.

    2016-01-01

    Long-term treatment of Parkinson's disease with l-DOPA almost always leads to the development of involuntary movements termed l-DOPA-induced dyskinesia. Whereas hyperdopaminergic signaling in the basal ganglia is thought to cause dyskinesia, alterations in primary motor cortex (M1) activity are also prominent during dyskinesia, suggesting that the cortex may represent a therapeutic target. The present study used the rat unilateral 6-hydroxydopamine lesion model of Parkinson's disease to characterize in vivo changes in GABA and glutamate neurotransmission within M1 and determine their contribution to behavioral output. 6-Hydroxydopamine lesion led to parkinsonian motor impairment that was partially reversed by l-DOPA. Among sham-lesioned rats, l-DOPA did not change glutamate or GABA efflux. Likewise, 6-hydroxydopamine lesion did not impact GABA or glutamate among rats chronically treated with saline. However, we observed an interaction of lesion and treatment whereby, among lesioned rats, l-DOPA given acutely (1 d) or chronically (14–16 d) reduced glutamate efflux and enhanced GABA efflux. Site-specific microinjections into M1 demonstrated that l-DOPA-induced dyskinesia was reduced by M1 infusion of a D1 antagonist, an AMPA antagonist, or a GABAA agonist. Overall, the present study demonstrates that l-DOPA-induced dyskinesia is associated with increased M1 inhibition and that exogenously enhancing M1 inhibition may attenuate dyskinesia, findings that are in agreement with functional imaging and transcranial magnetic stimulation studies in human Parkinson's disease patients. Together, our study suggests that increasing M1 inhibitory tone is an endogenous compensatory response designed to limit dyskinesia severity and that potentiating this response is a viable therapeutic strategy. SIGNIFICANCE STATEMENT Most Parkinson's disease patients will receive l-DOPA and eventually develop hyperkinetic involuntary movements termed dyskinesia. Such symptoms can be as

  17. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats.

    PubMed

    Lindenbach, David; Conti, Melissa M; Ostock, Corinne Y; George, Jessica A; Goldenberg, Adam A; Melikhov-Sosin, Mitchell; Nuss, Emily E; Bishop, Christopher

    2016-09-21

    Long-term treatment of Parkinson's disease with l-DOPA almost always leads to the development of involuntary movements termed l-DOPA-induced dyskinesia. Whereas hyperdopaminergic signaling in the basal ganglia is thought to cause dyskinesia, alterations in primary motor cortex (M1) activity are also prominent during dyskinesia, suggesting that the cortex may represent a therapeutic target. The present study used the rat unilateral 6-hydroxydopamine lesion model of Parkinson's disease to characterize in vivo changes in GABA and glutamate neurotransmission within M1 and determine their contribution to behavioral output. 6-Hydroxydopamine lesion led to parkinsonian motor impairment that was partially reversed by l-DOPA. Among sham-lesioned rats, l-DOPA did not change glutamate or GABA efflux. Likewise, 6-hydroxydopamine lesion did not impact GABA or glutamate among rats chronically treated with saline. However, we observed an interaction of lesion and treatment whereby, among lesioned rats, l-DOPA given acutely (1 d) or chronically (14-16 d) reduced glutamate efflux and enhanced GABA efflux. Site-specific microinjections into M1 demonstrated that l-DOPA-induced dyskinesia was reduced by M1 infusion of a D1 antagonist, an AMPA antagonist, or a GABAA agonist. Overall, the present study demonstrates that l-DOPA-induced dyskinesia is associated with increased M1 inhibition and that exogenously enhancing M1 inhibition may attenuate dyskinesia, findings that are in agreement with functional imaging and transcranial magnetic stimulation studies in human Parkinson's disease patients. Together, our study suggests that increasing M1 inhibitory tone is an endogenous compensatory response designed to limit dyskinesia severity and that potentiating this response is a viable therapeutic strategy. Most Parkinson's disease patients will receive l-DOPA and eventually develop hyperkinetic involuntary movements termed dyskinesia. Such symptoms can be as debilitating as the disease

  18. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model

    PubMed Central

    Clayton, Terry; Poe, Michael M.; Rallapalli, Sundari; Biawat, Poonam; Savić, Miroslav M.; Rowlett, James K.; Gallos, George; Emala, Charles W.; Kaczorowski, Catherine C.; Stafford, Douglas C.; Arnold, Leggy A.; Cook, James M.

    2015-01-01

    An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors. PMID:26682068

  19. Optogenetic and pharmacological evidence that somatostatin‐GABA neurons are important regulators of parasympathetic outflow to the stomach

    PubMed Central

    Lewin, Amanda E.; Vicini, Stefano; Richardson, Janell; Dretchen, Kenneth L.; Gillis, Richard A.

    2016-01-01

    Key points The dorsal motor nucleus of the vagus (DMV) in the brainstem consists primarily of vagal preganglionic neurons that innervate postganglionic neurons of the upper gastrointestinal tract.The activity of the vagal preganglionic neurons is predominantly regulated by GABAergic transmission in the DMV.The present findings indicate that the overwhelming GABAergic drive present at the DMV is primarily from somatostatin positive GABA (Sst‐GABA) DMV neurons.Activation of both melanocortin and μ‐opioid receptors at the DMV inhibits Sst‐GABA DMV neurons.Sst‐GABA DMV neurons may serve as integrative targets for modulating vagal output activity to the stomach. Abstract We have previously shown that local GABA signalling in the brainstem is an important determinant of vagally‐mediated gastric activity. However, the neural identity of this GABA source is currently unknown. To determine this, we focused on the somatostatin positive GABA (Sst‐GABA) interneuron in the dorsal motor nucleus of the vagus (DMV), a nucleus that is intimately involved in regulating gastric activity. Also of particular interest was the effect of melanocortin and μ‐opioid agonists on neural activity of Sst‐GABA DMV neurons because their in vivo administration in the DMV mimics GABA blockade in the nucleus. Experiments were conducted in brain slice preparation of transgenic adult Sst‐IRES‐Cre mice expressing tdTomato fluorescence, channelrhodopsin‐2, archaerhodopsin or GCaMP3. Electrophysiological recordings were obtained from Sst‐GABA DMV neurons or DiI labelled gastric‐antrum projecting DMV neurons. Our results show that optogenetic stimulation of Sst‐GABA neurons results in a robust inhibition of action potentials of labelled premotor DMV neurons to the gastric‐antrum through an increase in inhibitory post‐synaptic currents. The activity of the Sst‐GABA neurons in the DMV is inhibited by both melanocortin and μ‐opioid agonists. These agonists counteract the

  20. Optogenetic and pharmacological evidence that somatostatin-GABA neurons are important regulators of parasympathetic outflow to the stomach.

    PubMed

    Lewin, Amanda E; Vicini, Stefano; Richardson, Janell; Dretchen, Kenneth L; Gillis, Richard A; Sahibzada, Niaz

    2016-05-15

    The dorsal motor nucleus of the vagus (DMV) in the brainstem consists primarily of vagal preganglionic neurons that innervate postganglionic neurons of the upper gastrointestinal tract. The activity of the vagal preganglionic neurons is predominantly regulated by GABAergic transmission in the DMV. The present findings indicate that the overwhelming GABAergic drive present at the DMV is primarily from somatostatin positive GABA (Sst-GABA) DMV neurons. Activation of both melanocortin and μ-opioid receptors at the DMV inhibits Sst-GABA DMV neurons. Sst-GABA DMV neurons may serve as integrative targets for modulating vagal output activity to the stomach. We have previously shown that local GABA signalling in the brainstem is an important determinant of vagally-mediated gastric activity. However, the neural identity of this GABA source is currently unknown. To determine this, we focused on the somatostatin positive GABA (Sst-GABA) interneuron in the dorsal motor nucleus of the vagus (DMV), a nucleus that is intimately involved in regulating gastric activity. Also of particular interest was the effect of melanocortin and μ-opioid agonists on neural activity of Sst-GABA DMV neurons because their in vivo administration in the DMV mimics GABA blockade in the nucleus. Experiments were conducted in brain slice preparation of transgenic adult Sst-IRES-Cre mice expressing tdTomato fluorescence, channelrhodopsin-2, archaerhodopsin or GCaMP3. Electrophysiological recordings were obtained from Sst-GABA DMV neurons or DiI labelled gastric-antrum projecting DMV neurons. Our results show that optogenetic stimulation of Sst-GABA neurons results in a robust inhibition of action potentials of labelled premotor DMV neurons to the gastric-antrum through an increase in inhibitory post-synaptic currents. The activity of the Sst-GABA neurons in the DMV is inhibited by both melanocortin and μ-opioid agonists. These agonists counteract the pronounced inhibitory effect of Sst-GABA neurons on

  1. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake.

    PubMed

    Stanley, B G; Urstadt, K R; Charles, J R; Kee, T

    2011-07-25

    By the 1990s a convergence of evidence had accumulated to suggest that neurons within the lateral hypothalamus (LH) play important roles in the stimulation of feeding behavior. However, there was little direct evidence demonstrating that neurotransmitters in the LH could, like electrical stimulation, elicit feeding in satiated animals. The present paper is a brief review in honor of Bartley Hoebel's scientific contributions, emphasizing the evidence from my lab that the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma aminobutyric acid (GABA) in the LH mediate feeding stimulation and feeding inhibition respectively. Specifically, we summarize evidence that LH injection of glutamate, or agonists of its N-methyl-D-aspartate (NMDA) and non-NMDA receptors, elicits feeding in satiated rats, that NMDA receptor antagonists block the eating elicited by NMDA and, more importantly, that NMDA blockade suppresses natural feeding and can reduce body weight. Conversely, GABA(A) agonists injected into the LH suppress feeding and can also reduce body weight, while GABA(A) receptor antagonists actually elicit eating when injected into the LH of satiated rats. It is suggested that natural feeding may reflect the moment-to-moment balance in the activity of glutamate and GABA within the LH. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  3. Pharmacology of Intracisternal or Intrathecal Glycine, Muscimol, and Baclofen in Strychnine-induced Thermal Hyperalgesia of Mice

    PubMed Central

    Son, Jin Kook; Lim, Eui-Sung; Kim, Yeon-Soo

    2011-01-01

    Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABAA receptor agonist), baclofen (a GABAB receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system. PMID:22022192

  4. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  5. Agonist-induced glycogenolysis in rabbit retinal slices and cultures.

    PubMed Central

    Ghazi, H.; Osborne, N. N.

    1989-01-01

    1. The effects of different putative retinal transmitters and/or modulators on glycogenolysis in rabbit retinal slices and in retinal Müller cell cultures were examined. 2. Incubation of rabbit retinal slices or primary retinal cultures (either 3-5 day-old or 25-30 day-old) in a buffer solution containing [3H]-glucose resulted in the accumulation of newly synthesized [3H]-glycogen. 3. Noradrenaline (NA), isoprenaline, vasoactive intestinal peptide (VIP), 5-hydroxytryptamine (5-HT) and 8-hydroxy-dipropylaminetetralin (8-OH-DPAT) stimulated the hydrolysis of this newly formed 3H-polymer. The potency order of maximal stimulations was: VIP greater than NA greater than isoprenaline greater than 5-HT greater than 8-OH-DPAT. 4. The putative retinal transmitters, dopamine, gamma-aminobutyric acid (GABA), glycine and taurine and the muscarinic agonist carbachol (CCh) had no effect on [3H]-glycogen content. 5. The glycogenolytic effects of NA/isoprenaline and 5-HT/8-OH-DPAT appear to be mediated by beta-adrenoceptors and 5-HT1 receptors (possibly 5-HT1A), respectively while the VIP-induced response involved another receptor subtype. 6. Agonists which mediated [3H]-glycogen hydrolysis also stimulated an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation. Both responses are blocked to a similar extent by the same antagonists and so are probably mediated via the same receptor subtypes. Moreover, dibutyryl cyclic AMP (db cyclic AMP) promoted tritiated glycogen breakdown in the three retinal preparations. 7. Not all receptors linked to cyclic AMP production however promote glycogenolysis. Dopamine and apomorphine stimulated cyclic AMP formation via D1-receptors without influencing glycogenolysis. These receptors are exclusively associated with neurones. PMID:2568145

  6. Agonist-induced modulation of inverse agonist efficacy at the beta 2-adrenergic receptor.

    PubMed

    Chidiac, P; Nouet, S; Bouvier, M

    1996-09-01

    Sustained stimulation of several G protein-coupled receptors is known to lead to a reduction in the signaling efficacy. This phenomenon, named agonist-induced desensitization, has been best studied for the beta 2-adrenergic receptor (AR) and is characterized by a decreased efficacy of beta-adrenergic agonists to stimulate the adenylyl cyclase activity. Recently, several beta-adrenergic ligands were found to inhibit the spontaneous agonist-independent activity of the beta 2AR. These compounds, termed inverse agonists, have different inhibitory efficacies, ranging from almost neutral antagonists to full inverse agonists. The current study was undertaken to determine whether, as is the case for agonists, desensitization can affect the efficacies of inverse agonists. Agonist-promoted desensitization of the human beta 2AR expressed in Sf9 cells potentiated the inhibitory actions of the inverse agonists, with the extent of the potentiation being inversely proportional to their intrinsic activity. For example, desensitization increased the inhibitory action of the weak inverse agonist labetalol by 29%, whereas inhibition of the spontaneous activity by the strong inverse agonist timolol was not enhanced by the desensitizing stimuli. Interestingly, dichloroisoproterenol acted stochastically as either a weak partial agonist or a weak inverse agonist in control conditions but always behaved as an inverse agonist after desensitization. These data demonstrate that like for agonists, the efficacies of inverse agonists can be modulated by a desensitizing treatment. Also, the data show that the initial state of the receptor can determine whether a ligand behaves as a partial agonist or an inverse agonist.

  7. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice.

    PubMed

    Salunke, Balwant P; Umathe, Sudhir N; Chavan, Jagatpalsingh G

    2014-12-01

    It had been reported that exposure to extremely low-frequency magnetic field (ELFMF) induces anxiety in human and rodents. Anxiety mediates via the activation of N-methyl-d-aspartate (NMDA) receptor, whereas activation of γ-aminobutyric acid (GABA) receptor attenuates the same. Hence, the present study was carried out to understand the contribution of NMDA and/or GABA receptors modulation in ELFMF-induced anxiety for which Swiss albino mice were exposed to ELFMF (50 Hz, 10 G) by subjecting them to Helmholtz coils. The exposure was for 8 h/day for 7, 30, 60, 90 and 120 days. Anxiety level was assessed in elevated plus maze, open field test and social interaction test, on 7th, 30th, 60th, 90th and 120th exposure day, respectively. Moreover, the role of GABA and glutamate in ELFMF-induced anxiety was assessed by treating mice with muscimol [0.25 mg/kg intraperitoneally (i.p.)], bicuculline (1.0 mg/kg i.p.), NMDA (15 mg/kg i.p.) and MK-801 (0.03 mg/kg i.p.), as a GABAA and NMDA receptor agonist and antagonist, respectively. Glutamate receptor agonist exacerbated while inhibitor attenuated the ELFMF-induced anxiety. In addition, levels of GABA and glutamate were determined in regions of the brain viz, cortex, striatum, hippocampus and hypothalamus. Experiments demonstrated significant elevation of GABA and glutamate levels in the hippocampus and hypothalamus. However, GABA receptor modulators did not produce significant effect on ELFMF-induced anxiety and elevated levels of GABA at tested dose. Together, these findings suggest that ELFMF significantly induced anxiety behavior, and indicated the involvement of NMDA receptor in its effect.

  8. Pharmacodynamic and pharmacokinetic effects of MK-0343, a GABA(A) alpha2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers.

    PubMed

    de Haas, S L; de Visser, S J; van der Post, J P; Schoemaker, R C; van Dyck, K; Murphy, M G; de Smet, M; Vessey, L K; Ramakrishnan, R; Xue, L; Cohen, A F; van Gerven, J M A

    2008-01-01

    The use of non-selective gamma-aminobutyric acid (GABA) enhancers, such as benzodiazepines in the treatment of anxiety disorders is still widespread but hampered by unfavourable side effects. some of these may be associated with binding properties to certain subtypes of the GABA(A) receptor that are unnecessary for therapeutic effects. MK-0343 was designed to be a less sedating anxiolytic, based on reduced efficacy at the alpha1 subtype and significant efficacy at alpha2 and alpha3 subtypes of the GABA(A) receptor. This paper is a double-blind, four-way cross-over (n = 12) study to investigate the effects of MK-0343 (0.25 and 0.75 mg) in comparison to placebo and an anxiolytic dose (2 mg) of the non-selective agonist lorazepam. Effects were measured by eye movements, body sway, Visual Analogue scales (VAS) and memory tests. Lorazepam impaired saccadic peak velocity (SPV), VAs alertness scores, postural stability and memory and increased saccadic latency and inaccuracy. MK-0343 0.75 mg was equipotent with lorazepam as indicated by SPV (-42.4 deg/s), saccadic latency (0.02 s) and VAS alertness scores (1.50 ln mm), while effects on memory and postural stability were smaller. MK-0343 0.25 mg only affected postural stability to a similar extent as MK-0343 0.75 mg. The effect profile of MK-0343 0.75 mg is different from the full agonist lorazepam, which could reflect the selective actions of this compound. Although less effect on VAS alertness was expected, diminished effects on memory and postural stability were present. Clinical studies in anxiety patients should show whether this dose of MK-0343 is therapeutically effective with a different side-effect profile.

  9. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    ERIC Educational Resources Information Center

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  10. GABA-B receptor activation and conflict behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on (/sup 3/H)-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render itmore » unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables.« less

  11. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimericmore » interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.« less

  12. Alcohol interactions with channel activation and desensitization at 5-HT[sub 3] and GABA[sub A] receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovinger, D.M.; Zhou, O.

    1992-01-01

    Ethanol (EtOH) and trichloroethanol (TCEt) potentiate 5-HT[sub 3] receptor-mediated ion current in NCB-20 neuroblastoma cells and nodose ganglion neurons. TCEt potentiates GABA[sub A] receptor-mediated current in dorsal root ganglion neurons. Whole-cell patch-clamp recording was used to examine the interactions of alcohols with current activation and receptor desensitization. Alcohols increased the potency of 5-HT, consistent with an increase in channel activation rate. Current decay rate increased in the presence of alcohols such that potentiation decreased with time following in onset of agonist + alcohol treatment. Potentiation of 5-HT-activated current by EtOH was 61 [plus minus] 17% above control at the startmore » of application but was absent 10 sec after current onset. Agonist pretreatment decreased potentiation by subsequent agonist + alcohol application. Potentiation by TCEt of 5-HT-activated current decreased from 96% above control with simultaneous application of 5-HT + TCEt to 44% after a 30 sec 5-HT treatment. This agonist- and time-dependent loss of potentiation was observed prior to the onset of current decay when low agonist concentrations were used. Agonist pretreatment appears to drive the channel into an alcohol-insensitive. Current activated by GABA + TCEt recovers from desensitization produced by GABA alone more slowly than recovery tested in the absence of TCEt.« less

  13. Activation induced changes in GABA: Functional MRS at 7T with MEGA-sLASER.

    PubMed

    Chen, Chen; Sigurdsson, Hilmar P; Pépés, Sophia E; Auer, Dorothee P; Morris, Peter G; Morgan, Paul S; Gowland, Penny A; Jackson, Stephen R

    2017-08-01

    Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (-12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10min of hand-clenching, compared to an initial baseline level (GABA/tCr =0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7T. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    PubMed

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  15. Ionic plasticity and pain: The loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain.

    PubMed

    Huang, Yung-Jen; Grau, James W

    2018-05-02

    Activation of pain (nociceptive) fibers can sensitize neural circuits within the spinal cord, inducing an increase in excitability (central sensitization) that can foster chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. In adult animals, the co-transporter KCC2 maintains a low intracellular concentration of the anion Cl - . As a result, when the GABA-A receptor is engaged, Cl - flows in the neuron which has a hyperpolarizing (inhibitory) effect. Spinal cord injury (SCI) can down-regulate KCC2 and reverse the flow of Cl - . Under these conditions, engaging the GABA-A receptor can have a depolarizing (excitatory) effect that fosters the development of nociceptive sensitization. The present paper explores how SCI alters GABA function and provides evidence that the loss of descending fibers alters pain transmission to the brain. Prior work has shown that, after SCI, administration of a GABA-A antagonist blocks the development of capsaicin-induced nociceptive sensitization, implying that GABA release plays an essential role. This excitatory effect is linked to serotonergic (5HT) fibers that descend through the dorsolateral funiculus (DLF) and impact spinal function via the 5HT-1A receptor. Supporting this, blocking the 5HT-1A receptor, or lesioning the DLF, emulated the effect of SCI. Conversely, spinal application of a 5HT-1A agonist up-regulated KCC2 and reversed the effect of bicuculline treatment. Finally, lesioning the DLF reversed how a GABA-A antagonist affects a capsaicin-induced aversion in a place conditioning task; in sham operated animals, bicuculline enhanced aversion whereas in DLF-lesioned rats biciculline had an antinociceptive effect. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    PubMed Central

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  17. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  18. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  19. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABA(B) receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation.

    PubMed

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, L A; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, J P; Nilsson, K; Oja, S S; Saransaari, P; von Unge, S

    2012-03-01

    Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABA(B) receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABA(B) receptors. To understand the structure-activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. The compounds were characterized in terms of GABA(B) agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABA(B) receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABA(B) receptor agonism may afford therapeutic effects. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    PubMed Central

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  1. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  2. Association study of GABA system genes polymorphisms with amphetamine-induced psychotic disorder in a Han Chinese population.

    PubMed

    Zhang, Kai; Zhao, Yan; Wang, Qingzhong; Jiang, Haifeng; Du, Jiang; Yu, Shunying; Zhao, Min

    2016-05-27

    GABA system genes have been implicated in neurotrophy and neurogenesis, which play pivotal roles in an individual's variation in vulnerability to amphetamine addiction or amphetamine-induced psychosis (AIP). We hypothesized that common genetic variants in the GABA system genes may be associated with amphetamine-induced psychotic disorder. In our study, thirty-six single nucleotide polymorphisms (SNPs) within the GABA system genes were genotyped in 400 amphetamine-induced psychotic disorder patients and 400 amphetamine use disorders patients (AUP) (not including those categorized as psychosis) in the Han Chinese population. In this study, 51.88% of the Han Chinese amphetamine-type substance use disorder patients met the criteria of amphetamine-induced psychotic disorder, and 79.5% amphetamine-induced psychotic disorder patients had auditory hallucinations, while 46.5% had delusions of reference. The allele frequency of rs1129647 showed nominal association with AIP in the Han Chinese population (P=0.03). Compared with AUP group patients, T allele frequency of AIP group patients was significantly increased. The adjustment for age and gender factors in the AIP and AUP patients was executed using unconditional logistic regression under five inheritance models. The genotype frequency of rs1129647 showed nominal association with AIP in the log-additive model (P=0.04). The genotype frequency of rs2290733 showed nominal association with AIP in the recessive model (P=0.04). Compared with female AIP patients, male patients were more likely to have the CC genotype of rs17545383 (P=0.04). Moreover, we determined that more male patients carried the T allele of rs2290733 in the AIP group (P=0.004). Unfortunately, the significant differences did not survive Benjamini-Hochberg false discovery rate correction (adjusted P>0.05). No association between the SNPs of the GABA system genes and amphetamine-induced psychotic disorder risk was identified. No haplotype of the GABA system

  3. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice

    PubMed Central

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P.; Nadav, Tali; Roberto, Marisa; Lasek, Amy W.; Roberts, Amanda J.

    2016-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk −/−) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk −/− mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk −/− mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk −/− mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk −/− mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  4. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters

    PubMed Central

    Peng, Xiao-Qing; Gardner, Eliot L.

    2013-01-01

    Rationale γ-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). Objectives Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. Materials and methods In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. Results Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na+-channel blocker, failed to alter GVG-enhanced GABA and glutamate. Conclusions These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition. PMID:20033132

  5. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series ofmore » PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.« less

  6. Do alprazolam-induced changes in saccadic eye movement and psychomotor function follow the same time course?

    PubMed

    Kroboth, P D; Folan, M M; Bauer, K S; Tullock, W; Wright, C E; Sweeney, J A

    1998-04-01

    The purpose of this study was to determine whether short-term tolerance develops to GABA-agonist-induced changes in saccadic eye movements (SEMs), and whether the time course for GABA-agonist induced onset and offset of impairment is similar for SEMs and for psychomotor function. An additional goal was to determine whether there are differences in sensitivity between SEMs and psychomotor function. Six healthy volunteers participated in this balanced double-blind, three-way crossover, single-dose study of placebo and two different dosage forms of the GABA-agonist alprazolam: a rapidly absorbed oral 1.5-mg compressed tablet (CT) and a 3.0-mg sustained release (SR) tablet. Treatments were separated by a 7-day washout period. Peak concentrations did not differ between CT and SR treatments, although area under the concentration-time curve (AUC) of alprazolam was greater after administration of SR than after CT, because plateau concentrations were attained after SR. Both SEM and psychomotor tests showed time-dependent responses consistent with the development of tolerance. SEMs discriminated the differences in rate of drug input of the CT and SR formulations, with impairment evident at low concentrations during absorption. SEM impairment also persisted longer than did psychomotor impairment. Peak saccade velocity is a more sensitive indicator of pharmacologic effects mediated by the GABA-benzodiazepine receptor complex than are psychomotor responses. This is probably the result of the very high GABA dependency of SEMs, along with their limited sensitivity to motivation.

  7. A human anti-neuronal autoantibody against GABA B receptor induces experimental autoimmune agrypnia.

    PubMed

    Frisullo, Giovanni; Della Marca, Giacomo; Mirabella, Massimiliano; Caggiula, Marcella; Broccolini, Aldobrando; Rubino, Marco; Mennuni, Gioacchino; Tonali, Pietro Attilio; Batocchi, Anna Paola

    2007-04-01

    In the serum and cerebrospinal fluid of a patient with recurrent acute episodes of respiratory crises, autonomic symptoms and total insomnia (agrypnia), we identified a novel anti-neural complement fixing antibody directed against GABA(B) receptor (GABA(B)R). Patient purified IgG recognized a band of approximately 110 kDa on protein extracts of mouse cerebellum, cortex and brainstem and immunolabelled cultured Chinese hamster ovary (CHO) cells, transfected with human GABA(B)R1 and rat GABA(B)R2 receptors. Western blot analysis of transfected CHO homogenates showed the same band using both patient purified IgG and anti-GABA(B)R1 antibody. In order to verify the pathogenic role of these purified antibodies, we injected patient IgG intrathecally into cisterna magna of C57BL/6 mice pre-implanted with EEG electrodes and we observed severe ataxia followed by breathing depression and total suppression of slow wave sleep, as evidenced by EEG recording, in a dose-dependent manner. Immunohistochemistry on brain sections of mice injected with patient IgG showed the simultaneous presence of bound human IgG and C5b-9 deposits on Purkinje cells and cerebellar granular layer. After incubation with anti-GABA(B)R antibody, a marked reduction of receptor immunostaining was found with relative sparing of neuronal architecture. In conclusion we recognized an anti-neuronal autoantibody directed against GABA(B)R that is associated with autoimmune agrypnia and we showed that our patient purified IgG was able to induce in mice experimental autoimmune agrypnia characterized by a complex neurological syndrome affecting several CNS functions.

  8. Reverse Induced Fit-Driven MAS-Downstream Transduction: Looking for Metabotropic Agonists.

    PubMed

    Pernomian, Larissa; Gomes, Mayara S; de Paula da Silva, Carlos H Tomich; Rosa, Joaquin M C

    2017-01-01

    Protective effects of MAS activation have spurred clinical interests in developing MAS agonists. However, current bases that drive this process preclude that physiological concentrations of peptide MAS agonists induce an atypical signaling that does not reach the metabotropic efficacy of constitutive activation. Canonical activation of MAS-coupled G proteins is only achieved by supraphysiological concentrations of peptide MAS agonists or physiological concentrations of chemically modified analogues. These pleiotropic differences are because of two overlapped binding domains: one non-metabotropic site that recognizes peptide agonists and one metabotropic domain that recognizes modified analogues. It is feasible that supraphysiological concentrations of peptide MAS agonists undergo to chemical modifications required for binding to metabotropic domain. Receptor oligomerization enhances pharmacological parameters coupled to metabotropic signaling. The formation of receptor-signalosome complex makes the transduction of agonists more adaptive. Considering the recent identification of MAS-signalosome, we aimed to postulate the reverse induced fit hypothesis in which MAS-signalosome would trigger chemical modifications required for agonists bind to MAS metabotropic domain. Here we cover rational perspectives for developing novel metabotropic MAS agonists in the view of the reverse induced-fit hypothesis. Predicting a 3D model of MAS metabotropic domain may guide the screening of chemical modifications required for metabotropic efficacy. Pharmacophore-based virtual screening would select potential metabotropic MAS agonists from virtual libraries from human proteome. Rational perspectives that consider reverse induced fit hypothesis during MAS activation for developing metabotropic MAS agonists represents the best approach in providing MAS ligands with constitutive efficacy at physiological concentrations. Copyright© Bentham Science Publishers; For any queries, please email

  9. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators, GABA, NPY and AgRP

    PubMed Central

    Krashes, Michael J.; Shah, Bhavik P.; Koda, Shuichi; Lowell, Bradford B.

    2013-01-01

    Summary Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (NPY and AgRP). This raises questions as to their respective functions. Acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY or GABA agonist results in marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. Following acute stimulation of AgRP neurons using DREADD technology, we found that either GABA or NPY is required for rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed, yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. PMID:24093681

  10. GABA Levels Are Decreased After Stroke and GABA Changes During Rehabilitation Correlate With Motor Improvement

    PubMed Central

    Blicher, Jakob Udby; Near, Jamie; Næss-Schmidt, Erhard; Stagg, Charlotte J.; Johansen-Berg, Heidi; Nielsen, Jørgen Feldbæk; Østergaard, Leif; Ho, Yi-Ching Lynn

    2017-01-01

    Background and Objective γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). Methods Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). Results Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P < .001) even after correcting for gray matter content in the voxel (P < .01) and when expressing GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P < .01), with decreases in GABA:Cr ratio being associated with better improvements in motor function. Conclusions In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery. PMID:25055837

  11. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  12. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  13. [GABA-NO interaction in the N. Accumbens during danger-induced inhibition of exploratory behavior].

    PubMed

    Saul'skaia, N V; Terekhova, E A

    2013-01-01

    In Sprague-Dawley rats by means of in vivo microdialysis combined with HPLC analysis, it was shown that presentation to rats during exploratory activity of a tone previously pared with footshock inhibited the exploration and prevented the exploration-induced increase in extracellular levels of citrulline (an NO co-product) in the medial n. accumbens. Intra-accumbal infusions of 20 μM bicuculline, a GABA(A)-receptor antagonist, firstly, partially restored the exploration-induced increase of extracellular citrulline levels in this brain area, which was inhibited by presentation of the tone, previously paired with foot-shock and, secondly, prevented the inhibition of exploratory behavior produced by this sound signal of danger. The data obtained indicate for the first time that signals of danger inhibit exploratory behavior and exploration-induced activation of the accumbal nitrergic system via GABA(A)-receptor mechanisms.

  14. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.

    PubMed

    Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M

    2008-09-15

    The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the

  15. Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate

    PubMed Central

    Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M.

    2008-01-01

    The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the

  16. Morphine potentiates seizures induced by GABA antagonists and attenuates seizures induced by electroshock in the rat.

    PubMed

    Foote, F; Gale, K

    1983-11-25

    In a naloxone-reversible, dose-dependent manner, morphine (10-50 mg/kg i.p.) protected against seizures induced by maximal electroshock and increased the incidence and severity of seizures induced by bicuculline, in rats. Morphine also potentiated seizures induced by isoniazid and by picrotoxin. Thus, opiate activity influences the expression of seizures in contrasting ways depending upon the mode of seizure induction. Since morphine consistently potentiated seizures induced by interference with GABA transmission, it appears that GABAergic systems may be of particular significance for the elucidation of the varied effects of morphine on seizure susceptibility.

  17. Brain region-selective cellular redistribution of mGlu5 but not GABA(B) receptors following methamphetamine-induced associative learning.

    PubMed

    Herrold, Amy A; Voigt, Robin M; Napier, T Celeste

    2011-12-01

    Alterations in receptor expression and distribution between cell surface and cytoplasm are means by which psychostimulants regulate neurotransmission. Metabotropic glutamate receptor group I, subtype 5 (mGluR5) and GABA(B) receptors (GABA(B) R) are critically involved in the development and expression of stimulant-induced behaviors, including conditioned place preference (CPP), an index of drug-seeking. However, it is not known if psychostimulant-induced CPP alters the trafficking of these receptors. To fill this gap, this study used methamphetamine (Meth)-induced CPP in rats to ascertain if receptor changes occur in limbic brain regions that regulate drug-seeking, the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral pallidum (VP). To do so, ex vivo tissue was assessed for changes in expression and surface vs. intracellular distribution of mGluR5 and GABA(B) Rs. There was a decrease in the surface to intracellular ratio of mGluR5 in the mPFC in Meth-conditioned rats, commensurate with an increase in intracellular levels. mGluR5 levels in the NAc or the VP were unaltered. There were no changes for GABA(B) R in any brain region assayed. This ex vivo snapshot of metabotropic glutamate and GABA receptor cellular distribution following induction of Meth-induced CPP is the first report to determine if these receptors are differentially altered after Meth-induced CPP. The results suggest that this Meth treatment paradigm likely induced a compensatory change in mGluR5 surface to intracellular ratio such that the surface remains unaltered while an increase in intracellular protein occurred. Copyright © 2011 Wiley-Liss, Inc.

  18. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    PubMed

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.

  19. The effects of acute multiple intraperitoneal injections of the GABAB receptor agonist baclofen on food intake in rats.

    PubMed

    Patel, Sunit M; Ebenezer, Ivor S

    2008-12-28

    This study was undertaken to examine the effects of acute repeated administration of the GABA(B) receptor agonist baclofen on food intake in rats. In Experiment 1, the effects of repeated intraperitoneal (i.p.) injections of the GABA(B) receptor agonist baclofen (1 and 2 mg/kg) at 2 h intervals were investigated on food intake in non-deprived male Wistar rats. Both doses of baclofen significantly increased food intake after the 1st injection (P<0.05), but had no effects on intake following the 2nd and 3rd injections. By contrast, in Experiment 2, diazepam (1 and 2 mg/kg, i.p.) significantly increased food intake (at least, P<0.05) after each of 3 injection separated by 2 h in non-deprived rats. These data show that tolerance occurs to the hyperphagic effects of baclofen with acute multiple injections, and may have important implications for future studies investigating the effects of GABA(B) receptor agonists on food intake and energy homeostasis.

  20. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP.

    PubMed

    Krashes, Michael J; Shah, Bhavik P; Koda, Shuichi; Lowell, Bradford B

    2013-10-01

    Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers.

    PubMed

    Gong, Ping; Hong, Huixiao; Perkins, Edward J

    2015-01-01

    Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.

  2. GABA-benzodiazepine receptor function in alcohol dependence: a combined 11C-flumazenil PET and pharmacodynamic study.

    PubMed

    Lingford-Hughes, A R; Wilson, S J; Cunningham, V J; Feeney, A; Stevenson, B; Brooks, D J; Nutt, D J

    2005-08-01

    Gamma-aminobutyric acid (GABA)-benzodiazepine receptor function is hypothesised to be reduced in alcohol dependence. We used positron emission tomography (PET) with [11C]flumazenil, a non-selective tracer for brain GABA-benzodiazepine (GABA-BDZ) receptor binding, to determine in vivo the relationship between BDZ receptor occupancy by an agonist, midazolam, and its functional effects. Abstinent male alcohol dependent subjects underwent [11C]flumazenil PET to measure occupancy of BDZ receptors by midazolam whilst recording its pharmacodynamic effects on behavioural and physiological measures. Rate constants describing the exchange of [11C]flumazenil between the plasma and brain compartments were derived from time activity curves. A 50% reduction in electroencephalography (EEG)-measured sleep time was seen in the alcohol dependent group despite the same degree of occupancy by midazolam as seen in the control group. The effects of midazolam on other measures of benzodiazepine receptor function, increasing EEG beta1 power and slowing of saccadic eye movements, were similar in the two groups. No differences in midazolam or flumazenil metabolism were found between the groups. In summary, our study suggests that alcohol dependence in man is associated with a reduced EEG sleep response to the benzodiazepine agonist, midazolam, which is not explained by reduced BDZ receptor occupancy, and is consistent with reduced sensitivity in this measure of GABA-BDZ receptor function in alcohol dependence. The lack of change in other functional measures may reflect a differential involvement of particular subtypes of the GABA-BDZ receptor.

  3. The interaction between hippocampal GABA-B and cannabinoid receptors upon spatial change and object novelty discrimination memory function.

    PubMed

    Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza

    2017-10-01

    Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.

  4. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.E.; Concas, A.; Wamsley, J.K.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein atmore » 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.« less

  5. γ-Aminobutyric acid (GABA) oral rinse reduces capsaicin-induced burning mouth pain sensation: An experimental quantitative sensory testing study in healthy subjects.

    PubMed

    Zhang, Y; Wang, K; Arendt-Nielsen, L; Cairns, B E

    2018-02-01

    In burning mouth patients, analgesia after oral administration of clonazepam may result from modulation of peripheral γ-aminobutyric acid (GABA) receptors. The effect of oral administration of test solutions (water, 0.5 mol/L or 0.05 mol/L GABA, 1% lidocaine) was investigated for the amelioration of pain and sensitivity induced by application of capsaicin (1%, 2 min) to the tongue of thirty healthy male and female subjects in this four-session, randomized, placebo-controlled, double-blinded, cross-over study. Intra-oral quantitative sensory testing was used to assess cold (CDT), warm (WDT) and mechanical (MDT) detection thresholds as well as mechanical (MPT) and heat (HPT) pain thresholds. Capsaicin-induced pain intensity was continuously rated on a 0-10 electronic visual analogue scale (VAS). The area under the VAS curve (VASAUC) after rinsing was calculated for each solution. Capsaicin application on the tongue evoked burning pain with a peak of 4.8/10, and significantly increased CDT and MDT while significantly decreasing WDT, HPT, and MPT. The VASAUC was significantly smaller after oral rinse with 0.05 mol/L GABA, 0.5 mol/L GABA, and 1% lidocaine than after oral rinse with water. Rinse with 0.5 mol/L or 0.05 mol/L GABA were similarly effective in decreasing VASAUC. Rinsing with either 1% lidocaine, 0.5 mol/L or 0.05 mol/L GABA also significantly attenuated the effects of capsaicin on WDT and HPT in a treatment independent manner. There were no sex-related differences in these effects of GABA. Capsaicin-induced burning tongue pain and decreases in WDT and HPT can be ameliorated by rinsing the mouth with lidocaine and GABA solutions. Rinsing the mouth with an oral GABA containing solution ameliorated burning pain and increased heat sensitivity produced by application of capsaicin to the tongue. This finding suggests that GABA can act as a local analgesic agent in the oral cavity. © 2017 European Pain Federation - EFIC®.

  6. Rapid Substrate-Induced Charge Movements of the GABA Transporter GAT1

    PubMed Central

    Bicho, Ana; Grewer, Christof

    2005-01-01

    The GABA transporter GAT1 removes the neurotransmitter GABA from the synaptic cleft by coupling of GABA uptake to the co-transport of two sodium ions and one chloride ion. The aim of this work was to investigate the individual reaction steps of GAT1 after a GABA concentration jump. GAT1 was transiently expressed in HEK293 cells and its pre-steady-state kinetics were studied by combining the patch-clamp technique with the laser-pulse photolysis of caged GABA, which allowed us to generate GABA concentration jumps within <100 μs. Recordings of transport currents generated by GAT1, both in forward and exchange transport modes, showed multiple charge movements that can be separated along the time axis. The individual reactions associated with these charge movements differ from the well-characterized electrogenic “sodium-occlusion” reaction by GAT1. One of the observed electrogenic reactions is shown to be associated with the GABA-translocating half-cycle of the transporter, in contradiction to previous studies that showed no charge movements associated with these reactions. Interestingly, reactions of the GABA-bound transporter were not affected by the absence of extracellular chloride, suggesting that Cl− may not be co-translocated with GABA. Based on the results, a new alternating access sequential-binding model is proposed for GAT1's transport cycle that describes the results presented here and those by others. PMID:15849242

  7. DOSE RESPONSE DEETERMINATION OF NMDA ANTAGONISTS AND GABA AGONIST ON SUSTAINED ATTENTION.

    EPA Science Inventory

    We have shown that acute inhalation of toluene impairs sustained attention as assessed with a visual signal detection task (SDT). In vitro studies indicate that the NMDA and GABA systems are primary targets of anesthetic agents and organic solvents such as toluene. Pharmacologica...

  8. Vigabatrin, a GABA Transaminase Inhibitor, Reversibly Eliminates Tinnitus in an Animal Model

    PubMed Central

    Spires, T. JosephD.; Bauer, Carol A.

    2007-01-01

    Animal models have facilitated basic neuroscience research investigating the pathophysiology of tinnitus. It has been hypothesized that partial deafferentation produces a loss of tonic inhibition in the auditory system that may lead to inappropriate neuroplastic changes eventually expressed as tinnitus. The pathological down-regulation of γ-amino butyric acid (GABA) provides a potential mechanism for this loss of inhibition. Using an animal model previously demonstrated to be sensitive to treatments that either induce or attenuate tinnitus, the present study examined the effect of the specific GABA agonist vigabatrin on chronic tinnitus. It was hypothesized that vigabatrin would decrease the evidence of tinnitus by restoring central inhibitory function through increased GABA availability. Vigabatrin has been demonstrated to elevate central GABA levels (Mattson et al. 1995). Tinnitus was induced in rats using a single 1-h unilateral exposure to band-limited noise, which preserved normal hearing in one ear. Psychophysical evidence of tinnitus was obtained using a free-operant conditioned-suppression method: Rats lever-pressed for food pellets and were trained to discriminate between the presence and absence of sound by punishing lever pressing with a mild foot shock (0.5 mA; 1 s) at the conclusion of randomly introduced silent periods (60 s) inserted into background low-level noise. Additional random insertion of pure tone and noise periods of variable intensity enabled the derivation of psychophysical functions that reflected the presence of tinnitus with features similar to 20-kHz tones. Vigabatrin was chronically administered via drinking water at 30 and 81 mg kg−1 day−1, with each dose level tested over 2 weeks, followed by a 0-mg washout test. Vigabatrin completely and reversibly eliminated the psychophysical evidence of tinnitus at both doses. Although vigabatrin has serious negative side effects that have prevented its clinical use in the USA, it is

  9. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    PubMed

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Friedrich, Rainer W

    2008-07-01

    gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.

  11. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  12. Stimulation of GABA-Induced Ca2+ Influx Enhances Maturation of Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Rushton, David J.; Mattis, Virginia B.; Svendsen, Clive N.; Allen, Nicholas D.; Kemp, Paul J.

    2013-01-01

    Optimal use of patient-derived, induced pluripotent stem cells for modeling neuronal diseases is crucially dependent upon the proper physiological maturation of derived neurons. As a strategy to develop defined differentiation protocols that optimize electrophysiological function, we investigated the role of Ca2+ channel regulation by astrocyte conditioned medium in neuronal maturation, using whole-cell patch clamp and Ca2+ imaging. Standard control medium supported basic differentiation of induced pluripotent stem cell-derived neurons, as assayed by the ability to fire simple, single, induced action potentials. In contrast, treatment with astrocyte conditioned medium elicited complex and spontaneous neuronal activity, often with rhythmic and biphasic characteristics. Such augmented spontaneous activity correlated with astrocyte conditioned medium-evoked hyperpolarization and was dependent upon regulated function of L-, N- and R-type Ca2+ channels. The requirement for astrocyte conditioned medium could be substituted by simply supplementing control differentiation medium with high Ca2+ or γ-amino butyric acid (GABA). Importantly, even in the absence of GABA signalling, opening Ca2+ channels directly using Bay K8644 was able to hyperpolarise neurons and enhance excitability, producing fully functional neurons. These data provide mechanistic insight into how secreted astrocyte factors control differentiation and, importantly, suggest that pharmacological modulation of Ca2+ channel function leads to the development of a defined protocol for improved maturation of induced pluripotent stem cell-derived neurons. PMID:24278369

  13. Self-Administration of Cocaine Induces Dopamine-Independent Self-Administration of Sigma Agonists

    PubMed Central

    Hiranita, Takato; Mereu, Maddalena; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2013-01-01

    Sigma1 receptors (σ1Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ1R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ1R agonist. In contrast, after subjects self-administered cocaine σ1R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ1R agonists, extinguished when injections were discontinued, and reconditioned when σ1R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ1R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ1R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ1R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse. PMID:23187725

  14. Self-administration of cocaine induces dopamine-independent self-administration of sigma agonists.

    PubMed

    Hiranita, Takato; Mereu, Maddalena; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2013-03-01

    Sigma(1) receptors (σ(1)Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ(1)R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ(1)R agonist. In contrast, after subjects self-administered cocaine σ(1)R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ(1)R agonists, extinguished when injections were discontinued, and reconditioned when σ(1)R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ(1)R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ(1)R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ(1)R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse.

  15. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    PubMed Central

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [3H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [3H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  16. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  17. Dopamine agonist 3-PPP fails to protect against MPTP-induced toxicity.

    PubMed

    Muralikrishnan, Dhanasekaran; Ebadi, Manuchair; Brown-Borg, Holly M

    2004-02-01

    We investigated the neuroprotective effect of the dopamine agonist, 3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine] against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP (30 mg/kg, i.p., twice, 16 h apart) causes significant dopamine depletion in nucleus caudatus putamen (NCP) by 1 week. 3-PPP had no effect on the monoamine oxidase-B activity (MAO-B) activity in NCP. 3-PPP did not affect dopamine uptake, whereas mazindol significantly blocked the uptake of dopamine dose dependently. MPTP-induced behavioral changes in mice were not reduced by pretreatment with 3-PPP. This dopamine agonist did not prevent dopamine depletion caused by MPTP. MPP+ (20 microM) significantly inhibited the cell proliferation of SH-SY5Y dopaminergic neuronal cells. 3-PPP had no effect on the SH-SY5Y neuronal cell growth in culture and did not block the MPP(+)-induced cytotoxicity. This study shows that the dopamine agonist 3-PPP failed to protect against MPTP-induced dopaminergic neurotoxicity.

  18. Vortioxetine Treatment Reverses Subchronic PCP Treatment-Induced Cognitive Impairments: A Potential Role for Serotonin Receptor-Mediated Regulation of GABA Neurotransmission

    PubMed Central

    Pehrson, Alan L.; Pedersen, Christian S.; Tølbøl, Kirstine Sloth; Sanchez, Connie

    2018-01-01

    Major depressive disorder (MDD) is associated with cognitive impairments that may contribute to poor functional outcomes. Clinical data suggests that the multimodal antidepressant vortioxetine attenuates some cognitive impairments in MDD patients, but the mechanistic basis for these improvements is unclear. One theory suggests that vortioxetine improves cognition by suppressing γ-amino butyric acid (GABA)ergic neurotransmission, thereby increasing glutamatergic activation. Vortioxetine’s effects on cognition, GABA and glutamate neurotransmission have been supported in separate experiments, but no empirical work has directly connected vortioxetine’s cognitive effects to those on GABA and glutamate neurotransmission. In this paper, we attempt to bridge this gap by evaluating vortioxetine’s effects in the subchronic PCP (subPCP) model, which induces impaired cognitive function and altered GABA and glutamate neurotransmission. We demonstrate that acute or subchronic vortioxetine treatment attenuated subPCP-induced deficits in attentional set shifting (AST) performance, and that the selective 5-HT3 receptor antagonist ondansetron or the 5-HT reuptake inhibitor escitalopram could mimic this effect. Furthermore, acute vortioxetine treatment reversed subPCP-induced object recognition (OR) deficits in rats, while subchronic vortioxetine reversed subPCP-induced Object Recognition and object placement impairments in mice. Finally, subPCP treatment reduced GABAB receptor expression in a manner that was insensitive to vortioxetine treatment, and subchronic vortioxetine treatment alone, but not in combination with subPCP, significantly increased GABA’s affinity for the GABAA receptor. These data suggest that vortioxetine reverses cognitive impairments in a model associated with altered GABA and glutamate neurotransmission, further supporting the hypothesis that vortioxetine’s GABAergic and glutamatergic effects are relevant for cognitive function. PMID:29559911

  19. Differential effects of R-isovaline and the GABAB agonist, baclofen, in the guinea pig ileum.

    PubMed

    Fung, Timothy; Asseri, Khalid A; Asiri, Yahya I; Wall, Richard A; Schwarz, Stephan K W; Puil, Ernest; MacLeod, Bernard A

    2016-11-15

    R-isovaline is a non-proteinogenic amino acid which produces analgesia in a range of nociceptive assays. Mediation of this effect by metabotropic receptors for γ-aminobutyric acid (GABA) and glutamate, demonstrated by previous work, may depend on the type of tissue or receptor system. The objective of this study was to assess the activity of R-isovaline acting at GABA B and group II metabotropic glutamate receptors in guinea pig ileum, which is known to exhibit well-defined responses to GABA B agonists such as baclofen. The effects of bath-applied R-isovaline and RS-baclofen were examined on electrically evoked contractions of guinea pig ileum and during GABA B antagonism by CGP52432. In separate experiments, the group II metabotropic glutamate receptor agonist, LY354740 was applied to determine the functional presence of these receptors. R-isovaline (1-100mM) decreased the amplitude of ileal muscle contractions and increased tension. RS-baclofen reduced contraction amplitude, but decreased tension. CGP52432 did not prevent the effects of R-isovaline on contraction amplitude, but antagonized effects of RS-baclofen on contraction amplitude. The group II metabotropic glutamate receptor agonist, LY354740, produced no detectable effects on evoked contractions. R-isovaline differed significantly from RS-baclofen in its actions in the guinea pig ileum, indicated in particular by the finding that CGP52432 blocked only the effects of RS-baclofen. The ileal tissue did not respond to a group II metabotropic glutamate receptor agonist, previously shown to co-mediate R-isovaline analgesia. These findings raise the possibility of a novel therapeutic target at unknown receptors for R-isovaline-like compounds in the guinea pig ileum. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of baclofen on morphine-induced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice.

    PubMed

    Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan

    2014-01-01

    A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.

  1. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion.

    PubMed

    Balz, Johanna; Keil, Julian; Roa Romero, Yadira; Mekle, Ralf; Schubert, Florian; Aydin, Semiha; Ittermann, Bernd; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-15

    In everyday life we are confronted with inputs of multisensory stimuli that need to be integrated across our senses. Individuals vary considerably in how they integrate multisensory information, yet the neurochemical foundations underlying this variability are not well understood. Neural oscillations, especially in the gamma band (>30Hz) play an important role in multisensory processing. Furthermore, gamma-aminobutyric acid (GABA) neurotransmission contributes to the generation of gamma band oscillations (GBO), which can be sustained by activation of metabotropic glutamate receptors. Hence, differences in the GABA and glutamate systems might contribute to individual differences in multisensory processing. In this combined magnetic resonance spectroscopy and electroencephalography study, we examined the relationships between GABA and glutamate concentrations in the superior temporal sulcus (STS), source localized GBO, and illusion rate in the sound-induced flash illusion (SIFI). In 39 human volunteers we found robust relationships between GABA concentration, GBO power, and the SIFI perception rate (r-values=0.44 to 0.53). The correlation between GBO power and SIFI perception rate was about twofold higher when the modulating influence of the GABA level was included in the analysis as compared to when it was excluded. No significant effects were obtained for glutamate concentration. Our study suggests that the GABA level shapes individual differences in audiovisual perception through its modulating influence on GBO. GABA neurotransmission could be a promising target for treatment interventions of multisensory processing deficits in clinical populations, such as schizophrenia or autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ventral tegmental area GABA neurons and opiate motivation

    PubMed Central

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  3. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    PubMed

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  4. Music therapy inhibits morphine-seeking behavior via GABA receptor and attenuates anxiety-like behavior induced by extinction from chronic morphine use.

    PubMed

    Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo

    2018-05-01

    Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Magnesium ions and opioid agonists in vincristine-induced neuropathy.

    PubMed

    Bujalska, Magdalena; Makulska-Nowak, Helena; Gumułka, Stanisław W

    2009-01-01

    Neuropathic pain is difficult to treat. Classic analgesics (i.e., opioid receptor agonists) usually possess low activity. Therefore other agents such as antidepressants, anticonvulsants, and corticosteroids are used. It is commonly known that NMDA antagonists increase analgesic activity of opioids. Unfortunately, clinical use of NMDA antagonists is limited because of the relatively frequent occurrence of adverse effects e.g., memory impairment, psychomimetic effects, ataxia and motor in-coordination. Magnesium ions (Mg(2+)) are NMDA receptor blockers in physiological conditions. Therefore, in this study the effect of opioid receptor agonists and the influence of Mg(2+) on the action of opioid agonists in vincristine-induced hyperalgesia were examined. Opioid agonists such as morphine (5 mg/kg, ip), and fentanyl (0.0625 mg/kg, ip), as well as the partial agonist buprenorphine (0.075 mg/kg, ip) administered alone on 5 consecutives days did not modify the hyperalgesia in vincristine rats. In contrast, pretreatment with a low dose of magnesium sulfate (30 mg/kg, ip) resulted in a progressive increase of the analgesic action of all three investigated opioids. After discontinuation of drug administration, the effect persisted for several days.

  6. Endocannabinoid/GABA interactions in the entopeduncular nucleus modulates alcohol intake in rats.

    PubMed

    Méndez-Díaz, Mónica; Caynas Rojas, Seraid; Gómez Armas, David; Ruiz-Contreras, Alejandra E; Aguilar-Roblero, Raúl; Prospéro-García, Oscar

    2013-02-01

    Alcohol use disorder is a compulsive behavior driven by motivational systems and by a poor control of consummatory behavior. The entopeduncular nucleus (EP) seems to be involved in the regulation of executive mechanisms, hence, in the expression of behavior. Endocannabinoids (eCB) are involved in alcohol intake mechanisms. The eCB receptor name cannabinoid receptor 1 (CB1R) is expressed in the EP in GABAergic terminals. The role of the eCB system (eCBs) of the EP in the modulation of alcohol seeking and intake behavior is unknown. Therefore, we decided to investigate the role of the eCBs and its interaction with GABA transmission in rat EP, in the regulation of alcohol intake behavior. Rats were submitted to a 10-day period of moderate alcohol (10% in tap water) ingestion. No tap water was available. On day 11, either anandamide (AEA, CB1 receptor agonist), AM251 (CB1R inverse agonist), baclofen (BAC, GABAB receptor agonist), or CGP35348 (GABAB receptor antagonist) was administered into the EP. One bottle of water and one of alcohol (10% in water) were available ad libitum for the following 24 h, and consumption was quantified at the end of this period. Results show that administration of AEA into the EP decreased alcohol consumption while AM251 and BAC administered independently increased alcohol consumption. AEA prevented the increase induced by AM251 or BAC. Likewise, CGP35348 prevented alcohol ingestion induced by AM251. These data suggest that eCBs dysfunction in the EP may be playing a crucial role in the abuse and dependence of alcohol and other drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Agonist antibody that induces human malignant cells to kill one another

    PubMed Central

    Yea, Kyungmoo; Zhang, Hongkai; Xie, Jia; Jones, Teresa M.; Lin, Chih-Wei; Francesconi, Walter; Berton, Fulvia; Fallahi, Mohammad; Sauer, Karsten; Lerner, Richard A.

    2015-01-01

    An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call “receptor pleiotropism” in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-γ, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate. PMID:26487683

  8. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    PubMed

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  9. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism.

    PubMed

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D; Baasov, Timor; Wu, Qi

    2016-03-29

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.

  13. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism

    PubMed Central

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D.; Baasov, Timor; Wu, Qi

    2016-01-01

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes. PMID:26976589

  14. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    PubMed

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  15. Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    PubMed Central

    Jiménez-González, Cristina; Pirttimaki, Tiina; Cope, David W; Parri, H R

    2011-01-01

    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology. PMID:21395866

  16. Correlation between the enhancement of flunitrazepam binding by GABA and seizure susceptibility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, R.J.; Wehner, J.M.

    Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of TH-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity tomore » 3-mercaptopropionic acid and differential enhancement of TH-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of TH-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.« less

  17. GABA level, gamma oscillation, and working memory performance in schizophrenia

    PubMed Central

    Chen, Chi-Ming A.; Stanford, Arielle D.; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C.; Lisanby, Sarah H.; Schroeder, Charles E.; Kegeles, Lawrence S.

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia. PMID:24749063

  18. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    PubMed

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  19. Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.

    PubMed

    Molnár, P; Nadler, J V

    2001-05-01

    The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.

  20. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shiftmore » in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter

  1. [Effect of acupuncture at different acupoints on expression of hypothalamic GABA and GABA(A) receptor proteins in insomnia rats].

    PubMed

    Zhou, Yan-Li; Gao, Xi-Yan; Wang, Pei-Yu; Ren, Shan

    2012-08-01

    To observe the effect of acupuncture of "Shenmai" (BL 62) and "Zhaohai" (KI 6), "Shenmen" (HT 7), etc. on the expression of hypothalamic gamma-aminobutyric acid (GABA) and GABA(A) receptor (GABA(A)R) proteins in experimental insomnia rats so as to explore its mechanism underlying improving sleeping. Seventy Wistar rats were randomly divided into normal control, model, "Sanyinjiao" (SP6), "Neiguan" (PC 6), "Zusanli" (ST 36), "Shenmen" (HT7), and "Shenmai" (BL 62)-Zhaohai (KI 6, BL 62-KI 6) groups, with 10 rats in each group. Insomnia model was established by intraperitoneal injection of chlorophenylalanine solution (PCPA, 1 mL/100 g). An acupuncture needle was inserted into each of the bilateral HT 7, PC 6, SP 6, ST 36 and BL 62-KI 6 respectively and manipulated for about 1 min, once daily for 7 days. Hypothamic GABA and GABA(A)R protein expressions were detected by immunohistochemistry. The animals' physical ability was evaluated by using pole-climbing test in a water tank. In comparison with the normal control group, the numbers of hypothalamic GABA immunoreaction (IR)- and GABA(A)R IR-positive neurons and the pole-climbing time were reduced significantly in the model group (P < 0.05). While in comparison with the model group, the numbers of hypothalamic GABA IR-positive neurons and those of hypothalamic GABA(A)R IR-positive neurons in the HT 7, PC 6, SP 6, ST 36 and BL 62-KI 6 groups, as well as the pole-climbing duration in the SP 6, ST 36 and BL 62-KI 6 groups were increased considerably (P < 0.05, P < 0.01). The effects of HT 7 and BL 62-KI 6 groups were significantly superior to those of PC 6, ST 36 and SP 6 groups in up-regulating GABA and GABA(A)R expression, and the effect of BL 62-KI 6 group was remarkably better than those of HT 7, PC 6, SP 6 and ST 36 groups in lengthening the pole-climbing time (P < 0.05). Acupuncture can effectively suppress insomnia induced down-regulation of hypothalamic GABA and GABA(A)R in rats and lengthen pole-climbing time

  2. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition

    PubMed Central

    Yoon, Bo-Eun; Woo, Junsung; Chun, Ye-Eun; Chun, Heejung; Jo, Seonmi; Bae, Jin Young; An, Heeyoung; Min, Joo Ok; Oh, Soo-Jin; Han, Kyung-Seok; Kim, Hye Yun; Kim, Taekeun; Kim, Young Soo; Bae, Yong Chul; Lee, C Justin

    2014-01-01

    GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5–10 mm by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca2+-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain. PMID:25239459

  3. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    PubMed Central

    Auger, Meagan L.

    2015-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1–2min intervals). Results: Infusions of the GABAA receptor antagonist bicuculline (12.5–50ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. Conclusions: These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. PMID:25552433

  4. Prefrontal cortical GABA modulation of spatial reference and working memory.

    PubMed

    Auger, Meagan L; Floresco, Stan B

    2014-10-31

    Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  5. [Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].

    PubMed

    Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M

    2009-07-01

    In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.

  6. 4,5-Substituted 3-Isoxazolols with Insecticidal Activity Act as Competitive Antagonists of Housefly GABA Receptors.

    PubMed

    Liu, Genyan; Ozoe, Fumiyo; Furuta, Kenjiro; Ozoe, Yoshihisa

    2015-07-22

    The insect GABA receptor (GABAR), which is composed of five RDL subunits, represents an important target for insecticides. A series of 4,5-disubstituted 3-isoxazolols, including muscimol analogues, were synthesized and examined for their activities against four splice variants (ac, ad, bc, and bd) of housefly GABARs expressed in Xenopus oocytes. Muscimol was a more potent agonist than GABA in all four splice variants, whereas synthesized analogues did not exhibit agonism but rather antagonism in housefly GABARs. The introduction of bicyclic aromatic groups at the 4-position of muscimol and the simultaneous replacement of the aminomethyl group with a carbamoyl group at the 5-position to afford six 4-aryl-5-carbamoyl-3-isoxazolols resulted in compounds that exhibited significantly enhanced antagonism with IC50 values in the low micromolar range in the ac variant. The inhibition of GABA-induced currents by 100 μM analogues was approximately 1.5-4-fold greater in the ac and bc variants than in the ad and bd variants. 4-(3-Biphenylyl)-5-carbamoyl-3-isoxazolol displayed competitive antagonism, with IC50 values of 30, 34, 107, and 96 μM in the ac, bc, ad, and bd variants, respectively, and exhibited moderate insecticidal activity against houseflies, with an LD50 value of 5.6 nmol/fly. These findings suggest that these 3-isoxazolol analogues are novel lead compounds for the design and development of insecticides that target the orthosteric site of housefly GABARs.

  7. Baclofen blocks the acquisition and expression of mitragynine-induced conditioned place preference in rats.

    PubMed

    Yusoff, Nurul H M; Mansor, Sharif M; Müller, Christian P; Hassan, Zurina

    2018-06-01

    Mitragynine is the major alkaloid found in the leaves of M. speciosa Korth (Rubiaceae), a plant that is native to Southeast Asia. This compound has been used, either traditionally or recreationally, due to its psychostimulant and opioid-like effects. Recently, mitragynine has been shown to exert conditioned place preference (CPP), indicating the rewarding and motivational properties of M. speciosa. Here, the involvement of GABA B receptors in mediating mitragynine reward is studied using a CPP paradigm in rats. First, we examined the effects of GABA B receptor agonist baclofen (1.25, 2.5 and 5 mg/kg) on the acquisition of mitragynine (10 mg/kg)-induced CPP. Second, the involvement of GABA B receptors in the expression of mitragynine-induced CPP was tested. We found that the acquisition of mitragynine-induced CPP could be blocked by higher doses (2.5 and 5 mg/kg) of baclofen. Baclofen at a high dose inhibited locomotor activity and caused a CPP. Furthermore, we found that baclofen (2.5 and 5 mg/kg) also blocked the expression of mitragynine-induced CPP. These findings suggest that both, the acquisition and expression of mitragynine's reinforcing properties is controlled by the GABA B receptor. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Pharmacodynamic and pharmacokinetic effects of TPA023, a GABA(A) alpha(2,3) subtype-selective agonist, compared to lorazepam and placebo in healthy volunteers.

    PubMed

    de Haas, S L; de Visser, S J; van der Post, J P; de Smet, M; Schoemaker, R C; Rijnbeek, B; Cohen, A F; Vega, J M; Agrawal, N G B; Goel, T V; Simpson, R C; Pearson, L K; Li, S; Hesney, M; Murphy, M G; van Gerven, J M A

    2007-06-01

    TPA023, a GABA(A) alpha2,3 alphasubtype-selective partial agonist, is expected to have comparable anxiolytic efficacy as benzodiazepines with reduced sedating effects. The compound lacks efficacy at the alpha1 subtype, which is believed to mediate these effects. This study investigated the effects of 0.5 and 1.5 mg TPA023 and compared them with placebo and lorazepam 2 mg (therapeutic anxiolytic dose). Twelve healthy male volunteers participated in this placebo-controlled, double-blind, double-dummy, four-way, cross-over study. Saccadic eye movements and visual analogue scales (VAS) were used to assess the sedative properties of TPA023. The effects on posturaL stability and cognition were assessed using body sway and a standardized battery of neurophysiological memory tests. Lorazepam caused a significant reduction in saccadic peak velocity, the VAS alertness score and impairment of memory and body sway. TPA023 had significant dose dependent effects on saccadic peak velocity (85 deg/sec maximum reduction at the higher dose) that approximated the effects of lorazepam. In contrast to lorazepam, TPA023 had no detectabLe effects on saccadic latency or inaccuracy. Also unlike lorazepam, TPA023 did not affect VAS alertness, memory or body sway. These results show that the effect profile of TPA023 differs markedly from that of lorazepam, at doses that were equipotent with regard to effects on saccadic peak veLocity. Contrary to lorazepam, TPA023 caused no detectable memory impairment or postural imbalance. These differences reflect the selectivity of TPA023 for different GABA(A) receptor subtypes.

  9. Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.

    PubMed

    Hayar, Abdallah; Ennis, Matthew

    2007-08-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic gamma-aminobutyric acid (GABA) and glutamate receptors. Blocking GABA(A) receptors increased--whereas blocking ionotropic glutamate receptors decreased--the number of spikes/burst without changing the interburst frequency. The GABA(A) agonist (isoguvacine, 10 microM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb.

  10. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Agonist-induced Endocytosis of CC Chemokine Receptor 5 Is Clathrin Dependent

    PubMed Central

    Signoret, Nathalie; Hewlett, Lindsay; Wavre, Silène; Pelchen-Matthews, Annegret; Oppermann, Martin; Marsh, Mark

    2005-01-01

    The signaling activity of several chemokine receptors, including CC chemokine receptor 5 (CCR5), is in part controlled by their internalization, recycling, and/or degradation. For CCR5, agonists such as the chemokine CCL5 induce internalization into early endosomes containing the transferrin receptor, a marker for clathrin-dependent endocytosis, but it has been suggested that CCR5 may also follow clathrin-independent routes of internalization. Here, we present a detailed analysis of the role of clathrin in chemokine-induced CCR5 internalization. Using CCR5-transfected cell lines, immunofluorescence, and electron microscopy, we demonstrate that CCL5 causes the rapid redistribution of scattered cell surface CCR5 into large clusters that are associated with flat clathrin lattices. Invaginated clathrin-coated pits could be seen at the edge of these lattices and, in CCL5-treated cells, these pits contain CCR5. Receptors internalized via clathrin-coated vesicles follow the clathrin-mediated endocytic pathway, and depletion of clathrin with small interfering RNAs inhibits CCL5-induced CCR5 internalization. We found no evidence for CCR5 association with caveolae during agonist-induced internalization. However, sequestration of cholesterol with filipin interferes with agonist binding to CCR5, suggesting that cholesterol and/or lipid raft domains play some role in the events required for CCR5 activation before internalization. PMID:15591129

  12. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, R.J.

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhancesmore » /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.« less

  13. A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss

    PubMed Central

    Lozano, Alysia; Wright, Courtney; Vardanyan, Anna; King, Tamara; Largent-Milnes, Tally M.; Nelson, Mark; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W; Vanderah, Todd W.

    2010-01-01

    Aims Cannabinoid CB2 agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB2 agonist, does not demonstrate central nervous system side-effects seen with CB1 agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB2 selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB2 agonist administered over a 7 day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation. Main Methods A murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur. Key Findings Osteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7 days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures. Significance These findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain. PMID:20176037

  14. Stimulants as specific inducers of dopamine-independent σ agonist self-administration in rats.

    PubMed

    Hiranita, Takato; Soto, Paul L; Tanda, Gianluigi; Kopajtic, Theresa A; Katz, Jonathan L

    2013-10-01

    A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01-0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001-0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032-1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032-1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032-10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1-3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32-10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0-10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10-100 μg/kg) nor by the opioid antagonist (-)-naltrexone (1.0-10 mg/kg), whereas these antagonists were active against d

  15. Stimulants as Specific Inducers of Dopamine-Independent σ Agonist Self-Administration in Rats

    PubMed Central

    Hiranita, Takato; Soto, Paul L.; Tanda, Gianluigi; Kopajtic, Theresa A.

    2013-01-01

    A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01–0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001–0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032–1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032–1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032–10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1–3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32–10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0–10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10–100 μg/kg) nor by the opioid antagonist (−)-naltrexone (1.0–10 mg/kg), whereas these antagonists were active

  16. PLP and GABA trigger GabR-mediated transcription regulation in Bacillus subtilis via external aldimine formation

    DOE PAGES

    Wu, Rui; Sanishvili, Ruslan; Belitsky, Boris R.; ...

    2017-03-27

    Here, the Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of gamma-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic.-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoicmore » acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.« less

  17. PLP and GABA trigger GabR-mediated transcription regulation in Bacillus subtilis via external aldimine formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Rui; Sanishvili, Ruslan; Belitsky, Boris R.

    Here, the Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of gamma-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic.-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoicmore » acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.« less

  18. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  19. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability.

    PubMed

    Royes, Luiz Fernando Freire; Gabbi, Patrícia; Ribeiro, Leandro Rodrigo; Della-Pace, Iuri Domingues; Rodrigues, Fernanda Silva; de Oliveira Ferreira, Ana Paula; da Silveira Junior, Mauro Eduardo Porto; da Silva, Luís Roberto Hart; Grisólia, Alan Barroso Araújo; Braga, Danielle Valente; Dobrachinski, Fernando; da Silva, Anderson Manoel Herculano Oliveira; Soares, Félix Alexandre Antunes; Marchesan, Sara; Furian, Ana Flavia; Oliveira, Mauro Schneider; Fighera, Michele Rechia

    2016-06-01

    Hyperammonemia is a common finding in children with methylmalonic acidemia. However, its contribution to methylmalonate-induced excitotoxicty is poorly understood. The aim of this study was to evaluate the mechanisms by which ammonia influences in the neurotoxicity induced by methylmalonate (MMA) in mice. The effects of ammonium chloride (NH4Cl 3, 6, and 12 mmol/kg; s.c.) on electroencephalographic (EEG) and behavioral convulsions induced by MMA (0.3, 0.66, and 1 µmol/2 µL, i.c.v.) were observed in mice. After, ammonia, TNF-α, IL1β, IL-6, nitrite/nitrate (NOx) levels, mitochondrial potential (ΔΨ), reactive oxygen species (ROS) generation, Methyl-Tetrazolium (MTT) reduction, succinate dehydrogenase (SDH), and Na(+), K(+)-ATPase activity levels were measured in the cerebral cortex. The binding of [(3)H]flunitrazepam, release of glutamate-GABA; glutamate decarboxylase (GAD) and glutamine synthetase (GS) activity and neuronal damage [opening of blood brain barrier (BBB) permeability and cellular death volume] were also measured. EEG recordings showed that an intermediate dose of NH4Cl (6 mmol/kg) increased the duration of convulsive episodes induced by MMA (0.66 μmol/2 μL i.c.v). NH4Cl (6 mmol/kg) administration also induced neuronal ammonia and NOx increase, as well as mitochondrial ROS generation throughout oxidation of 2,7-dichlorofluorescein diacetate (DCFH-DA) to DCF-RS, followed by GS and GAD inhibition. The NH4Cl plus MMA administration did not alter cytokine levels, plasma fluorescein extravasation, or neuronal damage. However, it potentiated DCF-RS levels, decreased the ΔΨ potential, reduced MTT, inhibited SDH activity, and increased Na(+), K(+)-ATPase activity. NH4Cl also altered the GABA cycle characterized by GS and GAD activity inhibition, [(3)H]flunitrazepam binding, and GABA release after MMA injection. On the basis of our findings, the changes in ROS and reactive nitrogen species (RNS) levels elicited by ammonia alter the glycine

  20. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices.

    PubMed

    Diniz, Paulo H C; Guatimosim, Cristina; Binda, Nancy S; Costa, Flávia L P; Gomez, Marcus V; Gomez, Renato S

    2014-01-01

    GABA is an inhibitory neurotransmitter that appears to be associated with the action of volatile anesthetics. These anesthetics potentiate GABA-induced postsynaptic currents by synaptic GABAA receptors, although recent evidence suggests that these agents also significantly affect extrasynaptic GABA receptors. However, the effect of volatile anesthetics on the extracellular concentration of GABA in the central nervous system has not been fully established. In the present study, rat brain cortical slices loaded with [(3)H]GABA were used to investigate the effect of halothane and sevoflurane on the extracellular accumulation of this neurotransmitter. The accumulation of [(3)H]GABA was significantly increased by sevoflurane (0.058, 0.11, 0.23, 0.46, and 0.93 mM) and halothane (0.006, 0.012, 0.024, 0.048, 0072, and 0.096 mM) with an EC50 of 0.26 mM and 35 μM, respectively. TTX (blocker of voltage-dependent Na(+) channels), EGTA (an extracellular Ca(2+) chelator) and BAPTA-AM (an intracellular Ca(2+) chelator) did not interfere with the accumulation of [(3)H]GABA induced by 0.23 mM sevoflurane and 0.048 mM halothane. SKF 89976A, a GABA transporter type 1 (GAT-1) inhibitor, reduced the sevoflurane- and halothane-induced increase in the accumulation of GABA by 57 and 63 %, respectively. Incubation of brain cortical slices at low temperature (17 °C), a condition that inhibits GAT function and reduces GABA release through reverse transport, reduced the sevoflurane- and halothane-induced increase in the accumulation of [(3)H]GABA by 82 and 75 %, respectively, relative to that at normal temperature (37 °C). Ouabain, a Na(+)/K(+) ATPase pump inhibitor, which is known to induce GABA release through reverse transport, abolished the sevoflurane and halothane effects on the accumulation of [(3)H]GABA. The effect of sevoflurane and halothane did not involve glial transporters because β-alanine, a blocker of GAT-2 and GAT-3, did not inhibit the effect of the anesthetics

  1. Evaluation of peroxisome proliferator-activated receptor agonists on interleukin-5-induced eosinophil differentiation

    PubMed Central

    Smith, Steven G; Hill, Mike; Oliveria, John-Paul; Watson, Brittany M; Baatjes, Adrian J; Dua, Benny; Howie, Karen; Campbell, Heather; Watson, Rick M; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists have been suggested as novel therapeutics for the treatment of inflammatory lung disease, such as allergic asthma. Treatment with PPAR agonists has been shown to inhibit airway eosinophilia in murine models of allergic asthma, which can occur through several mechanisms including attenuated generation of chemoattractants (e.g. eotaxin) and decreased eosinophil migrational responses. In addition, studies report that PPAR agonists can inhibit the differentiation of several cell types. To date, no studies have examined the effects of PPAR agonists on interleukin-5 (IL-5) -induced eosinophil differentiation from haemopoietic progenitor cells. Non-adherent mononuclear cells or CD34+ cells isolated from the peripheral blood of allergic subjects were grown for 2 weeks in Methocult® cultures with IL-5 (10 ng/ml) and IL-3 (25 ng/ml) in the presence of 1–1000 nm PPARα agonist (GW9578), PPARβ/δ agonist (GW501516), PPARγ agonist (rosiglitazone) or diluent. The number of eosinophil/basophil colony-forming units (Eo/B CFU) was quantified by light microscopy. The signalling mechanism involved was assessed by phosphoflow. Blood-extracted CD34+ cells cultured with IL-5 or IL-5 + IL-3 formed Eo/B CFU, which were significantly inhibited by rosiglitazone (100 nm, P < 0·01) but not GW9578 or GW501516. In addition, rosglitazone significantly inhibited IL-5-induced phosphorylation of extracellular signal-regulated kinase 1/2. We observed an inhibitory effect of rosiglitazone on eosinophil differentiation in vitro, mediated by attenuation of the extracellular signal-regulated kinase 1/2 signalling pathway. These findings indicate that the PPARγ agonist can attenuate tissue eosinophilia by interfering with local differentiative responses. PMID:24628018

  2. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA.

    PubMed

    Johnston, Graham A R

    2015-10-01

    Flavonoids that are found in nutraceuticals have many and varied effects on the activation of ionotropic receptors for GABA, the major inhibitory neurotransmitter in our brains. They can act as positive or negative modulators enhancing or reducing the effect of GABA. They can act as allosteric agonists. They can act to modulate the action of other modulators. There is considerable evidence that these flavonoids are able to enter the brain to influence brain function. They may have a range of effects including relief of anxiety, improvement in cognition, acting as neuroprotectants and as sedatives. All of these effects are sought after in nutraceuticals. A number of studies have likened flavonoids to the widely prescribed benzodiazepines as 'a new family of benzodiazepine receptor ligands'. They are much more than that with many flavonoid actions on ionotropic GABA receptors being insensitive to the classic benzodiazepine antagonist flumazenil and thus independent of the classic benzodiazepine actions. It is time to consider flavonoids in their own right as important modulators of these vital receptors in brain function. Flavonoids are rarely consumed as a single flavonoid except as dietary supplements. The effects of mixtures of flavonoids and other modulators on GABAA receptors need to be more thoroughly investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Fast detection of extrasynaptic GABA with a whole-cell sniffer.

    PubMed

    Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.

  4. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex.

    PubMed

    López-Rubalcava, C; Piña-Medina, B; Estrada-Reyes, R; Heinze, G; Martínez-Vázquez, M

    2006-01-11

    A hexane extract of leaves of Annona cherimolia produced anxiolytic-like actions when administered to mice and tested in two animal models of anxiety: the mouse avoidance exploratory behavior and the burying behavior tests. In order to discard unspecific drug-actions on general activity, all treatments studied in the anxiety paradigms were also analyzed in the open field test. Results showed that A. cherimolia induced anxiolytic-like actions at the doses of 6.25, 12.5, 25.0 and 50.0 mg/kg. Picrotoxin (0.25 mg/kg), a GABA-gated chloride ion channel blocker, antagonized the anxiolytic-like actions of A. cherimolia, while a sub-effective dose of muscimol (0.5 mg/kg), a selective GABA(A) receptor agonist, facilitated the effects of a sub-optimal dose of A. cherimolia (3.12 mg/kg). Thus, the involvement of the GABA(A) receptor complex in the anxiolytic-like actions of A. cherimolia hexane extract is suggested. In addition the extract was also able to enhance the duration of sodium pentobarbital induced sleeping time. Taken together, results indicate that the hexane extract of A. cherimolia has depressant activity on the Central Nervous System and could interact with the GABA(A) receptor complex. On the other hand, the chromatographic separation of this extract led to the isolation of palmitone, and beta-sitosterol as major constituents. In addition a GC-MS study of some fractions revealed the presence of several compounds such beta-cariophyllene, beta-selinene, alpha-cubebene, and linalool that have been reported to show effects on behavior that could explain some of the extract effects.

  5. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    PubMed

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  6. TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome.

    PubMed

    Saha, Subhrajit; Bhanja, Payel; Liu, Laibin; Alfieri, Alan A; Yu, Dong; Kandimalla, Ekambar R; Agrawal, Sudhir; Guha, Chandan

    2012-01-01

    Radiation-induced gastrointestinal syndrome (RIGS) is due to the clonogenic loss of crypt cells and villi depopulation, resulting in disruption of mucosal barrier, bacterial invasion, inflammation and sepsis. Intestinal macrophages could recognize invading bacterial DNA via TLR9 receptors and transmit regenerative signals to the neighboring crypt. We therefore investigated whether systemic administration of designer TLR9 agonist could ameliorate RIGS by activating TLR9. Male C57Bl6 mice were distributed in four experimental cohorts, whole body irradiation (WBI) (8.4-10.4 Gy), TLR9 agonist (1 mg/kg s.c.), 1 h pre- or post-WBI and TLR9 agonist+WBI+iMyd88 (pretreatment with inhibitory peptide against Myd88). Animals were observed for survival and intestine was harvested for histological analysis. BALB/c mice with CT26 colon tumors in abdominal wall were irradiated with 14 Gy single dose of whole abdominal irradiation (AIR) for tumor growth study. Mice receiving pre-WBI TLR9 agonist demonstrated improvement of survival after 10.4 Gy (p<0.03), 9.4 Gy (p<0.008) and 8.4 Gy (p<0.002) of WBI, compared to untreated or iMyd88-treated controls. Post-WBI TLR9 agonist mitigates up to 8.4 Gy WBI (p<0.01). Histological analysis and xylose absorption test demonstrated significant structural and functional restitution of the intestine in WBI+TLR9 agonist cohorts. Although, AIR reduced tumor growth, all animals died within 12 days from RIGS. TLR9 agonist improved the survival of mice beyond 28 days post-AIR (p<0.008) with significant reduction of tumor growth (p<0.0001). TLR9 agonist treatment could serve both as a prophylactic or mitigating agent against acute radiation syndrome and also as an adjuvant therapy to increase the therapeutic ratio of abdominal Radiation Therapy for Gastro Intestinal malignancies.

  7. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  8. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  9. Effects of GABA ligands injected into the nucleus accumbens shell on fear/anxiety-like and feeding behaviours in food-deprived rats.

    PubMed

    Lopes, Ana Paula Fraga; Ganzer, Laís; Borges, Aline Caon; Kochenborger, Larissa; Januário, Ana Cláudia; Faria, Moacir Serralvo; Marino-Neto, José; Paschoalini, Marta Aparecida

    2012-03-01

    In an attempt to establish a relationship between food intake and fear/anxiety-related behaviours, the goal of this study was to investigate the effect of bilateral injections of GABAA (Muscimol, MUS, doses 25 and 50ng/side) and GABAB (Baclofen, BAC, doses 32 and 64ng/side) receptor agonists in the nucleus accumbens shell (AcbSh) on the level of fear/anxiety-like and feeding behaviours in 24h food-deprived rats. The antagonists of GABAA (Bicuculline, BIC, doses 75 and 150ng/side) and GABAB (Saclofen, SAC, doses 1.5 and 3μg/side) were also tested. The results indicated that the total number of risk assessment behaviour decreased after the injection of both doses of GABAA agonist (MUS) into the AcbSh of 24h food-deprived rats exposed to elevated plus maze. Similar results were obtained after treatment with both doses of GABAB (BAC) agonist in the AcbSh. These data indicated that the activation of both GABAA and GABAB receptors within the AcbSh caused anxiolysis in 24h food-deprived rats. In addition, feeding behaviour (food intake, feeding latency and feeding duration) remained unchanged after treatment with both GABA agonists. In contrast, both food intake and feeding duration decreased after injections of both doses of BIC (GABAA antagonist), while the feeding latency remained unchanged after treatment with both GABA antagonists in the AcbSh of 24h food-deprived rats. The treatment with SAC (GABAB antagonist) did not affect feeding behaviour. Collectively, these data suggest that emotional changes evoked by pharmacological manipulation of the GABA neurotransmission in the AcbSh are not linked with changes in food intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Antidepressants and seizure-interactions at the GABA-receptor chloride-ionophore complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malatynska, E.; Knapp, R.J.; Ikeda, M.

    1988-01-01

    Convulsive seizures are a potential side effect of antidepressant drug treatment and can be produced by all classes of antidepressants. It is also know that some convulsant and anticonvulsant drug actions are mediated by the GABA-receptor chloride-ionophore complex. Drugs acting at this complex appear to induce convulsions by inhibiting chloride conductance through the associated chloride channel. Using the method of GABA-stimulated /sup 36/Cl-uptake by rat cerebral cortical vesicles, we show that some antidepressant drugs can inhibit the GABA-receptor chloride uptake, and that the degree of chloride channel inhibition by these drugs correlates with the frequency of convulsive seizures induced bymore » them.« less

  11. Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus.

    PubMed

    Qume, M; Fowler, L J

    1997-10-01

    1. The effects of 2, 8 and 21 day oral treatment with the specific gamma-aminobutyric acid transaminase (GABA-T) inhibitors gamma-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. 2. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65-80% compared with control values, with a concomitant increase in brain GABA content of 40-100%. 3. Basal hippocampal GABA release was increased to 250-450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. 4. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. 5. GABA compartmentalization, Na+ and Cl- coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. 6. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content 'leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge.

  12. Effect of chronic treatment with the GABA transaminase inhibitors γ-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus

    PubMed Central

    Qume, M; Fowler, L J

    1997-01-01

    The effects of 2, 8 and 21 day oral treatment with the specific γ-aminobutyric acid transaminase (GABA-T) inhibitors γ-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65–80% compared with control values, with a concomitant increase in brain GABA content of 40–100%. Basal hippocampal GABA release was increased to 250–450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. GABA compartmentalization, Na+ and Cl− coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content ‘leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge. PMID:9351512

  13. Kcnj6(GIRK2) trisomy is not sufficient for conferring the susceptibility to infantile spasms seen in the Ts65Dn mouse model of down syndrome.

    PubMed

    Joshi, Krutika; Shen, Lily; Cao, Feng; Dong, Susan; Jia, Zhengping; Cortez, Miguel A; Snead, O Carter

    2018-06-12

    Infantile spasms (IS) is a catastrophic childhood seizure disorder that is characterized by extensor and/or flexor spasms, cognitive deterioration and a characteristic EEG abnormality. The latter consists of a pattern of a spike-wave followed by an electrodecremental response (EDR), which is a flattening of the EEG waveform amplitude. The mechanism/circuitry that underpins IS is unknown. Children with Down Syndrome (DS) are particularly vulnerable to IS. The standard mouse model of DS is the Ts65Dn mutant mouse (Ts). Using the Ts mouse, we have created an animal model of IS in DS. This model entails the treatment of Ts mice with a GABA B R agonist with a resultant recapitulation of the semiological, electrographic, and pharmacological phenotype of IS. One of the genes triplicated in Ts mice is the kcnj6 gene which codes for the G-protein inwardly rectifying potassium channel 2 (GIRK2) protein. We have shown that over expression of GIRK2 in Ts brain is necessary for the production of the GABA B R agonist induced IS phenotype in the Ts mouse. Here, we ask the question whether the excess GIRK2 is sufficient for the production of the GABA B R agonist induced IS phenotype. To address this question, we used kcnj6 triploid mice, and compared the number of spasms via video analysis and EDR events via EEG to that of the WT mice. We now show that GABA R R agonist-treated kcnj6 triploid mice failed to show susceptibility to the IS phenotype. Therefore, over expression of GIRK2 in the brain is necessary, but not sufficient to confer susceptibility to the GABA B R agonist-induced IS phenotype in the Ts model of DS. It is therefore likely that GIRK2 is working in concert with another factor or factors that are altered in the Ts brain in the production of the GABA B R agonist-induced IS phenotype. Copyright © 2018. Published by Elsevier B.V.

  14. Evaluation of peroxisome proliferator-activated receptor agonists on interleukin-5-induced eosinophil differentiation.

    PubMed

    Smith, Steven G; Hill, Mike; Oliveria, John-Paul; Watson, Brittany M; Baatjes, Adrian J; Dua, Benny; Howie, Karen; Campbell, Heather; Watson, Rick M; Sehmi, Roma; Gauvreau, Gail M

    2014-07-01

    Peroxisome proliferator-activated receptor (PPAR) agonists have been suggested as novel therapeutics for the treatment of inflammatory lung disease, such as allergic asthma. Treatment with PPAR agonists has been shown to inhibit airway eosinophilia in murine models of allergic asthma, which can occur through several mechanisms including attenuated generation of chemoattractants (e.g. eotaxin) and decreased eosinophil migrational responses. In addition, studies report that PPAR agonists can inhibit the differentiation of several cell types. To date, no studies have examined the effects of PPAR agonists on interleukin-5 (IL-5) -induced eosinophil differentiation from haemopoietic progenitor cells. Non-adherent mononuclear cells or CD34(+) cells isolated from the peripheral blood of allergic subjects were grown for 2 weeks in Methocult(®) cultures with IL-5 (10 ng/ml) and IL-3 (25 ng/ml) in the presence of 1-1000 nm PPARα agonist (GW9578), PPARβ/δ agonist (GW501516), PPARγ agonist (rosiglitazone) or diluent. The number of eosinophil/basophil colony-forming units (Eo/B CFU) was quantified by light microscopy. The signalling mechanism involved was assessed by phosphoflow. Blood-extracted CD34(+) cells cultured with IL-5 or IL-5 + IL-3 formed Eo/B CFU, which were significantly inhibited by rosiglitazone (100 nm, P < 0·01) but not GW9578 or GW501516. In addition, rosglitazone significantly inhibited IL-5-induced phosphorylation of extracellular signal-regulated kinase 1/2. We observed an inhibitory effect of rosiglitazone on eosinophil differentiation in vitro, mediated by attenuation of the extracellular signal-regulated kinase 1/2 signalling pathway. These findings indicate that the PPARγ agonist can attenuate tissue eosinophilia by interfering with local differentiative responses. © 2014 John Wiley & Sons Ltd.

  15. Analysis of responses to valerian root extract in the feline pulmonary vascular bed.

    PubMed

    Fields, Aaron M; Richards, Todd A; Felton, Jason A; Felton, Shaili K; Bayer, Erin Z; Ibrahim, Ikhlass N; Kaye, Alan David

    2003-12-01

    This study was undertaken to investigate pulmonary vascular response to valerian (Valeriana officinalis) in the feline pulmonary vasculature under constant flow conditions. In separate experiments, the effects of NG-L-nitro-L-arginine methyl ester (L-NIO), a nitric oxide synthase inhibitor, glibenclamide, an adenosine triphosphate (ATP)-sensitive potassium (K+) channel blocker, meclofenamate, a nonselective cyclooxygenase (COX) inhibitor, bicuculline, a GABA(A) receptor antagonist, and saclofen, a GABA(B) antagonist, were investigated on pulmonary arterial responses to various agonists in the feline pulmonary vascular bed. These agonists included valerian, muscimol, a GABA(A) agonist, SKF-97541 a GABA(B) agonist, acetylcholine (ACh), and bradykinin, both inducers of nitric oxide synthase, arachidonic acid, a COX substrate, and pinacidil, an ATP-sensitive K+ channel activator, during increased tone conditions induced by the thromboxane A2 mimic, U46619. Laboratory investigation. Mongrel cats of either gender. Injections of the abovementioned agonists and antagonists were given. Baseline pulmonary tone, responses to the agonists, and responses to the agonists after injections of antagonists were all measured via a pulmonary catheter transducer and recorded. Valerian root extract is a potent smooth muscle dilator in the feline pulmonary vascular bed. The vasodilatory effects of valerian root extract were unchanged after the administration of L-NIO, glibenclamide, and meclofenamate. These effects were ablated, however, by both saclofen and bicuculline. The ability of saclofen and bicuculline to modulate the dilatory effects of valerian root extract was not statistically different. The vasodilatory effects of valerian root extract are mediated by a nonselective GABA mechanism.

  16. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    PubMed Central

    Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433

  17. PPAR agonist-mediated protection against HIV Tat-induced cerebrovascular toxicity is enhanced in MMP-9-deficient mice

    PubMed Central

    Huang, Wen; Chen, Lei; Zhang, Bei; Park, Minseon; Toborek, Michal

    2014-01-01

    The strategies to protect against the disrupted blood–brain barrier (BBB) in HIV-1 infection are not well developed. Therefore, we investigated the potential of peroxisome proliferator-activated receptor (PPAR) agonists to prevent enhanced BBB permeability induced by HIV-1-specific protein Tat. Exposure to Tat via the internal carotid artery (ICA) disrupted permeability across the BBB; however, this effect was attenuated in mice treated with fenofibrate (PPARα agonist) or rosiglitazone (PPARγ agonist). In contrast, exposure to GW9662 (PPARγ antagonist) exacerbated Tat-induced disruption of the BBB integrity. Increased BBB permeability was associated with decreased tight junction (TJ) protein expression and activation of ERK1/2 and Akt in brain microvessels; these effects were attenuated by cotreatment with fenofibrate but not with rosiglitazone. Importantly, both PPAR agonists also protected against Tat-induced astrogliosis and neuronal loss. Because disruption of TJ integrity has been linked to matrix metalloproteinase (MMP) activity, we also evaluated Tat-induced effects in MMP-9-deficient mice. Tat-induced cerebrovascular toxicity, astrogliosis, and neuronal loss were less pronounced in MMP-9-deficient mice as compared with wild-type controls and were further attenuated by PPAR agonists. These results indicate that enhancing PPAR activity combined with targeting MMPs may provide effective therapeutic strategies in brain infection by HIV-1. PMID:24424383

  18. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    PubMed

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.

  19. Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction.

    PubMed

    Czikora, Istvan; Sridhar, Supriya; Gorshkov, Boris; Alieva, Irina B; Kasa, Anita; Gonzales, Joyce; Potapenko, Olena; Umapathy, Nagavedi S; Pillich, Helena; Rick, Ferenc G; Block, Norman L; Verin, Alexander D; Chakraborty, Trinad; Matthay, Michael A; Schally, Andrew V; Lucas, Rudolf

    2014-01-01

    Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.

  20. GABA as a rising gliotransmitter

    PubMed Central

    Yoon, Bo-Eun; Lee, C. Justin

    2014-01-01

    Gamma-amino butyric acid (GABA) is the major inhibitory neurotransmitter that is known to be synthesized and released from GABAergic neurons in the brain. However, recent studies have shown that not only neurons but also astrocytes contain a considerable amount of GABA that can be released and activate GABA receptors in neighboring neurons. These exciting new findings for glial GABA raise further interesting questions about the source of GABA, its mechanism of release and regulation and the functional role of glial GABA. In this review, we highlight recent studies that identify the presence and release of GABA in glial cells, we show several proposed potential pathways for accumulation and modulation of glial intracellular and extracellular GABA content, and finally we discuss functional roles for glial GABA in the brain. PMID:25565970

  1. Women with PTSD have a changed sensitivity to GABA-A receptor active substances.

    PubMed

    Möller, Anna Tiihonen; Bäckström, Torbjörn; Nyberg, Sigrid; Söndergaard, Hans Peter; Helström, Lotti

    2016-06-01

    The use of benzodiazepines in treating anxiety symptoms in patients with posttraumatic stress disorder (PTSD) has been debated. Studies on other anxiety disorders have indicated changed sensitivity to GABA-A receptor active substances. In the present study, we investigated the GABA receptor sensitivity in PTSD patients. Injections of allopreganolone, diazepam, and flumazenil were carried out, each on separate occasions, in 10 drug naïve patients with PTSD compared to 10 healthy controls. Effects were measured in saccadic eye velocity (SEV) and in subjective ratings of sedation. The PTSD patients were less sensitive to allopregnanolone compared with healthy controls. This was seen as a significant difference in SEV between the groups (p = 0.047). Further, the patients were less sensitive to diazepam, with a significant less increase in sedation compared to controls (p = 0.027). After flumazenil injection, both patients and controls had a significant agonistic effect on SEV, leading to decreased SEV after injection. The patients also responded with an increase in sedation after flumazenil injection, while this was not seen in the controls. Patients with PTSD have a changed sensitivity to GABA-A receptor active substances. As a consequence of this, benzodiazepines and other GABA-A receptor active compounds such as sleeping pills will be less useful for this group of patients.

  2. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress.

    PubMed

    Gastón, M S; Cid, M P; Salvatierra, N A

    2017-03-01

    Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABA A receptor competitive antagonist) but not by diazepam (a GABA A receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABA A receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABA A receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABA A receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats.

    PubMed

    Ma, Jingyi; Stan Leung, L

    2017-10-01

    Decreased GABA B receptor function is proposed to mediate some symptoms of schizophrenia. In this study, we tested the effect of CGP7930, a GABA B receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats. Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection. CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65-100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABA B receptor function in vivo. CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

  4. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria.

    PubMed

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-04-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.

  5. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [3H]GABA from rat brain nerve terminals.

    PubMed

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Haufe, G; Kukhar, V

    2017-01-15

    Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF 3 -β-OH (1), β-CF 3 (2); β-CF 2 CF 2 H (3), are able to increase the initial rate of [ 3 H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [ 3 H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [ 3 H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [ 3 H]GABA in synaptosomal preparations. Exocytotic release of [ 3 H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [ 3 H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [ 3 H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex.

    PubMed

    Mir, Joan Francesc; Zagmutt, Sebastián; Lichtenstein, Mathieu P; García-Villoria, Judit; Weber, Minéia; Gracia, Ana; Fabriàs, Gemma; Casas, Josefina; López, Miguel; Casals, Núria; Ribes, Antònia; Suñol, Cristina; Herrero, Laura; Serra, Dolors

    2018-02-02

    Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.

  7. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  8. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    NASA Astrophysics Data System (ADS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  9. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozoticin induced diabetic rats.

    PubMed

    Sherin, A; Peeyush, K T; Naijil, G; Chinthu, R; Paulose, C S

    2010-11-20

    Intensive glycemic control during diabetes is associated with an increased incidence of hypoglycemia, which is the major barrier in blood glucose homeostasis during diabetes therapy. The CNS neurotransmitters play an important role in the regulation of glucose homeostasis. In the present study, we showed the effects of hypoglycemia in diabetic and non- diabetic rats on motor functions and alterations of GABA receptor and CREB expression in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. Scatchard analysis of [(3)H]GABA binding in the cerebellum of diabetic hypoglycemic and control hypoglycemic rats showed significant (P<0.01) decrease in B(max) and K(d) compared to diabetic and control rats. Real-time PCR amplification of GABA receptor subunit GABA(Aα1) and GAD showed significant (P<0.001) down-regulation in the cerebellum of hypoglycemic rats compared to diabetic and control rats. Confocal imaging study confirmed the decreased GABA receptors in hypoglycemic rats. CREB mRNA expression was down-regulated during recurrent hypoglycemia. Both diabetic and non-diabetic hypoglycemic rats showed impaired performance in grid walk test compared to diabetic and control. Impaired GABA receptor and CREB expression along with motor function deficit were more prominent in hypoglycemic rats than hyperglycemic which showed that hypoglycemia is causing more neuronal damage at molecular level. These molecular changes observed during hypo/hyperglycemia contribute to motor and learning deficits which has clinical significance in diabetes treatment. 2010 Elsevier Inc. All rights reserved.

  11. The role of GABA(A) receptors in the development of alcoholism.

    PubMed

    Enoch, Mary-Anne

    2008-07-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.

  12. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  13. Morphine history sensitizes postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    PubMed

    Staub, D R; Lunden, J W; Cathel, A M; Dolben, E L; Kirby, L G

    2012-06-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Previous work has shown that the dorsal raphe nucleus (DR)-5-HT system is inhibited by swim stress via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor (CRF). Additionally, the DR 5-HT system is regulated by opioids. The present study tests the hypothesis that the DR 5-HT system regulates stress-induced opioid relapse. In the first experiment, electrophysiological recordings of GABA synaptic activity in 5-HT DR neurons were conducted in brain slices from Sprague-Dawley rats that were exposed to swim stress-induced reinstatement of previously extinguished morphine conditioned place preference (CPP). Behavioral data indicate that swim stress triggers reinstatement of morphine CPP. Electrophysiology data indicate that 5-HT neurons in the morphine-conditioned group exposed to stress had increased amplitude of inhibitory postsynaptic currents (IPSCs), which would indicate greater postsynaptic GABA receptor density and/or sensitivity, compared to saline controls exposed to stress. In the second experiment, rats were exposed to either morphine or saline CPP and extinction, and then 5-HT DR neurons from both groups were examined for sensitivity to CRF in vitro. CRF induced a greater inward current in 5-HT neurons from morphine-conditioned subjects compared to saline-conditioned subjects. These data indicate that morphine history sensitizes 5-HT DR neurons to the GABAergic inhibitory effects of stress as well as to some of the effects of CRF. These mechanisms may sensitize subjects with a morphine history to the dysphoric effects of stressors and ultimately confer an enhanced vulnerability to stress-induced opioid relapse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. [Schizophrenia and cortical GABA neurotransmission].

    PubMed

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  15. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    PubMed

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Furosemide suppresses ileal and colonic contractility via interactions with GABA-A receptor in mice.

    PubMed

    Kaewsaro, Kannaree; Nualplub, Suparp; Bumrungsri, Sara; Khuituan, Pissared

    2017-11-01

    The loop diuretic furosemide has an action to inhibit Na + -K + -2Cl - co-transporter at the thick ascending limb of Henle's loop resulting in diuresis. Furosemide also has the non-diuretic effects by binding to GABA-A receptor which may involve the gastrointestinal tract. The aim of this study was to investigate the effects of furosemide on smooth muscle contractions in mice ileum and proximal colon. Each intestinal segment suspended in an organ bath was connected to a force transducer. Signal output of mechanical activity was amplified and recorded for analysis using PowerLab System. After equilibration, the intestine was directly exposed to furosemide, GABA, GABA-A receptor agonist (muscimol), or muscarinic receptor antagonist (atropine). Furosemide (50, 100 and 500 μmol L -1 ) acutely reduced the amplitude of ileal and colonic contraction. In the ileum, 1 mmol L -1 GABA and 10-60 μmol L -1 muscimol significantly increased the amplitude, whereas in the colon, 50-100 mmol L -1 GABA and 60 μmol L -1 muscimol decreased the contractions. The contractions were also significantly suppressed by atropine. To investigate the mechanisms underlying the inhibiting effect of furosemide, furosemide was added to the organ bath prior to the addition of muscimol or atropine. A comparison of furosemide combined with muscimol or atropine group and furosemide group showed no significant difference of the ileal contraction, but the amplitude of colonic contraction significantly decreased when compared to adding furosemide alone. These results suggest that furosemide can reduce the ileal and proximal colonic contraction mediated by blocking and supporting of GABA-A receptor, respectively, resulting in decreased acetylcholine release. © 2017 John Wiley & Sons Australia, Ltd.

  17. Antagonism of methoxyflurane-induced anesthesia in rats by benzodiazepine inverse agonists.

    PubMed

    Miller, D W; Yourick, D L; Tessel, R E

    1989-11-28

    Injection of the partial benzodiazepine inverse agonist Ro15-4513 (1-32 mg/kg i.p.) or nonconvulsant i.v. doses of the full benzodiazepine inverse agonist beta-CCE immediately following cessation of exposure of rats to an anesthetic concentration of methoxyflurane significantly antagonized the duration of methoxyflurane anesthesia as measured by recovery of the righting reflex and/or pain sensitivity. This antagonism was inhibited by the benzodiazepine antagonist Ro15-1788 at doses which alone did not alter the duration of methoxyflurane anesthesia. In addition, high-dose Ro15-4513 pretreatment (32 mg/kg) antagonized the induction and duration of methoxyflurane anesthesia but was unable to prevent methoxyflurane anesthesia or affect the induction or duration of anesthesia induced by the dissociative anesthetic ketamine (100 mg/kg). These findings indicate that methoxyflurane anesthesia can be selectively antagonized by the inverse agonistic action of Ro15-4513 and beta-CCE.

  18. GABA predicts visual intelligence.

    PubMed

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus.

    PubMed

    Kunisawa, Kazuo; Kido, Kiwamu; Nakashima, Natsuki; Matsukura, Takuya; Nabeshima, Toshitaka; Hiramatsu, Masayuki

    2017-02-05

    GABA mediated neuronal system regulates hippocampus-dependent memory and stress responses by controlling plasticity and neuronal excitability. Here, we demonstrate that betaine ameliorates water-immersion restraint stress (WIRS)-induced memory impairments. This improvement was inhibited by a betaine/GABA transporter-1 (GABA transporter-2: GAT2) inhibitor, NNC 05-2090. In this study, we investigated whether memory amelioration by betaine was mediated by the GABAergic neuronal system. Adult male mice were co-administered betaine and GABA receptor antagonists after WIRS. We also examined whether memory impairment after WIRS was attenuated by GABA receptor agonists. The memory functions were evaluated using a novel object recognition test 3-6 days after WIRS and/or the step-down type passive avoidance test at 7-8 days. The co-administration of the GABA A receptor antagonist bicuculline (1mg/kg) or the GABA B receptor antagonist phaclofen (10mg/kg) 1h after WIRS suppressed the memory-improving effects induced by betaine. Additionally, the administration of the GABA A receptor agonist muscimol (1mg/kg) or the GABA B receptor agonist baclofen (10mg/kg) 1h after WIRS attenuated memory impairments. These results were similar to the data observed with betaine. The treatment with betaine after WIRS significantly decreased the expression of GABA transaminase, and this effect was partially blocked by NNC 05-2090 in the hippocampus. WIRS caused a transient increase in hippocampal GABA levels and the changes after WIRS were not affected by betaine treatment in an in vivo microdialysis study. These results suggest that the beneficial effects of betaine may be mediated in part by changing the GABAergic neuronal system. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    PubMed

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  1. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but notmore » by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.« less

  2. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells.

    PubMed

    Bai, Yan; Edelmann, Martin; Sanderson, Michael J

    2009-08-01

    The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3

  3. Comparative Gene Expression Profiles Induced by PPARγ and PPARα/γ Agonists in Human Hepatocytes

    PubMed Central

    Rogue, Alexandra; Lambert, Carine; Jossé, Rozenn; Antherieu, Sebastien; Spire, Catherine; Claude, Nancy; Guillouzo, André

    2011-01-01

    Background Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. Methodology/Principal Findings Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. Conclusions/Significance This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby

  4. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  5. Convulsions induced by centrally administered NMDA in mice: effects of NMDA antagonists, benzodiazepines, minor tranquilizers and anticonvulsants.

    PubMed Central

    Moreau, J. L.; Pieri, L.; Prud'hon, B.

    1989-01-01

    1. Convulsions were induced reproducibly by intracerebroventricular injection of N-methyl-D-aspartic acid (NMDA) to conscious mice. 2. Competitive (carboxypiperazine-propylphosphonic acid, CPP; 2-amino-7-phosphonoheptanoic acid, AP7) and non-competitive (MK801; phencyclidine, PCP; thienylcyclohexylpiperidine, TCP; dextrorphan; dextromethorphan) NMDA antagonists prevented NMDA-induced convulsions. 3. Benzodiazepine receptor agonists and partial agonists (triazolam, diazepam, clonazepam, Ro 16-6028), classical anticonvulsants (diphenylhydantoin, phenobarbitone, sodium valproate) and meprobamate were also found to prevent NMDA-induced convulsions. 4. Flumazenil (a benzodiazepine receptor antagonist) and the GABA agonists THIP and muscimol (up to subtoxic doses) were without effect. 5. Flumazenil reversed the anticonvulsant action of diazepam, but not that of MK801. 6. Results obtained in this model differ somewhat from those described in a seizure model with systemic administration of NMDA. An explanation for this discrepancy is offered. 7. This model is a simple test for assessing the in vivo activity of NMDA antagonists and also expands the battery of chemically-induced seizure models for characterizing anticonvulsants not acting at NMDA receptors. PMID:2574061

  6. Separate and combined effects of the GABAB agonist baclofen and Δ9-THC in humans discriminating Δ9-THC

    PubMed Central

    Lile, Joshua A.; Kelly, Thomas H.; Hays, Lon R.

    2012-01-01

    Background Our previous research with the GABA reuptake inhibitor tiagabine suggested the involvement GABA in the interoceptive effects of Δ9-THC. The aim of the present study was to determine the potential involvement of the GABAB receptor subtype by assessing the separate and combined effects of the GABAB-selective agonist baclofen and Δ9-THC using pharmacologically specific drug-discrimination procedures. Methods Eight cannabis users learned to discriminate 30 mg oral Δ9-THC from placebo and then received baclofen (25 and 50 mg), Δ9-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Results Δ9-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug), elevated heart rate and impaired rate and accuracy on a psychomotor performance task. Baclofen alone (50 mg) substituted for the Δ9-THC discriminative stimulus, and both baclofen doses shifted the discriminative-stimulus effects of Δ9-THC leftward/upward. Similar results were observed on other cannabinoid-sensitive outcomes, although baclofen generally did not engender Δ9-THC-like subjective responses when administered alone. Conclusions These results suggest that the GABAB receptor subtype is involved in the abuse-related effects of Δ9-THC, and that GABAB receptors were responsible, at least in part, for the effects of tiagabine-induced elevated GABA on cannabinoid-related behaviors in our previous study. Future research should test GABAergic compounds selective for other GABA receptor subtypes (i.e., GABAA) to determine the contribution of the different GABA receptors in the effects of Δ9-THC, and by extension cannabis, in humans. PMID:22699093

  7. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT 2A ) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT 2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT 2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT 2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT 2A receptor-PDZ protein interactions. This enhancement depends on 5-HT 2A receptor activation, spinal GABA release and GABAA receptor activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    PubMed

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  9. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  10. Actions of insecticides on the insect GABA receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. Thesemore » results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.« less

  11. PAR-2 agonists induce contraction of murine small intestine through neurokinin receptors.

    PubMed

    Zhao, Aiping; Shea-Donohue, Terez

    2003-10-01

    Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor and is expressed throughout the gut. It is well known that PAR-2 participates in the regulation of gastrointestinal motility; however, the results are inconsistent. The present study investigated the effect and mechanism of PAR-2 activation on murine small intestinal smooth muscle function in vitro. Both trypsin and PAR-2-activating peptide SLIGRL induced a small relaxation followed by a concentration-dependent contraction. The sensitivity to trypsin was greater than that to SLIGRL (EC50 = 0.03 vs. 40 microM), but maximal responses were similar (12.3 +/- 1.6 vs. 13.7 +/- 1.3 N/cm2). Trypsin-evoked contraction (1 microM) exhibited a rapid desensitization, whereas the desensitization of response to SLIGRL was less even at high concentration (50 microM). Atropine had no effect on PAR-2 agonist-induced contractions. In contrast, TTX and capsaicin significantly attenuated those contractions, implicating a neurogenic mechanism that may involve capsaicin-sensitive sensory nerves. Furthermore, contractions induced by trypsin and SLIGRL were reduced by neurokinin receptor NK1 antagonist SR-140333 or NK2 antagonist SR-48968 alone or were further reduced by combined application of SR-140333 and SR-48968, indicating the involvement of neurokinin receptors. In addition, desensitizing neurokinin receptors with substance P and/or neurokinin A decreased the PAR-2 agonist-evoked contraction. We concluded that PAR-2 agonists induced a contraction of murine intestinal smooth muscle that was mediated by nerves. The excitatory effect is also dependent on sensory neural pathways and requires both NK1 and NK2 receptors.

  12. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    PubMed

    Pulman, Kim G T; Somerville, Elizabeth M; Clifton, Peter G

    2012-01-01

    Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  13. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell

    PubMed Central

    Wirtshafter, David; Stratford, Thomas R.

    2011-01-01

    Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50 ng/side) or D-amphetamine (10 μg/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. PMID:20598739

  14. Baclofen blocks yohimbine-induced increases in ethanol-reinforced responding in rats.

    PubMed

    Williams, Keith L; Nickel, Melissa M; Bielak, Justin T

    2016-05-01

    Chronic or repeated stress increases alcohol consumption. The GABA-B agonist baclofen decreases alcohol consumption and may be most effective for individuals with comorbid anxiety/stress disorders. The present study sought to determine if baclofen blocks stress-induced increases in ethanol self-administration as modeled by repeated yohimbine injections in rats. Rats were trained to respond for 15% w/v ethanol in operant chambers using a method that applies neither water deprivation nor saccharin/sucrose fading. Following training, the rats received 6 injections of 1.25mg/kg yohimbine were given immediately prior to the operant sessions during a 2-week time period. Subsequently, some rats were pair-matched to receive either 1.25mg/kg yohimbine or saline in the presence of 0.3, 1, and 3mg/kg baclofen prior to sessions. Acquisition of ethanol self-administration was poor. Pretreatment with yohimbine consistently increased responding across repeated injections. Yohimbine's effect on ethanol intake unexpectedly diverged from the effect on responding as the rats failed to consume all reinforcers earned. Smaller doses of baclofen paired with saline injections had no effect on ethanol responding; only 3mg/kg baclofen reduced ethanol self-administration. The smallest baclofen dose of 0.3mg/kg failed to block the yohimbine-induced increase in self-administration. The large baclofen dose of 3mg/kg continued to suppress ethanol self-administration when given with yohimbine. Baclofen 1mg/kg blocked the effect of yohimbine even though it had no effect when given in the absence of yohimbine. Exposure to high ethanol concentrations may induce self-administration only in certain conditions. The dissociation between responding and intake suggests that repeated yohimbine injections may initiate other behavioral or physiological mechanisms that confound its effects as a pharmacological stressor. Furthermore, an optimal baclofen dose range may specifically protect against stress-induced

  15. GABA(C) receptors: a molecular view.

    PubMed

    Enz, R

    2001-08-01

    In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.

  16. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    PubMed Central

    2011-01-01

    Background Betaine (glycine betaine or trimethylglycine) plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS)-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2), a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v.), respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c.) prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection) and acute administration (1 hr after LPS injection) of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect. PMID:22053950

  17. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men.

    PubMed

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens

    2018-01-15

    While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P

  18. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia.

    PubMed

    Kim, Ju Young; Liu, Cindy Y; Zhang, Fengyu; Duan, Xin; Wen, Zhexing; Song, Juan; Feighery, Emer; Lu, Bai; Rujescu, Dan; St Clair, David; Christian, Kimberly; Callicott, Joseph H; Weinberger, Daniel R; Song, Hongjun; Ming, Guo-li

    2012-03-02

    How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice

    PubMed Central

    Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette

    2014-01-01

    Somatostatin interacts with 5 G-protein-coupled receptor (sst1–5). Octreotide, a stable sst2≫3≥5 agonist, octreotide, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1–5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10 μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (4 sets of 3 CRD, each at 55 mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between 2 sets of graded CRD (15, 30, 45, and 60 mmHg, 3 times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60 mmHg CRD, respectively. ODT8-SST (10 μg) and the sst2 agonist, S-346-011 (3 and 10 μg) prevented mechanically-induced visceral hypersensitivity in the 3 sets of CRD, the sst1 agonist (10 μg) blocked only the 2nd set and showed a trend at 3 μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10 μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10 μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. PMID:25451334

  20. Selective agonists of somatostatin receptor subtype 1 or 2 injected peripherally induce antihyperalgesic effect in two models of visceral hypersensitivity in mice.

    PubMed

    Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette

    2015-01-01

    Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  2. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  3. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome

    PubMed Central

    Featherstone, R.; Naschek, M.; Nam, J.; Du, A.; Wright, S.; Weger, R.; Akuzawa, S.

    2017-01-01

    Abstract Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30–80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome. PMID:28451631

  4. Deacetylmycoepoxydiene is an agonist of Rac1, and simultaneously induces autophagy and apoptosis.

    PubMed

    Xie, Wei; Zhang, Wei; Sun, Mingwei; Lu, Chunhua; Shen, Yuemao

    2018-05-09

    Lung cancer is the second most common cause of cancer-related death in the world. Most cases of lung cancer are not curable, especially non-small cell lung cancer (NSCLC). Thus, novel treatment targets for this malignant disease are urgently needed. Here, we demonstrate the feasibility of Rac1 in treating p53-null human NSCLC H1299 as a novel drug target. Deacetylmycoepoxydiene (DA-MED), a cytotoxic natural polyketide, functions as a Rac1 agonist in p53-null NSCLC H1299 cells. DA-MED treatment drives Rac1 activation and promotes robust production of reactive oxygen species, activating mitochondrial permeability transition and the intrinsic apoptotic pathway. Knockdown of Rac1 decreases ROS production in DA-MED-treated cells, resulting in a concomitant decrease in DA-MED-induced apoptosis. DA-MED-activated Rac1 induces autophagy by inhibiting mammalian target of rapamycin, leading to anti-apoptotic and anti-metastatic effects. Therefore, this study provides novel insight into the complex cytotoxic and pro-survival mechanisms associated with a potent Rac1 agonist and suggests that further development of more potent Rac1 agonists could be an effective strategy for future non-small cell lung cancer treatments.

  5. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    PubMed

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  6. The Improvement of Sleep by Oral Intake of GABA and Apocynum venetum Leaf Extract.

    PubMed

    Yamatsu, Atsushi; Yamashita, Yusuke; Maru, Isafumi; Yang, Jinwei; Tatsuzaki, Jin; Kim, Mujo

    2015-01-01

    The effects of two food materials, γ-aminobutyric acid (GABA) produced by natural fermentation and Apocynum venetum leaf extract (AVLE), on the improvement of sleep were investigated in humans. The electroencephalogram (EEG) test revealed that oral administration of GABA (100 mg) and AVLE (50 mg) had beneficial effects on sleep. GABA shortened sleep latency by 5.3 min and AVLE increased non-rapid eye movement (REM) sleep time by 7.6%. Simultaneous intake of GABA and AVLE shortened sleep latency by 4.3 min and increased non-REM sleep time by 5.1%. The result of questionnaires showed that GABA and AVLE enabled subjects to realize the effects on sleep. These results mean that GABA can help people to fall asleep quickly, AVLE induces deep sleep, and they function complementarily with simultaneous intake. Since both GABA and AVLE are materials of foods and have been ingested for a long time, they can be regarded as safe and appropriate for daily intake in order to improve the quality of sleep.

  7. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    PubMed

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  8. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state

    PubMed Central

    Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation. PMID:25934804

  9. Nicotinic agonist-induced improvement of vigilance in mice in the 5-choice continuous performance test

    PubMed Central

    YOUNG, Jared W; MEVES, Jessica M; GEYER, Mark A

    2012-01-01

    Impaired attentional processing is prevalent in numerous neuropsychiatric disorders and may negatively impact other cognitive and functional domains. Nicotine – a nonspecific nicotinic acetylcholine receptor (nAChR) agonist – improves vigilance in healthy subjects and schizophrenia patients as measured by continuous performance tests (CPTs), but the nAChR mediating this effect remains unclear. Here we examine the effects of: a) nicotine; b) the selective α7 nAChR agonist PNU 282987; and c) the selective α4β2 nAChR agonist ABT-418 alone and in combination with scopolamine-induced disruption of mouse 5-choice (5C-)CPT performance. This task requires the inhibition of responses to non-target stimuli as well as active responses to target stimuli, consistent with human CPTs. C57BL/6N mice were trained to perform the 5C-CPT. Drug effects were examined in extended session and variable stimulus-duration challenges of performance. Acute drug effects on scopolamine-induced disruption in performance were also investigated. Nicotine and ABT-418 subtly but significantly improved performance of normal mice and attenuated scopolamine-induced disruptions in the 5C-CPT. PNU 282–987 had no effects on performance. The similarity of nicotine and ABT-418 effects provides support for an α4β2 nAChR mechanism of action for nicotine-induced improvement in attention/vigilance. Moreover, the data provide pharmacological predictive validation for the 5C-CPT because nicotine improved and scopolamine disrupted normal performance of the task, consistent with healthy humans in the CPT. Future studies using more selective agonists may result in more robust improvements in performance. PMID:23201359

  10. Centralization of Noxious Stimulus-induced Analgesia (NSIA) is Related to Activity at Inhibitory Synapses in the Spinal Cord

    PubMed Central

    Tambeli, Claudia H.; Levine, Jon D.; Gear, Robert W.

    2009-01-01

    The duration of noxious stimulus-induced antinociception (NSIA) has been shown to outlast the pain stimulus that elicited it, however, the mechanism that determines the duration of analgesia is unknown. We evaluated the role of spinal excitatory and inhibitory receptors (NMDA, mGluR-5, mu-opioid, GABA-A, and GABA-B), previously implicated in NSIA initiation, in its maintenance. As in our previous studies, the supraspinal trigeminal jaw-opening reflex (JOR) in the rat was used for nociceptive testing because of its remoteness from the region of drug application, the lumbar spinal cord. NSIA was reversed by antagonists for two inhibitory receptors (GABA-B and mu-opioid) but not by antagonists for either of the two excitatory receptors (NMDA and mGluR-5), indicating that NSIA is maintained by ongoing activity at inhibitory synapses in the spinal cord. Furthermore, spinal administration of the GABA-B agonist baclofen mimicked NSIA in that it could be blocked by prior injection of the mu-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) in nucleus accumbens. CTAP also blocked baclofen antinociception when administered in the spinal cord. We conclude that analgesia induced by noxious stimulation is maintained by activity in spinal inhibitory receptors. PMID:19375225

  11. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    PubMed

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The effects of chronic intraperitoneal administration of the GABA B receptor agonist baclofen on food intake in rats.

    PubMed

    Patel, Sunit M; Ebenezer, Ivor S

    2008-09-28

    This study was undertaken to examine the effects of repeated administration of the GABA(B) receptor agonist baclofen on food intake in male Wistar rats. In the 1st Experiment, the effects of daily administration of physiological saline and baclofen (2 mg/kg, i.p.) for 27 days were investigated on food intake and body weight in non-deprived rats (n=6 in each group). Baclofen significantly (P<0.05) increased cumulative food intake each day over the treatment period during the 60 min measurement period following administration. Tolerance did not develop to the short-term hyperphagic effect of baclofen over the course of the experiment. In addition, treatment with baclofen did not alter body weight of the animals over the 27 day treatment period when compared with the saline control rats. In the 2nd Experiment, the effects of acute and chronic administration of baclofen (2 mg/kg) were investigated on 24 h food intake in rats. The rats were injected daily for 21 days with either saline (n=6) or baclofen (n=6). Food intake was measured in 30 min time bins for 24 h on treatment Days 1, 12 and 21 following injection. The results showed that while baclofen produced short-term increases in food consumption following injection on treatment Days 1, 12 and 21, the daily (24 h) food intake of the animals was not significantly different from those of control rats. Thus, these data reveal that while chronic administration of baclofen (2 mg/kg) produces short-term increases in feeding without the development of tolerance, daily (24 h) food consumption is not affected. These findings are consistent with the observation that chronic administration of baclofen (2 mg/kg) had no effect on the body weight of these animals.

  13. Dietary GABA and food selection by rats.

    PubMed

    Tews, J K; Repa, J J; Harper, A E

    1986-01-01

    To obtain further information pertaining to amino acid-induced alterations in feeding behavior, studies were performed to examine the food choices made by rats fed low protein diets made more or less aversive by the addition of various amino acids. When rats were allowed to choose between two diets, they preferred a low protein control, threonine-imbalanced or nonprotein diet to one containing 2.5% gamma-aminobutyric acid (GABA). Acceptance increased when GABA content was lowered to 1.5%; rats preferred this diet when the alternative diet was made sufficiently aversive. There were large individual differences among rats selecting from pairs of unacceptable diets. Avoidance of, or preference for, a given diet is clearly affected by the relative aversive qualities of the offered pair of diets.

  14. Action of tremorgenic mycotoxins on GABA/sub A/ receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gant, D.B.; Cole, R.J.; Valdes, J.J.

    1987-11-09

    The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/submore » A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.« less

  15. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy

    DOE PAGES

    Lim, So-Yon; Osuna, Christa E.; Hraber, Peter T.; ...

    2018-05-02

    Antiretroviral therapy can halt HIV-1 replication, but fails to target the long-lived latent viral reservoir. Several pharmacological compounds have been evaluated for their ability to reverse HIV-1 latency, but none have demonstrably reduced the latent HIV-1 reservoir, or impacted viral rebound following the interruption of antiretroviral therapy. Here, we evaluate orally administered selective tolllike receptor 7 agonists GS-986 and GS-9620 for their ability to induce transient viremia in simian immunodeficiency virus-infected rhesus monkeys on suppressive antiretroviral therapy. In an initial doseescalation study, and a subsequent dose-optimization study, we found that toll-like receptor 7 agonists activate multiple innate and adaptive immunemore » cell populations in addition to inducing SIV RNA. We also observed toll-like receptor 7 agonist-induced reductions in SIV DNA and ex vivo inducible virus from treated animals. In a second study, after stopping antiretroviral therapy, two of nine treated animals have remained aviremic for more than two years, even after in vivo CD8+ lymphocyte depletion. Moreover, adoptive transfer of cells from aviremic animals could not induce de novo infection in naive recipient macaques. These findings suggest that toll-like receptor agonists may facilitate reservoir reduction in a subset of individuals.« less

  16. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, So-Yon; Osuna, Christa E.; Hraber, Peter T.

    Antiretroviral therapy can halt HIV-1 replication, but fails to target the long-lived latent viral reservoir. Several pharmacological compounds have been evaluated for their ability to reverse HIV-1 latency, but none have demonstrably reduced the latent HIV-1 reservoir, or impacted viral rebound following the interruption of antiretroviral therapy. Here, we evaluate orally administered selective tolllike receptor 7 agonists GS-986 and GS-9620 for their ability to induce transient viremia in simian immunodeficiency virus-infected rhesus monkeys on suppressive antiretroviral therapy. In an initial doseescalation study, and a subsequent dose-optimization study, we found that toll-like receptor 7 agonists activate multiple innate and adaptive immunemore » cell populations in addition to inducing SIV RNA. We also observed toll-like receptor 7 agonist-induced reductions in SIV DNA and ex vivo inducible virus from treated animals. In a second study, after stopping antiretroviral therapy, two of nine treated animals have remained aviremic for more than two years, even after in vivo CD8+ lymphocyte depletion. Moreover, adoptive transfer of cells from aviremic animals could not induce de novo infection in naive recipient macaques. These findings suggest that toll-like receptor agonists may facilitate reservoir reduction in a subset of individuals.« less

  17. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels

    PubMed Central

    Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139

  18. Opiate-induced motor stimulation is regulated by gamma-aminobutyric acid type B receptors found in the ventral tegmental area in mice.

    PubMed

    Leite-Morris, Kimberly A; Fukudome, Eugene Y; Kaplan, Gary B

    2002-01-14

    Recent studies suggest that gamma-aminobutyric acid type B (GABA(B)) receptors located on dopaminergic cells in the ventral tegmental area (VTA) regulate mesolimbic dopaminergic (A10) activity. In the current study, we identified GABA(B) receptor subtypes in the area of the VTA and examined their role in modulating acute opiate actions. We studied the effects of intra-VTA infusions of the selective GABA(B) agonist baclofen on morphine-induced locomotor stimulation and A10 neuronal activation. Drug treatments were followed by ambulatory activity monitoring for 180 min. Intra-VTA baclofen treatment produced a 70% inhibition of morphine-stimulated locomotor activity. Furthermore, functional activation of A10 neurons was assessed by immunohistochemical staining of c-Fos in the nucleus accumbens (NAc), where A10 neurons terminate. We found that morphine treatment increased the levels of Fos-positive nuclei in the NAc, while intra-VTA baclofen treatment reversed morphine's effects. Finally, GABA(B) receptor subtypes and isoforms were identified in the ventromedial mesencephalon using immunoblotting. We demonstrated the presence of GABA(B)R1a (130 kDa), GABA(B)R1b (100 kDa), and GABA(B)R2 (120 kDa) receptor subtypes in this region. These results suggest that GABA(B) receptor isoforms are found in the VTA and their activation results in the blockade of behavioral effects of opiates via inhibition of dopaminergic neurotransmission.

  19. An Allosteric Coagonist Model for Propofol Effects on α1β2γ2L γ-Aminobutyric Acid Type A Receptors

    PubMed Central

    Ruesch, Dirk; Neumann, Elena; Wulf, Hinnerk; Forman, Stuart A.

    2011-01-01

    Background Propofol produces its major actions via γ-aminobutyric acid type A (GABAA) receptors. At low concentrations, propofol enhances agonist-stimulated GABAA receptor activity, and high propofol concentrations directly activate receptors. Etomidate produces similar effects, and there is convincing evidence that a single class of etomidate sites mediate both agonist modulation and direct GABAA receptor activation. It is unknown if the propofol binding site(s) on GABAA receptors that modulate agonist-induced activity also mediate direct activation. Methods GABAA α1β2γ2L receptors were heterologously expressed in Xenopus oocytes and activity was quantified using voltage clamp electrophysiology. We tested whether propofol and etomidate display the same linkage between agonist modulation and direct activation of GABAA receptors by identifying equi-efficacious drug solutions for direct activation. We then determined whether these drug solutions produce equal modulation of GABA-induced receptor activity. We also measured propofol-dependent direct activation and modulation of low GABA responses. Allosteric coagonist models similar to that established for etomidate, but with variable numbers of propofol sites, were fitted to combined data. Results Solutions of 19 μM propofol and 10 μM etomidate were found to equally activate GABAA receptors. These two drug solutions also produced indistinguishable modulation of GABA-induced receptor activity. Combined electrophysiological data behaved in a manner consistent with allosteric co-agonist models with more than one propofol site. The best fit was observed when the model assumed three equivalent propofol sites. Conclusions Our results support the hypothesis that propofol, like etomidate, acts at GABAA receptor sites mediating both GABA modulation and direct activation. PMID:22104494

  20. Modulation of resting brain cerebral blood flow by the GABA B agonist, baclofen: A longitudinal perfusion fMRI study

    PubMed Central

    Franklin, Teresa R.; Wang, Ze; Sciortino, Nathan; Harper, Derek; Li, Yin; Hakun, Jonathan; Kildea, Susan; Kampman, Kyle; Ehrman, Ron; Detre, John A.; O’Brien, Charles P.; Childress, Anna Rose

    2011-01-01

    Background Preclinical studies confirm that the GABA B agonist, baclofen blocks dopamine release in the reward-responsive ventral striatum (VS) and medial prefrontal cortex, and consequently, blocks drug motivated behavior. Its mechanism in humans is unknown. Here, we used continuous arterial spin labeled (CASL) perfusion fMRI to examine baclofen’s effects on blood flow in the human brain. Methods Twenty-one subjects (all smokers, 12 females) were randomized to receive either baclofen (80 mg/day; N = 10) or placebo (N = 11). A five minute quantitative perfusion fMRI resting baseline (RB) scan was acquired at two time points; prior to the dosing regimen (Time 1) and on the last day of 21 days of drug administration (Time 2). SPM2 was employed to compare changes in RB from Time 1 to 2. Results Baclofen diminished cerebral blood flow (CBF) in the VS and mOFC and increased it in the lateral OFC, a region involved in suppressing previously rewarded behavior. CBF in bilateral insula was also blunted by baclofen (T values ranged from −11.29 to 15.3 at p = 0.001, 20 contiguous voxels). CBF at Time 2 was unchanged in placebo subjects. There were no differences between groups in side effects or cigarettes smoked per day (at either time point). Conclusions Baclofen’s modulatory actions on regions involved in motivated behavior in humans are reflected in the resting state and provide insight into the underlying mechanism behind its potential to block drug-motivated behavior, in preclinical studies, and its putative effectiveness as an anti-craving/anti-relapse agent in humans. PMID:21333466

  1. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    PubMed

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  2. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell.

    PubMed

    Wirtshafter, David; Stratford, Thomas R

    2010-09-01

    Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50ng/side) or d-amphetamine (10mug/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Gaba mediated long-term depression (LTD) in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Della Torre, G; Zampolini, M; Pettorossi, V E

    1995-01-01

    As previously demonstrated, high frequency stimulation (HFS) of the primary vestibular afferents always induces a clear, long lasting depression of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the medial vestibular nuclei (MVN). The induction of the HFS effect was mediated by the activation of glutamate NMDA receptors, since it was blocked by AP5. The mechanisms at the basis of such a depression were studied. Our results demonstrate that Gaba, acting on both GabaA and GabaB receptors, is involved in mediating this phenomenon. In fact, HFS applied during Bicuculline and Saclofen perfusion, was no longer able to induce an N2 depression, but provoked a slight potentiation. However, the N2 depression clearly emerged after drug wash-out. Furthermore, Bicuculline and Saclofen fully abolished the N2 depression and highlighted the potentiation, when administered after HFS. The possibility that the N2 depression is the result of a homosynaptic LTD can be excluded on the basis of our results. On the contrary, our findings suggest that the depression is due to an enhancement of the Gaba inhibitory effect due to an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  5. Role of GABA Release From Leptin Receptor-Expressing Neurons in Body Weight Regulation

    PubMed Central

    Xu, Yuanzhong; O'Brien, William G.; Lee, Cheng-Chi; Myers, Martin G.

    2012-01-01

    It is well established that leptin regulates energy balance largely through isoform B leptin receptor-expressing neurons (LepR neurons) in the brain and that leptin activates one subset of LepR neurons (leptin-excited neurons) while inhibiting the other (leptin-inhibited neurons). However, the neurotransmitters released from LepR neurons that mediate leptin action in the brain are not well understood. Previous results demonstrate that leptin mainly acts on γ-aminobutyric acid (GABA)ergic neurons to reduce body weight, and that leptin activates proopiomelanocortin neuron activity by reducing GABA release onto these neurons, suggesting a body weight-promoting role for GABA released from leptin-inhibited neurons. To directly examine the role of GABA release from LepR neurons in body weight regulation, mice with disruption of GABA release specifically from LepR neurons were generated by deletion of vesicular GABA transporter in LepR neurons. Interestingly, these mice developed mild obesity on chow diet and were sensitive to diet-induced obesity, which were associated with higher food intake and lower energy expenditure. Moreover, these mice showed blunted responses in both food intake and body weight to acute leptin administration. These results demonstrate that GABA plays an important role in mediating leptin action. In combination with the previous studies that leptin reduces GABA release onto proopiomelanocortin neurons through leptin-inhibited neurons and that disruption of GABA release from agouti gene-related protein neurons, one subset of LepR-inhibited neurons, leads to a lean phenotype, our results suggest that, under our experimental conditions, GABA release from leptin-excited neuron dominates over leptin-inhibited ones. PMID:22334723

  6. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  7. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    PubMed

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  8. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  9. Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells.

    PubMed

    Shigemoto, T; Ohmori, H

    1990-01-01

    1. Cholinergic muscarinic agonists applied by the pressure puff method increased intracellular Ca2+ concentration in Fura-2-loaded hair cells. The Ca2+ response outlasted the agonist application. 2. The Ca2+ response induced by acetylcholine (ACh) was ACh dose dependent with a KD of 200 microM. Desensitization was negligible, and almost identical Ca2+ responses were observed when two ACh puffs were separated by 150 s. The response was blocked by d-tubocurarine (dTC). The KD of dTC blocking was 500 microM when 100 microM-ACh induced the Ca2+ response. 3. The amplitude of the ACh-induced Ca2+ responses were potentiated to 3 times the control by incubation with calcitonin gene-related peptide (CGRP; 0.1-1 microM). CGRP did not affect the resting Ca2+ concentration. Glycine (100 microM) potentiated the ACh response to 1.4 times the control, and also increased the resting Ca2+ concentration slightly. 4. The ACh-induced Ca2+ response was suppressed by atropine. It was induced in Ca2(+)-free extracellular medium, and in Ca2(+)-free medium desensitization to a second ACh stimulation was significant. The amplitude of the second Ca2+ response was 44% of the first when two ACh puffs were separated by 117 s in Ca2+ free medium. 5. Muscarine and carbamylcholine induced similar Ca2+ responses, with KD values of 130 microM for muscarine and 340 microM for carbamylcholine. Desensitization of Ca2+ responses was negligible in both agonists. 6. ATP co-exists with ACh in some presynaptic nerve terminals (Burnstock, 1981). Puff-applied ATP (100 microM) generated a Ca2+ response with a rapid rising phase and a following slow phase. In Ca2(+)-free medium the rapid phase disappeared and only the slow phase was observed. The rapid phase is due to the influx of Ca2+ ions and the slow phase is due to a release of Ca2+ ions from an intracellular reservoir. Under voltage clamp ATP induced a fast inward current and a following slow outward current. 7. Nicotine, adenosine, glycine, GABA

  10. Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.

    PubMed

    Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David

    2009-07-30

    Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.

  11. Developmental excitatory-to-inhibitory GABA polarity switch is delayed in Ts65Dn mice, a genetic model of Down syndrome.

    PubMed

    Lysenko, Larisa V; Kim, Jeesun; Madamba, Francisco; Tyrtyshnaia, Anna A; Ruparelia, Aarti; Kleschevnikov, Alexander M

    2018-07-01

    Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABA A agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. γ-Aminobutyric acid (GABA) signalling in plants.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Gilliham, Matthew; Xu, Bo

    2017-05-01

    The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABA A receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.

  13. Central administration of pansomatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats

    PubMed Central

    STENGEL, A.; GOEBEL-STENGEL, M.; WANG, L.; LUCKEY, A.; HU, E.; RIVIER, J.; TACHÉ, Y.

    2011-01-01

    Background Activation of brain somatostatin receptors (sst1-5) with the stable pan-sst1-5 somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. Methods Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. GE of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50 min post surgery. Food intake was monitored for 24h. Key results The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg/rat, i.c.). The selective sst5 agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst1, sst2 or sst4 agonists had no effect. However, the selective sst2 agonist, S-346-011 (1μg/rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys3]-GHRP-6 (0.93 mg/kg, intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. Conclusions & Inferences ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst5. ODT8-SST and the sst2 agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response. PMID:21569179

  14. Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model.

    PubMed

    Brown, Jordan W; Moeller, Achim; Schmidt, Martin; Turner, Sean C; Nimmrich, Volker; Ma, Junli; Rueter, Lynne E; van der Kam, Elizabeth; Zhang, Min

    2016-02-01

    The GABA(B) receptor has been indicated as a promising target for multiple CNS-related disorders. Baclofen, a prototypical orthosteric agonist, is used clinically for the treatment of spastic movement disorders, but is associated with unwanted side-effects, such as sedation and motor impairment. Positive allosteric modulators (PAM), which bind to a topographically-distinct site apart from the orthosteric binding pocket, may provide an improved side-effect profile while maintaining baclofen-like efficacy. GABA, the major inhibitory neurotransmitter in the CNS, plays an important role in the etiology and treatment of seizure disorders. Baclofen is known to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test (AGS), suggesting it may be a suitable assay for assessing pharmacodynamic effects. Little is known about the effects of GABA(B) PAMs, however. The studies presented here sought to investigate the AGS test as a pharmacodynamic (PD) screening model for GABA(B) PAMs by comparing the profile of structurally diverse PAMs to baclofen. GS39783, rac-BHFF, CMPPE, A-1295120 (N-(3-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide), and A-1474713 (N-(3-(4-(4-chlorobenzyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide) all produced robust, dose-dependent anticonvulsant effects; a similar profile was observed with baclofen. Pre-treatment with the GABA(B) antagonist SCH50911 completely blocked the anticonvulsant effects of baclofen and CMPPE in the AGS test, indicating such effects are likely mediated by the GABA(B) receptor. In addition to the standard anticonvulsant endpoint of the AGS test, video tracking software was employed to assess potential drug-induced motor side-effects during the acclimation period of the test. This analysis was sensitive to detecting drug-induced changes in total distance traveled, which was used to establish a therapeutic index (TI = hypoactivity

  15. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction.

    PubMed

    Zhong, Xingguo; Fu, Jie; Song, Kai; Xue, Nairui; Gong, Renhua; Sun, Dengqun; Luo, Huilai; He, Wenzhu; Pan, Xiang; Shen, Bing; Du, Juan

    2016-04-01

    TRPP2 channel protein belongs to the superfamily of transient receptor potential (TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca(2+) release from Ca(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca(2+) imaging and tension measurements to test agonist-induced intracellular Ca(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol (CCh)-evoked Ca(2+) release and extracellular Ca(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor (IP3) production, and 2-aminoethoxydiphenyl borate (2APB), which inhibits IP3 recepor (IP3R) to abolish IP3R-mediated Ca(2+) release. To confirm the role of Ca(2+) release in CCh-induced gallbladder contraction, we used thapsigargin (TG)-to deplete Ca(2+) stores via inhibiting sarco/endoplasmic reticulum Ca(2+)-ATPase and eliminate the role of store-operated Ca(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca(2+) release from intracellular Ca(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.

  16. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Opiate agonist-induced re-distribution of Wntless, a mu-opioid receptor interacting protein, in rat striatal neurons.

    PubMed

    Reyes, B A S; Vakharia, K; Ferraro, T N; Levenson, R; Berrettini, W H; Van Bockstaele, E J

    2012-01-01

    Wntless (WLS), a mu-opioid receptor (MOR) interacting protein, mediates Wnt protein secretion that is critical for neuronal development. We investigated whether MOR agonists induce re-distribution of WLS within rat striatal neurons. Adult male rats received either saline, morphine or [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) directly into the lateral ventricles. Following thirty minutes, brains were extracted and tissue sections were processed for immunogold silver detection of WLS. In saline-treated rats, WLS was distributed along the plasma membrane and within the cytoplasmic compartment of striatal dendrites as previously described. The ratio of cytoplasmic to total dendritic WLS labeling was 0.70±0.03 in saline-treated striatal tissue. Morphine treatment decreased this ratio to 0.48±0.03 indicating a shift of WLS from the intracellular compartment to the plasma membrane. However, following DAMGO treatment, the ratio was 0.85±0.05 indicating a greater distribution of WLS intracellularly. The difference in the re-distribution of the WLS following different agonist exposure may be related to DAMGO's well known ability to induce internalization of MOR in contrast to morphine, which is less effective in producing receptor internalization. Furthermore, these data are consistent with our hypothesis that MOR agonists promote dimerization of WLS and MOR, thereby preventing WLS from mediating Wnt secretion. In summary, our findings indicate differential agonist-induced trafficking of WLS in striatal neurons following distinct agonist exposure. Adaptations in WLS trafficking may represent a novel pharmacological target in the treatment of opiate addiction and/or pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Clozapine and GABA transmission in schizophrenia disease models: establishing principles to guide treatments.

    PubMed

    O'Connor, William T; O'Shea, Sean D

    2015-06-01

    Schizophrenia disease models are necessary to elucidate underlying changes and to establish new therapeutic strategies towards a stage where drug efficacy in schizophrenia (against all classes of symptoms) can be predicted. Here we summarise the evidence for a GABA dysfunction in schizophrenia and review the functional neuroanatomy of five pathways implicated in schizophrenia, namely the mesocortical, mesolimbic, ventral striopallidal, dorsal striopallidal and perforant pathways including the role of local GABA transmission and we describe the effect of clozapine on local neurotransmitter release. This review also evaluates psychotropic drug-induced, neurodevelopmental and environmental disease models including their compatibility with brain microdialysis. The validity of disease models including face, construct, etiological and predictive validity and how these models constitute theories about this illness is also addressed. A disease model based on the effect of the abrupt withdrawal of clozapine on GABA release is also described. The review concludes that while no single animal model is entirely successful in reproducing schizophreniform symptomatology, a disease model based on an ability to prevent and/or reverse the abrupt clozapine discontinuation-induced changes in GABA release in brain regions implicated in schizophrenia may be useful for hypothesis testing and for in vivo screening of novel ligands not limited to a single pharmacological class. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Gamma-hydroxybutyric acid (GHB) and the mesoaccumbens reward circuit: evidence for GABA(B) receptor-mediated effects.

    PubMed

    Pistis, M; Muntoni, A L; Pillolla, G; Perra, S; Cignarella, G; Melis, M; Gessa, G L

    2005-01-01

    Gamma-hydroxybutyric acid (GHB) is a short-chain fatty acid naturally occurring in the mammalian brain, which recently emerged as a major recreational drug of abuse. GHB has multiple neuronal mechanisms including activation of both the GABA(B) receptor, and a distinct GHB-specific receptor. This complex GHB-GABA(B) receptor interaction is probably responsible for the multifaceted pharmacological, behavioral and toxicological profile of GHB. Drugs of abuse exert remarkably similar effects upon reward-related circuits, in particular the mesolimbic dopaminergic system and the nucleus accumbens (NAc). We used single unit recordings in vivo from urethane-anesthetized rats to characterize the effects of GHB on evoked firing in NAc "shell" neurons and on spontaneous activity of antidromically identified dopamine (DA) cells located in the ventral tegmental area. GHB was studied in comparison with the GABA(B) receptor agonist baclofen and antagonist (2S)(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911). Additionally, we utilized a GHB analog, gamma-(p-methoxybenzil)-gamma-hydroxybutyric acid (NCS-435), devoid of GABA(B) binding properties, but with high affinity for specific GHB binding sites. In common with other drugs of abuse, GHB depressed firing in NAc neurons evoked by the stimulation of the basolateral amygdala. On DA neurons, GHB exerted heterogeneous effects, which were correlated to the baseline firing rate of the cells but led to a moderate stimulation of the DA system. All GHB actions were mediated by GABA(B) receptors, since they were blocked by SCH50911 and were not mimicked by NCS-435. Our study indicates that the electrophysiological profile of GHB is close to typical drugs of abuse: both inhibition of NAc neurons and moderate to strong stimulation of DA transmission are distinctive features of diverse classes of abused drugs. Moreover, it is concluded that addictive and rewarding properties of GHB do not necessarily involve a putative high affinity GHB

  20. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    PubMed Central

    Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan

    2018-01-01

    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum. PMID:29706976

  1. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum.

    PubMed

    Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan

    2018-01-01

    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum , are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium . In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum , suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum , are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 ( PUT2-2 ) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum .

  2. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  3. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Rossi, Silvia; Muzio, Luca; De Chiara, Valentina; Grasselli, Giorgio; Musella, Alessandra; Musumeci, Gabriele; Mandolesi, Georgia; De Ceglia, Roberta; Maida, Simona; Biffi, Emilia; Pedrocchi, Alessandra; Menegon, Andrea; Bernardi, Giorgio; Furlan, Roberto; Martino, Gianvito; Centonze, Diego

    2011-07-01

    Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. KK-92A, a novel GABAB receptor positive allosteric modulator, attenuates nicotine self-administration and cue-induced nicotine seeking in rats.

    PubMed

    Li, Xia; Sturchler, Emmanuel; Kaczanowska, Katarzyna; Cameron, Michael; Finn, M G; Griffin, Patrick; McDonald, Patricia; Markou, Athina

    2017-05-01

    GABA B receptors (GABA B R) play a critical role in GABAergic neurotransmission in the brain and are thought to be one of the most promising targets for the treatment of drug addiction. GABA B R positive allosteric modulators (PAMs) have shown promise as potential anti-addictive therapies, as they lack the sedative and muscle relaxant properties of full GABA B receptor agonists such as baclofen. The present study was aimed at developing novel, selective, and potent GABA B R PAMs with efficacy on abuse-related effects of nicotine. We synthetized ~100 analogs of BHF177, a GABA B R PAM that has been shown to inhibit nicotine taking and seeking, and tested their activity in multiple cell-based functional assays. Among these compounds, KK-92A displayed superior PAM properties at the GABA B R. Interestingly, our results revealed the existence of pathway-selective differential modulation of GABA B R signaling by the structurally related GABA B R allosteric modulators BHF177 and KK-92A. In vivo, similarly to BHF177, KK-92A inhibited intravenous nicotine self-administration under both fixed- and progressive-ratio schedules of reinforcement in rats. In contrast to BHF177, KK-92A had no effect on food self-administration. Furthermore, KK-92A decreased cue-induced nicotine-seeking behavior without affecting food seeking. These results indicate that KK-92A is a selective GABA B R PAM with efficacy in inhibition of the primary reinforcing and incentive motivational effects of nicotine, and attenuation of nicotine seeking, further confirming that GABA B R PAMs may be useful antismoking medications.

  5. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration

    PubMed Central

    2012-01-01

    Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and

  6. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependentmore » induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with

  7. Differential blockade of agonist- and depolarization-induced sup 45 Ca2+ influx in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallnoefer, A.C.; Cauvin, C.; Lategan, T.W.

    1989-10-01

    ATP stimulated {sup 45}Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating {sup 45}Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce {sup 45}Ca2+ influx. Stimulation of {sup 45}Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced {sup 45}Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, andmore » Mg2+) were able to inhibit both agonist- and depolarization-induced {sup 45}Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated {sup 45}Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.« less

  8. Influence of benzodiazepines on body weight and food intake in obese and lean Zucker rats.

    PubMed

    Blasi, C

    2000-05-01

    1. The gamma-aminobutyric acid (GABA)-ergic system, which is functionally altered in obese (fa/fa) Zucker rats, plays an important role in controlling energy balance within the central nervous system. 2. GABA receptors seem to be involved in the dysfunction of the hypothalamic energy homeostasis-controlling mechanisms in these animals due to a genetically-induced defect of the leptin-neuropeptide Y system. 3. To shed further light on the possible role played by the GABA system in the pathogenesis of this rat model, two benzodiazepine (BDZ) receptor agonists (diazepam and clonazepam) and one BDZ antagonist (flumazenil) were administered intraperitoneally in obese and lean Zucker rats. 4. Body weight gain was reduced by the BDZ agonists in both phenotypes, and one receptor-agonist (diazepam) lowered insulin concentration in obese rats. In GABA-antagonist-treated obese rats, the daily amount of body weight gain and food intake acquired an oscillatory rhythm similar to that of normal rodents. 5. By demonstrating the role of BDZ receptors, these findings may help clarify the pathophysiology of obesity and insulin resistance in fatty Zucker rats.

  9. Plasticity of rat central inhibitory synapses through GABA metabolism

    PubMed Central

    Engel, Dominique; Pahner, Ingrid; Schulze, Katrin; Frahm, Christiane; Jarry, Hubertus; Ahnert-Hilger, Gudrun; Draguhn, Andreas

    2001-01-01

    The production of the central inhibitory transmitter GABA (γ-aminobutyric acid) varies in response to different patterns of activity. It therefore seems possible that GABA metabolism can determine inhibitory synaptic strength and that presynaptic GABA content is a regulated parameter for synaptic plasticity. We altered presynaptic GABA metabolism in cultured rat hippocampal slices using pharmacological tools. Degradation of GABA by GABA-transaminase (GABA-T) was blocked by γ-vinyl-GABA (GVG) and synthesis of GABA through glutamate decarboxylase (GAD) was suppressed with 3-mercaptopropionic acid (MPA). We measured miniature GABAergic postsynaptic currents (mIPSCs) in CA3 pyramidal cells using the whole-cell patch clamp technique. Elevated intra-synaptic GABA levels after block of GABA-T resulted in increased mIPSC amplitude and frequency. In addition, tonic GABAergic background noise was enhanced by GVG. Electron micrographs from inhibitory synapses identified by immunogold staining for GABA confirmed the enhanced GABA content but revealed no further morphological alterations. The suppression of GABA synthesis by MPA had opposite functional consequences: mIPSC amplitude and frequency decreased and current noise was reduced compared with control. However, we were unable to demonstrate the decreased GABA content in biochemical analyses of whole slices or in electron micrographs. We conclude that the transmitter content of GABAergic vesicles is variable and that postsynaptic receptors are usually not saturated, leaving room for up-regulation of inhibitory synaptic strength. Our data reveal a new mechanism of plasticity at central inhibitory synapses and provide a rationale for the activity-dependent regulation of GABA synthesis in mammals. PMID:11533137

  10. Anxiolytic effect of Kami-Shoyo-San (TJ-24) in mice: possible mediation of neurosteroid synthesis.

    PubMed

    Mizowaki, M; Toriizuka, K; Hanawa, T

    2001-09-21

    We assessed the anxiolytic effect of Kami-Shoyo-San (Jia-wei-xiao-yao-san; TJ-24), one of a traditional Chinese herbal medicine used for the treatment of menopausal anxiety, by the social interaction (SI) test in male mice. Acute administration of TJ-24 (25-100 mg/kg, p.o.), as well as the gamma-amino-butyric acidA/benzodiazepine (GABA(A)/BZP) receptor agonist diazepam (1-3 mg/kg, i.p.), dose dependently increased the SI time, respectively. The GABA(A) receptor antagonist picrotoxin blocked the effects of TJ-24 and diazepam. TJ-24-induced SI behavior was significantly blocked by the GABA(A)/BZP receptor inverse agonist Ro 15-4513 and the GABA(A)/BZP receptor antagonist flumazenil. In addition, 5alpha-reductase inhibitor finasteride potently blocked the effect of TJ-24 without attenuating the basal level by itself. These findings suggest that TJ-24 shows the anxiolytic effect through the neurosteroid synthesis followed by GABA(A)/BDZ receptor stimulations.

  11. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.

    PubMed

    Scarlett, Kisha A; White, El-Shaddai Z; Coke, Christopher J; Carter, Jada R; Bryant, Latoya K; Hinton, Cimona V

    2018-04-01

    G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells

    PubMed Central

    Brocker, Chad N.; Yue, Jiang; Kim, Donghwan; Qu, Aijuan; Bonzo, Jessica A.

    2017-01-01

    Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte (Ppara△Hep)- and macrophage (Ppara△Mac)-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice (Ppara−/−). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara△Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara△Hep and Ppara−/− mice were protected from these effects. Ppara△Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara△Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara−/− mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara△Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara△Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists. PMID

  13. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists

    USDA-ARS?s Scientific Manuscript database

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid red...

  14. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release

    PubMed Central

    2017-01-01

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation. SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these

  15. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.

    PubMed

    Rau, Andrew R; Hentges, Shane T

    2017-08-02

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation. SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these

  16. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy

    PubMed Central

    Yamanaka, Toshiaki; Him, Aydin; Cameron, Susan A; Dutia, Mayank B

    2000-01-01

    The inhibitory effects of the GABAA agonist muscimol and the GABAB agonist baclofen on tonically active medial vestibular nucleus (MVN) neurones were recorded in slices of the rat dorsal brainstem in vitro, to determine whether any changes occurred in the functional efficacy of GABAergic inhibition in these cells during the initial rapid stage of ‘vestibular compensation’, the behavioural recovery that takes place after unilateral labyrinthectomy (UL). These experiments were carried out in preparations where the midline was cut, severing all commissural connections between the two vestibular nuclei. Slices of the MVN were prepared from normal animals and animals that had been unilaterally labyrinthectomised 4 h earlier. The mean in vitro discharge rate of MVN neurones in the rostral region of the ipsi-lesional nucleus after UL was significantly higher than that in control slices, confirming our earlier reports of an increase in intrinsic excitability of these cells in the early stage of vestibular compensation. The in vitro discharge rates of caudal ipsi-lesional MVN cells, and rostral and caudal contra-lesional MVN cells, were not different from controls. Muscimol and baclofen caused reversible, dose-related inhibition of the tonic discharge rate of MVN cells in control slices. In slices prepared from UL animals, MVN cells in the rostral region of the ipsi-lesional nucleus showed a marked downregulation of their response to both muscimol and baclofen, seen as a rightward shift and a decrease in slope of the dose-response relationships for the two agonists. In the contra-lesional nucleus, there was a small but significant upregulation of the responsiveness of both rostral and caudal MVN cells to baclofen, and a marked upregulation of the responsiveness of caudal MVN cells to muscimol. In slices from animals that had undergone bilateral labyrinthectomy 4 h earlier, the downregulation of the functional efficacy of GABA receptors in the rostral MVN cells did not

  17. Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA.

    PubMed

    Iwabuchi, Sarina J; Raschke, Felix; Auer, Dorothee P; Liddle, Peter F; Lankappa, Sudheer T; Palaniyappan, Lena

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used worldwide to treat depression. However, the exact physiological effects are not well understood. Pathophysiology of depression involves crucial limbic structures (e.g. insula), and it is still not clear if these structures can be modulated through neurostimulation of surface regions (e.g. dorsolateral prefrontal cortex, DLPFC), and whether rTMS-induced excitatory/inhibitory transmission alterations relate to fronto-limbic connectivity changes. Therefore, we sought proof-of-concept for neuromodulation of insula via prefrontal intermittent theta-burst stimulation (iTBS), and how these effects relate to GABAergic and glutamatergic systems. In 27 healthy controls, we employed a single-blind crossover randomised-controlled trial comparing placebo and real iTBS using resting-state functional MRI and magnetic resonance spectroscopy. Granger causal analysis was seeded from right anterior insula (rAI) to locate individualized left DLPFC rTMS targets. Effective connectivity coefficients within rAI and DLPFC were calculated, and levels of GABA/Glx, GABA/Cr and Glx/Cr in DLPFC and anterior cingulate voxels were also measured. ITBS significantly dampened fronto-insular connectivity and reduced GABA/Glx in both voxels. GABA/Glx had a significant mediating effect on iTBS-induced changes in DLPFC-to-rAI connectivity. We demonstrate modulation of the rAI using targeted iTBS through alterations of excitatory/inhibitory interactions, which may underlie therapeutic effects of rTMS, offering promise for rTMS treatment optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G

  19. Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding

    PubMed Central

    Navarro-Polanco, Ricardo A; Galindo, Eloy G Moreno; Ferrer-Villada, Tania; Arias, Marcelo; Rigby, J Ryan; Sánchez-Chapula, José A; Tristani-Firouzi, Martin

    2011-01-01

    Abstract The ability to sense transmembrane voltage is a central feature of many membrane proteins, most notably voltage-gated ion channels. Gating current measurements provide valuable information on protein conformational changes induced by voltage. The recent observation that muscarinic G-protein-coupled receptors (GPCRs) generate gating currents confirms their intrinsic capacity to sense the membrane electrical field. Here, we studied the effect of voltage on agonist activation of M2 muscarinic receptors (M2R) in atrial myocytes and how agonist binding alters M2R gating currents. Membrane depolarization decreased the potency of acetylcholine (ACh), but increased the potency and efficacy of pilocarpine (Pilo), as measured by ACh-activated K+ current, IKACh. Voltage-induced conformational changes in M2R were modified in a ligand-selective manner: ACh reduced gating charge displacement while Pilo increased the amount of charge displaced. Thus, these ligands manifest opposite voltage-dependent IKACh modulation and exert opposite effects on M2R gating charge displacement. Finally, mutations in the putative ligand binding site perturbed the movement of the M2R voltage sensor. Our data suggest that changes in voltage induce conformational changes in the ligand binding site that alter the agonist–receptor interaction in a ligand-dependent manner. Voltage-dependent GPCR modulation has important implications for cellular signalling in excitable tissues. Gating current measurement allows for the tracking of subtle conformational changes in the receptor that accompany agonist binding and changes in membrane voltage. PMID:21282291

  20. β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D

    PubMed Central

    Trian, Thomas; Burgess, Janette K.; Niimi, Kyoko; Moir, Lyn M.; Ge, Qi; Berger, Patrick; Liggett, Stephen B.; Black, Judith L.; Oliver, Brian G.

    2011-01-01

    Background and Objective Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. Objective To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism. Methods We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined. Results In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM. Conclusion Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed. PMID:21611147

  1. Effects of intraperitoneal administration of the GABA B receptor agonist baclofen on food intake in rats measured under different feeding conditions.

    PubMed

    Ebenezer, Ivor S; Patel, Sunit M

    2011-02-25

    The effects of intraperitoneal (i.p.) administration of the GABA(B) receptor agonist baclofen were assessed in rats under different feeding conditions. In Experiment 1, it was observed that baclofen (1-4 mg/kg) significantly (at least, P<0.05) increased cumulative food intake in non-deprived rats during the 120 min measurement period during the early light phase of the light-dark cycle. By contrast, during the early dark phase of the light-dark cycle in non-deprived rats, the 1mg/kg doses of baclofen significantly increased cumulative feeding at 30, 60 and 120 min (at least P<0.05), the 2mg/kg dose significantly increased feeding at 30 and 60 min (at least P<0.05) and the 4 mg/kg dose had no effects on feeding. In Experiment 2, baclofen (1-4 mg/kg) was found to produce no significant effects on food intake in rats that were food-deprived for 22 h. In Experiment 3, the effects of baclofen were investigated on food intake in 16 h food-deprived rats that had received an oral preload for 2h prior to drug administration. Baclofen (1-4 mg/kg) significantly increased cumulative food consumption (at least, P<0.05) only during the first 30 min after administration in these animals. The results of this study indicate that the effects of baclofen on food intake may be related to the state of hunger or satiety of the animals and the time during the light-dark cycle when the drug is administered. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity

    PubMed Central

    Sottili, Mariangela; Gerini, Chiara; Desideri, Isacco; Bastida, Cinzia; Pallotta, Stefania; Castiglione, Francesca; Bonomo, Pierluigi; Meattini, Icro; Greto, Daniela; Cappelli, Sabrina; Di Brina, Lucia; Loi, Mauro; Biti, Giampaolo; Livi, Lorenzo

    2016-01-01

    Objective Because of its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-neoplastic properties, the PPAR-γ agonist rosiglitazone is an interesting drug for investigating for use in the prevention and treatment of radiation-induced intestinal damage. We aimed to evaluate the radioprotective effect of rosiglitazone in a murine model of acute intestinal damage, assessing whether radioprotection is selective for normal tissues or also occurs in tumour cells. Methods Mice were total-body irradiated (12 Gy), with or without rosiglitazone (5 mg/kg/day). After 24 and 72 hours, mice were sacrificed and the jejunum was collected. HT-29 human colon cancer cells were irradiated with a single dose of 2 (1000 cells), 4 (1500 cells) or 6 (2000 cells) Gy, with or without adding rosiglitazone (20 µM) 1 hour before irradiation. HT-29-xenografted CD1 mice were irradiated (16 Gy) with or without rosiglitazone; tumour volumes were measured for 33 days. Results Rosiglitazone markedly reduced histological signs of altered bowel structures, that is, villi shortening, submucosal thickening, necrotic changes in crypts, oedema, apoptosis, and inflammatory infiltrate induced by irradiation. Rosiglitazone significantly decreased p-NF-kB p65 phosphorylation and TGFβ protein expression at 24 and 72 hours post-irradiation and significantly decreased gene expression of Collagen1, Mmp13, Tnfα and Bax at 24 hours and p53 at 72 hours post-irradiation. Rosiglitazone reduced HT-29 clonogenic survival, but only produced a slight reduction of xenograft tumour growth. Conclusion Rosiglitazone exerts a protective effect on normal tissues and reduces alterations in bowel structures and inflammation in a radiation-induced bowel toxicity model, without interfering with the radiation effect on HT-29 cancer cells. PPAR-γ agonists should be further investigated for their application in abdominal and pelvic irradiation. PMID:28344789

  3. Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor

    PubMed Central

    Ghanouni, Pejman; Steenhuis, Jacqueline J.; Farrens, David L.; Kobilka, Brian K.

    2001-01-01

    The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands. PMID:11353823

  4. Microdose gonadotropin-releasing hormone agonist in the absence of exogenous gonadotropins is not sufficient to induce multiple follicle development.

    PubMed

    Chung, Karine; Fogle, Robin; Bendikson, Kristin; Christenson, Kamilee; Paulson, Richard

    2011-01-01

    Because the effectiveness of the "microdose flare" stimulation protocol often is attributed to the dramatic endogenous gonadotropin release induced by the GnRH agonist, the aim of this study was to determine whether use of microdose GnRH agonist alone could induce multiple ovarian follicle development in normal responders. Based on these data, the duration of gonadotropin rise is approximately 24 to 48 hours and is too brief to sustain continued multiple follicle growth. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Orexin A-induced anxiety-like behavior is mediated through GABA-ergic, α- and β-adrenergic neurotransmissions in mice.

    PubMed

    Palotai, Miklós; Telegdy, Gyula; Jászberényi, Miklós

    2014-07-01

    Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30min prior to the intracerebroventricular administration of orexin A. The EPM test started 30min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open+closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri.

    PubMed

    Mathew, Jobin; Gangadharan, Gireesh; Kuruvilla, Korah P; Paulose, C S

    2011-01-01

    In the present study, alterations of the General GABA and GABA(A) receptors in the hippocampus of pilocarpine-induced temporal lobe epileptic rats and the therapeutic application of Bacopa monnieri and its active component Bacoside-A were investigated. Bacopa monnieri (Linn.) is a herbaceous plant belonging to the family Scrophulariaceae. Hippocampus is the major region of the brain belonging to the limbic system and plays an important role in epileptogenesis, memory and learning. Scatchard analysis of [³H]GABA and [³H]bicuculline in the hippocampus of the epileptic rat showed significant decrease in B(max) (P < 0.001) compared to control. Real Time PCR amplification of GABA(A) receptor sub-units such as GABA(Aά₁), GABA(Aά₅) GABA(Aδ), and GAD were down regulated (P < 0.001) in the hippocampus of the epileptic rats compared to control. GABA(Aγ) subunit was up regulated. Epileptic rats have deficit in the radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses all these changes near to control. Our results suggest that decreased GABA receptors in the hippocampus have an important role in epilepsy associated behavioral deficit, Bacopa monnieri and Bacoside-A have clinical significance in the management of epilepsy.

  7. Potentiation of adenosine A1 receptor agonist CPA-induced antinociception by paeoniflorin in mice.

    PubMed

    Liu, Da-Zhi; Zhao, Fei-Li; Liu, Jing; Ji, Xin-Quan; Ye, Yang; Zhu, Xing-Zu

    2006-08-01

    The effect of paeoniflorin (PF), a major constituent isolated from Paeony radix, on N6-Cyclopentyladenosine (CPA), a selective adenosine A1 receptor (A1 receptor) agonist, induced antinociception was examined in mice. In the tail-pressure test, CPA (0.05, 0.1, 0.2 mg/kg, s.c.) could induce antinociception in a dose-dependent manner. PF (5, 10, 20 mg/kg, s.c.) alone failed to exhibit any antinociceptive effect in mice; however, pretreatment of PF (20 mg/kg, s.c.) could significantly enhance CPA-induced antinociception. Additionally, pretreatment of 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.25 mg/kg, s.c.), a selective A1 receptor antagonist, could antagonize the antinociceptive effect of combining CPA with PF. Furthermore, in the competitive binding experiments, PF did not displace the binding of [3H]-8-Cyclopentyl-1,3-dipropylxanthine ([3H]-DPCPX) but displaced that of [3H]-2-Chloro-N6-cyclopentyladenosine ([3H]-CCPA, a selective A1 receptor agonist) to the membrane preparation of rat cerebral cortex. These results suggested that PF might selectively increase the binding and antinociceptive effect of CPA by binding with A1 receptor.

  8. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    PubMed

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  9. The evolution of histamine H₃ antagonists/inverse agonists.

    PubMed

    Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W

    2011-01-01

    This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.

  10. Centrifuge-induced hypergravity: [ 3H]GABA and L-[ 14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Himmelreich, N. H.

    The effects of centrifuge-induced hypergravity on the presynaptic events have been investigated in order to provide further insight into regulation of glutamate and GABA neurotransmission and correlation between excitatory and inhibitory responses under artificial gravity conditions. Exposure of animals to hypergravity (centrifugation of rats at 10 G for 1 h) has been found to cause changes in the synaptic processes of brain, in particular neurotransmitter release and uptake in rat brain synaptosomes. Hypergravity loading resulted in more than two-fold enhancement of GABA transporter activity ( Vmax increased from 1.4 ± 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for the animals exposed to hypergravity ( P ⩽ 0.05)). The maximal velocity of L-[ 14C]glutamate uptake decreased from 12.5 ± 3.2 to 5.6 ± 0.9 nmol/min/mg of protein under artificial gravity conditions. Depolarization-evoked exocytotic release of the neurotransmitters has also changed in response to hypergravity. It increased for GABA (7.2 ± 0.54% and 11.74 ± 1.2% of total accumulated label for control and hypergravity, respectively ( P ⩽ 0.05)), but reduced for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%, for control and hypergravity, respectively). Thus, comparative analysis of the neurotransmitter uptake and release has demonstrated that short-term centrifuge-induced 10 G hypergravity loading intensified inhibitory and attenuated excitatory processes in nerve terminals. The activation or reduction of neurotransmitter uptake appeared to be coupled with similarly directed alterations of the neurotransmitter release.

  11. The Gamma-Aminobutyric Acid B Receptor in Depression and Reward.

    PubMed

    Jacobson, Laura H; Vlachou, Styliani; Slattery, David A; Li, Xia; Cryan, John F

    2018-06-01

    The metabotropic gamma-aminobutyric acid B (GABA B ) receptor was the first described obligate G protein-coupled receptor heterodimer and continues to set the stage for discoveries in G protein-coupled receptor signaling complexity. In this review, dedicated to the life and work of Athina Markou, we explore the role of GABA B receptors in depression, reward, and the convergence of these domains in anhedonia, a shared symptom of major depressive disorder and withdrawal from drugs of abuse. GABA B receptor expression and function are enhanced by antidepressants and reduced in animal models of depression. Generally, GABA B receptor antagonists are antidepressant-like and agonists are pro-depressive. Exceptions to this rule likely reflect the differential influence of GABA B1 isoforms in depression-related behavior and neurobiology, including the anhedonic effects of social stress. A wealth of data implicate GABA B receptors in the rewarding effects of drugs of abuse. We focus on nicotine as an example. GABA B receptor activation attenuates, and deactivation enhances, nicotine reward and associated neurobiological changes. In nicotine withdrawal, however, GABA B receptor agonists, antagonists, and positive allosteric modulators enhance anhedonia, perhaps owing to differential effects of GABA B1 isoforms on the dopaminergic system. Nicotine cue-induced reinstatement is more reliably attenuated by GABA B receptor activation. Separation of desirable and undesirable side effects of agonists is achievable with positive allosteric modulators, which are poised to enter clinical studies for drug abuse. GABA B1 isoforms are key to understanding the neurobiology of anhedonia, whereas allosteric modulators may offer a mechanism for targeting specific brain regions and processes associated with reward and depression. Copyright © 2018 Society of Biological Psychiatry. All rights reserved.

  12. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region.

    PubMed

    Hennenberg, Martin; Tamalunas, Alexander; Wang, Yiming; Keller, Patrick; Schott, Melanie; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Rutz, Beata; Ciotkowska, Anna; Stief, Christian G; Gratzke, Christian

    2017-05-15

    Male lower urinary tract symptoms (LUTS) due to bladder outlet obstruction are characterized by abnormal smooth muscle contractions in the lower urinary tract. Alpha 1 -adrenoceptor antagonists may induce smooth muscle relaxation in the outflow region and represent the current gold standard of medical treatment. However, results may be unsatisfactory or inadequate. Apart from α 1 -adrenoceptor agonists, smooth muscle contraction in the outflow region may be induced by thromboxane A 2 (TXA 2 ), endothelins, or muscarinic receptor agonists. Here, we studied effects of the thromboxane A 2 receptor (TP receptor) antagonist picotamide on contraction in the human male bladder trigone and prostate. Carbachol, the α 1 -adrenoceptor agonist phenylephrine, the thromboxane A 2 analog U46619, and electric field stimulation (EFS) induced concentration- or frequency-dependent contractions of trigone tissues in an organ bath. Picotamide (300µM) inhibited carbachol-, phenylephrine-, U46619-, and EFS-induced contractions. Endothelins 1-3 induced concentration-dependent contractions of prostate tissues, which were inhibited by picotamide. Analyses using real time polymerase chain reaction and antibodies suggested expression of thromboxane A 2 receptors and synthase in trigone smooth muscle cells. Thromboxane B 2 (the stable metabolite of thromboxane A 2 ) was detectable by enzyme immune assay in trigone samples, with most values ranging between 50 and 150pg/mg trigone protein. Picotamide inhibits contractions induced by different stimuli in the human lower urinary tract, including cholinergic, adrenergic, thromboxane A 2 - and endothelin-induced, and neurogenic contractions in different locations of the outflow region. This distinguishes picotamide from current medical treatments for LUTS, and suggests that picotamide may induce urodynamic effects in vivo. Copyright © 2017. Published by Elsevier B.V.

  13. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder

    PubMed Central

    Brady, Roscoe O; McCarthy, Julie M; Prescot, Andrew P; Jensen, J Eric; Cooper, Alissa J; Cohen, Bruce M; Renshaw, Perry F; Ongür, Dost

    2017-01-01

    Objectives Gamma-aminobutyric acid (GABA) abnormalities have been implicated in bipolar disorder. However, due to discrepant studies measuring postmortem, cerebrospinal fluid, plasma, and in vivo brain levels of GABA, the nature of these abnormalities is unclear. Using proton magnetic resonance spectroscopy, we investigated tissue levels of GABA in the anterior cingulate cortex and parieto-occipital cortex of participants with bipolar disorder and healthy controls. Methods Fourteen stably medicated euthymic outpatients with bipolar disorder type I (mean age 32.6 years, eight male) and 14 healthy control participants (mean age 36.9 years, 10 male) completed a proton magnetic resonance spectroscopy scan at 4-Tesla after providing informed consent. We collected data from two 16.7-mL voxels using MEGAPRESS, and they were analyzed using LCModel. Results GABA/creatine ratios were elevated in bipolar disorder participants compared to healthy controls [F(1,21) = 4.4, p = 0.048] in the anterior cingulate cortex (25.1% elevation) and the parieto-occipital cortex (14.6% elevation). Bipolar disorder participants not taking GABA-modulating medications demonstrated greater GABA/creatine elevations than patients taking GABA-modulating medications. Conclusions We found higher GABA/creatine levels in euthymic bipolar disorder outpatients compared to healthy controls, and the extent of this elevation may be affected by the use of GABA-modulating medications. Our findings suggest that elevated brain GABA levels in bipolar disorder may be associated with GABAergic dysfunction and that GABA-modulating medications reduce GABA levels in this condition. PMID:23634979

  14. Effects of AMPA receptor antagonist, NBQX, and extrasynaptic GABAA agonist, THIP, on social behavior of adolescent and adult rats.

    PubMed

    Dannenhoffer, Carol A; Varlinskaya, Elena I; Spear, Linda Patia

    2018-05-22

    Adolescence is characterized by high significance of social interactions, along with a propensity to exhibit social facilitating effects of ethanol while being less sensitive than adults to the inhibition of social behavior that emerges at higher doses of ethanol. Among the neural characteristics of adolescence are generally enhanced levels of glutamatergic (especially NMDA receptor) activity relative to adults, whereas the GABA system is still developmentally immature. Activation of NMDA receptors likely plays a role in modulation of social behavior in adolescent animals as well as in socially facilitating and suppressing effects of ethanol. For instance, adolescent and adult rats differ in their sensitivities to the effects of NMDA antagonists and ethanol on social behavior, with adolescents but not adults demonstrating social facilitation at lower doses of both drugs and adults being more sensitive to the socially suppressing effects evident at higher doses of each. The roles of AMPA and extrasynaptic GABA A receptors in modulation of social behavior during adolescence and in adulthood are still unknown. The present study was designed to assess whether pharmacological blockade of AMPA receptors and/or activation of extrasynaptic GABA A receptors results in age-dependent alterations of social behavior. Adolescent and adult male and female Sprague-Dawley rats were injected with an assigned dose of either a selective AMPA antagonist, NBQX (Experiment 1) or extrasynaptic GABA A agonist, THIP (Experiment 2) and placed into a modified social interaction chamber for a 30-min habituation period prior to a 10-min social interaction test with a novel age- and sex-matched partner. Behaviors such as social investigation, contact behavior and play behavior were scored from video recordings of the interaction tests. In Experiment 1, NBQX produced similar social inhibition at higher doses in both age groups. In Experiment 2, THIP induced inhibition in adolescents, but not

  15. Protein kinase and phosphatase modulation of quail brain GABA(A) and non-NMDA receptors co-expressed in Xenopus oocytes.

    PubMed

    Moon, C; Fraser, S P; Djamgoz, M B

    2000-02-01

    The GABA(A) receptor and the non-NMDA subtype of the ionotropic glutamate receptor were co-expressed in Xenopus oocytes by injection of quail brain mRNA. The oocytes were treated with various protein kinase (PK) and protein phosphatase (PP) activators and inhibitors and the effects on receptor functioning were monitored. Two phorbol esters, 4-beta-phorbol 12-myristate-13-acetate (PMA) and 4-beta-phorbol 12,13-dibutyrate (PDBu); the cGMP-dependent PK activators sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG); and the PP inhibitor okadaic acid (OA) reduced the amplitude of the GABA-induced currents, whilst the PK inhibitor staurosporine potentiated it. In addition, PMA, PDBu, SNP, and OA reduced the desensitization of the GABA-induced response. Identical treatments generally had similar but less pronounced effects on responses generated by kainate (KA) but the desensitization characteristic of the non-NMDA receptor was not affected. None of the treatments had any effect on the reversal potentials of the induced currents. Immunoblots revealed that the oocytes express endogenous PKG and guanylate cyclase. The results are discussed in terms of the molecular structures of GABA(A) and non-NMDA receptors and the potential functional consequences of phosphorylation/dephosphorylation.

  16. Activation of VTA GABA neurons disrupts reward consumption

    PubMed Central

    van Zessen, Ruud; Phillips, Jana L.; Budygin, Evgeny A.; Stuber, Garret D.

    2012-01-01

    The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors. PMID:22445345

  17. Effect of oral administration of GABA on temperature regulation in humans during rest and exercise at high ambient temperature.

    PubMed

    Miyazawa, Taiki; Kawabata, Takashi; Suzuki, Takashi; Imai, Daiki; Hamamoto, Takeshi; Yoshikawa, Takahiro; Miyagawa, Toshiaki

    2009-12-01

    Centric administration of gamma-aminobutyric acid (GABA) has been implicated to affect temperature regulation in animals during rest or under anesthesia. However, there are few reports concerning the effects of the oral administration of GABA on temperature regulation in humans during rest and exercise. In order to clarify the effects and underlying mechanisms, we measured several parameters related to temperature regulation of humans during rest and exercise at high ambient temperature (35 degrees C). On two occasions, eight endurance-trained men rested for 20 min and cycled at 65% VO2peak for 30 min. In control trial (trial-C), subjects drank the sample which was a sports drink of 200 mL (placebo) before the rest period. In another trial (trial-G), subjects drank the sample which was a sports drink containing 1000 mg of GABA (GABA drink) before the rest period. In trial-G, the plasma GABA concentrations were maintained higher than those in trial-C during the experiment. An increase of esophageal temperature during rest and exercise was inhibited in trial-G. Sweat rate, and plasma catecholamine concentrations during exercise were inhibited in trial-G. Esophageal temperature inhibition is suggested to be induced by the suppression of cold-sensitive neurons during rest, and the inhibition of plasma catecholamine concentrations caused by the GABA-induced attenuation of the sympathetic nervous system during exercise.

  18. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  19. Mechanism of Inactivation of GABA Aminotransferase by (E)- and (Z)-(1S,3S)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic Acid

    PubMed Central

    Lee, Hyunbeom; Le, Hoang V.; Wu, Rui; Doud, Emma; Sanishvili, Ruslan; Kellie, John F.; Compton, Phillip D.; Pachaiyappan, Boobalan; Liu, Dali; Kelleher, Neil L.

    2015-01-01

    When γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, falls below a threshold level, seizures occur. One approach to raise GABA concentrations is to inhibit GABA aminotransferase (GABA-AT), a pyridoxal 5’-phosphate-dependent enzyme that degrades GABA. We have previously developed (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115), which is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. We also developed (E)- and (Z)-(1S,3S)-3-amino-4-fluoromethylenyl-1-cyclopentanoic acid (1 and 2, respectively), monofluorinated analogs of CPP-115, which are comparable to vigabatrin in inactivating GABA-AT. Here we report the mechanism of inactivation of GABA-AT by 1 and 2. Both produce a metabolite that induces disruption of the Glu270-Arg445 salt bridge to accommodate interaction between the metabolite formyl group and Arg445. This is the second time that Arg445 has interacted with a ligand and is involved in GABA-AT inactivation, thereby confirming the importance of Arg445 in future inactivator design. PMID:26110556

  20. Mechanism of Inactivation of GABA Aminotransferase by (E)- and (Z)-(1S,3S)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic Acid.

    PubMed

    Lee, Hyunbeom; Le, Hoang V; Wu, Rui; Doud, Emma; Sanishvili, Ruslan; Kellie, John F; Compton, Phillip D; Pachaiyappan, Boobalan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-09-18

    When γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, falls below a threshold level, seizures occur. One approach to raise GABA concentrations is to inhibit GABA aminotransferase (GABA-AT), a pyridoxal 5'-phosphate-dependent enzyme that degrades GABA. We have previously developed (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115), which is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. We also developed (E)- and (Z)-(1S,3S)-3-amino-4-fluoromethylenyl-1-cyclopentanoic acid (1 and 2, respectively), monofluorinated analogs of CPP-115, which are comparable to vigabatrin in inactivating GABA-AT. Here, we report the mechanism of inactivation of GABA-AT by 1 and 2. Both produce a metabolite that induces disruption of the Glu270-Arg445 salt bridge to accommodate interaction between the metabolite formyl group and Arg445. This is the second time that Arg445 has interacted with a ligand and is involved in GABA-AT inactivation, thereby confirming the importance of Arg445 in future inactivator design.

  1. Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver

    PubMed Central

    Rogue, Alexandra; Spire, Catherine; Brun, Manuel; Claude, Nancy; Guillouzo, André

    2010-01-01

    Thiazolidinediones are a class of Peroxisome Proliferator Activated Receptor γ (PPARγ) agonists that reduce insulin resistance in type 2 diabetic patients. Although no detectable hepatic toxicity has been evidenced in animal studies during preclinical trials, these molecules have nevertheless induced hepatic adverse effects in some treated patients. The mechanism(s) of hepatotoxicity remains equivocal. Several studies have been conducted using PCR analysis and microarray technology to identify possible target genes and here we review the data obtained from various in vivo and in vitro experimental models. Although PPARγ is expressed at a much lower level in liver than in adipose tissue, PPARγ agonists exert various PPARγ-dependent effects in liver in addition to PPARγ-independent effects. Differences in effects are dependent on the choice of agonist and experimental conditions in rodent animal studies and in rodent and human liver cell cultures. These effects are much more pronounced in obese and diabetic liver. Moreover, our own recent studies have shown major interindividual variability in the response of primary human hepatocyte populations to troglitazone treatment, supporting the occurrence of hepatotoxicity in only some individuals. PMID:20981297

  2. Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.

    PubMed

    Yoshihara, Shigemi; Morimoto, Hiroshi; Ohori, Makoto; Yamada, Yumi; Abe, Toshio; Arisaka, Osamu

    2005-09-01

    Although neurogenic inflammation via the activation of C fibers in the airway must have an important role in the pathogenesis of asthma, their regulatory mechanism remains uncertain. The pharmacological profiles of endogenous cannabinoid receptor agonists on the activation of C fibers in airway tissues were investigated and the mechanisms how cannabinoids regulate airway inflammatory reactions were clarified. The effects of endogenous cannabinoid receptor agonists on electrical field stimulation-induced bronchial smooth muscle contraction, capsaicin-induced bronchoconstriction and capsaicin-induced substance P release in guinea pig airway tissues were investigated. The influences of cannabinoid receptor antagonists and K+ channel blockers to the effects of cannabinoid receptor agonists on these respiratory reactions were examined. Both endogenous cannabinoid receptor agonists, anandamide and palmitoylethanolamide, inhibited electrical field stimulation-induced guinea pig bronchial smooth muscle contraction, but not neurokinin A-induced contraction. A cannabinoid CB2 antagonist, SR 144528, reduced the inhibitory effect of endogenous agonists, but not a cannabinoid CB1 antagonist, SR 141716A. Inhibitory effects of agonists were also reduced by the pretreatment of large conductance Ca2+ -activated K+ channel (maxi-K+ channel) blockers, iberiotoxin and charybdotoxin, but not by other K+ channel blockers, dendrotoxin or glibenclamide. Anandamide and palmitoylethanolamide blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea pig airway tissues. Additionally, intravenous injection of palmitoylethanolamide dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, but not neurokinin A-induced reaction. However, anandamide did not reduce capsaicin-induced guinea pig bronchoconstriction. These findings suggest that endogenous cannabinoid receptor agonists inhibit the activation of C fibers via cannabinoid CB2 receptors and

  3. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  4. Evidence of two populations of GABA(A) receptors in cerebellar granule cells in culture: different desensitization kinetics, pharmacology, serine/threonine kinase sensitivity, and localization.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1999-12-20

    GABA(A) receptors of rat cerebellar granule cells in culture have been studied by the whole cell patch clamp technique. The biphasic desensitization kinetic observed could be due either to different desensitization mechanisms of a single receptor population or to different receptor populations. The overall data indicate that the latter hypothesis is most probably the correct one. In fact, the fast desensitizing component was selectively potentiated by a benzodiazepine agonist and preferentially down-regulated by activation of the protein serine/threonine kinases A and G, as a consequence of the latter characteristic that receptor population was preferentially down-regulated by previous activation of N-methyl-d-aspartate glutamate receptors, via production of nitric oxide and PKG activation, most probably in dendrites. The other population is benzodiazepine insensitive and not influenced by activation of PKA or PKG. This slowly desensitizing population may correspond to the extrasynaptic delta subunit containing GABA(A) receptors described by other authors. Instead, the rapidly desensitizing population appears to represent dendritic synaptic GABA(A) receptors. Copyright 1999 Academic Press.

  5. Design and Mechanism of Tetrahydrothiophene-based GABA Aminotransferase Inactivators

    PubMed Central

    Le, Hoang V.; Hawker, Dustin D.; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-01

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally-restricted, tetrahydrothiophene-based GABA analogs with a properly-positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is eight times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bond interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O=C interaction with Glu-270, thereby inactivating the enzyme. PMID:25781189

  6. Big GABA: Edited MR spectroscopy at 24 research sites.

    PubMed

    Mikkelsen, Mark; Barker, Peter B; Bhattacharyya, Pallab K; Brix, Maiken K; Buur, Pieter F; Cecil, Kim M; Chan, Kimberly L; Chen, David Y-T; Craven, Alexander R; Cuypers, Koen; Dacko, Michael; Duncan, Niall W; Dydak, Ulrike; Edmondson, David A; Ende, Gabriele; Ersland, Lars; Gao, Fei; Greenhouse, Ian; Harris, Ashley D; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F A; Kangarlu, Alayar; Lange, Thomas; Lebel, R Marc; Li, Yan; Lin, Chien-Yuan E; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D; Oeltzschner, Georg; Prisciandaro, James J; Puts, Nicolaas A J; Roberts, Timothy P L; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G; Schallmo, Michael-Paul; Simard, Nicholas; Swinnen, Stephan P; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D; Wittsack, Hans-Jörg; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J; Edden, Richard A E

    2017-10-01

    Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community

  7. Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers.

    PubMed

    Nutt, David; Wilson, Sue; Lingford-Hughes, Anne; Myers, Jim; Papadopoulos, Andreas; Muthukumaraswamy, Suresh

    2015-01-01

    A range of medications target different aspects of the GABA system; understanding their effects is important to inform further drug development. Effects on the waking EEG comparing these mechanisms have not been reported; in this study we compare the effects on resting MEG spectra of the benzodiazepine receptor agonist zolpidem, the delta sub-unit selective agonist gaboxadol (also known as THIP) and the GABA reuptake inhibitor tiagabine. These were two randomised, single-blind, placebo-controlled, crossover studies in healthy volunteers, one using zolpidem 10 mg, gaboxadol 15 mg and placebo, and the other tiagabine 15 mg and placebo. Whole head MEG recordings and individual MEG spectra were divided into frequency bands. Baseline spectra were subtracted from each post-intervention spectra and then differences between intervention and placebo compared. After zolpidem there were significant increases in beta frequencies and reduction in alpha frequency power; after gaboxadol and tiagabine there were significant increases in power at all frequencies up to beta. Enhancement of tonic inhibition via extrasynaptic receptors by gaboxadol gives rise to a very different MEG signature from the synaptic action of zolpidem. Tiagabine theoretically can affect both types of receptor; from these MEG results it is likely that the latter is the more prominent effect here. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. MEDU-05. THE ROLE OF GABA METABOLISM IN MEDULLOBLASTOMA

    PubMed Central

    Martirosian, Vahan; Deshpande, Krutika; Shackelford, Gregory; Julian, Alex; Lin, Michelle; Erdreich-Epstein, Anat; Chen, Thomas; Neman, Josh

    2017-01-01

    Abstract BACKGROUND: Brain tumors are the most common cause of childhood oncological death, and medulloblastoma (originating in the cerebellum) is the most common malignant pediatric brain tumor. In the microenvironment of the brain, especially the cerebellum, variables related to GABA, the major inhibitory neurotransmitter in the nervous system, are particularly prominent. Abnormal GABAergic Receptor activation has been described in in aggressive MYC-driven Group 3 medulloblastoma. However these studies did not look at the metabolic contribution of GABA for the development of medulloblastomas. In addition to its role in neurotransmission through GABA receptor, GABA can act as a trophic factor during nervous system development to influence cellular events including proliferation, migration, differentiation, synapse maturation, and cell death. Under conditions that inhibit the tricarboxylic acid cycle (TCA), impair respiration, and enhance the accumulation of reactive oxygen intermediates, GABA can be used as an NADH energy source for growth through the GABA-shunt pathway regulators (ABAT, SSADH, GAT-1, GAT-3). Therefore, we hypothesize that blocking GABA-metabolic-shunt will lead to growth suppression and invasiveness of medulloblastoma in the cerebellar GABA-rich microenvironment. RESULTS: Our results show RNA microarray from patient medulloblastoma tissue have high expression of GABA-shunt regulators with ~3-fold increase in the expression of ABAT in MYC amplified versus non-amplified MYC tumors. When medulloblastomas were supplemented with GABA, there was a significant fold change in expression of GABA-shunt mediators and induction of large and stable tumor spheres with Epithelial-Mesenchymal Transition gene expression signature. We next investigated whether a novel perrilyl alcohol-based small molecule NEO216 targeted the GABA-shunt metabolic pathway. NEO216 administration significantly reduced GABA-mediated NADH levels, reversed EMT-profiling, leading to loss

  9. The effects of BMY-14802 against L-DOPA- and dopamine agonist-induced dyskinesia in the hemiparkinsonian rat

    PubMed Central

    Bhide, Nirmal; Lindenbach, David; Surrena, Margaret A.; Goldenberg, Adam A.; Bishop, Christopher; Berger, S. Paul; Paquette, Melanie A.

    2013-01-01

    Rationale L-DOPA continues to be the primary treatment for patients with Parkinson’s disease; however, the benefits of long-term treatment are often accompanied by debilitating side effects known as dyskinesias. In recent years, several 5-HT1A receptor agonists have been found to reduce dyskinesia in clinical and experimental models of PD. The purported sigma-1 antagonist, BMY-14802 has been previously demonstrated to reduce L-DOPA induced dyskinesia in a 5-HT1A receptor dependent manner. Objective In the present study, we extend these findings by examining the anti-dyskinetic potential of BMY-14802 against L-DOPA, the D1 receptor agonist SKF81297 and the D2 receptor agonist, Quinpirole, in the hemi-parkinsonian rat model. In addition, the receptor specificity of BMY-14802’s effects was evaluated using WAY-100635, a 5-HT1A receptor antagonist. Results Results confirmed the dose-dependent (20>10>5 mg/kg) anti-dyskinetic effects of BMY-14802 against L-DOPA with preservation of antiparkinsonian efficacy at 10 mg/kg. BMY-14802 at 10 and 20 mg/kg also reduced dyskinesia induced by both D1 and D2 receptor agonists. Additionally, BMY-14802’s anti-dyskinetic effects against L-DOPA, but not SKF81297 or Quinpirole, were reversed by WAY-100635 (0.5 mg/kg). Conclusion Collectively, these findings demonstrate that BMY-14802 provides anti-dyskinetic relief against L-DOPA and direct DA agonist in a preclinical model of PD, acting via multiple receptor systems and supports the utility of such compounds for the improved treatment of PD. PMID:23389756

  10. Genetics Home Reference: GABA-transaminase deficiency

    MedlinePlus

    ... Chiriboga CA, Ichikawa K, Osaka H, Tsuji M, Gibson KM, Bonnen PE, Pearl PL. Phenotype of GABA- ... Meirleir L, Jaeken J, Jakobs C, Nyhan WL, Gibson KM. 4-Aminobutyrate aminotransferase (GABA-transaminase) deficiency. J ...

  11. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  12. A ghrelin receptor agonist is an effective colokinetic in rats with diet-induced constipation.

    PubMed

    Pustovit, R V; Furness, J B; Rivera, L R

    2015-05-01

    Despite constipation being a common problem, the treatments that are available have side effects and are only partly effective. Recent studies show that centrally penetrant ghrelin receptor agonists cause defecation in humans and other species. Here, we describe some features of a rat model of low fiber-induced constipation, and investigate the effectiveness of the ghrelin agonist, capromorelin. Rats were given low-fiber diets for 5 weeks. Their colorectal responsiveness to distension and to a behavioral test, water avoidance and colon histology were compared to those of rats on a standard diet. After the low-fiber diet, distension of the colon produced fewer propulsive contractions, behaviorally induced defecation was reduced, and the lining of the colorectum was inflamed. However, capromorelin was similarly effective in causing defecation in constipated and non-constipated rats. Low-fiber diet in rats produces a constipation phenotype, characterized by reduced responsiveness of the colorectum to distension and to a behavioral stimulus of defecation, water avoidance. The effectiveness of capromorelin suggests that centrally penetrant ghrelin receptor stimulants may be effective in treating constipation. © 2015 John Wiley & Sons Ltd.

  13. Evaluation of partial beta-adrenoceptor agonist activity.

    PubMed

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether

  14. The epileptogenic spectrum of opiate agonists.

    PubMed

    Snead, O C; Bearden, L J

    1982-11-01

    The present authors gave mu, delta, kappa, epsilon and sigma opiate receptor agonists intracerebroventricularly to rats both singly and in combination while monitoring the electroencephalogram from cortical and depth electrodes. Dose-response curves were plotted with naloxone against the changes produced by each agonist, and the effect of a number of anticonvulsant drugs on agonist-induced seizures was ascertained. Each opiate agonist produced a different seizure pattern with a different naloxone dose-response curve and anticonvulsant profile. The order of convulsive potency was epsilon greater than delta greater than mu greater than sigma much greater than kappa. Petit mal-like seizure activity was unique to the delta agonist, leucine-enkephalin, while only the mu agonist, morphine produced generalized convulsive seizures. These experiments raise the possibility that opiate systems in the brain may be involved in the pathogenesis of a wide spectrum of seizure disorders.

  15. Sleep Duration Varies as a Function of Glutamate and GABA in Rat Pontine Reticular Formation

    PubMed Central

    Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during NREM sleep and REM sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of NREM sleep and REM sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. PMID:21679185

  16. GABA, its receptors, and GABAergic inhibition in mouse taste buds

    PubMed Central

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220

  17. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  18. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  19. Regulation of Local Ambient GABA Levels via Transporter-Mediated GABA Import and Export for Subliminal Learning.

    PubMed

    Hoshino, Osamu

    2015-06-01

    Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed in a different manner, because subliminal stimulation evokes a fraction (but not a burst) of spikes. Simulations of a cortical neural network model showed that a subliminal stimulus that was too brief (10 msec) to perceive transiently (more than about 500 msec) depolarized stimulus-relevant principal cells and hyperpolarized stimulus-irrelevant principal cells in a subthreshold manner. This led to a small increase or decrease in ongoing-spontaneous spiking activity frequency (less than 1 Hz). Synaptic modification based on STDP during this period effectively enhanced relevant synaptic weights, by which subliminal learning was improved. GABA transporters on GABAergic interneurons modulated local levels of ambient GABA. Ambient GABA molecules acted on extrasynaptic receptors, provided principal cells with tonic inhibitory currents, and contributed to achieving the subthreshold neuronal state. We suggest that ongoing-spontaneous synaptic alteration through STDP following subliminal stimulation may be a possible neuronal mechanism for leaving its memory trace in cortical circuitry. Regulation of local ambient GABA levels by transporter-mediated GABA import and export may be crucial for subliminal learning.

  20. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1990-01-01

    1. The effects of acute and chronic vigabatrin (gamma-vinyl-GABA) (GVG) administration on gamma-aminobutyric acid (GABA) levels and release in rat cortical slices, spinal cord slices and retinas were studied. 2. GVG (250 mgkg-1 i.p.) administered to rats 18 h before death (acute administration) produced an almost 3 fold increase in GABA levels of the cortex and spinal cord and a 6 fold increase in retinal GABA. The levels of glutamate, aspartate, glycine and taurine were unaffected. 3. When GVG (250 mgkg-1 i.p.) was administered daily for 17 days (chronic administration) a similar (almost 3 fold) increase in cortical GABA occurred but the increases in spinal and retinal GABA were reduced by approximately 40%. 4. Acute administration of GVG strikingly increased the potassium-evoked release (KCl 50 mM) of GABA from all three tissues. This enhanced evoked release was reduced by about 50% in tissues taken from rats that had been chronically treated with GVG. 5. Acute administration of GVG reduced GABA-transaminase (GABA-T) activity by approximately 80% in cortex and cord and by 98% in the retina. Following the chronic administration of GVG, there was a trend for GABA-T activities to recover (significant only in cortex). Acute administration of GVG had no effect on glutamic acid decarboxylase (GAD) activity in cortex or spinal cord. However, chronic treatment resulted in significant decreases in GAD activity in both the cortex and cord (35% and 50% reduction respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379037

  1. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guastella, J.; Stretton, A.O.

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, locatedmore » at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.« less

  2. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  3. The GABA Hypothesis in Essential Tremor: Lights and Shadows.

    PubMed

    Gironell, Alexandre

    2014-01-01

    The gamma-aminobutyric acid (GABA) hypothesis in essential tremor (ET) implies a disturbance of the GABAergic system, especially involving the cerebellum. This review examines the evidence of the GABA hypothesis. The review is based on published data about GABA dysfunction in ET, taking into account studies on cerebrospinal fluid, pathology, electrophysiology, genetics, neuroimaging, experimental animal models, and human drug therapies. Findings from several studies support the GABA hypothesis in ET. The hypothesis follows four steps: 1) cerebellar neurodegeneration with Purkinje cell loss; 2) a decrease in GABA system activity in deep cerebellar neurons; 3) disinhibition in output deep cerebellar neurons with pacemaker activity; and 4) an increase in rhythmic activity of the thalamus and thalamo-cortical circuit, contributing to the generation of tremor. Doubts have been cast on this hypothesis, however, by the fact that it is based on relatively few works, controversial post-mortem findings, and negative genetic studies on the GABA system. Furthermore, GABAergic drug efficacy is low and some GABAergic drugs do not have antitremoric efficacy. The GABA hypothesis continues to be the most robust pathophysiological hypothesis to explain ET. There is light in all GABA hypothesis steps, but a number of shadows cannot be overlooked. We need more studies to clarify the neurodegenerative nature of the disease, to confirm the decrease of GABA activity in the cerebellum, and to test more therapies that enhance the GABA transmission specifically in the cerebellum area.

  4. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    PubMed

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. New PPARγ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLr(-/-) mice.

    PubMed

    Silva, Jacqueline C; César, Fernanda A; de Oliveira, Edson M; Turato, Walter M; Tripodi, Gustavo L; Castilho, Gabriela; Machado-Lima, Adriana; de Las Heras, Beatriz; Boscá, Lisardo; Rabello, Marcelo M; Hernandes, Marcelo Z; Pitta, Marina G R; Pitta, Ivan R; Passarelli, Marisa; Rudnicki, Martina; Abdalla, Dulcineia S P

    2016-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA.

    PubMed

    Löscher, W; Fassbender, C P; Gram, L; Gramer, M; Hörstermann, D; Zahner, B; Stefan, H

    1993-03-01

    The novel antiepileptic drug vigabatrin (Sabril) acts by inhibiting degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), increasing the GABA concentrations in the brain. Because the GABA degrading enzyme GABA aminotransferase (GABA-T) is also present in peripheral tissues, including blood platelets, measurement of plasma GABA levels might be a useful indication of the pharmacological response to vigabatrin during therapeutic monitoring. However, because of the very low concentrations of GABA in plasma, the few methods available for plasma GABA analysis are time-consuming, difficult to perform and/or not selective enough because of potential interference with other plasma constituents. In the present study, a rapid, selective and sensitive amino acid analysis HPLC method has been developed for plasma GABA determination with fluorescence detection, using o-phthaldialdehyde as a precolumn derivatizing agent. By employing a 3 microns particle size reversed-phase column and a multi-step gradient system of two solvents, the very low endogenous concentration of GABA in human plasma could be reproducibly quantitated without interference of other endogenous compounds. Incubation of human plasma samples with GABA degrading enzyme(s) resulted in an almost total loss of the GABA peak, thus demonstrating the specificity of the method for GABA analysis. In addition to GABA and other endogenous amino acids, the HPLC method could be used to quantitate plasma levels of vigabatrin. Thus, this improved HPLC amino acid assay might be used to examine whether concomitant monitoring of plasma GABA and vigabatrin is useful for clinical purposes. This was examined in 20 epileptic patients undergoing chronic treatment with vigabatrin. The average plasma GABA level of these 20 patients did not differ significantly from non-epileptic controls. However, when epileptic patients were subdivided according to their clinical response to vigabatrin, vigabatrin responders

  7. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  8. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  9. Cholinergic agonists increase intracellular calcium concentration in guinea pig vestibular hair cells.

    PubMed

    Han, W; Zhang, S; Han, D; Jiang, S; Yang, W

    2001-07-01

    To better understand the cholinergic receptors in vestibular hair cells (VHC) and their subtypes, and to investigate the effects of cholinergic agonists on intracellular calcium concentration ([Ca2+]i) in guinea pig VHCs. VHCs were isolated from guinea pig crista ampullaris by enzymatic and mechanical methods. The effect of cholinergic agonists on [Ca2+]i was examined using laser scanning confocal microscopy and the Ca2+ sensitive dye Fluo-3. The results showed that the addition of acetylcholine (ACh) and carbachol (CCh), muscamic and nicotinic agonists, induced [Ca2+]i increases in all the VHCs, whereas acetylcholine bromide (ACh-Br), a nicotinic agonist, induced the [Ca2+]i increase in only a small percentage of VHCs. The ACh or CCh-induced Ca2+ response could be partially suppressed by atropine. In the presence of 0.1 mmol/L atropine, the amplitudes of ACh or CCh-induced [Ca2+]i responses became significantly smaller than those in atropine free medium (P < 0.01). The results suggest the existence of cholinergic receptors in guinea pig VHCs. It is the muscamic agonists rather than nicontic receptors that dominate [Ca2+]i variation. Atropine can suppress muscamic agonist-induced Ca2+ responses.

  10. Occipital GABA correlates with cognitive failures in daily life.

    PubMed

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  11. Perisylvian GABA levels in schizophrenia and bipolar disorder.

    PubMed

    Atagün, Murat İlhan; Şıkoğlu, Elif Muazzez; Soykan, Çağlar; Serdar Süleyman, Can; Ulusoy-Kaymak, Semra; Çayköylü, Ali; Algın, Oktay; Phillips, Mary Louise; Öngür, Dost; Moore, Constance Mary

    2017-01-10

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy ( 1 H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1 H-MRS data was acquired using a Siemens 3T whole body scanner to quantify right and left perisylvian structures' (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ 2 =9.62, df: 3, p=0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r 2 =0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Perisylvian GABA levels in schizophrenia and bipolar disorder

    PubMed Central

    ATAGÜN, Murat İlhan; ŞIKOĞLU, Elif Muazzez; SOYKAN, Çağlar; CAN, Serdar Süleyman; ULUSOY-KAYMAK, Semra; ÇAYKÖYLÜ, Ali; ALGIN, Oktay; PHILLIPS, Mary Louise; ÖNGÜR, Dost; MOORE, Constance Mary

    2016-01-01

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy (1H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1H-MRS data was acquired using a Siemens 3 Tesla whole body scanner to quantify right and left perisylvian structures’ (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ2=9.62, df: 3, p = 0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r2=0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. PMID:27890741

  13. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    PubMed

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    PubMed Central

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  15. Perturbation of myo-inositol-1,4,5-trisphosphate levels during agonist-induced Ca2+ oscillations.

    PubMed Central

    Chatton, J Y; Cao, Y; Stucki, J W

    1998-01-01

    Agonist-induced Ca2+ oscillations in rat hepatocytes involve the production of myo-inositol-1,4,5-trisphosphate (IP3), which stimulates the release of Ca2+ from intracellular stores. The oscillatory frequency is conditioned by the agonist concentration. This study investigated the role of IP3 concentration in the modulation of oscillatory frequency by using microinjected photolabile IP3 analogs. Photorelease of IP3 during hormone-induced oscillations evoked a Ca2+ spike, after which oscillations resumed with a delay corresponding to the period set by the agonists. IP3 photorelease had no influence on the frequency of oscillations. After photorelease of 1-(alpha-glycerophosphoryl)-D-myo-inositol-4,5-diphosphate (GPIP2), a slowly metabolized IP3 analog, the frequency of oscillations initially increased by 34% and declined to its original level within approximately 6 min. Both IP3 and GPIP2 effects can be explained by their rate of degradation: the half-life of IP3, which is a few seconds, can account for the lack of influence of IP3 photorelease on the frequency, whereas the slower metabolism of GPIP2 allowed a transient acceleration of the oscillations. The phase shift introduced by IP3 is likely the result of the brief elevation of Ca2+ during spiking that resets the IP3 receptor to a state of maximum inactivation. A mathematical model of Ca2+ oscillations is in satisfactory agreement with the observed results. PMID:9449352

  16. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    PubMed

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Metabolic rate in different rat brain areas during seizures induced by a specific delta opiate receptor agonist.

    PubMed

    Haffmans, J; De Kloet, R; Dzoljic, M R

    1984-06-04

    The glucose utilization during specific delta opiate agonist-induced epileptiform phenomena, determined by the [14C]2-deoxyglucose technique (2-DG), was examined in various rat brain areas at different time intervals. The peak in EEG spiking response and the most intensive 2-DG uptake occurred 5 min after intraventricular (i.v.t.) administration of the delta opiate receptor agonist. The most pronounced 2-DG uptake at this time interval can be observed in the subiculum, including the CA1 hippocampal area, frontal cortex and central amygdala. A general decrease of glucose consumption, compared to control values, is observed after 10 min, in all regions, with exception of the subiculum. Since functional activity and 2-DG uptake are correlated, we suggest that the subiculum and/or CA1 area, are probably the brain regions most involved in the enkephalin-induced epileptic phenomena.

  18. Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment.

    PubMed

    Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela

    2013-01-01

    A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of the GABA(B) receptor agonist baclofen administered orally on normal food intake and intraperitoneally on fat intake in non-deprived rats.

    PubMed

    Bains, Rasneer S; Ebenezer, Ivor S

    2013-01-05

    It has been previously reported that the GABA(B) receptor agonist baclofen decreases food intake after oral administration and fat intake after intraperitoneal administration. The aim of the study was to investigate the effects of baclofen (1-4 mg/ kg) administered orally (Experiment 1) on food intake in non-deprived rats (n=6) and intraperitoneally (Experiment 2) on fat intake in non-deprived rats (n=8) that were naïve to baclofen (1st set of trials) and in the same group of rats after they were sub-chronically exposed to baclofen (2nd set of trials). The results from Experiment 1 show that baclofen had no effects on food intake during the 1st set of trials, but the 2 and 4 mg/kg doses significantly increased food consumption during the 2nd set of trials. Baclofen produced sedation during the 1st set of trials, but tolerance occurred to this effect and was not apparent during the 2nd set of trials. These observations suggest that the motor effects may have competed with the hyperphagic effects of baclofen during the 1st set of trials. The data from Experiment 2 show that baclofen had no effects on fat intake during either the 1st or 2nd set of trials. The results of the study thus indicate that orally administrated baclofen increases food intake and intraperitoneal administration has no effect on fat intake in non-deprived rats under the conditions used in this study. These findings may have important implications for research on the use of baclofen in studies concerned with ingestive behaviours. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. DBZ is a putative PPARγ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis.

    PubMed

    Xu, Pengfei; Hong, Fan; Wang, Jialin; Wang, Jing; Zhao, Xia; Wang, Sheng; Xue, Tingting; Xu, Jingwei; Zheng, Xiaohui; Zhai, Yonggong

    2017-11-01

    The nuclear receptor PPARγ is an effective pharmacological target for some types of metabolic syndrome, including obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. However, the current PPARγ-targeting thiazolidinedione drugs have undesirable side effects. Danshensu Bingpian Zhi (DBZ), also known as tanshinol borneol ester derived from Salvia miltiorrhiza, is a synthetic derivative of natural compounds used in traditional Chinese medicine for its anti-inflammatory activity. In vitro, investigations of DBZ using a luciferase reporter assay and molecular docking identified this compound as a novel promising PPARγ agonist. Ten-week-old C57BL/6J mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD). The HFD-fed mice were gavaged daily with either vehicle or DBZ (50mg/kg or 100mg/kg) for 10weeks. The gut microbiota composition was assessed by analyzing the 16S rRNA gene V3+V4 regions via pyrosequencing. DBZ is an efficient natural PPARγ agonist that shows lower PPARγ-responsive luciferase reporter activity than thiazolidinediones, has excellent effects on the metabolic phenotype and exhibits no unwanted adverse effects in a HFD-induced obese mouse model. DBZ protects against HFD-induced body weight gain, insulin resistance, hepatic steatosis and inflammation in mice. DBZ not only stimulates brown adipose tissue (BAT) browning and maintains intestinal barrier integrity but also reverses HFD-induced intestinal microbiota dysbiosis. DBZ is a putative PPARγ agonist that prevents HFD-induced obesity-related metabolic syndrome and reverse gut dysbiosis. DBZ may be used as a beneficial probiotic agent to improve HFD-induced obesity-related metabolic syndrome in obese individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.

    PubMed

    Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2011-08-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  2. GABAergic control of food intake in the meat-type chickens.

    PubMed

    Jonaidi, H; Babapour, V; Denbow, D M

    2002-08-01

    This study examined the effects of intracerebroventricular injections of gamma-aminobutyric acid (GABA) agonists on short-term food intake in meat-type cockerels. In Experiment 1, birds were injected with various doses of muscimol, a GABA(A) agonist. In Experiment 2, the birds received bicuculline, a GABA(A) antagonist, prior to injection of muscimol. In Experiment 3, the effect of varying doses of baclofen, a GABA(B) agonist, on food intake was determined. The intracerebroventricular injection of muscimol caused a dose-dependent increase in food intake. This effect was significantly attenuated by pretreatment with bicuculline. Food intake was not affected by the intracerebroventricular injection of baclofen. These results suggest that GABA acts within the brain of broilers at a GABA(A), but not GABA(B), receptor to increase voluntary food intake.

  3. Activation of Phosphoinositide Metabolism by Cholinergic Agents.

    DTIC Science & Technology

    1990-12-16

    acid significantly inhibited NE-induced [3H]IP1 production in slices that had been prelabelled with [3H]inositol and baclofen , a specific GABAB...agonist, was as effective as GABA in enhancing the response to NE (Figure 15). Neither GABA nor baclofen significantly blocked the inhibitory effect of...quisqualate, but baclofen reduced the inhibitory effect of arachidonic acid. Effects of NMDA receptor antagonists on phosphoinositide hydrolysis MK-801 is

  4. Intra-VTA deltorphin, but not DPDPE, induces place preference in ethanol-drinking rats: distinct DOR-1 and DOR-2 mechanisms control ethanol consumption and reward.

    PubMed

    Mitchell, Jennifer M; Margolis, Elyssa B; Coker, Allison R; Allen, Daicia C; Fields, Howard L

    2014-01-01

    While there is a growing body of evidence that the delta opioid receptor (DOR) modulates ethanol (EtOH) consumption, development of DOR-based medications is limited in part because there are 2 pharmacologically distinct DOR subtypes (DOR-1 and DOR-2) that can have opposing actions on behavior. We studied the behavioral influence of the DOR-1-selective agonist [D-Pen(2) ,D-Pen(5) ]-Enkephalin (DPDPE) and the DOR-2-selective agonist deltorphin microinjected into the ventral tegmental area (VTA) on EtOH consumption and conditioned place preference (CPP) and the physiological effects of these 2 DOR agonists on GABAergic synaptic transmission in VTA-containing brain slices from Lewis rats. Neither deltorphin nor DPDPE induced a significant place preference in EtOH-naïve Lewis rats. However, deltorphin (but not DPDPE) induced a significant CPP in EtOH-drinking rats. In contrast to the previous finding that intra-VTA DOR-1 activity inhibits EtOH consumption and that this inhibition correlates with a DPDPE-induced inhibition of GABA release, here we found no effect of DOR-2 activity on EtOH consumption nor was there a correlation between level of drinking and deltorphin-induced change in GABAergic synaptic transmission. These data indicate that the therapeutic potential of DOR agonists for alcohol abuse is through a selective action at the DOR-1 form of the receptor. Copyright © 2013 by the Research Society on Alcoholism.

  5. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    PubMed

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  6. Effects of adenosine receptor agonist on the rocuroniuminduced neuromuscular block and sugammadex-induced recovery.

    PubMed

    Kim, Yong Beom; Lee, Sangseok; Choi, Hey Ran; In, Junyong; Chang, Young Jin; Kim, Ha Jung; Ro, Young Jin; Yang, Hong-Seuk

    2018-04-25

    Several types of receptors are found at neuromuscular presynaptic membranes. Presynaptic inhibitory A1 and facilitatory A2A receptors mediate different modulatory functions on acetylcholine release. This study investigated whether adenosine A1 receptor agonist contributes to the first twitch tension (T1) of train-of-four (TOF) stimulation depression and TOF fade during rocuronium-induced neuromuscular blockade, and sugammadex-induced recovery. Phrenic nerve-diaphragm tissues were obtained from 30 adult Sprague-Dawley rats. Each tissue specimen was randomly allocated to either control group or 2-chloroadenosine (CADO, 10 μM) group. One hour of reaction time was allowed before initiating main experimental data collection. Loading and boost doses of rocuronium were sequentially administered until > 95% depression of the T1 was achieved. After confirming that there was no T1 twitch tension response, 15 min of resting time was allowed, after which sugammadex was administered. Recovery profiles (T1, TOF ratio [TOFR], and recovery index) were collected for 1 h and compared between groups. There were statistically significant differences on amount of rocuronium (actually used during experiment), TOFR changes during concentration-response of rocuronium (P = 0.04), and recovery profiles (P < 0.01) of CADO group comparing with the control group. However, at the initial phase of this experiment, dose-response of rocuronium in each group demonstrated no statistically significant differences (P = 0.12). The adenosine A1 receptor agonist (CADO) influenced the TOFR and the recovery profile. After activating adenosine receptor, sugammadex-induced recovery from rocuronium-induced neuromuscular block was delayed.

  7. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro.

    PubMed

    Kaneko, Yuji; Pappas, Colleen; Tajiri, Naoki; Borlongan, Cesar V

    2016-10-21

    Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABA A receptor (GABA A R), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABA A R subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABA A R specific agonist). This study provides evidence that oxytocin regulated GABA A R subunits in affording neuroprotection against OGD/R injury.

  8. Quality components and antidepressant-like effects of GABA green tea.

    PubMed

    Teng, Jie; Zhou, Wen; Zeng, Zhen; Zhao, Wenfang; Huang, Yahui; Zhang, Xu

    2017-09-20

    Gamma (γ)-aminobutyric acid (GABA) green tea, with high GABA content, is a kind of special green tea. The goals of this study are to analyze the changes in quality components of green tea during anaerobic treatment, and to investigate whether or not the extract of GABA present in green tea can prevent depression or improve the depressive state of animals. Results showed that GABA content in green tea had increased significantly after anaerobic treatment. The contents of tea polysaccharides, total free amino acids, and water extracts were also increased whereas tea polyphenols were reduced. More importantly, the extract of GABA green tea could alleviate mouse depression and stress from desperate environments through the forced swim test (FST), tail suspension test (TST), mRNA and protein expression levels of GABA A receptors. Therefore, these results indicate that GABA green tea may have a health effect on prevention and alleviation of depression, and it works on the GABAergic neurotransmission of mouse cerebral cortex via up-regulating expression of the GABA A receptor α1 subunit, thus ameliorating depression.

  9. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain

    PubMed Central

    Anderson, Joel G.; Fordahl, Steve C.; Cooney, Paula T.; Weaver, Tara L.; Colyer, Christa L.; Erikson, Keith M.

    2011-01-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently γ-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased 3H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABAA, and GABAB differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and receptor

  10. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in plants.

    PubMed

    Renault, Hugues

    2013-06-01

    The non-protein amino acid γ-aminobutyric acid (GABA) accumulates in plants in response to a wide variety of environmental cues. Recent data point toward an involvement of GABA in tricarboxylic acid (TCA) cycle activity and respiration, especially in stressed roots. To gain further insights into potential GABA functions in plants, phylogenetic and bioinformatic approaches were undertaken. Phylogenetic reconstruction of the GABA transaminase (GABA-T) protein family revealed the monophyletic nature of plant GABA-Ts. However, this analysis also pointed to the common origin of several plant aminotransferases families, which were found more similar to plant GABA-Ts than yeast and human GABA-Ts. A computational analysis of AtGABA-T co-expressed genes was performed in roots and in stress conditions. This second approach uncovered a strong connection between GABA metabolism and glyoxylate cycle during stress. Both in silico analyses open new perspectives and hypotheses for GABA metabolic functions in plants.

  11. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000.

    PubMed

    McCraw, S L; Park, D H; Jones, R; Bentley, M A; Rico, A; Ratcliffe, R G; Kruger, N J; Collmer, A; Preston, G M

    2016-12-01

    The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  12. Synthesis and biological evaluation of novel 2,3-disubstituted benzofuran analogues of GABA as neurotropic agents.

    PubMed

    Coaviche-Yoval, Arturo; Luna, Hector; Tovar-Miranda, Ricardo; Soriano-Ursua, Marvin Antonio; Trujillo-Ferrara, Jose G

    2018-05-23

    Benzofurans are heterocyclic compounds with neurotropic activity. Some have been developed for the treatment of acute and degenerative neuronal injuries. To evaluate the in silico binding of some promising benzofurans on the GABA receptors, and the in vivo neurotropic activity of benzofuran analogues (BZF 6-10) of gamma-aminobutyric acid (GABA) on a seizure model. The ligands with the best physicochemical attributes were docked on two GABA receptors (the alpha-1 subunit of GABAA-R and GBR1 subunit of GABAB-R). Selected benzofuran derivatives were synthesized by a multistep procedure and characterized. To examine the neurotropic effects, mice were pretreated with different concentrations of the compounds prior to PTZ- or 4-AP-induced seizures. We assessed acute toxicity, motor behavior, and the effects on seizures. The tested ligands that complied with Lipinski's rule of five were tested in silico with GABAA-R (ΔG = -5.51 to -5.84 kcal/mol) at the allosteric site for benzodiazepines. They bound to a similar cluster of residues as the reference compound (gaboxadol, ΔG = -5.51 kcal/mol). Synthesis was achieved with good overall yields (42-9.7%). Two compounds were selected for biological tests (BZF-7 and rac-BZF-10) on a mouse model of seizures, induced by pentylenetetrazol (PTZ) or 4-aminopyridine (4-AP). PTZ-induced seizures are associated with GABA receptors, and those 4-AP-induced with the blockage of the delayed rectifier-type potassium channel, which promotes the release of the NMDA-sensitive glutamatergic ionotropic receptor and other neurotransmitters. The biological assays demonstrated that BZF-7 and rac-BZF-10 do not protect against seizures. Indeed, BZF-7 increased the number of PTZ-induced seizures and decreased latency time. The 4-AP model apparently showed a potentiation of seizure effects after administration of the BZF-analogues, evidenced by the incidence and severity of the seizures and reduced latency time. The results suggest that the test

  13. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function.

    PubMed

    Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Mendelowitz, David

    2007-08-01

    Opioids evoke respiratory depression, bradycardia, and reduced respiratory sinus arrhythmia, whereas serotonin (5-HT) agonists stimulate respiration and cardiorespiratory interactions. This study tested whether serotonin agonists can prevent the inhibitory effects of opioids on cardiorespiratory function. Spontaneous and rhythmic inspiratory-related activity and gamma-aminobutyric acid (GABA) neurotransmission to premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus were recorded simultaneously in an in vitro thick slice preparation. The mu-opioid agonist fentanyl inhibited respiratory frequency. The 5-hydroxytryptamine 1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin increased respiratory frequency by itself and also prevented the fentanyl-induced respiratory depression. The 5-hydroxytryptamine 4alpha agonist BIMU-8 did not by itself change inspiratory activity but prevented the mu-opioid-mediated respiratory depression. Both spontaneous and inspiratory-evoked GABAergic neurotransmission to cardiac vagal neurons were inhibited by fentanyl. 8-Hydroxy-2-(di-n-propylamino)tetralin inhibited spontaneous but not inspiratory-evoked GABAergic activity to parasympathetic cardiac neurons. However, 8-hydroxy-2-(di-n-propylamino)tetralin differentially altered the opioid-mediated depression of inspiratory-evoked GABAergic activity but did not change the opioid-induced reduction in spontaneous GABAergic neurotransmission. In contrast, BIMU-8 did not alter GABAergic neurotransmission to cardiac vagal neurons by itself but prevented the fentanyl depression of both spontaneous and inspiratory-elicited GABAergic neurotransmission to cardiac vagal neurons. In the presence of tetrodotoxin, the inhibition of GABAergic inhibitory postsynaptic currents with fentanyl is prevented by coapplication of BIMU-8, indicating that BIMU-8 acts at presynaptic GABAergic terminals to prevent fentanyl-induced depression. These results suggest that activation of 5

  14. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  15. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats.

    PubMed

    Parker, Linda A; Mechoulam, Raphael

    2003-01-01

    Considerable evidence indicates that conditioned gaping in rats reflects nausea in this species that does not vomit. A series of experiments evaluated the potential of psychoactive cannabinoid agonists, delta-9-THC and HU-210, and non-psychoactive cannabinoids, Cannabidiol (CBD) and its dimethylheptyl homolog (CBD-dmh), to interfere with the establishment and the expression of conditioned gaping in rats. All agents attenuated both the establishment and the expression of conditioned gaping. Furthermore, the CB1 antagonist, SR-141716, reversed the suppressive effect of HU-210 on conditioned gaping. Finally, SR-141716 potentiated lithium-induced conditioned gaping, suggesting that the endogenous cannabinoid system plays a role in the control of nausea.

  17. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression.

    PubMed

    Furukawa, Minami; Tsukahara, Takao; Tomita, Kazuo; Iwai, Haruki; Sonomura, Takahiro; Miyawaki, Shouichi; Sato, Tomoaki

    2017-11-25

    The excitatory-to-inhibitory functional switch of γ-aminobutyric acid (GABA; GABA switch), which normally occurs in the first to the second postnatal week in the hippocampus, is necessary for the development of appropriate central nervous system function. A deficit in GABAergic inhibitory function could cause excitatory/inhibitory (E/I) neuron imbalance that is found in many neurodegenerative disorders. In the present study, we examined whether neonatal stress can affect the timing of the GABA functional switch and cause disorders during adolescence. Neonatal stress was induced in C57BL/6J male mouse pups by maternal separation (MS) on postnatal days (PND) 1-21. Histological quantification of K + -Cl - co-transporter (KCC2) and Ca 2+ imaging were performed to examine the timing of the GABA switch during the MS period. To evaluate the influence of neonatal MS on adolescent hippocampal function, we quantified KCC2 expression and evaluated hippocampal-related behavioral tasks at PND35-38. We showed that MS delayed the timing of the GABA switch in the hippocampus and inhibited the increase in membrane KCC2 expression, with KCC2 expression inhibition persisting until adolescence. Behavioral tests showed impaired cognition, declined attention, hyperlocomotion, and aggressive character in maternally separated mice. Taken together, our results show that neonatal stress delayed the timing of the GABA switch, which could change the E/I balance and cause neurodegenerative disorders in later life. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. GABA signaling stimulates α-cell-mediated β-like cell neogenesis.

    PubMed

    Napolitano, Tiziana; Avolio, Fabio; Vieira, Andhira; Ben-Othman, Nouha; Courtney, Monica; Gjernes, Elisabet; Hadzic, Biljana; Druelle, Noémie; Navarro Sanz, Sergi; Silvano, Serena; Mansouri, Ahmed; Collombat, Patrick

    2017-01-01

    Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.

  19. Stiff person syndrome associated anti-amphiphysin antibodies reduce GABA associated [Ca(2+)]i rise in embryonic motoneurons.

    PubMed

    Geis, C; Beck, M; Jablonka, S; Weishaupt, A; Toyka, K V; Sendtner, M; Sommer, C

    2009-10-01

    Autoantibodies to the synaptic protein amphiphysin play a crucial pathogenic role in paraneoplastic stiff-person syndrome. Impairment of GABAergic inhibition is the presumed pathophysiological mechanism by which these autoantibodies become pathogenic. Here we used calcium imaging on rat embryonic motor neurons to investigate whether antibodies to amphiphysin directly hinder GABAergic signaling. We found that the immunoglobulin G fraction from a patient with stiff-person syndrome, containing high titer antibodies to amphiphysin and inducing stiffness in rats upon passive transfer, reduced GABA-induced calcium influx in embryonic motor neurons. Depletion of the anti-amphiphysin fraction from the patient's IgG by selective affinity chromatography abolished this effect, showing its specificity for amphiphysin. Quantification of the surface expression of the Na(+)/K(+)/2Cl(2-) cotransporter revealed a reduction after incubation with anti-amphiphysin IgG, which is concordant with a lower intracellular chloride concentration and thus impairment of GABA mediated calcium influx. Thus, anti-amphiphysin antibodies exert a direct effect on GABA signaling, which is likely to contribute to the pathogenesis of SPS.

  20. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: effect of Bacopa monnieri and bacoside A.

    PubMed

    Mathew, Jobin; Peeyush Kumar, T; Khan, Reas S; Paulose, C S

    2010-04-01

    In the present study, the effects of Bacopa monnieri and its active component, bacoside A, on motor deficit and alterations of GABA receptor functional regulation in the cerebellum of epileptic rats were investigated. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the cerebellum of epileptic rats revealed a significant decrease in B(max) compared with control. Real-time polymerase chain reaction amplification of GABA(A) receptor subunits-GABA(Aalpha1), GABA(Aalpha5,) and GABA(Adelta)-was downregulated (P<0.001) in the cerebellum of epileptic rats compared with control rats. Epileptic rats exhibit deficits in radial arm and Y-maze performance. Treatment with B. monnieri and bacoside A reversed these changes to near-control levels. Our results suggest that changes in GABAergic activity, motor learning, and memory deficit are induced by the occurrence of repetitive seizures. Treatment with B. monnieri and bacoside A prevents the occurrence of seizures thereby reducing the impairment of GABAergic activity, motor learning, and memory deficit. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats.

    PubMed

    Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J

    2002-03-01

    The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.

  2. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics.

    PubMed

    Bradford, Andrea M; Savage, Kevin M; Jones, Declan N C; Kalinichev, Mikhail

    2010-10-01

    We evaluated locomotor hyperactivity induced in BALB/C mice by an N-methyl-D-aspartate receptor antagonist MK-801 as an assay for the detection of antipsychotic drugs. We assessed the effects of antipsychotic drugs to validate the assay (study 1), selective dopamine and serotonin ligands for pharmacological characterisation of the model (study 2) and a number of compounds with efficacy in models of schizophrenia to understand the predictive validity of the model (study 3). Adult males (n  = 9/group) were pretreated with a test compound, habituated to locomotor activity cages before receiving MK-801 (0.32 mg/kg) and activity recorded for a further 75 or 120 min. In study 1, we tested haloperidol, clozapine, olanzapine, risperidone, ziprasidone, aripiprazole, sertindole and quetiapine. In study 2, we tested SCH23390 (D(1) antagonist), sulpiride (D(2)/D(3) antagonist), raclopride (D(2)/D(3) antagonist), SB-277011 (D(3) antagonist), L-745,870 (D(4) antagonist), WAY100635 (5-HT(1A) antagonist), 8-OH-DPAT (5-HT(1A) agonist), ketanserin (5-HT(2A)/5-HT(2C) antagonist) and SB-242084 (5-HT(2C) antagonist). In study 3, we tested xanomeline (M(1)/M(4) receptor agonist), LY379268 (mGluR2/3 receptor agonist), diazepam (GABA(A) modulator) and thioperamide (H(3) receptor antagonist). All antipsychotics suppressed MK-801-induced hyperactivity in a dose-dependent and specific manner. The effects of antipsychotics appear to be mediated via dopamine D(1), D(2) and 5-HT(2) receptors. Xanomeline, LY379268 and diazepam were active in this assay while thioperamide was not. MK-801-induced hyperactivity in BALB/C mice model of positive symptoms has shown predictive validity with novel compounds acing at M(1)/M(4), mGluR2/3 and GABA(A) receptors and can be used as a screening assay for detection of novel pharmacotherapies targeting those receptors.

  3. The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei.

    PubMed

    Grassi, S; Della Torre, G; Capocchi, G; Zampolini, M; Pettorossi, V E

    1995-11-20

    The role of GABA in NMDA-dependent long term depression (LTD) in the medial vestibular nuclei (MVN) was studied on rat brainstem slices. High frequency stimulation (HFS) of the primary vestibular afferents induces a long lasting reduction of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the MVN. The induction but not the maintenance of this depression was abolished by AP5, a specific blocking agent for glutamate NMDA receptors. The involvement of GABA in mediating the depression was checked by applying the GABAA and GABAB receptor antagonists, bicuculline and saclofen, before and after HFS. Under bicuculline and saclofen perfusion, HFS provoked a slight potentiation of the N2 wave, while the N2 depression clearly emerged after drug wash-out. This indicates that GABA is not involved in inducing the long term effect, but it is necessary for its expression. Similarly, the LTD reversed and a slight potentiation appeared when both drugs were administered after its induction. Most of these effects were due to the bicuculline, suggesting that GABAA receptors contribute to LTD more than GABAB do. According to our results, it is unlikely that the long lasting vestibular depression is the result of a homosynaptic LTD. On the contrary, our findings suggest that the depression is due to an enhancement of the GABA inhibitory effect, caused by an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  4. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice.

    PubMed

    Nguyen, Hoang Thi Thanh; Bhattarai, Janardhan Prasad; Park, Soo Joung; Lee, Jeong Chae; Cho, Dong Hyu; Han, Seong Kyu

    2015-07-01

    Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were

  5. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  6. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  7. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    PubMed

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells.

    PubMed

    Bobbin, R P; Fallon, M; Puel, J L; Bryant, G; Bledsoe, S C; Zajic, G; Schacht, J

    1990-08-01

    The mechanical and electrical properties of cochlear outer hair cells (OHCs) are suggested to modulate transduction by inner hair cells. These properties of OHCs are presumably regulated by efferent neurons which use several transmitters including acetylcholine (Ach) and gamma aminobutyric acid (GABA). Since it had been suggested that Ach causes isolated OHCs to shorten visibly, this study was designed to investigate whether GABA also alters the length of OHCs. OHCs were isolated from the guinea pig cochlea by mechanical dispersion after collagenase treatment. Cells were initially selected by strict morphological criteria. In addition they were only included in further studies if they attained a constant length during 10 min of superfusion with buffer solution. Neither GABA (20 microM: 100 microM), Ach (5 mM; 10 microM with 10 microM eserine) or carbachol (10 microM; 100 microM) altered OHC length when applied in iso-osmotic Hank's balanced salt solution (total number of cells tested, 72). If a change in length occurred it must have been smaller than 0.3 microns, our detection ability. In contrast, high potassium and variations in osmolarity changed hair cell length by 3-10% in agreement with other reports.

  9. The gamma-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    PubMed Central

    2012-01-01

    Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse. PMID:22559224

  10. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    PubMed

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  11. GABA(A) and dopamine receptors in the nucleus accumbens shell differentially influence performance of a water-reinforced progressive ratio task.

    PubMed

    Covelo, Ignacio R; Wirtshafter, David; Stratford, Thomas R

    2012-03-01

    Several authors have shown that injections of the GABA(A) agonist muscimol into the medial shell region of the nucleus accumbens (AcbSh) result in large increases in food, but not water, intake. In previous studies we demonstrated that intra-AcbSh injections of either muscimol or of the indirect dopamine agonist amphetamine increase response output on a food-reinforced progressive ratio schedule. In the current experiment we extended these observations by examining the effects of muscimol and amphetamine injections on the performance of a water-reinforced progressive ratio task in mildly deprived animals. We found that muscimol did not affect the number of responses made in the water-reinforced task, even though a marked increase in responding was observed after amphetamine. Muscimol did, however, significantly increase food intake in the same animals. The results suggest that the enhancing effects of intra-AcbSh muscimol differ from those of amphetamine in that they are selective for food-reinforced behaviors. Copyright © 2011. Published by Elsevier Inc.

  12. Parasitoid wasp sting: a cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host.

    PubMed

    Moore, Eugene L; Haspel, Gal; Libersat, Frederic; Adams, Michael E

    2006-07-01

    The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. Copyright 2006 Wiley Periodicals, Inc.

  13. Immunocytochemical Mapping of an RDL-Like GABA Receptor Subunit and of GABA in Brain Structures Related to Learning and Memory in the Cricket Acheta domesticus

    PubMed Central

    Strambi, Colette; Cayre, Myriam; Sattelle, David B.; Augier, Roger; Charpin, Pierre; Strambi, Alain

    1998-01-01

    The distribution of putative RDL-like GABA receptors and of γ-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the α and β lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immuno- reactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain. PMID:10454373

  14. Cocaine Dysregulates Opioid Gating of GABA Neurotransmission in the Ventral Pallidum

    PubMed Central

    Scofield, Michael D.; Rice, Kenner C.; Cheng, Kejun; Roques, Bernard P.

    2014-01-01

    The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse. PMID:24431463

  15. Peripherally administered baclofen reduced food intake and body weight in db/db as well as diet-induced obese mice.

    PubMed

    Sato, Ikuko; Arima, Hiroshi; Ozaki, Noriyuki; Ozaki, Nobuaki; Watanabe, Minemori; Goto, Motomitsu; Shimizu, Hiroshi; Hayashi, Masayuki; Banno, Ryouichi; Nagasaki, Hiroshi; Oiso, Yutaka

    2007-10-16

    Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.

  16. GABA-A receptors in mPOAH simultaneously regulate sleep and body temperature in freely moving rats.

    PubMed

    Jha, S K; Yadav, V; Mallick, B N

    2001-09-01

    Sleep-wakefulness and body temperature are two circadian rhythmic biological phenomena. The role of GABAergic inputs in the medial preoptico-anterior hypothalamus (mPOAH) on simultaneous regulation of those phenomena was investigated in freely moving normally behaving rats. The GABA-A receptors were blocked by microinjecting picrotoxin, and the effects on electrophysiological parameters signifying sleep-wakefulness, rectal temperature and brain temperature were recorded simultaneously. The results suggest that, normally, GABA in the medial preoptic area acts through GABA-A receptor that induces sleep and prevents an excessive rise in body temperature. However, the results do not allow us to comment on the cause and effect relationship, if any, between changes in sleep-wakefulness and body temperature. The changes in brain and rectal temperatures showed a positive correlation, however, the former varied within a narrower range than that of the latter.

  17. l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia.

    PubMed

    Volk, David W; Gonzalez-Burgos, Guillermo; Lewis, David A

    2016-12-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic l-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning.

    PubMed

    Weed, Michael R; Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard; Bristow, Linda J

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.

  19. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    PubMed Central

    Ding, Shengyuan; Wei, Wei

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, NaV channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming NaV1.1 and NaV1.6 subunits and regulatory NaVβ1 and Navβ4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming NaV channels conducting the transient NaV current (INaT), persistent Na current (INaP), and resurgent Na current (INaR). Nucleated patch-clamp recordings showed that INaT had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. INaT also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger INaR and INaP. Blockade of INaP induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that NaV channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities. PMID:21880943

  20. Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model.

    PubMed

    Hong, Ki-Bae; Park, Yooheon; Suh, Hyung Joo

    2016-04-01

    This study was to investigate the sleep promoting effects of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP), by examining neuronal processes governing mRNA level alterations, as well as assessing neuromodulator concentrations, in a fruit fly model. Behavioral assays were applied to investigate subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep of two amino acids and GABA/5-HTP mixture with caffeine treated flies. Also, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. Subjective nighttime activity and sleep patterns of individual flies significantly decreased with 1% GABA treatment in conjunction with 0.1% 5-HTP treatment (p<0.001). Furthermore, GABA/5-HTP mixture resulted in significant differences between groups related to sleep patterns (40%, p<0.017) and significantly induced subjective nighttime sleep in the awake model (p<0.003). These results related to transcript levels of the GABAB receptor (GABAB-R1) and serotonin receptor (5-HT1A), compared to the control group. In addition, GABA/5-HTP mixture significantly increased GABA levels 1h and 12h following treatment (2.1 fold and 1.2 fold higher than the control, respectively) and also increased 5-HTP levels (0 h: 1.01 μg/protein, 12h: 3.45 μg/protein). In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep to a greater extent than single administration of each amino acid, and that this modulation occurs via GABAergic and serotonergic signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.

    PubMed

    Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue

    2017-06-21

    To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.

  2. The endogenous GABA bioactivity of camel, bovine, goat and human milks.

    PubMed

    Limon, Agenor; Gallegos-Perez, Jose-Luis; Reyes-Ruiz, Jorge M; Aljohi, Mohammad A; Alshanqeeti, Ali S; Miledi, Ricardo

    2014-02-15

    GABA orally administered has several beneficial effects on health, including the regulation of hyperglycaemic states in humans. Those effects are similar to the effects reported for camel milk (CMk); however, it is not known whether compounds with GABAergic activity are present in milk from camels or other species. We determined CMk free-GABA concentration by LS/MS and its bioactivity on human GABA receptors. We found that camel and goat milks have significantly more bioavailable GABA than cow and human milks and are able to activate GABAρ receptors. The relationship between GABA and taurine concentrations suggests that whole camel milk may be more efficient to activate GABAρ1 receptors than goat milk. Because GABAρ receptors are normally found in enteroendocrine cells in the lumen of the digestive tract, these results suggest that GABA in camel and goat milk may participate in GABA-modulated functions of enteroendocrine cells in the GI lumen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  4. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    PubMed Central

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N.; Lewis, David A.

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions. PMID:21904685

  5. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    PubMed Central

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  6. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  7. Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex.

    PubMed

    Toriumi, Kazuya; Oki, Mika; Muto, Eriko; Tanaka, Junko; Mouri, Akihiro; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2016-06-01

    We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.

  8. Neuroendocrine response to GABA-B receptor agonism in alcohol-dependent individuals: Results from a combined outpatient and human laboratory experiment.

    PubMed

    Farokhnia, Mehdi; Sheskier, Mikela B; Lee, Mary R; Le, April N; Singley, Erick; Bouhlal, Sofia; Ton, Timmy; Zhao, Zhen; Leggio, Lorenzo

    2018-04-14

    Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the nervous system, plays an important role in biobehavioral processes that regulate alcohol seeking, food intake, and stress response. The metabotropic GABA-B receptor has been investigated as a potential therapeutic target for alcohol use disorder, by using orthosteric agonists (e.g., baclofen) and positive allosteric modulators. Whether and how pharmacological manipulation of the GABA-B receptor, in combination with alcohol intake, may affect feeding- and stress-related neuroendocrine pathways remains unknown. In the present randomized, double-blind, placebo-controlled study, thirty-four alcohol-dependent individuals received baclofen (30 mg/day) or placebo in a naturalistic outpatient setting for one week, and then performed a controlled laboratory experiment which included alcohol cue-reactivity, fixed-dose priming, and self-administration procedures. Blood samples were collected, and the following neuroendocrine markers were measured: ghrelin, leptin, amylin, glucagon-like peptide-1 (GLP-1), insulin, prolactin, thyroid-stimulating hormone, growth hormone, cortisol, and adrenocorticotropic hormone (ACTH). During the outpatient phase, baclofen significantly increased blood concentrations of acyl-ghrelin (p = 0.01), leptin (p = 0.01), amylin (p = 0.004), and GLP-1 (p = 0.02). Significant drug × time-point interaction effects for amylin (p = 0.001) and insulin (p = 0.03), and trend-level interaction effects for GLP-1 (p = 0.06) and ACTH (p = 0.10) were found during the laboratory experiment. Baclofen, compared to placebo, had no effect on alcohol drinking in this study (p's ≥ 0.05). Together with previous studies, these findings shed light on the role of the GABAergic system and GABA-B receptors in the shared neurobiology of alcohol-, feeding-, and stress-related behaviors. Copyright © 2018. Published by Elsevier Ltd.

  9. Adrenergic-agonist-induced Ca2+ fluxes in rat parotid cells are not Na+-dependent.

    PubMed Central

    Helman, J; Roth, G S; Baum, B J

    1985-01-01

    We investigated the hypothesis that extracellular Na+ is required for the rapid mobilization of Ca2+ by rat parotid cells after adrenergic stimulation. When Na+ salts in the media were osmotically replaced with either choline chloride (+atropine) or sucrose, efflux of 45Ca2+ from preloaded cells, caused by 10 microM-(-)-adrenaline, was unchanged. Similarly adrenaline stimulated 45Ca2+ uptake into cells under nonsteady-state conditions in the presence or absence of Na+. Monensin, a Na+ ionophore, was able to elicit a modest increase in 45Ca2+ efflux, compared with controls. Studies of net 45Ca2+ flux, performed under near-steady-state conditions, showed that adrenaline caused net 45Ca2+ accumulation, whereas monensin caused net 45Ca2+ release. The effect of monensin required the presence of Na+ in the incubation medium. Both 1 mM-LaCl3 and 0.1 mM-D-600 prevented adrenaline-stimulated 45Ca2+ uptake into cells, but had no effect on monensin-induced changes. We conclude that (1) the rapid mobilization of Ca2+ by adrenergic agonists seen in rat parotid cells does not require a Na+out greater than Na+in gradient and (2) the nature of the monensin effect is quite different from the adrenergic-agonist-induced response. PMID:2413840

  10. Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABA(A) receptor in mice.

    PubMed

    Chen, Chang-Rui; Zhou, Xu-Zhao; Luo, Yan-Jia; Huang, Zhi-Li; Urade, Yoshihiro; Qu, Wei-Min

    2012-11-01

    Magnolol (6,6',7,12-tetramethoxy-2,2'-dimethyl-1-beta-berbaman, C(18)H(18)O(2)), an active ingredient of the bark of Magnolia officinalis, has been reported to exert potent anti-epileptic effects via the GABA(A) receptor. The receptor also mediates sleep in humans and animals. The aim of this study was to determine whether magnolol could modulate sleep behaviors by recording EEG and electromyogram in mice. The results showed that magnolol administered i.p. at a dose of 5 or 25 mg/kg could significantly shorten the sleep latency, increase the amount of non-rapid eye movement (non-REM, NREM) and rapid eye movement (REM) sleep for 3 h after administration with an increase in the number of NREM and REM sleep episodes. Magnolol at doses of 5 and 25 mg/kg increased the number of bouts of wakefulness but decreased their duration. On the other hand, magnolol increased the number of state transitions from wakefulness to NREM sleep and subsequently from NREM sleep to wakefulness. Immunohistochemical study showed that magnolol increased c-Fos expression in the neurons of ventrolateral preoptic area, a sleep center in the anterior hypothalamus, and decreased c-Fos expression in the arousal tuberomammillary nucleus, which was located in the caudolateral hypothalamus. The sleep-promoting effects and changes in c-Fos induced by magnolol were reversed by flumazenil, an antagonist at the benzodiazepine site of the GABA(A) receptor. These results indicate that magnolol increased NREM and REM sleep via the GABA(A) receptor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  12. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Xuting; Zhong, Hongyu; Li, Fen

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the externalmore » granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects.« less

  13. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms.

  14. Failure of gamma-aminobutyrate acid-beta agonist baclofen to improve balance, gait, and postural control after vestibular schwannoma resection.

    PubMed

    De Valck, Claudia F J; Vereeck, Luc; Wuyts, Floris L; Van de Heyning, Paul H

    2009-04-01

    Incomplete postural control often occurs after vestibular schwannoma (VS) surgery. Customized vestibular rehabilitation in man improves and speeds up this process. Animal experiments have shown an improved and faster vestibular compensation after administration of the gamma-aminobutyrate acid (GABA)-beta agonist baclofen. To examine whether medical treatment with baclofen provides an improvement of the compensation process after VS surgery. A time-series study with historical control. Tertiary referral center. Thirteen patients who underwent VS resection were included and compared with a matched group of patients. In addition to an individualized vestibular rehabilitation protocol, the study group received medical treatment with 30 mg baclofen (a GABA-beta agonist) daily during the first 6 weeks after surgery. Clinical gait and balance tests (Romberg maneuver, standing on foam, tandem Romberg, single-leg stance, Timed Up & Go test, tandem gait, Dynamic Gait Index) and Dizziness Handicap Inventory. Follow-up until 24 weeks after surgery. When examining the postoperative test results, the group treated with baclofen did not perform better when compared with the matched (historical control) group. Repeated-measures analysis of variance revealed no significant group effect, but a significant time effect for almost all balance tests during the acute recovery period was found. An interaction effect between time and intervention was seen concerning single-leg stance and Dizziness Handicap Inventory scores for the acute recovery period. Medical therapy with baclofen did not seem to be beneficial in the process of central vestibular compensation.

  15. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569.

    PubMed

    Fay, Jonathan F; Farrens, David L

    2012-09-28

    Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.

  16. Dual Agonist Surrobody Simultaneously Activates Death Receptors DR4 and DR5 to Induce Cancer Cell Death.

    PubMed

    Milutinovic, Snezana; Kashyap, Arun K; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O'Neil, Ryann; Kurtzman, Aaron L; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H; Diaz, Paul W; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R; Reed, John C

    2016-01-01

    Death receptors of the TNF family are found on the surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors 4 and 5 (DR4 and DR5) is TNF-related apoptosis-inducing ligand, TRAIL (Apo2L). As most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing proapoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 monospecific antibodies. Taken together, Surrobody shows promising preclinical proapoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. ©2015 American Association for Cancer Research.

  17. Dual agonist Surrobody™ simultaneously activates death receptors DR4 and DR5 to induce cancer cell death

    PubMed Central

    Milutinovic, Snezana; Kashyap, Arun K.; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O' Neil, Ryann; Kurtzman, Aaron L.; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H.; Diaz, Paul W.; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R.; Reed, John C.

    2015-01-01

    Death receptors of the Tumor Necrosis Factor (TNF) family are found on surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors-4 and -5 (DR4 and DR5) is Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, TRAIL (Apo2L). Since most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody™ technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing pro-apoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 mono-specific antibodies. Taken together, Surrobody shows promising preclinical pro-apoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. PMID:26516157

  18. Effect of mood stabilizing agents on agonist-induced calcium mobilization in human platelets.

    PubMed Central

    Kusumi, I; Koyama, T; Yamashita, I

    1994-01-01

    The effect of mood stabilizing agents such as lithium, carbamazepine, valproic acid and clonazepam on serotonin(5-HT)- or thrombin-induced intracellular calcium (Ca) mobilization was studied in the platelets of healthy subjects using the fluorescent Ca indicator fura-2. After incubating platelet-rich plasma with these drugs for one or four hours, there was no significant difference in either basal Ca2+ concentration or 5-HT-stimulated Ca response between each agent treatment and control. 5-HT- or thrombin-induced Ca mobilization was not altered by four weeks of lithium carbonate administration in healthy volunteers. These results indicate that these mood stabilizers fail to affect the agonist-stimulated intracellular Ca mobilizing pathway either in vitro or ex vivo in the platelets of healthy subjects. Images Fig. 1 PMID:8031747

  19. Apomorphine-induced hypoattention in rats and reversal of the choice performance impairment by aniracetam.

    PubMed

    Nakamura, K; Kurasawa, M; Tanaka, Y

    1998-01-26

    Aging-, disease- and medication-related imbalance of central dopaminergic neurons causes functional impairment of cognition and neuropsychological delirium in humans. We attempted to develop a new delirium model using the direct dopamine agonist, apomorphine, and a choice reaction performance task performed by middle-aged rats. The psychological properties of the model were assessed by determining behavioral measures such as choice reaction time, % correct and % omission. Apomorphine (0.03-0.3 mg/kg s.c.) produced a dose-dependent impairment of task performance. The dose of 0.1 mg/kg prolonged choice reaction time, decreased % correct and increased % omission, indicating that rats had attentional deficits and a reduced arousal or vigilance but no motor deficits or reduced food motivation. This psychological and behavioral impairment of performance resembled that of clinically defined delirium. In this model, the cholinomimetic, aniracetam (10 mg/kg p.o.), reversed the performance impairment induced by apomorphine. Its two metabolites, 2-pyrrolidinone (10 and 30 mg/kg p.o.) and N-anisoyl-gamma-aminobutyric acid (GABA, 10 mg/kg p.o.), effectively reversed the performance impairment as the intact drug did. Another pyrrolidinone derivative, nefiracetam (10 and 30 mg/kg p.o.), tended to worsen the apomorphine effect. The cholinesterase inhibitor, tacrine (10 mg/kg p.o.), markedly worsened all of the behavioral measures. Neuroleptics, haloperidol (0.025 mg/kg s.c.), tiapride (30 mg/kg p.o.) and sulpiride (10 and 30 mg/kg p.o.), antagonized the apomorphine effect. The present results suggest that apomorphine-induced behavioral disturbances in the choice reaction performance task seems to be a useful delirium model and aniracetam may improve delirium through the action of 2-pyrrolidinone and N-anisoyl-GABA, presumably by facilitating dopamine release in the striatum by acting as an AMPA or metabotropic glutamate receptor agonist.

  20. Brain distribution and molecular cloning of the bovine GABA rho1 receptor.

    PubMed

    Rosas-Arellano, Abraham; Ochoa-de la Paz, Lenin David; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2007-03-01

    GABA(C) receptors were originally found in the mammalian retina and recent evidence shows that they are also expressed in several areas of the brain, including caudate nucleus, brain stem, pons and corpus callosum. In this study, plasma membranes from the caudate nucleus were microinjected into X. laevis oocytes. This led the oocyte plasma membrane to incorporate functional bicuculline-resistant, Cl(-) conducting bovine GABA receptors, similar to those of the retina. Immunolocalization of the GABA rho1 subunit revealed its expression in bovine neurons in the head of the caudate as well as in the olive, cuneiform and reticular nuclei of the brain stem. The same antibodies failed to show expression in the callosum and pons, where the GABA rho1 mRNA was previously detected. The cloned GABA rho1 sequence predicts a protein with 473 amino acids and 74-93% similarity to other GABA rho1 subunits. Oocytes injected with the cDNA express a non-desensitizing, homomeric receptor with a GABA EC(50)=6.0 microM and a Hill coefficient of 1.8. The results confirm the presence of GABA(C) receptor mRNAs in several areas of the mammalian brain and show that some of these areas express functional GABA rho1 receptors that have the classic GABA(C) receptor characteristics.

  1. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning

    PubMed Central

    Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G.; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard; Bristow, Linda J.

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task. PMID:29261656

  2. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  3. Age-related differences in GABA levels are driven by bulk tissue changes.

    PubMed

    Maes, Celine; Hermans, Lize; Pauwels, Lisa; Chalavi, Sima; Leunissen, Inge; Levin, Oron; Cuypers, Koen; Peeters, Ronald; Sunaert, Stefan; Mantini, Dante; Puts, Nicolaas A J; Edden, Richard A E; Swinnen, Stephan P

    2018-05-02

    Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions. © 2018 Wiley Periodicals, Inc.

  4. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  5. Effects of the PPAR-beta agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination.

    PubMed

    Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne

    2009-05-07

    Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m

  6. Effects of the PPAR-β agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination

    PubMed Central

    Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne

    2009-01-01

    Background Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-β seems to play an important role in the regulation of central inflammation. In addition, PPAR-β agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-β agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-γ and LPS. Methods Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-γ and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-β, PPAR-γ, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. Results GW 501516 decreased the IFN-γ-induced up-regulation of TNF-α and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-β agonist. However, it increased IL-6 m

  7. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels

    PubMed Central

    Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.

    2010-01-01

    The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384

  8. Agonist-induced β2-adrenoceptor desensitization and downregulation enhance pro-inflammatory cytokine release in human bronchial epithelial cells.

    PubMed

    Oehme, Susanne; Mittag, Anja; Schrödl, Wieland; Tarnok, Attila; Nieber, Karen; Abraham, Getu

    2015-02-01

    It is not clear whether increased asthma severity associated with long-term use of β2-adrenoceptor (β2-AR) agonists can be attributed to receptor degradation and increased inflammation. We investigated the cross-talk between β-AR agonist-mediated effects on β2-AR function and expression and cytokine release in human bronchial epithelial cells. In 16HBE14o(-) cells grown in the presence and absence of β-AR agonists and/or antagonists, the β2-AR density was assessed by radioligand binding; the receptor protein and mRNA was determined using laser scanning cytometer and RT-PCR; cAMP generation, the cytokines IL-6 and IL-8 release were determined using AlphaScreen Assay and ELISA, respectively. Isoprenaline (ISO) and salbutamol (Salbu) induced a concentration- and time-dependent significant decrease in β2-AR density. Both Salbu and ISO reduced cAMP generation in a concentration-dependent manner while in same cell culture the IL-6 and IL-8 release was significantly enhanced. These effects were antagonized to a greater extent by ICI 118.551 than by propranolol, but CGP 20712A had no effect. Reduction of the β2-AR protein and mRNA could be seen when cells were treated with ISO for 24 h. Our findings indicate a direct link between cytokine release and altered β2-AR expression and function in airway epithelial cells. β2-AR desensitization and downregulation induced by long-term treatment with β2-AR agonists during asthma may account for adverse reactions also due to enhanced release of pro-inflammatory mediators and should, thus, be considered in asthma therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ketone bodies and brain glutamate and GABA metabolism.

    PubMed

    Daikhin, Y; Yudkoff, M

    1998-01-01

    The effects of ketone bodies on brain metabolism of glutamate and GABA were studied in three different systems: synaptosomes, cultured astrocytes and the whole animal. In synaptosomes the addition of either acetoacetate or 3-OH-butyrate was associated with diminished consumption of glutamate via transamination to aspartate and increased formation of labelled GABA from either L-[2H5-2,3,3,4, 4]glutamine or L-[15N]glutamine. There was no effect of ketone bodies on synaptosomal GABA transamination. An increase of total forebrain GABA and a diminution of aspartate was noted when mice were injected intraperitoneally with 3-OH-butyrate. In cultured astrocytes the addition of acetoacetate to the medium was associated with a significantly enhanced rate of citrate production and with a diminution in the rate of conversion of [15N]glutamate to [15N]aspartate. These data are consistent with the hypothesis that the metabolism of ketone bodies to acetyl-CoA results in a diminution of the pool of brain oxaloacetate, which is consumed in the citrate synthetase reaction (oxaloacetate + acetyl-CoA --> citrate). As less oxaloacetate is available to the aspartate aminotransferase reaction, thereby lowering the rate of glutamate transamination, more glutamate becomes accessible to the glutamate decarboxylase pathway, thereby favoring the synthesis of GABA.

  10. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    PubMed Central

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  11. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    PubMed

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

  12. Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: Relevance for psychiatric disorders.

    PubMed

    Piantadosi, Patrick T; Khayambashi, Shahin; Schluter, Magdalen G; Kutarna, Agnes; Floresco, Stan B

    2016-02-01

    The prefrontal cortex (PFC) is critical for higher-order cognitive functions, including decision-making. In psychiatric conditions such as schizophrenia, prefrontal dysfunction co-occurs with pronounced alterations in decision-making ability. These alterations include a diminished ability to utilize probabilistic reinforcement in guiding future choice, and a reduced willingness to expend effort to receive reward. Among the neurochemical abnormalities observed in the PFC of individuals with schizophrenia are alterations in the production and function of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To probe how PFC GABA hypofunction may contribute to alterations in cost/benefit decision-making, we assessed the effects GABAA-receptor antagonist bicuculline (BIC; 50 ng in 0.5 μl saline/hemisphere) infusion in the medial PFC of rats during performance on a series of well-validated cost/benefit decision-making tasks. Intra-PFC BIC reduced risky choice and reward sensitivity during probabilistic discounting and decreased the preference for larger rewards associated with a greater effort cost, similar to the behavioral sequelae observed in schizophrenia. Additional experiments revealed that these treatments did not alter instrumental responding on a progressive ratio schedule, nor did they impair the ability to discriminate between reward and no reward. However, BIC induced a subtle but consistent impairment in preference for larger vs. smaller rewards of equal cost. BIC infusion also increased decision latencies and impaired the ability to "stay on task" as indexed by reduced rates of instrumental responding. Collectively, these results implicate prefrontal GABAergic dysfunction as a key contributing factor to abnormal decision-making observed in schizophrenia and other neuropsychiatric conditions with similar neurobiological and behavioral alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Agonist-Antagonist Interaction at the Cholinergic Receptor of Denervated Diaphragm,

    DTIC Science & Technology

    A study has been made of the cholinergic receptor induced by chronic denervation in the rat diaphragm. The agonists acetylcholine, carbachol and...muscle cells. Supramaximally effective doses of agonists caused desensitization of the preparation; however, there was no cross tachyphylaxis between acetylcholine and carbachol . (Author)

  14. Evaluation of AhR-agonists and AhR-agonist activity in sediments of Liaohe River protected areas, China.

    PubMed

    Zhang, Yun; Ke, Xin; Gui, Shaofeng; Wu, Xiaoqiong; Wang, Chunyong; Zhang, Haijun

    2017-02-15

    A total of 9 sediment samples of Liaohe River protected areas were collected to evaluate aryl hydrocarbon receptor agonists (AhR-agonists) and AhR-agonist activity via chemical analysis and in vitro H4IIE cell bioassay. Results indicated that bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (Bio-TEQs) ranged from 89.1 to 251.1pg/g dry weight. Concentrations of 16 EPA polycyclic aromatic hydrocarbons (PAHs), 12 dioxin-like polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ranged from 256.8 to 560.1ng/g, 79.2 to 416.2pg/g, and 199.6 to 538.4pg/g, respectively. According to potency balance analysis, TEQ chem s based on PAHs, PCBs, and PCDD/Fs could contribute 16.56% to 26.11% of Bio-TEQs. This could be explained by the potential existence of unidentified AhR-agonists and the potential non-additive interactions among AhR-agonists in sediment extracts. Through the different contributions to Bio-TEQs, this study confirms that PCDD/Fs were the main pollutants that induced significantly AhR-agonist activity in sediments of Liaohe River protected areas. Copyright © 2016. Published by Elsevier Ltd.

  15. The effects of the synthetic cannabinoid receptor agonists, WIN55,212-2 and CP55,940, on salicylate-induced tinnitus in rats.

    PubMed

    Zheng, Yiwen; Stiles, Lucy; Hamilton, Emma; Smith, Paul F; Darlington, Cynthia L

    2010-09-01

    Previous studies in animals and humans have shown that, in some cases at least, anti-epileptic drugs can reduce the severity of tinnitus. Given that cannabinoid receptor agonists have been shown to exert anti-epileptic effects in some circumstances, we investigated whether two synthetic CB(1)/CB(2) receptor agonists, WIN55,212-2, and CP55,940, could inhibit the behavioural manifestations of salicylate-induced tinnitus in rats in a conditioned suppression task. We found that neither WIN55,212-2 (3.0 mg/kg s.c) nor CP55,940 (0.1 or 0.3 mg/kg s.c), significantly reduced conditioned behaviour associated with tinnitus. However, both 3 mg/kg WIN55,212-2 and 0.3 mg/kg CP55,940 did significantly increase tinnitus-related behaviour compared to the vehicle control groups. These results suggest that cannabinoid receptor agonists may not be useful in the treatment of salicylate-induced tinnitus and that at certain doses, they could actually exacerbate the condition. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. GABA type a receptor trafficking and the architecture of synaptic inhibition.

    PubMed

    Lorenz-Guertin, Joshua M; Jacob, Tija C

    2018-03-01

    Ubiquitous expression of GABA type A receptors (GABA A R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABA A Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABA A R function. Here we review the current understanding of how GABA A Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABA A R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABA A R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018. © 2017 Wiley Periodicals, Inc.

  17. RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells.

    PubMed

    Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X

    2013-12-13

    An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.

  18. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    PubMed

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  19. Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D/N)PXXY motif.

    PubMed

    Chen, Zhangguo; Dupré, Denis J; Le Gouill, Christian; Rola-Pleszczynski, Marek; Stanková, Jana

    2002-03-01

    As with most G-protein-coupled receptors, repeated agonist stimulation of the platelet-activating factor receptor (PAFR) results in its desensitization, sequestration, and internalization. In this report, we show that agonist-induced PAFR internalization is independent of G-protein activation but is dependent on arrestins and involves the interaction of arrestins with a limited region of the PAFR C terminus. In cotransfected COS-7 cells, both arrestin-2 and arrestin-3 could be coimmunoprecipitated with PAFR, and agonist stimulation of PAFR induced the translocation of both arrestin-2 and arrestin-3. Furthermore, coexpression of arrestin-2 with PAFR potentiated receptor internalization, whereas agonist-induced PAFR internalization was inhibited by a dominant negative mutant of arrestin-2. The coexpression of a minigene encoding the C-terminal segment of the receptor abolished PAF-induced arrestin translocation and inhibited PAFR internalization. Using C terminus deletion mutants, we determined that the association of arrestin-2 with the receptor was dependent on the region between threonine 305 and valine 330 because arrestin-2 could be immunoprecipitated with the mutant PAFRstop330 but not PAFRstop305. Consistently, stop330 could mediate agonist-induced arrestin-2 translocation, whereas stop305 could not. Two other deletion mutants with slightly longer regions of the C terminus, PAFRstop311 and PAFRstop317, also failed to induce arrestin-2 translocation. Finally, the PAFR mutant Y293A, containing a single substitution in the putative internalization motif DPXXY in the seventh transmembrane domain (which we had shown to be able to internalize but not to couple to G-proteins) could efficiently induce arrestin translocation. Taken together, our results indicate that ligand-induced PAFR internalization is dependent on arrestins, that PAFR can associate with both arrestin-2 and -3, and that their translocation involves interaction with the region of residues 318-330 in

  20. Tachykinin NK-1 and NK-3 selective agonists induce analgesia in the formalin test for tonic pain following intra-VTA or intra-accumbens microinfusions.

    PubMed

    Altier, N; Stewart, J

    1997-12-01

    Experiments were designed to examine the analgesic effects induced by selective tachykinin receptor agonists microinfused into either the ventral tegmental area (VTA) or nucleus accumbens septi (NAS). Rats were tested in the formalin test for tonic pain following an injection of 0.05 ml of 2.5% formalin into one hind paw immediately after bilateral intra-VTA infusions of either the NK-1 agonist, GR-73632 (0.005, 0.05 or 0.5 nmol/side), the NK-3 agonist, senktide (0.005, 0.5 or 1.5 nmol/side), or saline. Two weeks later, the saline-treated rats were assessed in the tail-flick test for phasic pain after infusions of the tachykinin agonists. Tail-flick latencies were recorded following immersion of the tail in 55 degrees C hot water at 10 min intervals for 1 h immediately after intra-VTA infusions of either GR-73632 (0.5 nmol/side), senktide (1.5 nmol/side) or saline. In a second group of rats, the same effects were studied after infusions into the nucleus accumbens (NAS) of GR-73632 (0.005, 0.5 or 1.5 nmol/side), senktide (0.005, 0.5 or 1.5 nmol/side), or saline. In both the VTA and NAS, the NK-1 and the NK-3 agonists caused significant analgesia in the formalin test, although the NK-1 agonist appeared to be more effective. Naltrexone (2.0 mg/kg) pretreatment failed to reverse the analgesic effects in the formalin test induced by intra-VTA infusions of the substance P (SP) analog, DiMe-C7 (3.0 microg/side), GR-73632 (0.5 nmol/side), or senktide (1.5 nmol/side). Neither compound given at either site was effective in the tail-flick test. These findings suggest that SP-dopamine (DA) interactions within the mesolimbic DA system play an important role in the inhibition of tonic pain. Furthermore, they support our earlier ideas that activation of midbrain DA systems by SP might play a role in stress- and/or pain-induced analgesia.

  1. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    PubMed

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  2. Ghrelin and motilin receptor agonists: time to introduce bias into drug design.

    PubMed

    Sanger, G J

    2014-02-01

    Ghrelin and motilin receptor agonists increase gastric motility and are attractive drug targets. However, 14 years after the receptors were described (18-24 years since ligands became available) the inactivity of the ghrelin agonist TZP-102 in patients with gastroparesis joins the list of unsuccessful motilin agonists. Fundamental questions must be asked. Pustovit et al., have now shown that the ghrelin agonist ulimorelin evokes prolonged increases in rat colorectal propulsion yet responses to other ghrelin agonists fade. Similarly, different motilin agonists induce short- or long-lasting effects in a cell-dependent manner. Together, these and other data create the hypothesis that the receptors can be induced to preferentially signal ('biased agonism') via particular pathways to evoke different responses with therapeutic advantages/disadvantages. Biased agonism has been demonstrated for ghrelin. Are motilin agonists which cause long-lasting facilitation of human stomach cholinergic function (compared with motilin) biased agonists (e.g., camicinal, under development for patients with gastric hypo-motility)? For ghrelin, additional complications exist because the therapeutic aims/mechanisms of action are uncertain, making it difficult to select the best (biased) agonist. Will ghrelin agonists be useful treatments of nausea and/or as suggested by Pustovit et al., chronic constipation? How does ghrelin increase gastric motility? As gastroparesis symptoms poorly correlate with delayed gastric emptying (yet gastro-prokinetic drugs can provide relief: e.g., low-dose erythromycin), would low doses of ghrelin and motilin agonists relieve symptoms simply by restoring neuromuscular rhythm? These questions on design and functions need addressing if ghrelin and motilin agonists are to reach patients as drugs. © 2014 John Wiley & Sons Ltd.

  3. Opioid-receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration.

    PubMed

    Ruegg, H; Yu, W Z; Bodnar, R J

    1997-07-01

    Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.

  4. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats

    PubMed Central

    Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu

    2012-01-01

    BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428

  5. Ca(2+)-sensitive tyrosine kinase Pyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy.

    PubMed

    Hirotani, Shinichi; Higuchi, Yoshiharu; Nishida, Kazuhiko; Nakayama, Hiroyuki; Yamaguchi, Osamu; Hikoso, Shungo; Takeda, Toshihiro; Kashiwase, Kazunori; Watanabe, Tetsuya; Asahi, Michio; Taniike, Masayuki; Tsujimoto, Ikuko; Matsumura, Yasushi; Sasaki, Terukatsu; Hori, Masatsugu; Otsu, Kinya

    2004-06-01

    G-protein-coupled receptor agonists including endothelin-1 (ET-1) and phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Others and we previously reported that Rac1 signaling pathway plays an important role in this agonist-induced cardiomyocyte hypertrophy. In this study reported here, we found that a Ca(2+)-sensitive non-receptor tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2)/cell adhesion kinase beta (CAKbeta), is involved in ET-1- and PE-induced cardiomyocyte hypertrophy medicated through Rac1 activation. ET-1, PE or the Ca(2+) inophore, ionomycin, stimulated a rapid increase in tyrosine phosphorylation of Pyk2. The tyrosine phosphorylation of Pyk2 was suppressed by the Ca(2+) chelator, BAPTA. ET-1- or PE-induced increases in [(3)H]-leucine incorporation and expression of atrial natriuretic factor and the enhancement of sarcomere organization. Infection of cardiomyocytes with an adenovirus expressing a mutant Pyk2 which lacked its kinase domain or its ability to bind to c-Src, eliminated ET-1- and PE-induced hypertrophic responses. Inhibition of Pyk2 activation also suppressed Rac1 activation and reactive oxygen species (ROS) production. These findings suggest that the signal transduction pathway leading to hypertrophy involves Ca(2+)-induced Pyk2 activation followed by Rac1-dependent ROS production.

  6. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    PubMed

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3 mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10 mg/kg, s.c.), δ- (naltrindole; 3 mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20 mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20 μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20 μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2 μg/side), naltrindole (1 μg/side) or norBNI (2 μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5 μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50 μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5 μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The β2-adrenoreceptor gene promoter polymorphisms may modulate β2-agonist- and glucocorticoid-induced IgE synthesis.

    PubMed

    Chalubinski, M; Grzegorczyk, J; Grzelak, A; Jarzebska, M; Kowalski, M L

    2014-01-01

    β2-adrenoreceptor (β2-AR) agonists and glucocorticoids (GCS) were shown to induce IgE synthesis in human PBMCs. Serum total IgE levels are associated with single nucleotide polymorphisms (SNPs) of the β2-AR gene. We aimed to assess the association of the effect of fenoterol (β2-AR agonist) on IL-4-driven and budesonide-induced IgE synthesis with genetic variants of β2-AR. The study included 25 individuals: 13 with allergic asthma and/or allergic rhinitis and 12 healthy volunteers. PBMCs were cultured with IL-4, fenoterol and/or budesonide, and IgE concentrations in supernatants were assessed. Five SNPs in positions: -47, -20, 46, 79 and 252 of β2-AR were determined by direct DNA sequencing. In -47 T/T and -20 T/T patients, incubation with fenoterol resulted in decreased IgE production, whereas in -47 C/T and -47 C/C as well as in -20 C/T and -20 C/C individuals, it was enhanced. In contrast to fenoterol, budesonide-induced IgE synthesis was significantly increased in -47 T/T and -20 T/T patients as compared to -47 C/T, -47 C/C, -20 C/T and -47 C/C individuals. Polymorphisms in positions 46, 79 and 252 were not associated with fenoterol- or budesonide-modulated IgE synthesis. No differences in the distribution of IgE synthesis was seen between atopic and non-atopic individuals carrying the same alleles. The differential effect of β2-agonists and GCS on IgE synthesis may be associated with genetic variants of promoter region of the β2-AR gene. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.

  8. Systematic Analysis of γ-Aminobutyric Acid (GABA) Metabolism and Function in the Social Amoeba Dictyostelium discoideum*

    PubMed Central

    Wu, Yuantai; Janetopoulos, Chris

    2013-01-01

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several “early” developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development. PMID:23548898

  9. Acute orexigenic effect of agmatine involves interaction between central α2-adrenergic and GABAergic receptors.

    PubMed

    Taksande, Brijesh Gulabrao; Sharma, Omi; Aglawe, Manish Manohar; Kale, Mayur Bhimrao; Gawande, Dinesh Yugraj; Umekar, Milind Janraoji; Kotagale, Nandkishor Ramdas

    2017-09-01

    Agmatine and GABA have been abundantly expressed in brain nuclei involved in regulation of energy homeostasis and promoting stimulation of food intake in rodents. However, their mutual interaction, if any, in the elicitation of feeding behavior is largely remains unclear. The current study provides experimental evidence for the possible interaction of agmatine, adrenergic and GABAergic systems in stimulation of feeding in satiated rats. Satiated rats fitted with intracerebroventricular (i.c.v.) cannulae and were administered agmatine, alone or jointly with (a) GABA A receptor agonist, muscimol, diazepam or antagonist bicuculline and flumazenil, GABA A positive modulator, allopregnanolone or negative modulator of GABA A receptor, dehydroepiandrosterone (b) In view of the high affinity of agmatine for α 2 -adrenoceptors and the close association between α 2 -adrenoceptors and GABAergic system, the effect of their modulators on feeding elicited by agmatine/GABAergic agonists were also examined. I.c.v. administration of agmatine (40-80μg/rat) induces the significant orexigenic effect in satiated rats. The orexigenic effect of agmatine was potentiated by muscimol (25ng/rat, i.c.v.); diazepam (0.5mg/kg, i.p.); allopregnanolone (0.5mg/kg, s.c.) and blocked by bicuculline (1mg/kg, i.p.) and dehydroepiandrosterone (4mg/kg,s.c.). However, it remained unaffected in presence of flumazenil (25ng/rat, i.c.v.). The orexigenic effect of agmatine and GABAergic agonists was potentiated by a α 2 -adrenoceptors agonist, clonidine (10ng/rat, i.c.v.) and blocked by its antagonist, yohimbine (5μg/rat, i.c.v.). Yohimbine also blocked the hyperphagic effect elicited by ineffective dose combination of agmatine (5μg/rat, i.c.v.) with muscimol (25ng/rat, i.c.v.) or diazepam (0.5mg/kg, i.p.) or allopregnanolone (0.5mg/kg,s.c.). The results of the present study suggest that agmatine induced α 2 -adrenoceptors activation might facilitate GABAergic activity to stimulate food intake in

  10. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    PubMed

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  11. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    PubMed

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  12. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.

    PubMed

    Crabtree, Gregg W; Park, Alan J; Gordon, Joshua A; Gogos, Joseph A

    2016-10-04

    Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Perioperative use of selective alpha-2 agonists and antagonists in small animals

    PubMed Central

    2004-01-01

    Abstract Alpha-2 agonists are the only single class of anesthetic drugs that induce reliable, dose-dependent sedation, analgesia, and muscle relaxation in dogs and cats. Used at low doses, as adjuncts to injectable and inhalational anesthetics, selective alpha-2 agonists dramatically reduce the amount of anesthetic drug required to induce and maintain anesthesia. This reduction in anesthetic requirements is achieved without significant depression of pulmonary function and with limited effects on cardiovascular function. Selective alpha-2 agonists can also be used postoperatively to potentiate the analgesic effects of opioids and other drugs. Given the nearly ideal pharmacodynamic profile and reversibility of alpha-2 agonists, these drugs will play a central role in balanced approaches to anesthesia and the management of perioperative pain in healthy dogs and cats. PMID:15283516

  14. Determination of γ-Aminobutyric Acid (GABA) in Rambutan Fruit cv. Rongrian by HPLC-ELSD and Separation of GABA from Rambutan Fruit Using Dowex 50W-X8 Column.

    PubMed

    Meeploy, Maneerat; Deewatthanawong, Rujira

    2016-03-01

    A high-performance liquid chromatography method coupled with an evaporative light scattering detector (ELSD) was validated for the determination of γ-aminobutyric acid (GABA) in rambutan fruit without any sample pretreatment or derivatization. In the concentration range of 0.05-1.0 mg/mL GABA, the ELSD response was linear with a correlation coefficient (r) >0.999. Limit of detection and limit of quantitation were found to be 0.7 and 2.0 µg/mL, respectively. The method enabled the complete separation of GABA in the aqueous extract of rambutan flesh from the impurity peaks at 45.7 min. The recoveries of sample added GABA were obtained in the range of 92.0-99.3%. Intraday and interday relative standard deviations were <5.3%. Repeatability of the extraction process showed the acceptable precision. From the analysis of GABA content in rambutan flesh, 0.71 ± 0.23 mg of GABA was found in 1 g fresh weight. The recovery of GABA after passing through the Dowex 50W-X8 column was 96.65%. The analytical methodology could be potentially applied to the detection and quantification of GABA in other fruits and complex matrices when a sufficient quantity is available. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. An epigenetic intervention interacts with genetic strain differences to modulate the stress-induced reduction of flurazepam's antiseizure efficacy in the mouse.

    PubMed

    Deutsch, Stephen I; Mastropaolo, John; Burket, Jessica A; Rosse, Richard B

    2009-06-01

    Stress induces changes in the endogenous tone of both GABA and NMDA receptor-mediated neurotransmission in the intact mouse. Because changes are observed 24 h after stress, epigenetically-regulated alterations in gene expression may mediate these effects. In earlier work, sodium butyrate, a centrally-active histone deacetylase inhibitor that promotes gene expression, was shown to modulate the stress-induced reduction of the ability of MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist, to antagonize electrically-precipitated seizures. In the current study, we extended this work to look at sodium butyrate's modulatory effect on stress-induced changes in the antiseizure efficacy of flurazepam, a benzodiazepine receptor agonist, in two strains of mice. Epigenetic mechanisms, genetic strain differences and a standard stress interacted to alter flurazepam's antiseizure efficacy. These data support examination and development of epigenetic treatment strategies.

  16. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism.

    PubMed

    de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W

    2001-08-01

    Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.

  17. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex.

    PubMed

    Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.

  18. The effect of sleep medications on cognitive recovery from traumatic brain injury.

    PubMed

    Larson, Eric B; Zollman, Felise S

    2010-01-01

    To summarize the literature on the available pharmacotherapy for insomnia and the adverse cognitive effects of those options in persons with traumatic brain injury (TBI). Ovid/MEDLINE databases were searched by using the following key words: "brain injury," "sleep initiation and maintenance disorders," "hypnotics and sedatives," "benzodiazepines," "trazodone," and "neuronal plasticity." The reviewed literature consistently reported that benzodiazepines and atypical gamma-aminobutyric acid (GABA) agonists result in cognitive impairment when plasma levels are at their peak. Evidence of residual effects on cognition was reported for benzodiazepines but was seen less often in atypical GABA agonists. However, evidence has also been presented that GABA agonists have adverse effects on neuroplasticity, raising concerns about their use in patients recovering from TBI. Use of benzodiazepines in TBI has been discouraged and some authors also advocate caution in prescribing atypical GABA agonists. Alternate treatments including trazodone and a newer class of agents, melatonin agonists, are highlighted, along with the limited data available addressing the use of these medications in TBI. Finally, suggestions are offered for further research, especially on topic related to neural plasticity and functional recovery.

  19. Depressive effects on the central nervous system and underlying mechanism of the enzymatic extract and its phlorotannin-rich fraction from Ecklonia cava edible brown seaweed.

    PubMed

    Cho, Suengmok; Han, Daeseok; Kim, Seon-Bong; Yoon, Minseok; Yang, Hyejin; Jin, Young-Ho; Jo, Jinho; Yong, Hyeim; Lee, Sang-Hoon; Jeon, You-Jin; Shimizu, Makoto

    2012-01-01

    Marine plants have been reported to possess various pharmacological properties; however, there have been few reports on their neuropharmacological effects. Terrestrial plants have depressive effects on the central nervous system (CNS) because of their polyphenols which make them effective as anticonvulsants and sleep inducers. We investigated in this study the depressive effects of the polyphenol-rich brown seaweed, Ecklonia cava (EC), on CNS. An EC enzymatic extract (ECEE) showed significant anticonvulsive (>500 mg/kg) and sleep-inducing (>500 mg/kg) effects on the respective mice seizure induced by picrotoxin and on the mice sleep induced by pentobarbital. The phlorotannin-rich fraction (PTRF) from ECEE significantly potentiated the pentobarbital-induced sleep at >50 mg/kg. PTRF had binding activity to the gamma aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptors. The sleep-inducing effects of diazepam (DZP, a well-known GABA(A)-BZD agonist), ECEE, and PTRF were completely blocked by flumazenil, a well-known antagonist of GABA(A)-BZD receptors. These results imply that ECEE produced depressive effects on CNS by positive allosteric modulation of its phlorotannins on GABA(A)-BZD receptors like DZP. Our study proposes EC as a candidate for the effective treatment of neuropsychiatric disorders such as anxiety and insomnia.

  20. GABA homeostasis contributes to the developmental programming of anxiety-related behavior.

    PubMed

    Depino, Amaicha Mara; Tsetsenis, Theodoros; Gross, Cornelius

    2008-05-19

    During development, when inhibitory and excitatory synapses are formed and refined, homeostatic mechanisms act to adjust inhibitory input in order to maintain neural activity within a normal range. As the brain matures, synaptogenesis slows and a relatively stable level of inhibition is achieved. Deficits in inhibitory neurotransmission are associated with increased anxiety-related behavior and drugs that potentiate GABA function, the major inhibitory neurotransmitter in the brain, are effective anxiolytics. These observations raise the possibility that transient perturbations in the activity of neural circuits during development might induce compensatory changes in inhibition that could persist into adulthood and contribute to changes in anxiety-related behavior. To test this hypothesis, we treated mice continuously during the major period of forebrain synaptogenesis (P14-28) with the GABA-A receptor positive modulator diazepam and assessed anxiety-related behavior in adulthood. Control experiments confirmed anxiolytic effects of the drug following one day of treatment and the development of tolerance following two weeks of treatment. When tested in adulthood, one month after the end of treatment, diazepam-treated mice exhibited significantly increased behavioral inhibition in the open-field, elevated-plus maze, and novel object behavioral paradigms. Levels of benzodiazepine binding sites in amygdala and frontal cortex were specifically decreased in diazepam-treated mice demonstrating that homeostatic adjustments in GABA function persist into adulthood. Our results show that increased GABAergic activity can affect the developmental programming of anxiety-related behavior.

  1. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    PubMed

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  2. GABA predicts inhibition of frequency-specific oscillations in schizophrenia.

    PubMed

    Rowland, Laura M; Edden, Richard A E; Kontson, Kimberly; Zhu, He; Barker, Peter B; Hong, L Elliot

    2013-01-01

    This study is the first to show a relationship between in-vivo brain gamma-amino butyric acid (GABA) levels and auditory inhibitory electrophysiological measures in schizophrenia. Results revealed a strong association between GABA levels and gating of the theta-alpha and beta activities in schizophrenia.

  3. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat

    PubMed Central

    Hori, Tomohide; Gardner, Lindsay B.; Hata, Toshiyuki; Chen, Feng; Baine, Ann-Marie T.; Uemoto, Shinji; Nguyen, Justin H.

    2014-01-01

    Summary Background: Gamma-aminobutyric acid (GABA) is found throughout the body. The regulation of GABA receptor (GABAR) reduces oxidative stress (OS). Ischemia/reperfusion injury after orthotopic liver transplantation (OLT) causes OS-induced graft damage. The effects of GABAR regulation in donors in vivo were investigated. Material/Methods: Donor rats received saline, a GABAR agonist or GABAR antagonist 4 h before surgery. Recipient rats were divided into four groups according to the donor treatments: laparotomy, OLT with saline, OLT with GABAR agonist and OLT with GABAR antagonist. Histopathological, biochemical and immunohistological examinations were performed at 6, 12 and 24 h after OLT. Protein assays were performed at 6 h after OLT. The 4-hydroxynonenal (4-HNE), ataxia-telangiectasia mutated kinase (ATM), phosphorylated histone H2AX (γH2AX), phosphatidylinositol-3 kinase (PI3K), Akt and superoxide dismutase (SOD) were assessed by western blot analysis. Results: In the univariate analysis, histopathological and biochemical profiles verified that the GABAR agonist reduced graft damage. Immunohistology revealed that the GABAR agonist prevented the induction of apoptosis. Measurement of 4-4-HNE levels confirmed OS-induced damage after OLT, and the GABAR agonist improved this damage. In the γH2AX, PI3K, Akt and antioxidant enzymes (SODs), ATM and H2AX were greatly increased after OLT, and were reduced by the GABAR agonist. In the multivariate analyses between multiple groups, histopathological assessment, aspartate aminotransferase level, immunohistological examinations for apoptotic induction and γH2AX showed statistical differences. Conclusions: A specific agonist demonstrated regulation of GABAR in vivo in the liver. This activation in vivo reduced OS after OLT via the ATM/H2AX pathway. PMID:23792534

  4. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia

    PubMed Central

    Rowland, Laura M.

    2013-01-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy (1H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia. PMID:23081992

  5. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    PubMed

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia.

  6. A Sensitive Period of Mice Inhibitory System to Neonatal GABA Enhancement by Vigabatrin is Brain Region Dependent

    PubMed Central

    Levav-Rabkin, Tamar; Melamed, Osnat; Clarke, Gerard; Farber, Malca; Cryan, John F; Dinan, Timothy G; Grossman, Yoram; Golan, Hava M

    2010-01-01

    Neurodevelopmental disorders, such as schizophrenia and autism, have been associated with disturbances of the GABAergic system in the brain. We examined immediate and long-lasting influences of exposure to the GABA-potentiating drug vigabatrin (GVG) on the GABAergic system in the hippocampus and cerebral cortex, before and during the developmental switch in GABA function (postnatal days P1–7 and P4–14). GVG induced a transient elevation of GABA levels. A feedback response to GABA enhancement was evident by a short-term decrease in glutamate decarboxylase (GAD) 65 and 67 levels. However, the number of GAD65/67-immunoreactive (IR) cells was greater in 2-week-old GVG-treated mice. A long-term increase in GAD65 and GAD67 levels was dependent on brain region and treatment period. Vesicular GABA transporter was insensitive to GVG. The overall effect of GVG on the Cl− co-transporters NKCC1 and KCC2 was an enhancement of their synthesis, which was dependent on the treatment period and brain region studied. In addition, a short-term increase was followed by a long-term decrease in KCC2 oligomerization in the cell membrane of P4–14 hippocampi and cerebral cortices. Analysis of the Ca2+ binding proteins expressed in subpopulations of GABAergic cells, parvalbumin and calbindin, showed region-specific effects of GVG during P4–14 on parvalbumin-IR cell density. Moreover, calbindin levels were elevated in GVG mice compared to controls during this period. Cumulatively, these results suggest a particular susceptibility of the hippocampus to GVG when exposed during days P4–14. In conclusion, our studies have identified modifications of key components in the inhibitory system during a critical developmental period. These findings provide novel insights into the deleterious consequences observed in children following prenatal and neonatal exposure to GABA-potentiating drugs. PMID:20043003

  7. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana

    PubMed Central

    Friend, Lindsey; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac

    2017-01-01

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ9-tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ9-tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ9-tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ9-tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ9-tetrahydrocannabinol use. PMID:29038246

  8. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana.

    PubMed

    Friend, Lindsey; Weed, Jared; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac; Edwards, Jeffrey G

    2017-11-08

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ 9 -tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ 9 -tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ 9 -tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ 9 -tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ 9 -tetrahydrocannabinol use. Copyright © 2017 the

  9. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata.

    PubMed

    Yang, Jiali; Sun, Cui; Zhang, Yangyang; Fu, Da; Zheng, Xiaodong; Yu, Ting

    2017-04-15

    The study investigated the effect of γ-aminobutyric acid (GABA) on the control of alternaria rot in tomato fruit and the possible mechanism involved. Our results showed exogenous GABA could stimulate remarkable resistance to the alternaria rot, while it had no direct antifungal activity against Alternaria alternata. Moreover, the activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase, along with the expression of these corresponding genes, were significantly induced in the GABA treatment. The obtained data suggested GABA induced resistance against the necrotrophic pathogen A. alternata, at least in part by activating antioxidant enzymes, restricting the levels of cell death caused by reactive oxygen species. Meanwhile, the key enzyme genes of GABA shunt, GABA transaminase and succinic-semialdehyde dehydrogenase, were found up-regulated in the GABA treatment. The activation of the GABA shunt might play a vital role in the resistance mechanism underpinning GABA-induced plant immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.

    PubMed

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-06-06

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.

  11. [Dissociated learning with GABAergic drugs].

    PubMed

    Azarashvili, A A; Kaĭmachnikova, I E

    2008-01-01

    The possibility of dissociated learning was investigated using drugs which act directly on GABAB receptors of the brain. The earlier proposed suggestion that the cholinergic system plays a key role in the mechanisms of dissociated learning was tested. It was shown in male Wistar rats that dissociated learning was possible with GABAergic drugs. The dissociated state was induced by injecting the animals with both GABA agonist Baclofen and GABA antagonist 5-aminovaleric acid. Thus, dissociated learning is possible with drugs which act on either cholinergic or GABAergic transmitter systems.

  12. Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus.

    PubMed

    Semyanov, A

    2003-08-01

    Inhibitory signaling mediated by ionotropic GABA(1) receptors generally acts as a major brake against excessive excitability in the brain. This is especially relevant in epilepsy-prone structures such as the hippocampus, in which GABA(A) receptor mediated inhibition is critical in suppressing epileptiform activity. Indeed, potentiating GABA(A) receptor mediated signaling is an important target for antiepileptic drug therapy. GABA(A) receptor mediated inhibition has different roles in the network dependent on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst inhibiting interneurons will increase network excitability; GABAergic therapeutic agents do not distinguish between these two alternatives, which may explain why, on occasion, GABAergic antiepileptic drugs can be proconvulsant. The importance of the target-cell for the effect of neuroactive drugs has emerged from a number of recent studies. Immunocytochemical data have suggested non-uniform distribution of GABA(A) receptor subunits among hippocampal interneurons and pyramidal cells. This has been confirmed by subsequent electropharmacological data. These have demonstrated that compounds which act on GABA(A) receptors or the extracellular GABA concentration can have distinct effects in different neuronal populations. Recently, it has also been discovered that presynaptic glutamate heteroreceptors can modulate GABA release in the hippocampus in a postsynaptic cell-specific manner. Since systemically administrated drugs may act on different neuronal subtypes, they can exhibit paradoxical effects. Distinguishing compounds that have target specific effects on GABAergic signaling may lead to novel and more effective treatments against epilepsy.

  13. 4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor {gamma} agonist alleviates the symptoms of DSS-induced colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Keiko; Ninomiya, Yuichi; Iseki, Mioko

    2008-03-14

    (5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) and antidiabetic agent as has been previously reported. As PPAR{gamma} agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice whenmore » compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.« less

  14. Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans.

    PubMed

    Davis, Kathleen M; Sturt, Brianne L; Friedmann, Andrew J; Richmond, Janet E; Bessereau, Jean-Louis; Grant, Barth D; Bamber, Bruce A

    2010-08-01

    GABA(A) receptor plasticity is important for both normal brain function and disease progression. We are studying GABA(A) receptor plasticity in Caenorhabditis elegans using a genetic approach. Acute exposure of worms to the GABA(A) agonist muscimol hyperpolarizes postsynaptic cells, causing paralysis. Worms adapt after several hours, but show uncoordinated locomotion consistent with decreased GABA signaling. Using patch-clamp and immunofluorescence approaches, we show that GABA(A) receptors are selectively removed from synapses during adaptation. Subunit mRNA levels were unchanged, suggesting a post-transcriptional mechanism. Mutants with defective lysosome function (cup-5) show elevated GABA(A) receptor levels at synapses prior to muscimol exposure. During adaptation, these receptors are removed more slowly, and accumulate in intracellular organelles positive for the late endosome marker GFP-RAB-7. These findings suggest that chronic agonist exposure increases endocytosis and lysosomal trafficking of GABA(A) receptors, leading to reduced levels of synaptic GABA(A) receptors and reduced postsynaptic GABA sensitivity.

  15. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism

    PubMed Central

    Peng, Xiao-Qing; Li, Xia; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Brodie, Jonathan D.; Dewey, Stephen L.; Gardner, Eliot L.; Xi, Zheng-Xiong

    2008-01-01

    Relapse to drug use is a core feature of addiction. Previous studies demonstrate that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, attenuates the acute rewarding effects of cocaine and other addictive drugs. We here report that systemic administration of GVG (25–300 mg/kg) dose-dependently inhibits cocaine- or sucrose-induced reinstatement of reward-seeking behavior in rats. In vivo microdialysis data indicated that the same doses of GVG dose-dependently elevate extracellular GABA levels in the nucleus accumbens (NAc). However, GVG, when administered systemically or locally into the NAc, failed to inhibit either basal or cocaine-priming enhanced NAc dopamine in either naïve rats or cocaine extinction rats. These data suggest that: (1) GVG significantly inhibits cocaine- or sucrose-triggered reinstatement of reward-seeking behavior; and (2) a GABAergic-, but not dopaminergic-, dependent mechanism may underlie the antagonism by GVG of cocaine-triggered reinstatement of drug-seeking behavior, at least with respect to GVG's action on the NAc. PMID:18063319

  16. Circadian-dependent effect of melatonin on dopaminergic D2 antagonist-induced hypokinesia and agonist-induced stereotypies in rats.

    PubMed

    Sumaya, I C; Byers, D M; Irwin, L N; Del Val, S; Moss, D E

    2004-08-01

    Although a melatonin/dopamine relationship has been well established in nonmotor systems wherein dopamine and melatonin share an antagonist relationship, less clear is the role melatonin may play in extrapyramidal dopaminergic function. Therefore, the purpose of the present experiments was to examine the relationship between melatonin and the dopaminergic D2 receptor system and behavior. Hypokinesia was induced in male Sprague-Dawley rats with fluphenazine (D2 antagonist, 0.4 mg/kg ip) and stereotypies with apomorphine (D2 agonist, 0.6 mg/kg sc) during the light (1200 h) and dark (2200 h) phases. As expected, fluphenazine induced severe hypokinesia during the light phase (482 +/- 176 s); however, unexpectedly, fluphenazine-induced hypokinesia during the dark was almost nonexistent (25 +/- 6 s). Furthermore, melatonin treatment (30 mg/kg ip) produced a strong interaction with fluphenazine in that it reduced fluphenazine-induced hypokinesia by nearly 80% in the light (112 +/- 45 s) but paradoxically increased the minimal fluphenazine-induced hypokinesia in the dark by more than 60% (70 +/- 17 s). Melatonin also reduced apomorphine-induced stereotypies by nearly 40% in the light but had no effect in the dark. Taken together, these data show (1) a strong and unexpected nocturnal effect of fluphenazine on hypokinesia and (2) provide support for an antagonistic melatonin/dopaminergic interaction in the context of motor behavior and D2 receptor function which appears to be critically dependent on the light/dark status of the dopaminergic system. Copyright 2004 Elsevier Inc.

  17. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1

    PubMed Central

    Wu, Yuanming; Wang, Wengang; Díez-Sampedro, Ana; Richerson, George B.

    2007-01-01

    SUMMARY GABA transporters play an important but poorly understood role in neuronal inhibition. They can reverse, but this is widely thought to occur only under pathological conditions. Here we use a heterologous expression system to show that the reversal potential of GAT-1 under physiologically relevant conditions is near the normal resting potential of neurons, and that reversal can occur rapidly enough to release GABA during simulated action potentials. We then use paired recordings from cultured hippocampal neurons, and show that GABAergic transmission is not prevented by four methods widely used to block vesicular release. This nonvesicular neurotransmission was potently blocked by GAT-1 antagonists, and was enhanced as predicted by agents that increase cytosolic [GABA] or [Na+]. The results indicate that GAT-1 regulates tonic inhibition by clamping ambient [GABA] at a level high enough to activate high affinity GABAA receptors, and that transporter-mediated GABA release can contribute to phasic inhibition. PMID:18054861

  18. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    PubMed

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  19. GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons

    PubMed Central

    Wu, Xiaoyun; Fu, Yu; Knott, Graham; Lu, Jiangteng; Di Cristo, Graziella

    2012-01-01

    Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its role in distinct steps of inhibitory synapse formation in the mouse neocortex. We have shown previously, by genetic knockdown of GABA synthesis in developing interneurons, that GABA signaling promotes the maturation of inhibitory synapses and axons. Here we found that a complete blockade of GABA release in basket interneurons resulted in an opposite effect, a cell-autonomous increase in axon and bouton density with apparently normal synapse structures. These results not only demonstrate that GABA is unnecessary for synapse formation per se but also uncover a novel facet of GABA in regulating synapse elimination and axon pruning. Live imaging revealed that developing GABAergic axons form a large number of transient boutons, but only a subset was stabilized. Release blockade led to significantly increased bouton stability and filopodia density, increased axon branch extension, and decreased branch retraction. Our results suggest that a major component of GABA function in synapse development is transmission-mediated elimination of subsets of nascent contacts. Therefore, GABA may regulate activity-dependent inhibitory synapse formation by coordinately eliminating certain nascent contacts while promoting the maturation of other nascent synapses. PMID:22219294

  20. The G‐protein biased partial κ opioid receptor agonist 6′‐GNTI blocks hippocampal paroxysmal discharges without inducing aversion

    PubMed Central

    Zangrandi, Luca; Burtscher, Johannes; MacKay, James P; Colmers, William F

    2016-01-01

    Background and Purpose With a prevalence of 1–2%, epilepsies belong to the most frequent neurological diseases worldwide. Although antiepileptic drugs are available since several decades, the incidence of patients that are refractory to medication is still over 30%. Antiepileptic effects of κ opioid receptor (κ receptor) agonists have been proposed since the 1980s. However, their clinical use was hampered by dysphoric side effects. Recently, G‐protein biased κ receptor agonists were developed, suggesting reduced aversive effects. Experimental Approach We investigated the effects of the κ receptor agonist U‐50488H and the G‐protein biased partial κ receptor agonist 6′‐GNTI in models of acute seizures and drug‐resistant temporal lobe epilepsy and in the conditioned place avoidance (CPA) test. Moreover, we performed slice electrophysiology to understand the functional mechanisms of 6′‐GNTI. Key Results As previously shown for U‐50488H, 6′‐GNTI markedly increased the threshold for pentylenetetrazole‐induced seizures. All treated mice displayed reduced paroxysmal activity in response to U‐50488H (20 mg·kg−1) or 6′‐GNTI (10–30 nmoles) treatment in the mouse model of intra‐hippocampal injection of kainic acid. Single cell recordings on hippocampal pyramidal cells revealed enhanced inhibitory signalling as potential mechanisms causing the reduction of paroxysmal activity. Effects of 6′‐GNTI were blocked in both seizure models by the κ receptor antagonist 5′‐GNTI. Moreover, 6′‐GNTI did not induce CPA, a measure of aversive effects, while U‐50488H did. Conclusions and Implications Our data provide the proof of principle that anticonvulsant/antiseizure and aversive effects of κ receptor activation can be pharmacologically separated in vivo. PMID:26928671

  1. GABA+ levels in postmenopausal women with mild-to-moderate depression

    PubMed Central

    Wang, Zhensong; Zhang, Aiying; Zhao, Bin; Gan, Jie; Wang, Guangbin; Gao, Fei; Liu, Bo; Gong, Tao; Liu, Wen; Edden, Richard A.E.

    2016-01-01

    Abstract Background: It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (1H-MRS). Methods: Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent 1H-MRS of the ACC/mPFC and PCC using the “MEGA Point Resolved Spectroscopy Sequence” (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. Results: Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = −0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = −0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = −0.018; PCC: P = 0.861, r = 0.043). Conclusion: Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women. PMID:27684829

  2. Endogenous GABA and Glutamate Finely Tune the Bursting of Olfactory Bulb External Tufted Cells

    PubMed Central

    Hayar, Abdallah; Ennis, Matthew

    2008-01-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic γ-aminobutyric acid (GABA) and glutamate receptors. Blocking GABAA receptors increased—whereas blocking ionotropic glutamate receptors decreased—the number of spikes/burst without changing the interburst frequency. The GABAA agonist (isoguvacine, 10 μM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb. PMID:17567771

  3. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist.

    PubMed

    Fosgerau, Keld; Weber, Uno J; Gotfredsen, Jacob W; Jayatissa, Magdalena; Buus, Carsten; Kristensen, Niels B; Vestergaard, Mogens; Teschendorf, Peter; Schneider, Andreas; Hansen, Philip; Raunsø, Jakob; Køber, Lars; Torp-Pedersen, Christian; Videbaek, Charlotte

    2010-10-09

    The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies. Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human). The investigated TRPV1 agonists were administered by continuous intravenous infusion. Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats and cynomologus monkeys DHC caused a dose-dependent and immediate decrease in body temperature. Thus in rats, infusion of DHC at doses of 0.125, 0.25, 0.50, and 0.75 mg/kg/h caused a maximal ΔT (°C) as compared to vehicle control of -0.9, -1.5, -2.0, and -4.2 within approximately 1 hour until the 6 hour infusion was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours. Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining therapeutic hypothermia.

  4. Suppression of noise-induced hyperactivity in the dorsal cochlear nucleus following application of the cholinergic agonist, carbachol

    PubMed Central

    Manzoor, N.F.; Chen, G.; Kaltenbach, J.A.

    2013-01-01

    Increased spontaneous firing (hyperactivity) is induced in fusiform cells of the dorsal cochlear nucleus (DCN) following intense sound exposure and is implicated as a possible neural correlate of noise-induced tinnitus. Previous studies have shown that in normal hearing animals, fusiform cell activity can be modulated by activation of parallel fibers, which represent the axons of granule cells. The modulation consists of a transient excitation followed by a more prolonged period of inhibition, presumably reflecting direct excitatory inputs to fusiform cells and an indirect inhibitory input to fusiform cells from the granule cell-cartwheel cell system. We hypothesized that since granule cells can be activated by cholinergic inputs, it might be possible to suppress tinnitus-related hyperactivity of fusiform cells using the cholinergic agonist, carbachol. To test this hypothesis, we recorded multiunit spontaneous activity in the fusiform soma layer (FSL) of the DCN in control and tone-exposed hamsters (10 kHz, 115 dB SPL, 4 h) before and after application of carbachol to the DCN surface. In both exposed and control animals, 100 µM carbachol had a transient excitatory effect on spontaneous activity followed by a rapid weakening of activity to near or below normal levels. In exposed animals, the weakening of activity was powerful enough to completely abolish the hyperactivity induced by intense sound exposure. This suppressive effect was partially reversed by application of atropine and was not associated with significant changes in neural best frequencies (BF) or BF thresholds. These findings demonstrate that noise-induced hyperactivity can be pharmacologically controlled and raise the possibility that attenuation of tinnitus may be achievable by using an agonist of the cholinergic system. PMID:23721928

  5. Increased GABA Levels in Medial Prefrontal Cortex of Young Adults with Narcolepsy

    PubMed Central

    Kim, Seog Ju; Lyoo, In Kyoon; Lee, Yujin S.; Sung, Young Hoon; Kim, Hengjun J.; Kim, Jihyun H.; Kim, Kye Hyun; Jeong, Do-Un

    2008-01-01

    Study Objectives: To explore absolute concentrations of brain metabolites including gamma amino-butyric acid (GABA) in the medial prefrontal cortex and basal ganglia of young adults with narcolepsy. Design: Proton magnetic resonance (MR) spectroscopy centered on the medial prefrontal cortex and the basal ganglia was acquired. The absolute concentrations of brain metabolites including GABA and glutamate were assessed and compared between narcoleptic patients and healthy comparison subjects. Setting: Sleep and Chronobiology Center at Seoul National University Hospital; A high strength 3.0 Tesla MR scanner in the Department of Radiology at Seoul National University Hospital. Patients or Participants: Seventeen young adults with a sole diagnosis of HLA DQB1 0602 positive narcolepsy with cataplexy (25.1 ± 4.6 years old) and 17 healthy comparison subjects (26.8 ± 4.8 years old). Interventions: N/A. Measurements and Results: Relative to comparison subjects, narcoleptic patients had higher GABA concentration in the medial prefrontal cortex (t = 4.10, P <0.001). Narcoleptic patients with nocturnal sleep disturbance had higher GABA concentration in the medial prefrontal cortex than those without nocturnal sleep disturbance (t = 2.45, P= 0.03), but had lower GABA concentration than comparison subjects (t = 2.30, P = 0.03). Conclusions: The current study reports that young adults with narcolepsy had a higher GABA concentration in the medial prefrontal cortex, which was more prominent in patients without nocturnal sleep disturbance. Our findings suggest that the medial prefrontal GABA level may be increased in narcolepsy, and the increased medial prefrontal GABA might be a compensatory mechanism to reduce nocturnal sleep disturbances in narcolepsy. Citation: Kim SJ; Lyoo IK; Lee YS; Sung YH; Kim HJ; Kim JH; Kim KH; Jeong DU. Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. SLEEP 2008;31(3):342-347. PMID:18363310

  6. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    PubMed

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  7. Group II Metabotropic Glutamate Receptor Agonist Ameliorates MK801-Induced Dysfunction of NMDA Receptors via the Akt/GSK-3β Pathway in Adult Rat Prefrontal Cortex

    PubMed Central

    Xi, Dong; Li, Yan-Chun; Snyder, Melissa A; Gao, Ruby Y; Adelman, Alicia E; Zhang, Wentong; Shumsky, Jed S; Gao, Wen-Jun

    2011-01-01

    Pharmacological intervention targeting mGluRs has emerged as a potential treatment for schizophrenia, whereas the mechanisms involved remain elusive. We explored the antipsychotic effects of an mGluR2/3 agonist in the MK-801 model of schizophrenia in the rat prefrontal cortex. We found that the mGluR2/3 agonist LY379268 effectively recovered the disrupted expression of NMDA receptors induced by MK-801 administration. This effect was attributable to the direct regulatory action of LY379268 on NMDA receptors via activation of the Akt/GSK-3β signaling pathway. As occurs with the antipsychotic drug clozapine, acute treatment with LY379268 significantly increased the expression and phosphorylation of NMDA receptors, as well as Akt and GSK-3β. Physiologically, LY379268 significantly enhanced NMDA-induced current in prefrontal neurons and a GSK-3β inhibitor occluded this effect. In contrast to the widely proposed mechanism of modulating presynaptic glutamate release, our results strongly argue that mGluR2/3 agonists modulate the function of NMDA receptors through postsynaptic actions and reverse the MK-801-induced NMDA dysfunction via the Akt/GSK-3β pathway. This study provides novel evidence for postsynaptic mechanisms of mGluR2/3 in regulation of NMDA receptors and presents useful insights into the mechanistic actions of mGluR2/3 agonists as potential antipsychotic agents for treating schizophrenia. PMID:21326193

  8. Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo

    2016-12-01

    In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.

  9. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex; Biologie Servier, Gidy

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stainedmore » by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the

  10. Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430

    PubMed Central

    Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob

    2009-01-01

    Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569

  11. Comparison of receptor mechanisms and efficacy requirements for delta-agonist-induced convulsive activity and antinociception in mice.

    PubMed

    Broom, Daniel C; Nitsche, Joshua F; Pintar, John E; Rice, Kenner C; Woods, James H; Traynor, John R

    2002-11-01

    Delta-opioid receptor-selective agonists produce antinociception and convulsions in several species, including mice. This article examines two hypotheses in mice: 1) that antinociception and convulsive activity are mediated through the same type of delta-receptor and 2) that greater delta-agonist efficacy is required for antinociception than for convulsive activity. Delta-mediated antinociception was evaluated in the acetic acid-induced abdominal constriction assay, which involves a low-intensity noxious stimulus; convulsive activity was indicated as a mild tonic-clonic convulsive episode followed by a period of catalepsy. In delta-opioid receptor knockout mice [DOR-1(-/-)], the nonpeptidic delta-agonists (+/-)-4-[(R*)-[(2S*,5R*)-2,5-dimethyl-4-(2-propenyl)-1- piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide hydrochloride (BW373U86) and (+)-4-[(R)-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N, N-diethylbenzamide (SNC80) failed to produce convulsive behavior demonstrating the absolute involvement of DOR-1 in this effect. In NIH Swiss mice expressing delta-opioid receptors, BW373U86 produced both antinociception and convulsive activity. These effects were antagonized by the putative delta(1)-receptor-selective antagonist 7-benzylidenenaltrexone and the putative delta(2)-receptor-selective antagonist naltriben. Tolerance developed to both the convulsive and antinociceptive effects of BW373U86. Tolerance to the convulsive, but not the antinociceptive, effects of BW373U86 was largely prevented when the antagonist naltrindole was given 20 min after each dose of the agonist in a 3-day treatment paradigm. The convulsive action of BW373U86 was also less sensitive than the antinociceptive action to treatment with the irreversible delta-antagonist naltrindole isothiocyanate. Collectively, these data suggest that the convulsive and antinociceptive activities of delta-agonists are mediated through the same receptor but that the

  12. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex

    PubMed Central

    Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207

  13. Estrogen Receptor β Agonist Attenuates Endoplasmic Reticulum Stress-Induced Changes in Social Behavior and Brain Connectivity in Mice.

    PubMed

    Crider, Amanda; Nelson, Tyler; Davis, Talisha; Fagan, Kiley; Vaibhav, Kumar; Luo, Matthew; Kamalasanan, Sunay; Terry, Alvin V; Pillai, Anilkumar

    2018-02-12

    Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.

  14. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  15. Effects of GABA and bicuculline on N-methyl-D-aspartate- and quisqualate-induced reductions in extracellular free calcium in area CA1 of the hippocampal slice.

    PubMed

    Hamon, B; Heinemann, U

    1986-01-01

    Decreases in extracellular free calcium ([Ca2+]o) and concomitant field potentials were recorded from the dendritic and cell body layers of the CA1 field in transverse hippocampal slices. They were elicited by tetanic stimulation of Schaffer collaterals and commissural fibers or by iontophoretic application of the excitatory amino acids N-methyl-D-aspartate (NMDA) and quisqualate (Quis). Under control conditions, decreases in [Ca2+]o were found to be maximal in stratum pyramidale (SP). In stratum radiatum (SR), 100 micron away from SP, decreases in [Ca2+]o were half the size of those observed in SP. Bicuculline methiodide, bath-applied at concentrations of 10-100 microM, enhanced the reductions in [Ca2+]o, increased the field potentials in all layers and also induced "spontaneous" epileptiform activity. In the presence of bicuculline, the decreases in [Ca2+]o were particularly enhanced in SR and were often greater than those recorded in SP. This was the case for changes in [Ca2+]o induced either by repetitive electrical stimulation or by application of NMDA and Quis. When synaptic transmission was blocked by perfusing the slices with a low Ca2+ medium, all NMDA and Quis-induced changes in [Ca2+]o were predictably reduced but there was a relative enhancement of changes in [Ca2+]o in SR with respect to those in SP. We propose that, under normal conditions, an inhibitory control mediated by GABA limits the reductions of [Ca2+]o particularly in SR. In support of this proposal, we found that bath-applied GABA had a depressant action on changes in [Ca2+]o.

  16. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals.

    PubMed

    Ohno-Shosaku, T; Maejima, T; Kano, M

    2001-03-01

    Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.

  17. Prenatal Ontogeny as a Susceptibility Period for Cortical GABA Neuron Disturbances in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2013-01-01

    Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex. Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. First, we review available evidence from postmortem human brain tissue studies characterizing alterations in certain subpopulations of prefrontal GABA neuron that provide clues to a prenatal origin in schizophrenia. Second, we review recent discoveries of transcription factors, cytokine receptors, and other developmental regulators that govern the birth, migration, specification, maturation, and survival of different subpopulations of prefrontal GABA neurons. Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the prefrontal cortex in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia. PMID:23769891

  18. Toll-Like Receptor–2/6 and Toll-Like Receptor–9 Agonists Suppress Viral Replication but Not Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Evans, Scott E.; Dickey, Burton F.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Respiratory virus infections cause airway hyperreactivity (AHR). Preventative strategies for virus-induced AHR remain limited. Toll-like receptors (TLRs) have been suggested as a therapeutic target because of their central role in triggering antiviral immune responses. Previous studies showed that concurrent treatment with TLR2/6 and TLR9 agonists reduced lethality and the microbial burden in murine models of bacterial and viral pneumonia. This study investigated the effects of TLR2/6 and TLR9 agonist pretreatment on parainfluenza virus pneumonia and virus-induced AHR in guinea pigs in vivo. Synthetic TLR2/6 lipopeptide agonist Pam2CSK4 and Class C oligodeoxynucleotide TLR9 agonist ODN2395, administered in combination 24 hours before virus infection, significantly reduced viral replication in the lung. Despite a fivefold reduction in viral titers, concurrent TLR2/6 and TLR9 agonist pretreatment did not prevent virus-induced AHR or virus-induced inhibitory M2 muscarinic receptor dysfunction. Interestingly, the TLR agonists independently caused non–M2-dependent AHR. These data confirm the therapeutic antiviral potential of TLR agonists, while suggesting that virus inhibition may be insufficient to prevent virus-induced airway pathophysiology. Furthermore, TLR agonists independently cause AHR, albeit through a distinctly different mechanism from that of parainfluenza virus. PMID:23449736

  19. beta-Adrenoceptor agonists enhance 5-hydroxytryptamine-mediated behavioural responses.

    PubMed Central

    Cowen, P. J.; Grahame-Smith, D. G.; Green, A. R.; Heal, D. J.

    1982-01-01

    The beta-adrenoceptor agonists, salbutamol, terbutaline and clenbuterol, were investigated for their effect on 5-hydroxytryptamine-mediated (5-HT) hyperactivity. 2 The lipophilic beta-adrenoceptor agonist, clenbuterol (5 mg/kg) enhanced the behaviours induced by quipazine (25 mg/kg), including headweaving, forepaw treading and hind-limb abduction and thus increased automated activity recording. Clenbuterol (5 mg/kg) also enhanced the hyperactivity syndrome produced by the 5-HT agonist, 5-methoxy N,N-dimethyltryptamine (2 mg/kg) and the combination of tranylcypromine (10 mg/kg) and L-tryptophan (50 mg/kg). Salbutamol and terbutaline potentiated quipazine-induced hyperactivity only when given at the higher dose of 20 mg/kg. 3 The effect of clenbuterol in enhancing quipazine hyperactivity was blocked by the centrally acting beta 1-adrenoceptor antagonist, metoprolol (5 mg/kg), but not by the beta 2-adrenoceptor antagonist, butoxamine (5 mg/kg) or the peripherally acting beta 1-adrenoceptor antagonist, atenolol (5 mg/kg). 4 Clenbuterol (5 mg/kg) did not enhance the circling responses produced by methamphetamine (0.5 mg/kg) in unilateral nigrostriatal-lesioned rats. 5 The results suggest that beta-adrenoceptor agonists in common with some established antidepressant treatments produce enhancement of 5-HT-mediated behavioural responses. PMID:6124294

  20. Inhibition of ERK activity enhances the cytotoxic effect of peroxisome proliferator-activated receptor γ (PPARγ) agonists in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ha Kyun; Kim, Dae Seong; Chae, Jung Jun

    In this study, we examined whether the peroxisome proliferator-activated receptor γ (PPARγ) agonists, ciglitazone (CGZ) and troglitazone (TGZ), induce cell death in human cervical cancer HeLa cells. The cells were treated with a range of CGZ or TGZ doses for 24 or 48 h. Low concentrations of CGZ (≤10 μM) or TGZ (≤20 μM) had no effect on cell viability whereas higher doses induced cell death in a time- and dose-dependent manner as evidenced by the detection of activated caspase-3 and PARP cleavage. Treatment with the PPARγ antagonist GW9662 followed by PPARγ agonists did not increase CGZ- or TGZ-induced cell death, indicating thatmore » PPARγ agonists induced HeLa cell death independently of PPARγ. Moreover, ERK1/2 activation was observed at a CGZ concentration of 25 μM and a TGZ concentration of 35 μM, both of which induced cell death. To elucidate the role of ERK1/2 activated by the two PPARγ agonists, the effect of U0126, an inhibitor of ERK1/2, on PPARγ-agonist-induced cell death was examined. Treatment with 10 or 20 μM U0126 followed by CGZ or TGZ induced the down-regulation of ERK1/2 activity and a decrease in Bcl-2 expression accompanied by the collapse of mitochondrial membrane potential, which in turn significantly enhanced CGZ- or TGZ-induced apoptotic cell death. Our results suggest that PPARγ agonists are capable of inducing apoptotic cell death in HeLa cells independently of PPARγ and that inhibition of ERK1/2 activity offers a strategy to enhance the cytotoxicity of PPARγ agonists in the treatment of cervical cancer. - Highlights: • The PPARγ agonists CGZ and TGZ induce apoptotic cell death in HeLa cells. • CGZ or TGZ induces apoptotic cell death independently of PPARγ in HeLa cells. • Inhibition of ERK1/2 enhances CGZ- or TGZ-induced cell death via the collapse of MMP.« less